WO2011052573A1 - 有機光電変換素子 - Google Patents

有機光電変換素子 Download PDF

Info

Publication number
WO2011052573A1
WO2011052573A1 PCT/JP2010/068947 JP2010068947W WO2011052573A1 WO 2011052573 A1 WO2011052573 A1 WO 2011052573A1 JP 2010068947 W JP2010068947 W JP 2010068947W WO 2011052573 A1 WO2011052573 A1 WO 2011052573A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
photoelectric conversion
electrode
conversion element
Prior art date
Application number
PCT/JP2010/068947
Other languages
English (en)
French (fr)
Inventor
岳仁 加藤
大西 敏博
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US13/503,864 priority Critical patent/US20120211078A1/en
Priority to CN2010800480704A priority patent/CN102668154A/zh
Publication of WO2011052573A1 publication Critical patent/WO2011052573A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element.
  • the photoelectric conversion element is an element that can convert light energy into electric energy, and a solar cell is an example.
  • a silicon solar cell is known as a typical solar cell.
  • the manufacturing cost is high. For this reason, the organic solar cell whose manufacturing cost is cheap compared with a silicon-type solar cell attracts attention.
  • Patent Document 1 describes a configuration in which a UV cut film is provided on an organic solar cell in order to block ultraviolet rays.
  • Patent Document 1 does not provide a long life, and a technique for further extending the life of the organic solar battery has been desired.
  • the said matter was a common problem also in organic photoelectric conversion elements other than an organic solar cell.
  • the present invention has been made in view of the above problems, and provides a long-life organic photoelectric conversion element.
  • the present inventor is configured to protect an organic photoelectric conversion element with a barrier layer including an inorganic layer containing an inorganic material and an organic layer containing an organic material, and By providing at least one of the inorganic layer and the organic layer with a function of blocking ultraviolet rays, it is possible to effectively protect the organic photoelectric conversion element from oxygen, water and ultraviolet rays by utilizing the properties of the inorganic material and the organic material.
  • the present invention has been completed by finding that a long life can be realized.
  • a first electrode, an active layer capable of generating an electric charge upon incidence of light, a second electrode, and a barrier layer are provided in the order described above, and the barrier layer includes an inorganic layer containing an inorganic material;
  • An organic photoelectric conversion element comprising an organic layer containing an organic material, wherein one or both of the inorganic layer and the organic layer have a function of blocking ultraviolet rays.
  • the organic photoelectric conversion element according to [1] further including an ultraviolet absorbing layer, and including the active layer, the first electrode, and the ultraviolet removing layer in this order.
  • FIG. 1 is a schematic cross-sectional view of an organic photoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an organic photoelectric conversion element according to the second embodiment of the present invention.
  • “ultraviolet light” refers to light having a wavelength of 400 nm or less.
  • the organic photoelectric conversion device of the present invention includes a first electrode, an active layer capable of generating a charge upon incidence of light, a second electrode, and a barrier layer in this order. Therefore, the arrangement order of the layers is the order of the first electrode, the active layer, the second electrode, and the barrier layer.
  • the barrier layer includes an inorganic layer containing an inorganic material and an organic layer containing an organic material. Furthermore, one or both of the inorganic layer and the organic layer have a function of blocking ultraviolet rays. In general, the inorganic layer and the organic layer can block oxygen and moisture entering from the outside to the inside of the organic photoelectric conversion element.
  • the organic layer it can prevent that a 1st electrode, a 2nd electrode, and an active layer are damaged by the external force applied from the outside of an organic photoelectric conversion element. Furthermore, since one or both of the inorganic layer and the organic layer have a function of blocking ultraviolet rays, the organic material contained in the active layer and the functional layer can be prevented from being deteriorated by ultraviolet rays. Therefore, since the organic photoelectric conversion element of the present invention is effectively protected from oxygen, water, ultraviolet rays and external force, it becomes a long-life element that can stably maintain photoelectric conversion characteristics over a long period of time.
  • the organic photoelectric conversion element of this invention may be provided with layers other than a 1st electrode, an active layer, a 2nd electrode, and a barrier layer.
  • the organic photoelectric conversion element of the present invention may include a functional layer between the first electrode and the active layer, or may include a functional layer between the active layer and the second electrode.
  • the organic photoelectric conversion element of the present invention usually includes a substrate, and each layer (for example, the first electrode, the active layer, the second electrode, the barrier layer, and the function) constituting the organic photoelectric conversion element of the present invention on the substrate. Layer).
  • substrate is a member which functions as a support body of the organic photoelectric conversion element of this invention.
  • the substrate a member that does not change chemically is usually used when an electrode is formed or an organic material layer is formed.
  • the material for the substrate include glass, plastic, polymer film, and silicon.
  • substrate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a transparent or translucent member is used as the substrate, but an opaque substrate can also be used.
  • the electrode opposite to the substrate that is, the electrode farther from the opaque substrate among the first electrode and the second electrode
  • First electrode and second electrode One of the first electrode and the second electrode is an anode, and the other is a cathode.
  • at least one of the first electrode and the second electrode is preferably transparent or translucent.
  • light is usually irradiated from the second electrode side so that ultraviolet rays contained in the light entering the active layer through the barrier layer and the second electrode can be weakened. Therefore, it is preferable to make the second electrode transparent or translucent.
  • the active layer is a layer that can generate an electric charge upon incidence of light, and usually includes a p-type semiconductor that is an electron-donating compound and an n-type semiconductor that is an electron-accepting compound.
  • the organic photoelectric conversion element of the present invention is referred to as an “organic” photoelectric conversion element because an organic compound is used as at least one of the p-type semiconductor and the n-type semiconductor, usually both. Note that the p-type semiconductor and the n-type semiconductor are relatively determined from the energy level of the energy level of the semiconductor.
  • the material of the functional layer may be any material that has the ability to transport charges generated in the active layer.
  • the functional layer between the active layer and the anode preferably contains a material that has the ability to transport holes and can prevent electrons from moving to the functional layer.
  • the functional layer between the active layer and the cathode preferably contains a material that has the ability to transport electrons and can prevent holes from moving to the functional layer.
  • the inorganic layer When the inorganic layer has a function of blocking ultraviolet rays, the inorganic layer usually contains an ultraviolet absorber that is a material that can absorb ultraviolet rays.
  • Examples of the solvent contained in the liquid composition for forming an inorganic layer include the same solvents as those contained in the liquid composition for forming an active layer.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the solvent in the liquid composition is usually 10 parts by weight or more, preferably 50 parts by weight or more, more preferably 100 parts by weight or more, and usually 100,000 parts by weight or less, preferably 10,000, with respect to 100 parts by weight of the inorganic material.
  • the amount is not more than parts by weight, more preferably not more than 5000 parts by weight.
  • the organic layer is preferably provided so that the arrangement order of the inorganic layer and the organic layer in the barrier layer is the inorganic layer and the organic layer in order from the side closer to the second electrode. Since the organic layer has a property that water is less likely to permeate than the inorganic layer, the invasion of water into the organic photoelectric conversion element can be effectively prevented by providing the organic layer at a position outside the inorganic layer. In general, since inorganic materials are poor in flexibility, defects and the like are likely to occur during formation of the inorganic layer, and oxygen and moisture may easily enter through the defects and the like. However, by providing the organic layer on the outside of the inorganic layer, the defects and the like of the inorganic layer can be covered with an organic material, and the blocking action of oxygen and moisture can be enhanced.
  • the thickness of the organic layer is preferably 1 ⁇ m or more, and more preferably 5 ⁇ m or more. Thereby, the function which interrupts
  • the upper limit of the thickness of the organic layer is usually 100 ⁇ m or less, preferably 10 ⁇ m or less. If the organic layer is too thick, defects such as pinholes, voids and cracks are likely to occur in the organic layer, and if the organic photoelectric conversion element is heated, the organic layer may thermally expand and cracks may occur. is there.
  • Examples of the method for forming the organic layer include a vapor phase film forming method, a coating method, and a method of attaching a pre-formed film-shaped product.
  • a coating method when an organic layer is formed using a resin as a material by a coating method, first, a fluid resin is prepared, and an organic layer is formed through a coating process in which the prepared resin is applied to a predetermined position.
  • the ultraviolet absorbing layer usually contains an ultraviolet absorber.
  • an ultraviolet absorber the same example as the ultraviolet absorber illustrated by description of the inorganic layer is mentioned.
  • a ultraviolet absorber may use one type and may use it combining two or more types by arbitrary ratios.
  • the ultraviolet absorbing layer may contain a binder to hold the ultraviolet absorber.
  • a binder it is preferable to use a material capable of holding the ultraviolet absorber in the ultraviolet absorbing layer without significantly impairing the effects of the present invention, and a resin is usually used.
  • resins that can be used as the binder include polyester resins, epoxy resins, acrylic resins, and fluorine resins.
  • a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the thickness of the ultraviolet absorbing layer is usually 1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, and usually 10,000 ⁇ m or less, preferably 5000 ⁇ m or less, more preferably 3000 ⁇ m or less. If the ultraviolet absorbing layer is too thin, the ultraviolet rays may not be sufficiently blocked, and if it is too thick, the thickness of the organic photoelectric conversion element may be excessively increased.
  • the organic photoelectric conversion device of the present invention includes layers other than the substrate, the first electrode, the second electrode, the active layer, the functional layer, the barrier layer, and the ultraviolet absorption layer described above, unless the effects of the present invention are significantly impaired. It may be.
  • a water repellent layer is provided on the outermost surface of the organic photoelectric conversion element, or an ultraviolet absorption layer is provided at a position other than the position opposite to the active layer of the first electrode. May be.
  • An organic photoelectric conversion element 100 shown in FIG. 1 includes, on a substrate 1, a first electrode 2, an active layer 3 that can generate an electric charge upon incidence of light, and a second electrode 4 in the order described above.
  • a terminal (not shown) is connected to the first electrode 2 and the second electrode 4 so that electricity can be taken out to the outside.
