WO2011052065A1 - テトラヒドロフランの精製方法及び精製システム - Google Patents

テトラヒドロフランの精製方法及び精製システム Download PDF

Info

Publication number
WO2011052065A1
WO2011052065A1 PCT/JP2009/068663 JP2009068663W WO2011052065A1 WO 2011052065 A1 WO2011052065 A1 WO 2011052065A1 JP 2009068663 W JP2009068663 W JP 2009068663W WO 2011052065 A1 WO2011052065 A1 WO 2011052065A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
liquid
distillation
distillation column
tower
Prior art date
Application number
PCT/JP2009/068663
Other languages
English (en)
French (fr)
Inventor
松尾俊明
岡憲一郎
上川将行
近藤健之
伊藤博之
佐世康成
渡辺千秋
針谷哲司
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to US13/505,022 priority Critical patent/US20120215012A1/en
Priority to JP2011538164A priority patent/JP5536090B2/ja
Priority to CN2009801621764A priority patent/CN102596926A/zh
Priority to KR1020127009824A priority patent/KR101398614B1/ko
Priority to PCT/JP2009/068663 priority patent/WO2011052065A1/ja
Publication of WO2011052065A1 publication Critical patent/WO2011052065A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/20Oxygen atoms

Definitions

  • the present invention relates to a technique for purifying tetrahydrofuran from tetrahydrofuran and a liquid containing at least water, dihydrofuran and butanol as impurities.
  • PBT polybutylene terephthalate
  • 1,4-BDO 1,4-butanediol
  • TA terephthalic acid
  • the esterification reaction is a condensation reaction between the carboxyl group of dibasic acid and the OH group of glycol that occurs under an inert gas atmosphere such as normal pressure or weak negative pressure and nitrogen, and water is produced as a by-product. (Formula 1). Therefore, the reaction is promoted by devolatilizing and removing water. The reaction can also be accelerated by adding a polymerization catalyst such as titanium tetrabutoxide as necessary.
  • the terminal glycol of one oligomer is eliminated between the oligomers produced by the esterification reaction in a reduced pressure environment and in the presence of a polymerization catalyst, and the carboxyl group of the oligomer is condensed with the terminal glycol of the other oligomer.
  • This is an ester bond reaction (Formula 2).
  • the reaction is promoted by removing it by devolatilization, and the degree of polymerization increases.
  • a dibasic acid acid which is another raw material, acts as a catalyst with respect to the raw material glycol, and a dehydration reaction may occur to deteriorate the glycol.
  • the glycol is ethylene glycol
  • diethylene glycol is generated (formula 3)
  • 1,4-BDO is formed
  • THF tetrahydrofuran
  • Non-Patent Document 1 describes a method for suppressing the production of THF in an esterification step with respect to the production of PBT.
  • the formation of THF in the esterification process is promoted by the acid catalyst of TA, and the activation energy (32.1 kcal) for the side reaction is the same as that of the main reaction, that is, esterification reaction (30.5 kcal).
  • esterification reaction 30.5 kcal
  • it is effective to add a polymerization catalyst that promotes only the main reaction as a countermeasure it is described that the production of THF itself, that is, the reduction of the raw material yield is unavoidable.
  • THF is produced as a by-product in the production of PBT.
  • THF is polytetramethylene glycol (hereinafter referred to as a raw material for spandex and urethane elastomer) It is useful as a monomer raw material for PTMG), and if it can be recovered, it can be used as a valuable resource.
  • a raw material for spandex and urethane elastomer polytetramethylene glycol
  • 1,4-BDO 1,4-BDO
  • Patent Document 1 describes a method for purifying THF in which a hydration reaction tower, a first distillation tower, a hydrogenation tower, a second distillation tower, and a third distillation tower are installed in series.
  • a part of dihydrofuran hereinafter referred to as DHF
  • DHF dihydrofuran
  • the resin is converted to hydroxyfuran by a hydration reaction as a catalyst, and the vapor pressure is reduced (formulas 5 and 6).
  • the aqueous solution passed through the hydration reaction tower is supplied to the first distillation tower and separated into a tower bottom liquid and a tower top liquid.
  • hydrogen is added to DHF remaining in the presence of the catalyst supporting the noble metal in the hydrogenation tower and converted to THF (Equation 7).
  • the liquid circulated through the hydrogenation tower is supplied to the second distillation tower.
  • THF containing a large amount of water becomes the column top liquid
  • the column bottom liquid containing THF and the water removed is supplied to the third distillation column.
  • the THF recovery rate is improved by refluxing the top liquid of the second distillation column to the first distillation column.
  • high-purity THF is recovered as a column top liquid, and waste liquid containing butanol is discharged from the column bottom liquid.
  • the concentration of water difficult to separate from THF is reduced and the loss of THF is reduced by refluxing the top liquid of the second distillation column to the first distillation column.
  • DHF in THF is reduced.
  • an object of the present invention is to provide a method and a system for purifying THF from a liquid containing THF and impurities such as DHF, which has a small number of steps and does not require additional raw materials and / or equipment.
  • the present inventors have intensively studied to solve the above problems.
  • a part of the top liquid of the second distillation column is obtained.
  • the high-purity THF with few impurities such as DHF can be purified at a high recovery rate without adding a hydration reaction or hydrogenation step
  • the headline and the present invention were completed.
  • the gist of the present invention is as follows.
  • a method for purifying tetrahydrofuran from a liquid containing tetrahydrofuran and at least water, dihydrofuran and butanol as impurities A first distillation step of separating the liquid into a first tower bottom liquid containing water as a main component and a first tower top liquid containing tetrahydrofuran, dihydrofuran and butanol as main components by subjecting the liquid to a distillation treatment.
  • Second distillation in which the first column top liquid is distilled by a distillation column and separated into a second column bottom liquid containing tetrahydrofuran and butanol as main components and a second column top liquid containing dihydrofuran as main components.
  • a first distillation column having a raw material supply port, a column bottom liquid discharge port and a column top liquid discharge port, comprising a tetrahydrofuran supplied from the material supply port and a liquid containing at least water, dihydrofuran and butanol as impurities.
  • the first column bottom liquid containing water as a main component and the first column top liquid containing tetrahydrofuran, dihydrofuran and butanol as main components are distilled, and the first column bottom liquid is The first distillation column discharged from the liquid outlet, and the first tower top liquid discharged from the top liquid outlet;
  • a second distillation column having a raw material supply port, a column bottom liquid discharge port, and a column top liquid discharge port, wherein the first column top liquid supplied from the material supply port is subjected to distillation treatment to mainly produce tetrahydrofuran and butanol.
  • the second tower bottom liquid containing as a component and the second tower top liquid containing dihydrofuran as a main component are separated, and the second tower bottom liquid is discharged from the outlet of the tower bottom liquid.
  • the second distillation column for discharging the liquid from the outlet of the column top liquid;
  • a third distillation column having a raw material supply port, a column bottom liquid discharge port, and a column top liquid discharge port, wherein the second column bottom liquid supplied from the material supply port is subjected to distillation treatment, and butanol as a main component
  • the third column bottom liquid and the third column top liquid containing tetrahydrofuran as a main component are separated, and the third column bottom liquid is discharged from the column bottom liquid discharge port.
  • the third distillation column discharged from the top liquid outlet; A flow path connecting the outlet of the top liquid of the first distillation column and the raw material supply port of the second distillation column; A flow path connecting the outlet of the bottom liquid of the second distillation column and the raw material supply port of the third distillation column; A reflux path that connects the outlet of the top liquid of the second distillation column and the upstream side of the first distillation column, and refluxs a part of the top liquid of the second distillation column to the first distillation column; A discharge path for discharging the remainder of the top liquid of the second distillation column out of the system from the outlet of the top liquid of the second distillation column; A system for purifying tetrahydrofuran.
  • Tetrahydrofuran purification method the invention, a tetrahydrofuran (THF), least of water, from a liquid containing dihydrofuran (DHF) and butanol as impurities, to a method for purifying THF in high purity.
  • DHF dihydrofuran
  • THF tetrahydrofuran
  • THF tetrahydrofuran
  • THF is preferably in a concentration of 10 to 98%.
  • concentration of water is preferably 1 to 90%
  • DHF is preferably 10 to 5000 ppm
  • butanol is preferably 0.1 to 2%.
  • the purification method of the present invention is similarly applied to a liquid containing acetic acid, isopropanol, propanol, methyl ethyl ketone (MEK), 1-butyraldehyde (NBD) and the like as other impurities.
  • MEK methyl ethyl ketone
  • NBD 1-butyraldehyde
  • acetic acid is preferably at a concentration of 0.01 to 0.5%
  • isopropanol is preferably at a concentration of 1 to 100 ppm
  • propanol is preferably at a concentration of 1 to 100 ppm
  • MEK is 1 to 50 ppm.
  • the concentration is preferably ppm
  • NBD is preferably 1 to 30 ppm.
  • the purification method of the present invention can purify THF with high purity from a liquid containing DHF or the like as an impurity. Therefore, it is discharged from the condensate or polycondensation process of by-products discharged from the esterification process of a polymerization plant using 1,4-butanediol as a raw material, such as a PBT or PBS (polybutylene succinate) polymerization plant.
  • the purification method of the present invention can be applied to the by-product condensate. By applying the purification method of the present invention to the liquid as described above, it is possible to obtain high-purity THF as a valuable material from the effluent of the polymerization plant.
  • the first distillation step is intended to roughly separate and remove water, which is a major impurity, by subjecting the above-described THF-containing liquid to a distillation treatment using a distillation column.
  • the liquid containing THF described above is separated into a first tower bottom liquid containing water as a main component and a first tower top liquid containing tetrahydrofuran, dihydrofuran and butanol as main components. I can do it.
  • This step includes a raw material supply port for supplying the above liquid, a column bottom liquid discharge port for discharging the first column bottom liquid, and a first column top liquid containing THF, DHF and butanol as main components.
  • This can be carried out by using a distillation column equipped with a column top liquid outlet for discharging water.
  • the distillation column used in this step preferably has 8 to 15 theoretical plates, and preferably has an operating pressure of 1 atm.
  • the heating temperature at the bottom of the column is preferably 70 to 120 ° C.
  • the first tower bottom liquid obtained in this step is supplied from the outlet of the distillation tower to the reboiler, reheated and then discharged out of the system.
  • the first tower bottom liquid discharged out of the system contains impurities such as water and acetic acid as main components.
  • the reheating temperature by the reboiler is preferably 80 to 120 ° C.
  • the recovery rate of THF can be further improved by returning the steam obtained by reheating to the distillation column.
  • the distilled steam is introduced into a condenser, and the steam is condensed to obtain the first tower top liquid.
  • the total amount of the first top liquid obtained in this step may be used in the second distillation step described below, but in order to further improve the purity of THF, a part of the first top liquid is used. It is preferable to further include a step of returning to the distillation column.
  • the flow rate ratio of the liquid supplied to the second distillation step and the liquid returned to the distillation column is preferably 1: 2 to 1: 4.
  • the first column top liquid supplied to the second distillation step contains THF, DHF and butanol as main components.
  • the first tower top liquid described above may be used as it is in the second distillation step, but in some cases, a hydrogenation step may be performed.
  • the purpose of this step is to further improve the purity and recovery rate of THF by subjecting DHF or NBD contained as the main component of the first tower top liquid to a hydrogenation reaction.
  • This step uses a hydrogen addition tower provided with a raw material supply port for supplying the first tower top liquid, a hydrogen gas supply port for supplying hydrogen gas, and a discharge port for discharging the liquid after the reaction.
  • a hydrogen addition tower provided with a raw material supply port for supplying the first tower top liquid, a hydrogen gas supply port for supplying hydrogen gas, and a discharge port for discharging the liquid after the reaction.
  • Examples of the hydrogenation tower used in this step include a packed tower in which a noble metal such as ruthenium, palladium, or platinum is supported on graphite.
  • NBD is contained as an impurity
  • at least a part thereof is hydrogenated by a catalytic reduction reaction, and is converted into butanol that can be easily separated in a third distillation step described below.
  • the concentration of NBD contained in the condensate is usually not high. Therefore, sufficient THF purity can be achieved without carrying out this step.
  • the internal temperature of the hydrogenation tower used in this step is preferably 80 to 120 ° C., and the hydrogen gas partial pressure is preferably 1 atm.
  • the residence time of the first column top liquid in the column is preferably 0.25 to 1 hour.
  • the second distillation step is intended to separate and remove DHF by distilling the first column top liquid or the liquid after the hydrogenation reaction with a distillation column.
  • the first tower top liquid or the liquid after the hydrogenation reaction is separated into a second tower bottom liquid containing THF and butanol as main components and a second tower top liquid containing DHF as main components. I can do it.
  • This step consists of a raw material supply port for supplying the first tower top liquid, a tower bottom liquid outlet for discharging the second tower bottom liquid containing THF and butanol as main components, and DHF as the main component. It can implement by using the distillation column provided with the discharge port of the tower top liquid for discharging
  • the distillation column used in this step preferably has 12 to 16 theoretical plates, and preferably has an operating pressure of 8 to 9 atmospheres.
  • the heating temperature at the bottom of the column is preferably 120 to 180 ° C.
  • the second column bottom liquid obtained in this step is supplied from the outlet of the distillation column to the reboiler, reheated, and then supplied to the third distillation step as the second column bottom liquid.
  • the second column bottom liquid supplied to the third distillation step contains THF and butanol as main components.
  • the reheating temperature by the reboiler is preferably 120 to 180 ° C.
  • the distilled steam is introduced into a condenser, and the steam is condensed to obtain a second tower top liquid.
