WO2011050612A1 - 一种锁定光信号的波长的方法、装置和系统 - Google Patents

一种锁定光信号的波长的方法、装置和系统 Download PDF

Info

Publication number
WO2011050612A1
WO2011050612A1 PCT/CN2010/072979 CN2010072979W WO2011050612A1 WO 2011050612 A1 WO2011050612 A1 WO 2011050612A1 CN 2010072979 W CN2010072979 W CN 2010072979W WO 2011050612 A1 WO2011050612 A1 WO 2011050612A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical signal
temperature difference
temperature
output power
Prior art date
Application number
PCT/CN2010/072979
Other languages
English (en)
French (fr)
Inventor
钟德刚
颜学进
付生猛
李胜平
高建河
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011050612A1 publication Critical patent/WO2011050612A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present application claims priority to the Chinese application filed on Oct. 28, 2009, the application number of which is incorporated herein by reference. Combined in this application.
  • TECHNICAL FIELD The present invention relates to the field of communications, and more particularly to a method, apparatus and system for locking the wavelength of an optical signal. Background technique
  • WDM-PON Wide Division Multiplexing-Passive Optical Network
  • each user must be assigned a wavelength to provide a virtual point-to-point connection.
  • the near-wavelength-locked Fabry-Perot Laser Diode (FP-LD) is recommended and considered to be WDM-PON.
  • the economical light source, and the more commonly used method is to use two FP-LDs, one for the main laser, one for the slave laser, and the main laser for the illumination, and the slave laser uses the light emitted by the main laser to carry the data. .
  • the wavelength of the transmitted light is very unstable, which affects the normal operation between the slave laser and the user.
  • Embodiments of the present invention provide a method, apparatus, and system for locking the wavelength of an optical signal that provides a method for locking the wavelength of the optical signal output by the laser.
  • An embodiment of the present invention provides a communication system including a first laser, a second laser, and a controller, wherein the first laser is connected to the second laser, and the controller is connected to the first laser The first laser is configured to send an optical signal;
  • the second laser is configured to modulate an optical signal sent by the first laser to carry a data signal
  • the controller is configured to acquire an output power of the second laser; and, according to the output power, a correspondence between a temperature difference between the first laser and the second laser and an output power of the second laser Obtaining a temperature difference between the first laser and the second laser, and adjusting a temperature of the first laser according to a correspondence between the temperature difference and a wavelength of an optical signal sent by the second laser.
  • An embodiment of the present invention provides a controller, including:
  • a power detection module configured to detect a power of an optical signal output by the second laser, and obtain an output power of the second laser
  • control module configured to acquire, according to the output power, a temperature difference between the first laser and the second laser from a correspondence between a temperature difference between the first laser and the second laser and an output power of the second laser And adjusting a temperature of the first laser according to a correspondence between the temperature difference and a wavelength of an optical signal sent by the second laser.
  • An embodiment of the present invention provides a method for locking a wavelength of an optical signal, including the steps of: acquiring an output power of a second laser;
  • the method, the device and the system provided by the embodiments of the present invention realize that the temperature of the first laser 101 is controlled by monitoring the change of the output power of the second laser 103, so that the wavelength of the optical signal output by the second laser 103 is stabilized, and the whole control is performed.
  • the process is simple and automatically controls the wavelength of the laser without external intervention.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a structure of an apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method according to an embodiment of the present invention.
  • One embodiment of the present invention provides a communication system, as shown in FIG. 1, including a first laser 101, a second laser 103, and a controller 113.
  • the first laser 101 and the second laser 103 may be a Fabry-Perot Laser Diode (FP LD ).
  • the first laser 101 and the second laser 103 are in a master-slave relationship.
  • the first laser 101 is the main laser
  • the second laser 103 is the slave laser as an example.
  • the first laser 101 is configured to transmit an optical signal.
  • a second laser 103 for modulating an optical signal transmitted by the first laser 101 to carry a data signal
  • the controller 113 is configured to acquire an output power of the second laser 103, and obtain the first information from a correspondence between a temperature difference between the first laser 101 and the second laser 103 and an output power of the second laser 103 according to the output power. a temperature difference between a laser and the second laser, and adjusting a temperature of the first laser according to a correspondence between the temperature difference and a wavelength of the second laser.
  • the controller 113 is further configured to acquire the temperatures of the first laser 101 and the second laser 103, calculate a temperature difference between the first laser 101 and the second laser 103, and calculate a temperature difference according to the obtained output power of the second laser 103. Correspondence of output power.