  • the ultraviolet absorption layer 5 and the barrier layer 6 are provided on the surface of the organic photoelectric conversion element 100 in the above order so as to cover a portion other than the substrate 1 of the organic photoelectric conversion element 100. Therefore, the organic photoelectric conversion element 100 includes the substrate 1, the first electrode 2, the active layer 3, the second electrode 4, the ultraviolet absorption layer 5, and the barrier layer 6 in the order described above. .
  • the barrier layer 6 includes an inorganic layer 7 containing an inorganic material and an organic layer 8 formed of an organic material in the order closer to the active layer 3. Furthermore, one or both of the inorganic layer 7 and the organic layer 8 contains a UV absorber and is a layer having a function of blocking UV rays.
  • the organic photoelectric conversion element 100 is configured as described above, when light is irradiated from above in the figure, the irradiated light is incident on the active layer 3 through the barrier layer 6 and the ultraviolet absorption layer 5, Electric charges are generated in the active layer 3. The charges generated in the active layer 3 are transported to the first electrode 2 and the second electrode 4 and taken out to the outside through the terminals.
  • the organic photoelectric conversion element 200 shown in FIG. 2 is the same as that of the first embodiment except that the position of the ultraviolet absorption layer 5 is moved to the lower surface of the substrate 1 on the side opposite to the active layer 3 of the first electrode 2.
  • the configuration is the same as that of the organic photoelectric conversion element 100 according to the embodiment. Therefore, the organic photoelectric conversion element 200 includes the ultraviolet absorption layer 5, the substrate 1, the first electrode 2, the active layer 3, the second electrode 4, and the barrier layer 6 in the order described above.
  • the arrangement order of the inorganic layer 7 and the organic layer 8 in the barrier layer is the inorganic layer 7 and the organic layer 8 in the order closer to the active layer 3.
  • one or both of the inorganic layer 7 and the organic layer 8 contains a UV absorber and is a layer having a function of blocking UV rays.
  • the ultraviolet light contained in the irradiated light can be blocked by the barrier layer 6, and when light is irradiated from the lower side in the figure, it is irradiated.
  • the ultraviolet ray contained in the light can be blocked by the ultraviolet absorption layer 5.
  • the organic photoelectric conversion element 200 of the present embodiment makes it difficult for the first electrode 2, the active layer 3, and the second electrode 4 to deteriorate due to oxygen, moisture, and ultraviolet light, and increases resistance to external force. Therefore, it is a long-life organic photoelectric conversion element capable of maintaining the photoelectric conversion efficiency over a long period of time as compared with the conventional organic photoelectric conversion element. In addition, the same effect can be acquired even if the position of the inorganic layer 7 and the organic layer 8 is replaced in the barrier layer 6 in the organic photoelectric conversion element 200 of this embodiment.
  • the combination of the first electrode 2 and the second electrode 4 may be the first electrode 2 as an anode and the second electrode 4 as a cathode, and the first electrode 2 as a cathode and the second electrode 4 as a cathode. It is good also as an anode.
  • a photovoltaic force is generated between the electrodes of the organic photoelectric conversion element of the present invention by irradiation with light such as sunlight in the manner described above.
  • the organic photoelectric conversion element of this invention can be used as a solar cell, for example using the said photovoltaic power.
  • the organic photoelectric conversion element of the present invention is usually used as a solar battery cell of an organic thin film solar battery.
  • a plurality of solar cells may be integrated into a solar cell module (organic thin film solar cell module) and used in the form of a solar cell module. Since the organic photoelectric conversion element of the present invention has a long lifetime as described above, a solar cell including the organic photoelectric conversion element of the present invention can be expected to have a long lifetime.
  • the organic photoelectric conversion element of the present invention can be used as an organic photosensor.
  • the organic photoelectric conversion element of the present invention when light is applied to the organic photoelectric conversion element of the present invention with voltage applied between the electrodes or without application, charges are generated. Therefore, if the charges are detected as photocurrents,
  • the organic photoelectric conversion element can be operated as an organic light sensor. Furthermore, it can also be used as an organic image sensor by integrating a plurality of organic optical sensors.
  • the solar cell module can basically have the same module structure as a conventional solar cell module.
  • a solar cell module generally has a configuration in which solar cells are provided on a support substrate such as metal or ceramic, and the solar cell is covered with a filling resin, protective glass, or the like. Light can be captured through the opposite surface.
  • the solar cell module has a configuration in which a transparent material such as tempered glass is used as a support substrate and solar cells are provided on the support substrate, and light can be taken in through the transparent support substrate. It may be.
  • the configuration of the solar cell module for example, a super straight type, a substrate type, a potting type or the like module structure, a substrate integrated module structure used in an amorphous silicon solar cell, or the like is known.
  • an appropriate module structure may be appropriately selected according to the purpose of use, the place of use, the environment, and the like.
  • a super straight type and substrate type solar cell module which is a typical module structure, has a structure in which solar cells are arranged at regular intervals between a pair of support substrates.
  • One or both of the support substrates are transparent and are usually subjected to antireflection treatment.
  • Adjacent solar cells are electrically connected to each other by wiring such as metal leads and flexible wiring, and an integrated electrode is disposed on the outer edge portion of the solar cell module so that power generated in the solar cells can be taken out to the outside. It has become.
  • a layer of a filling material such as a plastic material such as ethylene vinyl acetate (EVA) may be provided as necessary for protecting the solar cells and improving the current collection efficiency.
  • the filling material may be attached after being formed into a film shape in advance, or may be cured after filling a resin at a desired position.
  • one support substrate may not be provided.
  • a surface protective layer is provided on the surface of the solar cell module on which the support substrate is not provided, for example, by covering with a transparent plastic film or by curing the resin after coating with a filling resin, thereby providing a protective function. It is preferable.
  • the periphery of the support substrate is fixed by sandwiching the solar cell module with a metal frame in order to ensure the internal sealing and the rigidity of the solar cell module. Further, a hermetic seal is usually applied between the support substrate and the frame with a sealing material.
  • the solar cell module can be used in a mode that takes advantage of the organic photoelectric conversion element.
  • an organic photoelectric conversion element can be configured as a flexible element
  • a solar cell module can be provided on a curved surface by using a flexible material as a support substrate, a filling material, a sealing material, and the like.
  • a solar cell module can also be manufactured using a coating method.
  • a coating method For example, when manufacturing a solar cell module using a flexible support such as a polymer film as a support substrate, solar cells are sequentially formed using a coating method or the like while feeding a roll-shaped flexible support, After cutting to a desired size, the solar cell module main body can be manufactured by sealing the periphery of the cut piece with a flexible and moisture-proof material.
  • a solar cell module having a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 can be obtained.
  • the solar cell module using a flexible support can be used by being bonded and fixed to curved glass or the like.
  • Example 1 A glass substrate on which an ITO film having a thickness of about 150 nm was patterned as a first electrode by sputtering was prepared.
  • the prepared glass substrate was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried, and then subjected to ultraviolet-ozone treatment (UV-O 3 treatment) in a UV-O 3 apparatus.
  • UV-O 3 treatment ultraviolet-ozone treatment
  • a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (manufactured by HC Starck B-Tech, Bytron P TP AI 4083) was prepared and filtered through a filter having a pore size of 0.5 micron.
  • the filtered suspension was spin-coated on the surface of the glass substrate on which the ITO film was formed to form a film with a thickness of 70 nm. Thereafter, the film was dried on the hot plate at 200 ° C. for 10 minutes in the atmosphere to form a functional layer.
  • the alternating weight which has a repeating unit represented by Formula (5) obtained by copolymerizing the monomer represented by Formula (3) and the monomer represented by Formula (4) Polymer Compound A as a combination and [6,6] -phenyl C 61 butyric acid methyl ester (hereinafter, abbreviated as “[6,6] -PCBM” where appropriate) at a weight ratio of 1: 3.
  • An orthodichlorobenzene solution containing was prepared.
  • the polymer compound A was 1% by weight with respect to orthodichlorobenzene. Thereafter, filtration was performed with a filter having a pore size of 0.5 ⁇ m.
  • the obtained extract was spin-coated on the functional layer and then dried in an N 2 atmosphere.
  • the polymer compound A had a polystyrene equivalent weight average molecular weight of 17,000 and a polystyrene equivalent number average molecular weight of 5,000. Furthermore, the light absorption edge wavelength of the polymer compound A was 925 nm.
  • a functional layer is formed by forming a LiF film with a thickness of about 2.3 nm in a resistance heating vapor deposition apparatus, and subsequently an Al film is formed with a thickness of about 70 nm. did.
  • a dispersion in which titanium dioxide rutile fine particles (SCR-100C, Sakai Chemical Industry Co., Ltd.) and a dispersing agent (acetic acid) are dispersed is prepared, and the prepared dispersion is applied onto an electrode made of Al by a spin coating method.
  • the obtained inorganic layer is a layer having a function of blocking light having a wavelength of 411 nm or less.
  • a first organic layer was obtained by applying an ultraviolet cut coating agent (trade name UV-G13) manufactured by Nippon Shokubai with a thickness of 6 ⁇ m on the inorganic layer.
  • an epoxy sealant was applied from above the first organic layer to form a second organic layer.
  • the barrier layer according to the present invention is constituted by the inorganic layer, the first organic layer, and the second organic layer.
  • an ultraviolet cut coating agent (trade name UV-G13) manufactured by Nippon Shokubai Co., Ltd. is applied to the surface of the glass substrate with the ITO film opposite to the ITO film as a UV absorbing layer to a thickness of 6 ⁇ m.
  • An absorbent layer was formed.
  • the ultraviolet absorption layer, the glass substrate, the first electrode, the functional layer, the active layer, the functional layer, the second electrode, and the inorganic layer, the first organic layer, and the second organic layer are included.
  • An organic photoelectric conversion element provided with a barrier layer in the above order was obtained.
  • Example 2 An organic photoelectric conversion element was obtained in the same manner as in Example 1 except that the active layer was formed as described below.
  • the active layer was formed as follows. First, an orthodichlorobenzene solution containing poly (3-hexylthiophene) (hereinafter abbreviated as “P3HT” as appropriate) and [6,6] -PCBM at a weight ratio of 1: 0.8 was prepared. P3HT was 1% by weight with respect to orthodichlorobenzene. Thereafter, filtration was performed with a filter having a pore size of 0.1 ⁇ m. The obtained extract was spin-coated on the functional layer and then dried in an N 2 atmosphere. As a result, an active layer having a thickness of 100 nm was obtained.
  • P3HT poly (3-hexylthiophene)
  • Example 1 An organic photoelectric conversion element was produced in the same manner as in Example 1 except that the ultraviolet absorbing layer, the inorganic layer, and the first organic layer were not formed.
  • the organic photoelectric conversion element of the present invention can be used for, for example, a solar cell, an optical sensor and the like.

