WO2014067047A1 - 波长可调激光器、无源光网络系统和设备 - Google Patents

波长可调激光器、无源光网络系统和设备 Download PDF

Info

Publication number
WO2014067047A1
WO2014067047A1 PCT/CN2012/083681 CN2012083681W WO2014067047A1 WO 2014067047 A1 WO2014067047 A1 WO 2014067047A1 CN 2012083681 W CN2012083681 W CN 2012083681W WO 2014067047 A1 WO2014067047 A1 WO 2014067047A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
gain medium
filter
optical switch
waveguide
Prior art date
Application number
PCT/CN2012/083681
Other languages
English (en)
French (fr)
Inventor
周小平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280001380XA priority Critical patent/CN103098488A/zh
Priority to PCT/CN2012/083681 priority patent/WO2014067047A1/zh
Publication of WO2014067047A1 publication Critical patent/WO2014067047A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2587Arrangements specific to fibre transmission using a single light source for multiple stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Definitions

  • Wavelength tunable lasers Wavelength tunable lasers, passive optical network systems and devices
  • TECHNICAL FIELD Embodiments of the present invention relate to communication technologies, and in particular, to a wavelength tunable laser, a passive optical network system, and a device.
  • a tunable laser which is usually in Time-Division Multiplexing (TDM) and wavelength division multiplexing (Wavelength-Division system, Optical Network Unit (Optical Network Unit).
  • TDM Time-Division Multiplexing
  • Optical Network Unit Optical Network Unit
  • the transmitter of the ONU) and/or Optical Line Termination (OLT) can use a tunable laser that can select a specific wavelength in a range of wavelengths, thereby improving the adaptability and flexibility of the PON system. .
  • the prior art Distributed Feedback Back (DFB) thermal modulation laser includes a resonant cavity, a gain medium, a Bragg grating, and a Thermoelectric Cooler (TEC), wherein the resonant cavity is composed of two The mirrors whose working medium axes are perpendicular and respectively disposed on both sides of the working medium constitute a side reflecting cavity, and the Bragg grating is integrated in the gain medium inside the laser so that light having a wavelength of the center wavelength of the Bragg grating is output from the laser. As the temperature increases, the center wavelength of the Bragg grating will drift to long wavelengths. Therefore, by controlling the temperature of the TEC, a mode-selective structure can be formed in the cavity, thereby achieving wavelength-adjustable single-mode operation.
  • TEC Thermoelectric Cooler
  • Embodiments of the present invention provide a wavelength tunable laser, a passive optical network system, and a device for solving the above technical problems and expanding an adjustment range of a laser output wavelength.
  • an embodiment of the present invention provides a wavelength tunable laser, including: a partial mirror, a gain medium, an optical switch, and at least two filter reflection components, wherein the at least two filter reflection components have different channel center wavelengths;
  • the optical switch is configured to control a transmission direction of an optical signal output by the gain medium to selectively transmit the optical signal to one of the filter reflection components;
  • the filter reflection component is configured to filter the optical signal After processing and reflecting thereon to form a reflected signal, the reflected signal is sequentially transmitted to the partial mirror through the optical switch and the gain medium, and the partial mirror is used for outputting a partially reflected signal and partially reflecting the signal Reflected back to the gain medium.
  • an embodiment of the present invention provides a passive optical network system, including: an optical line terminal and at least one optical network unit, where the optical line terminal is connected to the at least one optical network unit through an optical distribution network:
  • the optical line termination and/or the optical network unit comprise a wavelength tunable laser as described above.
  • an embodiment of the present invention provides a passive optical network device, including a transmitter and a receiver, where the transmitter includes a wavelength tunable laser, and the wavelength tunable laser includes: a partial mirror, a gain medium, An optical switch and at least two filter reflection components, wherein at least two filter reflection components have different channel center wavelengths; the optical switch is configured to control a transmission direction of the optical signal output by the gain medium to The signal is selectively transmitted to one of the filter reflection components; the filter reflection component is configured to filter the optical signal and reflect it to form a reflected signal, and the reflected signal is returned to the gain medium through the optical switch Transmitting through the gain medium to the partial mirror; the partial mirror is for outputting a partially reflected signal and re-reflecting the partially reflected signal back to the gain medium.
  • the wavelength tunable laser provided by the embodiment of the invention includes a partial mirror, a gain medium, an optical switch, and at least two filter reflection components, wherein the filter reflection component has filtering and total reflection, and the center wavelengths of the at least two filter components are respectively Not the same.
  • the wavelength tunable laser of the present invention adopts the structure of the external cavity laser, that is, the filter and the gain medium which determine the output wavelength of the laser are separately set, and the filter selects a temperature-insensitive filter, such as a coated glass piece, thereby The filter can be compared with the temperature of the gain medium to generate the optical signal, or the influence of the surrounding environment, and the output signal can be relatively stable, so that the wavelength can be adjusted in a wide range.
  • FIG. 1 is a schematic structural view of a wavelength tunable laser according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a wavelength tunable laser according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a passive optical network system according to Embodiment 3 of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic structural view of a wavelength tunable laser according to Embodiment 1 of the present invention.
  • the wavelength tunable laser provided by the embodiment of the present invention can be specifically used for a transmitter in an OLT and/or an ONU in a PON system to provide optical signals of different wavelengths.
  • the wavelength tunable laser provided in this embodiment will be described in detail below.
  • the wavelength tunable laser provided by this embodiment includes: a partial mirror 11, a gain medium 12, an optical switch 13, at least two filter reflection components 14, the filter reflection component 14 has filtering and reflection effects, and at least two filter components 14
  • the center wavelengths of the channels vary.
  • the partial mirror 11 has one end connected to the gain medium 12 and the other end serving as a light output end of the wavelength tunable laser.