  • the total amount of the second top liquid obtained in this step may be used in the reflux step described below, but in order to further improve the recovery of THF, a part of the second top liquid is distilled. It is preferable to further include a step of returning to the tower.
  • the flow ratio of the liquid supplied to the reflux process and the liquid returned to the distillation column is preferably 1: 0.1 to 1: 0.6.
  • the second tower top liquid supplied to the reflux step contains DHF as a main component, and further contains water azeotroped with DHF.
  • the refluxing step a part of the second column top liquid separated in the second distillation step is refluxed to the first distillation step as a refluxing solution, and the remainder is discharged out of the system.
  • the purpose is to further improve the separation and removal efficiency of DHF and water, which are impurities contained in.
  • Patent Document 1 discloses a hydration reaction column, a first distillation column, a hydrogenation column, a second distillation column, and a third distillation column in series. Describes the purification method of THF installed in According to this document, by performing distillation at a pressure higher than atmospheric pressure in the second distillation column, the water content in the column bottom liquid can be reduced, and the column top liquid is refluxed to the first distillation column. By doing so, water can be further separated and removed.
  • Patent Document 1 it is planned to remove DHF by a hydrogenation reaction in a hydrogenation tower, and it is assumed that DHF is contained in the liquid supplied to the second distillation tower. Absent. Therefore, Patent Document 1 does not describe separation and removal of DHF.
  • the present inventors have completely removed DHF from the second column bottom liquid by carrying out the refluxing step described in this section without performing the hydrogenation step as an essential step. It was found that it can be transferred to the top liquid. That is, by refluxing a part of the second tower top liquid as a reflux liquid to the first distillation step, water contained in the tower top liquid is removed as a component of the first tower bottom liquid after reflux, DHF is again fed to the second distillation step as a component of the first top liquid after reflux. Therefore, DHF is concentrated in the second column top liquid by carrying out the reflux step.
  • the present inventors do not reflux the entire amount of the second column top liquid to the first distillation step, but partially use it as the reflux liquid for the first distillation step. It was found that DHF can be separated and removed by refluxing and discharging the remainder as a discharge liquid.
  • the second column top liquid contains THF to be separated as a main component of the second column bottom liquid. For this reason, if the flow rate of the effluent discharged outside the system is increased in the reflux step, the separation efficiency of DHF is improved, but the THF discharged at the same time also increases. As a result, the recovery rate of THF decreases and the economic efficiency of the purification method of the present invention deteriorates.
  • the flow rate ratio of the reflux liquid to the first distillation step and the discharged liquid to the outside of the system is an important factor that defines the recovery rate and purity of THF in the purification method of the present invention. Therefore, in this step, the flow rate ratio of the reflux liquid to the first distillation step and the discharged liquid to the outside of the system is preferably in the range of 5: 1 to 20: 1.
  • the above flow ratio is the flow rate of the reflux liquid to the first distillation step and the discharge liquid to the outside of the system by combining a flow rate measuring means such as a flow meter or an anemometer and a flow rate adjusting means such as a flow rate control valve. Can be adjusted by appropriately setting.
  • Third distillation step is intended to separate the second column bottom liquid with a distillation column to separate the target THF.
  • the second tower bottom liquid is mainly composed of a third tower bottom liquid mainly containing impurities such as butanol, acetic acid, isopropanol, propanol, methyl ethyl ketone (MEK), 1-butyraldehyde (NBD), and THF. It can isolate
  • This step is a raw material supply port for supplying the second column bottom liquid, a column bottom solution discharge port for discharging the third column bottom liquid containing impurities such as butanol as main components, and a target product. It can be carried out by using a distillation column having a column top liquid outlet for discharging a third column top liquid containing THF as a main component.
  • the distillation column used in this step preferably has a theoretical plate number of 15 to 25 plates, and preferably has an operating pressure of 1 atm.
  • the heating temperature at the bottom of the column is preferably 60 to 90 ° C.
  • the third tower bottom liquid obtained in this step is supplied to the reboiler from the outlet of the distillation tower, reheated and then discharged out of the system as the third tower bottom liquid.
  • the third column bottom liquid discharged out of the system contains impurities such as butanol, acetic acid, isopropanol, propanol, MEK, and NBD as main components.
  • the reheating temperature by the reboiler is preferably 60 to 75 ° C.
  • the distilled steam is introduced into a condenser, and the steam is condensed to obtain a third tower top liquid.
  • the total amount of the third tower top liquid obtained in this step may be discharged out of the system as it is as high-purity THF.However, in order to further improve the purity of THF, a part of the third tower top liquid is added to the third tower top liquid. It is preferable to further include a step of returning to the distillation column.
  • the flow ratio of the liquid discharged out of the system and the liquid returned to the distillation column is preferably 1: 0.3 to 1: 1.
  • the liquid discharged out of the system is the target high-purity THF.
  • the purification method of the present invention can obtain the target THF from a liquid containing at least water, DHF and butanol as impurities without reducing the recovery rate and purity of THF. Therefore, the purification method of the present invention makes it possible to obtain high-purity THF with a small number of steps.
  • Tetrahydrofuran purification system The present invention further relates to a purification system for purifying THF in high purity from THF and liquids containing at least water, DHF and butanol as impurities.
  • the THF purification system of the present invention will be described below with reference to the accompanying drawings, but the purification system of the present invention is not limited thereto.
  • the basic embodiment of the THF purification system of the present invention shown in FIG. 1 is a first distillation column 107 having a raw material supply port 135, a column bottom liquid discharge port 136, and a column top liquid discharge port 137.
  • the THF supplied from the raw material supply port 135 and the liquid containing at least water, DHF and butanol as impurities are subjected to distillation treatment, and the first tower bottom liquid containing water as the main component, and THF, DHF and butanol are mainly used.
  • the first column top liquid is separated from the first column top liquid contained as a component, the first column bottom liquid is discharged from the column bottom liquid discharge port 136, and the first column top liquid is discharged from the column top liquid discharge port 137.
  • a distillation column 107 having a raw material supply port 138, a column bottom liquid discharge port 139 and a column top liquid discharge port 140, wherein the first column top liquid supplied from the raw material supply port 138 is subjected to distillation treatment, Separated into a second tower bottom liquid containing THF and butanol as main components and a second tower top liquid containing DHF as main components, and the second tower bottom liquid was discharged from the bottom liquid outlet 139.
  • the second distillation column 108 for discharging the second column top liquid from the column top liquid discharge port 140;
  • a third distillation column 109 having a raw material supply port 141, a column bottom liquid discharge port 142, and a column top liquid discharge port 143, wherein the second column bottom liquid supplied from the raw material supply port 141 is subjected to distillation treatment,
  • the third tower bottom liquid containing butanol as a main component and the third tower top liquid containing THF as a main ingredient are separated, and the third tower bottom liquid is discharged from the bottom liquid outlet 142,
  • the third distillation column 109 for discharging the three-column top liquid from the column-top liquid outlet 143;
  • a flow path 116 connecting the outlet 137 of the top liquid of the first distillation column 107 and the raw material supply port 138 of the second distillation column 108;
  • a flow path 121 connecting the outlet 139 of the bottom liquid of the second distillation column 108 and the raw material supply port 141 of the third distillation column
  • each flow path and the discharge path are not necessarily formed by a single flow path member, and a plurality of flow path members may be arranged in series or in parallel to form a flow path, Further, other devices such as a liquid feed pump, a reboiler, a condenser, a hydrogenation tower, etc., described below, may be interposed in the flow path.
  • Arbitrary members, such as piping, are used as said channel member.
  • the liquid supplied from the raw material supply port 135 of the first distillation column 107 preferably has the same composition as the liquid described in 1-1.
  • Such liquid is usually discharged as a by-product condensate from the esterification process or the condensation polymerization process of the PBT polymerization plant. Therefore, it is preferable that the purification system of the present invention is disposed on the downstream side of a polyester plant 101 using 1,4-butanediol as a raw material, such as a PBT or PBS polymerization plant.
  • the storage tank 104 is disposed on the downstream side of the plant 101, and the liquid discharged from the plant 101 is supplied to the storage tank 104 via the flow path.
  • a transport mechanism such as a liquid feed pump 103 may be disposed in the channel 102 as necessary.
  • the liquid containing THF and at least water, DHF and butanol as impurities is supplied from the storage tank 104 to the raw material supply port 135 of the first distillation column 107 through the flow path 105.
  • a transport mechanism such as a liquid feed pump 106 may be disposed in the channel 105 as necessary.
  • the first column bottom liquid containing water as a main component and the first column top liquid containing THF, DHF and butanol as main components are separated.
  • the first distillation column 107 preferably has 8 to 15 theoretical plates, and preferably has an operating pressure of 1 atm.
  • the heating temperature at the bottom of the column is preferably 90 to 120 ° C.
  • the first column bottom liquid discharged from the discharge port 136 of the first distillation column 107 is supplied to the reboiler 110.
  • the steam generated by reheating the first column bottom liquid is returned to the first distillation column 107 via the flow path 111, and the reheated first column bottom liquid is returned via the discharge path 112.
  • Discharge out of the system includes a flow path member extending from the discharge port 136 to the reboiler 110, a reboiler 110, and a flow path member extending from the reboiler 110 to the outside of the system.
  • a transport mechanism such as a liquid feed pump 113 may be disposed in the discharge path 112 as necessary.
  • the reheating temperature by the reboiler 110 is preferably 80 to 120 ° C.
  • the discharged first tower bottom liquid contains water as a main component.
  • the vapor distilled from the discharge port 137 is introduced into the condenser 114, and the vapor is condensed to obtain the first column top liquid.
  • the total amount of the first tower top liquid obtained in this step may be supplied to the second distillation tower 108 via the flow path 116, but in order to further improve the purity of the THF, the flow through the flow path 115.
  • a part of the first column top liquid is preferably returned to the first distillation column 107.
  • the flow rate ratio of the liquid supplied to the second distillation column 108 via the flow path 116 and the liquid returned to the distillation tower via the flow path 115 is 1: 2 to 1: 4. Preferably there is.
  • the flow path 116 includes a flow path member extending from the discharge port 137 to the condenser 114, a condenser 114, and a flow path member extending from the condenser 114 to the raw material supply port 138 of the second distillation column 108.
  • a transport mechanism such as a liquid feed pump 117 may be disposed in the flow path 116 as necessary.
  • the first column top liquid supplied to the second distillation column 108 via the flow path 116 contains THF, DHF and butanol as main components.
  • the first column top liquid is supplied to the raw material supply port 138 of the second distillation column 108 via the flow path 116.
  • the second distillation column 108 separates into a second column bottom liquid containing THF and butanol as main components and a second column top liquid containing DHF as main components.
  • the second distillation column 108 preferably has 12 to 16 theoretical plates, and preferably has an operating pressure of 8 to 9 atmospheres.
  • the heating temperature at the bottom of the column is preferably 130 to 170 ° C.
  • the second column bottom liquid discharged from the discharge port 139 of the second distillation column 108 is supplied to the reboiler 119.
  • the steam generated by reheating the second column bottom liquid is returned to the second distillation column 108 via the flow path 120, and the reheated second column bottom liquid is returned via the flow path 121.
  • the flow path 121 includes a flow path member extending from the discharge port 139 to the reboiler 119, a reboiler 119, and a flow path member extending from the reboiler 119 to the raw material supply port 141 of the third distillation column 109.
  • a transport mechanism such as a liquid feed pump 122 may be disposed in the flow path 121 as necessary.
  • the reheating temperature by the reboiler 119 is preferably 120 to 180 ° C.
  • the second column bottom liquid supplied to the third distillation column 109 via the channel 121 contains THF and butanol as main components.
  • the vapor distilled from the discharge port 140 is introduced into the condenser 123, and the vapor is condensed to obtain the second column top liquid.
  • the total amount of the second column top liquid obtained in this step may be supplied to the reflux channel 151 and the discharge channel 153, but in order to further improve the recovery rate of THF, the second column is passed through the channel 124. It is preferable to return a part of the top liquid to the second distillation column 108.
  • the flow ratio of the liquid supplied to the reflux path 151 and the discharge path 153 and the liquid returned to the distillation column via the flow path 124 is preferably 1: ⁇ ⁇ 0.1 to 1: 0.6. .
  • the second column top liquid supplied to the reflux path 151 and the discharge path 153 contains DHF as a main component.
  • the second column top liquid may be directly supplied to the reflux path and the discharge path from the second column top liquid discharge port, and is connected to the second column top liquid discharge port 140 at one end as shown in FIG.
  • the other end may be supplied to the reflux path 151 and the discharge path 153 from the second tower top liquid discharge port 140 via the flow path 125 branched to the reflux path 151 and the discharge path 153.
  • the flow path 125 includes a flow path member extending from the discharge port 140 to the condenser 123, a condenser 123, and a flow path member extending from the condenser 123 to the reflux path 151 and the discharge path 153. Is done.
  • a transport mechanism such as a liquid feed pump 126 may be arranged in the flow path 125 as necessary.
  • the second tower top liquid contains DHF as a main component, and also contains water azeotroped with DHF.
