WO2011052139A1 - 建設機械の燃料性状検出装置及びこれを備えた建設機械 - Google Patents

建設機械の燃料性状検出装置及びこれを備えた建設機械 Download PDF

Info

Publication number
WO2011052139A1
WO2011052139A1 PCT/JP2010/006014 JP2010006014W WO2011052139A1 WO 2011052139 A1 WO2011052139 A1 WO 2011052139A1 JP 2010006014 W JP2010006014 W JP 2010006014W WO 2011052139 A1 WO2011052139 A1 WO 2011052139A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
tank
detection device
outlet
sub
Prior art date
Application number
PCT/JP2010/006014
Other languages
English (en)
French (fr)
Inventor
智隆 喜多
慶彦 上田
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to EP10826276A priority Critical patent/EP2495542A1/en
Priority to US13/505,147 priority patent/US8656765B2/en
Priority to CN201080049450.XA priority patent/CN102597736B/zh
Publication of WO2011052139A1 publication Critical patent/WO2011052139A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0082Devices inside the fuel tank other than fuel pumps or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • F02D33/003Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2829Mixtures of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel property detection device that is provided in a construction machine such as a hydraulic excavator and detects the property of fuel to determine the suitability of fuel supplied to an engine.
  • Patent Document 1 includes a fuel tank for storing fuel, and a density sensor provided at the bottom of the fuel tank so as to be close to a suction pipe suction port of the fuel tank. An apparatus for detecting the density of fuel sucked into a pipe (Prior Art 1) is shown.
  • Patent Document 2 discloses a small chamber having an inflow port and an outflow port that is formed at a position facing the upper fuel filler port in the fuel tank, and fuel that has accumulated in the bottom of the small chamber among the supplied fuel.
  • a device (2 in the prior art) including a sensor capable of detecting the property of the above is disclosed.
  • the senor and its related structure protrude from the bottom of the fuel tank to the outside. Therefore, when mounting on a construction machine due to problems such as space for installing the fuel tank and interference with other equipment. The degree of freedom of layout becomes low.
  • the property of the fuel is detected in the fuel supply piping path by a sensor provided in the fuel supply piping path connecting the fuel tank and the engine (hereinafter referred to as a piping path detection method). Can be considered.
  • the pipe path detection method requires detection of the properties of the fuel flowing in the pipe at a high flow rate, it is difficult to secure the time required for detecting the fuel properties, and the flow rate of the fuel In addition, the accuracy and stability of detection are reduced due to the large amount of change in flow rate.
  • An object of the present invention is to provide a fuel property detection device capable of improving the accuracy and stability of fuel property detection while adopting a piping path detection method, and a construction machine equipped with the fuel property detection device.
  • a fuel property detection device is a fuel property detection device that detects the property of fuel supplied to an engine from a fuel tank that stores fuel, in a fuel supply piping path that connects the engine and the fuel tank. And a sub-tank capable of storing a certain amount of fuel, and a sensor provided in the sub-tank and capable of detecting the property of the fuel in the sub-tank, the sub-tank from the fuel tank A fuel inlet through which fuel is introduced; and a fuel outlet for delivering the fuel toward the engine.
  • the construction machine includes the fuel property detection device, a fuel tank connected to an inlet side pipe of the fuel property detection device, and an engine connected to an outlet side pipe of the fuel property detection device. I have.
  • FIG. 1 is a schematic plan view of an upper frame of a hydraulic excavator equipped with a detection device according to a first embodiment of the present invention.
  • FIG. 2 is a layout diagram of devices in the excavator of FIG. 1. It is a half section front view of the sub tank of Drawing 1. It is a side view of the sub tank of FIG.
  • A) is a figure which shows typically the detection apparatus which concerns on 1st Embodiment of this invention
  • (b) is a figure which shows the test result of the detection performance.
  • (A) is a figure which shows typically the detection apparatus which concerns on 2nd Embodiment of this invention
  • (b) is a graph which shows the test result of the detection performance.
  • (A) is a figure which shows typically the detection apparatus which concerns on 3rd Embodiment of this invention
  • (b) is a graph which shows the test result of the detection performance.
  • (A) is a figure which shows typically the detection apparatus which concerns on 4th Embodiment of this invention
  • (b) is a graph which shows the test result of the detection performance.
  • (A) is a figure which shows typically the detection apparatus which concerns on 5th Embodiment of this invention
  • (b) is a graph which shows the test result of the detection performance.
  • FIG. 1 is a schematic plan view of an upper frame of a hydraulic excavator equipped with the detection device according to the first embodiment of the present invention.
  • description will be made using the front-rear and left-right directions viewed from the operator seated on the seat in the cabin 2 (the left in FIG. 1 is the front direction and the top in FIG. 1 is the right direction).
  • a hydraulic excavator as an example of a construction machine includes an upper frame 1, a cabin 2, an engine 3, a fuel tank 4, a cooling fan 5, and a hydraulic pump 6 provided on the upper frame 1. And a detection device (fuel property detection device: see FIG. 2) 24 for detecting the property (physical quantity or chemical property such as fuel kinematic viscosity or density) supplied from the fuel tank 4 to the engine 3. .
  • a detection device fuel property detection device: see FIG. 2 24 for detecting the property (physical quantity or chemical property such as fuel kinematic viscosity or density) supplied from the fuel tank 4 to the engine 3. .
  • the engine 3 is arranged behind the cabin 2 with the longitudinal direction of the engine 3 directed in the left-right direction.
  • the fuel tank 4 is disposed on the right side of the cabin 2 and can store a predetermined amount of fuel.
  • the cooling fan 5 is disposed on the left side of the engine 3 and is driven by the power of the engine 3.
  • the hydraulic pump 6 is disposed on the right side of the engine 3 and is driven by the power of the engine 3.
  • the detection device 24 includes an inlet side pipe (a part of the fuel supply pipe path) 9 connected to the fuel tank 4 and an outlet side pipe (fuel supply pipe path) connected to the engine 3. 10), a sub tank 7 connected to the inlet side pipe 9 and the outlet side pipe 10, a sensor 8 provided in the sub tank 7, and a controller 11 electrically connected to the sensor 8. I have.
  • the sub tank 7 is provided in a fuel supply piping path (between the inlet side pipe 9 and the outlet side pipe 10) for supplying fuel from the fuel tank 4 to the engine 3. Specifically, the sub tank 7 can store a certain amount of fuel smaller than that of the fuel tank 4. Further, as shown in FIG. 3, the flow path cross-sectional area E1 orthogonal to the fuel flow direction of the sub tank 7 is equal to the flow path cross-sectional area E2 orthogonal to the fuel flow direction of the outlet side pipe 10 and the inlet side pipe 9. It is larger than the flow path cross-sectional area E3 orthogonal to the fuel flow direction.
  • the flow rate of the fuel guided to the sub tank 7 is lower than the flow rate of the fuel in the pipes 9 and 10, and the flow rate of the fuel guided to the sub tank 7 is stabilized.
  • the property of the fuel whose flow velocity is reduced and whose flow rate is stable is detected by the sensor 8.
  • the sub tank 7 includes a side wall 21 formed over the entire circumference around the axis J1 along the vertical direction, and a top wall 22 that closes the opening at the top of the side wall 21.
  • the air vent 12 includes a detachable plug 13.
  • the fuel inlet 7 a is connected to the inlet side pipe 9.
  • the fuel outlet 7 b is connected to the outlet side pipe 10.
  • the side wall 21 has a cylindrical shape having the axis J1 as a central axis.
  • the side wall 21 is formed with a fuel inlet 7a and a fuel outlet 7b arranged vertically at substantially the same position in the circumferential direction around the axis J1.
  • the fuel inlet 7a and the fuel outlet 7b are arranged side by side on the same plane P1 (see FIG. 4) along the vertical direction.
  • the fuel inlet 7a protrudes in the horizontal direction from the lower part of the side wall 21, and the fuel outlet 7b protrudes in the horizontal direction from the upper part of the side wall 21 which is almost directly above the fuel inlet 7a. That is, the fuel inlet 7a and the fuel outlet 7b are arranged vertically at substantially the same position in the circumferential direction of the side wall 21 and extend in parallel.