  • Gain medium 12 is further coupled to at least two filtered reflective components 14 by optical switch 13.
  • the gain medium 12 generates an optical signal and transmits it to the optical switch 13; the optical switch 13 can control the transmission direction of the optical signal under external excitation (such as current/voltage control or temperature control), and selectively output the optical signal to one of the filters.
  • the filtering component 14 filters the optical signal and reflects the filtered optical signal back to the optical switch 13.
  • the filtered optical signal is re-injected back into the gain medium 12 through the optical switch 13 for amplification, and then further transmitted.
  • the partial mirror 11 outputs the partially filtered optical signal and reflects the other partially filtered optical signal back to the gain medium 12 for amplification, and then transmitted to the filter reflection component 14 through the optical switch 13 for filtering reflection, such as This round trip multiple times, the optical signal forms a resonance inside the wavelength tunable laser such that its wavelength is finally locked at the center wavelength of the channel of the filter reflector assembly 14 and is output from the light output of the wavelength tunable laser.
  • the optical switch 13 can switch the optical signal to the target wavelength channel according to an external excitation (such as current/voltage control or temperature control), so that the optical signal from the gain medium 12 is transmitted to the channel center wavelength and the target wavelength.
  • an external excitation such as current/voltage control or temperature control
  • the filter assembly 14 may include a filter and a mirror (such as a total reflection mirror) connected to each other, wherein the center wavelength of the channel of the filter reflector 14 is mainly determined by the center wavelength of the filter;
  • the filters of the at least two filter reflection components 14 can be implemented by a diaphragm filter array.
  • the filter reflection component 14 may also be a reflective filter device, such as a Fiber Bragg Grating (FBG), which can reflect an optical signal of a predetermined wavelength and absorb optical signals of other wavelengths.
  • FBG Fiber Bragg Grating
  • the partial mirrors 11 in this embodiment may be provided independently or in combination with the gain medium 12.
  • the combination may be a coating (ie, the partial mirror 11 is a light output end of the gain medium 12 adjacent to the wavelength tunable laser).
  • the transflective film formed by the coating method on the side may be other combinations, and is not limited herein.
  • the partial mirror 11 and the gain medium 12 combined may be a reflective gain medium, such as a Reflective Semiconductor Optical Amplifier (RSOA).
  • RSOA Reflective Semiconductor Optical Amplifier
  • the gain medium can use a material capable of realizing energy level transitions as a working medium of a gain medium, and provides energy to the gain medium by means of light energy, thermal energy, electric energy, chemical energy, etc., thereby realizing particle number inversion, thereby obtaining an optical signal.
  • the activation mode of the gain medium is not limited.
  • the optical switch 13 After the optical signal generated by the gain medium in this embodiment is transmitted to the optical switch 13, the optical switch 13 can change the transmission direction of the optical signal according to the need of the electro-optic effect or the thermo-optic effect, thereby transmitting to the corresponding filter.
  • the reflective component 14 does not limit the implementation of the optical switch here.
  • At least two filter reflection components 14 in this embodiment respectively correspond to different output ports of the optical switch 13, that is, the number of output ports of the optical switch 13 is the same as the number of corresponding filters, thereby determining the wavelength.
  • the number of wavelengths that the laser can adjust can be adjusted.
  • the filter reflection component 14 can filter the optical signal and then reflect the optical signal, wherein the implementation of the filtering function can be implemented Filter-type devices that are not sensitive to temperature. That is, the structure of each of the filtered reflective components 14 can be substantially the same, with the difference that the wavelengths that can pass are different.
  • different filter assemblies 14 may employ different configurations, such as in one embodiment, one or a portion of the filter reflector assembly 14 may employ a filter plus mirror structure while the other Or another portion of the filter reflector assembly 14 employs a reflective filter device.
  • the optical switch 13, the waveguide connecting the gain medium and the optical switch 13 (hereinafter referred to as the first waveguide), and the waveguide connecting the optical switch 13 and the at least two filter reflection components 14 (hereinafter referred to as the second waveguide) may be disposed on the planar optical waveguide.
  • PLC Planar Lighwave Circuit
  • the optical switch 13, the first waveguide and the second waveguide may be separately arranged, that is, the optical switch 13 is set as an independent device, and the optical switch 13 is connected to the gain medium.
  • the waveguide and optical switch 13 and the waveguide of the filter reflector assembly 14 can be implemented with optical fibers, respectively. This is not limited in this embodiment.
  • the optical signal is generated by controlling the input current of the gain medium, and is transmitted to the optical switch 13 through the first waveguide connecting the gain medium and the optical switch 13, and the optical switch 13 changes the optical signal by the above implementation method.
  • the direction that is to say the optical switch 13 can change the direction of the optical signal to coincide with the direction of the corresponding filter reflection component 14 according to different needs, and then the optical signal is transmitted through the second waveguide connecting the optical switch 13 and the filter reflection component 14.
  • the reflection component 14 such that the optical signal output corresponding to the passband of the filter in the filter component 14 is reflected by the mirror in the filter assembly 14, and then passed through the filter of the filter component 14 and the second waveguide.
  • the optical switch 13 and the first waveguide and the gain medium are transmitted to the partial mirror 11, and the partial mirror 11 outputs the partially filtered optical signal and reflects the partially filtered optical signal, and a part of the optical signal is in the partial mirror 11.
  • Reflecting back and forth between the optical resonant cavity formed by the filter and reflection component 14, wherein the optical The vibrating cavity allows the gain medium to continuously generate an optical signal, and continuously amplifies the signal while limiting the direction of the laser output.
  • the wavelength tunable laser provided by the embodiment of the invention includes a partial mirror, a gain medium, an optical switch, and at least two filter reflection components, wherein the filter reflection component has filtering and total reflection effects, and channel center wavelengths of at least two filter components Different.