Abstract

 長寿命な有機光電変換素子を提供する。第一の電極2と、光の入射により電荷を生じうる活性層3と、第二の電極4と、バリア層6とを、前記の順に備える有機光電変換素子100において、バリア層6が、無機材料を含む無機層7と、有機材料を含む有機層8とを備え、無機層7及び有機層8の一方又は両方が紫外線を遮断する機能を有するようにする。

Description

有機光電変換素子
 本発明は有機光電変換素子に関する。
 光電変換素子は光エネルギーを電気エネルギーに変換しうる素子であり、その例として太陽電池が挙げられる。代表的な太陽電池としては、シリコン系太陽電池が知られている。しかし、シリコン系太陽電池は、製造工程において高真空環境及び高圧環境を用意することになるため、製造コストが高い。このため、製造コストがシリコン系太陽電池に比べて安価な有機太陽電池が注目されている。
 しかしながら、有機太陽電池は有機材料を使用しているため、紫外線(UV)等により有機材料が劣化しやすく、シリコン系太陽電池と比較して寿命が短い傾向がある。そこで、有機太陽電池において長寿命化を実現するため、様々な技術開発がなされている。例えば特許文献1では、紫外線を遮断するために、有機太陽電池にUVカットフィルムを設ける構成が記載されている。
特開2007-67115号公報
 入射する紫外線をUVカットフィルムで遮断すれば、紫外線による有機材料の劣化を抑制でき、有機太陽電池の寿命を延ばすことができる。しかし、特許文献1記載の技術では長寿命化は十分ではなく、有機太陽電池の寿命を更に延ばす技術が望まれていた。また、前記の事項は、有機太陽電池以外の有機光電変換素子においても共通した課題であった。
 本発明は上記の課題に鑑みてなされたものであって、長寿命な有機光電変換素子を提供する。
 本発明者は、上述した課題を解決するために鋭意検討した結果、無機材料を含む無機層と有機材料を含む有機層とを備えるバリア層で有機光電変換素子を保護するようにし、且つ、前記無機層及び有機層の少なくとも一方に紫外線を遮断する機能を備えさせることによって、無機材料及び有機材料の性質を活用して酸素、水及び紫外線から有機光電変換素子を効果的に保護することが可能となり、長寿命化を実現できることを見出して、本発明を完成させた。
 すなわち、本発明は以下のとおりである。
〔1〕 第一の電極と、光の入射により電荷を生じうる活性層と、第二の電極と、バリア層とを、前記の順に備え、前記バリア層が、無機材料を含む無機層と、有機材料を含む有機層とを備え、前記無機層及び前記有機層の一方又は両方が、紫外線を遮断する機能を有する有機光電変換素子。
〔2〕 さらに、紫外線吸収層を備え、前記活性層と、前記第一の電極と、前記紫外線除去層とを、この順に備える〔1〕に記載の有機光電変換素子。
〔3〕 前記バリア層が、前記第二の電極に近い方から順に、前記無機層及び前記有機層を備える〔1〕又は〔2〕に記載の有機光電変換素子。
図1は、本発明の第一実施形態に係る有機光電変換素子の模式的な断面図である。 図2は、本発明の第二実施形態に係る有機光電変換素子の模式的な断面図である。
 1 基板
 2 第一の電極
 3 活性層
 4 第二の電極
 5 紫外線吸収層
 6 バリア層
 7 無機層
 8 有機層
 100,200 有機光電変換素子
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されず、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本発明において「紫外線」とは、波長が400nm以下の光のことをいう。
[1.概要]
 本発明の有機光電変換素子は、第一の電極と、光の入射により電荷を生じうる活性層と、第二の電極と、バリア層とを、この順に備える。したがって、各層の並び順は、第一の電極、活性層、第二の電極及びバリア層の順となる。また、前記のバリア層は、無機材料を含む無機層と、有機材料を含む有機層とを備える。さらに、前記無機層及び前記有機層の一方又は両方は、紫外線を遮断する機能を有している。
 一般に、無機層及び有機層により、有機光電変換素子の外部から内部へと浸入する酸素及び水分を遮断できる。また、有機層によれば、有機光電変換素子の外部から加えられる外力により第一の電極、第二の電極及び活性層が損傷することを防止できる。さらに、無機層及び有機層の一方又は両方が紫外線を遮断する機能を有するため、活性層及び機能層に含まれる有機材料が紫外線により劣化することを防止できる。したがって、本発明の有機光電変換素子は酸素、水、紫外線及び外力から効果的に保護されるので、長期間に亘って安定して光電変換特性を維持できる長寿命な素子となる。
 また、本発明の有機光電変換素子は、第一の電極、活性層、第二の電極、及びバリア層以外の層を備えていてもよい。例えば、本発明の有機光電変換素子は、第一の電極と活性層との間に機能層を備えていてもよく、活性層と第二の電極との間に機能層を備えていてもよい。
 さらに、本発明の有機光電変換素子は通常は基板を備え、基板上に本発明の有機光電変換素子を構成する各層(例えば、第一の電極、活性層、第二の電極、バリア層及び機能層等)が積層された構造を有している。
[2.基板]
 基板は、本発明の有機光電変換素子の支持体として機能する部材である。基板としては、通常、電極を形成したり有機材料の層を形成したりする際に化学的に変化しない部材を用いる。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。なお、基板の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 通常は基板として透明又は半透明な部材を用いるが、不透明な基板を用いることも可能である。ただし、不透明な基板を用いる場合には、当該基板とは反対側の電極(即ち、第一の電極及び第二の電極のうち、不透明な基板から遠い方の電極)が透明又は半透明であることが好ましい。
[3.第一の電極及び第二の電極]
 第一の電極及び第二の電極のうち、一方は陽極であり、他方は陰極である。第一の電極及び第二の電極の間に位置する活性層に光が進入しやすくするため、第一の電極及び第二の電極のうち少なくとも一方は透明又は半透明であることが好ましい。本発明の有機光電変換素子においては、通常は第二の電極側から光が照射され、バリア層及び第二の電極を透過して活性層に進入する光に含まれる紫外線を弱めることができるようになっているため、第二の電極を透明又は半透明にすることが好ましい。
 透明又は半透明の電極の例としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。前記の透明又は半透明の電極の材料の例としては、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA等の導電性材料を用いて作製された膜や、金、白金、銀、銅等が挙げられる。中でも、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。
 また、透明又は半透明の電極の材料として有機材料を用いることも可能である。電極の材料として使用できる有機材料の例を挙げると、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体などの導電性高分子が挙げられる。
 不透明の電極の材料としては、例えば、金属、導電性高分子等が挙げられる。その具体例を挙げると、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、前記金属のうち2種類以上の合金、1種類以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種類以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体などが挙げられる。前記の合金の具体例を挙げると、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 なお、電極の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 第一の電極及び第二の電極の厚みは、電極の材料の種類により異なるが、光の透過性を良好にする観点、及び、電気抵抗を小さく抑える観点から、好ましくは500nm以下であり、より好ましくは200nm以下である。なお、下限に制限は無いが、通常は10nm以上である。
 第一の電極及び第二の電極の形成方法の例を挙げると、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、第一の電極及び第二の電極を例えば導電性高分子によって形成する場合には、塗布法により形成してもよい。
[4.活性層]
 活性層は、光の入射により電荷を生じうる層であり、通常、電子供与性化合物であるp型半導体と電子受容性化合物であるn型半導体とを含む。本発明の有機光電変換素子は、p型半導体及びn型半導体のうち少なくとも一方、通常は両方として有機化合物を用いていることから、「有機」光電変換素子と称される。なお、p型半導体及びn型半導体は、前記の半導体のエネルギー準位のエネルギーレベルから相対的に決定される。
 活性層においては、以下のような要領で電荷が生じるようになっていると考えられる。活性層に入射した光エネルギーがn型半導体及びp型半導体の一方又は両方で吸収されると、電子と正孔(ホール)とが結合した励起子を生成する。生成した励起子が移動して、n型半導体とp型半導体とが隣接しているヘテロ接合界面に達すると、ヘテロ接合界面でのそれぞれのHOMO(最高被占軌道)エネルギー及びLUMO(最低空軌道)エネルギーの違いにより電子と正孔が分離し、独立に動くことができる電荷(電子及び正孔)が発生する。発生した電荷は、それぞれ電極へ移動することにより、本発明の有機光電変換素子の外部へ電気エネルギー(電流)として取り出すことができるようになっている。
 光の入射により電荷を生じうる層であれば、活性層は1層のみからなる単層構造の層であってもよく、2層以上の層を備える積層構造の層であってもよい。活性層の層構成の例を挙げると、以下のような例が挙げられる。ただし、活性層の層構成は、下記の例示に限定されない。
 層構成(i) p型半導体を含有する層と、n型半導体を含有する層とを備える積層構造の活性層。
 層構成(ii) p型半導体及びn型半導体を含有する単層構造の活性層。
 層構成(iii) p型半導体を含有する層と、p型半導体及びn型半導体を含有する層と、n型半導体を含有する層とを備える積層構造の活性層。
 p型半導体としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等が挙げられる。
 さらに、好適なp型半導体として、下記構造式(1)で示される構造単位を有する有機高分子化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 上記有機高分子化合物としては、上記構造式(1)で示される構造単位を有する化合物と、下記構造式(2)で示される化合物との共重合体がより好ましい。
Figure JPOXMLDOC01-appb-C000002