  • the sensor 8 detects the property of the fuel in the sub tank 7 and transmits this detection signal to the controller 11 described later.
  • the sensor 8 includes a detection unit 8a that can detect the property of the fuel and a support unit 8b that supports the detection unit 8a.
  • the support portion 8 b is fixed to the bottom wall 23 of the sub tank 7 with the detection portion 8 a facing the sub tank 7 through a hole formed in the bottom wall 23.
  • the detector 8a detects the kinematic viscosity of the fuel, for example, by contacting the fuel.
  • the sensor 8 (detection unit 8a) is disposed on a plane P1 (see FIG. 4) including the axes of the pipes 9 and 10.
  • the sensor 8 and the two pipes 9 and 10 are arranged on the same plane P1 along the vertical direction.
  • the sensor 8 according to the present embodiment is provided at the center of the bottom wall 23 of the sub tank 7. Therefore, the sensor 8 can reliably detect the property of the fuel in the process from the inlet side pipe 9 to the outlet side pipe 10.
  • the senor 8 which concerns on this embodiment is provided in the center part of the bottom wall 23 of the sub tank 7, it is not limited to this.
  • the sensor is located at a position off the center of the bottom wall 23 of the sub tank 7 so as not to interfere with the structure. 8 can also be provided.
  • the controller 11 is electrically connected to the sensor 8 and receives a detection signal from the sensor 8 to determine whether or not the fuel is suitable, display and alarm processing.
  • the air vent 12 is provided at the center of the top wall 22 of the sub tank 7.
  • the plug 13 closes the air vent 12 while being attached to the air vent 12.
  • the sub tank 7 having the flow passage cross-sectional area E3 larger than the flow passage cross-sectional areas E2 and E2 of the pipes 9 and 10 is provided in the fuel supply piping path.
  • the flow rate of the fuel in the sub tank 7 can be reduced, and the flow rate in the sub tank 7 can be stabilized.
  • the detection device 24 includes the sensor 8 capable of detecting the property of the fuel whose flow rate is reduced and the flow rate is stable as described above, the property of the fuel by the sensor 8 is a basic effect. It is possible to secure the time required for detection of fuel and to stabilize the flow rate of fuel.
  • the detector 24 has a high degree of freedom in layout when mounted on the hydraulic excavator (upper frame 1) for the following two reasons.
  • the subtank volume can be set to the minimum volume that can reduce the flow rate of the fuel to the flow rate necessary for detecting the property of the fuel, the subtank can be miniaturized.
  • the detection device 24 it is possible to add on to an existing construction machine (hydraulic excavator in the present embodiment) and to detect the property of the fuel while adopting a piping path detection method with a high degree of freedom in layout. Accuracy and stability can be improved.
  • the following operational effects can be obtained in addition to the basic effects.
  • the portion having the lowest flow velocity is detected by the sensor, and thus the accuracy of property detection is further increased.
  • 5 to 9 are graphs showing a schematic configuration of the detection apparatus according to the first embodiment and each of the second to fifth embodiments and a test result of the detection performance.
  • Detecting performance test conditions and methods are as follows.
  • the shape and volume of the sub tank 7 are the same in each embodiment.
  • the fuel flowing in the sub tank 7 is changed from light oil to kerosene at a predetermined timing. Judgment of pass / fail of the test result is made based on how the output value (identification value) of the sensor 8 has changed over time.
  • the timing at which the fuel is changed is shown at the left end of FIGS. 5 (b), 6 (b), 7 (b), 8 (b) and 9 (b).
  • the identification value changed in a short time (2 to 3 minutes) after the replacement of the fuel, and thereafter the identification value changed at a substantially constant value.
  • the replacement of the fuel was detected promptly and stable detection performance was obtained.
  • the reason is considered as follows.
  • the fuel inlet 7a and the fuel outlet 7b are lined up and down at substantially the same position around the vertical axis J1, and the bending flow (between the fuel inlet 7a and the fuel outlet 7b ( The sensor 8 is provided under the folded portion of FIG. Therefore, when the fuel in the sub tank 7 flows from the bottom to the top due to the bent flow, the fuel in the sub tank 7 is agitated and mixed quickly, and the oil quality in the sub tank 7 also changes quickly due to this mixing. As a result of the change in the oil quality in the sub-tank 7 thus quickly and accurately captured by the sensor 8, it is considered that the replacement of the fuel was detected quickly and a stable detection performance was obtained. It is.
  • the fuel inlet 7a is provided at a position slightly above the middle of the side wall 21 of the sub tank 7. Further, in the detection device according to the second embodiment, the fuel outlet 7 b is provided in the top wall 22 of the sub tank 7.
  • the position of the sensor 8 is the same as the position of the sensor 8 according to the first embodiment through the second to fifth embodiments.
  • the detection device according to the second embodiment can detect the change of the fuel earlier, but the stability of the identification value is worse than that of the first embodiment. The reason seems to be as follows.
  • the fuel inlet 7a is provided on the side wall 21 of the sub tank 7, and the fuel outlet 7b is provided on the top wall 22 of the sub tank 7.
  • the flow changes from horizontal to upward between the fuel inlet 7a and the fuel outlet 7b. Therefore, the flow around the sensor 8 is likely to be disturbed by the influence of both the flow of the fuel introduced from the fuel inlet 7a and the flow of the fuel toward the fuel outlet 7b, and the stability of the identification value deteriorates due to this disturbance. It seems to be.
  • the fuel inlet 7a and the fuel outlet 7b are provided on the upper portion of the side wall 21 of the sub tank 7. As shown in FIG. Specifically, the fuel inlet 7a and the fuel outlet 7b are disposed at substantially the same height and at a position shifted by 90 degrees around the axis J1.
  • the fuel inlet 7a is provided at the lower part of the side wall 21 of the sub tank 7, and the fuel outlet 7b is the upper part of the side wall 21 of the sub tank 7. Is provided.
  • the fuel outlet 7b is disposed at a position shifted by 90 degrees from the fuel outlet 7b around the axis J1.
  • the detection device can quickly detect the change of the fuel, but the output of the identification value is not stable. The reason seems to be as follows.
  • the fuel inlet 7a and the fuel outlet 7b are displaced in the vertical direction and are displaced by 90 degrees around the axis J1, so that the fuel in the sub tank 7 flows from the fuel inlet 7a. Ascending while twisting, a flow toward the fuel outlet 7b is generated. It seems that the output of the identification value is not stable due to the influence of this flow.
  • the fuel inlet 7 a is provided at the lower part of the side wall 21 of the sub tank 7, and the fuel outlet 7 b is the upper part of the side wall 21 of the sub tank 7. Is provided. Further, the fuel inlet 7a and the fuel outlet 7b are disposed so as to be displaced by 180 degrees around the axis J1.
  • the detection device can detect the change of fuel in a relatively short time, but the output of the identification value is not stable. The reason seems to be as follows.
  • the fuel inlet 7a and the fuel outlet 7b are displaced in the vertical direction and are displaced by 180 degrees around the axis J1, so that the fuel in the sub tank 7 flows from the fuel inlet 7a. Ascending and flowing toward the fuel outlet 7b is generated. It seems that the output of the identification value is not stable due to the influence of this flow.
  • the detection performance of the detection device according to the first embodiment among the first to fifth embodiments is the best. Therefore, it can be concluded that the first embodiment is the best embodiment among the first to fifth embodiments.
  • FIG. 10 shows a detection apparatus according to the sixth embodiment.
  • FIG. 11 shows a detection apparatus according to the seventh embodiment.
  • the fuel outlet 7b is provided at the uppermost part of the sub tank 7.
  • both the fuel inlet 7a and the fuel outlet 7b are provided at the uppermost part of the sub tank 7.
  • the fuel outlet 7 b is provided at the top of the side wall 21 of the sub tank 7.
  • both the fuel inlet 7 a and the fuel outlet 7 b are provided on the top wall 22 of the sub tank 7.
  • the air in the fuel is not accumulated in the sub tank 7, but is led out from the sub tank 7 together with the fuel through the fuel outlet 7b. Is done. For this reason, in the detection apparatus according to the sixth embodiment, the air venting operation for removing the air vent plug 13 and opening the air vent port 12 is unnecessary, or the above-described work is minimized.