  • the wavelength tunable laser of the present invention adopts the structure of the external cavity laser, that is, the filter and the gain medium which determine the output wavelength of the laser are separately set, and the filter selects a temperature-insensitive filter, such as a coated glass piece, thereby The filter can be compared with the temperature of the gain medium to generate the optical signal, or the influence of the surrounding environment, and the output signal can be relatively stable, so that the wavelength can be adjusted in a wide range.
  • FIG. 2 is a schematic structural view of a wavelength tunable laser according to Embodiment 2 of the present invention.
  • the optical switch 13 of the wavelength tunable laser provided by the embodiment of the present invention is disposed in a PLC chip.
  • the PLC chip further includes: a first waveguide 22 connecting the gain medium 12 and the optical switch 13, and a second waveguide 23 connecting the optical switch 13 and the at least two filter reflection components, wherein the ends of the at least two filter reflection components of the second waveguide 23 alignment.
  • the PLC chip may be composed of any one of SiO 2 , polymer, liquid crystal, Si or InP.
  • the material of the PLC chip in the wavelength tunable laser can be selected according to the specific implementation method of the optical switch 13. For example, if the optical switch 13 is performed by means of thermo-optic control, the material of the PLC may be composed of an organic polymer; if the optical switch 13 is operated by electro-optical control, the material of the PLC may be composed of liquid crystal.
  • the optical switch 13 may be disposed on the PLC chip, or the first waveguide 22 and the second waveguide 23 connected to the optical switch 13 may be simultaneously disposed on the PLC chip.
  • the wavelength tunable laser provided by the embodiment of the invention adopts the structure of the external cavity laser, and the filter can be influenced by the temperature of the gain medium when the optical medium generates the light signal, or the influence of the surrounding environment, and the output signal can be relatively stable, thereby A wide range of adjustment wavelengths.
  • the first waveguide, the second waveguide, and the optical switch are disposed on the PLC chip, and the process is mature, for example, a polycrystalline polymer material or a liquid crystal process is mature, the production cost is extremely low, and the refractive indices of the two materials are both Fiber matching, passive alignment, easy to package.
  • the gain medium 12 can be integrated on the PLC chip by using an inverted or edge coupling method.
  • the gain medium 12 can be integrated into the PLC chip by means of a flip-chip method. Specifically, the gain medium 12 can be placed on the PLC chip to align the waveguide of the gain medium 12 with the waveguide of the optical switch 13. The gain medium 12 can also be integrated into the PLC chip by means of edge coupling, in particular by aligning the waveguide of the gain medium 12 with the light entering the waveguide at the edge of the PLC.
  • the partial mirror 11 may be disposed on one end surface of the PLC chip by means of a plating film.
  • the PLC chip may further include: a third waveguide 21 connecting the partial mirror 11 and the gain medium.
  • the partial mirror 11 may be disposed on the end surface of the gain medium 12, or the partial mirror may be disposed on the end surface of the PLC chip by means of plating, and aligned with the end of the third waveguide 21.
  • the wavelength tunable laser of the embodiment of the invention further comprises: the same number of lenses as the filter reflection component 14, each lens being disposed between the second waveguide 23 and a filter reflection component 14.
  • the filter reflection component 14 may also include a total reflection mirror, a filter, and a lens.
  • a lens may be disposed between the second waveguide 23 and the filter reflection component 14 to focus the light onto the total reflection mirror, thereby reducing Loss of optical signals.
  • each of the filter reflection components 14 in the wavelength tunable laser of the embodiment of the present invention may include: a reflective filter;
  • each filter assembly 14 includes: a filter and a total reflection mirror.
  • the filter reflection component 14 may include a total reflection mirror and a filter, and may be separately set, wherein the total reflection mirror may be set as a single total reflection mirror surface, or may be configured as a combination of a total reflection mirror and a reflection type filter, and filtering
  • the type of chip can be determined by the wavelength at which the laser needs to be output.
  • the filter may be composed of a diaphragm filter array or a waveguide array grating.
  • the embodiment of the present invention further provides an optical transmitter, which may include any wavelength tunable laser in the foregoing embodiment, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 3 is a schematic diagram of a passive optical network system according to Embodiment 3 of the present invention.
  • the embodiment of the present invention provides a passive optical network system, including: an OLT 31 and a plurality of ONUs 33.
  • the OLT 31 is connected to the device in a point-to-multipoint manner through an Optical Distribution Network (ODN) 32.
  • ODN Optical Distribution Network
  • the PON system includes an OLT 31, an ODN 32, and an ONU 33, wherein the ODN 32 is generally divided into three parts: a passive optical splitter (Splitter) 322, a trunk optical fiber 321, and a branch fiber 323.
  • a passive optical splitter splitter
  • ODN32 is a passive optical splitting device, which can transmit downlink data of OLT31 to each ONU33, and simultaneously transmit uplink data of multiple ONUs 33 to OLT31; ONU33 provides user-side interface for PON system, and OLT31 includes multiple transmitters 311 and multiple The receiver 312, wherein the plurality of transmitters 311 of the OLT 31 respectively emit different wavelengths, enter the trunk fiber 321 through the combiner 313, and receive through the tunable filter 332 of any ONU 33 disposed in front of the receiver 333.
  • the machine 333 receives one of a plurality of wavelengths.
  • the time division multiplex transmission may be employed in the uplink direction, and the transmitters 311 of the plurality of ONUs 33 respectively emit wavelengths of different wavelengths.
  • the WDM 314 in the OLT 31 and the ONU 33 is a filter for sinking or separating the downstream wavelengths.
  • the multiple transmitters 311 in the OLT 31 and the ONU 33 can be implemented by using the lasers in the foregoing embodiments. The specific structure and working process are similar to the foregoing embodiments, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computing Systems (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种波长可调激光器、无源光网络系统和设备,波长可调激光器包括:部分反射镜(11)、增益介质(12)、光开关(13)、至少两个滤波反射组件(14),至少两个滤波反射组件(14)的通道中心波长各不相同,光开关(13)用于控制增益介质(12)输出的光信号的传输方向,以将光信号选择性地传输到其中一个滤波反射组件;滤波反射组件(14)用于对光信号进行滤波处理并将其反射回光开关(13),滤波处理后的光信号依次经过光开关(13)和增益介质(12)传输到部分反射镜(11);部分反射镜(11)用于输出部分滤波处理后的光信号并反射部分滤波处理后的光信号。

