WO2011052625A1 - 陽極バッファ層用組成物、陽極バッファ層用高分子化合物、有機エレクトロルミネッセンス素子、その製造方法およびその用途 - Google Patents
陽極バッファ層用組成物、陽極バッファ層用高分子化合物、有機エレクトロルミネッセンス素子、その製造方法およびその用途 Download PDFInfo
- Publication number
- WO2011052625A1 WO2011052625A1 PCT/JP2010/069037 JP2010069037W WO2011052625A1 WO 2011052625 A1 WO2011052625 A1 WO 2011052625A1 JP 2010069037 W JP2010069037 W JP 2010069037W WO 2011052625 A1 WO2011052625 A1 WO 2011052625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode buffer
- buffer layer
- group
- organic
- carbon atoms
- Prior art date
Links
- 239000000872 buffer Substances 0.000 title claims abstract description 219
- 150000001875 compounds Chemical class 0.000 title claims abstract description 183
- 239000000203 mixture Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 230000008569 process Effects 0.000 title claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 83
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 59
- 239000003960 organic solvent Substances 0.000 claims abstract description 48
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 34
- 229920000642 polymer Polymers 0.000 claims description 106
- 125000004432 carbon atom Chemical group C* 0.000 claims description 67
- 238000000576 coating method Methods 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 21
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 18
- 125000000962 organic group Chemical group 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 14
- 230000005525 hole transport Effects 0.000 claims description 14
- 125000000524 functional group Chemical group 0.000 claims description 13
- 238000005401 electroluminescence Methods 0.000 claims description 10
- 125000003545 alkoxy group Chemical group 0.000 claims description 9
- 125000005843 halogen group Chemical group 0.000 claims description 9
- 125000004429 atom Chemical group 0.000 claims description 8
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 8
- 125000003277 amino group Chemical group 0.000 claims description 7
- 229940126062 Compound A Drugs 0.000 claims description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 2
- 239000002904 solvent Substances 0.000 abstract description 32
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 abstract description 5
- 229920002554 vinyl polymer Polymers 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 312
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 102
- 238000003786 synthesis reaction Methods 0.000 description 69
- 239000000243 solution Substances 0.000 description 49
- 239000000758 substrate Substances 0.000 description 33
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 27
- 229910052757 nitrogen Inorganic materials 0.000 description 26
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000008096 xylene Substances 0.000 description 16
- 239000000178 monomer Substances 0.000 description 15
- 238000009826 distribution Methods 0.000 description 14
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 10
- 238000010898 silica gel chromatography Methods 0.000 description 10
- 238000004528 spin coating Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000007877 V-601 Substances 0.000 description 8
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 238000010992 reflux Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 7
- 239000003505 polymerization initiator Substances 0.000 description 7
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 7
- 150000003613 toluenes Chemical class 0.000 description 7
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 6
- 229940125904 compound 1 Drugs 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- -1 triphenylamine compound Chemical class 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 0 CC*(C)CC*(*)c1c(*)c(N(C)C)c(*)c(N(C)C)c1* Chemical compound CC*(C)CC*(*)c1c(*)c(N(C)C)c(*)c(N(C)C)c1* 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- DLJSOQUUTWMXGW-UHFFFAOYSA-N 2,5-dimethyl-1-n,4-n,4-n-tris(3-methylphenyl)benzene-1,4-diamine Chemical compound CC1=CC=CC(NC=2C(=CC(=C(C)C=2)N(C=2C=C(C)C=CC=2)C=2C=C(C)C=CC=2)C)=C1 DLJSOQUUTWMXGW-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 4
- 150000001502 aryl halides Chemical class 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 238000007756 gravure coating Methods 0.000 description 4
- 238000001819 mass spectrum Methods 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000010526 radical polymerization reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 125000006617 triphenylamine group Chemical group 0.000 description 4
- VLCPISYURGTGLP-UHFFFAOYSA-N 1-iodo-3-methylbenzene Chemical compound CC1=CC=CC(I)=C1 VLCPISYURGTGLP-UHFFFAOYSA-N 0.000 description 3
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000007611 bar coating method Methods 0.000 description 3
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000007922 dissolution test Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- XDOPPIGICRYCNF-UHFFFAOYSA-N 1,3-dibromo-5-ethenyl-2-methylbenzene Chemical compound CC1=C(Br)C=C(C=C)C=C1Br XDOPPIGICRYCNF-UHFFFAOYSA-N 0.000 description 2
- KQJQPCJDKBKSLV-UHFFFAOYSA-N 1-bromo-3-ethenylbenzene Chemical compound BrC1=CC=CC(C=C)=C1 KQJQPCJDKBKSLV-UHFFFAOYSA-N 0.000 description 2
- BWAPJIHJXDYDPW-UHFFFAOYSA-N 2,5-dimethyl-p-phenylenediamine Chemical compound CC1=CC(N)=C(C)C=C1N BWAPJIHJXDYDPW-UHFFFAOYSA-N 0.000 description 2
- UDQLIWBWHVOIIF-UHFFFAOYSA-N 3-phenylbenzene-1,2-diamine Chemical class NC1=CC=CC(C=2C=CC=CC=2)=C1N UDQLIWBWHVOIIF-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910000573 alkali metal alloy Inorganic materials 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000005264 aryl amine group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000010538 cationic polymerization reaction Methods 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910001512 metal fluoride Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 150000005041 phenanthrolines Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XZRMXDPWEPRYMF-UHFFFAOYSA-N (4-ethenylphenoxy)boronic acid Chemical compound OB(O)OC1=CC=C(C=C)C=C1 XZRMXDPWEPRYMF-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- HJQLGKFRJIWWAT-UHFFFAOYSA-N 1-bromo-2-(2-methylpropyl)benzene Chemical compound CC(C)CC1=CC=CC=C1Br HJQLGKFRJIWWAT-UHFFFAOYSA-N 0.000 description 1
- ZBTMRBYMKUEVEU-UHFFFAOYSA-N 1-bromo-4-methylbenzene Chemical compound CC1=CC=C(Br)C=C1 ZBTMRBYMKUEVEU-UHFFFAOYSA-N 0.000 description 1
- PEBRIGBNSYOMPV-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,5-bis(2-hydroxyethoxy)cyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound OCCOC1=CC(=C(C#N)C#N)C(OCCO)=CC1=C(C#N)C#N PEBRIGBNSYOMPV-UHFFFAOYSA-N 0.000 description 1
- PFSDYUVXXQTNMX-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,5-difluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=CC(=C(C#N)C#N)C(F)=CC1=C(C#N)C#N PFSDYUVXXQTNMX-UHFFFAOYSA-N 0.000 description 1
- DFJXWQJAMNCPII-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,5-dimethylcyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound CC1=CC(=C(C#N)C#N)C(C)=CC1=C(C#N)C#N DFJXWQJAMNCPII-UHFFFAOYSA-N 0.000 description 1
- BXPLEMMFZOKIHP-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-3-fluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=CC(=C(C#N)C#N)C=CC1=C(C#N)C#N BXPLEMMFZOKIHP-UHFFFAOYSA-N 0.000 description 1
- QXISTPDUYKNPLU-UHFFFAOYSA-N 2-bromo-1,4-dimethylbenzene Chemical group CC1=CC=C(C)C(Br)=C1 QXISTPDUYKNPLU-UHFFFAOYSA-N 0.000 description 1
- VJJZJBUCDWKPLC-UHFFFAOYSA-N 3-methoxyapigenin Chemical compound O1C2=CC(O)=CC(O)=C2C(=O)C(OC)=C1C1=CC=C(O)C=C1 VJJZJBUCDWKPLC-UHFFFAOYSA-N 0.000 description 1
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- IWJGMJHAIUBWKT-UHFFFAOYSA-N 4-bromo-2-methylphenol Chemical compound CC1=CC(Br)=CC=C1O IWJGMJHAIUBWKT-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- FTOYXCYNGNXXQP-UHFFFAOYSA-N 5,10-dioxo-[1,4]dithiino[2,3-g][1,4]benzodithiine-2,3,7,8-tetracarbonitrile Chemical compound S1C(C#N)=C(C#N)SC2=C1C(=O)C(SC(=C(C#N)S1)C#N)=C1C2=O FTOYXCYNGNXXQP-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 241001136782 Alca Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- BRMOBUIGDLKPDH-UHFFFAOYSA-N CCC(C)(N)OC Chemical compound CCC(C)(N)OC BRMOBUIGDLKPDH-UHFFFAOYSA-N 0.000 description 1
- GBNSXDYOJRYFDN-UHFFFAOYSA-N Cc1cc(Nc2c(C)ccc(C)c2)ccc1 Chemical compound Cc1cc(Nc2c(C)ccc(C)c2)ccc1 GBNSXDYOJRYFDN-UHFFFAOYSA-N 0.000 description 1
- DKJAISVHCJYCHF-UHFFFAOYSA-N Cc1cccc(N(c2cc(C)ccc2C)c2c(C)c(N(c3cccc(C)c3)c3cc(C)ccc3C)cc(C=C)c2)c1 Chemical compound Cc1cccc(N(c2cc(C)ccc2C)c2c(C)c(N(c3cccc(C)c3)c3cc(C)ccc3C)cc(C=C)c2)c1 DKJAISVHCJYCHF-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- NJFQTNXYFOEFJU-UHFFFAOYSA-N [2-[4-[4-(2-azanidylidene-1-cyanoethenyl)phenyl]phenyl]-2-cyanoethenylidene]azanide;tetrabutylazanium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC.C1=CC(C(C#N)=C=[N-])=CC=C1C1=CC=C(C(C#N)=C=[N-])C=C1 NJFQTNXYFOEFJU-UHFFFAOYSA-N 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- XEPMXWGXLQIFJN-UHFFFAOYSA-K aluminum;2-carboxyquinolin-8-olate Chemical compound [Al+3].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 XEPMXWGXLQIFJN-UHFFFAOYSA-K 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- QZXNDEONRUSYFB-UHFFFAOYSA-N n-[4-(4-aminophenyl)phenyl]-3-methylaniline Chemical compound CC1=CC=CC(NC=2C=CC(=CC=2)C=2C=CC(N)=CC=2)=C1 QZXNDEONRUSYFB-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- XYKIUTSFQGXHOW-UHFFFAOYSA-N propan-2-one;toluene Chemical compound CC(C)=O.CC1=CC=CC=C1 XYKIUTSFQGXHOW-UHFFFAOYSA-N 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 150000004322 quinolinols Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- ZGNPLWZYVAFUNZ-UHFFFAOYSA-N tert-butylphosphane Chemical compound CC(C)(C)P ZGNPLWZYVAFUNZ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/32—Monomers containing only one unsaturated aliphatic radical containing two or more rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
- C08F12/26—Nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D125/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
- C09D125/18—Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/141—Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/202—LCD, i.e. liquid crystal displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
Definitions
- the present invention relates to a material for an anode buffer layer that constitutes an organic electroluminescence (hereinafter also referred to as “organic EL”) element, an organic EL element using the same, a manufacturing method thereof, and an application thereof.
- the present invention relates to a composition for an anode buffer layer containing the polymer host material, a polymer compound for an anode buffer layer containing a specific structural unit, and an organic EL device using the same.
- An organic EL element requires a pair of electrodes and a light emitting layer sandwiched between them, but reduces the driving voltage of the organic EL element, improves current efficiency, stabilizes hole injection, and organic EL element
- reduces the driving voltage of the organic EL element improves current efficiency, stabilizes hole injection, and organic EL element
- anode buffer layer also referred to as a hole injection layer
- polymer materials As the material of the anode buffer layer, polymer materials, oligomer materials, and the like can be cited, and various materials are known.
- polymer material examples include polyaniline, polythiophene (polyethylenedioxythiophene (PEDOT), etc.), a material obtained by mixing an oxidant into a polymer having an arylamine in the main chain or side chain, and making it conductive (non- Patent Document 1).
- Patent Document 1 Japanese Patent Laid-Open No. 2000-36390
- Patent Document 2 Japanese Patent Laid-Open No. 2001-22230
- Patent Document 3 Japanese Patent Laid-Open No. 2002-252085
- a hole injection layer containing a polymer and an electron accepting compound (oxidant) is described.
- As these hole injection layer forming methods a coating solution containing the polymer containing a specific arylamine structure and the electron accepting compound is prepared and applied on the anode by a method such as spin coating or dip coating. The method of drying is described.
- JP 2000-36390 A Japanese Patent Laid-Open No. 2001-223084 JP 2002-252085 A
- the anode buffer layer is formed using a polymer material solution containing an organic solvent as a solvent
- the light emitting layer is formed by applying a solution such as a light emitting layer forming material on the anode buffer layer.
- the anode buffer layer was dissolved by the solvent (organic solvent) during the equal formation.
- Patent Documents 1 to 3 which disclose techniques for forming a light emitting layer or the like on the anode buffer layer (hole injection layer) by vapor deposition, do not suggest any such problems.