  • a part of the second column top liquid is supplied to the raw material supply port 135 of the first distillation column 107 via the reflux path 151.
  • the liquid supplied via the reflux path 151 and the liquid supplied via the flow path 105 are mixed by a mixing means such as a static mixer 152 as necessary, and then mixed into the raw material supply port 135 of the first distillation column 107. You may supply.
  • the second column top liquid containing DHF as a main component supplied via the reflux path 151 is again distilled in the first distillation column 107.
  • the first top liquid after reflux containing DHF as the main component is supplied again to the raw material supply port 138 of the second distillation column 108 via the flow path 116, and after reflux containing water as the main component.
  • the first tower bottom liquid is discharged out of the system via the discharge path 112.
  • the remainder of the second column top liquid is discharged out of the system via the discharge path 153.
  • the amount of DHF contained in the liquid supplied via the reflux path 151 can be reduced, and as a result, the amount of DHF contained in the bottom liquid of the second distillation column 108 can be reduced. Therefore, it is possible to improve the purity of THF obtained in the third distillation column 109 described below.
  • a means for adjusting the flow rate ratio of the reflux path 151 and the discharge path 153 is disposed on the downstream side of the second distillation column 108.
  • Examples of such means include a combination of flow rate measuring means such as flow meters 155 and 157 and flow rate adjusting means such as flow rate control valves 154 and 156.
  • the flow rate measuring means and the flow rate adjusting means may be arranged as separate parts as shown in FIG. 1, or may be arranged as a single part having both functions.
  • the flow rate measuring means and the flow rate adjusting means may be arranged on the downstream side of the second distillation column 108, and may be arranged in each of the reflux path 151 and the discharge path 153 as shown in FIG. It may be arranged in one of the path 151 and the discharge path 153.
  • the second column bottom liquid is supplied to the raw material supply port 141 of the third distillation column 109 via the channel 121.
  • the second bottom liquid is separated into a third bottom liquid containing butanol as a main component and a third top liquid containing THF as a main component.
  • the third distillation column 109 preferably has 15 to 25 theoretical plates, and preferably has an operating pressure of 1 atm.
  • the heating temperature at the bottom of the column is preferably 60 to 90 ° C.
  • the third column bottom liquid discharged from the discharge port 142 of the third distillation column 109 is supplied to the reboiler 127.
  • the steam generated by reheating the third column bottom liquid is returned to the third distillation column 109 via the flow path 128, and the reheated third column bottom liquid is returned via the discharge path 129.
  • the discharge path 129 includes a flow path member from the discharge port 142 to the reboiler 127, a reboiler 127, and a flow path member from the reboiler 127 to the outside of the system.
  • a transport mechanism such as a liquid feed pump 130 may be disposed in the discharge path 129 as necessary.
  • the reheating temperature by the reboiler 127 is preferably 60 to 75 ° C.
  • the column bottom liquid discharged out of the system through the discharge path 129 contains butanol as a main component.
  • the steam distilled from the discharge port 143 is introduced into the condenser 131, and the steam is condensed to obtain the third tower top liquid.
  • the total amount of the third tower top liquid obtained in this step may be supplied to the discharge path 133, but in order to further improve the purity of THF, a part of the third tower top liquid is passed through the channel 132. Is preferably returned to the third distillation column 109.
  • the flow rate ratio between the flow rate of the liquid supplied to the discharge path 133 and the liquid returned to the distillation column via the flow path 132 is preferably 1: 0.3 to 1: 1.
  • the discharge path 133 includes a flow path member extending from the discharge port 143 to the condenser 131, a condenser 131, and a flow path member extending from the condenser 131 to the outside of the system.
  • a transport mechanism such as a liquid feed pump 134 may be disposed in the discharge path 133 as necessary.
  • the third column top liquid discharged from the discharge path 133 is high-purity THF which is a target product.
  • the purification system of the embodiment shown in FIG. 1 can obtain the target THF from a liquid containing at least water, DHF and butanol as impurities without reducing the recovery rate and purity of THF. Since the purification system has a small number of steps and does not require additional raw materials and equipment, high-purity THF can be obtained without increasing manufacturing costs and equipment costs.
  • FIG. 2 is the same as the purification system shown in FIG. 1 except that a hydrogenation column 261 is further disposed between the top liquid outlet of the first distillation column and the raw material supply port of the second distillation column. It has the composition of.
  • a raw material supply port and a hydrogen gas supply port for supplying hydrogen gas are provided in the middle of the flow path connecting the outlet of the top liquid of the first distillation column and the raw material supply port of the second distillation column.
  • a hydrogenation tower 261 having a discharge port for discharging the liquid after the reaction.
  • the first column top liquid containing THF, DHF and butanol as main components is a flow path member extending from the outlet 137 to the condenser 114, the condenser 114, and the raw material of the hydrogenation tower 261 from the condenser 114. It is supplied to the raw material supply port of the hydrogenation tower 261 via a flow path member that reaches the supply port.
  • the hydrogenation tower 261 is preferably a packed tower in which a noble metal such as ruthenium, palladium, or platinum is supported on graphite.
  • a hydrogen gas supply port of the hydrogenation tower 261 is connected to a tank 263 filled with hydrogen gas via a pipe 262, and hydrogen gas is supplied from the tank 263 to the hydrogenation tower 261.
  • the supplied hydrogen gas partial pressure is adjusted to a suitable partial pressure by a flow rate adjusting means such as a regulator 264 disposed between the hydrogen addition tower 261 and the tank 263. Further, the hydrogenation tower 261 is provided with a heater, and the inside of the hydrogenation tower is maintained at a suitable temperature. Thereby, inside the hydrogenation tower 261, at least a part of DHF contained in the top liquid of the first distillation tower 107 is hydrogenated by a catalytic reduction reaction and converted to THF. Further, when NBD is contained as an impurity, at least a part thereof is hydrogenated by a catalytic reduction reaction and converted into butanol that can be easily separated in the third distillation column 109.
  • a flow rate adjusting means such as a regulator 264 disposed between the hydrogen addition tower 261 and the tank 263.
  • the hydrogenation tower 261 is provided with a heater, and the inside of the hydrogenation tower is maintained at a suitable temperature.
  • NBD is contained as an impurity
  • at least a part thereof is
  • the internal temperature of the hydrogenation tower 261 is preferably 80 to 120 ° C., and the hydrogen gas partial pressure is preferably 1 atm. Further, the residence time of the top liquid of the first distillation column 107 in the column is preferably 0.25 to 1 hour.
  • the purification system of the embodiment shown in FIG. 2 can increase the total amount of THF by converting DHF contained as impurities into THF, and as a result, the recovery rate of THF can be improved. Moreover, when applying with respect to the liquid which contains NBD as an impurity, it becomes possible to improve the purity of THF by converting difficult NBD into butanol which is easy to separate.
  • the THF purification system used in this example is a first distillation column having a raw material supply port, a column bottom liquid discharge port, and a column top liquid discharge port. And a condensate of a by-product of a PBT polymerization plant containing butanol, and a first tower bottom liquid containing water as a main component and a first tower top containing THF, DHF and butanol as main components.
  • the first distillation column the first column bottom liquid is discharged from the column bottom liquid discharge port, the first column top liquid is discharged from the column top liquid discharge port, the raw material supply port, the column A second distillation column having a bottom liquid discharge port and a column top liquid discharge port, wherein the first column top liquid supplied from the raw material supply port is subjected to distillation treatment, and contains THF and butanol as main components.
  • the second tower bottom liquid is discharged from the bottom liquid outlet.
  • a second distillation column provided with the second distillation column for discharging the second column top liquid from the column top liquid discharge port, a raw material supply port, a column bottom liquid discharge port, and a column top liquid discharge port.
  • the second column bottom liquid supplied from the raw material supply port is subjected to distillation treatment to be separated into a third column bottom liquid containing butanol as a main component and a third column top liquid containing THF as a main component.
  • the third distillation column for discharging the third column bottom liquid from the column bottom liquid discharge port and discharging the third column top liquid from the column top liquid discharge port is arranged in series, and further the second distillation A reflux path for connecting a column top liquid outlet and an upstream side of the first distillation column to reflux a part of the top liquid of the second distillation column to the first distillation column; and a column of the second distillation column And a discharge path for discharging the remainder of the top liquid of the second distillation column from the top liquid discharge port to the outside of the system.
  • the by-product condensate was supplied from the PBT polymerization plant 101 to the by-product condensate tank 104 by the liquid feed pump 103 via the flow path 102.
  • the condensate contained 68% water, 30.83% THF, 0.82% butanol, 0.22% acetic acid, 1200 ppm DHF, 35 ppm isopropanol, 10 ppm NBD, 10 ppm MEK.
  • the temperature was maintained at a temperature equal to or higher than the melting point of 1,4-BDO (20 to 25 ° C.) as necessary.
  • the by-product condensate 1995 part was supplied to the first distillation column 107 by the feed pump 106 via the flow path 105. Further, 298 parts of the top liquid of the second distillation column 108 was refluxed to the first distillation column 107 via the reflux path 151 from the second distillation column 108 described below. After the reflux liquid and the by-product condensate were mixed using a static mixer 152, the mixed liquid was supplied to the first distillation column 107.
  • the first distillation column 107 had 15 theoretical plates, a column bottom temperature of 100 ° C., an operating pressure of 1 atm, and a column top liquid reflux ratio of 2.9.
  • the bottom liquid of the first distillation column 107 contains 99.06% water, 0.56% butanol, 0.38% acetic acid, and 0.01% THF as high boiling components. 1368 parts were discharged out of the system by the pump 113.
  • the top liquid of the first distillation column 107 contains 94.5% THF, 2.32% DHF, 0.92% butanol, 0.01% isopropanol, 20 ⁇ ppm NBD, and 20 ppm MEK.
  • a liquid feed pump 117 by a liquid feed pump 117 via a flow path member consisting of a flow path member extending from 137 to the condenser 114, a condenser 114, and a flow path member extending from the condenser 114 to the raw material supply port of the hydrogenation tower 261. The portion was discharged and supplied to the hydrogenation tower 261.
  • the hydrogenation tower 261 is a packed tower of a pellet-shaped catalyst in which 2% of metal ruthenium is supported on graphite, the tower bottom temperature is 100 ° C., the operation pressure is 9.5 atm, and the residence time is 0.5 hours. Hydrogen gas was adjusted to the above operating pressure from the tank 263 by the regulator 264 and supplied to the hydrogenation tower 261 via the pipe 262. The solution supplied to the hydrogenation tower 261 was brought into contact with hydrogen gas in the tower. Thereby, a part of DHF was reduced to THF.
  • the hydrogenation tower 261 can be omitted if necessary. Hereinafter, a case where the hydrogenation tower 261 is omitted will be described.
  • the second distillation column 108 had 14 theoretical plates, a column bottom temperature of 150 ° C., an operating pressure of 8.4 atm, and a reflux ratio of the column top liquid of 0.3.
  • the bottom liquid of the second distillation column 108 is 98.54% THF, 1.41% butanol, 0.04% DHF, 0.01% isopropanol, 0.01% acetic acid, 50 ⁇ ppm water, 10 ppm MEK, It contains 10 ppm, and passes through a flow path member 121 from the discharge port 139 to the reboiler 119, a reboiler 119, and a flow path member from the reboiler 119 to the raw material supply port 141 of the third distillation column 108.
  • the flow path 125 includes a flow path member extending from the discharge port 140 to the condenser 123, a condenser 123, and a flow path member extending from the condenser 123 to the branch points of the reflux path 151 and the discharge path 153.
  • the discharged top liquid was allowed to flow into the reflux path 151 and the discharge path 153 via the flow path 125.
  • Flow control valves 154 and 156 and flow meters 155 and 157 are installed in the reflux path 151 and the discharge path 153. By operating the flow control valves 154 and 156, 298 parts of the return path 151 and the discharge path 153 The flow rate ratio was adjusted so that 26 parts flowed.
  • the liquid flowing through the reflux path 151 was refluxed to the first distillation column 107. Further, the liquid flowing through the discharge path 153 was discharged out of the system as a discharged liquid. Accordingly, the flow rate ratio between the reflux liquid and the discharged liquid to the outside at this time was 11.46.
  • the third distillation column 109 had 19 theoretical plates, a column bottom temperature of 67 ° C., an operating pressure of 1 atm, and a reflux ratio of the column top liquid of 0.6.
  • the bottom liquid of the third distillation column 109 contains 97.85% butanol, 0.8% THF, 0.64% isopropanol, 0.36% acetic acid, 0.02% water, 0.11% MEK, 0.11% NBD as high boiling components.
  • the top liquid of the third distillation column 109 contains 99.96% THF and 0.04% DHF, a flow path member extending from the outlet 143 to the condenser 131, the condenser 131, and the condenser 131. 593 parts were discharged by the liquid feed pump 134 via a discharge path 133 consisting of a flow path member extending from to the outside of the system.
  • the top liquid of the third distillation column 109 is the high-purity THF of the final product in this example.
  • the purity of THF recovered in this example was 99.96%, and the recovery rate was 96.4%. This was the result of achieving a target purity of 99.9% or higher and a target recovery rate of 90% or higher.
  • the THF purification system of the present invention from the condensate of the by-product containing THF, which is generated in the polymerization plant of PBT, from a condensate of high purity with few processes and reasonable equipment. It becomes possible to purify THF with a high recovery rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 テトラヒドロフラン並びに不純物として少なくとも水、ジヒドロフラン及びブタノールを含有する液体からのテトラヒドロフランの精製方法であって、該液体を蒸留塔によって蒸留処理し、水を主成分として含有する第一塔底液と、テトラヒドロフラン、ジヒドロフラン及びブタノールを主成分として含有する第一塔頂液とに分離する第一の蒸留工程と、第一塔頂液を蒸留塔によって蒸留処理し、テトラヒドロフラン及びブタノールを主成分として含有する第二塔底液と、ジヒドロフランを主成分として含有する第二塔頂液とに分離する第二の蒸留工程と、第二塔底液を蒸留塔によって蒸留処理し、ブタノールを主成分として含有する第三塔底液と、テトラヒドロフランを主成分として含有する第三塔頂液とに分離する第三の蒸留工程とを含み、第二塔頂液の一部を還流液として第一の蒸留工程に還流させ、残部を系外に排出する還流工程をさらに含むことを特徴とする、テトラヒドロフランの精製方法。