Description

波长可调激光器、 无源光网络系统和设备
技术领域 本发明实施例涉及通信技术, 尤其涉及一种波长可调激光器、 无源光网 络系统和设备。 背景技术 光纤通信领域的核心器件之一是可调激光器, 通常在时分复用 ( Time-Division Multiplexing, 简称 TDM )和波分复用 ( Wavelength-Division 系统中, 光网络单元(Optical Network Unit, 简称 ONU )和 /或光线路终端 ( Optical Line Termination, 简称 OLT ) 的发射机可以使用可调激光器, 该激 光器可以在一个波长范围内选择一个特定的波长,从而提高了 PON系统的适 应性和灵活性。
现有技术的分布式反馈 ( Distributed Feed Back, 简称 DFB )热调激光器 包括有谐振腔、增益介质、布拉格光栅和半导体致冷器( Thermoelectric Cooler, 简称 TEC ) , 其中, 谐振腔是由两块与工作介质轴线垂直且分别设置在工作 介质两边的反射镜构成侧面反射的腔体, 同时将布拉格光栅集成在激光器内 部的增益介质中, 使得波长为布拉格光栅中心波长的光从该激光器输出。 随 着温度的增加, 布拉格光栅的中心波长会往长波长漂移, 因此通过 TEC控制 温度的方式, 使谐振腔内可以形成选模结构, 从而实现波长可调的单模工作。
现有的 DFB热调激光器中, 布拉格光栅的材质一般釆用 InGaAsP, 在温 度需要改变 10度时, 才能对波长产生 lnm的漂移, 因此波长可调节范围受 到材料的限制, 当前的 DFB热调激光器的可调节范围窄。 发明内容 本发明实施例提供一种波长可调激光器、 无源光网络系统和设备, 用以 解决上述技术问题, 扩大激光器输出波长的调节范围。
一方面, 本发明实施例提供一种波长可调激光器, 包括: 部分反射镜、 增益介质、 光开关、 至少两个滤波反射组件, 所述所述至少两个滤波反射组 件的通道中心波长各不相同;
所述光开关用于控制所述增益介质输出的光信号的传输方向, 以将所述 光信号选择性地传输到其中一个滤波反射组件; 所述滤波反射组件用于对所 述光信号进行滤波处理后并对其进行反射形成反射信号, 所述反射信号依次 经过所述光开关和所述增益介质传输到所述部分反射镜, 所述部分反射镜用 于输出部分反射信号并将部分反射信号反射回所述增益介质。
另一方面, 本发明实施例提供一种无源光网络系统, 包括: 光线路终端 和至少一个光网络单元, 所述光线路终端通过光分配网络连接到所述至少一 个光网络单元: 其中, 所述光线路终端和 /或所述光网络单元包括如上所述的 波长可调激光器。
再一方面, 本发明实施例提供一种无源光网络设备, 包括发射机和接收 机, 其中所述发射机包括波长可调激光器, 所述波长可调激光器包括: 部分 反射镜、 增益介质、 光开关和至少两个滤波反射组件, 所述至少两个滤波反 射组件的通道中心波长各不相同; 所述光开关用于控制所述增益介质输出的 光信号的传输方向 , 以将所述光信号选择性地传输到其中一个滤波反射组件; 所述滤波反射组件用于对所述光信号进行滤波处理并将其反射形成反射信 号, 所述反射信号经过所述光开关返回所述增益介质并经过所述增益介质传 输到所述部分反射镜; 所述部分反射镜用于将部分反射信号输出并将部分反 射信号重新反射回所述增益介质。
本发明实施例提供的波长可调激光器包括部分反射镜、 增益介质、 光开 关、 至少两个滤波反射组件, 其中滤波反射组件具有滤波和全反射作用, 且 至少两个滤 射组件的中心波长各不相同。 本发明的波长可调激光器釆用 外腔激光器的结构, 即将决定该激光器输出波长的滤波片和增益介质分别独 立设置, 而且滤波片选用对温度不敏感的滤波片, 如镀膜的玻璃片, 从而滤 波片可以不受增益介质产生光信号时温度的影响, 或是周围环境的影响, 可 以比较稳定的输出光信号, 从而可以较宽范围的调节波长。 附图说明 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一的波长可调激光器的结构示意图;
图 2为本发明实施例二的波长可调激光器的结构示意图;
图 3为本发明实施例三的无源光网络系统的示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明实施例一的波长可调激光器的结构示意图。 如图 1所示, 本发明实施例提供的波长可调激光器具体可以用于 PON系统中的 OLT和 /或 ONU中的发射机, 用以提供不同波长的光信号。 以下对本实施例提供的波长 可调激光器进行详细地说明。
本实施例提供的波长可调激光器包括: 部分反射镜 11、 增益介质 12、 光 开关 13、 至少两个滤波反射组件 14, 滤波反射组件 14具有滤波和反射作用, 且至少两个滤 射组件 14的通道中心波长各不相同。 部分反射镜 11其中 一端连接到增益介质 12, 另一端作为波长可调激光器的光输出端。 增益介质 12通过光开关 13进一步连接到至少两个滤波反射组件 14。增益介质 12产生 光信号并传输到光开关 13; 光开关 13可在外部激励 (比如电流 /电压控制或者 温度控制)下, 控制光信号的传输方向, 选择性地将光信号输出到其中一个滤 射组件 14; 滤波反射组件 14对光信号进行滤波处理后将滤波处理后的 光信号反射回光开关 13 , 滤波处理后的光信号经过光开关 13重新注入回增 益介质 12进行放大, 再进一步传输到部分反射镜 11。 部分反射镜 11输出部 分滤波处理后的光信号并将另一部分滤波处理后的光信号反射回增益介质 12 进行再次放大, 再通过光开关 13传输到滤波反射组件 14进行滤波反射, 如 此往返多次, 光信号便在包括波长可调激光器内部形成谐振从而使得其波长 最终锁定在滤波反射组件 14的通道中心波长,并从波长可调激光器的光输出 端输出。