  • the controller 113 is further configured to acquire a wavelength of the optical signal sent by the second laser 103, according to the temperature The difference between the degree and the acquired wavelength, the correspondence between the temperature difference and the wavelength is counted.
  • FIG. 2 is a graph showing the correspondence between the temperature difference between the first laser 101 and the second laser 103 and the output power of the second laser 103 in the system according to the embodiment of the present invention.
  • the second The output power of the laser 103 has a linear relationship with the temperature difference between the first laser 101 and the second laser 103.
  • the locked state means that the wavelength of the optical signal output by the second laser 103 is in a locked state.
  • the output power of the second laser 103 linearly increases, and when the temperature difference reaches a certain value, such as 2.7 ° C in FIG. 2, the second laser The output power of 103 reaches an extreme value.
  • the output power of the second laser 103 is The correspondence relationship between the temperature differences of the first laser 101 and the second laser 103 is called the correspondence relationship 1, and the correspondence relationship between the wavelength of the optical signal output by the second laser 103 and the temperature difference between the first laser 101 and the second laser 103 is called a correspondence relationship. 2.
  • the correspondence 1 and the correspondence 2 can be stored on the controller 113, so that the controller 113 can obtain the temperature difference from the correspondence 1 according to the output power of the second laser 103. And acquiring the wavelength of the optical signal output by the second laser 103 from the correspondence 2 according to the obtained temperature difference.
  • the controller 113 changes the temperature difference between the first laser 101 and the second laser 103 by adjusting the temperature of the first laser 101, thereby adjusting the wavelength of the optical signal output from the second laser 103.
  • Controller 113 can also provide a bias current to first laser 101.
  • the communication system provided by the present invention may further include a Polarization Beam Splitter (PBS) 105, an Arrayed Waveguide Grating (AWG) 107, and a partial reflector 111.
  • PBS Polarization Beam Splitter
  • AWG Arrayed Waveguide Grating
  • the PBS 105 is configured to transparently transmit or reflect the received optical signal according to the polarization direction.
  • the PBS 105 transparently transmits the optical signal output from the first laser 101 to the AWG 107.
  • the optical signal from AWG107 it will come from AWG107 according to the polarization direction.
  • the optical signal is divided into two parts, one part is sent to the first laser 101, and the part is sent to the second laser 103.
  • the first laser 101 and the second laser 103 can also adjust the wavelength of the emitted optical signal according to the optical signal reflected by the PBS 105. .
  • the AWG 107 is configured to filter the optical signal from the PBS 105 and transmit the optical signal reflected by the partial reflector 111 to the PBS 105.
  • the optical signal transmitted by the PBS 105 is transmitted to the AWG 107, filtered by a port of the AWG, and a part of the optical signal is transmitted to the partial reflector 111.
  • the optical signal reflected by the partial reflector 111 is output to the PBS 105.
  • the center wavelength of the port of the AWG 107 determines the wavelength of the optical signal transmitted to the PBS 105.
  • a partial reflector 111 for reflecting an optical signal from the AWG 107 is provided.
  • the communication system provided by this embodiment may further include a fiber depolarizer 109.
  • the fiber depolarizer 109 can be used to connect the partial reflector 111 and the AWG 107 for selecting the optical signal from the AWG 107. After the selected optical signal is transmitted to the partial reflector 111, it can be reflected by the partial reflector 111.
  • the controller 113 can also set the target output power of the second laser 103. After acquiring the output power of the second laser 103, the controller 113 can calculate the current output power of the second laser 103 and The difference in the target output power, due to the linear relationship between the output power of the second laser 103 and the temperature difference between the first laser 101 and the second laser 103, as shown in FIG. 2, the controller 113 can calculate the first according to the linear relationship.
  • the laser 101 requires a value of the adjusted temperature to adjust the temperature of the first laser 101.
  • the communication system provided in this embodiment can be used in an optical network or a passive optical network PON, and the temperature of the first laser 101 is controlled by monitoring the change of the output power of the second laser 103, so that the output of the second laser 103 is made.
  • the wavelength of the optical signal is stable, the whole control process is simple, and the wavelength of the laser can be automatically controlled without external intervention, and the implementation is relatively simple.
  • An embodiment of the present invention provides a controller, as shown in FIG. 3, including a control module 300 and a power detection module 302.
  • the power detection module 302 is configured to acquire an output power of the second laser 103.
  • the power detection module 302 may be a monitor photodiode (MPD) or the like, and how to obtain the output power of the second laser 103 is known in the art. Personnel should be aware of this and will not elaborate here.