  • the fuel outlet 7b is provided at the uppermost portion (FIG. 10) of the side wall 21 of the sub tank 7 or the uppermost portion (the top wall 22: FIG. 11) of the entire sub tank 7. It is necessary to be.
  • the sensor 8 is provided on the side wall 21 of the sub tank 7. Therefore, a refractive flow of fuel that makes a U-turn from the fuel inlet 7a and returns to the fuel outlet 7b is generated in the sub-tank 7, and the properties of the fuel are reliably detected by the sensor 8 in the middle of the refractive flow.
  • the sensor 8 is preferably provided at a lateral position of the turning point of the U-shaped refractive flow.
  • the sensor 8 (detection unit 8a) is preferably arranged on a plane including the axes of the fuel inlet 7a and the fuel outlet 7b.
  • the sub tank 7 is installed in such a posture that the cylindrical side wall 21 is arranged around the axis J1 along the vertical direction.
  • the detection device according to the eighth embodiment shown in FIG. As described above, the sub tank 7 may be installed in such a posture that the side wall 21 is arranged around an axis along the horizontal direction.
  • the portion of the side wall 21 facing sideways, the top wall 22 and the bottom wall 23 constitute the side wall in the eighth embodiment.
  • the portion facing upward in the side wall 21 constitutes the top wall in the eighth embodiment
  • the portion facing downward in the side wall 21 constitutes the bottom wall in the eighth embodiment.
  • the arrangement of the fuel inlet 7a, the outlet 7b, and the sensor 8 can be variously selected other than the arrangement shown in FIG.
  • the fuel property detection device is a fuel property detection device that detects the property of fuel supplied to the engine from a fuel tank that stores fuel, and a fuel supply piping path that connects the engine and the fuel tank A subtank capable of storing a certain amount of fuel, and a sensor provided in the subtank and capable of detecting the property of the fuel in the subtank, wherein the subtank is separated from the fuel tank. A fuel inlet through which the fuel is introduced, and a fuel outlet for sending the fuel toward the engine.
  • the subtank capable of storing a certain amount of fuel is provided in the fuel supply piping path, so that the fuel flow velocity is reduced in the subtank, and the subtank The fuel flow rate can be stabilized. Furthermore, since the fuel property detection device according to the embodiment includes a sensor capable of detecting the property of the fuel in the sub tank, the time required for detection by the sensor can be secured and the flow rate of the fuel can be controlled. It can be stabilized.
  • the sub-tank has a high degree of freedom in layout when mounted on a construction machine for the following two reasons.
  • the space between the fuel tank and the engine can be freely selected and installed at any position that is advantageous for avoiding interference with other equipment.
  • the subtank volume can be set to the minimum volume that can reduce the flow rate of the fuel to the flow rate necessary for detecting the property of the fuel, the subtank can be miniaturized.
  • the accuracy and stability of the detection of fuel properties can be improved while adopting a pipe route detection method that allows an add-on to an existing construction machine and has a high degree of freedom in layout.
  • the “property of fuel” means a physical quantity such as kinematic viscosity or density of fuel or a scientific property of fuel.
  • the fuel inlet of the sub tank is disposed closer to the sensor than the fuel outlet.
  • the fuel inlet of the subtank is arranged at a position closer to the sensor than the fuel outlet, the fuel flows into the subtank from a position close to the sensor. It is possible to quickly detect a change to or vice versa.
  • the fuel inlet is preferably disposed below the fuel outlet.
  • the fuel inlet is arranged below the fuel outlet, the fuel enters the sub tank from below, rises and exits from above, so the fuel inlet and the fuel outlet are the same in the vertical direction.
  • the replacement of fuel in the sub-tank itself becomes faster, and this replacement can be detected earlier.
  • the fuel inlet can introduce fuel into the sub tank from the side, the fuel outlet can lead out the fuel from the sub tank to the side, and the fuel inlet and the fuel outlet of the sub tank are in the vertical direction.
  • a fuel inlet capable of introducing fuel from the side to the sub tank and a fuel outlet capable of deriving the fuel laterally from the sub tank are arranged side by side on a plane along the vertical direction. Therefore, a bent flow is formed in which the fuel makes a U-turn from the bottom to the top and exits.
  • This bent flow makes the flow of fuel in the sub-tank more gentle, so that the accuracy and stability of fuel property detection can be further improved.
  • a fuel outlet of the sub tank is disposed at an uppermost part of the sub tank.
  • the fuel outlet of the sub tank since the fuel outlet of the sub tank is disposed at the uppermost part of the sub tank, the air in the fuel does not accumulate in the sub tank but is led out from the sub tank together with the fuel. Therefore, the work of extracting air from the sub tank is not required, or the work can be minimized.
  • a side wall formed over the entire circumference around the axis along the vertical direction, a top wall that closes the opening at the top of the side wall, and a bottom wall that closes the opening at the bottom of the side wall It is possible to employ a tank having
  • the senor is provided on a bottom wall of the sub tank, the fuel inlet and the fuel outlet are provided on a side wall of the sub tank, and the fuel inlet is more than the fuel outlet. It is preferable that it is provided below.
  • the fuel property detection device since the sensor is provided on the bottom wall of the sub tank and the fuel inlet of the sub tank is disposed below the fuel outlet, the fuel flows into the sub tank from a position close to the sensor. Therefore, it is possible to quickly detect a change from an appropriate fuel to an inappropriate fuel or vice versa.
  • the fuel inlet and the fuel outlet of the sub tank are arranged vertically at substantially the same position in the circumferential direction of the side wall.
  • the fuel inlet and the fuel outlet are arranged vertically at substantially the same position around the axis along the vertical direction, so that the fuel makes a U-turn from the bottom to the top in the sub tank.
  • a going bending flow is formed. Due to this bent flow, the flow of fuel in the sub-tank becomes gentler, so that the accuracy and stability of fuel property detection can be further improved.
  • the flow of fuel in the sub tank becomes gentle due to the bent flow, it is not necessary to increase the size of the sub tank in order to make the fuel flow gentle.
  • the subtank can be further reduced in size, the degree of freedom in layout when the fuel property detection device is mounted on the construction machine is further increased.
  • the senor is provided on a bottom wall of the sub tank, the fuel inlet is provided on a side wall of the sub tank, and the fuel outlet is provided on a top wall of the sub tank. Preferably it is.
  • the fuel outlet of the sub tank is provided on the top wall of the sub tank, the air in the fuel is not accumulated in the sub tank but is led out from the sub tank together with the fuel. Therefore, the work of extracting air from the sub tank is not required, or the work can be minimized.
  • the senor, the fuel inlet, and the fuel outlet are arranged on the same plane.
  • the property of the fuel can be reliably detected in the process of being introduced from the fuel inlet to the fuel outlet. .
  • an inlet side pipe connected to the fuel inlet of the sub tank and connectable to the fuel tank, and an outlet side pipe connected to the fuel outlet of the sub tank and connectable to the engine
  • the flow path cross-sectional area perpendicular to the fuel flow direction of the sub tank is preferably larger than the flow path cross-sectional areas of the inlet side pipe and the outlet side pipe.
  • the flow passage cross-sectional area of the sub tank is larger than the flow passage cross-sectional areas of the inlet pipe and the outlet pipe, the flow velocity of the fuel introduced from the inlet pipe to the sub tank can be reliably reduced. Accordingly, it is possible to further improve the accuracy of fuel property detection.
  • the construction machine includes the fuel property detection device, a fuel tank connected to an inlet side pipe of the fuel property detection device, and an engine connected to an outlet side pipe of the fuel property detection device. It has.
  • the fuel property detection device since the fuel property detection device is provided, the accuracy and stability of the detection of the property of the fuel can be improved while adopting the piping path detection method.
  • the accuracy and stability of fuel property detection can be improved while adopting a piping path detection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