当需要进行波长调整时, 光开关 13可根据外部激励 (比如电流 /电压控制 或者温度控制)下将光信号切换到目标波长通道, 使得来自增益介质 12的光 信号传输到通道中心波长与目标波长相对应的另一个滤波反射组件 14, 此后 光信号在波长可调激光器内部形成谐振最终其波长锁定到在切换后的滤波反 射组件 14的通道中心波长, 从而完成波长可调激光器的波长调整。
在本实施例中,滤¾^射组件 14可以包括相互连接的滤波片和反射镜 (比 如全反射镜), 其中滤波反射组件 14的通道中心波长主要由滤波片的中心波 长决定; 在具体实现上, 至少两个滤波反射组件 14的滤波片可以通过波膜滤 波片阵列来实现。可替代地,所述滤波反射组件 14也可以为反射型滤波器件, 比如光纤布拉格光栅 (Fiber Bragg Grating, 简称: FBG), 其可以反射预定波长 的光信号, 并吸收其他波长的光信号。
本实施例中的部分反射镜 11可以独立设置, 也可以和增益介质 12组合 在一起, 其组合方式可以是镀膜 (即部分反射镜 11为在增益介质 12邻近波长 可调激光器的光输出端的一侧通过镀膜方式形成的半穿透半反射膜), 也可以 是其它的组合方式, 在此不作限制。 其中, 组合在一起的部分反射镜 11和增 益介质 12可以是反射型的增益介质, 比如反射型半导体光放大器(Reflective Semiconductor Optical Amplifier, 简称: RSOA )。 增益介质可以釆用能够实现 能级跃迁的物质作为增益介质的工作物质, 通过光能源、 热能源、 电能源、 化学能源等方式给增益介质提供能量, 从而实现粒子数反转, 进而得到光信 号, 在此不限增益介质的激活方式。
本实施例中的增益介质产生的光信号传输到光开关 13后, 光开关 13可 以釆用电光效应或是热光效应的方式根据需要来改变光信号的传输方向, 从 而传输到对应的滤波反射组件 14, 在此不限制光开关的实现方式。
本实施例中的滤波反射组件 14至少有两个, 分别对应光开关 13不同的 输出端口, 也就是说, 光开关 13的输出端口的数量与对应的滤波片的数量相 同, 从而决定了该波长可调节激光器可以调节的波长数量。 滤波反射组件 14 对光信号可以进行滤波处理后反射光信号, 其中, 滤波功能的实现可以釆用 对温度不敏感的滤波型器件。 也就是说, 每个滤波反射组件 14的结构可以基 本相同, 区别在于可以通过的波长不同。 可替代地, 不同的滤¾^射组件 14 也可以釆用不同的结构, 比如在一种实施例中, 其中一个或一部分滤波反射 组件 14可以釆用滤波片加反射镜的结构,而另一个或另一部分滤波反射组件 14釆用反射型滤波器件。
其中, 光开关 13、 连接增益介质与光开关 13 的波导(以下简称第一波 导)和连接光开关 13与至少两个滤波反射组件 14的波导(以下简称第二波 导)可以设置在平面光波导( Planar Lighwave Circuit, 简称: PLC ) 芯片中, 也可以将光开关 13、 第一波导和第二波导分别独立设置, 即光开关 13设置 成独立的器件, 光开关 13与增益介质连接的第一波导和光开关 13与滤波反 射组件 14的波导可以分别用光纤实现。 在本实施例中对此不作限制。
在该波长可调激光器中, 通过控制增益介质的输入电流, 从而产生光信 号并通过连接增益介质与光开关 13的第一波导传输到光开关 13 , 光开关 13 通过上述实现方法改变该光信号方向,也就是说光开关 13可以根据不同的需 要, 改变光信号的方向与对应的滤波反射组件 14的方向一致, 接着, 该光信 号通过连接光开关 13与滤波反射组件 14的第二波导传输到滤波反射组件 14, 从而与滤波反射组件 14中滤波片的通带对应的光信号输出,经过滤 射组 件 14中的反射镜反射, 再依次通过滤波反射组件 14的滤波片、 第二波导、 光开关 13和第一波导和增益介质, 传输到部分反射镜 11 , 部分反射镜 11输 出部分滤波处理后的光信号并反射部分滤波处理后的光信号, 还有部分光信 号在部分反射镜 11和滤波反射组件 14组成的光学共振腔之间来回反射, 其 中该光学共振腔可以使增益介质连续的产生的光信号, 并不断给信号放大同 时可以限制激光输出的方向。
本发明实施例提供的波长可调激光器包括部分反射镜、 增益介质、 光开 关、 至少两个滤波反射组件, 其中滤波反射组件具有滤波和全反射作用, 且 至少两个滤 射组件的通道中心波长各不相同。 本发明的波长可调激光器 釆用外腔激光器的结构, 即将决定该激光器输出波长的滤波片和增益介质分 别独立设置, 而且滤波片选用对温度不敏感的滤波片, 如镀膜的玻璃片, 从 而滤波片可以不受增益介质产生光信号时温度的影响,或是周围环境的影响, 可以比较稳定的输出光信号, 从而可以较宽范围的调节波长。 图 2为本发明实施例二的波长可调激光器的结构示意图。 如图 1和图 2 所示, 本发明实施例提供的波长可调激光器的光开关 13设置在 PLC芯片中。