  • MPD monitor photodiode
  • the control module 300 is configured to acquire, according to the output power, the first laser and the second laser from a correspondence between a temperature difference between the first laser 101 and the second laser 103 and an output power of the second laser 103.
  • the temperature difference adjusts the temperature of the first laser according to the correspondence between the temperature difference and the wavelength of the second laser.
  • the control module 300 can also set the target output power of the second laser 103. After the output power of the second laser 103 is acquired, the difference between the current output power of the second laser 103 and the target output power can be calculated, because the second laser 103 The output power is linearly related to the temperature difference between the first laser 101 and the second laser 103. The control module 300 can calculate the value of the temperature that the first laser 101 needs to adjust according to the linear relationship, thereby performing the temperature of the first laser 101. Adjustment.
  • the controller provided in this embodiment further includes a correspondence acquiring module 306, configured to acquire a temperature of the first laser 101 and a temperature of the second laser 103, and calculate a temperature difference between the first laser 101 and the second laser 103, according to the power detecting module.
  • the output power obtained by 302 obtains a correspondence between a temperature difference between the first laser 101 and the second laser 103 and an output power of the second laser 103;
  • the correspondence acquiring module 306 is further configured to acquire a wavelength of the optical signal sent by the second laser 103, and obtain a correspondence between the temperature difference and the wavelength of the optical signal sent by the second laser 103 according to the acquired wavelength and the temperature difference.
  • the controller needs to provide a bias current to the first laser 101, then the controller also includes a bias current source (not shown in Figure 3).
  • the controller 113 may further include a temperature control module 304 connected to the first laser 101 for controlling the first laser under the control of the control module 300. The temperature of 101 is controlled.
  • the controller provided in this embodiment controls the temperature of the first laser 101 by monitoring the change of the output power of the second laser 103 in the optical network or the passive optical network PON, so that the output light of the second laser 103 is output.
  • the wavelength of the signal is stable, the control process is relatively simple, and the cost is relatively low.
  • An embodiment of the present invention provides a method for locking a wavelength of an optical signal. As shown in FIG. 4, the method includes: Step 400: Acquire an output power of a second laser.
  • the second laser and the first laser are in a master-slave relationship, and the second laser can modulate the optical signal sent by the first laser to carry the data signal.
  • the second laser can modulate the optical signal sent by the first laser to carry the data signal.
  • Step 402 Acquire a temperature difference between the first laser and the second laser according to the output power.
  • the method further includes: obtaining the correspondence 1 , specifically:
  • a correspondence relationship 1 between the output power of the second laser and the temperature difference is counted.
  • the obtaining the temperature difference and obtaining the output power have no sequence.
  • the output power of the second laser has a corresponding relationship with the temperature difference between the first laser and the second laser, after obtaining the output power of the second laser, the temperature difference between the first laser and the second laser can be obtained according to the correspondence 1.
  • the first embodiment has been described.
  • Step 404 adjusting the temperature of the first laser according to the obtained temperature difference, and locking the wavelength of the first laser.
  • the method further includes: obtaining the correspondence 2, specifically:
  • Corresponding relationship 2 between the wavelength of the optical signal transmitted by the second laser and the temperature difference is counted according to the obtained output power.
  • the obtaining the temperature difference and the obtaining wavelength have no order.
  • the current wavelength of the second laser can be obtained according to the correspondence 2, so that the current wavelength of the first laser can be adjusted by adjusting the temperature of the first laser, so that the first wavelength can be locked.
  • the wavelength of the optical signal output by the two lasers can be obtained according to the correspondence 2, so that the current wavelength of the first laser can be adjusted by adjusting the temperature of the first laser, so that the first wavelength can be locked.
  • the method for locking the wavelength of the optical signal provided by this embodiment can adjust the output power of the slave laser by changing the temperature difference between the two lasers by obtaining the correspondence between the temperature difference between the two lasers and the output power of the laser.