 配管経路中で燃料性状を検出する方式をとりながら、燃料性状検出の精度と安定性とを向上する。 燃料タンク4とエンジン3とを結ぶ燃料配管経路中に設けられたサブタンク7と、サブタンク7内の燃料の性状を検出可能なセンサ8とを備えている。サブタンク7は、燃料タンク4からの燃料が導入される燃料入口7aと、燃料をエンジン3に向けて送り出すための燃料出口7bとを有する。

Description

建設機械の燃料性状検出装置及びこれを備えた建設機械
 本発明は、油圧ショベル等の建設機械に設けられ、エンジンに供給される燃料の適否判別のために燃料の性状を検出する燃料性状検出装置に関する。
 油圧ショベル等の建設機械の分野において、不適燃料の使用によるエンジンの故障や不良排ガスの発生等を防止するために、エンジンに供給される燃料の性状(動粘度や密度等の物理量または化学的性質)を検出する装置が知られている。
 例えば、特許文献1には、燃料を貯留する燃料タンクと、この燃料タンクのサクションパイプの吸入口と近接するように前記燃料タンクの底部に設けられた密度センサとを備え、この密度センサによってサクションパイプに吸い込まれる燃料の密度を検出する装置(公知技術の1)が示されている。
 また、特許文献2には、燃料タンク内の上部の給油口に臨む位置に形成されるとともに、流入口と流出口とを有する小室と、補給された燃料のうち前記小室の底部に溜まった燃料の性状を検出可能なセンサとを備えた装置(公知技術の2)が開示されている。
 ところが、前記両公知技術1、2では、センサ及びその関連構造が燃料タンク自体に設置されているため、燃料タンクの大幅な改造または取替えを行うことなく、既存の建設機械に対して前記両公知技術1、2をアドオン(後付け)することができない。
 また、公知技術の1では、センサ及びその関連構造が燃料タンク底面から外部に突出するため、燃料タンクを設置するためのスペース、及び他の機器との干渉の問題等から建設機械に搭載する際のレイアウトの自由度が低くなる。
 このような問題の解決策として、燃料タンクとエンジンとを結ぶ燃料供給配管経路中に設けられたセンサによって、燃料供給配管経路中で燃料の性状を検出すること(以下、配管経路検出方式という)が考えられる。
 この配管経路検出方式を採用することにより、燃料タンク自体の改造や取替えを行うことなく、建設機械に対するセンサ及びその関連構造をアドオンすることができるとともに、センサ及びその関連構造を建設機械に搭載する際のレイアウトの自由度が高い。
 しかし、前記配管経路検出方式では、配管内を高い流速で流れている燃料の性状の検出を要するため、燃料の性状の検出に必要な時間を確保するのが困難であることと、燃料の流速及び流量の変化量が大きいこととに起因して検出の精度及び安定性が低下する。
特開2008-261812号公報 特開2008-14741号公報
 本発明の目的は、配管経路検出方式を採用しながら、燃料の性状の検出の精度及び安定性を向上することができる燃料性状検出装置及びこれを備えた建設機械を提供することにある。
 本発明に係る燃料性状検出装置は、燃料を貯留する燃料タンクからエンジンに供給される燃料の性状を検出する燃料性状検出装置であって、前記エンジンと前記燃料タンクとを結ぶ燃料供給配管経路中に設けられているとともに、一定量の燃料を貯留可能なサブタンクと、前記サブタンクに設けられるとともに、前記サブタンク内の燃料の性状を検出可能なセンサとを備え、前記サブタンクは、前記燃料タンクからの燃料が導入される燃料入口と、前記燃料を前記エンジンに向けて送り出すための燃料出口とを有する。
 また、本発明に係る建設機械は、前記燃料性状検出装置と、前記燃料性状検出装置の入口側配管に接続された燃料タンクと、前記燃料性状検出装置の出口側配管に接続されたエンジンとを備えている。
本発明の第1実施形態に係る検出装置が搭載された油圧ショベルのアッパーフレームの概略平面図である。 図1の油圧ショベルにおける機器の配置図である。 図1のサブタンクの半部断面正面図である。 図1のサブタンクの側面図である。 (a)は、本発明の第1実施形態に係る検出装置を模式的に示す図であり、(b)は、その検出性能の試験結果を示す図である。 (a)は、本発明の第2実施形態に係る検出装置を模式的に示す図であり、(b)は、その検出性能の試験結果を示すグラフである。 (a)は、本発明の第3実施形態に係る検出装置を模式的に示す図であり、(b)は、その検出性能の試験結果を示すグラフである。 (a)は、本発明の第4実施形態に係る検出装置を模式的に示す図であり、(b)は、その検出性能の試験結果を示すグラフである。 (a)は、本発明の第5実施形態に係る検出装置を模式的に示す図であり、(b)は、その検出性能の試験結果を示すグラフである。 本発明の他の実施形態に係る検出装置を示す正面図である。 本発明の他の実施形態に係る検出装置を示す正面図である。 本発明の他の実施形態に係る検出装置を示す正面図である。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
(第1実施形態[図1~図5参照])
 図1は、本発明の第1実施形態に係る検出装置が搭載された油圧ショベルのアッパーフレームの概略平面図である。なお、以下の説明では、キャビン2内の座席に着座したオペレータから見た前後左右方向(図1の左が前方向、図1の上が右方向)を用いて説明する。
 図1に示すように、建設機械の一例としての油圧ショベルは、アッパーフレーム1と、このアッパーフレーム1上に設けられたキャビン2、エンジン3、燃料タンク4、冷却ファン5及び油圧ポンプ6と、前記燃料タンク4からエンジン3に供給される燃料の性状(燃料の動粘度若しくは密度等の物理量または化学的性質)を検出する検出装置(燃料性状検出装置:図2参照)24とを備えている。
 エンジン3は、当該エンジン3の長手方向を左右方向に向けた状態で、前記キャビン2の後方に配置されている。燃料タンク4は、前記キャビン2の右側に配置され、所定量の燃料を貯留可能である。冷却ファン5は、エンジン3の左側に配置され、当該エンジン3の動力によって駆動される。油圧ポンプ6は、エンジン3の右側に配置され、当該エンジン3の動力によって駆動される。
 図2に示すように、検出装置24は、前記燃料タンク4に接続された入口側配管(燃料供給配管経路の一部)9と、前記エンジン3に接続された出口側配管(燃料供給配管経路の一部)10と、これら入口側配管9及び出口側配管10に接続されたサブタンク7と、前記サブタンク7に設けられたセンサ8と、このセンサ8に電気的に接続されたコントローラ11とを備えている。
 サブタンク7は、燃料タンク4からエンジン3に燃料を供給するための燃料供給配管経路中(入口側配管9と出口側配管10との間)に設けられている。具体的に、サブタンク7は、前記燃料タンク4よりも少ない一定量の燃料を貯留可能である。また、図3に示すように、サブタンク7の燃料の流れ方向と直交する流路断面積E1は、出口側配管10の燃料の流れ方向と直交する流路断面積E2、及び入口側配管9の燃料の流れ方向と直交する流路断面積E3よりも大きい。したがって、サブタンク7に導かれた燃料の流速は、各配管9、10内の燃料の流速よりも低くなり、サブタンク7に導かれた燃料の流量は、安定する。このように流速が低下し、かつ、流量が安定した燃料の性状は、センサ8によって検出される。
 図3及び図4に拡大して示すように、サブタンク7は、上下方向に沿った軸J1回りの全周にわたり形成された側壁21と、この側壁21の上部の開口部を塞ぐ天壁22と、前記側壁21の下部の開口部を塞ぐ底壁23と、前記側壁21にそれぞれ形成された燃料入口7a及び燃料出口7bと、前記天壁22に形成されたエア抜き用のエア抜き口12と、このエア抜き口12に着脱可能なプラグ13とを備えている。前記燃料入口7aは、前記入口側配管9に接続されている。前記燃料出口7bは、前記出口側配管10に接続されている。
 側壁21は、前記軸J1を中心軸として持つ円筒形状を有する。この側壁21には、前記軸J1回りの周方向のほぼ同じ位置で燃料入口7a及び燃料出口7bが上下に並んで形成されている。換言すると、燃料入口7a及び燃料出口7bは、上下方向に沿った同一平面P1(図4参照)上で上下に並んで配置されている。具体的に、燃料入口7aは、側壁21の下部から水平方向に突出するとともに、燃料出口7bは、燃料入口7aのほぼ真上に当たる側壁21の上部から水平方向に突出する。すなわち、燃料入口7a及び燃料出口7bは、前記側壁21の周方向のほぼ同じ位置で上下に並ぶとともに、それぞれ平行に延びている。
 センサ8は、サブタンク7内の燃料の性状を検出するとともに、この検出信号を後述するコントローラ11に送信する。具体的に、センサ8は、燃料の性状を検出可能な検知部8aと、この検知部8aを支持する支持部8bとを有する。支持部8bは、検知部8aが底壁23に形成された孔を介してサブタンク7内に臨んだ状態で、サブタンク7の底壁23に固定されている。検知部8aは、たとえば燃料と接触することにより、燃料の動粘度を検出する。
 また、前記センサ8(検知部8a)は、両配管9、10の軸線を含む平面P1(図4参照)上に配置されている。換言すると、センサ8、両配管9、10は、上下方向に沿った同一平面P1上に配置されている。具体的に、本実施形態に係るセンサ8は、サブタンク7の底壁23の中央部に設けられている。したがって、センサ8は、入口側配管9から出口側配管10へ至る過程で燃料の性状を確実に検出することができる。
 なお、本実施形態に係るセンサ8は、サブタンク7の底壁23の中央部に設けられているが、これに限定されない。例えば、サブタンク7の底壁23の中央部にドレン口等の他の構造物が設けられる場合には、この構造物と干渉しないように、サブタンク7の底壁23の中央から外れた位置にセンサ8を設けることもできる。
 コントローラ11は、センサ8に電気的に接続され、センサ8からの検出信号を受けて、燃料の適否の判別、表示及び警報の処理を実行する。
 エア抜き口12は、サブタンク7の天壁22の中央部に設けられている。プラグ13は、エア抜き口12に装着された状態で、当該エア抜き口12を塞ぐ。
 以上説明したように、前記検出装置24では、各配管9、10の流路断面積E2、E2よりも大きな流路断面積E3を持つサブタンク7が燃料供給配管経路中に設けられているため、このサブタンク7内における燃料の流速を落とし、かつ、サブタンク7内における流量を安定させることができる。