〔式(2)中、Ar及びArは、同一又は相異なり、3価の複素環基を表す。Xは、-O-、-S-、-C(=O)-、-S(=O)-、-SO-、-Si(R)(R)-、-N(R)-、-B(R)-、-P(R)-又は-P(=O)(R)-を表す。R、R、R、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R50は、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R51は、炭素数6以上のアルキル基、炭素数6以上のアルキルオキシ基、炭素数6以上のアルキルチオ基、炭素数6以上のアリール基、炭素数6以上のアリールオキシ基、炭素数6以上のアリールチオ基、炭素数7以上のアリールアルキル基、炭素数7以上のアリールアルキルオキシ基、炭素数7以上のアリールアルキルチオ基、炭素数6以上のアシル基又は炭素数6以上のアシルオキシ基を表す。XとArは、Arに含まれる複素環の隣接位に結合し、C(R50)(R51)とArは、Arに含まれる複素環の隣接位に結合している。〕
 なお、p型半導体は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 n型半導体としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、二酸化チタン等の金属酸化物、カーボンナノチューブ等が挙げられる。中でも、二酸化チタン、カーボンナノチューブ、フラーレン及びフラーレン誘導体が好ましく、フラーレン及びフラーレン誘導体が特に好ましい。
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。
 フラーレン誘導体の例としては、C60、C70、C76、C78及びC84等の誘導体が挙げられる。フラーレン誘導体の具体例を挙げると、以下のような構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 また、別のフラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チェニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)などが挙げられる。
 なお、n型半導体は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 活性層におけるp型半導体とn型半導体との量比は本発明の効果を損なわない限り任意である。例えば、前記の層構成(i)及び(iii)におけるp型半導体及びn型半導体の両方を含有する層においては、p型半導体100重量部に対するn型半導体の量は、好ましくは10重量部以上、より好ましくは20重量部以上であり、好ましくは1000重量部以下、より好ましくは500重量部以下である。
 活性層の厚みは、通常1nm以上、好ましくは2nm以上、より好ましくは5nm以上、特に好ましくは20nm以上であり、通常100μm以下、好ましくは1000nm以下、より好ましくは500nm以下、特に好ましくは200nm以下である。
 活性層の形成方法に制限は無く、例えば、活性層の材料(例えば、p型半導体及びn型半導体の一方又は両方)を含む液状組成物からの成膜方法、真空蒸着法等の物理蒸着法(PVD法)及び化学気相成長法(CVD法)などの気相成膜法による成膜方法などが挙げられる。なかでも、形成が容易でコストを安価にできるため、液状組成物からの成膜方法が好ましい。
 液状組成物からの成膜方法では、液状組成物を用意し、前記の液状組成物を所望の位置に成膜することにより、活性層を形成する。
 液状組成物は、通常、活性層の材料と溶媒とを含む。溶媒を含む場合、液状組成物は溶媒中に活性層の材料が分散した分散液であってもよいが、溶媒中に活性層の材料が溶解した溶液であることが好ましい。したがって、溶媒としては、活性層の材料を溶解させうる溶媒を使用することが好ましい。溶媒の例を挙げると、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒などが挙げられる。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 p型半導体及びn型半導体それぞれの液状組成物中における濃度は、通常、溶媒に対して0.1重量%以上に調製される。
 液状組成物の成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法が挙げられる。中でも、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 液状組成物の成膜後、成膜された膜から必要に応じて乾燥により溶媒を除去する等の工程を行うことにより、活性層が得られる。
 また、活性層が2層以上の積層構造を有する場合には、例えば上述した方法によって、活性層を構成する各層を順次積層するようにすればよい。
[5.機能層]
 本発明の有機光電変換素子は、第一の電極と活性層との間、及び、第二の電極と活性層との間に、機能層を備えていてもよい。機能層は、活性層で生じた電荷を電極に輸送しうる層であり、第一の電極と活性層との間の機能層は活性層で生じた電荷を第一の電極に輸送でき、第二の電極と活性層との間の機能層は活性層で生じた電荷を第二の電極に輸送できるようになっている。機能層は、第一の電極と活性層との間、及び、第二の電極と活性層との間のうち、一方に設けるようにしてもよく、両方に設けるようにしてもよい。
 活性層と陽極との間に設けられた機能層は、活性層で生じた正孔を陽極に輸送しうるようになっており、正孔輸送層又は電子ブロック層等と呼ばれることがある。一方、活性層と陰極との間に設けられた機能層は、活性層で生じた電子を陰極に輸送しうるようになっており、電子輸送層又は正孔ブロック層等と呼ばれることがある。前記の機能層を備えることにより、本発明の有効光電変換素子は、活性層で生じた正孔を陽極で取り出す効率を高めたり、活性層で生じた電子を陰極で取り出す効率を高めたり、活性層で生じた正孔が陰極に移動することを防止したり、活性層で生じた電子が陽極に移動することを防止したりすることが可能となり、光電変換効率を向上させることができる。
 機能層の材料は、活性層で生じた電荷を輸送する能力を有する材料であればよい。中でも、活性層と陽極との間の機能層には、正孔を輸送する能力を有し、電子が当該機能層に移動することを防止できる材料を含ませることが好ましい。また、活性層と陰極との間の機能層には、電子を輸送する能力を有し、正孔が当該機能層に移動することを防止できる材料を含ませることが好ましい。
 機能層の材料の例を挙げると、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物及び酸化物、二酸化チタン等の無機半導体、バソクプロイン、バソフェナントロリン及びそれらの誘導体、トリアゾール化合物、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、ビス(4-メチル-8-キノリナート)アルミニウム錯体、オキサジアゾール化合物、ジスチリルアリーレン誘導体、シロール化合物、2,2’,2”-(1,3,5-ベンゼントリル)トリス-[1-フェニル-1H-ベンツイミダゾール](TPBI)フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポリビニルカルバゾール、ポリシラン、ポリ-3,4-エチレンジオキサイドチオフェン(PEDOT)などが挙げられる。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 機能層には、本発明の効果を著しく損なわない限り、上述した材料以外にその他の成分を含ませてもよい。
 なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 機能層の厚みは、通常0.01nm以上、好ましくは0.1nm以上、より好ましくは1nm以上であり、通常1000nm以下、好ましくは500nm以下、より好ましくは100nm以下である。機能層が薄すぎると上述した機能層の機能を十分に発揮できない可能性があり、厚すぎると有機光電変換素子が過度に厚くなる可能性がある。
 機能層は、例えば気相成膜法により形成してもよいが、形成が容易でコストを安価にできるため、機能層の材料を含む液状組成物を所定の位置に塗布する工程を経て形成することが好ましい。以下、液状組成物から機能層を形成する前記の方法について説明する。
 機能層形成用の液状組成物は、通常、機能層の材料と溶媒とを含む。溶媒を含む場合、液状組成物は溶媒中に機能層の材料が分散した分散液であってもよく、溶媒中に機能層の材料が溶解した溶液であってもよい。
 機能層形成用の液状組成物に含まれる溶媒の例としては、活性層形成用の液状組成物に含まれる溶媒と同様の溶媒が挙げられる。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液状組成物における溶媒の量は、機能層の材料100重量部に対して、通常10重量部以上、好ましくは50重量部以上、より好ましくは100重量部以上であり、通常100000重量部以下、好ましくは10000重量部以下、より好ましくは5000重量部以下である。
 機能層形成用の液状組成物を用意した後、前記の液状組成物を、機能層を形成しようとする所定の位置に塗布する。通常は、本発明の有機光電変換素子において機能層に接することになる層(通常は、第一の電極、第二の電極又は活性層)上に、前記の液状組成物を塗布する。液状組成物の塗布方法の例としては、活性層形成用の液状組成物の塗布方法と同様の塗布方法が挙げられる。
 機能層形成用の液状組成物の塗布により、機能層の材料を含む膜が成膜される。したがって、液状組成物の塗布後に、必要に応じて、成膜された膜を乾燥させて溶媒を除去する等の工程を行なうことにより、機能層が得られる。
[6.バリア層]
 バリア層は、少なくとも1層の無機層と、少なくとも1層の有機層とを備える層である。前記の無機層及び有機層を備えることにより、バリア層は、通常、有機光電変換素子の外部から浸入してくる酸素及び水を遮断できるようになっている。
 有機光電変換素子は第一の電極及び第二の電極の表面を通じて電荷を移動させることから、電極表面が化学的に変化した場合に電荷の移動の障害となる。特に、電極の酸化は有機光電変換素子の劣化の主要な要因の一つと考えられる。電極の酸化は酸素及び水と電極とが反応することで生じる傾向があることから、酸素及び水(特に水)を除去することで、有機光電変換素子の寿命を延ばすことができる。本発明の有機光電変換素子では、一般に、バリア層により有機光電変換素子の外部から進入してくる酸素及び水を遮断し、第一の電極及び第二の電極(中でも、第二の電極)を保護している。このため、本発明の有機光電変換素子は、従来よりも長期にわたって光電変換効率を維持できる長寿命の有機光電変換素子となる。
 また、バリア層において、前記の無機層及び有機層のうち一方又は両方が紫外線を遮断する機能を有する。活性層等に含まれる有機材料は酸素存在下で紫外線を照射されると光酸化を受けて光吸収力が弱まる傾向があるが、無機層及び有機層のうち一方又は両方により紫外線を遮断することにより、前記の光酸化を防止できるようになっている。また、前記のようにバリア層は酸素及び水を遮断する機能も有するため、素子中の酸素量自体を減らすことによっても、光酸化を防止することが可能となっている。
 さらに、バリア層は、通常、有機光電変換素子の表面の少なくとも一部を覆うようにして設けられ、覆った部分を水、酸素及び紫外線等から保護できるようになっている。また、バリア層は通常は少なくとも第二の電極を外側から覆うようになっており、特に第二の電極の封止性を高めることが可能となっている。
 さらに、活性層よりも第二の電極側から光が有機光電変換素子に照射される場合、照射された光はバリア層を通って活性層に入射し、また、活性層で光電変換に利用されなかった光は第一の電極で反射した後にバリア層へと入射することになる。したがって、バリア層において光散乱等を生じるようにすれば、光を有機光電変換素子内に閉じ込めて、光電変換効率を高めることが可能となる。