  • the implementation process is relatively simple, the cost is relatively low, and no external interference is required.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

一种锁定光信号的波长的方法、 装置和系统
本申请要求了 2009年 10月 28日提交的, 申请号为 200910110363.X, 发明 名称为 "一种锁定光信号的波长的方法、 装置和系统" 的中国申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信领域, 尤其涉及锁定光信号的波长的方法、 装置和系统。 背景技术
随着互联网的快速发展,人们对于网络带宽的需求也不断增加, WDM-PON ( Wave Division Multiplexing-Passive Optical Network, 波分复用 -无源光网络) 技术结合了 WDM技术和 PON拓朴结构的优点, 逐步成为一种高性能的接入方 式。
在 WDM技术中, 必须为每个用户分配一个波长以提供虚拟的点对点连接 近来波长锁定的法布里 -珀罗激光器(Fabry-Perot Laser Diode, FP-LD )得 到推荐并且被认为是 WDM-PON的经济光源, 而比较常用的使用方法为使用两 个 FP-LD, —个为主用激光器, 一个为属从激光器, 主用激光器用于发光, 从 属激光器使用主用激光器发射的光来承载数据。 然而随着主用激光器工作时间 的推移, 所发送的光的波长很不稳定, 这样会对从属激光器和用户之间的正常 业务构成影响。
发明内容
本发明实施例提供一种锁定光信号的波长的方法、 装置和系统, 所提供的 方法、 装置和系统能锁定激光器输出的光信号的波长。
本发明一个实施例提供一种通信系统, 包括第一激光器、 第二激光器和控 制器, 所述第一激光器和所述第二激光器相连, 所述控制器连接所述第一激光 所述第一激光器, 用于发送光信号;
所述第二激光器, 用于对所述第一激光器发送的光信号进行调制以承载数 据信号;
所述控制器, 用于获取所述第二激光器的输出功率; 根据所述输出功率, 从所述第一激光器和所述第二激光器的温度差与所述第二激光器的输出功率的 对应关系中获取所述第一激光器和所述第二激光器的温度差, 根据所述温度差 与所述第二激光器发送的光信号的波长的对应关系调整所述第一激光器的温 度。
本发明一个实施例提供一种控制器, 包括:
功率检测模块, 用于对第二激光器输出的光信号的功率进行检测, 获取所 述第二激光器的输出功率;
控制模块, 用于根据所述输出功率, 从第一激光器和第二激光器的温度差 与所述第二激光器的输出功率的对应关系中获取所述第一激光器和所述第二激 光器的温度差, 根据所述温度差与所述第二激光器发送的光信号的波长的对应 关系调整所述第一激光器的温度。
本发明一个实施例提供一种锁定光信号的波长的方法, 包括步骤: 获取第二激光器的输出功率;
根据第一激光器和第二激光器的温度差与第二激光器的输出功率的对应关 系, 获取所述第一激光器和所述第二激光器的温度差;
根据所述第二激光器发送的光信号的波长与所述温度差的对应关系, 调节 所述第一激光器的温度。
本发明实施例提供的方法、 装置和系统, 实现了通过监控第二激光器 103 输出功率的变化, 来控制第一激光器 101 的温度, 从而使第二激光器 103输出 的光信号的波长稳定, 整个控制过程简单, 不需要外部干预就能自动控制激光 器的波长。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的通信系统的示意图;
图 2为本发明实施例提供的曲线图;
图 3为本发明实施例提供的装置的结构的示意图;
图 4为本发明实施例提供的方法的流程图。
具体实施例 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明一个实施例提供一通信系统, 如图 1所示, 包括第一激光器 101、 第 二激光器 103以及控制器 113。第一激光器 101和第二激光器 103可以是法布里 -珀罗激光器(Fabry-Perot Laser Diode, FP LD )。 第一激光器 101和第二激光器 103互为主从关系, 为使得本发明实施例方案更加清楚, 以下实施例中以第一激 光器 101为主激光器、 第二激光器 103为从激光器作为举例。
其中,
第一激光器 101 , 用于发送光信号。
第二激光器 103 ,用于对第一激光器 101发送的光信号进行调制以承载数据 信号;
控制器 113 , 用于获取第二激光器 103的输出功率, 根据所述输出功率, 从 第一激光器 101和第二激光器 103的温度差与第二激光器 103的输出功率的对 应关系中获取所述第一激光器和所述第二激光器的温度差, 根据所述温度差与 所述第二激光器的波长的对应关系调整所述第一激光器的温度。
控制器 113还用于获取第一激光器 101和第二激光器 103的温度, 计算第 一激光器 101和第二激光器 103的温度差, 根据获取的第二激光器 103的输出 功率, 统计温度差和所述输出功率的对应关系。
控制器 113还用于获取第二激光器 103发送的光信号的波长, 根据所述温 度差和获取的波长, 统计所述温度差和所述波长的对应关系。