Description

テトラヒドロフランの精製方法及び精製システム
 本発明は、テトラヒドロフラン並びに不純物として少なくとも水、ジヒドロフラン及びブタノールを含有する液体からテトラヒドロフランを精製する技術に関する。
 近年、自動車等の分野で、耐熱性や強度の観点から、従来は鉄鋼材料で構成していた部品をエンジニアリングプラスチックで代替し軽量化することが世の中の流れになっている。エンジニアリングプラスチックの中でも、ポリブチレンテレフタレ-ト(以下、PBT)は強度と加工性を兼ね備えており、今後需要がさらに伸びると予想される優れた素材である。PBTは、グリコールの一種である1,4-ブタンジオール(以下、1,4-BDO)と二塩基酸の一種であるテレフタル酸(以下、TA)又はそのジメチルエステルを原料とし、エステル化反応、エステル交換反応による縮重合により合成される。
 エステル化反応は、常圧または弱負圧、窒素等の不活性ガス雰囲気の下で起こる、二塩基酸のカルボキシル基とグリコールのOH基との縮合反応であり、副生成物として水が生成する(式1)。それ故、水を脱揮除去することにより反応が促進される。また、必要に応じてチタンテトラブトキシド等の重合触媒を添加することによっても反応が加速される。
Figure JPOXMLDOC01-appb-M000001
 エステル交換反応は、減圧環境でかつ重合触媒の存在下、エステル化反応により生成したオリゴマー同士において、一方のオリゴマーの末端グリコールが脱離し、該オリゴマーのカルボキシル基がもう一方のオリゴマーの末端グリコールと縮合してエステル結合する反応である(式2)。この場合、副生成物としてグリコールが生成するため、これを脱揮除去することにより反応が促進され、重合度が増大していく。
Figure JPOXMLDOC01-appb-M000002
 上記のエステル化反応において、原料のグリコールに対し、別の原料である二塩基酸の酸が触媒として作用し、脱水反応が起きてグリコールが劣化する場合がある。特に、グリコールがエチレングリコールの場合にはジエチレングリコールの生成(式3)が、1,4-BDOの場合にはテトラヒドロフラン(以下THF)の生成(式4)が、それぞれ起こりやすい。これらの副反応は原料収率の低下を引き起こすため、できるだけ抑制されることが望ましい。
Figure JPOXMLDOC01-appb-M000003
 非特許文献1には、PBTの製造に関し、エステル化工程でのTHF生成抑制方法が記載されている。上記の文献では、エステル化工程でのTHF生成はTAの酸触媒により促進されること、その副反応に関する活性化エネルギー(32.1 kcal)は、主反応、すなわちエステル化反応のそれ(30.5 kcal)と同程度であるため、反応温度によるTHF生成抑制は困難であることが記載されている。その際、対策として主反応のみを促進する重合触媒の添加が有効であるものの、THFの生成そのもの、すなわち原料収率の低減は避けられないものであることが記載されている。
 上記のように、THFはPBTの製造において副生成物として生成するが、一方で開環重合反応によりポリマー化することから、THFはスパンデックスやウレタンエラストマーの原料として用いられるポリテトラメチレングリコール(以下、PTMG)のモノマー原料として有用であり、これを回収できれば有価物とすることが出来る。しかしながら、PTMGの着色抑制の観点からは、THFの高純度化が必要となる。従って、PBTの重合プラントにおいては、THFを回収、精製するための工程を併設し、原料の一つである1,4-BDOを有効利用することが重要となる。
 特許文献1には、水和反応塔、第一蒸留塔、水素添加塔、第二蒸留塔、及び第三蒸留塔を直列に設置したTHFの精製方法が記載されている。当該文献に記載の精製方法では、THFを含有する水溶液を水和反応塔に流通させることで、PTMG着色の原因となる主要な不純物であるジヒドロフラン(以下、DHF)の一部を、イオン交換樹脂を触媒として水和反応させることでヒドロキシフランに変換し、蒸気圧を低下させる(式5、6)。
Figure JPOXMLDOC01-appb-C000004
 水和反応塔を流通させた水溶液は、第一蒸留塔に供給され、塔底液と塔頂液に分離される。塔頂液が水素添加塔に供給されると、水素添加塔では、貴金属を担持した触媒の存在下で残留しているDHFに水素が添加され、THFに変換される(式7)。
Figure JPOXMLDOC01-appb-C000005
 水素添加塔を流通させた液は第二蒸留塔に供給される。第二蒸留塔では、水分を多く含有するTHFが塔頂液となり、THFを含有し水分が除去された塔底液は第三蒸留塔に供給される。ここで、第二蒸留塔の塔頂液を第一蒸留塔に還流させることにより、THFの回収率を向上させている。第三蒸留塔では、高純度のTHFが塔頂液として回収され、塔底液からはブタノールを含む廃液が排出される。以上のように、特許文献1に記載の方法では、第二蒸留塔の塔頂液を第一蒸留塔に還流させることにより、THFからの分離が難しい水分の濃度を低減すると共に、THFのロスを低減し回収率を向上させている。そして、水和反応と水素添加の2反応工程を追加することにより、THF中のDHFを低減している。
 しかしながら、水和反応と水素添加の2反応工程追加は、設備コストの増大、及び水素利用に伴う運転コスト増大の原因となる場合がある。このため、工程数が少なく追加の原料、ユーティリティが必要ない合理的な形でDHF等の不純物を低減できる、THF回収・精製方法の開発が課題となっていた。
特公平6-29280号公報 東レ・菅沼他、繊維学会誌、第43巻、p. 186-191、1987年
 以上のように、PBTの製造プラントでは、1,4-BDOの劣化に伴う原料収率低下が経済性に与える影響を抑制するために、経済的にTHFを回収、精製するためのプラント技術が望まれていた。それ故、本発明は、工程数が少なく、かつ追加の原料及び/又は設備を必要としない、THF及び不純物としてDHF等を含有する液体からのTHFの精製方法及び精製システムを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、前記特許文献1に記載されているような第一蒸留塔、第二蒸留塔及び第三蒸留塔を直列に設置したTHFの精製システムにおいて、第二蒸留塔の塔頂液の一部を第一蒸留塔に還流させ、残部を系外排出することにより、水和反応や水素添加の工程を追加することなく、DHF等の不純物が少ない高純度のTHFを高回収率で精製できることを見出し、本発明を完成した。
 すなわち、本発明の要旨は以下の通りである。
(1) テトラヒドロフラン並びに不純物として少なくとも水、ジヒドロフラン及びブタノールを含有する液体からのテトラヒドロフランの精製方法であって、
該液体を蒸留塔によって蒸留処理し、水を主成分として含有する第一塔底液と、テトラヒドロフラン、ジヒドロフラン及びブタノールを主成分として含有する第一塔頂液とに分離する第一の蒸留工程と、
第一塔頂液を蒸留塔によって蒸留処理し、テトラヒドロフラン及びブタノールを主成分として含有する第二塔底液と、ジヒドロフランを主成分として含有する第二塔頂液とに分離する第二の蒸留工程と、
第二塔底液を蒸留塔によって蒸留処理し、ブタノールを主成分として含有する第三塔底液と、テトラヒドロフランを主成分として含有する第三塔頂液とに分離する第三の蒸留工程とを含み、
第二塔頂液の一部を還流液として第一の蒸留工程に還流させ、残部を系外に排出する還流工程をさらに含むことを特徴とする、テトラヒドロフランの精製方法。
(2) 還流工程において、第一の蒸留工程への還流液と系外への排出液との流量比が5:1~20:1の範囲である、前記(1)のテトラヒドロフランの精製方法。
(3) 第一の蒸留工程と第二の蒸留工程の間に、
第一塔頂液に含有されるジヒドロフランを水素添加してテトラヒドロフランに変換する水素添加工程をさらに含む、前記(1)又は(2)の精製方法。
(4) テトラヒドロフランの精製システムであって、
原料供給口、塔底液の排出口及び塔頂液の排出口を備える第一蒸留塔であって、原料供給口から供給されるテトラヒドロフラン並びに不純物として少なくとも水、ジヒドロフラン及びブタノールを含有する液体を蒸留処理して、水を主成分として含有する第一塔底液と、テトラヒドロフラン、ジヒドロフラン及びブタノールを主成分として含有する第一塔頂液とに分離して、第一塔底液を塔底液の排出口から排出し、第一塔頂液を塔頂液の排出口から排出する前記第一蒸留塔と、
原料供給口、塔底液の排出口及び塔頂液の排出口を備える第二蒸留塔であって、原料供給口から供給される第一塔頂液を蒸留処理して、テトラヒドロフラン及びブタノールを主成分として含有する第二塔底液と、ジヒドロフランを主成分として含有する第二塔頂液とに分離して、第二塔底液を塔底液の排出口から排出し、第二塔頂液を塔頂液の排出口から排出する前記第二蒸留塔と、
原料供給口、塔底液の排出口及び塔頂液の排出口を備える第三蒸留塔であって、原料供給口から供給される第二塔底液を蒸留処理して、ブタノールを主成分として含有する第三塔底液と、テトラヒドロフランを主成分として含有する第三塔頂液とに分離して、第三塔底液を塔底液の排出口から排出し、第三塔頂液を塔頂液の排出口から排出する前記第三蒸留塔と、
第一蒸留塔の塔頂液の排出口と第二蒸留塔の原料供給口とを接続する流路と、
第二蒸留塔の塔底液の排出口と第三蒸留塔の原料供給口とを接続する流路と、
第二蒸留塔の塔頂液の排出口と第一蒸留塔の上流側とを接続し、第二蒸留塔の塔頂液の一部を第一蒸留塔に還流させる還流路と、
第二蒸留塔の塔頂液の排出口から第二蒸留塔の塔頂液の残部を系外に排出する排出路と、
を備える、テトラヒドロフランの精製システム。
(5) 前記還流路と前記排出路との流量比を5:1~20:1の範囲に調整する手段をさらに備える、前記(4)の精製システム。
(6) 第一蒸留塔の塔頂液の排出口と第二蒸留塔の原料供給口との間に水素添加塔をさらに備える、前記(4)又は(5)の精製システム。
 本発明により、工程数が少なく、かつ追加の原料及び/又は設備を必要としない、THF及び不純物としてDHF等を含有する液体からのTHFの精製方法及び精製システムを提供することが可能となる。
本発明の全体工程を実施するための精製システムの一実施形態を示す図である。 本発明の全体工程を実施するための精製システムの別の実施形態を示す図である。
1.テトラヒドロフランの精製方法
 本発明は、テトラヒドロフラン(THF)と、不純物として少なくとも水、ジヒドロフラン(DHF)及びブタノールを含有する液体から、THFを高純度で精製する方法に関する。本発明のTHFの精製方法に含まれる各工程について、以下に説明する。
1-1.テトラヒドロフランを含有する液体
 本発明のTHFの精製方法は、THF並びに不純物として少なくとも水、DHF及びブタノールを含有する液体に適用することが出来る。上記の液体において、THFは10~98%の濃度であることが好ましい。また、水は1~90%の濃度であることが好ましく、DHFは10~5000 ppmの濃度であることが好ましく、ブタノールは0.1~2%の濃度であることが好ましい。また、上記の成分に加えて、他の不純物として、酢酸、イソプロパノール、プロパノール、メチルエチルケトン(MEK)、1-ブチルアルデヒド(NBD)等を含有する液体に対しても、本発明の精製方法を同様に適用することが出来る。この場合、酢酸は0.01~0.5%の濃度であることが好ましく、イソプロパノールは1~100 ppmの濃度であることが好ましく、プロパノールは1~100 ppmの濃度であることが好ましく、MEKは1~50 ppmの濃度であることが好ましく、NBDは1~30 ppmの濃度であることが好ましい。
 以下において説明するように、本発明の精製方法は、不純物としてDHF等を含有する液体から、THFを高純度で精製することが出来る。それ故、PBT又はPBS(ポリブチレンサクシネート)重合プラントのような、1,4-ブタンジオールを原料とする重合プラントのエステル化工程から排出される副生成物の凝縮液又は縮重合工程から排出される副生成物の凝縮液に対して、本発明の精製方法を適用することが出来る。上記のような液体に対して本発明の精製方法を適用することにより、重合プラントの排出液から有価物である高純度のTHFを得ることが可能となる。