 [6-1.無機層]
 無機層は無機材料を含む層である。無機材料は耐透湿性及び耐酸素透過性に優れる傾向があるため、無機層をバリア層に設けることにより、本発明の有機光電変換素子の内部へと浸入する酸素及び水を遮断して、外部からの酸素及び水が有機光電変換素子に作用することを防止できるようになっている。
 無機層が含む無機材料としては、耐透湿性及び耐酸素透過性が高く、水蒸気等の水分に対して安定な材料が好ましい。無機材料の例を挙げると、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素等のケイ素系化合物、酸化アルミニウム、窒化アルミニウム、珪酸アルミニウム等のアルミニウム系化合物、酸化ジルコニウム、酸化タンタル、酸化チタン等の金属酸化物、窒化チタン等の金属窒化物、ダイヤモンドライクカーボンなどが挙げられる。中でも、窒化ケイ素、酸化ケイ素、酸窒化ケイ素、炭化ケイ素などのケイ素系化合物、酸化アルミニウム、窒化アルミニウム、珪酸アルミニウム等のアルミニウム系化合物、酸化ジルコニウム、酸化タンタル、酸化チタン及び窒化チタンが好ましい。また、無機材料の中でもアモルファス(非結晶)の材料は、水の浸透率が小さいため、特に好ましい。
 なお、無機材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 無機層が紫外線を遮断する機能を有する場合、通常、無機層は紫外線を吸収しうる材料である紫外線吸収剤を含む。紫外線吸収剤が本発明の有機光電変換素子に照射された光に含まれる紫外線を吸収することにより、少なくとも吸収された紫外線の分だけ紫外線が遮断され、活性層及び機能層等に含まれる有機材料が紫外線により劣化することを防止できるようになる。
 紫外線吸収剤の例を挙げると、有機材料では、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸フェニル系の紫外線吸収剤が挙げられる。中でも好ましい具体例を挙げると、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、4-ドデシロキシ-2-ヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルフォベンゾフェノン、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジターシャルブチルフェニル)ベンゾトリアゾール、フェニルサリシレイト、p-オクチルフェニルサリシレイト、p-ターシャルブチルフェニルサリシレート等が挙げられる。また、無機材料からなる紫外線吸収剤としては、例えば、二酸化チタン、酸化亜鉛等が挙げられる。
 紫外線吸収剤としては、吸収した紫外線を前記の吸収した紫外線よりも長波長の光に波長変換しうる波長変換材料を用いてもよい。紫外線吸収剤の少なくとも一部として波長変換材料を用いた場合、波長変換された前記の長波長の光は活性層に入射し、活性層において電荷発生のための光エネルギーとして利用されることになる。したがって、紫外線吸収剤として波長変換材料を用いた場合には、活性層に入射する紫外線を減らして有機材料の劣化を防止できるとともに、活性層における電荷発生量を増加させて光電変換効率を向上させることが可能となる。なお、吸収された紫外線が波長変換される光は、例えば、可視光、近赤外光、赤外光等が挙げられるが、光電変換効率を高める観点から可視光に波長変換しうる波長変換材料が好ましい。
 波長変換材料の例を挙げると、蛍光体が挙げられる。蛍光体は、通常、励起光を吸収して前記の励起光よりも長波長の蛍光を発しうる材料である。したがって、紫外線吸収剤として蛍光体を用いる場合には、励起光として紫外線を吸収可能であり、且つ、活性層における電荷発生に利用可能な波長の蛍光を発光できる蛍光体を用いればよい。
 蛍光体のうち、有機蛍光体の例を挙げると、希土類錯体が挙げられる。希土類錯体は蛍光特性に優れる蛍光体であり、具体例を挙げると、[Tb(bpy)]Cl錯体、[Eu(phen)]Cl錯体、[Tb(terpy)]Cl錯体などが挙げられる。なお、「bpy」は2,2-ビピリジンを表し、「phen」は1,10-フェナントロリンを表し、「terpy」は2,2’:6’,2”-ターピリジンを表す。また、無機蛍光体の例を挙げると、MgF:Eu2+(吸収波長300nm~400nm、蛍光波長400nm~550nm)、1.29(Ba,Ca)O・6Al:Eu2+(吸収波長200nm~400nm、蛍光波長400nm~600nm)、BaAl:Eu2+(吸収波長200nm~400nm、蛍光波長400nm~600nm)、YAl12:Ce3+(吸収波長250nm~450nm、蛍光波長500nm~700nm)などが挙げられる。
 なお、紫外線吸収剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ただし、無機層に含ませる紫外線吸収剤としては、無機材料からなる紫外線吸収剤を用いることが好ましい。水及び酸素を遮断できるという無機層の機能を十分に発揮できるようにするためである。
 無機層に含まれる紫外線吸収剤の割合は、十分な量の紫外線を遮断する観点から、通常3重量%以上100重量%以下、好ましくは10重量%以上100重量%以下、より好ましくは25重量%以上100重量%以下である。
 また、本発明の効果を著しく損なわない限り、無機層は無機材料以外にその他の成分を含んでいてもよい。その他の成分の例を挙げると、樹脂等のバインダ、アルコキシド等のゲッター剤(酸素吸着剤及び水分吸着剤)、界面活性剤、分散剤、酸化防止剤等が挙げられる。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ただし、上述した無機層の機能を安定して発揮させる観点から、無機層における無機材料の割合は、通常3重量%以上100重量%以下、好ましくは10重量%以上100重量%以下、より好ましくは25重量%以上100重量%以下となるようにする。
 無機層の厚みは、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が特に好ましい。これにより、有機光電変換素子の封止性を高め、安定して酸素及び水分を遮断することが可能となる。なお、無機層の厚みの上限に制限は無いが、生産性及びコスト等の観点から、通常10μm以下である。
 無機層の形成方法は、例えば、物理蒸着法(PVD法)及び化学気相成長法(CVD法)等の気相成膜法などが挙げられる(日本学術振興会、薄膜第131委員会編、「薄膜ハンドブック」(オーム社)参照)。気相成膜法は分子レベルでの堆積法であるので、隣接する層との密着性にすぐれた無機層を形成でき、界面からの酸素及び水分の浸入を安定して防止できる高品質の無機層を形成できる。
 また、無機層は、例えば、塗布法により形成するようにしてもよい。塗布法は層形成が容易でコストを安価にできるため、経済的に有利な方法である。塗布法で無機層を形成する場合、まず無機材料を含む液状組成物を用意し、用意した液状組成物を所定の位置に塗布する塗布工程を経て、無機層が形成される。
 無機層形成用の液状組成物は、通常、無機層の材料(無機材料、並びに、必要に応じて含まれる紫外線吸収剤及びその他の成分)と溶媒とを含む。溶媒を含む場合、液状組成物は溶媒中に無機層の材料が分散した分散液であってもよく、溶媒中に無機層の材料が溶解した溶液であってもよい。
 無機層形成用の液状組成物に含まれる溶媒の例としては、活性層形成用の液状組成物に含まれる溶媒と同様の溶媒が挙げられる。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液状組成物における溶媒の量は、無機材料100重量部に対して、通常10重量部以上、好ましくは50重量部以上、より好ましくは100重量部以上であり、通常100000重量部以下、好ましくは10000重量部以下、より好ましくは5000重量部以下である。
 無機層形成用の液状組成物を用意した後、前記の液状組成物を、無機層を形成しようとする所定の位置に塗布する。通常は、有機光電変換素子の表面を覆うようにして前記の液状組成物を塗布する。液状組成物の塗布方法の例としては、活性層形成用の液状組成物の塗布方法と同様の塗布方法が挙げられる。
 無機層形成用の液状組成物の塗布により、無機材料を含む膜が成膜される。したがって、液状組成物の塗布後に、必要に応じて、成膜された膜を乾燥させて溶媒を除去する等の工程を行なうことにより、無機層が得られる。
 [6-2.有機層]
 有機層は有機材料を含む層である。有機材料は無機材料に比較して柔軟性に優れるため、有機層をバリア層に設けることにより、有機光電変換素子の外部から加えられる外力が第一の電極、活性層及び第二の電極に作用して有機光電変換素子が損傷することを防止できる。また、有機層を設けることにより、無機層のみを設ける場合と比較して、前記の酸素及び水分の遮断作用を更に高めることもできる。
 有機層は、バリア層における無機層及び有機層の並び順が、第二の電極に近い方から順に無機層及び有機層となるように設けることが好ましい。有機層は無機層に比べて水が浸透しにくい性質を有するため、有機層を無機層よりも外側の位置に設けることにより、有機光電変換素子内への水の浸入を効果的に防止できる。また、通常、無機材料は柔軟性に乏しいため無機層の形成時に欠陥等が生じ易く、前記の欠陥等から酸素及び水分が浸入しやすくなる場合がある。しかし、有機層を無機層の外側に設けることにより、無機層の前記欠陥等を有機材料で覆い、酸素及び水分の遮断作用を高めることができる。
 有機層が含む有機材料としては、樹脂を用いることが好ましい。樹脂としては、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂等、様々な樹脂を使用できるが、中でも光硬化性樹脂が好ましい。有機層の形成する際に、有機光電変換素子に対して熱による劣化を生じさせないで済むからである。好適な樹脂の例を挙げると、シリコーン樹脂、エポキシ樹脂、フッ素系樹脂、ワックス等が挙げられる。なお、有機材料は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。
 有機層が紫外線を遮断する機能を有する場合、通常、有機層は紫外線吸収剤を含む。紫外線吸収剤の例としては、無機層の説明において例示した紫外線吸収剤と同様の例が挙げられる。また、有機層においても、無機層と同様に、紫外線吸収剤として波長変換材料を用いてもよい。
 ただし、有機層に含ませる紫外線吸収剤としては、有機材料からなる紫外線吸収剤を用いることが好ましい。水及び酸素の遮断並びに外力による損傷の防止という有機層の機能を十分に発揮できるようにするためである。
 また、有機層が紫外線吸収剤を含む場合、含まれる紫外線吸収剤の量を調整することにより、有機層の屈折率を調整することが可能となる。有機層の屈折率を適切に調整することにより、有機層と有機層に接する他の層との界面で光を反射させて、光を有機光電変換素子内に閉じ込め、光電変換効率を高めることが可能となる。
 有機層に含まれる紫外線吸収剤の割合は、十分な量の紫外線を遮断する観点から、通常50重量%以上100重量%以下、好ましくは75重量%以上100重量%以下、より好ましくは80重量%以上100重量%以下である。
 有機層には、本発明の効果を著しく損なわない限り、無機材料を含んでいてもよい。ただし、上述した有機層の機能を安定して発揮させる観点から、有機層における有機材料の割合は、通常50重量%以上100重量%以下、好ましくは75重量%以上100重量%以下、より好ましくは90重量%以上100重量%以下である。