图 2为本发明实施例所提供的系统中, 第一激光器 101和第二激光器 103 的温度差与第二激光器 103 的输出功率的对应关系的曲线图, 通过该曲线图可 以看出, 第二激光器 103的输出功率与第一激光器 101和第二激光器 103的温 度差成一定的线性关系, 例如在图 2中, 当第一激光器 101和第二激光器 103 的温度差为 0 °C时, 第二激光器 103可以工作在锁定状态, 这里的锁定状态是指 第二激光器 103输出的光信号的波长处在锁定状态。 随着第一激光器 101和第 二激光器 103的温度差的增加, 第二激光器 103的输出功率线性增大, 当温度 差达到某一值时,比如图 2中的 2.7 °C时,第二激光器 103的输出功率达到极值。
而第二激光器 103输出的光信号的波长与第一激光器 101和第二激光器 103 的温度差之间也存在对应关系, 为清楚的描述, 以下实施例中, 将第二激光器 103的输出功率与第一激光器 101和第二激光器 103的温度差的对应关系叫做对 应关系 1 ,将第二激光器 103输出的光信号的波长与第一激光器 101和第二激光 器 103的温度差的对应关系叫做对应关系 2。
在知道对应关系 1和对应关系 2后, 可以将对应关系 1和对应关系 2存储 在控制器 113上, 这样, 控制器 113可以根据第二激光器 103的输出功率, 从 对应关系 1 中获取温度差, 根据获取的温度差从对应关系 2中获取第二激光器 103输出的光信号的波长。控制器 113通过调整第一激光器 101的温度来改变第 一激光器 101和第二激光器 103的温度差, 从而调整第二激光器 103输出的光 信号的波长。
控制器 113还可以给第一激光器 101提供偏置电流。
本发明所提供的通信系统还可以包括偏极化分光器 (Polarization Beam Splitter, PBS ) 105、 阵列波导光栅( Arrayed Waveguide Grating, AWG ) 107和 部分反射器 111。
其中,
PBS105 , 用于根据极化方向对接收到的光信号进行透传或反射。
本实施例所提供的系统中, 由于第一激光器 101 输出的光信号的极化方向 与 PBS105的极化方向平行, 因此, PBS105将第一激光器 101输出的光信号透 传给 AWG107。而对于来自 AWG107的光信号,则根据极化方向将来自 AWG107 的光信号分成两部分, 一部分发送给第一激光器 101 , —部分发送给第二激光器 103 , 第一激光器 101和第二激光器 103也可以根据 PBS105反射的光信号来调 整所发射的光信号的波长。
AWG107, 用于对来自 PBS105的光信号进行滤波以及将部分反射器 111反 射的光信号发送给 PBS105。
PBS105透传的光信号传到 AWG107后, 被 AWG的一个端口滤波, 一部分 光信号被传输到部分反射器 111。 而对于部分反射器 111反射的光信号, 则输出 给 PBS105 , AWG107的端口的中心波长决定了发送给 PBS105的光信号的波长。
部分反射器 111 , 用于反射来自 AWG107的光信号。
本实施例所提供的通信系统还可以包括光纤去极化器 109。
光纤去极化器 109 可用于连接部分反射器 111 和 AWG107 , 用于对来自 AWG107 的光信号进行选择, 选择出的光信号传输到部分反射器 111后, 可以 被部分反射器 111进行反射。
在本发明另一个实施例中, 控制器 113还可以设定第二激光器 103的目标 输出功率, 在获取了第二激光器 103的输出功率后, 控制器 113可以计算第二 激光器 103 当前输出功率和目标输出功率的差值, 由于第二激光器 103的输出 功率与第一激光器 101和第二激光器 103的温度差的存在线性关系, 如图 2所 示, 控制器 113可以根据这个线性关系计算第一激光器 101需要调整的温度的 值, 从而对第一激光器 101的温度进行调整。
本实施例提供的通信系统, 可用于光网络或者无源光网络 PON中, 实现了 通过监控第二激光器 103输出功率的变化, 来控制第一激光器 101 的温度, 从 而使第二激光器 103 的输出光信号的波长稳定, 整个控制过程简单, 不需要外 部干预就能自动控制激光器的波长, 实现起来也比较简单。
本发明一个实施例提供一种控制器, 如图 3所示, 包括控制模块 300和功 率检测模块 302,
其中,
功率检测模块 302, 用于获取第二激光器 103的输出功率。
本实施例中, 功率检测模块 302 可以是监控光电二极管 (Monitor Photo Diode, MPD )等, 关于如何获取第二激光器 103的输出功率, 本领域普通技术 人员都应知悉, 在此不再阐述。
控制模块 300 , 用于根据所述输出功率, 从第一激光器 101 和第二激光器 103的温度差与第二激光器 103的输出功率的对应关系中获取所述第一激光器和 所述第二激光器的温度差, 根据所述温度差与所述第二激光器的波长的对应关 系调整所述第一激光器的温度。
控制模块 300还可以设定第二激光器 103的目标输出功率, 在获取了第二 激光器 103的输出功率后, 可以计算第二激光器 103 当前输出功率和目标输出 功率的差值, 由于第二激光器 103的输出功率与第一激光器 101和第二激光器 103的温度差的存在线性关系,控制模块 300可以根据这个线性关系计算第一激 光器 101需要调整的温度的值, 从而对第一激光器 101的温度进行调整。