- the anode buffer layer is formed using an aqueous solution of a polymer-based material
- the above problems do not occur, but the polymer material often has an ionic group or the like, which can improve power efficiency.
- the deterioration of the organic EL element is often promoted by ion diffusion when the organic EL element is driven.
- the present invention which aims to solve the above-mentioned problems in the prior art, can use an organic solvent as the solvent for the anode buffer layer forming solution, and can also be dissolved by application of a light emitting layer forming material solution using the organic solvent as a solvent.
- An object of the present invention is to provide a material for an anode buffer layer that can form an anode buffer layer that can be used, and that can produce an organic EL element with high power efficiency and a long lifetime.
- the present invention relates to the following [1] to [10], for example.
- a polymer compound having a structural unit represented by the following formula (1) or the following formula (2) and having a weight average molecular weight measured by GPC of 20,000 to 1,000,000, and an electron-accepting compound A composition for an anode buffer layer, comprising:
- a plurality of R a each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, at least one R a represents an alkyl group having 1 to 10 carbon atoms, A plurality of R b s each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, A plurality of R c each independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, R c bonded to adjacent carbon atoms may be bonded to each other to form a condensed ring, X represents a single bond, —O—, —S—, —SO—, —SO 2 —, —NR 1 — (wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group
- R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group), and may contain an atom or group selected from the group consisting of —CO— and —COO—.
- R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- [2] A structural unit represented by the following formula (1) or the following formula (2) and a structural unit derived from an electron-accepting compound having a polymerizable functional group, the weight average molecular weight measured by GPC is 20, A polymer compound for an anode buffer layer, wherein the polymer compound is 000 to 1,000,000.
- a plurality of R a each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, at least one R a represents an alkyl group having 1 to 10 carbon atoms, A plurality of R b s each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, A plurality of R c each independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, R c bonded to adjacent carbon atoms may be bonded to each other to form a condensed ring, X represents a single bond, —O—, —S—, —SO—, —SO 2 —, —NR 1 — (wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group
- R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group), and may contain an atom or group selected from the group consisting of —CO— and —COO—.
- composition for an anode buffer layer comprising the polymer compound for an anode buffer layer according to the above [2] and an organic solvent.
- Anode, anode buffer layer, light emitting layer and cathode are laminated in this order,
- the anode buffer layer is formed by heating the anode buffer layer composition described in [1], [3] or [4] or the anode buffer layer polymer compound described in [2].
- An organic electroluminescence element characterized by the above.
- a first step of forming the anode buffer layer by coating the anode buffer layer composition described in [3] or [4] on the anode and then heating the composition;
- the second step is Applying a hole transport layer forming material and a hole transport layer forming solution containing an organic solvent to the surface of the anode buffer layer, and then removing the organic solvent to form a hole transport layer in contact with the anode buffer layer.
- the manufacturing method of the organic electroluminescent element characterized by the above-mentioned.
- Said 2nd process is said process 2A, Comprising:
- the organic solvent contained in the said solution for hole transport layer formation is at least 1 of the structural component of the organic solvent contained in the said composition for anode buffer layers as the structural component
- the method for producing an organic electroluminescent element as described in [7] above, wherein
- Said 2nd process is said process 2B, Comprising:
- the organic solvent contained in the solution for light emitting layer formation contains at least 1 of the structural component of the organic solvent contained in the said composition for anode buffer layers as the structural component.
- a display apparatus provided with the organic electroluminescent element as described in said [5] or [6].
- a light irradiation apparatus comprising the organic electroluminescence element according to the above [5] or [6].
- an organic solvent can be used as a solvent for the anode buffer layer forming solution, and by applying a light emitting layer forming material solution using the organic solvent as a solvent.
- an anode buffer layer that does not dissolve can be formed, and an organic EL element with high power efficiency and a long lifetime can be manufactured.
- FIG. 1 is a cross-sectional view of an example of an organic EL element according to the present invention.
- FIG. 2 schematically shows a method for measuring the thickness of the anode buffer layer in the example.
- composition for anode buffer layer of the present invention contains a specific polymer compound that is a host material (hereinafter also referred to as “host polymer compound”) and an electron-accepting compound that is a dopant.
- host polymer compound a specific polymer compound that is a host material
- electron-accepting compound that is a dopant
- the host polymer compound has a structural unit represented by the following formula (1) or the following formula (2) (hereinafter also referred to as “specific structural unit”).
- a plurality of R a each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, at least one R a represents an alkyl group having 1 to 10 carbon atoms, A plurality of R b s each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, A plurality of R c each independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, R c bonded to adjacent carbon atoms may be bonded to each other to form a condensed ring, X represents a single bond, —O—, —S—, —SO—, —SO 2 —, —NR 1 — (wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group
- R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group), and may contain an atom or group selected from the group consisting of —CO— and —COO—.
- R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- an organic solvent can be used as a solvent for the anode buffer layer forming solution in the production of the organic EL device described later.
- a solvent can be used, and an anode buffer layer that does not dissolve even by application of a light emitting layer forming material solution using an organic solvent as a solvent can be formed. The fact that it does not dissolve is also referred to as “insolubilization of the anode buffer layer.”) Further, an organic EL element having high power efficiency and a long lifetime can be produced.
- each benzene ring having R b at least one R b in the ortho position with respect to N (nitrogen atom) is preferably an alkyl group.
- R represents an alkyl group having 1 to 10 carbon atoms.
- R represents an alkyl group having 1 to 10 carbon atoms.
- Particularly preferred examples include the following structures.
- Particularly preferred examples include the following structures.
- Examples of the alkyl group in Ra include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, an amyl group, and a hexyl group. From the viewpoint of ease of synthesis of the body, a methyl group, an ethyl group, and an isopropyl group are preferable, and a methyl group is particularly preferable.
- Examples of the alkyl group in R b include the specific examples of the alkyl group in R a described above, and from the viewpoint of ease of synthesis of the monomer for deriving the specific structural unit, a methyl group, an ethyl group, and an isopropyl group are A methyl group is preferable, and a methyl group is particularly preferable.
- At least one (eg, one) R c per one benzene ring is an alkyl group or an alkoxy group. Is preferred.
- alkyl group in R c include the specific examples of the alkyl group in R a described above, and a methyl group, an ethyl group, a propyl group, a butyl group, and a tertiary butyl group are preferable, and a methyl group is particularly preferable.
- halogen atom in R c examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
- Examples of the alkoxy group in R c include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an isopropoxy group, an isobutoxy group, and a tertiary butoxy group.
- a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable.
- a methoxy group is particularly preferred.
- Examples of the condensed ring include a naphthylene group.
- X represents a single bond, —O—, —S—, —SO—, —SO 2 —, —NR 1 — (wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group. ), —CO—, —COO— or a divalent organic group having 1 to 20 carbon atoms (provided that the organic group is —O—, —S—, —SO—, —SO 2 —, —NR 2 —).
- R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group
- R 2 may contain an atom or group selected from the group consisting of —CO— and —COO—.
- a single bond, —CO—, —COO— and a divalent organic group having 1 to 20 carbon atoms (provided that the organic group is selected from the group consisting of —O—, —CO— and —COO—)
- the organic group is selected from the group consisting of —O—, —CO— and —COO—
- Y—X— The structure represented by Y—X— is represented by Y— (X is a single bond), Y—O—, Y—COO— and any of the following formulas (S1) to (S3). (In the following formulas (S1) and (S3), n represents an integer of 0 to 5).
- the polymerizable functional group y for deriving Y is a group represented by CH 2 ⁇ CR 3 — such as a vinyl group or an isopropenyl group (R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). It is. Of these, vinyl groups are preferred.
- the partial structure containing a polymerizable functional group that induces a structure represented by YX- is preferably a partial structure represented by the following formulas (A1) to (A13).
- the partial structures represented by the following formulas (A1), (A5), (A8), and (A12) are more preferable because they can be easily introduced into a monomer that induces a specific structural unit.
- Specific examples of the specific structural unit include structural units represented by any of the following formulas (B-1) to (B-21).
- the host polymer compound may contain one type of the specific structural unit, or two or more types of the specific structural unit.
- the monomer for deriving the specific structural unit can be produced by a conventionally known method, for example, the following method.
- a phenyldiamine derivative (m-2) and a halogenated aryl derivative (m-3) are subjected to a coupling reaction in a solvent (eg, toluene, xylene) using a normal palladium catalyst.
- a solvent eg, toluene, xylene
- m-5 is derived
- m-5 and an aryl halide (m-6) having a polymerizable substituent are subjected to a coupling reaction using a normal palladium catalyst, thereby obtaining the formula (M-8), which is one of the monomers for deriving the structural unit represented by (1), is produced.
- (m-12) which is a 1: 1 coupling body of (m-9) and (m-10) and a reactive group Q (—B (OH) 2 , which has a coupling property with halogen, (M-14), which is one of the monomers for deriving the structural unit represented by the formula (2), by reacting with a triphenylamine compound (m-13) having a halogen atom) Is done.
- y is a polymerizable substituent that derives Y in the formulas (1) and (2).
- the host polymer compound may be a homopolymer consisting of only the specific structural unit or a copolymer containing a structural unit other than the specific structural unit (hereinafter also referred to as “other structural unit”). May be.
- a plurality of R c each independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, R c bonded to adjacent carbon atoms may be bonded to each other to form a condensed ring,
- X represents a single bond, —O—, —S—, —SO—, —SO 2 —, —NR 1 — (wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
- R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group), and may contain an atom or group selected from the group consisting of —CO— and —COO—.
- R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- Specific examples and preferred embodiments of R c in the formula (3) include specific examples and preferred embodiments of R c in the formula (1) and (2).
- Specific examples and preferred embodiments of X in the formula (3) include specific examples and preferred embodiments of X in the formulas (1) and (2), respectively.
- Y—X— in the formula (3) include specific examples and preferred embodiments of Y—X— in the above formulas (1) and (2), respectively.
- the functional group y is preferably a vinyl group.
- R c in the formula (4) include specific examples and preferred embodiments of R c in the formula (1) and (2).
- Specific examples and preferred embodiments of X in the formula (4) include specific examples and preferred embodiments of X in the formulas (1) and (2), respectively.
- Y—X— in formula (4) include the specific examples and preferred embodiments of Y—X— in the above formulas (1) and (2), respectively.
- the functional group y is preferably a vinyl group.
- Preferred specific examples of the specific structural unit include the following structural units.
- the host polymer compound may be a homopolymer composed only of the specific structural unit, or may be a copolymer further including the other structural unit. This copolymer may be a random copolymer or a block copolymer.
- the host polymer compound preferably contains the specific structural unit in an amount of 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more from the viewpoint of insolubilization of the anode buffer layer.
- the weight average molecular weight of the host polymer compound by GPC is usually 20,000 or more, more preferably 50,000 or more, and even more preferably 100,000. 000 or more.
- the upper limit is about 1,000,000 from the viewpoint of the solubility of the host polymer compound itself.
- the value of this weight average molecular weight is a value when measured by a measuring method in Examples described later.
- the host polymer compound is a polymer production, except that a monomer that induces the specific structural unit and, if necessary, a monomer that induces the other structural unit are used as a raw material. Can be produced by a conventional method.
- the polymerization method may be any of radical polymerization, cationic polymerization, anionic polymerization, and addition polymerization, but radical polymerization is preferred.
- the composition for an anode buffer layer of the present invention may contain a low molecular compound for a host.
- a low molecular compound for a host include a compound represented by the following formula (5) and a compound represented by the following formula (6).
- R c s each independently represent a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and adjacent to the same phenyl group.
- R c bonded to each carbon atom may be bonded to each other to form a condensed ring; p represents 0, 1 or 2, preferably 0 or 1.
- Specific examples and preferred embodiments of R c in formula (5) include the specific examples and preferred embodiments of R c in formula (3).
- R c in formula (6) includes specific examples and preferred embodiments of R c in formula (4).
- Examples of the low molecular weight compound for host include the following compounds.
- Examples of the electron-accepting compound (dopant) include known compounds such as N, N′-dicyano-2,3,5,6-tetrafluoro-1,4-quinonediimine (F4DCNQI), N, N′-dicyano.
- TCNQ and F4TCNQ are preferable in that an anode buffer layer having high solubility in an organic solvent (for example, toluene) and high uniformity can be formed.
- organic solvent for example, toluene
- composition for anode buffer layer of the present invention includes the host polymer compound and an electron-accepting compound.
- the electron-accepting compound is usually 0.1 to 20 parts by mass, preferably 0.5 to 10 parts by mass with respect to a total of 100 parts by mass of the host polymer compound and the optional host low-molecular compound. Part, more preferably 1 to 5 parts by weight.
- the anode buffer layer exhibits a sufficient charge injection capability.
- the organic EL device may be deteriorated due to crystallization of the electron-accepting compound.