 有機層の厚みは、1μm以上が好ましく、5μm以上がより好ましい。これにより、酸素及び水分を遮断する機能を安定して発揮できる。有機層の厚みの上限は、通常100μm以下、好ましくは10μm以下である。有機層が厚すぎると有機層内にピンホール、ボイド、クラック等の欠陥が生じやすくなったり、有機光電変換素子が加熱された場合に有機層が熱膨張してクラックが生じたりする可能性がある。
 有機層の形成方法の例を挙げると、気相成膜法、塗布法、予め成形したフィルム状成形物を貼り付ける方法などが挙げられる。中でも、層形成が容易でコストを安価にできるため、塗布法により形成することが好ましい。
 例えば塗布法で樹脂を材料として有機層を形成する場合には、まず流体状の樹脂を用意し、用意した樹脂を所定の位置に塗布する塗布工程を経て、有機層が形成される。なお、樹脂には、粘度調整用の溶媒等、最終的には有機層に含まれない成分を含有させてもよい。
 流体状の樹脂を用意した後、当該樹脂を塗布する。樹脂の塗布方法の例としては、活性層形成用の液状組成物の塗布方法と同様の塗布方法が挙げられる。
 樹脂の塗布により樹脂の膜が成膜されるので、必要に応じて、溶媒を乾燥させたり、光又は熱によって樹脂を硬化させたりすることにより、有機層が得られる。
 [6-3.バリア層に関するその他の事項]
 バリア層は、本発明の効果を著しく損なわない限り、上述した無機層及び有機層以外に別の層を備えていてもよい。
 また、バリア層において、無機層及び有機層は互いに接していなくてもよいが、接していることが好ましい。通常、無機層と有機層とは異なる屈折率を有するため、両者が接する界面は光を反射し易い面となる。したがって、無機層と有機層とが接するようにすれば、前記の界面で内部反射させることにより、本発明の有機光電変換素子に照射された光を素子内に閉じ込めて、光電変換効率を高めることが可能となる。
 さらに、バリア層において、無機層及び有機層は、それぞれ、1層だけ設けられていてもよく、2層以上設けられていてもよい。
[7.紫外線吸収層]
 本発明の有機光電変換素子においては、第一の電極の活性層とは反対側に、紫外線を遮断しうる紫外線吸収層を備えることが好ましい。すなわち、本発明の有機光電変換素子は、紫外線吸収層と、第一の電極と、活性層と、第二の電極と、バリア層とを、前記の順に備えることが好ましい。これにより、バリア層が設けられた第二の電極側から照射される光だけでなく、第一の電極側から照射される光に含まれる紫外線をも紫外線吸収層によって遮断できるため、紫外線による有機材料の劣化をより安定して防止できる。
 紫外線吸収層は、通常、紫外線吸収剤を含む。紫外線吸収剤の例としては、無機層の説明で例示した紫外線吸収剤と同様の例が挙げられる。
 なお、紫外線吸収剤は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 必要に応じて、紫外線吸収層には、紫外線吸収剤を保持するためにバインダを含有させるようにしてもよい。バインダとしては、本発明の効果を著しく損なうことなく紫外線吸収剤を紫外線吸収層に保持できる材料を用いることが好ましく、通常は樹脂を使用する。バインダとして使用できる樹脂の例を挙げると、ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂などが挙げられる。なお、バインダは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 バインダの使用量は、紫外線吸収剤100重量部に対して、通常3重量部以上、好ましくは5重量部以上、より好ましくは10重量部以上であり、通常80重量部以下、好ましくは50重量部以下、より好ましくは30重量部以下である。バインダの量が少なすぎると紫外線吸収剤を安定して保持できなくなる可能性があり、多すぎると紫外線を十分に遮断できない可能性がある。
 紫外線吸収層には、本発明の効果を著しく損なわない限り、紫外線吸収剤及びバインダ以外にその他の成分を含ませてもよい。その例としては、充填剤、酸化防止剤等の添加剤などが挙げられる。
 なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 紫外線吸収層の厚みは、通常1μm以上、好ましくは10μm以上、より好ましくは100μm以上であり、通常10000μm以下、好ましくは5000μm以下、より好ましくは3000μm以下である。紫外線吸収層が薄すぎると紫外線を十分に遮断できない可能性があり、厚すぎると有機光電変換素子の厚みが過度に厚くなる可能性がある。
 本発明の有機光電変換素子は、紫外線吸収層を1層だけ備えていてもよく、2層以上を備えていてもよい。
 紫外線吸収層の形成方法としては、例えば、気相成膜法、塗布法、予め成形したフィルム状成形物を貼り付ける方法などが挙げられる。中でも、形成が容易でコストを安価にできるため、塗布法により形成することが好ましい。
 塗布法では、紫外線吸収剤を含む液状組成物を所定の位置に塗布する工程を経て紫外線吸収層を形成する。
 紫外線吸収層形成用の液状組成物は、通常、紫外線吸収層の材料(紫外線吸収剤、及び、必要に応じて含まれるバインダ等)と溶媒とを含む。溶媒を含む場合、液状組成物は溶媒中に紫外線吸収層の材料が分散した分散液であってもよく、溶媒中に紫外線吸収層の材料が溶解した溶液であってもよい。
 紫外線吸収層形成用の液状組成物に含まれる溶媒の例としては、活性層形成用の液状組成物に含まれる溶媒と同様の溶媒が挙げられる。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液状組成物における溶媒の量は、紫外線吸収剤100重量部に対して、通常10重量部以上、好ましくは50重量部以上、より好ましくは100重量部以上であり、通常100000重量部以下、好ましくは10000重量部以下、より好ましくは5000重量部以下である。
 紫外線吸収層形成用の液状組成物を用意した後、前記の液状組成物を、紫外線吸収層を形成しようとする所定の位置に塗布する。通常は、本発明の有機光電変換素子において紫外線吸収層に接することになる層(通常は、第一の電極又は基板)上に、前記の液状組成物を塗布する。液状組成物の塗布方法の例としては、活性層形成用の液状組成物の塗布方法と同様の塗布方法が挙げられる。
 紫外線吸収層形成用の液状組成物の塗布により、紫外線吸収剤を含む膜が成膜される。したがって、液状組成物の塗布後に、必要に応じて、成膜された膜を乾燥させて溶媒を除去する等の工程を行なうことにより、紫外線吸収層が得られる。
[8.その他の層]
 本発明の有機光電変換素子は、本発明の効果を著しく損なわない限り、上述した基板、第一の電極、第二の電極、活性層、機能層、バリア層及び紫外線吸収層以外の層を備えていてもよい。
 例えば、本発明の有光電変換素子は、有機光電変換素子の最表面に撥水層を設けたり、第一の電極の活性層とは反対側の位置以外の位置に紫外線吸収層を設けたりしてもよい。
[9.実施形態]
 以下、本発明の有機光電変換素子の好ましい実施形態について、図面を示して説明する。図1及び図2は、いずれも、本発明の実施形態に係る有機光電変換素子の模式的な断面図である。なお、以下の実施形態では、有機光電変換素子の基板を水平に置いた様子を示して説明する。
 [9-1.第一実施形態]
 図1に示す有機光電変換素子100は、基板1上に、第一の電極2、光の入射により電荷を発生しうる活性層3及び第二の電極4を、前記の順に備える。第一の電極2及び第二の電極4には図示しない端子が接続され、電気を外部に取り出せるようになっている。また、有機光電変換素子100の表面には、有機光電変換素子100の基板1以外の部分を覆うようにして、紫外線吸収層5及びバリア層6が、前記の順で設けられている。したがって、有機光電変換素子100は、基板1と、第一の電極2と、活性層3と、第二の電極4と、紫外線吸収層5と、バリア層6とを、前記の順に備えている。
 また、前記のバリア層6は、活性層3に近い順に、無機材料を含む無機層7と、有機材料により形成された有機層8とを備えている。さらに、無機層7及び有機層8の一方又は両方は紫外線吸収剤を含み、紫外線を遮断する機能を有する層になっている。
 有機光電変換素子100は以上のように構成されているため、図中上方から光が照射されると、照射された光はバリア層6及び紫外線吸収層5を通って活性層3に入射し、活性層3において電荷が生じる。活性層3で生じた電荷は第一の電極2及び第二の電極4へ輸送され、それぞれ端子を通じて外部に取り出される。
 また、有機光電変換素子100は、無機層7及び有機層8を備えるバリア層6を備えているため、有機光電変換素子100の外部から内部へと浸入する酸素及び水分を遮断したり、有機光電変換素子100の外部から加えられる外力により第一の電極2、活性層3及び第二の電極4等が損傷することを防止したり、有機光電変換素子100に照射される光に含まれる紫外線によって有機材料が劣化することを防止したりできる。また、本実施形態では第二の電極4とバリア層6との間に紫外線吸収層5を備えるため、紫外線吸収層5によっても、有機光電変換素子100に照射される光に含まれる紫外線によって有機材料が劣化することを防止できる。
 したがって、本実施形態の有機光電変換素子100は、第一の電極2、活性層3及び第二の電極4の酸素、水分及び紫外線による劣化を進行しにくくしたり、外力に対する耐性を高めたりすることができるため、従来の有機光電変換素子に比べて長期間にわたって光電変換効率を維持できる長寿命の有機光電変換素子となっている。
 なお、本実施形態の有機光電変換素子100におけるバリア層6において、無機層7と有機層8との位置を入れ替えても、同様の効果を得ることができる。また、第一の電極2及び第二の電極4の組み合わせは、第一の電極2を陽極として第二の電極4を陰極としてもよく、第一の電極2を陰極として第二の電極4を陽極としてもよい。
 [9-2.第二実施形態]
 図2に示す有機光電変換素子200は、紫外線吸収層5の位置を、第一の電極2の活性層3とは反対側の位置である基板1の下面に移動させたこと以外は、第一実施形態に係る有機光電変換素子100と同様の構成となっている。したがって、有機光電変換素子200は、紫外線吸収層5と、基板1と、第一の電極2と、活性層3と、第二の電極4と、バリア層6とを、前記の順に備えており、また、バリア層における無機層7及び有機層8の並び順は、活性層3に近い順に、無機層7及び有機層8となっている。さらに、無機層7及び有機層8の一方又は両方は紫外線吸収剤を含み、紫外線を遮断する機能を有する層になっている。
 有機光電変換素子200は以上のように構成されているため、有機光電変換素子200に光が照射されると、照射された光が活性層4に入射し、活性層4において電荷が生じ、第一の電極2及び第二の電極6から端子を通じて外部に取り出される。
 また、有機光電変換素子200は、無機層7及び有機層8を備えるバリア層6を備えているため、有機光電変換素子200の外部から内部へと浸入する酸素及び水分を遮断したり、有機光電変換素子200の外部から加えられる外力により第一の電極2、活性層3及び第二の電極4等が損傷することを防止したりできる。さらに本実施形態では、図中上方から光が照射された場合には照射された光に含まれる紫外線をバリア層6で遮断でき、また、図中下方から光が照射された場合には照射された光に含まれる紫外線を紫外線吸収層5で遮断できる。
 したがって、本実施形態の有機光電変換素子200は、第一の電極2、活性層3及び第二の電極4の酸素、水分及び紫外線による劣化を進行しにくくしたり、外力に対する耐性を高めたりすることができるため、従来の有機光電変換素子に比べて長期間にわたって光電変換効率を維持できる長寿命の有機光電変換素子となっている。