本实施例提供的控制器还包括对应关系获取模块 306 ,用于获取第一激光器 101的温度和第二激光器 103的温度,计算第一激光器 101和第二激光器 103的 温度差, 根据功率检测模块 302获取的输出功率, 获取第一激光器 101和第二 激光器 103的温度差与第二激光器 103的输出功率的对应关系;
对应关系获取模块 306还用于获取第二激光器 103发送的光信号的波长, 根据获取的波长和所述温度差, 获取所述温度差与第二激光器 103 发送的光信 号的波长的对应关系。
如果控制器需要给第一激光器 101 提供偏置电流时, 那么控制器还包括偏 置电流源 (图 3中未画出)。
为了能更好的对第一激光器 101 的温度进行控制, 控制器 113还可以包括 温度控制模块 304,温度控制模块 304连接第一激光器 101 ,用于在控制模块 300 的控制下, 对第一激光器 101的温度进行控制。
本实施例提供的控制器, 在光网络或者无源光网络 PON中, 实现了通过监 控第二激光器 103输出功率的变化, 来控制第一激光器 101 的温度, 从而使第 二激光器 103的输出光信号的波长稳定, 控制过程比较简单, 成本比较低。
本发明一个实施例提供一种锁定光信号的波长的方法, 如图 4所示, 包括: 步骤 400, 获取第二激光器的输出功率。
第二激光器和第一激光器互为主从关系, 第二激光器可以对第一激光器发 送的光信号进行调制, 以承载数据信号。 关于如何获取第二激光器的输出功率, 本领域普通技术人员都应知悉, 在 此不再阐述。
步骤 402, 根据输出功率获取第一激光器和第二激光器的温度差。
在执行本步骤之前还可以包括获取对应关系 1 , 具体包括:
获取第一激光器的第一温度和第二激光器的第二温度;
根据第一温度和第二温度计算所述第一激光器和所述第二激光器的温度 差;
根据获取的输出功率, 统计所述第二激光器的输出功率和所述温度差的对 应关系 1。 其中, 获取所述温度差和获取所述输出功率没有先后顺序。
由于第二激光器的输出功率与第一激光器和第二激光器的温度差存在对应 关系 1 , 在获取第二激光器的输出功率后, 可以根据对应关系 1获取第一激光器 和第二激光器的温度差。 关于对应关系 1 , 实施例一已经描述。
步骤 404, 根据获取的温度差对第一激光器的温度进行调整, 锁定第一激光 器的波长。
在执行本步骤之前还可以包括获取对应关系 2 , 具体包括:
获取第一激光器的第一温度和第二激光器的第二温度;
根据第一温度和第二温度计算所述第一激光器和所述第二激光器的温度 差;
获取第二激光器发送的光信号的波长;
根据获取的输出功率, 统计第二激光器发送的光信号的波长和所述温度差 的对应关系 2。 其中, 获取所述温度差和获取波长没有先后顺序。
在获取第一激光器和第二激光器的温度差后, 可以根据对应关系 2 获取第 二激光器当前波长, 从而可以通过调节第一激光器的温度来对第一激光器的当 前波长进行调节, 这样可以锁定第二激光器输出的光信号的波长。
本实施例提供的锁定光信号的波长的方法, 通过获取两个激光器的温度差 和从激光器的输出功率的对应关系, 可以通过改变两个激光器之间的温度差来 调节从激光器的输出功率, 实现过程比较简单, 成本比较低, 不需要外部干涉。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是 可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一计算机可读存 储介质中, 如 ROM/RAM、 磁碟或光盘等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内, 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权利要求书
1、 一种通信系统, 其特征在于, 包括第一激光器、 第二激光器和控制器, 所述第一激光器和所述第二激光器相连, 所述控制器连接所述第一激光器, 所述第一激光器, 用于发送光信号;
所述第二激光器, 用于对所述第一激光器发送的光信号进行调制以承载数 据信号;
所述控制器, 用于获取所述第二激光器的输出功率; 根据所述输出功率, 从所述第一激光器和所述第二激光器的温度差与所述第二激光器的输出功率的 对应关系中获取所述第一激光器和所述第二激光器的温度差, 根据所述温度差 与所述第二激光器发送的光信号的波长的对应关系调整所述第一激光器的温 度。
2、 根据权利要求 1所述的系统, 其特征在于, 所述系统还包括偏极化分光 器、 阵列波导光栅和部分反射器件, 所述部分反射器件连接所述阵列波导光栅, 所述阵列波导光栅连接所述偏极化分光器, 所述偏极化分光器连接所述第一激 光器和所述第二激光器,
所述偏极化分光器, 用于将来自第一激光器的光信号透传给所述阵列波导 光栅, 以及将来自所述阵列波导光栅的光信号发送给所述第二激光器;
所述阵列波导光栅, 用于对来自所述偏极化分光器的光信号进行滤波, 将 滤波后的光信号发送给所述部分发射器件, 以及将所述部分反射器件发射的光 信号发送给所述偏极化分光器;
所述部分反射器件, 用于反射来自所述阵列波导光栅的光信号。
3、 根据权利要求 2所述的系统, 其特征在于, 所述系统还包括光纤去极化 器,