- the ratio of the low molecular compound for host to 100 parts by mass of the host polymer compound is preferably 3 to 20 parts by mass, more preferably 5 to 10 parts by mass.
- the composition may further contain an organic solvent.
- composition containing an organic solvent can be used as a coating solution for forming an anode buffer layer.
- organic solvent various organic solvents can be used, and examples thereof include aromatic solvents such as toluene, xylene and anisole, and halogenated alkyl solvents such as chloroform and dichloroethane.
- aromatic solvents such as toluene, xylene and anisole
- halogenated alkyl solvents such as chloroform and dichloroethane.
- the organic solvent may be composed of two or more components (for example, toluene and xylene).
- the content of the organic solvent in the composition can be appropriately set in consideration of the film thickness of the anode buffer layer to be formed, the conditions for film formation, etc., but as a guideline, the solid content in the composition
- the content (total amount of components excluding the organic solvent) is preferably 0.1 to 4% by mass, more preferably 0.4 to 2% by mass.
- the polymer compound for anode buffer layer of the present invention has the above-described specific structural unit and a structural unit derived from an electron-accepting compound having a polymerizable functional group (hereinafter also referred to as “electron-accepting structural unit”). .
- the light emission lifetime of the organic EL element is further extended.
- the electron-accepting structural unit is derived from an electron-accepting compound having a polymerizable functional group.
- the electron-accepting compound having a polymerizable functional group is formed by substituting one of the hydrogen atoms (or fluorine atom or cyano group) of the electron-accepting compound listed above with a polymerizable functional group.
- Examples of the polymerizable substituent include polymerizable substituents represented by the above formulas (A1) to (A13).
- the polymer compound for an anode buffer layer may contain the above-mentioned “other structural unit”.
- the polymer compound for anode buffer layer contains the electron-accepting structural unit in an amount of 0.1 to 20 mol%, preferably 0.5 to 10 mol%, more preferably 1 to 5 mol% (provided that the anode buffer The total amount of the polymer compound for the layer is 100 mol%). When the content is in the above range, the anode buffer layer exhibits a sufficient charge injection capability.
- the balance is the specific structural unit (however, the amount of the balance) (That is, the total amount of structural units other than the electron-accepting structural unit in the polymer compound for an anode buffer layer is 100 mol%).
- the weight average molecular weight of the polymer compound for anode buffer layer by GPC is usually 20,000 or more, more preferably 50,000 or more, and still more preferably. 100,000 or more.
- the upper limit is about 1,000,000 from the viewpoint of the solubility of the host polymer compound itself.
- the value of this weight average molecular weight is a value when measured by a measuring method in Examples described later.
- the polymer compound for the anode buffer layer includes, as a raw material, a monomer that induces the specific structural unit, an electron-accepting compound having the polymerizable functional group, and, if necessary, the other structural unit. Except for the point of using the inducing monomer, it can be produced by a conventional method in polymer production.
- the polymerization method may be any of radical polymerization, cationic polymerization, anionic polymerization, and addition polymerization, but radical polymerization is preferred.
- composition containing polymer compound for anode buffer layer The polymer compound for an anode buffer layer of the present invention may be in the form of a composition with other components.
- Examples of other components include the above-mentioned low molecular weight compound for a host and a solvent.
- the ratio of the low molecular compound for host to 100 parts by mass of the polymer compound for anode buffer layer is preferably 3 to 20 parts by mass, more preferably 5 to 10 parts by mass.
- the content of the organic solvent in the composition can be appropriately set in consideration of the film thickness of the anode buffer layer to be formed, the conditions for film formation, etc.
- the solid content (total amount of components excluding the organic solvent) is preferably 0.1 to 4% by mass, more preferably 0.4 to 2% by mass.
- the organic EL device of the present invention comprises an anode, an anode buffer layer, a light emitting layer, and a cathode laminated in this order.
- the anode buffer layer is formed on the anode according to the composition for an anode buffer layer of the present invention or of the present invention.
- a polymer compound for the anode buffer layer is applied and then heated to form.
- FIG. 1 is a cross-sectional view showing an example of the configuration of the organic EL element of the present invention, in which an anode buffer layer 3 and a light emitting layer 4 are sequentially provided between an anode 2 and a cathode 5 provided on a transparent substrate 1. .
- the configuration of the organic EL device of the present invention is not limited to the example shown in FIG. 1, and 1) anode buffer layer / hole transport layer / light emitting layer, and 2) anode buffer layer / light emitting layer / electron sequentially between the anode and the cathode.
- Anode buffer layer / hole transport layer / light emitting layer / electron transport layer 4) anode buffer layer / hole transporting compound, layer containing light emitting compound and electron transporting compound, 5) anode buffer layer / A layer containing a hole transporting compound and a light emitting compound, 6) an anode buffer layer / a layer containing a light emitting compound and an electron transporting compound, 7) containing an anode buffer layer / a hole electron transporting compound and a light emitting compound Layer, 8) element structure provided with an anode buffer layer / light emitting layer / hole blocking layer / electron transport layer, and the like.
- the light emitting layer shown in FIG. 1 is a single layer, it may have two or more light emitting layers.
- organic EL compound a compound and a layer composed of all or one of an electron transporting compound, a hole transporting compound, and a light emitting compound
- organic EL compound layer a compound and a layer composed of all or one of an electron transporting compound, a hole transporting compound, and a light emitting compound
- the anode When light is extracted from the anode side of the organic EL element (bottom emission), the anode needs to be transparent to visible light (average transmittance for light of 380 to 680 nm is 50% or more).
- the material for the anode include indium tin oxide (ITO), indium-zinc oxide (IZO), and the like, and ITO is preferable among them because it is easily available as the anode of the organic EL element.
- the light transmittance of the anode is not limited, and the anode material is ITO, IZO, stainless steel, or copper, silver, gold, platinum. , Tungsten, titanium, tantalum or niobium, or an alloy thereof can be used.
- the thickness of the anode is preferably 2 to 300 nm in order to achieve high light transmittance, and in the case of top emission, it is preferably 2 nm to 2 mm.
- the anode buffer layer is formed by applying the composition for anode buffer layer or the polymer compound for anode buffer layer of the present invention on the anode and further heating.
- spin coating method spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method
- a known coating method such as an offset printing method or an inkjet printing method can be applied.
- the heating temperature is from the viewpoint of preventing the anode buffer layer from dissolving during the formation of the organic EL compound layer described later, and from the viewpoint of preventing the anode buffer layer from being thermally decomposed.
- it is 70 ° C. or higher, preferably 100 to 350 ° C., more preferably 150 to 250 ° C.
- the heating time is preferably 10 to 180 minutes, more preferably 30 to 120 minutes, from the viewpoint of preventing the anode buffer layer from dissolving during the formation of the organic EL compound layer described later.
- an organic solvent is formed on the anode buffer layer. Even when a solution of a material for forming a light emitting layer or the like using as a solvent is applied, it is hardly dissolved. Therefore, a solution of a material for forming a light emitting layer or the like for forming a light emitting layer or the like (for example, a light emitting layer or a hole transport layer) in contact with the anode buffer layer on the anode buffer layer is an organic solvent contained in the anode buffer layer composition. Even if the same solvent is contained, the anode buffer layer is hardly dissolved, and a light emitting layer or the like in contact with the anode buffer layer can be laminated on the anode buffer layer by coating.
- the degree of insolubilization of the anode buffer layer is determined by, for example, the rate of decrease in the thickness of the anode buffer layer when the anode buffer layer is subjected to the following treatment ((1 ⁇ thickness after treatment / thickness before treatment) ⁇ 100 [ %]), This reduction rate is, for example, 30% or less, preferably 10% or less, and more preferably 5% or less.
- a substrate 25 mm square, plate thickness 1.1 mm, blue plate glass having an anode buffer layer with a thickness of 20 nm on the surface is set on a spin coater, and 0.10 ml of toluene is dropped on the anode buffer layer. After that, it is rotated at 3000 rpm for 30 seconds. This rotation starts within 5 seconds after the dropwise addition of toluene. Thereafter, the anode buffer layer is left at 140 ° C. for 1 hour in a nitrogen atmosphere.
- the thickness of the anode buffer layer is preferably 5 to 50 nm, more preferably 10 to 30 nm, from the viewpoints of sufficiently exerting the effect as the buffer layer and preventing an increase in the driving voltage of the organic EL element.
- Organic EL compound layer As the compound used in the organic EL compound layer, that is, the light emitting layer, the hole transport layer, and the electron transport layer in the organic EL device of the present invention, either a low molecular compound or a high molecular compound can be used.
- Examples of the organic EL compound for forming the light emitting layer of the organic EL device of the present invention include Omori Hiroshi: Applied Physics, Vol. 70, No. 12, pages 1419-1425 (2001). Examples thereof include molecular compounds and luminescent polymer compounds. Among these, a light-emitting polymer compound is preferable in that the element manufacturing process is simplified, and a phosphorescent compound is preferable in terms of high luminous efficiency. Therefore, a phosphorescent polymer compound is particularly preferable.
- the light-emitting polymer compound can also be classified into a conjugated light-emitting polymer compound and a non-conjugated light-emitting polymer compound, and among them, the non-conjugated light-emitting polymer compound is preferable.
- the phosphorescent material used in the present invention is particularly preferably a phosphorescent non-conjugated polymer compound (the phosphorescent polymer and the non-conjugated luminous polymer compound).
- the light emitting layer in the organic EL device of the present invention preferably contains at least a phosphorescent polymer having a phosphorescent unit for emitting phosphorescence and a carrier transporting unit for transporting carriers in one molecule.
- the phosphorescent polymer can be obtained by copolymerizing a phosphorescent compound having a polymerizable substituent and a carrier transporting compound having a polymerizable substituent.
- the phosphorescent compound is a metal complex containing a metal element selected from iridium, platinum and gold, and among them, an iridium complex is preferable.
- phosphorescent polymers More specific examples and synthesis methods of phosphorescent polymers are described in, for example, JP-A Nos. 2003-342325, 2003-119179, 2003-113246, and 2003-206320. JP-A-2003-147021, JP-A-2003-171391, JP-A-2004-346312, and JP-A-2005-97589.
- the light emitting layer in the organic EL device produced by the method of the present invention is preferably a layer containing the phosphorescent compound, but for the purpose of supplementing the carrier transport property of the light emitting layer, a hole transporting compound or an electron transporting compound is used. May be included.
- TPD N, N′-dimethyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4′diamine
- ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
- m-MTDATA 4,4 ′, 4 ′′ -tris (3-methylphenylphenylamino
- a low molecular triphenylamine derivative such as triphenylamine
- polyvinylcarbazole or a polymer obtained by introducing a polymerizable functional group into the triphenylamine derivative, for example, disclosed in JP-A-8-157575
- Examples thereof include a polymer compound having a triphenylamine skeleton, polyparaphenylene vinylene, and polydialkylfluorene.
- the electron transporting compound examples include Al low molecular weight materials such as q3 (tris (8-hydroxyquinolinate) aluminum (III)) quinolinol derivative metal complexes, oxadiazole derivatives, triazole derivatives, imidazole derivatives, triazine derivatives, triarylborane derivatives, Known electron transporting compounds such as those obtained by introducing a polymerizable functional group into a low molecular electron transporting compound to form a polymer, for example, poly PBD disclosed in JP-A-10-1665 can be used.
- the organic EL compound layer is mainly formed by spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire, and the like. It can be formed by a coating method such as a bar coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, and an ink jet printing method.
- an organic solvent is used as a solvent on the surface of the anode buffer layer. Even if an organic EL compound solution is applied, it is difficult to dissolve in an organic solvent.
- the organic EL compound layer can be formed mainly by resistance heating vapor deposition or electron beam vapor deposition.
- a hole blocking layer may be provided adjacent to the cathode side of the light emitting layer for the purpose of suppressing the passage of holes through the light emitting layer and efficiently recombining with electrons in the light emitting layer.
- a compound having the highest occupied molecular orbital (HOMO) level deeper than the light-emitting compound can be used, and examples include triazole derivatives, oxadiazole derivatives, phenanthroline derivatives, and aluminum complexes. can do.
- an exciton block layer may be provided adjacent to the cathode side of the light emitting layer for the purpose of preventing excitons (excitons) from being deactivated by the cathode metal.
- a compound having a larger excitation triplet energy than the light-emitting compound can be used, and examples thereof include triazole derivatives, phenanthroline derivatives, and aluminum complexes.
- cathode material of the organic EL optical device of the present invention a material having a low work function and being chemically stable is used, and known cathodes such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa, etc.
- the material can be exemplified, but the work function is preferably ⁇ 2.9 eV or less in consideration of chemical stability.
- a film forming method of these cathode materials a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, or the like can be used.
- the thickness of the cathode is preferably 10 nm to 1 ⁇ m, and more preferably 50 to 500 nm.