1-2.第一の蒸留工程
 第一の蒸留工程は、上記で説明したTHFを含有する液体を蒸留塔によって蒸留処理し、主要な不純物である水を粗く分離除去することを目的とする。本工程において、上記で説明したTHFを含有する液体を、水を主成分として含有する第一塔底液と、テトラヒドロフラン、ジヒドロフラン及びブタノールを主成分として含有する第一塔頂液とに分離することが出来る。
 本工程は、上記の液体を供給するための原料供給口、第一塔底液を排出するための塔底液の排出口、並びにTHF、DHF及びブタノールを主成分として含有する第一塔頂液を排出するための塔頂液の排出口を備える蒸留塔を用いることにより実施することが出来る。本工程において使用される蒸留塔は、8~15段の理論段数であることが好ましく、1気圧の操作圧力であることが好ましい。また、塔底部の加熱温度は、70~120℃であることが好ましい。
 本工程において得られる第一塔底液は、蒸留塔の排出口からリボイラーに供給され、再加熱された後に系外に排出される。系外に排出される第一塔底液は、水、酢酸等の不純物を主成分として含有する。上記のリボイラーによる再加熱の温度は、80~120℃であることが好ましい。再加熱により得られる蒸気を蒸留塔に戻すことにより、THFの回収率をさらに向上させることが出来る。
 上記の蒸留塔の塔頂部では、留出する蒸気を凝縮器に導入し、蒸気を凝縮させて第一塔頂液を得る。本工程において得られる第一塔頂液は、その全量を以下で説明する第二の蒸留工程に用いても良いが、THFの純度をさらに向上させるために、第一塔頂液の一部を該蒸留塔に戻す工程をさらに含むことが好ましい。上記の工程において、第二の蒸留工程へ供給される液の流量と蒸留塔に戻される液との流量比は、1:2~1:4であることが好ましい。第二の蒸留工程へ供給される第一塔頂液は、THF、DHF及びブタノールを主成分として含有する。
 上記の条件で第一の蒸留工程を行うことにより、THFの回収率を低下させることなく、主要な不純物である水を効率的に除去することが可能となる。
1-3.水素添加工程
 上記で説明した第一塔頂液をそのまま第二の蒸留工程に用いても良いが、場合により水素添加工程を実施しても良い。本工程は、第一塔頂液の主成分として含有されるDHFやNBDを水素添加反応に供することにより、THFの純度及び回収率をさらに向上させることを目的とする。
 本工程は、第一塔頂液を供給するための原料供給口、水素ガスを供給するための水素ガス供給口及び反応後の液体を排出するための排出口を備える水素添加塔を用いることにより実施することが出来る。本工程において使用される水素添加塔としては、例えば、黒鉛にルテニウム、パラジウム、白金等の貴金属が担持された充填塔を挙げることが出来る。かかる水素添加塔に、第一塔頂液及び水素ガスを供給すると、該塔頂液に含有されるDHFの少なくとも一部が接触還元反応により水素添加され、THFに変換される。それ故、本工程の排出液には、第一塔頂液に当初から含有されるTHFに加えてDHFから変換されるTHFも含有され、THFの総量が増加することとなる。
 また、不純物としてNBDを含有する場合、その少なくとも一部が接触還元反応により水素添加され、以下で説明する第三の蒸留工程において容易に分離可能なブタノールに変換される。なお、PBT重合プラントのエステル化工程から回収される副生成物の凝縮液に対して本発明の精製方法を適用する場合には、通常、該凝縮液に含有されるNBDの濃度は高くないことから、本工程を実施しなくとも十分なTHF純度を達成することが出来る。
 本工程において使用される水素添加塔の塔内温度は80~120℃であることが好ましく、水素ガス分圧は1気圧であることが好ましい。また、第一塔頂液の塔内滞留時間は、0.25~1時間であることが好ましい。
 上記の条件で水素添加工程を行うことにより、不純物として含有されるDHFをTHFに変換することが出来る。これにより、THFの総量を増加させ、結果としてTHFの回収率を向上させることが可能となる。また、NBDを不純物として含有する液体に対して本発明の精製方法を適用する場合、分離困難なNBDを分離が容易なブタノールに変換することにより、THFの純度を向上させることが可能となる。
1-4.第二の蒸留工程
 第二の蒸留工程は、第一塔頂液又は水素添加反応後の液体を蒸留塔によって蒸留処理し、DHFを分離除去することを目的とする。本工程において、第一塔頂液又は水素添加反応後の液体を、THF及びブタノールを主成分として含有する第二塔底液と、DHFを主成分として含有する第二塔頂液とに分離することが出来る。
 本工程は、第一塔頂液を供給するための原料供給口、THF及びブタノールを主成分として含有する第二塔底液を排出するための塔底液の排出口、及びDHFを主成分として含有する第二塔頂液を排出するための塔頂液の排出口を備える蒸留塔を用いることにより実施することが出来る。本工程において使用される蒸留塔は、12~16段の理論段数であることが好ましく、8~9気圧の操作圧力であることが好ましい。また、塔底部の加熱温度は、120~180℃であることが好ましい。
 本工程において得られる第二塔底液は、蒸留塔の排出口からリボイラーに供給され、再加熱された後に第二塔底液として第三の蒸留工程に供給される。第三の蒸留工程に供給される第二塔底液は、THF及びブタノールを主成分として含有する。上記のリボイラーによる再加熱の温度は、120~180℃であることが好ましい。再加熱により得られる蒸気を蒸留塔に戻すことにより、不純物であるDHFをさらに分離除去することが出来る。
 上記の蒸留塔の塔頂部では、留出する蒸気を凝縮器に導入し、蒸気を凝縮させて第二塔頂液を得る。本工程において得られる第二塔頂液は、その全量を以下で説明する還流工程に用いても良いが、THFの回収率をさらに向上させるために、第二塔頂液の一部を該蒸留塔に戻す工程をさらに含むことが好ましい。上記の工程において、還流工程へ供給される液の流量と蒸留塔に戻される液との流量比は、1: 0.1~1:0.6であることが好ましい。還流工程へ供給される第二塔頂液は、DHFを主成分として含有し、さらにDHFと共沸する水も含有する。
 上記の条件で第二の蒸留工程を行うことにより、THFの回収率を低下させることなく、不純物であるDHFを効率的に除去することが可能となる。
1-5.還流工程
 還流工程は、第二の蒸留工程で分離された第二塔頂液の一部を還流液として第一の蒸留工程に還流させ、残部を系外に排出することにより、該塔頂液に含有される不純物であるDHF及び水の分離除去効率をさらに向上させることを目的とする。
 通常、THF、水及びDHFは共沸するため、これらの化合物を蒸留によって分離することは困難である。THF、水及びDHFを含有する溶液から水を分離除去する方法として、例えば特許文献1は、水和反応塔、第一蒸留塔、水素添加塔、第二蒸留塔、及び第三蒸留塔を直列に設置したTHFの精製方法を記載している。当該文献によると、第二蒸留塔において大気圧よりも高い圧力下で蒸留を行うことにより、塔底液への水分含有率を低下させることが出来るとともに、塔頂液を第一蒸留塔に還流させることにより、水をさらに分離除去することが出来る。一方、特許文献1に記載の方法では、水素添加塔における水素添加反応によりDHFを除去することが予定されており、第二蒸留塔へ供給される液体にDHFが含有されることは想定されていない。それ故、DHFの分離除去については、特許文献1には記載されていない。
 しかしながら、本発明者らは、水素添加工程を必須の工程として実施しなくとも、本項で説明する還流工程を実施することにより、DHFを第二塔底液から完全に除去し、第二塔頂液に移行させることが出来ることを見出した。すなわち、第二塔頂液の一部を還流液として第一の蒸留工程に還流させることにより、該塔頂液に含有される水を還流後の第一塔底液の成分として除去する一方、DHFを還流後の第一塔頂液の成分として第二の蒸留工程に再び供給する。それ故、還流工程を実施することにより、DHFは第二塔頂液中に濃縮されることとなる。
 また、本発明者らは、特許文献1に記載されているように第二塔頂液の全量を第一の蒸留工程に還流させるのではなく、一部を還流液として第一の蒸留工程に還流させ、残部を排出液として系外に排出することにより、DHFを分離除去することが出来ることを見出した。第二塔頂液中には、第二塔底液の主成分として分離されるべきTHFも含有されている。このため、還流工程において、系外に排出される排出液の流量を増加させると、DHFの分離効率は向上するものの、同時に排出されるTHFも増加することとなる。その結果、THFの回収率は低下し、本発明の精製方法の経済性は悪化する。一方、第一の蒸留工程への還流液の流量を増加させると、THFの回収率は向上するものの、第一の蒸留工程を経由して再び第二の蒸留工程に供給されるDHFが増加することとなる。その結果、第二塔底液に含有されるDHF量が増加し、以下で説明する第三の蒸留工程において得られるTHFの純度が低下する。
 以上のように、第一の蒸留工程への還流液と系外への排出液との流量比が、本発明の精製方法におけるTHFの回収率及び純度を規定する重要な要素となる。それ故、本工程において、第一の蒸留工程への還流液と系外への排出液との流量比は、5:1~20:1の範囲であることが好ましい。上記の流量比は、流量計又は流速計のような流量測定手段と、流量調節弁のような流量調整手段を組み合わせて、第一の蒸留工程への還流液と系外への排出液の流量を適宜設定することにより調整することが出来る。
 上記の条件で還流工程を行うことにより、THFの回収率を向上させるとともに、不純物であるDHF及び水を除去してTHFの純度を向上させることが可能となる。
1-6.第三の蒸留工程
 第三の蒸留工程は、第二塔底液を蒸留塔によって蒸留処理し、目的物であるTHFを分離することを目的とする。本工程において、第二塔底液を、ブタノール、酢酸、イソプロパノール、プロパノール、メチルエチルケトン(MEK)、1-ブチルアルデヒド(NBD)等の不純物を主成分として含有する第三塔底液と、THFを主成分として含有する第三塔頂液とに分離することが出来る。
 本工程は、第二塔底液を供給するための原料供給口、ブタノール等の不純物を主成分として含有する第三塔底液を排出するための塔底液の排出口、及び目的物であるTHFを主成分として含有する第三塔頂液を排出するための塔頂液の排出口を備える蒸留塔を用いることにより実施することが出来る。本工程において使用される蒸留塔は、15~25段の理論段数であることが好ましく、1気圧の操作圧力であることが好ましい。また、塔底部の加熱温度は、60~90℃であることが好ましい。
 本工程において得られる第三塔底液は、蒸留塔の排出口からリボイラーに供給され、再加熱された後に第三塔底液として系外に排出される。系外に排出される第三塔底液は、ブタノール、酢酸、イソプロパノール、プロパノール、MEK、NBD等の不純物を主成分として含有する。上記のリボイラーによる再加熱の温度は、60~75℃であることが好ましい。再加熱により得られる蒸気を蒸留塔に戻すことにより、目的物であるTHFの回収率を向上させることが出来る。
 上記の蒸留塔の塔頂部では、留出する蒸気を凝縮器に導入し、蒸気を凝縮させて第三塔頂液を得る。本工程において得られる第三塔頂液は、その全量を高純度THFとしてそのまま系外に排出しても良いが、THFの純度をさらに向上させるために、第三塔頂液の一部を該蒸留塔に戻す工程をさらに含むことが好ましい。上記の工程において、系外に排出される液の流量と蒸留塔に戻される液との流量比は、1: 0.3~1:1であることが好ましい。系外に排出される液は、目的物の高純度THFである。
 上記の条件で第三の蒸留工程を行うことにより、THFの回収率及び純度を低下させることなく、目的物である高純度THFを得ることが可能となる。