 さらに、前記検出装置24は、前記のように流速が低下し、かつ、流量が安定した燃料の性状を検出可能なセンサ8を備えているため、基本的な効果として、センサ8による燃料の性状の検出に必要な時間を確保することができるとともに、燃料の流量を安定させることができる。
 しかも、検出装置24は、以下の2つの理由により、油圧ショベル(アッパーフレーム1)に搭載する際のレイアウトの自由度が高い。
 (I)燃料タンク4とエンジン3との間のスペースのうち、他の機器との干渉を避ける上で有利な任意の位置(図1の例では、アッパーフレーム1の後端部(油圧ポンプ6の後ろ)でエンジン3の右側)を自由に選択して設置できること。
 (II)燃料の流速を当該燃料の性状の検出に必要な流速に低下することができる最小限の容積にサブタンクの容積を設定することができるため、サブタンクを小型化できること。
 すなわち、前記検出装置24によれば、既存の建設機械(本実施形態では油圧ショベル)へのアドオンが可能で、かつ、レイアウトの自由度も高い配管経路検出方式をとりながら、燃料の性状の検出の精度及び安定性を高めることができる。
 また、第1実施形態に係る検出装置24によれば、前記基本的な効果に加えて次の作用効果を得ることができる。
 (i)前記検出装置24では、サブタンク7の燃料入口7aが燃料出口7bよりもセンサ8に近い位置に配置されていることにより、燃料がセンサ8に近い位置からサブタンク7内に流入するため、適正な燃料から不適性な燃料への入れ替わりまたはその逆の入れ替わりをいち早く検出することができる。
 (ii)前記検出装置24では、燃料入口7aが燃料出口7bよりも下に配置されていることにより、燃料がサブタンク7に下から入り、上昇して上から出るため、燃料入口7aと燃料出口7bとが上下方向の同じ位置に配置されている場合と比較してサブタンク7内の燃料の入れ替わりそのものが早くなり、この入れ替わりをより早く検出することができる。
 (iii)前記検出装置24では、燃料入口7a及び燃料出口7bが上下方向に沿った軸J1回りのほぼ同じ位置で上下に並んで配置されているため、図3に示すようにサブタンク7内で燃料が下から上にUターンして出て行く屈曲流が形成される。この屈曲流により、サブタンク7内での燃料の流れがより緩やかとなるため、性状検出の正確さと安定性を一層高めることができる。
 (iv)前記屈曲流により燃料の流れが十分緩やかになるため、燃料の流速低下を狙ってサブタンク7を大きくする必要がない。このように、サブタンク7をより小型化できるため、油圧ショベルに対して検出装置24を搭載する際のレイアウトの自由度がさらに高くなる。
 なお、センサ8がU字状の屈曲流の折り返し点の真下またはその近くに設置されていると、流速が最も低い部分をセンサで検出するため、性状検出の正確度がさらに高くなる。
 (v)前記検出装置24では、センサ8が燃料入口7aの軸線及び燃料出口7bの軸線を含む平面P1上に配置されているため、燃料入口7aから導入されて燃料出口7bに至る過程において、燃料の性状を確実に検出することができる。
 (vi)前記検出装置24では、サブタンク7の流路断面積E1が入口側配管9及び出口側配管10の流路断面積E2、E3よりも大きいため、入口側配管9からサブタンク7へ導入された燃料の流速を確実に下げることができる。したがって、燃料の性状検出の精度をより向上することができる。
 図5~図9は、第1実施形態、及び第2~第5各実施形態に係る検出装置の模式的構成と、その検出性能の試験結果とを示すグラフである。
 検出性能の試験の条件及び方法は、次の通りである。サブタンク7の形状及び容積は、各実施形態で同一である。サブタンク7内を流れる燃料は、所定のタイミングで軽油から灯油に変更される。試験結果の良否判断は、センサ8の出力値(識別値)が時間の経過に伴いどのように変化したかに基づいて行われる。燃料が入れ替わるタイミングは、図5(b)、図6(b)、図7(b)、図8(b)及び図9(b)の左端に示されている。
 なお、燃料供給の流量、流速等の条件は、各実施形態で同一である。また、サブタンク7内での燃料温度は、外的影響によって変化するため、図5(b)、図6(b)、図7(b)、図8(b)及び図9(b)には、燃料温度が30℃の条件下における値として換算された識別値が表示されている。
 図5の(b)に示すように、第1実施形態については、燃料の入れ替えから短時間(2~3分)で識別値が変化し、以後、識別値は、ほぼ一定の値で推移した。
 つまり、第1実施形態に係る検出装置24では、燃料の入れ替えをいち早く検出し、かつ、安定した検出性能が得られた。この理由は、次のように考えられる。
 第1実施形態に係る検出装置24では、燃料入口7a及び燃料出口7bが上下方向の軸J1回りのほぼ同じ位置で上下に並ぶとともに、これら燃料入口7aと燃料出口7bとの間の屈曲流(図3参照)の折り返し部分の下にセンサ8が設けられている。したがって、前記屈曲流によってサブタンク7内の燃料が下から上に流れることにより、サブタンク7内の燃料が攪拌されて速やかに混ざり合い、この混ざり合いによりサブタンク7内の油質も速やかに変化する。そして、このように変化するサブタンク7内の油質の変化がセンサ8によって速やかにかつ正確に捉えられた結果、燃料の入れ替えをいち早く検出し、かつ、安定した検出性能が得られたものと思われる。
 図6の(a)に示すように、第2実施形態に係る検出装置では、燃料入口7aがサブタンク7の側壁21の中間よりも少し上寄りの位置に設けられている。また、第2実施形態に係る検出装置では、燃料出口7bがサブタンク7の天壁22に設けられている。センサ8の位置は、第2~第5実施形態を通じて第1実施形態に係るセンサ8の位置と同じである。
 図6の(b)に示すように、第2実施形態に係る検出装置については、燃料の入れ替わりを早く検出できる一方で、識別値の安定度が第1実施形態よりも悪い。その理由は、次のように思われる。
 第2実施形態に係る検出装置では、燃料入口7aがサブタンク7の側壁21に設けられているとともに、燃料出口7bがサブタンク7の天壁22に設けられているため、サブタンク7内での燃料の流れが燃料入口7aと燃料出口7bとの間で水平方向から上向きに変わる。したがって、燃料入口7aから導入された燃料の流れ、及び燃料出口7bへ向かう燃料の流れの双方の影響によって、センサ8の周辺の流れが乱れ易くなり、この乱れによって識別値の安定度が悪くなるものと思われる。
 図7の(a)に示すように、第3実施形態に係る検出装置では、燃料入口7a及び燃料出口7bがサブタンク7の側壁21の上部に設けられている。具体的に、燃料入口7a及び燃料出口7bは、ほぼ同じ高さ位置で、かつ、前記軸J1回りで90度にずれた位置に配置されている。
 図7の(b)に示すように、第3実施形態に係る検出装置では、第1、第2両実施形態と比較して、燃料の入れ替わりを検出するまでの時間が長くなる。その理由は、次のように思われる。
 第3実施形態に係る検出装置では、燃料入口7a及び燃料出口7bの双方がサブタンク7の上に配置されているため、サブタンク7内の上部において液界面が発生する。この液界面の発生により、サブタンク7内の燃料は、サブタンク7内の上部でゆっくり円を描くように流れて上下方向に混ざり難くなり、この混ざり難さによって燃料の入れ替わりを検出するまでの時間が長くなるものと思われる。
 図8の(a)に示すように、第4実施形態に係る検出装置では、燃料入口7aがサブタンク7の側壁21の下部に設けられているとともに、燃料出口7bがサブタンク7の側壁21の上部に設けられている。また、燃料出口7bは、前記軸J1回りで燃料出口7bから90度ずれた位置に配置されている。
 図8の(b)に示すように、第4実施形態に係る検出装置では、燃料の入れ替わりをいち早く検出できる一方、識別値の出力が安定しない。その理由は、次のように思われる。
 第4実施形態に係る検出装置では、燃料入口7aと燃料出口7bとが上下方向に位置ずれするとともに、軸J1回りに90度位置ずれしているため、サブタンク7内の燃料が燃料入口7aからねじれながら上昇して燃料出口7bに向かう流れが発生する。この流れの影響により、識別値の出力が安定しないものと思われる。
 図9の(a)に示すように、第5実施形態に係る検出装置では、燃料入口7aがサブタンク7の側壁21の下部に設けられているとともに、燃料出口7bがサブタンク7の側壁21の上部に設けられている。また、燃料入口7aと燃料出口7bとは、前記軸J1回りで180度位置ずれして配置されている。
 図9の(b)に示すように、第5実施形態に係る検出装置では、燃料の入れ替わりを比較的短時間で検出できるものの、識別値の出力が安定しない。その理由は、次のように思われる。
 第5実施形態に係る検出装置では、燃料入口7aと燃料出口7bとが上下方向に位置ずれするとともに、軸J1回りに180度位置ずれしているため、サブタンク7内の燃料が燃料入口7aから上昇して燃料出口7bに向かう流れが発生する。この流れの影響により、識別値の出力が安定しないものと思われる。
 以上、綜合して勘案すると、第1実施形態から第5実施形態のうち第1実施形態に係る検出装置の検出性能が最も優れている。したがって、第1実施形態から第5実施形態の中で第1実施形態が最良の実施形態と結論付けることができる。
(その他の実施形態)
 (1)図10は、第6実施形態に係る検出装置を示す。図11は、第7実施形態に係る検出装置を示す。図10に示す検出装置では、燃料出口7bがサブタンク7の最上部に設けられているとともに、図11に示す検出装置では、燃料入口7a及び燃料出口7bの双方がサブタンク7の最上部に設けられている。具体的に、図10に示す検出装置では、燃料出口7bがサブタンク7の側壁21の最上部に設けられている。また、図11に示す検出装置では、燃料入口7a及び燃料出口7bの双方がサブタンク7の天壁22に設けられている。
 第6実施形態に係る検出装置では、少なくとも燃料出口7bがサブタンク7の最上部に設けられているため、燃料中のエアは、サブタンク7内に溜まらずに燃料出口7bを通じて燃料とともにサブタンク7から導出される。このため、第6実施形態に係る検出装置では、エア抜きプラグ13を外してエア抜き口12を開くエア抜き操作が不要、または前記作業が最小限で済む。