- a metal layer having a work function lower than that of the cathode is inserted between the cathode and the organic layer adjacent to the cathode as a cathode buffer layer in order to lower the electron injection barrier from the cathode to the organic layer and increase the efficiency of electron injection.
- Low work function metals that can be used for such purposes include alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), rare earth metals (Pr, Sm, Eu, Yb) and the like.
- An alloy or a metal compound can also be used as long as it has a work function lower than that of the cathode.
- the thickness of the cathode buffer layer is preferably 0.05 to 50 nm, more preferably 0.1 to 20 nm, and even more preferably 0.5 to 10 nm.
- the cathode buffer layer can be formed as a mixture of the low work function substance and the electron transporting compound.
- the organic compound used for the above-mentioned electron transport layer can be used.
- a co-evaporation method can be used as a film forming method.
- the above-described film formation methods such as a spin coating method, a dip coating method, an ink jet method, a printing method, a spray method, and a dispenser method can be used.
- the thickness of the cathode buffer layer is preferably from 0.1 to 100 nm, more preferably from 0.5 to 50 nm, and even more preferably from 1 to 20 nm.
- a layer made of a conductive polymer or a layer made of a metal oxide, metal fluoride, organic insulating material or the like having an average film thickness of 2 nm or less may be provided.
- a protective layer for protecting the organic EL element may be attached after the cathode is produced.
- a protective layer and / or a protective cover in order to protect the element from the outside.
- a polymer compound, metal oxide, metal fluoride, metal boride and the like can be used.
- a glass plate, a plastic plate with a low water permeability treatment on the surface, a metal, or the like can be used.
- the cover is bonded to the element substrate with a thermosetting resin or a photocurable resin and sealed. Is preferably used.
- a space is maintained using a spacer, it is easy to prevent the element from being damaged. If an inert gas such as nitrogen or argon is sealed in the space, the cathode can be prevented from being oxidized, and moisture adsorbed in the manufacturing process by installing a desiccant such as barium oxide in the space. It becomes easy to suppress giving an image to an element. Among these, it is preferable to take any one or more measures.
- Substrate> For the substrate of the organic EL element according to the present invention, a material satisfying the mechanical strength required for the organic EL element is used.
- a substrate that is transparent to visible light is used for the bottom emission type organic EL element.
- glass such as soda glass and non-alkali glass; acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, nylon A transparent plastic such as resin; a substrate made of silicon or the like can be used.
- top emission type organic EL element in addition to the substrate used in the bottom emission type organic EL element, copper, silver, gold, platinum, tungsten, titanium, tantalum or niobium alone, or an alloy thereof, or stainless steel A substrate made of such as can be used.
- the thickness of the substrate is preferably 0.1 to 10 mm, more preferably 0.25 to 2 mm, although it depends on the required mechanical strength.
- the organic EL element of the present invention is suitably used in an image display device as a matrix or segment pixel.
- the organic EL element is also suitably used as a surface light source without forming pixels.
- the organic EL device of the present invention includes a display device in a computer, a television, a mobile terminal, a mobile phone, a car navigation system, a sign, a signboard, a viewfinder of a video camera, a backlight, electrophotography, illumination, resist exposure. It is preferably used for a light irradiation device in a reading device, interior lighting, an optical communication system or the like.
- Example 3 in a nitrogen atmosphere (however, only in Example 3 was 80 ° C.) for 1 hour, and the substrate a with an anode buffer layer was formed. Produced. Further, a substrate b with an anode buffer layer was produced in the same manner.
- a portion of the anode buffer layer of the substrate a with the anode buffer layer is cut with a needle to expose the substrate (hereinafter, the exposed substrate surface is also referred to as “substrate exposed portion”), and AFM (atomic force microscope) 2, the anode buffer layer side surface of the substrate a with the anode buffer layer is observed so as to cross the exposed portion of the substrate as shown in FIG. 2, thereby obtaining an anode buffer layer (hereinafter referred to as “anode buffer before dissolution test treatment”). The thickness of the layer was also measured.
- the thickness of the anode buffer layer of the substrate b with the anode buffer layer (hereinafter also referred to as “the anode buffer layer after the dissolution test process”) is measured by the same method as in the case of the substrate a with the anode buffer layer.
- the “reduction rate (%)” of the thickness of the anode buffer layer defined by the equation was calculated.
- viHMTPD 500 mg
- dehydrated toluene 9.9 mL
- a toluene solution 0.1M, V-601, manufactured by Wako Pure Chemical Industries, Ltd.
- a polymerization initiator 198 ⁇ L
- the reaction solution was dropped into 500 mL of acetone to obtain a precipitate.
- reprecipitation purification with toluene-acetone was repeated twice, and then the precipitate was vacuum dried at 50 ° C. overnight to obtain a host polymer compound (pHMTPD).
- the host polymer compound (pHMTPD) had a weight average molecular weight of 68,000 and a molecular weight distribution index (Mw / Mn) of 1.96.
- 2,5-dimethyl-1,4-phenylenediamine (1.362 g (10 mmol)) was placed in a 100 ml three-necked flask equipped with a cooling tube, and purged with nitrogen.
- Dehydrated xylene (60 mL) and 3-iodotoluene (5.233 g (24 mmol)) were added and stirred, and then palladium acetate (337 mg (1.5 mmol)) and potassium-t-butoxide (4.040 g (36 mmol))
- N, N, N'-tri-m-tolyl-2,5-dimethyl-1,4-phenylenediamine 610 mg (1.5 mmol)
- 2,6-di-t -Butyl-p-cresol (DBC) 20 mg
- vTmTDMPD 500 mg was added, dehydrated toluene (5.0 mL) was added, and then a toluene solution (0 of polymerization initiator (trade name: V-601, manufactured by Wako Pure Chemical Industries, Ltd.)) was added. .1M, 50 ⁇ L) was added. Subsequent operations were carried out in the same manner as in Synthesis Example 1 to obtain a host polymer compound (pTmTDMPD).
- the host polymer compound (pTmTDMPD) had a weight average molecular weight of 110000 and a molecular weight distribution index (Mw / Mn) of 2.23.
- the host polymer compound (pTPD) had a weight average molecular weight of 64,000 and a molecular weight distribution index (Mw / Mn) of 1.87.
- 3,5-Dibromo-4-methylstyrene (1.0 g (3.6 mmol)) was placed in a 100 ml three-necked flask equipped with a cooling tube and purged with nitrogen. To this, dehydrated xylene (60 ml) and compound 3 (3.1 g (15 mmol)) were added and stirred, followed by palladium acetate (0.35 g (1.6 mmol)) and potassium-t-butoxide (4.0 g (36 mmol)). ), Tri-t-butylphosphine / xylene 1: 1 solution (1.8 ml (4.5 mmol)) was added, and the mixture was heated to reflux for 4 hours.
- VMPDA identification data is as follows.
- N, N, N′-tri-m-tolyl-2,5-dimethyl-1,4-phenylenediamine (2.0 g (4.9 mmol) obtained in Synthesis Example 3 was added. )) And replaced with nitrogen.
- MPDAA identification data is as follows.
- MPDAB identification data is as follows.
- the host polymer compound (pMPDAB) had a weight average molecular weight of 95,000 and a molecular weight distribution index (Mw / Mn) of 2.41.
- 2,5-Dimethyl-1,4-phenylenediamine (2.0 g (15 mmol)) was placed in a 100 ml three-necked flask equipped with a cooling tube and purged with nitrogen.
- Dehydrated xylene (60 ml) and 3-bromo- (2-methylpropyl) benzene (6.0 g (28 mmol)) were added and stirred, and then palladium acetate (0.35 g (1.6 mmol)), potassium-t -Butoxide (4.0 g (36 mmol)) and tri-t-butylphosphine / xylene 1: 1 solution (1.8 ml (4.5 mmol)) were added, and the mixture was heated to reflux for 2 hours.
- the identification data of vDBDMPD is as follows.
- vDBDMPD 500 mg was placed in a synthetic sealed container of pDBDMPD, dehydrated toluene (5.0 ml) was added, and then a toluene solution (0. 0, product name: V-601, manufactured by Wako Pure Chemical Industries, Ltd.) was added. 1M, 50 ⁇ l) was added. Subsequent operations were carried out in the same manner as in Synthesis Example 1 to obtain a host polymer compound (pMPDAB).
- the host polymer compound (pDBDMPD) had a weight average molecular weight of 170,000 and a molecular weight distribution index (Mw / Mn) of 2.06.
- Example 1- (a) ⁇ Preparation of composition for anode buffer layer> PHMTPD (100 parts by mass) which is a charge transport polymer produced in Synthesis Example 1, F4TCNQ (5 parts by mass) which is an electron-accepting compound, and toluene are mixed, and a composition for anode buffer layer (solid content concentration is 0).
- An 8 mass% toluene solution hereinafter also referred to as “anode buffer layer composition 1”) was prepared.
- the anode buffer layer composition 1 was applied by spin coating (conditions: 3000 rpm-30 seconds), and the resulting coating film was allowed to stand at 210 ° C. for 1 hour in a nitrogen atmosphere. An anode buffer layer was formed.
- a light emitting layer material (a carrier transporting compound, a compound represented by the following formula (E-1) and a formula (E- 2) 95% by mass of a copolymer with the compound represented by the formula (molar ratio 5: 5) and a mixed powder of 5% by mass of the compound represented by the following formula (E-3) which is a phosphorescent compound)
- a toluene solution also referred to as “light emitting layer coating solution 1” was applied by a spin coating method, and allowed to stand at 140 ° C. for 1 hour in a nitrogen atmosphere to form a light emitting layer.
- a vacuum deposition apparatus is used to form a LiF layer having a thickness of 0.5 nm as a cathode buffer layer on the surface of the light emitting layer, and subsequently forming an Al layer having a thickness of 150 nm as a cathode.
- a LiF layer having a thickness of 0.5 nm as a cathode buffer layer on the surface of the light emitting layer
- an Al layer having a thickness of 150 nm as a cathode.
- a voltage was applied stepwise to the organic EL element 1 using a constant voltage power supply (Keithley, SM2400), and the luminance of the organic EL element 1 was quantified with a luminance meter (Topcon, BM-9).
- Luminous efficiency was determined from the ratio of luminance to current density. The luminous efficiency, driving voltage, and power efficiency are shown in Table 1.
- a light emission lifetime was measured by continuously applying a constant current to the organic EL element 1 and measuring the luminance at regular intervals. Table 1 shows the time until the initial luminance is halved.
- Example 1- (b) An anode buffer layer composition 2 was prepared in the same manner as in Example 1- (a) except that pHMTPD was changed to pHMTPD-2 produced in Synthesis Example 2, and an organic EL element (hereinafter referred to as “organic EL element”) was prepared. 2 ”).
- Table 1 shows the total thickness of the anode buffer layer and the light emitting layer of the organic EL element 2, the light emission efficiency thereof, and the like.
- Example 1- (c) A composition 3 for an anode buffer layer was prepared in the same manner as in Example 1- (a) except that pHMTPD was changed to pTmTDDMPD produced in Synthesis Example 3, and an organic EL element (hereinafter referred to as “organic EL element 3”) was prepared. Also called).
- Table 1 shows the total film thickness of the anode buffer layer and the light emitting layer of the organic EL element 3, the light emission efficiency, and the like.
- Example 2 A composition 4 for the anode buffer layer was prepared in the same manner as in Example 1- (a) except that pHMTPD was changed to pHMTPD-TPD produced in Synthesis Example 4, and an organic EL device (hereinafter referred to as “organic EL device”) was prepared. 4 ").
- Table 1 shows the total film thickness of the anode buffer layer and the light emitting layer of the organic EL element 4, the light emission efficiency, and the like.
- Example 3 The composition 1 for the anode buffer layer was applied onto a glass substrate with an ITO film by a spin coating method (3000 rpm-30 seconds), and the obtained coating film was left at 80 ° C. for 1 hour in a nitrogen atmosphere to form an anode.
- An organic EL element (hereinafter also referred to as “organic EL element 5”) was produced in the same manner as in Example 1 except that the buffer layer was formed.
- Table 1 shows the total film thickness of the anode buffer layer and the light emitting layer of the organic EL element 5, the light emission efficiency thereof, and the like.
- composition 5 for an anode buffer layer was prepared in the same manner as in Example 1- (a) except that pHMTPD was changed to pTPD produced in Synthesis Example 5, and an organic EL element (hereinafter referred to as “organic EL element 6”) was prepared. Also called).
- Table 1 shows the total film thickness and luminous efficiency of the anode buffer layer and the light emitting layer of the organic EL element 6.
- the total film thickness of the anode buffer layer and the light emitting layer was thinner than any of the organic EL elements in the examples. This is considered to be because a part of the anode buffer layer was dissolved in the toluene solution of the light emitting layer material when forming the light emitting layer, which is supported by the value of the reduction rate.