 以上のように、本発明の精製方法は、THF並びに不純物として少なくとも水、DHF及びブタノールを含有する液体から、THFの回収率及び純度を低下させることなく目的物であるTHFを得ることが出来る。それ故、本発明の精製方法により、少ない工程数で高純度のTHFを得ることが可能となる。
2.テトラヒドロフランの精製システム
 さらに本発明は、THF並びに不純物として少なくとも水、DHF及びブタノールを含有する液体からTHFを高純度で精製するための精製システムに関する。本発明のTHFの精製システムについて、添付図面に基づき以下に説明するが、本発明の精製システムはこれらに限定されるものではない。
 図1に示される本発明のTHFの精製システムの基本的な実施形態は、原料供給口135、塔底液の排出口136及び塔頂液の排出口137を備える第一蒸留塔107であって、原料供給口135から供給されるTHF並びに不純物として少なくとも水、DHF及びブタノールを含有する液体を蒸留処理して、水を主成分として含有する第一塔底液と、THF、DHF及びブタノールを主成分として含有する第一塔頂液とに分離して、第一塔底液を塔底液の排出口136から排出し、第一塔頂液を塔頂液の排出口137から排出する前記第一蒸留塔107と、
原料供給口138、塔底液の排出口139及び塔頂液の排出口140を備える第二蒸留塔108であって、原料供給口138から供給される第一塔頂液を蒸留処理して、THF及びブタノールを主成分として含有する第二塔底液と、DHFを主成分として含有する第二塔頂液とに分離して、第二塔底液を塔底液の排出口139から排出し、第二塔頂液を塔頂液の排出口140から排出する前記第二蒸留塔108と、
原料供給口141、塔底液の排出口142及び塔頂液の排出口143を備える第三蒸留塔109であって、原料供給口141から供給される第二塔底液を蒸留処理して、ブタノールを主成分として含有する第三塔底液と、THFを主成分として含有する第三塔頂液とに分離して、第三塔底液を塔底液の排出口142から排出し、第三塔頂液を塔頂液の排出口143から排出する前記第三蒸留塔109と、
第一蒸留塔107の塔頂液の排出口137と第二蒸留塔108の原料供給口138とを接続する流路116と、
第二蒸留塔108の塔底液の排出口139と第三蒸留塔109の原料供給口141とを接続する流路121と、
第二蒸留塔108の塔頂液の排出口140と第一蒸留塔107の上流側とを接続し、第二蒸留塔108の塔頂液の一部を第一蒸留塔107に還流させる還流路151と、
第二蒸留塔108の塔頂液の排出口140から第二蒸留塔108の塔頂液の残部を系外に排出する排出路153とを主な構成要素とする。
 ここで各流路及び排出路は、単独の流路部材により形成されているとは限らず、複数の流路部材が直列的又は並列的に配置されて流路を形成していても良く、さらに流路の途中に他の装置、例えば以下で説明する送液ポンプ、リボイラー、凝縮器、水素添加塔等が介在していても良い。上記の流路部材としては、配管等の任意の部材が使用される。
 本発明の精製システムにおいて、第一蒸留塔107の原料供給口135から供給される液体は、前記1-1で説明した液体と同様の組成であることが好ましい。かかる液体は、通常、PBT重合プラントのエステル化工程又は縮重合工程から副生成物の凝縮液として排出される。それ故、本発明の精製システムは、PBT又はPBS重合プラント等の1,4-ブタンジオールを原料とするポリエステルのプラント101の下流側に配置されることが好ましい。上記の場合、プラント101の下流側には貯留タンク104が配置され、プラント101から排出される液体は、流路102を介して貯留タンク104に供給される。流路102には必要に応じて送液ポンプ103等の輸送機構を配置しても良い。
 THF並びに不純物として少なくとも水、DHF及びブタノールを含有する液体は、貯留タンク104から流路105を介して第一蒸留塔107の原料供給口135に供給される。流路105には必要に応じて送液ポンプ106等の輸送機構を配置しても良い。第一蒸留塔107では、水を主成分として含有する第一塔底液と、THF、DHF及びブタノールを主成分として含有する第一塔頂液とに分離する。第一蒸留塔107は、8~15段の理論段数であることが好ましく、1気圧の操作圧力であることが好ましい。また、塔底部の加熱温度は、90~120℃であることが好ましい。
 第一蒸留塔107の排出口136から排出される第一塔底液は、リボイラー110に供給される。リボイラー110では、第一塔底液を再加熱して発生する蒸気を、流路111を介して第一蒸留塔107に戻し、再加熱後の第一塔底液を、排出路112を介して系外に排出する。この場合、排出路112は、排出口136からリボイラー110に至る流路部材と、リボイラー110と、リボイラー110から系外に至る流路部材とから構成される。なお、排出路112には必要に応じて送液ポンプ113等の輸送機構を配置しても良い。リボイラー110による再加熱の温度は、80~120℃であることが好ましい。排出される第一塔底液は、水を主成分として含有する。再加熱により得られる蒸気を第一蒸留塔107に戻すことにより、THFの回収率をさらに向上させることが出来る。
 第一蒸留塔107の塔頂部では、排出口137から留出する蒸気を凝縮器114に導入し、蒸気を凝縮させて第一塔頂液を得る。本工程において得られる第一塔頂液は、流路116を介してその全量を第二蒸留塔108に供給しても良いが、THFの純度をさらに向上させるために、流路115を介して第一塔頂液の一部を第一蒸留塔107に戻すことが好ましい。上記の場合において、流路116を介して第二蒸留塔108へ供給される液の流量と流路115を介して蒸留塔に戻される液との流量比は、1:2~1:4であることが好ましい。この場合、流路116は、排出口137から凝縮器114に至る流路部材と、凝縮器114と、凝縮器114から第二蒸留塔108の原料供給口138に至る流路部材とから構成される。なお、流路116には必要に応じて送液ポンプ117等の輸送機構を配置しても良い。流路116を介して第二蒸留塔108に供給される第一塔頂液は、THF、DHF及びブタノールを主成分として含有する。
 第一塔頂液は、流路116を介して第二蒸留塔108の原料供給口138に供給される。第二蒸留塔108では、THF及びブタノールを主成分として含有する第二塔底液と、DHFを主成分として含有する第二塔頂液とに分離する。第二蒸留塔108は、12~16段の理論段数であることが好ましく、8~9気圧の操作圧力であることが好ましい。また、塔底部の加熱温度は、130~170℃であることが好ましい。
 第二蒸留塔108の排出口139から排出される第二塔底液は、リボイラー119に供給される。リボイラー119では、第二塔底液を再加熱して発生する蒸気を、流路120を介して第二蒸留塔108に戻し、再加熱後の第二塔底液を、流路121を介して第三蒸留塔109に供給する。この場合、流路121は、排出口139からリボイラー119に至る流路部材と、リボイラー119と、リボイラー119から第三蒸留塔109の原料供給口141に至る流路部材とから構成される。なお、流路121には必要に応じて送液ポンプ122等の輸送機構を配置しても良い。リボイラー119による再加熱の温度は、120~180℃であることが好ましい。流路121を介して第三蒸留塔109に供給される第二塔底液は、THF及びブタノールを主成分として含有する。再加熱により得られる蒸気を第二蒸留塔108に戻すことにより、不純物である水及びDHFをさらに分離除去することが出来る。
 第二蒸留塔108の塔頂部では、排出口140から留出する蒸気を凝縮器123に導入し、蒸気を凝縮させて第二塔頂液を得る。本工程において得られる第二塔頂液は、その全量を還流路151及び排出路153に供給しても良いが、THFの回収率をさらに向上させるために、流路124を介して第二塔頂液の一部を第二蒸留塔108に戻すことが好ましい。上記の場合において、還流路151及び排出路153へ供給される液の流量と流路124を介して蒸留塔に戻される液との流量比は、1: 0.1~1:0.6であることが好ましい。還流路151及び排出路153に供給される第二塔頂液は、DHFを主成分として含有する。第二塔頂液は、第二塔頂液の排出口から還流路及び排出路に直接供給されても良く、図1に示すように、一端において第二塔頂液の排出口140に接続され、他端において還流路151及び排出路153に分岐された流路125を介して、第二塔頂液の排出口140から還流路151及び排出路153に供給されても良い。この場合、流路125は、排出口140から凝縮器123に至る流路部材と、凝縮器123と、凝縮器123から還流路151及び排出路153への分岐点に至る流路部材とから構成される。なお、流路125には必要に応じて送液ポンプ126等の輸送機構を配置しても良い。
 第二塔頂液はDHFを主成分として含有しており、さらにDHFと共沸する水も含有する。上記で説明したように、第二塔頂液の一部は、還流路151を介して第一蒸留塔107の原料供給口135に供給される。還流路151を介して供給される液体と流路105を介して供給される液体は、必要に応じてスタティックミキサー152等の混合手段によって混合した後、第一蒸留塔107の原料供給口135に供給しても良い。還流路151を介して供給される、DHFを主成分として含有する第二塔頂液は、第一蒸留塔107において再び蒸留処理される。そして、DHFを主成分として含有する還流後の第一塔頂液は、流路116を介して再び第二蒸留塔108の原料供給口138に供給され、水を主成分として含有する還流後の第一塔底液は、排出路112を介して系外に排出される。
 一方、第二塔頂液の残部は、排出路153を介して系外に排出される。これにより、還流路151を介して供給される液体に含有されるDHFの量を減少させ、結果として第二蒸留塔108の塔底液に含有されるDHFの量を減少させることが出来る。それ故、以下で説明する第三蒸留塔109において得られるTHFの純度を向上させることが可能となる。
 上記のように、本発明の精製システムでは、還流路151及び排出路153の流量を調整することによりTHFの回収率及び純度を向上させることが出来る。それ故、第二蒸留塔108の下流側に、還流路151及び排出路153の流量比を調整する手段が配置されていることが好ましい。かかる手段としては、例えば、流量計155及び157のような流量測定手段と、流量調節弁154及び156のような流量調整手段の組み合わせを挙げることが出来る。流量測定手段及び流量調整手段は、図1に示すように別々の部品として配置されても良く、両者の機能を併せ持つ単一の部品として配置されても良い。上記の流量測定手段及び流量調整手段は、第二蒸留塔108の下流側に配置されていれば良く、図1に示すように還流路151及び排出路153のそれぞれに配置されても良く、還流路151及び排出路153のいずれか一方に配置されても良い。
 第二塔底液は、流路121を介して第三蒸留塔109の原料供給口141に供給される。第三蒸留塔109では、第二塔底液を、ブタノールを主成分として含有する第三塔底液と、THFを主成分として含有する第三塔頂液とに分離する。第三蒸留塔109は、15~25段の理論段数であることが好ましく、1気圧の操作圧力であることが好ましい。また、塔底部の加熱温度は、60~90℃であることが好ましい。
 第三蒸留塔109の排出口142から排出される第三塔底液は、リボイラー127に供給される。リボイラー127では、第三塔底液を再加熱して発生する蒸気を、流路128を介して第三蒸留塔109に戻し、再加熱後の第三塔底液を、排出路129を介して系外に排出する。この場合、排出路129は、排出口142からリボイラー127に至る流路部材と、リボイラー127と、リボイラー127から系外に至る流路部材とから構成される。なお、排出路129には必要に応じて送液ポンプ130等の輸送機構を配置しても良い。リボイラー127による再加熱の温度は、60~75℃であることが好ましい。排出路129を介して系外に排出される塔底液は、ブタノールを主成分として含有する。再加熱により得られる蒸気を第三蒸留塔109に戻すことにより、目的物であるTHFの回収率を向上することが出来る。