 なお、本実施形態の有機光電変換素子200におけるバリア層6において、無機層7と有機層8との位置を入れ替えても、同様の効果を得ることができる。また、第一の電極2及び第二の電極4の組み合わせは、第一の電極2を陽極として第二の電極4を陰極としてもよく、第一の電極2を陰極として第二の電極4を陽極としてもよい。
[10.有機光電変換素子の用途]
 本発明の有機光電変換素子の電極間には、上述した要領によって、太陽光等の光の照射により光起電力が発生する。前記の光起電力を利用して、本発明の有機光電変換素子は、例えば太陽電池として使用できる。太陽電池として使用する場合、通常、本発明の有機光電変換素子は有機薄膜太陽電池の太陽電池セルとして使用される。また、太陽電池セルは、複数個集積することによって太陽電池モジュール(有機薄膜太陽電池モジュール)とし、太陽電池モジュールの態様で使用してもよい。本発明の有機光電変換素子は上述したように長寿命であるため、本発明の有機光電変換素子を備える太陽電池は長寿命化が期待できる。
 また、本発明の有機光電変換素子は、有機光センサーとして使用することもできる。例えば、電極間に電圧を印加した状態又は無印加の状態で本発明の有機光電変換素子に光を照射すると電荷が生じるため、前記の電荷を光電流として検出するようにすれば、本発明の有機光電変換素子を有機光センサーとして動作させることが可能となる。さらに、有機光センサーを複数個集積することにより、有機イメージセンサーとして用いることもできる。
[11.太陽電池モジュール]
 本発明の有機光電変換素子を太陽電池セルとして用いて太陽電池モジュールを構成する場合、当該太陽電池モジュールは、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上に太陽電池セルが設けられ、前記太陽電池セルの上を充填樹脂や保護ガラス等で覆う構成を有し、支持基板とは反対側の面を通じて光を取り込めるようになっている。また、太陽電池モジュールは、支持基板として強化ガラス等の透明材料を用い、前記の支持基板の上に太陽電池セルを設けた構成を有し、前記の透明の支持基板を通じて光を取り込めるようになっていてもよい。
 太陽電池モジュールの構成としては、例えば、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプ等のモジュール構造、アモルファスシリコン太陽電池等で用いられる基板一体型モジュール構造などが知られている。本発明の有機光電変換素子を用いた太陽電池モジュールは、使用目的、使用場所及び環境などに応じて、適宜、適切なモジュール構造を選択すればよい。
 例えば、代表的なモジュール構造であるスーパーストレートタイプ及びサブストレートタイプの太陽電池モジュールでは、一対の支持基板の間に一定間隔に太陽電池セルが配置された構造を有している。前記支持基板のうち片方又は両方は透明であり、通常、反射防止処理を施されている。また、隣り合う太陽電池セル同士は金属リード及びフレキシブル配線等の配線により電気的に接続され、太陽電池モジュールの外縁部には集積電極が配置され、太陽電池セルで発生した電力を外部に取り出せるようになっている。
 支持基板と太陽電池セルとの間には、太陽電池セルの保護及び集電効率向上のため、必要に応じてエチレンビニルアセテート(EVA)等のプラスチック材料などの充填材料の層を設けてもよい。前記の充填材料は、予めフィルム状に成形してから装着してもよく、樹脂を所望の位置に充填させてから硬化させるようにしてもよい。
 また、例えば外部からの衝撃が少ない場所など、表面を硬い素材で覆う必要のない場所において太陽電池モジュールを使用する場合には、片方の支持基板を設けないようにしてもよい。ただし、太陽電池モジュールの支持基板を設けていない方の表面には、例えば透明プラスチックフィルムで覆ったり、充填樹脂で被覆後に樹脂を硬化させたりすることで表面保護層を設け、保護機能を付与することが好ましい。
 さらに、通常、支持基板の周囲は、内部の密封及び太陽電池モジュールの剛性を確保するため、金属製のフレームで太陽電池モジュールを挟み込むようにして固定する。また、支持基板とフレームとの間は、通常は封止材料で密封シールを施す。
 有機材料を用いた光電変換素子である本発明の有機光電変換素子を備えるため、前記の太陽電池モジュールは、有機光電変換素子の利点を活かした態様で使用することも可能である。例えば、有機光電変換素子は可撓性の素子として構成できるため、支持基板、充填材料及び封止材料等として可撓性の素材を用いれば、曲面の上に太陽電池モジュールを設けることができる。
 また、有機光電変換素子は塗布法を利用して低コストで製造できるため、太陽電池モジュールも塗布法を用いて製造可能である。例えば、支持基板としてポリマーフィルム等のフレキシブル支持体を用いて太陽電池モジュールを製造する場合、ロール状のフレキシブル支持体を送り出しながら塗布法等を用いて順次太陽電池セルを形成し、フレキシブル支持体を所望のサイズに切断した後、切り出した切断片の周縁部をフレキシブルで防湿性のある素材でシールすることにより、太陽電池モジュール本体を製造できる。さらに、例えばSolar Energy Materials and Solar Cells, 48,p383-391記載の「SCAF」と呼ばれるモジュール構造を有する太陽電池モジュールを得ることもできる。
 また、フレキシブル支持体を用いた太陽電池モジュールは、曲面ガラス等に接着固定して使用することもできる。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
[評価方法]
 以下に説明する実施例及び比較例では、2mm×2mmの正四角形の有機光電変換素子を製造した。製造された有機光電変換素子について、分光計器株式会社製の分光感度測定装置CEP-2000型を用いて、素子に対するDC電圧印加を20mV/秒の定速で掃引することにより、短絡電流、開放端電圧、及び曲線因子(フィルファクター。以下、適宜「FF」と略称する。)を測定し、測定した短絡電流と開放端電圧と曲線因子とを乗ずることにより光電変換効率を算出した。
 製造された有機光電変換素子に屋外で6時間日照する大気曝露試験を行った。大気曝露試験において、ITO膜が形成されたガラス基板側から活性層に太陽光を入射させた。大気曝露試験の後に光電変換効率を測定し、大気曝露試験後に測定した光電変換効率を、有機光電変換素子を作製した直後の光電変換効率で除した値として、光電変換効率保持率を求めた。
[実施例1]
 スパッタ法により第一の電極として膜厚約150nmのITO膜がパターニングされたガラス基板を用意した。用意したガラス基板を、有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした、UV-O装置にて紫外線-オゾン処理(UV-O処理)を行った。
 ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸(HCスタルクビーテック社製、Bytron P TP AI 4083)の懸濁液を用意し、孔径0.5ミクロンのフィルターでろ過した。ろ過した懸濁液を、前記ガラス基板のITO膜が形成された面にスピンコートして、70nmの厚みで成膜した。その後、大気中においてホットプレート上で200℃で10分間乾燥させて、機能層を形成した。
 次に、式(3)で表される単量体と式(4)で表される単量体とを共重合して得られた、式(5)で表される繰り返し単位を有する交互重合体である高分子化合物Aと、[6,6]-フェニルC61ブチリックアシッドメチルエステル(以下、適宜「[6,6]-PCBM」と略称する。)とを、重量比1:3で含むオルトジクロロベンゼン溶液を作製した。高分子化合物Aはオルトジクロロベンゼンに対して1重量%とした。その後、孔径0.5μmのフィルターでろ過を行った。得られた抽出物を、前記の機能層上にスピンコートした後、N雰囲気中で乾燥を行った。これにより、厚み100nmの活性層を得た。なお、高分子化合物Aは、ポリスチレン換算の重量平均分子量が17000であり、ポリスチレン換算の数平均分子量が5000であった。さらに、高分子化合物Aの光吸収端波長は、925nmであった。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 さらに、前記の活性層上に、抵抗加熱蒸着装置内にて、LiFを厚み約2.3nmで成膜して機能層を形成し、続いてAlを厚み約70nmで成膜して電極を形成した。
 二酸化チタンルチル微粒子(SCR-100C、境化学工業株式会社)と分散剤(酢酸)とが分散した分散液を用意し、用意した分散液をAlからなる電極上にスピンコート法により塗布し、室温で乾燥させることにより、厚さ70nmの無機層を得た。得られた無機層は、波長411nm以下の光を遮断する機能を有する層である。
 さらに、前記の無機層上に、日本触媒製の紫外線カットコーティング剤(商品名UV-G13)を厚み6μmで塗布することにより、第一の有機層を得た。
 さらに、第一の有機層の上から、エポキシ封止剤を塗布し、第二の有機層を形成した。
 前記の無機層、第一の有機層及び第二の有機層により、本発明に係るバリア層が構成されている。
 さらに、ITO膜を付けた前記ガラス基板の前記ITO膜とは反対側の表面に、紫外線吸収層として、日本触媒製の紫外線カットコーティング剤(商品名UV-G13)を厚み6μmで塗布して紫外線吸収層を形成した。
 以上のようにして、紫外線吸収層、ガラス基板、第一の電極、機能層、活性層、機能層、第二の電極、並びに、無機層、第一の有機層及び第二の有機層を有するバリア層を、前記の順に備える有機光電変換素子を得た。
[実施例2]
 活性層を、以下に説明する要領で形成したこと以外は実施例1と同様にして、有機光電変換素子を得た。
 活性層は、次の要領で形成した。まず、ポリ(3-ヘキシルチオフェン)(以下、適宜「P3HT」と略称する。)と[6,6]-PCBMとを重量比1:0.8で含むオルトジクロロベンゼン溶液を作製した。P3HTはオルトジクロロベンゼンに対して1重量%とした。その後、孔径0.1μmのフィルターでろ過を行った。得られた抽出物を、機能層の上にスピンコートした後、N雰囲気中で乾燥を行った。これにより、厚み100nmの活性層を得た。
[参考例1]
 無機層及び第一の有機層を形成しなかったこと以外は、実施例1と同様にして、有機光電変換素子を製造した。
[参考例2]
 無機層及び第一の有機層を形成しなかったこと以外は、実施例2と同様にして、有機光電変換素子を製造した。
[比較例1]
 紫外線吸収層、無機層及び第一の有機層を形成しなかったこと以外は、実施例1と同様にして、有機光電変換素子を製造した。
[比較例2]
 紫外線吸収層、無機層及び第一の有機層を形成しなかったこと以外は、実施例2と同様にして、有機光電変換素子を製造した。
[評価結果]
 実施例1及び2で製造した有機光電変換素子は、比較例1及び2で製造した有機光電変換素子に比べて、大気曝露試験で時間変化と共に低下する光電変換効率の低下量を抑制できた。すなわち、実施例1及び2の有機光電変換素子は比較例1及び2の有機光電変換素子よりも長寿命であった。さらに、実施例1及び2は、参考例1及び2に比べて光電変換効率保持率が高い値を示した。すなわち、実施例1及び2の有機光電変換素子は参考例1及び2の有機光電変換素子よりも長寿命であった。
Figure JPOXMLDOC01-appb-T000006
 本発明の有機光電変換素子は、例えば太陽電池、光センサー等に用いることができる。