 つまり、前記エア抜き作業を簡略化するためには、サブタンク7の側壁21の最上部(図10)、又はサブタンク7全体における最上部(天壁22:図11)に燃料出口7bが設けられていることを要する。
 なお、図11に示す検出装置では、センサ8がサブタンク7の側壁21に設けられている。したがって、サブタンク7内には、燃料入口7aからUターンして燃料出口7bに戻る燃料の屈折流が発生し、燃料の性状は、前記屈折流の途中部においてセンサ8により確実に検出される。また、第1実施形態と同様に、図11に示す検出装置において、センサ8は、U字状の屈折流の折り返し点の側方位置に設けられていることが好ましい。さらに、第1実施形態と同様に、図11に示す検出装置において、センサ8(検知部8a)は、燃料入口7a及び燃料出口7bの軸線を含む平面上に配置されていることが好ましい。
 (2)前記各実施形態では、円筒状の側壁21が上下方向に沿った軸J1回りに配置される姿勢でサブタンク7が設置されているが、図12に示す第8実施形態に係る検出装置のように、側壁21が水平方向に沿った軸回りに配置される姿勢でサブタンク7が設置されていてもよい。具体的に、側壁21のうち側方へ向く部分、天壁22、及び底壁23が第8実施形態における側壁を構成する。また、側壁21のうち上に向く部分が第8実施形態における天壁を構成するとともに、側壁21のうち下に向く部分が第8実施形態における底壁を構成する。
 この場合、燃料入口7a、同出口7b及びセンサ8の配置は、図12の配置以外に種々選択することができる。
 図12に示すようにサブタンク7を横置きに配置した場合でも、第1~第7各実施形態と同様に、配管経路検出方式をとりながら、燃料性状の検出の精度と安定性を高めることができるという基本的作用効果が得られる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 前記実施形態に係る燃料性状検出装置は、燃料を貯留する燃料タンクからエンジンに供給される燃料の性状を検出する燃料性状検出装置であって、前記エンジンと前記燃料タンクとを結ぶ燃料供給配管経路中に設けられているとともに、一定量の燃料を貯留可能なサブタンクと、前記サブタンクに設けられるとともに、前記サブタンク内の燃料の性状を検出可能なセンサとを備え、前記サブタンクは、前記燃料タンクからの燃料が導入される燃料入口と、前記燃料を前記エンジンに向けて送り出すための燃料出口とを有する。
 前記実施形態に係る燃料性状検出装置によれば、一定量の燃料を貯留可能なサブタンクを燃料供給配管経路中に設けているため、このサブタンク内で燃料の流速を落とし、かつ、前記サブタンク内で燃料の流量を安定させることができる。さらに、前記実施形態に係る燃料性状検出装置は、サブタンク内の燃料の性状を検出可能なセンサを備えているため、このセンサによる検出に必要な時間を確保することができるとともに、燃料の流量を安定させることができる。
 しかも、サブタンクは、以下の2つの理由により、建設機械に搭載する際のレイアウトの自由度が高い。
 (I)燃料タンクとエンジンとの間のスペースのうち、他の機器との干渉を避ける上で有利な任意の位置を自由に選択して設置できること。
 (II)燃料の流速を当該燃料の性状の検出に必要な流速に低下することができる最小限の容積にサブタンクの容積を設定することができるため、サブタンクを小型化できること。
 すなわち、既存の建設機械に対するアドオンが可能で、かつ、レイアウトの自由度も高い配管経路検出方式をとりながら、燃料の性状の検出の精度及び安定性を高めることができる。
 なお、『燃料の性状』とは、燃料の動粘度若しくは密度等の物理量又は燃料の科学的性質を意味する。
 前記燃料性状検出装置において、前記サブタンクの燃料入口は、前記燃料出口よりも前記センサから近い位置に配置されていることが好ましい。
 前記燃料性状検出装置では、サブタンクの燃料入口が燃料出口よりもセンサに近い位置に配置されていることにより、燃料がセンサに近い位置からサブタンク内に流入するため、適正な燃料から不適性な燃料への入れ替わりまたはその逆の入れ替わりをいち早く検出することができる。
 前記燃料性状検出装置において、前記燃料入口は、前記燃料出口よりも下に配置されていることが好ましい。
 前記燃料性状検出装置では、燃料入口が燃料出口よりも下に配置されていることにより、燃料がサブタンクに下から入り、上昇して上から出るため、燃料入口と燃料出口とが上下方向の同じ位置に配置されている場合と比較して、サブタンク内の燃料の入れ替わりそのものが早くなり、この入れ替わりをより早く検出することができる。
 前記燃料入口は、前記サブタンクに対して側方から燃料を導入可能であり、前記燃料出口は、前記サブタンクから側方に燃料を導出可能であり、前記サブタンクの燃料入口及び燃料出口は、上下方向に沿った同一平面上で上下に並んで配置されていることが好ましい。
 前記燃料性状検出装置では、サブタンクに対して側方から燃料を導入可能な燃料入口、及びサブタンクから側方に燃料を導出可能な燃料出口が上下方向に沿った平面上で上下に並んで配置されているため、サブタンク内で燃料が下から上にUターンして出て行く屈曲流が形成される。
 この屈曲流により、サブタンク内での燃料の流れがより緩やかとなるため、燃料の性状検出の精度及び安定性を一層高めることができる。
 さらに、前記屈曲流によりサブタンク内での燃料の流れが緩やかとなるため、燃料の流れを緩やかにするためのサブタンクの大型化が不要となる。このように、サブタンクをより小型化できるため、建設機械に対して燃料性状検出装置を搭載する際のレイアウトの自由度がさらに高くなる。
 前記燃料性状検出装置において、前記サブタンクの燃料出口は、前記サブタンクの最上部に配置されていることが好ましい。
 前記燃料性状検出装置では、サブタンクの燃料出口がサブタンクの最上部に配置されているため、燃料中のエアは、サブタンク内に溜まらず、燃料とともにサブタンクから導出される。したがって、サブタンクからエアを抜く作業が不要となり、または前記作業が最小限で済む。
 具体的に、前記サブタンクとして、上下方向に沿った軸回りの全周にわたり形成された側壁と、前記側壁の上部の開口部を塞ぐ天壁と、前記側壁の下部の開口部を塞ぐ底壁とを有するタンクを採用することができる。
 前記燃料性状検出装置において、前記センサは、前記サブタンクの底壁に設けられているとともに、前記燃料入口及び前記燃料出口は、前記サブタンクの側壁に設けられ、前記燃料入口は、前記燃料出口よりも下に設けられていることが好ましい。
 前記燃料性状検出装置では、センサがサブタンクの底壁に設けられているとともにサブタンクの燃料入口が燃料出口よりも下に配置されていることにより、燃料がセンサに近い位置からサブタンク内に流入するため、適正な燃料から不適性な燃料への入れ替わりまたはその逆の入れ替わりをいち早く検出することができる。
 前記燃料性状検出装置において、前記サブタンクの燃料入口及び燃料出口は、前記側壁の周方向のほぼ同じ位置で上下に並んで配置されていることが好ましい。
 前記燃料性状検出装置では、燃料入口及び燃料出口が上下方向に沿った軸回りのほぼ同じ位置で上下に並んで配置されているため、サブタンク内で燃料が下から上にUターンして出て行く屈曲流が形成される。この屈曲流により、サブタンク内での燃料の流れがより緩やかとなるため、燃料の性状検出の精度及び安定性を一層高めることができる。さらに、前記屈曲流によりサブタンク内での燃料の流れが緩やかとなるため、燃料の流れを緩やかにするためのサブタンクの大型化が不要となる。このように、サブタンクをより小型化できるため、建設機械に対して燃料性状検出装置を搭載する際のレイアウトの自由度がさらに高くなる。
 前記燃料性状検出装置において、前記センサは、前記サブタンクの底壁に設けられ、前記燃料入口は、前記サブタンクの側壁に設けられているとともに、前記燃料出口は、前記サブタンクの天壁に設けられていることが好ましい。
 前記燃料性状検出装置では、サブタンクの燃料出口がサブタンクの天壁に設けられているため、燃料中のエアは、サブタンク内に溜まらず、燃料とともにサブタンクから導出される。したがって、サブタンクからエアを抜く作業が不要となり、または前記作業が最小限で済む。
 前記燃料性状検出装置において、前記センサ、前記燃料入口、及び前記燃料出口は、同一平面上に配置されていることが好ましい。
 前記燃料性状検出装置では、センサ、燃料入口、及び燃料出口が同一平面上に配置されているため、燃料入口から導入されて燃料出口に至る過程において、燃料の性状を確実に検出することができる。
 前記燃料性状検出装置において、前記サブタンクの燃料入口に接続されるとともに、前記燃料タンクに接続可能な入口側配管と、前記サブタンクの燃料出口に接続されるとともに、前記エンジンに接続可能な出口側配管とを備え、前記サブタンクの前記燃料の流れ方向と直交する流路断面積は、前記入口側配管及び前記出口側配管の流路断面積よりも大きいことが好ましい。
 前記燃料性状検出装置では、サブタンクの流路断面積が入口配管及び出口配管の流路断面積よりも大きいため、入口配管からサブタンクへ導入された燃料の流速を確実に下げることができる。したがって、燃料の性状検出の精度をより向上することができる。
 また、前記実施形態に係る建設機械は、前記燃料性状検出装置と、前記燃料性状検出装置の入口側配管に接続された燃料タンクと、前記燃料性状検出装置の出口側配管に接続されたエンジンとを備えている。
 前記実施形態に係る建設機械によれば、前記燃料性状検出装置を備えているため、配管経路検出方式を採用しながら、燃料の性状の検出の精度及び安定性を高めることができる。
 本発明によれば、配管経路検出方式を採用しながら、燃料の性状の検出の精度及び安定性を向上することができる。
 E1~E3  流路断面積
 J1  上下方向に沿った軸
 P1  燃料入口の軸線及び燃料出口の軸線を含む平面
 3  エンジン
 4  燃料タンク
 7  サブタンク
 7a  燃料入口
 7b  燃料出口
 8  センサ
 9  入口側配管(燃料供給配管経路の一部)
 10  出口側配管(燃料供給配管経路の一部)
 21  側壁
 22  天壁
 23  底壁
 24  検出装置