 第三蒸留塔109の塔頂部では、排出口143から留出する蒸気を凝縮器131に導入し、蒸気を凝縮させて第三塔頂液を得る。本工程において得られる第三塔頂液は、その全量を排出路133に供給しても良いが、THFの純度をさらに向上させるために、流路132を介して第三塔頂液の一部を第三蒸留塔109に戻すことが好ましい。上記の場合において、排出路133へ供給される液の流量と流路132を介して蒸留塔に戻される液との流量比は、1: 0.3~1:1であることが好ましい。この場合、排出路133は、排出口143から凝縮器131に至る流路部材と、凝縮器131と、凝縮器131から系外に至る流路部材とから構成される。なお、排出路133には必要に応じて送液ポンプ134等の輸送機構を配置しても良い。排出路133から排出される第三塔頂液は、目的物である高純度THFである。
 図1に示す実施形態の精製システムは、THF並びに不純物として少なくとも水、DHF及びブタノールを含有する液体から、THFの回収率及び純度を低下させることなく目的物であるTHFを得ることが出来る。当該精製システムは、工程数が少なく、かつ追加の原料及び設備を必要としないため、製造コスト及び設備コストを増大させることなく、高純度のTHFを得ることが可能となる。
 さらに、本発明の精製システムの別の実施形態を図2に示す。図2の実施形態は、第一蒸留塔の塔頂液の排出口と第二蒸留塔の原料供給口との間に水素添加塔261をさらに配置する以外は、図1に示す精製システムと同様の構成を有する。図2の実施形態では、第一蒸留塔の塔頂液の排出口と第二蒸留塔の原料供給口とを接続する流路の途中に、原料供給口、水素ガスを供給する水素ガス供給口及び反応後の液体を排出する排出口を備える水素添加塔261が配置される。この場合、THF、DHF及びブタノールを主成分として含有する第一塔頂液は、排出口137から凝縮器114に至る流路部材と、凝縮器114と、凝縮器114から水素添加塔261の原料供給口に至る流路部材を介して水素添加塔261の原料供給口に供給される。水素添加塔261は、例えば、黒鉛にルテニウム、パラジウム、白金等の貴金属が担持された充填塔であることが好ましい。水素添加塔261の水素ガス供給口は、配管262を介して水素ガスが充填されているタンク263と接続され、該タンク263から水素添加塔261へ水素ガスが供給される。供給される水素ガス分圧は、水素添加塔261とタンク263の間に配置されるレギュレータ264のような流量調整手段によって好適な分圧に調整される。また、水素添加塔261にはヒーターが備えられており、水素添加塔の内部が好適な温度に保持される。これにより、水素添加塔261の内部では、第一蒸留塔107の塔頂液に含有されるDHFの少なくとも一部が接触還元反応により水素添加され、THFに変換される。また、不純物としてNBDを含有する場合、その少なくとも一部が接触還元反応により水素添加され、第三蒸留塔109において容易に分離可能なブタノールに変換される。
 水素添加塔261の塔内温度は、80~120℃であることが好ましく、水素ガス分圧は1気圧であることが好ましい。また、第一蒸留塔107の塔頂液の塔内滞留時間は、0.25~1時間であることが好ましい。
 図2に示す実施形態の精製システムは、不純物として含有されるDHFをTHFに変換することにより、THFの総量を増加させ、結果としてTHFの回収率を向上させることが可能となる。また、NBDを不純物として含有する液体に対して適用する場合、分離困難なNBDを分離が容易なブタノールに変換することにより、THFの純度を向上させることが可能となる。
 以下本発明を実施例によりさらに詳細に説明するが、本発明の範囲はこれに限定されるものではない。
(実施例)
 本実施例で使用されたTHFの精製システムは、原料供給口、塔底液の排出口及び塔頂液の排出口を備える第一蒸留塔であって、原料供給口から供給されるTHF、DHF及びブタノールを含有するPBT重合プラントの副生成物の凝縮液を蒸留処理して、水を主成分として含有する第一塔底液と、THF、DHF及びブタノールを主成分として含有する第一塔頂液とに分離して、第一塔底液を塔底液の排出口から排出し、第一塔頂液を塔頂液の排出口から排出する前記第一蒸留塔と、原料供給口、塔底液の排出口及び塔頂液の排出口を備える第二蒸留塔であって、原料供給口から供給される第一塔頂液を蒸留処理して、THF及びブタノールを主成分として含有する第二塔底液と、DHFを主成分として含有する第二塔頂液とに分離して、第二塔底液を塔底液の排出口から排出し、第二塔頂液を塔頂液の排出口から排出する前記第二蒸留塔と、原料供給口、塔底液の排出口及び塔頂液の排出口を備える第三蒸留塔であって、原料供給口から供給される第二塔底液を蒸留処理して、ブタノールを主成分として含有する第三塔底液と、THFを主成分として含有する第三塔頂液とに分離して、第三塔底液を塔底液の排出口から排出し、第三塔頂液を塔頂液の排出口から排出する前記第三蒸留塔とが直列に配置されており、さらに第二蒸留塔の塔頂液の排出口と第一蒸留塔の上流側とを接続し、第二蒸留塔の塔頂液の一部を第一蒸留塔に還流させる還流路と、第二蒸留塔の塔頂液の排出口から第二蒸留塔の塔頂液の残部を系外に排出する排出路とを含む構成からなる。以下では図2に基づき、本発明の実施例を説明する。
 PBT重合プラント101から流路102を経由して、送液ポンプ103により、副生成物の凝縮液を副生成物凝縮液タンク104に供給した。凝縮液は、68%の水、30.83%のTHF、0.82%のブタノール、0.22%の酢酸、1200 ppmのDHF、35 ppmのイソプロパノール、10 ppmのNBD、10 ppmのMEKを含有していた。副生成物凝縮液タンク104では、凝縮液中に1,4-BDOが含まれる場合を想定し、必要に応じて1,4-BDOの融点以上の温度(20~25℃)に保持した。
 副生成物凝縮液タンク104から流路105を経由して、副生成物の凝縮液1995部を送液ポンプ106により第一蒸留塔107に供給した。また、第一蒸留塔107には、下記で説明する第二蒸留塔108より還流路151を経由して、第二蒸留塔108の塔頂液を298部還流させた。スタティックミキサー152を用いて、前記還流液と副生成物の凝縮液とを混合した後、混合液を第一蒸留塔107に供給した。第一蒸留塔107は、理論段数15段で塔底温度100℃、操作圧力1気圧、塔頂液の還流比2.9とした。第一蒸留塔107の塔底液は、高沸成分として99.06%の水、0.56%のブタノール、0.38%の酢酸、0.01%のTHFを含有しており、排出路112を経由して、送液ポンプ113により1368部を系外排出した。一方、第一蒸留塔107の塔頂液は、94.5%のTHF、2.32%のDHF、0.92%のブタノール、0.01%のイソプロパノール、20 ppmのNBD、20 ppmのMEKを含有しており、排出口137から凝縮器114に至る流路部材と、凝縮器114と、凝縮器114から水素添加塔261の原料供給口に至る流路部材からなる流路116を経由して、送液ポンプ117により925部を排出し、水素添加塔261に供給した。
 水素添加塔261は、黒鉛に金属ルテニウムを2%担持したペレット状触媒の充填塔であり、塔底温度を100℃、操作圧力を9.5気圧、滞留時間を0.5時間とした。水素ガスを、タンク263からレギュレータ264で上記操作圧に調整し、配管262を経由して水素添加塔261に供給した。水素添加塔261に供給された溶液を、塔内で水素ガスと接触させた。これにより、DHFの一部をTHFに還元した。水素添加塔261の排出口から第二蒸留塔108の原料供給口138に至る流路部材265を経由して、送液ポンプ118により925部の水素添加反応液を排出し、第二蒸留塔108に供給した。なお、水素添加塔261は必要に応じ、省略することができる。以下では、水素添加塔261を省略した場合について説明する。
 第二蒸留塔108は、理論段数14段で、塔底温度を150℃、操作圧力を8.4気圧、塔頂液の還流比を0.3とした。第二蒸留塔108の塔底液は、高沸成分として98.54%のTHF、1.41%のブタノール、0.04%のDHF、0.01%のイソプロパノール、0.01%の酢酸、50 ppmの水、10 ppmのMEK、10 ppmを含有しており、排出口139からリボイラー119に至る流路部材と、リボイラー119と、リボイラー119から第三蒸留塔108の原料供給口141に至る流路部材からなる流路121を経由して、送液ポンプ122により601部を第三蒸留塔108に供給した。一方、第二蒸留塔108の塔頂液は、87%のTHF、6.42%の水、5.55%のDHF、10 ppmのNBD、10 ppmのMEKを含有しており、流路125を経由して、送液ポンプ126により第二蒸留塔108から排出した。なお、流路125は、排出口140から凝縮器123に至る流路部材と、凝縮器123と、凝縮器123から還流路151及び排出路153の分岐点に至る流路部材からなる。排出された塔頂液を、流路125を介して還流路151及び排出路153に流入させた。還流路151及び排出路153には、流量調節弁154及び156、流量計155及び157が設置されており、流量調節弁154及び156を操作することにより、還流路151に298部、排出路153に26部が流れるよう、流量比を調整した。還流路151を流れる液は、第一蒸留塔107に還流させた。また、排出路153を流れる液は、排出液として系外排出した。従って、この時の還流液と系外への排出液との流量比は11.46であった。
 第三蒸留塔109は、理論段数19段で、塔底温度を67℃、操作圧力を1気圧、塔頂液の還流比を0.6とした。第三蒸留塔109の塔底液は、高沸成分として97.85%のブタノール、0.8%のTHF、0.64%のイソプロパノール、0.36%の酢酸、0.02%の水、0.11%のMEK、0.11%のNBDを含有しており、排出口142からリボイラー127に至る流路部材と、リボイラー127と、リボイラー127から系外に至る流路部材からなる排出路129を経由して、送液ポンプ130により9部を系外排出した。一方、第三蒸留塔109の塔頂液は、99.96%のTHF、0.04%のDHFを含有しており、排出口143から凝縮器131に至る流路部材と、凝縮器131と、凝縮器131から系外に至る流路部材からなる排出路133を経由して、送液ポンプ134により593部を排出した。第三蒸留塔109の塔頂液は、本実施例における最終製品の高純度THFである。
 本実施例により回収されたTHFの純度は99.96%であり、回収率は96.4%であった。これは、目標純度99.9%以上、目標回収率90%以上を達成する結果であった。
(比較例)
 上記の実施例で説明した本発明のTHF精製システムを適用せず、従来どおり、第二蒸留塔の塔頂液について、その一部を系外排出せずに精製システムを運転した。その結果、最終製品のTHF溶液はDHFを7%含有しており、著しい純度の低下が発生することが確認された。
 以上説明したように、本発明のTHF精製システムによれば、PBTの重合プラントで発生するような、THFを含有する副生成物の凝縮液から、少ない工程と合理的な設備で、高純度のTHFを高回収率で精製することが可能となる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
107・・・第一蒸留塔
108・・・第二蒸留塔
109・・・第三蒸留塔
135・・・第一蒸留塔の原料供給口
136・・・第一蒸留塔の塔底液の排出口
137・・・第一蒸留塔の塔頂液の排出口
138・・・第二蒸留塔の原料供給口
139・・・第二蒸留塔の塔底液の排出口
140・・・第二蒸留塔の塔頂液の排出口
141・・・第三蒸留塔の原料供給口
142・・・第三蒸留塔の塔底液の排出口
143・・・第三蒸留塔の塔頂液の排出口
151・・・還流路
116, 121, 125・・・流路
112, 129, 133, 153・・・排出路
154, 156,・・・流量調節弁
155, 157・・・流量計
261・・・水素添加塔
262・・・配管
263・・・タンク
264・・・レギュレータ
1000・・・テトラヒドロフランの精製システム
2000・・・テトラヒドロフランの精製システム