PLC芯片中还包括:连接增益介质 12与光开关 13的第一波导 22和连接 光开关 13与至少两个滤波反射组件的第二波导 23 , 其中至少两个滤波反射 组件第二波导 23的末端对准。
具体来说, 该 PLC芯片, 可以由 Si02、 聚合物、 液晶、 Si或者 InP的任一 一种构成。 波长可调激光器中的 PLC芯片的材料, 可以根据光开关 13的具体 实现方法来选择。 比如, 釆用热光控制的方式进行光开关 13 , 则该 PLC的材 料可以由机聚合物构成; 如果釆用电光控制的方式进行光开关 13 , 则该 PLC 的材料可以由液晶构成。 在具体实现上, 可以在 PLC芯片上设置光开关 13 , 也可以在 PLC芯片上同时设置与光开关 13相连的第一波导 22和第二波导 23。
本发明实施例提供的波长可调激光器釆用外腔激光器的结构, 滤波片可 以不受增益介质产生光信号时温度的影响, 或是周围环境的影响, 可以比较 稳定的输出光信号, 从而可以较宽范围的调节波长。 将第一波导、 第二波导 和光开关设置在 PLC 芯片成本较低而且工艺成熟, 例如多晶 (Polymer )材 料或者液晶工艺等已经很成熟, 制作成本极低, 而且这两种材料折射率均与 光纤匹配, 可无源对准, 极易封装。
可选的, 在本发明实施例中, 增益介质 12可以釆用倒贴方式或边缘耦合 方式集成在 PLC芯片上。
增益介质 12可以釆用倒贴方式集成在 PLC芯片, 具体可以将增益介质 12 放置在 PLC芯片上, 使增益介质 12的波导与光开关 13的波导对准。 增益介质 12还可以釆用边缘耦合的方式集成在 PLC芯片, 具体是将增益介质 12的波导 与光线进入 PLC边缘的波导对准。
在本发明实施例中, 部分反射镜 11可以釆用镀膜的方式设置在 PLC芯 片的一个端面上。
在本发明实施例中, PLC芯片中还可以包括: 连接部分反射镜 11与增益 介质的第三波导 21。
在本发明实施例中, 部分反射镜 11可以设置在增益介质 12的端面上, 也可以釆用镀膜的方式将部分反射镜设置在 PLC芯片的端面, 并与第三波导 21的末端对准。 优选的, 本发明实施例的波长可调激光器还包括: 与滤波反射组件 14数 量相同的透镜, 每个透镜设置在第二波导 23与一个滤波反射组件 14之间。
具体的, 滤波反射组件 14也可以包括全反射镜、 滤波片和透镜, 具体来 说, 可以在第二波导 23与滤波反射组件 14之间设置透镜, 从而聚焦光线到 全反射镜上, 减小光信号的损耗。
进一步的, 本发明实施例的该波长可调激光器中的每个滤波反射组件 14 可以包括: 反射型滤波片;
或者, 每个滤 射组件 14包括: 滤波片和全反射镜。
具体来说, 滤波反射组件 14可以包括全反射镜和滤波片, 并且可以分别 独立设置, 其中全反射镜可以设置为单独的全反射镜面, 也可以设置成全反 射镜和反射型滤波片组合, 滤波片的类型可以根据该激光器需要输出的波长 决定。 滤波片可以由波膜滤波片阵列构成, 也可以由波导阵列光栅构成。
本发明实施例还提供一种光发射机, 可以包括上述实施例中的任一波长 可调激光器, 其实现原理和技术效果类似, 此处不再赘述。
图 3为本发明实施例三的无源光网络系统的示意图。 如图 3所示, 本发 明实施例提供一种无源光网络系统包括: OLT31和多个 ONU33 , OLT31通过 光分配网络 32 ( Optical Distribution Network, 简称 ODN ) 以点到多点的方式 连接到所述多个 ONU33 , 其中, OLT31和 /或 ONU33分别包括用于发射数据 信号等光信号的发射机 311 ,发射机 311包括上述实施例的任一项的波长可调 激光器。
具体来说,在 PON系统中包括 OLT31、 ODN32和 ONU33,其中, ODN32 一般分为三个部分: 无源光分路器(Splitter ) 322、 主干光纤 321、 和分支光 纤 323。 ODN32 为无源分光器件, 可以将 OLT31 的下行数据传输到各个 ONU33 , 同时将多个 ONU33的上行数据汇总传输到 OLT31 ; ONU33为 PON 系统提供用户侧接口, OLT31包括多个发射机 311和多个接收机 312, 其中, OLT31的多个发射机 311分别发出不同的波长, 经过合波器 313进入主干光 纤 321 , 再通过任一 ONU33中的设置在接收机 333前的可调滤波器 332, 接 收机 333 接收多个波长的一个。 在上行方向可以釆用时分复用传输, 多个 ONU33的发射机 311分别发射不同波长的波长。 在 OLT31和 ONU33 中的 WDM314是用来^ J下行波长汇聚或者分离的滤波器。 其中, 在 OLT31和 ONU33中的多个发射机 311可以釆用上述实施例中 的激光器来实现, 其具体结构和工作过程上述实施例类似, 此处不再赘述。