Claims (12)

  1.  燃料を貯留する燃料タンクからエンジンに供給される燃料の性状を検出する燃料性状検出装置であって、
     前記エンジンと前記燃料タンクとを結ぶ燃料供給配管経路中に設けられているとともに、一定量の燃料を貯留可能なサブタンクと、
     前記サブタンクに設けられるとともに、前記サブタンク内の燃料の性状を検出可能なセンサとを備え、
     前記サブタンクは、前記燃料タンクからの燃料が導入される燃料入口と、前記燃料を前記エンジンに向けて送り出すための燃料出口とを有する、建設機械の燃料性状検出装置。
  2.  前記サブタンクの燃料入口は、前記燃料出口よりも前記センサから近い位置に配置されていることを特徴とする請求項1に記載の建設機械の燃料性状検出装置。
  3.  前記燃料入口は、前記燃料出口よりも下に配置されている請求項1又は2に記載の建設機械の燃料性状検出装置。
  4.  前記燃料入口は、前記サブタンクに対して側方から燃料を導入可能であり、
     前記燃料出口は、前記サブタンクから側方に燃料を導出可能であり、
     前記サブタンクの燃料入口及び燃料出口は、上下方向に沿った同一平面上で上下に並んで配置されている請求項1~3の何れか1項に記載の建設機械の燃料性状検出装置。
  5.  前記サブタンクの燃料出口は、前記サブタンクの最上部に配置されている請求項3に記載の建設機械の燃料性状検出装置。
  6.  前記サブタンクは、上下方向に沿った軸回りの全周にわたり形成された側壁と、前記側壁の上部の開口部を塞ぐ天壁と、前記側壁の下部の開口部を塞ぐ底壁とを有する請求項1に記載の建設機械の燃料性状検出装置。
  7.  前記センサは、前記サブタンクの底壁に設けられているとともに、前記燃料入口及び前記燃料出口は、前記サブタンクの側壁に設けられ、
     前記燃料入口は、前記燃料出口よりも下に設けられている請求項6に記載の建設機械の燃料性状検出装置。
  8.  前記サブタンクの燃料入口及び燃料出口は、前記側壁の周方向のほぼ同じ位置で上下に並んで配置されている請求項7に記載の建設機械の燃料性状検出装置。
  9.  前記センサは、前記サブタンクの底壁に設けられ、
     前記燃料入口は、前記サブタンクの側壁に設けられているとともに、前記燃料出口は、前記サブタンクの天壁に設けられている請求項6に記載の建設機械の燃料性状検出装置。
  10.  前記センサ、前記燃料入口、及び前記燃料出口は、同一平面上に配置されている請求項1~9の何れか1項に記載の建設機械の燃料性状検出装置。
  11.  前記サブタンクの燃料入口に接続されるとともに、前記燃料タンクに接続可能な入口側配管と、
     前記サブタンクの燃料出口に接続されるとともに、前記エンジンに接続可能な出口側配管とを備え、
     前記サブタンクの前記燃料の流れ方向と直交する流路断面積は、前記入口側配管及び前記出口側配管の流路断面積よりも大きい請求項1~10の何れか1項に記載の建設機械の燃料性状検出装置。
  12.  請求項11に記載の建設機械の燃料性状検出装置と、
     前記燃料性状検出装置の入口側配管に接続された燃料タンクと、
     前記燃料性状検出装置の出口側配管に接続されたエンジンとを備えている、建設機械。
PCT/JP2010/006014 2009-10-30 2010-10-07 建設機械の燃料性状検出装置及びこれを備えた建設機械 WO2011052139A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10826276A EP2495542A1 (en) 2009-10-30 2010-10-07 Fuel property detection device for construction equipment and construction equipment provided therewith
US13/505,147 US8656765B2 (en) 2009-10-30 2010-10-07 Fuel property detection device for construction machine and construction machine provided therewith
CN201080049450.XA CN102597736B (zh) 2009-10-30 2010-10-07 工程机械的燃料性状检测装置及具有其的工程机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009250034A JP5353637B2 (ja) 2009-10-30 2009-10-30 建設機械の燃料性状検出装置
JP2009-250034 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052139A1 true WO2011052139A1 (ja) 2011-05-05