Claims (4)

  1.  第一の電極と、光の入射により電荷を生じうる活性層と、第二の電極と、バリア層とを、前記の順に備え、
     前記バリア層が、無機材料を含む無機層と、有機材料を含む有機層とを備え、
     前記無機層及び前記有機層の一方又は両方が、紫外線を遮断する機能を有する有機光電変換素子。
  2.  さらに、紫外線吸収層を備え、
     前記活性層と、前記第一の電極と、前記紫外線吸収層とを、この順に備える請求項1に記載の有機光電変換素子。
  3.  前記バリア層が、前記第二の電極に近い方から順に、前記無機層及び前記有機層を備える請求項1に記載の有機光電変換素子。
  4.  前記バリア層が、前記第二の電極に近い方から順に、前記無機層及び前記有機層を備える請求項2に記載の有機光電変換素子。
PCT/JP2010/068947 2009-10-30 2010-10-26 有機光電変換素子 WO2011052573A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/503,864 US20120211078A1 (en) 2009-10-30 2010-10-26 Organic photovoltaic cell
CN2010800480704A CN102668154A (zh) 2009-10-30 2010-10-26 有机光电转换元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009250582 2009-10-30
JP2009-250582 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052573A1 true WO2011052573A1 (ja) 2011-05-05

Family

ID=43921997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068947 WO2011052573A1 (ja) 2009-10-30 2010-10-26 有機光電変換素子

Country Status (4)

Country Link
US (1) US20120211078A1 (ja)
JP (1) JP2011119687A (ja)
CN (1) CN102668154A (ja)
WO (1) WO2011052573A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428898A (zh) * 2012-06-11 2015-03-18 赫里亚泰克有限责任公司 光活性组件的滤光系统
JPWO2016060156A1 (ja) * 2014-10-14 2017-04-27 積水化学工業株式会社 太陽電池
US10297395B2 (en) 2014-10-14 2019-05-21 Sekisui Chemical Co., Ltd. Solar cell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636023B (zh) * 2011-06-30 2016-09-14 欧司朗Oled股份有限公司 用于光电子器件的封装结构和用于封装光电子器件的方法
CN104769149B (zh) 2012-11-06 2018-05-22 Oti领英有限公司 用于在表面上沉积导电覆层的方法
JP6264367B2 (ja) * 2013-02-20 2018-01-24 凸版印刷株式会社 透明導電性フィルム及びこれを備えたタッチパネル並びに表示デバイス
EP3273496A4 (en) * 2015-03-16 2018-10-31 Sekisui Chemical Co., Ltd. Solar cell
CN108431981B (zh) * 2015-12-16 2022-05-24 Oti领英有限公司 用于光电子器件的屏障涂层
KR102596349B1 (ko) * 2016-09-28 2023-10-30 엘지디스플레이 주식회사 유기발광 표시장치
CN106876604A (zh) 2017-02-14 2017-06-20 鄂尔多斯市源盛光电有限责任公司 有机发光二极管器件及其制造方法
CN111430550A (zh) * 2020-03-26 2020-07-17 杭州纤纳光电科技有限公司 带紫外保护层的钙钛矿电池组件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076403A (ja) * 2000-08-31 2002-03-15 Kyocera Corp 有機太陽電池
JP2004165512A (ja) * 2002-11-14 2004-06-10 Matsushita Electric Works Ltd 有機光電変換素子
JP2006310728A (ja) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd 有機薄膜太陽電池素子
JP2007027271A (ja) * 2005-07-13 2007-02-01 Univ Of Electro-Communications 太陽光発電モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057671B2 (ja) * 1993-06-14 2000-07-04 キヤノン株式会社 太陽電池モジュール
US6335479B1 (en) * 1998-10-13 2002-01-01 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076403A (ja) * 2000-08-31 2002-03-15 Kyocera Corp 有機太陽電池
JP2004165512A (ja) * 2002-11-14 2004-06-10 Matsushita Electric Works Ltd 有機光電変換素子
JP2006310728A (ja) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd 有機薄膜太陽電池素子
JP2007027271A (ja) * 2005-07-13 2007-02-01 Univ Of Electro-Communications 太陽光発電モジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428898A (zh) * 2012-06-11 2015-03-18 赫里亚泰克有限责任公司 光活性组件的滤光系统
US20150155397A1 (en) * 2012-06-11 2015-06-04 Heliatek Gmbh Filter system for photoactive components
JPWO2016060156A1 (ja) * 2014-10-14 2017-04-27 積水化学工業株式会社 太陽電池
US10297395B2 (en) 2014-10-14 2019-05-21 Sekisui Chemical Co., Ltd. Solar cell

Also Published As

Publication number Publication date
JP2011119687A (ja) 2011-06-16
CN102668154A (zh) 2012-09-12
US20120211078A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
WO2011052573A1 (ja) 有機光電変換素子
JP5608041B2 (ja) 有機光電変換素子及び有機光電変換モジュール
WO2011052565A1 (ja) 有機光電変換素子
WO2011052571A1 (ja) 有機光電変換素子
US20120204960A1 (en) Organic photovoltaic cell and method for manufacturing the same
US20120216866A1 (en) Organic photovoltaic cell
JP5601039B2 (ja) チアジアゾール含有高分子
KR101033304B1 (ko) 발광특성을 가지는 유기 태양전지 및 그 제조방법
US20120211741A1 (en) Organic photovoltaic cell
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池
JP5608040B2 (ja) 有機光電変換素子
JP5553728B2 (ja) 有機光電変換素子
WO2011052580A1 (ja) 有機光電変換素子及びその製造方法
JP5715796B2 (ja) 有機光電変換素子の製造方法
WO2011052579A1 (ja) 有機光電変換素子及びその製造方法
JP4872281B2 (ja) 光電変換材料および有機薄膜太陽電池
JP2013077760A (ja) 有機光電変換素子およびこれを用いた太陽電池
JP2011054947A (ja) 光電変換素子用電極バッファー材料ならびにこれを用いた光電変換素子
JP2011054948A (ja) 光電変換素子材料、光電変換素子用電極バッファー材料ならびにこれを用いた光電変換素子
WO2017065058A1 (ja) 有機光電変換素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048070.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13503864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826705

Country of ref document: EP

Kind code of ref document: A1