需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描 述的动作顺序的限制, 因为依据本发明, 某些步骤可以釆用其他顺序或者同 时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属 于优选实施例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例堆本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求
1、 一种波长可调激光器, 其特征在于, 包括: 部分反射镜、 增益介质、 光开关、 至少两个滤波反射组件, 所述至少两个滤波反射组件的通道中心波 长各不相同;
所述光开关用于控制所述增益介质输出的光信号的传输方向, 以将所述 光信号选择性地传输到其中一个滤 射组件;
所述滤波反射组件用于对所述光信号进行滤波处理并对其进行发射形成 反射信号, 所述反射信号依次经过所述光开关和所述增益介质传输到所述部 分反射镜;
所述部分反射镜用于输出部分反射信号并将部分反射信号反射回所述增 益介质。
2、 根据权利要求 1所述的激光器, 其特征在于,
所述光开关设置在平面光波导 PLC芯片内部;
所述 PLC芯片中还包括: 连接所述增益介质与所述光开关的第一波导和 连接所述光开关与所述至少两个滤波反射组件的第二波导。
3、 根据权利要求 2所述的激光器, 其特征在于,
所述增益介质釆用倒贴方式或边缘耦合方式集成在所述 PLC芯片。
4、 根据权利要求 2或 3所述的激光器, 其特征在于,
所述部分反射镜釆用镀膜方式设置在所述 PLC芯片的端面;
所述 PLC芯片中还包括: 连接所述部分反射镜与所述增益介质的第三波 导。
5、 根据权利要求 2或 3所述的激光器, 其特征在于,
所述部分反射镜设置在所述增益介质的端面。
6、 根据权利要求 1-5中任意一项所述的激光器, 其特征在于, 还包括: 与所述滤波反射组件数量相同的透镜;
所述透镜设置在所述第二波导与一个所述滤波反射组件之间。
7、 根据权利要求 1-6中任意一项所述的激光器, 其特征在于,
所述滤 射组件包括: 反射型滤波片;
或者, 所述滤 射组件包括: 滤波片和全反射镜。
8、一种无源光网络系统, 其特征在于, 包括: 光线路终端和光网络单元, 所述光线路终端通过光分配网络连接到所述光网络单元: 其中, 所述光线路 终端和 /或所述光网络单元包括权利要求 1-7任一项所述的波长可调激光器。
9、 一种无源光网络设备, 其特征在于, 包括发射机和接收机, 其中所述 发射机包括波长可调激光器, 所述波长可调激光器包括: 部分反射镜、 增益 介质、 光开关和至少两个滤波反射组件, 所述至少两个滤波反射组件的通道 中心波长各不相同;
所述光开关用于控制所述增益介质输出的光信号的传输方向, 以将所述 光信号选择性地传输到其中一个滤 射组件;
所述滤波反射组件用于对所述光信号进行滤波处理并将其反射形成反射 信号, 所述反射信号经过所述光开关返回所述增益介质并经过所述增益介质 传输到所述部分反射镜;
所述部分反射镜用于将部分反射信号输出并将部分反射信号重新反射回 所述增益介质。
10、 根据权利要求 9所述的无源光网络设备, 其特征在于,
所述光开关设置在平面光波导 PLC芯片内部;
所述 PLC芯片中还包括: 连接所述增益介质与所述光开关的第一波导和 连接所述光开关与所述至少两个滤波反射组件的第二波导。
11、 根据权利要求 10所述的无源光网络设备, 其特征在于,
所述增益介质釆用倒贴方式或边缘耦合方式集成在所述 PLC芯片。
12、 根据权利要求 10或 11所述的无源光网络设备, 其特征在于, 所述部分反射镜釆用镀膜方式设置在所述 PLC芯片的端面;
所述 PLC芯片中还包括: 连接所述部分反射镜与所述增益介质的第三波 导。
13、 根据权利要求 10或 11所述的无源光网络设备, 其特征在于, 所述部分反射镜设置在所述增益介质的端面。
14、根据权利要求 9-13中任意一项所述的无源光网络设备,其特征在于, 还包括: 与所述滤波反射组件数量相同的透镜;
所述透镜设置在所述第二波导与一个所述滤波反射组件之间。
15、根据权利要求 9-14中任意一项所述的无源光网络设备,其特征在于, 所述滤 射组件包括: 反射型滤波片;
或者, 所述滤 射组件包括: 滤波片和全反射镜。
PCT/CN2012/083681 2012-10-29 2012-10-29 波长可调激光器、无源光网络系统和设备 WO2014067047A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280001380XA CN103098488A (zh) 2012-10-29 2012-10-29 波长可调激光器、无源光网络系统和设备
PCT/CN2012/083681 WO2014067047A1 (zh) 2012-10-29 2012-10-29 波长可调激光器、无源光网络系统和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083681 WO2014067047A1 (zh) 2012-10-29 2012-10-29 波长可调激光器、无源光网络系统和设备