Family

ID=43921576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006014 WO2011052139A1 (ja) 2009-10-30 2010-10-07 建設機械の燃料性状検出装置及びこれを備えた建設機械

Country Status (5)

Country Link
US (1) US8656765B2 (ja)
EP (1) EP2495542A1 (ja)
JP (1) JP5353637B2 (ja)
CN (1) CN102597736B (ja)
WO (1) WO2011052139A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362706A (zh) * 2012-03-29 2013-10-23 爱三工业株式会社 燃料特性测量装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006050A (ja) * 2012-06-21 2014-01-16 Aisan Ind Co Ltd 燃料特性計測装置
JP5910587B2 (ja) * 2013-08-27 2016-04-27 コベルコ建機株式会社 建設機械の燃料性状検出装置
WO2015087593A1 (ja) * 2013-12-09 2015-06-18 愛三工業株式会社 センサ装置
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145966A (ja) * 1994-11-15 1996-06-07 Unisia Jecs Corp 燃料性状判別装置
JPH0943207A (ja) * 1995-08-03 1997-02-14 Unisia Jecs Corp 燃料性状判別装置
JPH1113568A (ja) * 1997-06-25 1999-01-19 Toyota Motor Corp 内燃機関の燃料性状判定装置
JP2008014741A (ja) 2006-07-05 2008-01-24 Komatsu Ltd 作業機械の燃料性状検出装置
JP2008261812A (ja) 2007-04-13 2008-10-30 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の燃料判別装置
JP2008267147A (ja) * 2007-04-16 2008-11-06 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の燃料判別装置
JP2009229129A (ja) * 2008-03-19 2009-10-08 Komatsu Ltd 通常燃料の性状判定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192633A (ja) * 1986-02-19 1987-08-24 Ngk Spark Plug Co Ltd アルコ−ル混合燃料の混合比センサ
DE3843177C2 (de) * 1988-12-22 1999-03-25 Fev Motorentech Gmbh & Co Kg Verfahren zur Feststellung des Alkoholgehaltes und/oder des Heizwertes von Kraftstoffen
US4945885A (en) * 1989-06-16 1990-08-07 General Motors Corporation Multi-fuel engine control with canister purge
US4945880A (en) * 1989-06-16 1990-08-07 General Motors Corporation Multi-fuel engine control with fuel control parameter lock
JPH0833367B2 (ja) * 1989-11-10 1996-03-29 株式会社ユニシアジェックス 静電容量式アルコール濃度測定装置
US5103184A (en) * 1990-11-16 1992-04-07 General Motors Corporation Capacitive fuel composition sensor with ground isolation
US5231358A (en) * 1990-11-16 1993-07-27 General Motors Corp. Capacitive fuel composition sensor with slow oscillator and high speed switch
US5261270A (en) * 1991-08-15 1993-11-16 General Motors Corporation Fuel composition sensor diagnostic apparatus
US5945831A (en) * 1997-06-10 1999-08-31 Sargent; John S. Volume charge density measuring system
US7529616B2 (en) * 2006-03-28 2009-05-05 Dresser, Inc. Analysis of fuel combustion characteristics
JP4169046B2 (ja) * 2006-05-23 2008-10-22 トヨタ自動車株式会社 内燃機関の制御装置
US20090153149A1 (en) * 2007-12-12 2009-06-18 Norberto Hernandez Obstructionless inline flex fuel sensor
US7800379B2 (en) * 2007-12-12 2010-09-21 Delphi Technologies, Inc. Fuel sensor
JP4711153B2 (ja) * 2009-03-12 2011-06-29 株式会社デンソー 燃料性状検出装置
US8677819B2 (en) * 2011-04-18 2014-03-25 Parker-Hannifin Corporation In-line fuel properties measurement unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145966A (ja) * 1994-11-15 1996-06-07 Unisia Jecs Corp 燃料性状判別装置
JPH0943207A (ja) * 1995-08-03 1997-02-14 Unisia Jecs Corp 燃料性状判別装置
JPH1113568A (ja) * 1997-06-25 1999-01-19 Toyota Motor Corp 内燃機関の燃料性状判定装置
JP2008014741A (ja) 2006-07-05 2008-01-24 Komatsu Ltd 作業機械の燃料性状検出装置
JP2008261812A (ja) 2007-04-13 2008-10-30 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の燃料判別装置
JP2008267147A (ja) * 2007-04-16 2008-11-06 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の燃料判別装置
JP2009229129A (ja) * 2008-03-19 2009-10-08 Komatsu Ltd 通常燃料の性状判定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362706A (zh) * 2012-03-29 2013-10-23 爱三工业株式会社 燃料特性测量装置
US9810654B2 (en) 2012-03-29 2017-11-07 Aisan Kogyo Kabushiki Kaisha Fuel property measuring device

Also Published As

Publication number Publication date
CN102597736A (zh) 2012-07-18
EP2495542A1 (en) 2012-09-05
US20120222473A1 (en) 2012-09-06
US8656765B2 (en) 2014-02-25
JP5353637B2 (ja) 2013-11-27
CN102597736B (zh) 2015-02-18
JP2011094549A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
WO2011052139A1 (ja) 建設機械の燃料性状検出装置及びこれを備えた建設機械
CN104024614A (zh) 具有泄漏探测装置的燃料供给系统
EP2748454B1 (en) Liquid fuel trap device
KR20130040948A (ko) 전해액 공급 장치
CN208043176U (zh) 一种油位监测装置
CN104040163B (zh) 燃料入口阀和用于容纳燃料入口阀的气缸盖
JP5910587B2 (ja) 建設機械の燃料性状検出装置
JP2010071199A (ja) インタンクキャニスタシステムの故障診断装置及び故障診断方法
CN108187452A (zh) 一种适用于原油船的烟气式惰气系统
JP2007100258A (ja) 水噴射式織機
TWI636947B (zh) 供油裝置
CN214598800U (zh) 乳化液配比及校正装置
JP2013249784A (ja) 建設機械の燃料性状検出装置
JP6424023B2 (ja) 燃料供給装置
JP5461866B2 (ja) 燃料供給装置
KR20130002526A (ko) 차량용 안장형 연료탱크의 보조탱크 흡입라인 내 에어 혼입 방지구조
CN101253323A (zh) 燃料箱装置
CN204855104U (zh) 测漏装置
CN113101858A (zh) 乳化液配比及校正装置和控制系统
KR200450047Y1 (ko) 퍼지용접용 이중플로우메타
JP2016037857A (ja) エンジン発電機
KR100986083B1 (ko) 차량의 연료탱크 시스템 진단방법 및 장치
JP2002188529A (ja) 燃料蒸気排出抑制装置
CN108655058A (zh) 一种新型环保机械的部件清洗装置
KR20150046970A (ko) 가스터빈 환기 시스템 및 필터장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049450.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13505147

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010826276

Country of ref document: EP