- An anode buffer layer composition 6 was prepared in the same manner as in Example 1- (a) except that pHMTPD was changed to pHMTPD-3 produced in Synthesis Example 6, and an organic EL element (hereinafter referred to as “organic EL element”) was prepared. 7 ”).
- Table 1 shows the total film thickness and luminous efficiency of the anode buffer layer and the light emitting layer of the organic EL element 7.
- the total film thickness of the anode buffer layer and the light emitting layer was thinner than any of the organic EL elements in Examples. This is considered to be because a part of the anode buffer layer was dissolved in the toluene solution of the light emitting layer material when forming the light emitting layer, which is supported by the value of the reduction rate.
- Example 3 On the glass substrate with ITO film, the composition 1 for the anode buffer layer was applied by spin coating (condition: 3000 rpm-30 seconds), and the obtained coating film was allowed to stand at room temperature for 1 hour in a nitrogen atmosphere.
- An organic EL element (hereinafter also referred to as “organic EL element 8”) was produced in the same manner as in Example 1- (a) except that the buffer layer was formed.
- Table 1 shows the total film thickness of the anode buffer layer and the light emitting layer of the organic EL element 8, the light emission efficiency, and the like.
- the decrease rate of the thickness of the anode buffer layer was larger than that of the organic EL element 1 and the organic EL element 5 in which pHMTPD was used. Comparing these organic EL elements, it can be seen that not only the use of a specific material but also heating in forming the anode buffer layer is important for insolubilization of the anode buffer layer.
- anode buffer layer composition 7 (a toluene solution having a solid content concentration of 0.8 mass%, hereinafter referred to as “anode buffer layer composition 7”). Was also prepared.).
- organic EL element 9 An organic EL element (hereinafter also referred to as “organic EL element 9”) was prepared in the same manner as in Example 1- (a) except that the anode buffer layer composition 7 was used instead of the anode buffer layer composition 1.
- Table 1 shows the total thickness of the anode buffer layer and the light emitting layer of the organic EL element 9, the light emission efficiency, and the like.
- Example 4- (b) A composition 8 for the anode buffer layer was prepared in the same manner as in Example 4- (a) except that the polymer compound 2 for the anode buffer layer was used instead of the polymer compound 1 for the anode buffer layer, and the organic EL An element (hereinafter also referred to as “organic EL element 10”) was produced.
- Table 1 shows the total film thickness of the anode buffer layer and the light emitting layer of the organic EL element 10, the light emission efficiency, and the like.
- Example 4- (c) A composition 9 for the anode buffer layer was prepared in the same manner as in Example 4- (a) except that the polymer compound 3 for the anode buffer layer was used instead of the polymer compound 1 for the anode buffer layer, and the organic EL An element (hereinafter also referred to as “organic EL element 11”) was produced.
- Table 1 shows the total film thickness of the anode buffer layer and the light emitting layer of the organic EL element 11, the light emission efficiency, and the like.
- Example 5- (a) ⁇ Preparation of solution for light emitting layer coating film formation>
- the following phosphorescent polymer compound (E-4) was synthesized according to the method described in International Publication WO2010 / 16512.
- this phosphorescent polymer compound (E-4) was dissolved in 97 parts by weight of xylene to prepare a solution for forming a light emitting layer coating film (hereinafter also referred to as “light emitting layer coating solution 2”).
- a composition for an anode buffer layer (solid content concentration is mixed) by mixing pMPDA (100 parts by mass) which is a host polymer compound produced in Synthesis Example 10 and TCNQ (5 parts by mass) which is an electron accepting compound and xylene. 1.0 mass% xylene solution) was prepared. This was applied onto a glass substrate with an ITO film by a spin coating method (condition: 3000 rpm-30 seconds), and the obtained coating film was allowed to stand at 170 ° C. for 1 hour in a nitrogen atmosphere to form an anode buffer layer.
- the above light emitting layer coating solution 2 is applied by spin coating (condition: 3000 rpm-30 seconds) to the anode buffer layer side surface of the substrate with the anode buffer layer, which is sufficiently regulated at room temperature, and the resulting coating film is coated with nitrogen.
- the luminescent layer was formed by leaving it in an atmosphere at 140 ° C. for 1 hour.
- a vacuum evaporation apparatus a 0.5 nm thick LiF layer was formed as a cathode buffer layer on the surface of the light emitting layer, and then an 150 nm thick Al layer was formed as a cathode, and an organic EL element (hereinafter referred to as “organic EL element 12”).
- organic EL element 12 an organic EL element
- Table 2 shows the light emission efficiency, drive voltage, power efficiency, and light emission lifetime measured in the same manner as in Example 1- (a).
- Example 5- (b) to (d) An organic EL element (hereinafter referred to as “Organic EL element 13”, “Organic EL element 13”, respectively) was prepared in the same manner as in Example 5- (a) except that pMPDA was changed to pMPDAA, pMPDAB and pDBDMPD produced in Synthesis Examples 11 to 13, respectively.
- Table 2 shows the light emission efficiency, drive voltage, power efficiency, and light emission lifetime measured in the same manner as in Example 1- (a).
- Table 2 shows the light emission efficiency, drive voltage, power efficiency, and light emission lifetime measured in the same manner as in Example 1- (a).
- Example 6 After an anode buffer layer was formed on a glass substrate with an ITO film in the same manner as in Example 1- (c), the following compounds (E-5) and (E-6) were mixed in a mass ratio of 9: Co-evaporated to 1 to form a light emitting layer having a thickness of 30 nm, and subsequently a compound (E-7) layer having a thickness of 20 nm was formed as an electron injection layer. Further, a LiF layer and an Al layer were formed in the same manner as in Example 1- (c) to produce an organic EL element (hereinafter also referred to as “organic EL element 19”).
- organic EL element 19 organic EL element
- Table 2 shows the light emission efficiency, drive voltage, power efficiency, and light emission lifetime measured in the same manner as in Example 1- (a).
- organic EL device 20 An organic EL device (hereinafter also referred to as “organic EL device 20”) was produced in the same manner as in Example 6 except that pTmTDMPD was changed to the compound R1.
- Table 2 shows the light emission efficiency, drive voltage, power efficiency, and light emission lifetime measured in the same manner as in Example 1- (a).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
下記式(1)または下記式(2)で表される構成単位を有し、GPCにより測定される重量平均分子量が20,000~1,000,000である高分子化合物、および
電子受容性化合物
を含有することを特徴とする陽極バッファ層用組成物。
複数個あるRaは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、少なくとも1つのRaは炭素数1~10のアルキル基を表し、
複数個あるRbは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、
複数個あるRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表し、同一のフェニル基の中の隣接する炭素原子にそれぞれ結合しているRcは、互いに結合して縮合環を形成してもよく、
Xは、単結合、-O-、-S-、-SO-、-SO2-、-NR1-(ただし、R1は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-、-COO-または炭素数1~20の2価の有機基(ただし、該有機基は、-O-、-S-、-SO-、-SO2-、-NR2-(ただし、R2は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-および-COO-からなる群より選択される原子または基を含んでいてもよい。)を表し、
Y-X-は、
で表される基を表し、
pは、0、1または2を表す。〕
[2]
下記式(1)または下記式(2)で表される構成単位、および重合性官能基を有する電子受容性化合物から誘導される構成単位を有し、GPCにより測定される重量平均分子量が20,000~1,000,000であることを特徴とする陽極バッファ層用高分子化合物。
複数個あるRaは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、少なくとも1つのRaは炭素数1~10のアルキル基を表し、
複数個あるRbは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、
複数個あるRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表し、同一のフェニル基の中の隣接する炭素原子にそれぞれ結合しているRcは、互いに結合して縮合環を形成してもよく、
Xは、単結合、-O-、-S-、-SO-、-SO2-、-NR1-(ただし、R1は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-、-COO-または炭素数1~20の2価の有機基(ただし、該有機基は、-O-、-S-、-SO-、-SO2-、-NR2-(ただし、R2は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-および-COO-からなる群より選択される原子または基を含んでいてもよい。)を表し、
Y-X-は、
で表される基を表し、
pは、0、1または2を表す。〕
[3]
有機溶剤をさらに含有することを特徴とする上記[1]に記載の陽極バッファ層用組成物。
上記[2]に記載の陽極バッファ層用高分子化合物および有機溶剤を含有することを特徴とする陽極バッファ層用組成物。