Claims (6)

  1.  テトラヒドロフラン並びに不純物として少なくとも水、ジヒドロフラン及びブタノールを含有する液体からのテトラヒドロフランの精製方法であって、
    該液体を蒸留塔によって蒸留処理し、水を主成分として含有する第一塔底液と、テトラヒドロフラン、ジヒドロフラン及びブタノールを主成分として含有する第一塔頂液とに分離する第一の蒸留工程と、
    第一塔頂液を蒸留塔によって蒸留処理し、テトラヒドロフラン及びブタノールを主成分として含有する第二塔底液と、ジヒドロフランを主成分として含有する第二塔頂液とに分離する第二の蒸留工程と、
    第二塔底液を蒸留塔によって蒸留処理し、ブタノールを主成分として含有する第三塔底液と、テトラヒドロフランを主成分として含有する第三塔頂液とに分離する第三の蒸留工程とを含み、
    第二塔頂液の一部を還流液として第一の蒸留工程に還流させ、残部を系外に排出する還流工程をさらに含むことを特徴とする、テトラヒドロフランの精製方法。
  2.  還流工程において、第一の蒸留工程への還流液と系外への排出液との流量比が5:1~20:1の範囲である、請求項1のテトラヒドロフランの精製方法。
  3.  第一の蒸留工程と第二の蒸留工程の間に、
    第一塔頂液に含有されるジヒドロフランを水素添加してテトラヒドロフランに変換する水素添加工程をさらに含む、請求項1又は2の精製方法。
  4.  テトラヒドロフランの精製システムであって、
    原料供給口、塔底液の排出口及び塔頂液の排出口を備える第一蒸留塔であって、原料供給口から供給されるテトラヒドロフラン並びに不純物として少なくとも水、ジヒドロフラン及びブタノールを含有する液体を蒸留処理して、水を主成分として含有する第一塔底液と、テトラヒドロフラン、ジヒドロフラン及びブタノールを主成分として含有する第一塔頂液とに分離して、第一塔底液を塔底液の排出口から排出し、第一塔頂液を塔頂液の排出口から排出する前記第一蒸留塔と、
    原料供給口、塔底液の排出口及び塔頂液の排出口を備える第二蒸留塔であって、原料供給口から供給される第一塔頂液を蒸留処理して、テトラヒドロフラン及びブタノールを主成分として含有する第二塔底液と、ジヒドロフランを主成分として含有する第二塔頂液とに分離して、第二塔底液を塔底液の排出口から排出し、第二塔頂液を塔頂液の排出口から排出する前記第二蒸留塔と、
    原料供給口、塔底液の排出口及び塔頂液の排出口を備える第三蒸留塔であって、原料供給口から供給される第二塔底液を蒸留処理して、ブタノールを主成分として含有する第三塔底液と、テトラヒドロフランを主成分として含有する第三塔頂液とに分離して、第三塔底液を塔底液の排出口から排出し、第三塔頂液を塔頂液の排出口から排出する前記第三蒸留塔と、
    第一蒸留塔の塔頂液の排出口と第二蒸留塔の原料供給口とを接続する流路と、
    第二蒸留塔の塔底液の排出口と第三蒸留塔の原料供給口とを接続する流路と、
    第二蒸留塔の塔頂液の排出口と第一蒸留塔の上流側とを接続し、第二蒸留塔の塔頂液の一部を第一蒸留塔に還流させる還流路と、
    第二蒸留塔の塔頂液の排出口から第二蒸留塔の塔頂液の残部を系外に排出する排出路と、
    を備える、テトラヒドロフランの精製システム。
  5.  前記還流路と前記排出路との流量比を5:1~20:1の範囲に調整する手段をさらに備える、請求項4の精製システム。
  6.  第一蒸留塔の塔頂液の排出口と第二蒸留塔の原料供給口とを接続する流路の途中に水素添加塔をさらに備える、請求項4又は5の精製システム。
PCT/JP2009/068663 2009-10-30 2009-10-30 テトラヒドロフランの精製方法及び精製システム WO2011052065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/505,022 US20120215012A1 (en) 2009-10-30 2009-10-30 Process and system for purification of tetrahydrofuran
JP2011538164A JP5536090B2 (ja) 2009-10-30 2009-10-30 テトラヒドロフランの精製方法及び精製システム
CN2009801621764A CN102596926A (zh) 2009-10-30 2009-10-30 四氢呋喃的精制方法以及精制系统
KR1020127009824A KR101398614B1 (ko) 2009-10-30 2009-10-30 테트라히드로푸란의 정제 방법 및 정제 시스템
PCT/JP2009/068663 WO2011052065A1 (ja) 2009-10-30 2009-10-30 テトラヒドロフランの精製方法及び精製システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068663 WO2011052065A1 (ja) 2009-10-30 2009-10-30 テトラヒドロフランの精製方法及び精製システム

Publications (1)

Publication Number Publication Date
WO2011052065A1 true WO2011052065A1 (ja) 2011-05-05

Family

ID=43921506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068663 WO2011052065A1 (ja) 2009-10-30 2009-10-30 テトラヒドロフランの精製方法及び精製システム

Country Status (5)

Country Link
US (1) US20120215012A1 (ja)
JP (1) JP5536090B2 (ja)
KR (1) KR101398614B1 (ja)
CN (1) CN102596926A (ja)
WO (1) WO2011052065A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194568A1 (ja) * 2014-06-17 2015-12-23 三菱化学株式会社 テトラヒドロフラン化合物の精製方法
JP2016088867A (ja) * 2014-10-31 2016-05-23 三菱化学株式会社 テトラヒドロフランの精製方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816139A (zh) * 2012-07-30 2012-12-12 南通星辰合成材料有限公司 四氢呋喃的提纯工艺
CN103833497B (zh) * 2012-11-27 2016-01-20 上海富诺林精细化工有限公司 用乙醇胺处理粗环醚的方法和由其制得的精环醚
CN103601705B (zh) * 2013-11-08 2015-05-20 盐城科菲特生化技术有限公司 四氢呋喃精馏方法
WO2018039848A1 (zh) * 2016-08-29 2018-03-08 沈建美 四氢呋喃的回收工艺
CN107746394A (zh) * 2017-12-06 2018-03-02 成都化润药业有限公司 含水四氢呋喃的精制纯化方法
CN116041285A (zh) * 2022-12-08 2023-05-02 杰特(宁夏)科技有限公司 一种四氢呋喃脱水新工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293763A (en) * 1976-02-04 1977-08-06 Mitsubishi Chem Ind Ltd Preparation of tetrahydrofuran
JPS52111557A (en) * 1976-03-16 1977-09-19 Mitsubishi Chem Ind Ltd Production of cyclic ether
JPS53105471A (en) * 1977-02-23 1978-09-13 Mitsubishi Chem Ind Ltd Preparation of cyclic ethers
JPS61200979A (ja) * 1985-02-28 1986-09-05 Mitsubishi Chem Ind Ltd 粗テトラヒドロフランの精製方法
JPS6470478A (en) * 1987-08-12 1989-03-15 Basf Ag Distillation purification of tetrahydrofuran
JPH10237057A (ja) * 1996-12-26 1998-09-08 Mitsubishi Chem Corp 粗テトラヒドロフランの精製方法
JP2003286202A (ja) * 2002-03-28 2003-10-10 Hokko Chem Ind Co Ltd 高沸物を含む不純物含有易重合性物質から易重合性物質を分離回収する方法及び装置
JP2004277412A (ja) * 2003-02-28 2004-10-07 Toray Ind Inc テトラヒドロフラン含有物の精製方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293736A (en) * 1976-01-30 1977-08-06 Kuraray Yuka Kk Preparation of high-purity terephthalic acid by reoxidation
JPS6041501A (ja) * 1983-08-17 1985-03-05 Toshiba Corp 蒸留塔の制御装置
JP3154162B2 (ja) * 1990-09-18 2001-04-09 三井造船株式会社 棚段を有する蒸留塔
JP3937462B2 (ja) * 1994-08-04 2007-06-27 三菱化学株式会社 アクリル酸精製法
JP2001000802A (ja) * 1999-06-22 2001-01-09 Sumitomo Chem Co Ltd 還流比の制御方法及び還流比制御器
JP2001205001A (ja) * 2000-01-25 2001-07-31 Sumitomo Chem Co Ltd 蒸留塔の運転方法
DE10209632A1 (de) 2002-03-02 2003-09-11 Basf Ag Verfahren zur destillativen Aufarbeitung von Tetrahydrofuran

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293763A (en) * 1976-02-04 1977-08-06 Mitsubishi Chem Ind Ltd Preparation of tetrahydrofuran
JPS52111557A (en) * 1976-03-16 1977-09-19 Mitsubishi Chem Ind Ltd Production of cyclic ether
JPS53105471A (en) * 1977-02-23 1978-09-13 Mitsubishi Chem Ind Ltd Preparation of cyclic ethers
JPS61200979A (ja) * 1985-02-28 1986-09-05 Mitsubishi Chem Ind Ltd 粗テトラヒドロフランの精製方法
JPS6470478A (en) * 1987-08-12 1989-03-15 Basf Ag Distillation purification of tetrahydrofuran
JPH10237057A (ja) * 1996-12-26 1998-09-08 Mitsubishi Chem Corp 粗テトラヒドロフランの精製方法
JP2003286202A (ja) * 2002-03-28 2003-10-10 Hokko Chem Ind Co Ltd 高沸物を含む不純物含有易重合性物質から易重合性物質を分離回収する方法及び装置
JP2004277412A (ja) * 2003-02-28 2004-10-07 Toray Ind Inc テトラヒドロフラン含有物の精製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194568A1 (ja) * 2014-06-17 2015-12-23 三菱化学株式会社 テトラヒドロフラン化合物の精製方法
JP2016088867A (ja) * 2014-10-31 2016-05-23 三菱化学株式会社 テトラヒドロフランの精製方法

Also Published As

Publication number Publication date
JP5536090B2 (ja) 2014-07-02
KR101398614B1 (ko) 2014-05-23
CN102596926A (zh) 2012-07-18
JPWO2011052065A1 (ja) 2013-03-14
KR20120060233A (ko) 2012-06-11
US20120215012A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5536090B2 (ja) テトラヒドロフランの精製方法及び精製システム
TWI579266B (zh) 使用反應性蒸餾以製備二醇酯的方法
CN1972902A (zh) 二甲基乙酰胺(DMAc)的提纯方法
EA014966B1 (ru) Способ и устройство для регенерации этиленгликоля при получении полиэтилентерефталата
WO2020029753A1 (zh) 一种2,2-二甲基-1,3-丙二醇的生产工艺
CN103140464B (zh) 通过绝热硝化生产硝基苯的方法
KR20160093540A (ko) 숙신산 에스테르의 제조 방법
Song et al. Conceptual design of water separation process in glycerol-based acrylic acid production
Souza et al. Glycerol esterification with acetic acid by reactive distillation using hexane as an entrainer
CN103360253B (zh) 生产马来酸二甲酯的方法
CN104961630B (zh) 一种2,5‑二氯苯酚的制备方法
US11149015B2 (en) Methods for producing tetrahydrofuran
CN102276452B (zh) 一种用于醋酸仲丁酯的生产设备
CN204714728U (zh) 生成水蒸气的设备、加热气体流的设备和用于制备芳族二羧酸的系统
CN114984866B (zh) 一种制备马来酸二甲酯的系统及方法
JP2013043883A (ja) 1,4−ブタンジオールの精製方法
US11225449B2 (en) Optimization of 2-EH product recovery system using process intensification
JP2006089761A (ja) ポリブチレンテレフタレートの製造方法及び製造装置
JP6015169B2 (ja) テトラヒドロフランの製造方法
US20230406799A1 (en) System and process for producing glycols
JP2004277412A (ja) テトラヒドロフラン含有物の精製方法
JP3956442B2 (ja) ブタンジオールの製造方法
CN107106923A (zh) 改造用于生产环己酮的设备的方法
KR20010097592A (ko) 트리옥산의 제조방법
JP2000327762A (ja) ポリブチレンテレフタレートの製造方法及び製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162176.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538164

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127009824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13505022

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09850844

Country of ref document: EP

Kind code of ref document: A1