Publications (1)

Publication Number Publication Date
WO2014067047A1 true WO2014067047A1 (zh) 2014-05-08

Family

ID=48208644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083681 WO2014067047A1 (zh) 2012-10-29 2012-10-29 波长可调激光器、无源光网络系统和设备

Country Status (2)

Country Link
CN (1) CN103098488A (zh)
WO (1) WO2014067047A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736620B (zh) * 2016-05-25 2021-08-21 南韓商Lg電子股份有限公司 通訊用配件

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281638A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
KR101844689B1 (ko) * 2013-07-24 2018-04-02 후아웨이 테크놀러지 컴퍼니 리미티드 조정가능 광학 수신기, 조정가능 광학 송신기 및 조정가능 광학 송수신기
WO2015085544A1 (zh) 2013-12-12 2015-06-18 华为技术有限公司 一种激光器
CN103633547B (zh) * 2013-12-20 2017-01-25 武汉光迅科技股份有限公司 波长可调谐外腔激光器
US9768587B1 (en) * 2016-11-02 2017-09-19 Oracle International Corporation Scalable fast tunable Si-assisted hybrid laser with redundancy
US9780524B1 (en) * 2016-11-02 2017-10-03 Oracle International Corporation Fast tunable hybrid laser with a silicon-photonic switch
CN110620325B (zh) * 2018-06-20 2022-02-11 华为技术有限公司 波长可调谐的激光器
CN113917630B (zh) * 2021-10-19 2023-08-08 青岛海信宽带多媒体技术有限公司 一种光模块和光模块光谱整形方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229796A (ja) * 1987-03-18 1988-09-26 Fujitsu Ltd 光半導体素子
CN1435922A (zh) * 2002-01-26 2003-08-13 华为技术有限公司 一种可变波长输出光纤激光器
CN201365066Y (zh) * 2009-03-19 2009-12-16 福州高意通讯有限公司 一种多波长输出的激光器
JP2010078648A (ja) * 2008-09-24 2010-04-08 Oki Electric Ind Co Ltd 光共振器及び波長可変レーザ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091744A (en) * 1998-01-14 2000-07-18 Hewlett-Packard Company Wavelength selectable source for wavelength division multiplexed applications
CN201821352U (zh) * 2009-10-10 2011-05-04 刘奕辉 基于无源光网络的自由空间光通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229796A (ja) * 1987-03-18 1988-09-26 Fujitsu Ltd 光半導体素子
CN1435922A (zh) * 2002-01-26 2003-08-13 华为技术有限公司 一种可变波长输出光纤激光器
JP2010078648A (ja) * 2008-09-24 2010-04-08 Oki Electric Ind Co Ltd 光共振器及び波長可変レーザ
CN201365066Y (zh) * 2009-03-19 2009-12-16 福州高意通讯有限公司 一种多波长输出的激光器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736620B (zh) * 2016-05-25 2021-08-21 南韓商Lg電子股份有限公司 通訊用配件

Also Published As

Publication number Publication date
CN103098488A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2014067047A1 (zh) 波长可调激光器、无源光网络系统和设备
KR101954376B1 (ko) 광 회선 단말 송수신기를 구비한 광 네트워크 통신 시스템 및 그 동작 방법
US8606107B2 (en) Colorless dense wavelength division multiplexing transmitters
CN111181653B (zh) 波分复用偏振无关反射调制器
US20110013654A1 (en) Wavelength variable laser device, and method and program for controlling the same
CN103487881B (zh) 可调谐光滤波器及包含该滤波器的芯片集成器件
US8396375B2 (en) Method and apparatus for bidirectional optical link using a single optical carrier and colorless demodulation and detection of optical frequency shift keyed data
JP5789712B2 (ja) 無色ウルトラブロードバンドpon用の、非冷却自己調整キャビティのための偏光安定スキーム
US20150357791A1 (en) Tunable laser with multiple in-line sections
US10418782B2 (en) Wavelength-selectable laser device providing spatially-selectable wavelenth(s)
EP3271977B1 (en) Tunable laser including parallel lasing cavities with a common output
CN102511138B (zh) 可调光收发器、无源光网络系统及设备
JP2018085475A (ja) 多波長レーザ装置及び波長多重通信システム
EP3079274B1 (en) Optical transmitter, transmission method, optical receiver and reception method
JP6484115B2 (ja) ハイブリッド集積型光送信器
WO2012106920A1 (zh) 光模块及其突发发射方法、激光器及光网络系统
WO2012089527A1 (en) Optical network system and method
WO2015010273A1 (zh) 可调光接收机、可调光发射机和可调光收发机
WO2014022971A1 (zh) 外调制激光器、无源光通信设备及系统
US20140001347A1 (en) Rotator external to photonic integrated circuit
KR100596406B1 (ko) 광파장 정렬 기능을 가지는 wdm-pon 시스템
WO2020238279A1 (zh) 一种plc芯片、tosa、bosa、光模块、以及光网络设备
Jayasinghe et al. Wavelength switchable ONU transmitter using a self-seeded RSOA for reconfigurable optical VPN over WDM PON
JP6338656B2 (ja) 光学素子、レーザー、光ネットワークシステムおよびモニタリング方法
US20240047945A1 (en) Multiwavelength laser device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001380.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887507

Country of ref document: EP

Kind code of ref document: A1