陽極、陽極バッファ層、発光層および陰極がこの順序で積層されてなり、
該陽極バッファ層が、上記[1],[3]もしくは[4]に記載の陽極バッファ層用組成物または上記[2]に記載の陽極バッファ層用高分子化合物を加熱して形成されたものである
ことを特徴とする有機エレクトロルミネッセンス素子。
陰極バッファ層をさらに有することを特徴とする上記[5]に記載の有機エレクトロルミネッセンス素子。
陽極上に上記[3]または[4]に記載の陽極バッファ層用組成物を、塗布し、次いで加熱して、陽極バッファ層を形成する第一工程、
該陽極バッファ層上に発光層を形成する第二工程、および
該発光層上に陰極を形成する第三工程
を含み、
前記第二工程が、
前記陽極バッファ層表面に正孔輸送層形成材料および有機溶剤を含む正孔輸送層形成用溶液を塗布し、次いで該有機溶剤を除去して、前記陽極バッファ層に接する正孔輸送層を形成し、該正孔輸送層上に前記発光層を形成する工程2Aであるか、または
前記陽極バッファ層表面に発光層形成材料および有機溶剤を含む発光層形成用溶液を塗布し、次いで該有機溶剤を除去して、前記陽極バッファ層に接する前記発光層を形成する工程2Bである
ことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
前記第二工程が前記工程2Aであって、前記正孔輸送層形成用溶液に含まれる有機溶剤が、その構成成分として、前記陽極バッファ層用組成物に含まれる有機溶剤の構成成分の少なくとも1つを含んでいることを特徴とする上記[7]に記載の有機エレクトロルミネッセンス素子の製造方法。
前記第二工程が前記工程2Bであって、記発光層形成用溶液に含まれる有機溶剤が、その構成成分として、前記陽極バッファ層用組成物に含まれる有機溶剤の構成成分の少なくとも1つを含んでいることを特徴とする上記[7]に記載の有機エレクトロルミネッセンス素子の製造方法。
前記加熱を100~350℃で10~180分間行うことを特徴とする上記[7]~[9]のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。
上記[5]または[6]に記載の有機エレクトロルミネッセンス素子を備える表示装置。
上記[5]または[6]に記載の有機エレクトロルミネッセンス素子を備える光照射装置。
本発明の陽極バッファ層用組成物は、ホスト材料である特定の高分子化合物(以下「ホスト用高分子化合物」ともいう。)、およびドーパントである電子受容性化合物を含む。
(特定構成単位)
前記ホスト用高分子化合物は、下記式(1)または下記式(2)で表される構成単位(以下「特定構成単位」ともいう。)を有する。
複数個あるRaは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、少なくとも1つのRaは炭素数1~10のアルキル基を表し、
複数個あるRbは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、
複数個あるRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表し、同一のフェニル基の中の隣接する炭素原子にそれぞれ結合しているRcは、互いに結合して縮合環を形成してもよく、
Xは、単結合、-O-、-S-、-SO-、-SO2-、-NR1-(ただし、R1は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-、-COO-または炭素数1~20の2価の有機基(ただし、該有機基は、-O-、-S-、-SO-、-SO2-、-NR2-(ただし、R2は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-および-COO-からなる群より選択される原子または基を含んでいてもよい。)を表し、
Y-X-は、
で表される基を表し、
pは、0、1または2を表し、好ましくは0または1を表す。〕
前記式(1)~(2)のそれぞれにおける少なくとも1つのRaが炭素数1~10のアルキル基であることにより、後述する有機EL素子の製造において、陽極バッファ層形成用溶液の溶媒として有機溶剤を使用でき、有機溶剤を溶媒とする発光層形成材料溶液の塗布によっても溶解しない陽極バッファ層を形成でき(以下、有機溶剤を溶媒とする発光層形成材料溶液の塗布によっても陽極バッファ層が溶解しないことを「陽極バッファ層の不溶化」ともいう。)、しかも電力効率が高く寿命が長い有機EL素子を製造することができる。
特に好ましい例としては、以下の構造が挙げられる。
前記特定構成単位の具体例としては、以下の式(B-1)~(B-21)のいずれかで表される構成単位が挙げられる。
前記特定構成単位を誘導する単量体は、従来公知の方法、たとえば以下の方法により製造することができる。
下図のように、ビフェニルジアミン誘導体(m-1)と、ハロゲン化アリール誘導体(m-3)とを、溶媒(たとえば、トルエン、キシレン)中で、通常のパラジウム触媒を用いてカップリング反応させることにより、(m-4)および(m-4′)を誘導する。
下図のように、(m-9)とジアリールアミン(m-10)とを、溶媒(たとえば、トルエン、キシレン)中で、通常のパラジウム触媒を用いてカップリング反応させることにより、式(2)で表される構成単位を誘導する単量体の1つである(m-11)が製造される。
前記ホスト用高分子化合物は、前記特定構成単位のみからなる単独重合体であってもよく前記特定構成単位以外の構成単位(以下「他の構成単位」ともいう。)を含む共重合体であってもよい。
複数個あるRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表し、同一のフェニル基の中の隣接する炭素原子にそれぞれ結合しているRcは、互いに結合して縮合環を形成してもよく、
Xは、単結合、-O-、-S-、-SO-、-SO2-、-NR1-(ただし、R1は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-、-COO-または炭素数1~20の2価の有機基(ただし、該有機基は、-O-、-S-、-SO-、-SO2-、-NR2-(ただし、R2は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-および-COO-からなる群より選択される原子または基を含んでいてもよい。)を表し、
Y-X-は、
で表される基を表し、
pは、0、1または2を表し、好ましくは0または1を表す。〕
式(3)におけるRcの具体例および好ましい態様としては、前記式(1)および(2)におけるRcの具体例および好ましい態様が挙げられる。
前記ホスト用高分子化合物は、前記特定構成単位のみからなる単独重合体であってもよく、前記他の構成単位をさらに含む共重合体であってもよい。この共重合体は、ランダム共重合体であってもよくブロック共重合体であってもよい。
本発明の陽極バッファ層用組成物は、ホスト用低分子化合物を含んでいても良い。このホスト用低分子化合物の具体例としては、下記式(5)で表される化合物および下記式(6)で表される化合物が挙げられる。
複数個あるRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表し、同一のフェニル基の隣接する炭素原子にそれぞれ結合しているRcは、互いに結合して縮合環を形成してもよく、
pは、0、1または2を表し、好ましくは0または1を表す。〕
式(5)におけるRcの具体例および好ましい態様としては、前記式(3)におけるRcの具体例および好ましい態様が挙げられる。
前記電子受容性化合物(ドーパント)としては、公知の化合物、たとえば、N,N'-ジシアノ-2,3,5,6-テトラフルオロ-1,4-キノンジイミン(F4DCNQI)、N,N'-ジシアノ-2,5-ジクロロ-1,4-キノンジイミン(C12DCNQI)、N,N'-ジシアノ-2,5-ジクロロ-3,6-ジフルオロ-1,4-キノンジイミン(C12F2DCNQI)、N,N'-ジシアノ-2,3,5,6,7,8-ヘキサフルオロ-1,4-ナフトキノンジイミン(F6DCNNOI)、1,4,5,8-テトラヒドロ-1,4,5,8-テトラチア-2,3,6,7-テトラシアノアントラキノン(CN4TTAQ)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)、2,5-ビス(2-ヒドロキシエトキシ)-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、ビス(テトラブチルアンモニウム)テトラシアノジフェノキノジメタニド、2,5-ジメチル-7,7,8,8-テトラシアノキノジメタン、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、11,11,12,12-テトラシアノナフト-2,6-キノジメタンなどが挙げられる。
本発明の陽極バッファ層用組成物は、前記ホスト用高分子化合物および電子受容性化合物を含んでいる。
本発明の陽極バッファ層用高分子化合物は、上述した特定構成単位、および重合性官能基を有する電子受容性化合物から誘導される構成単位(以下「電子受容性構成単位」ともいう。)を有する。
前記特定構成単位の詳細(構造、好ましい態様、製造方法等)は、上述のとおりである。
前記電子受容性構成単位は、重合性官能基を有する電子受容性化合物から誘導される。
前記陽極バッファ層用高分子化合物は、上述の「他の構成単位」を含んでいてもよい。
前記陽極バッファ層用高分子化合物は、前記電子受容性構成単位を0.1~20モル%、好ましくは0.5~10モル%、さらに好ましくは1~5モル%含む(ただし、前記陽極バッファ層用高分子化合物の全量が100モル%である)。含有量が上記範囲にあると、陽極バッファ層は十分な電荷注入能を発揮する。
本発明の陽極バッファ層用高分子化合物は、他の成分との組成物の形態であってもよい。
本発明の有機EL素子は、陽極、陽極バッファ層、発光層および陰極がこの順序で積層されてなり、該陽極バッファ層は、該陽極上に本発明の陽極バッファ層用組成物または本発明の陽極バッファ層用高分子化合物を塗布し、次いで加熱して形成される。
図1は、本発明の有機EL素子構成の一例を示す断面図であり、透明基板1上に設けた陽極2と陰極5の間に陽極バッファ層3、発光層4を順次設けたものである。
前記陽極としては、-5~80℃の温度範囲で面抵抗が好ましくは1000オーム□以下、より好ましくは100オーム□以下である物質を用いることができる。
前記陽極バッファ層は、陽極上に本発明の陽極バッファ層用組成物または陽極バッファ層用高分子化合物を塗布し、さらに加熱することによって形成される。
本発明の有機EL素子における有機EL化合物層、すなわち発光層、正孔輸送層、及び電子輸送層に使用する化合物としては、低分子化合物及び高分子化合物のいずれをも使用することができる。
上記の有機EL化合物層は、有機EL化合物が発光性高分子化合物である場合には、主にスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法により形成することができる。
正孔が発光層を通過することを抑え、発光層内で電子と効率よく再結合させる目的で、発光層の陰極側に隣接して正孔ブロック層を設けてもよい。この正孔ブロック層には発光性化合物より最高占有分子軌道(Highest Occupied Molecular Orbital;HOMO)準位の深い化合物を用いることができ、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体、アルミニウム錯体などを例示することができる。
本発明の有機EL光素子の陰極材料としては、仕事関数が低く、かつ化学的に安定なものが使用され、Al、MgAg合金、AlLiやAlCaなどのAlとアルカリ金属の合金などの既知の陰極材料を例示することができるが、化学的安定性を考慮すると仕事関数は-2.9eV以下であることが好ましい。これらの陰極材料の成膜方法としては、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などを用いることができる。陰極の厚さは10nm~1μmが好ましく、50~500nmがより好ましい。
陰極作製後、該有機EL素子を保護する保護層を装着していてもよい。該有機EL素子を長期安定的に用いるためには、素子を外部から保護するために、保護層および/または保護カバーを装着することが好ましい。該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物などを用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができ、該カバーを熱硬化性樹脂や光硬化性樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい。
本発明に係る有機EL素子の基板には、有機EL素子に要求される機械的強度を満たす材料が用いられる。
本発明の有機EL素子は、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機EL素子は、画素を形成せずに、面発光光源としても好適に用いられる。
<ホスト用高分子化合物の分子量等>
ホスト用高分子化合物の重量平均分子量(スチレン換算)および分子量分布指数(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、下記条件で測定した。
カラム:Shodex KF-G+KF804L+KF802+KF801
溶離液:テトラヒドロフラン(THF)
流速:1ml/min
カラム温度:40℃
<陽極バッファ層の厚さの減少率>
(陽極バッファ層付き基板の作製)
基板(後述する各実施例および比較例で用いられたITO膜付ガラス基板を構成するガラス基板と同じもの)上に、後述する各実施例および比較例で用いた陽極バッファ層用組成物をスピンコート法(条件:3000rpm-30秒)によって塗布し、得られた塗膜を窒素雰囲気下に210℃(ただし、実施例3のみは80℃)で1時間放置し、陽極バッファ層付き基板aを作製した。さらに、同様の方法で陽極バッファ層付き基板bを作製した。
陽極バッファ層付き基板aの陽極バッファ層の一部を針で切削して基板を露出させ(以下、こうして露出された基板表面を「基板露出部」ともいう。)、AFM(原子間力顕微鏡)を用いて、陽極バッファ層付き基板aの陽極バッファ層側表面を、図2に示すように基板露出部を横断するように観測することにより、陽極バッファ層(以下「溶解試験処理前の陽極バッファ層」ともいう。)の厚さを測定した。
陽極バッファ層付き基板bの陽極バッファ層に下記の溶解試験処理を施した。
<pHMTPDの合成>
特開2005-200638号公報([0112])に記載の方法に従い、下式で表される化合物(以下「viHMTPD」という。)を合成した。
<pHMTPD-2の合成>
重合開始剤(商品名:V-601)のトルエン溶液の濃度を0.2Mした他は、合成例1と同様にしてホスト用高分子化合物(pHMTPD-2)を得た。ホスト用高分子化合物(pHMTPD-2)の重量平均分子量は22000、分子量分布指数(Mw/Mn)は1.86であった。
<pTmTDMPDの合成>
N,N,N'-トリ-m-トリル-2,5-ジメチル-1,4-フェニレンジアミンの合成
密閉容器に、vTmTDMPD(500mg)を入れ、脱水トルエン(5.0mL)を加えた後、重合開始剤(商品名:V-601、和光純薬(株)製)のトルエン溶液(0.1M、50μL)を加えた。この後の操作は合成例1と同様にしてホスト用高分子化合物(pTmTDMPD)を得た。ホスト用高分子化合物(pTmTDMPD)の重量平均分子量は110000、分子量分布指数(Mw/Mn)は2.23であった。
pHMTPD-TPDの合成
密閉容器に、viHMTPD(475mg)および後述する合成例5で得られたviTPD(25mg)を入れ、脱水トルエン(5.0mL)を加えた後、重合開始剤(商品名:V-601、和光純薬(株)製)のトルエン溶液(0.1M、50μL)を加えた。この後の操作は合成例1と同様にしてホスト用高分子化合物(pHMTPD-TPD)を得た。ホスト用高分子化合物(pHMTPD-TPD)の重量平均分子量は100000、分子量分布指数(Mw/Mn)は2.30、viHMTPD由来の構成単位:viTPD由来の構成単位=94:6(モル比)であった。
<pTPDの合成>
特開2005-97589号公報(実施例1)に記載の方法に従い、モノマー(viTPD、下式で表される化合物の混合物)を合成した。
<pHMTPD-3の合成>
重合開始剤(商品名:V-601)のトルエン溶液の濃度を0.5Mとした他は、合成例1と同様にしてホスト用高分子化合物(pHMTPD-3)を得た。ホスト用高分子化合物(pHMTPD-3)の重量平均分子量は10000、分子量分布指数(Mw/Mn)は1.80であった。
<pHMTPD-pPhTCNQの合成>
vipPhTCNQの合成
電子受容性化合物であるTCNQに以下の方法で重合性置換基を導入し、重合性置換基を有する電子受容性化合物であるvipPhTCNQを得た。
原料として合成例1で合成したviHMTPD(100質量部)、および上記vipPhTCNQ(5質量部)を用いた以外は[合成例4]と同様の重合操作を行い、陽極バッファ層用化合物(pHMTPD-pPhTCNQ、以下「陽極バッファ層用高分子化合物1」ともいう。)を合成した。陽極バッファ層用高分子化合物1の重量平均分子量は69000、分子量分布指数(Mw/Mn)は2.45、viHMTPD由来の構成単位:vipPhTCNQ由来の構成単位=96:4(モル比)であった。
<pHMTPD-pPhF3TCNQの合成>
vipPhF3TCNQの合成
原料として合成例1で合成したviHMTPD(100質量部)、および上記vipPhF3TCNQ(5質量部)を原料として用いた以外は[合成例4]と同様の重合操作を行い、陽極バッファ層用化合物(pHMTPD-pPhF3TCNQ、以下「陽極バッファ層用高分子化合物2」ともいう。)を合成した。陽極バッファ層用高分子化合物2の重量平均分子量は67000、分子量分布指数(Mw/Mn)は2.47、viHMTPD由来の構成単位:vipPhF3TCNQ由来の構成単位=95:5(モル比)であった。
<pHMTPD-pPhDCNQIの合成>
vipPhDCNQIの合成
原料として合成例1で合成したviHMTPD(100質量部)、および上記vipPhDCNQI(5質量部)を原料として用いた以外は[合成例4]と同様の重合操作を行い、陽極バッファ層用化合物(pHMTPD-pPhDCNQI、以下「陽極バッファ層用高分子化合物3」ともいう。)を合成した。陽極バッファ層用高分子化合物3の重量平均分子量は66000、分子量分布指数(Mw/Mn)は2.38、viHMTPD由来の構成単位:vipPhDCNQ由来の構成単位=95:5モル比)であった。
<pMPDAの合成>
化合物3の合成
質量分析(FAB+):536 (M+).
pMPDAの合成
密閉容器にvMPDA(500mg)を入れ、脱水トルエン(5.0ml)を加えた後、重合開始剤(商品名:V-601、和光純薬(株)製)のトルエン溶液(0.1M、50μl)を加えた。この後の操作は合成例1と同様にしてホスト用高分子化合物(pMPDA)を得た。ホスト用高分子化合物(pMPDA)の重量平均分子量は95000、分子量分布指数(Mw/Mn)は2.30であった。
<pMPDAAの合成>
化合物4の合成
質量分析(FAB+):566 (M+).