所述光纤去极化器, 用于对来自所述阵列波导光栅的光信号进行选择; 所述控制器还用于给所述第一激光器提供偏置电流。
4、 根据权利要求 1所述的系统, 其特征在于, 所述控制器还用于计算所述 输出功率与预设的目标功率的差值, 根据所述差值, 从所述第一激光器和所述 第二激光器的温度差与所述第二激光器的输出功率的对应关系中获取所述第一 激光器和所述第二激光器的温度差。
5、 一种控制器, 其特征在于, 包括:
功率检测模块, 用于对第二激光器输出的光信号的功率进行检测, 获取所 述第二激光器的输出功率;
控制模块, 用于根据所述输出功率, 从第一激光器和第二激光器的温度差 与所述第二激光器的输出功率的对应关系中获取所述第一激光器和所述第二激 光器的温度差, 根据所述温度差与所述第二激光器发送的光信号的波长的对应 关系调整所述第一激光器的温度。
6、 根据权利要求 5所述的控制器, 其特征在于, 所述控制器还包括温度控 制模块, 所述温度控制模块, 用于在所述控制模块的控制下, 对所述第一激光 器的温度进行调整。
7、 根据权利要求 5所述的控制器, 其特征在于, 所述控制器还包括偏置电 流源, 所述偏置电流源, 用于给所述第一激光器提供偏置电流。
8、 根据权利要求 5所述的控制器, 其特征在于, 所述控制还包括对应关系 获取模块, 用于获取所述第一激光器的第一温度和所述第二激光器的第二温度, 根据所述第一温度和所述第二温度, 计算所述第一激光器和所述第二激光器的 温度差, 根据所述功率检测模块获取的输出功率, 获取所述第一激光器和第二 激光器的温度差与所述第二激光器的输出功率的对应关系;
所述对应关系获取模块还用于获取第二激光器发送的光信号的波长, 根据 获取的波长和所述温度差, 获取所述温度差与所述第二激光器发送的光信号的 波长的对应关系。
9、 一种锁定光信号的波长的方法, 其特征在于, 包括步骤:
获取第二激光器的输出功率;
根据第一激光器和第二激光器的温度差与第二激光器的输出功率的对应关 系, 获取所述第一激光器和所述第二激光器的温度差;
根据所述第二激光器发送的光信号的波长与所述温度差的对应关系, 调节 所述第一激光器的温度。
10、 根据权利要求 9 所述的方法, 其特征在于, 所述根据第一激光器和第 二激光器的温度差与第二激光器的输出功率的对应关系, 获取所述第一激光器 和所述第二激光器的温度差之前还包括:
获取所述第一激光器的第一温度和所述第二激光器的第二温度;
根据所述第一温度和所述第二温度计算所述第一激光器和所述第二激光器 的温度差;
根据获取的输出功率, 获取所述第二激光器的输出功率和所述温度差的对 应关系。
PCT/CN2010/072979 2009-10-28 2010-05-20 一种锁定光信号的波长的方法、装置和系统 WO2011050612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910110363 CN102055546B (zh) 2009-10-28 2009-10-28 一种锁定光信号的波长的方法、装置和系统
CN200910110363.X 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011050612A1 true WO2011050612A1 (zh) 2011-05-05

Family

ID=43921289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072979 WO2011050612A1 (zh) 2009-10-28 2010-05-20 一种锁定光信号的波长的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN102055546B (zh)
WO (1) WO2011050612A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934787B2 (en) * 2011-09-29 2015-01-13 Futurewei Technologies, Inc. Shared wavelength locker with a periodic transmission filter in a network communication path
CN106707409A (zh) * 2015-08-14 2017-05-24 清华大学 一种实现空间光色散的装置及方法
CN106788866A (zh) * 2017-02-07 2017-05-31 青岛海信宽带多媒体技术有限公司 光模块的调波方法
CN106899353B (zh) * 2017-03-02 2019-05-14 成都优博创通信技术股份有限公司 一种在光网络单元onu突发光模式下快速锁定波长的方法及调试系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239720A (ja) * 1994-02-28 1995-09-12 Fujitsu Ltd 温度制御回路
CN1251692A (zh) * 1997-03-26 2000-04-26 西门子公司 激光器波长稳定方法及实现此方法的装置
JP2009071338A (ja) * 2009-01-05 2009-04-02 Furukawa Electric Co Ltd:The 発光制御方法およびその装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765001B1 (ko) * 2001-07-10 2007-10-09 엘지노텔 주식회사 다중채널용 광파장 안정화장치
JP4081095B2 (ja) * 2005-03-16 2008-04-23 日本電信電話株式会社 光通信用光源部に格納する光出力波長特性及び光出力電力特性の測定点の選定方法
KR100889861B1 (ko) * 2007-05-09 2009-03-24 광주과학기술원 자체 잠김을 이용한 파장분할다중 방식의 수동형 광통신시스템, 이에 사용되는 중앙 기지국 및 데이터 전송 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239720A (ja) * 1994-02-28 1995-09-12 Fujitsu Ltd 温度制御回路
CN1251692A (zh) * 1997-03-26 2000-04-26 西门子公司 激光器波长稳定方法及实现此方法的装置
JP2009071338A (ja) * 2009-01-05 2009-04-02 Furukawa Electric Co Ltd:The 発光制御方法およびその装置

Also Published As

Publication number Publication date
CN102055546A (zh) 2011-05-11
CN102055546B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
US9338528B2 (en) Optimal positioning of reflecting optical devices
US7720384B2 (en) Wavelength division multiplexing apparatus
US20080279557A1 (en) Wdm-pon system using self-injection locking, optical line terminal thereof, and data transmission method
US7596315B2 (en) Wavelength division multiplexing optical transmission system and transmission wavelength control method therefor
JP2014506394A (ja) 波長分割多重通信−受動光ネットワークのための外部キャビティレーザおよびシステム
WO2013097183A1 (zh) 可调激光器波长初始化方法、装置和系统
US20090257748A1 (en) Optical transmission apparatus and optical transmission method
US20110170856A1 (en) Optical transmission device
WO2011050612A1 (zh) 一种锁定光信号的波长的方法、装置和系统
WO2014067047A1 (zh) 波长可调激光器、无源光网络系统和设备
CN109067498B (zh) 波分系统波长实时调整的方法及系统
WO2018123122A1 (ja) 光送信器、光トランシーバおよび光送信器の製造方法
EP4207634A1 (en) Optical transceiver device and optical network system
WO2015100658A1 (zh) 一种光发射器及发射方法、光接收器及接收方法
US9882349B1 (en) Externally referenced wavelength-locking technique for hybrid lasers
WO2012106920A1 (zh) 光模块及其突发发射方法、激光器及光网络系统
KR20140011521A (ko) 다층 박막 필터를 이용한 외부공진 레이저 및 이를 포함한 광 송신기
KR20130018465A (ko) 파장가변 레이저를 이용한 파장 결정 장치 및 방법과, 그를 위한 광통신 시스템
WO2017185300A1 (zh) 一种光收发装置、波长控制系统和方法
JP6914453B2 (ja) 波長多重通信システム及び波長多重通信システムの調整方法
JP6338656B2 (ja) 光学素子、レーザー、光ネットワークシステムおよびモニタリング方法
JP2002217487A (ja) 光波長安定化装置および光波長監視装置
JP2006005531A (ja) 多チャンネル光送信装置
JPH09321711A (ja) 光送信装置、光送受信装置、光通信システム、送信波長制御方法、及び光通信方法
KR101833108B1 (ko) 적어도 두 개의 배열형 도파로 격자를 이용한 온도유지장치를 사용하지 않는 wdm 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10825975

Country of ref document: EP

Kind code of ref document: A1