pMPDAAの合成
密閉容器にMPDAA(500mg)を入れ、脱水トルエン(5.0ml)を加えた後、重合開始剤(商品名:V-601、和光純薬(株)製)のトルエン溶液(0.1M、50μl)を加えた。この後の操作は合成例1と同様にしてホスト用高分子化合物(pMPDAA)を得た。ホスト用高分子化合物(pMPDAA)の重量平均分子量は67000、分子量分布指数(Mw/Mn)は2.25であった。
<pMPDABの合成>
MPDABの合成
質量分析(FAB+):628 (M+).
pMPDABの合成
密閉容器にMPDAB(500mg)を入れ、脱水トルエン(5.0ml)を加えた後、重合開始剤(商品名:V-601、和光純薬(株)製)のトルエン溶液(0.1M、50μl)を加えた。この後の操作は合成例1と同様にしてホスト用高分子化合物(pMPDAB)を得た。ホスト用高分子化合物(pMPDAB)の重量平均分子量は95000、分子量分布指数(Mw/Mn)は2.41であった。
(合成例13)
<pDBDMPDの合成>
化合物5の合成
vDBDMPDの合成
質量分析(FAB+):592 (M+).
pDBDMPDの合成
密閉容器にvDBDMPD(500mg)を入れ、脱水トルエン(5.0ml)を加えた後、重合開始剤(商品名:V-601、和光純薬(株)製)のトルエン溶液(0.1M、50μl)を加えた。この後の操作は合成例1と同様にしてホスト用高分子化合物(pMPDAB)を得た。ホスト用高分子化合物(pDBDMPD)の重量平均分子量は170000、分子量分布指数(Mw/Mn)は2.06であった。
<陽極バッファ層用組成物の調製>
合成例1で製造した電荷輸送ポリマーであるpHMTPD(100質量部)、電子受容性化合物であるF4TCNQ(5質量部)、およびトルエンを混合して、陽極バッファ層用組成物(固形分濃度が0.8質量%のトルエン溶液、以下「陽極バッファ層用組成物1」ともいう。)を調製した。
ITO膜付ガラス基板上に、陽極バッファ層用組成物1を、スピンコート法(条件:3000rpm-30秒)によって塗布し、得られた塗膜を窒素雰囲気下に210℃で1時間放置し、陽極バッファ層を形成した。
pHMTPDを合成例2で製造されたpHMTPD-2に変更した以外は実施例1-(a)と同様の方法により、陽極バッファ層用組成物2を調製し、有機EL素子(以下「有機EL素子2」ともいう。)を作製した。有機EL素子2の陽極バッファ層および発光層の合計膜厚およびその発光効率等を表1に示す。
pHMTPDを合成例3で製造されたpTmTDMPDに変更した以外は実施例1-(a)と同様の方法により、陽極バッファ層用組成物3を調製し、有機EL素子(以下「有機EL素子3」ともいう。)を作製した。有機EL素子3の陽極バッファ層および発光層の合計膜厚およびその発光効率等を表1に示す。
pHMTPDを合成例4で製造されたpHMTPD-TPDに変更した以外は実施例1-(a)と同様の方法により、陽極バッファ層用組成物4を調製し、有機EL素子(以下「有機EL素子4」ともいう。)を作製した。有機EL素子4の陽極バッファ層および発光層の合計膜厚およびその発光効率等を表1に示す。
ITO膜付ガラス基板上に、前記陽極バッファ層用組成物1を、スピンコート法によって塗布し(3000rpm-30秒)、得られた塗膜を窒素雰囲気下に80℃で1時間放置して陽極バッファ層を形成した以外は実施例1と同様の方法により、有機EL素子(以下「有機EL素子5」ともいう。)を作製した。有機EL素子5の陽極バッファ層および発光層の合計膜厚およびその発光効率等を表1に示す。
pHMTPDを合成例5で製造されたpTPDに変更した以外は実施例1-(a)と同様の方法により、陽極バッファ層用組成物5を調製し、有機EL素子(以下「有機EL素子6」ともいう。)を作製した。有機EL素子6の陽極バッファ層および発光層の合計膜厚および発光効率等を表1に示す。
pHMTPDを合成例6で製造されたpHMTPD-3に変更した以外は実施例1-(a)と同様の方法により、陽極バッファ層用組成物6を調製し、有機EL素子(以下「有機EL素子7」ともいう。)を作製した。有機EL素子7の陽極バッファ層および発光層の合計膜厚および発光効率等を表1に示す。
ITO膜付ガラス基板上に、陽極バッファ層用組成物1を、スピンコート法(条件:3000rpm-30秒)によって塗布し、得られた塗膜を窒素雰囲気下に室温で1時間放置し、陽極バッファ層を形成した以外は実施例1-(a)と同様の方法により、有機EL素子(以下「有機EL素子8」ともいう。)を作製した。有機EL素子8の陽極バッファ層および発光層の合計膜厚およびその発光効率等を表1に示す。
合成例7で製造した陽極バッファ層用高分子化合物1およびトルエンを混合して、陽極バッファ層用組成物(固形分濃度が0.8質量%のトルエン溶液、以下「陽極バッファ層用組成物7」ともいう。)を調製した。
陽極バッファ層用高分子化合物1に換えて陽極バッファ層用高分子化合物2を用いた以外は実施例4-(a)と同様の方法により、陽極バッファ層用組成物8を調製し、有機EL素子(以下「有機EL素子10」ともいう。)を作製した。有機EL素子10の陽極バッファ層および発光層の合計膜厚およびその発光効率等を表1に示す。
陽極バッファ層用高分子化合物1に換えて陽極バッファ層用高分子化合物3を用いた以外は実施例4-(a)と同様の方法により、陽極バッファ層用組成物9を調製し、有機EL素子(以下「有機EL素子11」ともいう。)を作製した。有機EL素子11の陽極バッファ層および発光層の合計膜厚およびその発光効率等を表1に示す。
<発光層塗布成膜用の溶液調製>
国際公開WO2010/16512号公報に記載された方法に従って下記の燐光発光性高分子化合物(E-4)を合成した。高分子化合物(E-4)の重量平均分子量は52000、各繰り返し単位のモル比はk:m:n=6:42:52であった。
合成例10で製造したホスト用高分子化合物であるpMPDA(100質量部)、電子受容性化合物であるTCNQ(5質量部)、およびキシレンを混合して陽極バッファ層用組成物(固形分濃度が1.0質量%のキシレン溶液)を調製した。これをITO膜付きガラス基板上に、スピンコート法(条件:3000rpm-30秒)によって塗布し、得られた塗膜を窒素雰囲気下に170℃で1時間放置し、陽極バッファ層を形成した。
pMPDAを合成例11~13で製造されたpMPDAA、pMPDABおよびpDBDMPDにそれぞれ変更した以外は実施例5-(a)と同様の方法により、有機EL素子(以下それぞれ「有機EL素子13」、「有機EL素子14」および「有機EL素子15」ともいう。)を作製した。
特許文献1~3に記載の方法に従い、下式で表される化合物R1、R2およびR3をそれぞれ合成し、これらの化合物をpMPDAの代わりに用いた以外は実施例5-(a)と同様の方法により、有機EL素子(以下それぞれ「有機EL素子16」、「有機EL素子17」および「有機EL素子18」ともいう。)を作製した。
実施例1-(c)と同様にしてITO膜付きガラス基板上に陽極バッファ層を形成した後、真空蒸着装置により下記化合物(E-5)および(E-6)を、質量比が9:1となるように共蒸着して、30nmの厚さの発光層を形成し、続いて電子注入層として厚さ20nmの化合物(E-7)の層を形成した。さらに実施例1-(c)と同様にしてLiF層およびAl層を形成し、有機EL素子(以下「有機EL素子19」ともいう。)を作製した。
pTmTDMPDを上記の化合物R1に変更した以外は実施例6と同様の方法により有機EL素子(以下「有機EL素子20」ともいう。)を作製した。
2・・・陽極
3・・・陽極バッファ層
4・・・発光層
5・・・陰極
Claims (12)
- 下記式(1)または下記式(2)で表される構成単位を有し、GPCにより測定される重量平均分子量が20,000~1,000,000である高分子化合物、および
電子受容性化合物
を含有することを特徴とする陽極バッファ層用組成物。
複数個あるRaは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、少なくとも1つのRaは炭素数1~10のアルキル基を表し、
複数個あるRbは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、
複数個あるRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表し、同一のフェニル基の中の隣接する炭素原子にそれぞれ結合しているRcは、互いに結合して縮合環を形成してもよく、
Xは、単結合、-O-、-S-、-SO-、-SO2-、-NR1-(ただし、R1は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-、-COO-または炭素数1~20の2価の有機基(ただし、該有機基は、-O-、-S-、-SO-、-SO2-、-NR2-(ただし、R2は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-および-COO-からなる群より選択される原子または基を含んでいてもよい。)を表し、
Y-X-は、
で表される基を表し、
pは、0、1または2を表す。〕 - 下記式(1)または下記式(2)で表される構成単位、および重合性官能基を有する電子受容性化合物から誘導される構成単位を有し、GPCにより測定される重量平均分子量が20,000~1,000,000であることを特徴とする陽極バッファ層用高分子化合物。
複数個あるRaは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、少なくとも1つのRaは炭素数1~10のアルキル基を表し、
複数個あるRbは、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表し、
複数個あるRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表し、同一のフェニル基の中の隣接する炭素原子にそれぞれ結合しているRcは、互いに結合して縮合環を形成してもよく、
Xは、単結合、-O-、-S-、-SO-、-SO2-、-NR1-(ただし、R1は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-、-COO-または炭素数1~20の2価の有機基(ただし、該有機基は、-O-、-S-、-SO-、-SO2-、-NR2-(ただし、R2は水素原子、炭素数1~4のアルキル基またはフェニル基を表す。)、-CO-および-COO-からなる群より選択される原子または基を含んでいてもよい。)を表し、
Y-X-は、
で表される基を表し、
pは、0、1または2を表す。〕 - 有機溶剤をさらに含有することを特徴とする請求項1に記載の陽極バッファ層用組成物。
- 請求項2に記載の陽極バッファ層用高分子化合物および有機溶剤を含有することを特徴とする陽極バッファ層用組成物。
- 陽極、陽極バッファ層、発光層および陰極がこの順序で積層されてなり、
該陽極バッファ層が、請求項1,3もしくは4に記載の陽極バッファ層用組成物または請求項2に記載の陽極バッファ層用高分子化合物を加熱して形成されたものである
ことを特徴とする有機エレクトロルミネッセンス素子。 - 陰極バッファ層をさらに有することを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。
- 陽極上に請求項3または4に記載の陽極バッファ層用組成物を、塗布し、次いで加熱して、陽極バッファ層を形成する第一工程、
該陽極バッファ層上に発光層を形成する第二工程、および
該発光層上に陰極を形成する第三工程
を含み、
前記第二工程が、
前記陽極バッファ層表面に正孔輸送層形成材料および有機溶剤を含む正孔輸送層形成用溶液を塗布し、次いで該有機溶剤を除去して、前記陽極バッファ層に接する正孔輸送層を形成し、該正孔輸送層上に前記発光層を形成する工程2Aであるか、または
前記陽極バッファ層表面に発光層形成材料および有機溶剤を含む発光層形成用溶液を塗布し、次いで該有機溶剤を除去して、前記陽極バッファ層に接する前記発光層を形成する工程2Bである
ことを特徴とする有機エレクトロルミネッセンス素子の製造方法。 - 前記第二工程が前記工程2Aであって、前記正孔輸送層形成用溶液に含まれる有機溶剤が、その構成成分として、前記陽極バッファ層用組成物に含まれる有機溶剤の構成成分の少なくとも1つを含んでいることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子の製造方法。
- 前記第二工程が前記工程2Bであって、記発光層形成用溶液に含まれる有機溶剤が、その構成成分として、前記陽極バッファ層用組成物に含まれる有機溶剤の構成成分の少なくとも1つを含んでいることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子の製造方法。
- 前記加熱を100~350℃で10~180分間行うことを特徴とする請求項7~9のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。
- 請求項5または6に記載の有機エレクトロルミネッセンス素子を備える表示装置。
- 請求項5または6に記載の有機エレクトロルミネッセンス素子を備える光照射装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10826757.6A EP2495287B1 (en) | 2009-10-27 | 2010-10-27 | Composition for anode buffer layers, high-molecular compound for anode buffer layers, organic electroluminescent element, process for production of same, and use thereof |
JP2011538451A JP5856483B2 (ja) | 2009-10-27 | 2010-10-27 | 陽極バッファ層用組成物、陽極バッファ層用高分子化合物、有機エレクトロルミネッセンス素子、その製造方法およびその用途 |
CN201080048533.7A CN102597121B (zh) | 2009-10-27 | 2010-10-27 | 阳极缓冲层用组合物、阳极缓冲层用高分子化合物、有机电致发光元件、其制造方法及其用途 |
US13/504,076 US9644048B2 (en) | 2009-10-27 | 2010-10-27 | Composition for anode buffer layer, high-molecular weight compound for anode buffer layer, organic electroluminescence element, and production process and uses of the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-246445 | 2009-10-27 | ||
JP2009246445 | 2009-10-27 | ||
JP2010-024417 | 2010-02-05 | ||
JP2010024417 | 2010-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052625A1 true WO2011052625A1 (ja) | 2011-05-05 |
Family
ID=43922050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069037 WO2011052625A1 (ja) | 2009-10-27 | 2010-10-27 | 陽極バッファ層用組成物、陽極バッファ層用高分子化合物、有機エレクトロルミネッセンス素子、その製造方法およびその用途 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9644048B2 (ja) |
EP (1) | EP2495287B1 (ja) |
JP (1) | JP5856483B2 (ja) |
CN (1) | CN102597121B (ja) |
TW (1) | TWI490234B (ja) |
WO (1) | WO2011052625A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150060929A (ko) * | 2012-09-25 | 2015-06-03 | 메르크 파텐트 게엠베하 | 전도성 폴리머들을 포함하는 제제들 및 유기 전자 디바이스들에서의 그 사용 |
KR20160083539A (ko) * | 2014-12-31 | 2016-07-12 | 엘지디스플레이 주식회사 | 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치 |
JP2017197751A (ja) * | 2011-10-04 | 2017-11-02 | 日産化学工業株式会社 | 正孔注入層および輸送層のための改善されたドーピング法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190207115A1 (en) * | 2016-06-28 | 2019-07-04 | Dow Global Technologies Llc | Process for making an organic charge transporting film |
WO2019032253A1 (en) * | 2017-07-18 | 2019-02-14 | Massachusetts Institute Of Technology | NORMAL VACUUM NANOMETERIC LIQUID GELS AS GRID ISOLANTS FOR LOW VOLTAGE HIGH SPEED THIN FILM TRANSISTORS |
KR102549458B1 (ko) | 2018-09-17 | 2023-06-28 | 주식회사 엘지화학 | 신규한 고분자 및 이를 이용한 유기발광 소자 |
CN112500298B (zh) * | 2019-12-27 | 2022-03-04 | 陕西莱特光电材料股份有限公司 | 芳胺化合物和有机电致发光器件 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10310606A (ja) * | 1997-05-09 | 1998-11-24 | Minolta Co Ltd | 新規スチリル系高分子化合物、その製造方法および用途 |
US6066712A (en) * | 1997-05-09 | 2000-05-23 | Minolta Co., Ltd. | Styryl polymer, production method and use thereof |
JP2007042729A (ja) * | 2005-08-01 | 2007-02-15 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
JP2007197587A (ja) * | 2006-01-27 | 2007-08-09 | Seiko Epson Corp | 導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器 |
WO2009102027A1 (ja) * | 2008-02-15 | 2009-08-20 | Mitsubishi Chemical Corporation | 共役ポリマー、不溶化ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明 |
WO2009116414A1 (ja) * | 2008-03-19 | 2009-09-24 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0753953A (ja) * | 1993-08-19 | 1995-02-28 | Mitsubishi Chem Corp | 有機電界発光素子 |
JP3482719B2 (ja) | 1994-12-07 | 2004-01-06 | 凸版印刷株式会社 | キャリア輸送性重合体 |
JPH101665A (ja) | 1996-06-18 | 1998-01-06 | Toyota Central Res & Dev Lab Inc | 電界発光素子 |
JP4058842B2 (ja) | 1998-05-13 | 2008-03-12 | 三菱化学株式会社 | 有機電界発光素子 |
JP2000150169A (ja) * | 1998-09-10 | 2000-05-30 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2001223084A (ja) | 2000-02-07 | 2001-08-17 | Junji Kido | 有機電界発光素子 |
JP3972588B2 (ja) | 2001-02-26 | 2007-09-05 | 淳二 城戸 | 有機電界発光素子 |
JP4035976B2 (ja) | 2001-10-02 | 2008-01-23 | 昭和電工株式会社 | 重合性化合物およびその製造方法 |
EP1407501B1 (en) | 2001-06-20 | 2009-05-20 | Showa Denko K.K. | Light emitting material and organic light-emitting device |
JP4986004B2 (ja) | 2001-08-09 | 2012-07-25 | 昭和電工株式会社 | 重合性イリジウム錯体、その重合体およびその製造方法 |
JP3893949B2 (ja) | 2001-11-15 | 2007-03-14 | 昭和電工株式会社 | 重合性化合物およびその製造方法 |
JP4212802B2 (ja) | 2001-12-04 | 2009-01-21 | 昭和電工株式会社 | 重合性化合物およびその製造方法 |
US7250226B2 (en) | 2001-08-31 | 2007-07-31 | Nippon Hoso Kyokai | Phosphorescent compound, a phosphorescent composition and an organic light-emitting device |
JP4574936B2 (ja) | 2001-08-31 | 2010-11-04 | 日本放送協会 | 燐光発光性化合物及び燐光発光性組成物 |
JP3951876B2 (ja) | 2001-11-09 | 2007-08-01 | 昭和電工株式会社 | 重合性化合物およびその製造方法 |
US20040004433A1 (en) * | 2002-06-26 | 2004-01-08 | 3M Innovative Properties Company | Buffer layers for organic electroluminescent devices and methods of manufacture and use |
US7582363B2 (en) | 2003-04-30 | 2009-09-01 | Showa Denko K.K. | Organic polymer light-emitting element material having gold complex structure and organic polymer light-emitting element |
JP4666338B2 (ja) | 2003-04-30 | 2011-04-06 | 昭和電工株式会社 | 金錯体構造を有する有機高分子発光素子材料および有機高分子発光素子 |
JP4780696B2 (ja) | 2003-08-29 | 2011-09-28 | 昭和電工株式会社 | 燐光発光性高分子化合物およびこれを用いた有機発光素子 |
US20070155928A1 (en) | 2003-08-29 | 2007-07-05 | Showda Denko K.K. | Phosphorescent polymer compound and organic light emitting device using the same |
TW200528536A (en) | 2003-12-19 | 2005-09-01 | Showa Denko Kk | Boron-containing polymer compound and organic light emitting device using the same |
JP4854956B2 (ja) | 2003-12-19 | 2012-01-18 | 昭和電工株式会社 | ホウ素を含有する高分子化合物およびこれを用いた有機発光素子 |
WO2006080638A1 (en) * | 2004-09-24 | 2006-08-03 | Lg Chem. Ltd. | New compound and organic light emitting device using the same (7) |
JP2006235492A (ja) * | 2005-02-28 | 2006-09-07 | Seiko Epson Corp | 有機el装置及びその駆動方法並びに電子機器 |
JP5008324B2 (ja) * | 2005-03-23 | 2012-08-22 | 株式会社半導体エネルギー研究所 | 複合材料、発光素子用材料、発光素子、発光装置及び電子機器。 |
US7687986B2 (en) | 2005-05-27 | 2010-03-30 | Fujifilm Corporation | Organic EL device having hole-injection layer doped with metallic oxide |
TW201014444A (en) | 2008-08-06 | 2010-04-01 | Showa Denko Kk | Organic electroluminescent device, display device, and lighting device |
JP5508795B2 (ja) * | 2009-09-18 | 2014-06-04 | 株式会社Adeka | ペンダント型高分子化合物、ペンダント型高分子化合物を用いた色変換膜、および多色発光有機elデバイス |
-
2010
- 2010-10-27 EP EP10826757.6A patent/EP2495287B1/en active Active
- 2010-10-27 WO PCT/JP2010/069037 patent/WO2011052625A1/ja active Application Filing
- 2010-10-27 TW TW099136966A patent/TWI490234B/zh active
- 2010-10-27 CN CN201080048533.7A patent/CN102597121B/zh active Active
- 2010-10-27 JP JP2011538451A patent/JP5856483B2/ja active Active
- 2010-10-27 US US13/504,076 patent/US9644048B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10310606A (ja) * | 1997-05-09 | 1998-11-24 | Minolta Co Ltd | 新規スチリル系高分子化合物、その製造方法および用途 |
US6066712A (en) * | 1997-05-09 | 2000-05-23 | Minolta Co., Ltd. | Styryl polymer, production method and use thereof |
JP2007042729A (ja) * | 2005-08-01 | 2007-02-15 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
JP2007197587A (ja) * | 2006-01-27 | 2007-08-09 | Seiko Epson Corp | 導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器 |
WO2009102027A1 (ja) * | 2008-02-15 | 2009-08-20 | Mitsubishi Chemical Corporation | 共役ポリマー、不溶化ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明 |
WO2009116414A1 (ja) * | 2008-03-19 | 2009-09-24 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2495287A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017197751A (ja) * | 2011-10-04 | 2017-11-02 | 日産化学工業株式会社 | 正孔注入層および輸送層のための改善されたドーピング法 |
KR20150060929A (ko) * | 2012-09-25 | 2015-06-03 | 메르크 파텐트 게엠베하 | 전도성 폴리머들을 포함하는 제제들 및 유기 전자 디바이스들에서의 그 사용 |
JP2015533184A (ja) * | 2012-09-25 | 2015-11-19 | メルク パテント ゲーエムベーハー | 導電性ポリマーを含む配合物および有機電子素子におけるその使用 |
US9972782B2 (en) | 2012-09-25 | 2018-05-15 | Merck Patent Gmbh | Formulations containing conductive polymers and use thereof in organic electronic devices |
KR102080471B1 (ko) | 2012-09-25 | 2020-02-24 | 메르크 파텐트 게엠베하 | 전도성 폴리머들을 포함하는 제제들 및 유기 전자 디바이스들에서의 그 사용 |
KR20160083539A (ko) * | 2014-12-31 | 2016-07-12 | 엘지디스플레이 주식회사 | 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치 |
KR102288225B1 (ko) * | 2014-12-31 | 2021-08-10 | 엘지디스플레이 주식회사 | 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치 |
Also Published As
Publication number | Publication date |
---|---|
US9644048B2 (en) | 2017-05-09 |
US20120217491A1 (en) | 2012-08-30 |
EP2495287A4 (en) | 2014-07-30 |
CN102597121B (zh) | 2015-04-22 |
EP2495287B1 (en) | 2018-05-16 |
CN102597121A (zh) | 2012-07-18 |
TW201206958A (en) | 2012-02-16 |
JP5856483B2 (ja) | 2016-02-09 |
EP2495287A1 (en) | 2012-09-05 |
JPWO2011052625A1 (ja) | 2013-03-21 |
TWI490234B (zh) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5856483B2 (ja) | 陽極バッファ層用組成物、陽極バッファ層用高分子化合物、有機エレクトロルミネッセンス素子、その製造方法およびその用途 | |
WO2011024922A1 (ja) | モノアミン化合物、電荷輸送材料、電荷輸送膜用組成物、有機電界発光素子、有機el表示装置及び有機el照明 | |
EP1915789B1 (en) | Organic electroluminescence device using a copolymer and a phosphorescent iridium compound | |
JPWO2019177175A1 (ja) | 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法 | |
JP4802671B2 (ja) | 低分子有機薄膜を備える有機el素子 | |
JP5342103B2 (ja) | 有機発光素子 | |
JP2011119591A (ja) | 有機エレクトロルミネッセンス素子、その製造方法およびその用途 | |
US20120256171A1 (en) | Phosphine oxide compound, organic electroluminescence element, production method and uses thereof | |
JP2012146811A (ja) | 有機エレクトロルミネッセント素子 | |
JP5247024B2 (ja) | 有機発光素子 | |
JP2008010648A (ja) | 有機エレクトロルミネッセンス素子および表示装置 | |
JP2008066380A (ja) | 有機エレクトロルミネッセンス素子およびその用途 | |
JP5132227B2 (ja) | 有機エレクトロルミネッセンス素子およびその用途 | |
JP4916792B2 (ja) | 有機エレクトロルミネッセンス素子および表示装置 | |
EP2249410B1 (en) | Organic electroluminescent element, and manufacturing method and uses therefor | |
JP2007131814A (ja) | 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置 | |
JP4790381B2 (ja) | 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置 | |
US20120256536A1 (en) | Phosphine oxide compound, organic electroluminescence element, production method and uses thereof | |
JP5014705B2 (ja) | 燐光発光性化合物を用いた有機エレクトロルミネッセンス素子 | |
JP5466747B2 (ja) | 高分子化合物 | |
JP2008028119A (ja) | 有機エレクトロルミネッセンス素子およびその用途 | |
JP2008010651A (ja) | 有機エレクトロルミネッセンス素子および表示装置 | |
JP2008010650A (ja) | 有機エレクトロルミネッセンス素子および表示装置 | |
JP2008010652A (ja) | 有機エレクトロルミネッセンス素子および表示装置 | |
JP2007169334A (ja) | 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080048533.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10826757 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011538451 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010826757 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13504076 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |