WO2017185300A1 - 一种光收发装置、波长控制系统和方法 - Google Patents

一种光收发装置、波长控制系统和方法 Download PDF

Info

Publication number
WO2017185300A1
WO2017185300A1 PCT/CN2016/080510 CN2016080510W WO2017185300A1 WO 2017185300 A1 WO2017185300 A1 WO 2017185300A1 CN 2016080510 W CN2016080510 W CN 2016080510W WO 2017185300 A1 WO2017185300 A1 WO 2017185300A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
signal
optical signal
value
Prior art date
Application number
PCT/CN2016/080510
Other languages
English (en)
French (fr)
Inventor
罗俊
周谞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/080510 priority Critical patent/WO2017185300A1/zh
Priority to CN201680077765.2A priority patent/CN108476069B/zh
Publication of WO2017185300A1 publication Critical patent/WO2017185300A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control

Definitions

  • the present application relates to the field of optical communication technologies, and in particular, to an optical transceiver, a wavelength control system, and a method.
  • DWDM Dense Wavelength Division Multiplexing
  • the wavelength channel bandwidth is typically 50 GHz or 100 GHz, as required by the International Telecommunication Union Telecommunication Standards Sector (ITU-T).
  • ITU-T International Telecommunication Union Telecommunication Standards Sector
  • the wavelength of the light signal emitted by each light-emitting device must satisfy the influence of external factors such as temperature and humidity, and the deviation of the center frequency of the signal spectrum is within the life cycle. Can be controlled within a certain range. In order to ensure wavelength stability and accuracy, it is necessary to control by wavelength locking.
  • the optical transceiver 100 includes a wavelength locking device 101 and a light emitting device 102.
  • the wavelength locking device 101 is connected to the light emitting device 102, and can control the wavelength of the optical signal emitted by the light emitting device 102.
  • the wavelength locking device 101 includes an etalon (English: Etalon) 1010, a microcontroller (abbreviation: ⁇ C) 1012, two monitoring optical receivers (English: monitoring Photo-Detector, abbreviation: mPD) 1013, two mPD is represented by mPD1 and mPD2, respectively.
  • the specific implementation process of the wavelength locking in FIG. 1 is: the optical signal emitted by the light emitting device 102 is partially filtered by the Etalon, and finally the electrical signal I 0 is obtained after being detected by the mPD1; and the part is directly detected by the mPD2 to obtain the electrical signal I ref .
  • the ⁇ C 1012 can obtain the wavelength shift amount of the optical signal, output a feedback control signal to the light emitting device 102 according to the obtained wavelength shift amount, and perform wavelength adjustment, thereby implementing the light emitting device 102.
  • the control of the wavelength of the output optical signal keeps the wavelength of the optical signal stable.
  • the wavelength locking device 101 is placed in the optical transceiver 100 for use with the light emitting device 102. Due to the high cost of the wavelength locking device 101, the cost of the optical transceiver 100 is increased, and for a DWDM network requiring a large number of optical transceivers, it is undoubtedly subject to greater costs.
  • the present application provides an optical transceiver, a wavelength control system, and a method for solving the problem of high cost caused by wavelength control of a DWDM network.
  • an optical transceiver is provided, and the optical transceiver is connected to at least one other optical transceiver by a wavelength multiplexing/demultiplexing device to share a wavelength locking device;
  • the optical transceiver device includes a light emitting device, a controller, a first optical receiver, and a second optical receiver; wherein:
  • the controller, the first optical receiver and the second optical receiver are both connected to the light emitting device, and the first optical receiver and the second optical receiver are both connected to the controller ;
  • the light emitting device is configured to emit an optical signal, transmit a part of the optical signal to the shared wavelength locking device by the wavelength multiplexing/demultiplexing device, and transmit another partial optical signal to the second optical receiver;
  • the first optical receiver is configured to receive a reflected optical signal of the portion of the optical signal, convert the reflected optical signal into a first electrical signal, and transmit the first electrical signal to the controller, where
  • the reflected light signal is that the shared wavelength locking device filters the part of the optical signal, and rotates the polarization state, and then feeds back to the first optical receiver via the wavelength multiplexing/demultiplexing device;
  • the second optical receiver is configured to convert the another partial optical signal into a second electrical signal, and transmit the second electrical signal to the controller;
  • the controller is configured to obtain the wavelength offset information according to the first electrical signal and the second electrical signal, and control a wave of the optical signal emitted by the light emitting device according to the wavelength offset information long.
  • the optical transceiver can share the same shared wavelength locking device with other optical transceivers through the wavelength multiplexing/demultiplexing device, which can effectively solve the problem of high cost caused by wavelength locking, especially when a large number of optical transceivers are required.
  • the cost of wavelength locking can be greatly reduced; and by designing two optical receivers in the optical transceiver, the original optical signal received by the second optical receiver can be used as an effective reference signal to remove the illuminating
  • the interference introduced by the power jitter of the device is simple and easy to implement, and does not require additional cost. In short, the result of controlling the wavelength is more accurate on the basis of low cost.
  • the second optical receiver is connected to a backlight surface of the light emitting device
  • the other portion of the optical signal is transmitted through the backlight surface of the light emitting device.
  • the optical receiver disposed on the back surface of the light emitting device in the existing optical transceiver device can be used as the second optical receiver, which can not only make the obtained wavelength offset information more accurate, but also make the structure of the optical transceiver device as simple as possible and reduce The cost of the optical transceiver further reduces the cost of the wavelength control system.
  • the first optical receiver and the second optical receiver are the same Responsive low speed optical receiver for characterizing the conversion factor that the optical receiver converts the power of the received optical signal into a current.
  • the electrical signals converted by the first optical receiver and the second optical receiver are more comparable, and accurate wavelength offset information can be obtained.
  • the optical transceiver further includes polarization splitting The first optical receiver is connected to the light emitting device through the polarization beam splitter;
  • the polarizing beam splitter is configured to transmit the received part of the optical signal emitted by the light emitting device to the shared wavelength locking device by the wavelength multiplexing/demultiplexing device, and share the sharing
  • the wavelength locking device is deflected by the reflected light signal fed back by the wavelength multiplexing/demultiplexing device to the The first optical receiver.
  • the polarizing beam splitter can prevent the reflected light signal from entering the inside of the light emitting device to form interference, and functions as a light isolation.
  • the controller is configured to:
  • the wavelength of the optical signal emitted by the illumination device is adjusted until the monitored value obtained during the adjustment is close to or the same as the reference value.
  • the wavelength offset information is obtained jointly according to the first electrical signal obtained by the first optical receiver and the second electrical signal obtained by the second optical receiver, which can remove the interference introduced by the power jitter of the light emitting device, and more accurately control the light.
  • the wavelength of the optical signal emitted by the transceiver is obtained jointly according to the first electrical signal obtained by the first optical receiver and the second electrical signal obtained by the second optical receiver, which can remove the interference introduced by the power jitter of the light emitting device, and more accurately control the light.
  • the reference value is determined by:
  • the controller adjusts a wavelength of an optical signal emitted by the light emitting device, and monitors a value of the first electrical signal
  • the controller is further configured to:
  • the preset fixed value is: according to a wavelength of the optical signal at the first wavelength The difference between the power of the corresponding optical signal and the power of the optical signal corresponding to the wavelength of the optical signal at the target wavelength, and the product of the optical receiver converting the power of the received optical signal into a conversion coefficient of the current.
  • a wavelength control system comprising at least two optical transceivers, a wavelength multiplexing/demultiplexing device, and a shared wavelength locking device, wherein the at least two optical transceivers are Connecting the shared wavelength locking device with a /demultiplexer, that is, each optical transceiver is connected to one end of the wavelength multiplexing/demultiplexing device, and the other end of the wavelength multiplexing/demultiplexing device Connected to the shared wavelength locking device.
  • Each of the optical transceivers includes a light emitting device, a controller, a first optical receiver, and a second optical receiver, and the controller, the first optical receiver, and the second optical receiver are both The light emitting device is connected, and the first optical receiver and the second optical receiver are both connected to the controller, wherein:
  • the light emitting device in each of the optical transceivers is configured to transmit an optical signal, transmit a portion of the optical signal to the wavelength multiplexing/demultiplexing device, and transmit another portion of the optical signal to the second optical receiving machine;
  • the wavelength multiplexing/demultiplexing device is configured to aggregate the part of the optical signals emitted by the light emitting device in each of the optical transceivers to generate a composite wavelength optical signal, and to the shared wavelength locking device Transmitting the composite wavelength optical signal;
  • the shared wavelength locking device is configured to filter the composite wavelength optical signal and rotate the polarization state to obtain a composite wavelength reflected optical signal, and transmit the composite wavelength reflected optical signal to the wavelength multiplexing/demultiplexing Device
  • the wavelength multiplexing/demultiplexing device is further configured to receive the composite wavelength reflected light signal, and decompose the composite wavelength reflected light signal into reflected light signals corresponding to the respective optical transceivers, and then respectively Each of the optical transceivers feeds back a corresponding reflected light signal;
  • the first optical receiver in each of the optical transceivers is configured to receive a reflected optical signal fed back by the wavelength multiplexing/demultiplexing device, convert the reflected optical signal into a first electrical signal, and Transmitting the first electrical signal to the controller;
  • the second optical receiver in each of the optical transceivers is configured to convert the another part of the optical signal emitted by the light emitting device into a second electrical signal, and transmit the second electrical signal to the Controller
  • the controller in each of the optical transceivers configured to obtain the wavelength offset information according to the first electrical signal and the second electrical signal, and control the according to the wavelength offset information The wavelength of the optical signal emitted by the light emitting device.
  • multiple optical transceivers can share the same shared wavelength locking device through the wavelength multiplexing/demultiplexing device, which can effectively solve the problem of high cost caused by wavelength locking, especially in an application environment requiring a large number of optical transceivers.
  • the cost of the wavelength locking can be greatly reduced; and by designing two optical receivers in the optical transceiver, the original optical signal received by the second optical receiver can be used as an effective reference signal to remove power jitter caused by the light emitting device.
  • the introduced interference, and this structure is simple, easy to implement, does not require additional cost, and, in short, achieves a more cost-effective result of controlling wavelengths.
  • the second optical receiver is coupled to a backlight surface of the light emitting device; and the other portion of the optical signal is from a backlight surface of the light emitting device Transmitted.
  • the optical receiver disposed on the back surface of the light emitting device in the existing optical transceiver device can be used as the second optical receiver, which can not only make the obtained wavelength offset information more accurate, but also make the structure of the optical transceiver device as simple as possible and reduce The cost of the optical transceiver further reduces the cost of the wavelength control system.
  • the first optical receiver and the second optical receiver have the same response Low-speed optical receiver, the responsiveness is used to characterize the work of the optical receiver to receive the optical signal The rate is converted to the conversion factor of the current.
  • the electrical signals converted by the first optical receiver and the second optical receiver are more comparable, and accurate wavelength offset information can be obtained.
  • the optical transceiver further includes polarization splitting The first optical receiver is connected to the light emitting device through the polarization beam splitter;
  • the polarization beam splitter is configured to transmit the received part of the optical signal emitted by the light emitting device to the wavelength multiplexing/demultiplexing device, and feedback the wavelength multiplexing/demultiplexing device The reflected light signal is deflected to the first optical receiver.
  • the polarizing beam splitter can prevent the reflected light signal from entering the inside of the light emitting device to form interference, and functions as a light isolation.
  • the shared wavelength locking device comprises an etalon and a rotator, the etalon being connected to the rotator;
  • the etalon is configured to filter one of the composite wavelength optical signals
  • the rotator is configured to receive an optical signal filtered by the etalon, rotate a polarization state of the received optical signal by an angle, and reflect the etalon to the etalon;
  • the etalon is further configured to filter an optical signal reflected by the optical rotator to form the composite wavelength reflected optical signal.
  • the set angle is 90°.
  • the shared wavelength locking device further includes an optical coupler and an optical isolator; a demultiplexer, the etalon, and the optical isolator are all connected to the optical coupler;
  • the optical coupler in the shared wavelength locking device is configured to receive the composite wavelength optical signal transmitted by the wavelength multiplexing/demultiplexing device, and divide the composite wavelength optical signal into two paths, One of the composite wavelength optical signals is transmitted to the etalon, and another composite wavelength optical signal is transmitted. And sending to the optical isolator, the composite wavelength optical signal, the one of the composite wavelength optical signals and the other composite wavelength optical signal have the same wavelength, and the power of the one of the composite wavelength optical signals and the other The sum of the powers of the composite wavelength optical signals is the power of the composite wavelength optical signals.
  • the optical isolator is configured to transmit the another composite wavelength optical signal to a line end.
  • the controller is configured to:
  • the wavelength of the optical signal emitted by the illumination device is adjusted until the monitored value obtained during the adjustment is close to or the same as the reference value.
  • the wavelength offset information is obtained jointly according to the first electrical signal obtained by the first optical receiver and the second electrical signal obtained by the second optical receiver, which can remove the interference introduced by the power jitter of the light emitting device, and more accurately control the light.
  • the wavelength of the optical signal emitted by the transceiver is obtained jointly according to the first electrical signal obtained by the first optical receiver and the second electrical signal obtained by the second optical receiver, which can remove the interference introduced by the power jitter of the light emitting device, and more accurately control the light.
  • the optical transceiver device determines the reference value by:
  • a controller in the optical transceiver device adjusts a wavelength of an optical signal emitted by the light emitting device, and monitors a value of the first electrical signal
  • the controller is further configured to:
  • the preset fixed value is: according to a wavelength of the optical signal at the first wavelength The difference between the power of the corresponding optical signal and the power of the optical signal corresponding to the wavelength of the optical signal at the target wavelength, and the product of the optical receiver converting the power of the received optical signal into a conversion coefficient of the current.
  • a wavelength control method including:
  • the optical transceiver transmits an optical signal, and transmits a part of the transmitted optical signal to the shared wavelength locking device through the wavelength multiplexing/demultiplexing device;
  • the optical transceiver device receives the reflected optical signal of the part of the optical signal, and the reflected optical signal is used by the shared wavelength locking device to filter the part of the optical signal, and after rotating the polarization state, the wavelength multiplexing/demultiplexing The device feeds back to the first optical receiver;
  • the optical transceiver device obtains wavelength offset information according to another part of the optical signal except the part of the optical signal, and the received reflected light signal;
  • the optical transceiver device controls the wavelength of the transmitted optical signal according to the obtained wavelength offset information.
  • the optical transceiver device obtains the wavelength offset information according to the another part of the optical signal and the received reflected optical signal, including:
  • the optical transceiver converts the reflected optical signal into a first electrical signal and converts the other partial optical signal into a second electrical signal;
  • the optical transceiver device performs calculation of a predetermined operation manner based on the first electrical signal and the second electrical signal to obtain a monitoring value
  • the second electrical signal performs a value obtained by calculation of the predetermined operation mode
  • the optical transceiver device controls the wavelength of the emitted optical signal according to the obtained wavelength offset information, including:
  • the optical transceiver adjusts the wavelength of the emitted optical signal until the monitored value obtained during the adjustment is close to or the same as the reference value.
  • the wavelength offset information is obtained jointly according to the first electrical signal obtained by the first optical receiver and the second electrical signal obtained by the second optical receiver, which can remove the interference introduced by the power jitter of the light emitting device, and more accurately control the light.
  • the wavelength of the optical signal emitted by the transceiver is obtained jointly according to the first electrical signal obtained by the first optical receiver and the second electrical signal obtained by the second optical receiver, which can remove the interference introduced by the power jitter of the light emitting device, and more accurately control the light.
  • the optical transceiver device determines the reference value by:
  • the optical transceiver adjusts a wavelength of the transmitted optical signal and monitors a value of the first electrical signal
  • the target value of the first electrical signal includes:
  • the preset fixed value is: according to a wavelength of the optical signal at the first wavelength
  • the difference in rate is the product of the optical receiver converting the power of the received optical signal into a conversion factor of the current.
  • a plurality of optical transceivers share the same shared wavelength locking device through a wavelength multiplexing/demultiplexing device, which can effectively solve the problem of high cost caused by wavelength locking, especially when a large number of optical transceivers are required.
  • the cost of wavelength locking can be greatly reduced; and by designing two optical receivers in the optical transceiver, the original optical signal received by the second optical receiver can be used as an effective reference signal to remove the illuminating
  • the interference introduced by the power jitter of the device is simple and easy to implement, and does not require additional cost. In short, the result of controlling the wavelength is more accurate on the basis of low cost.
  • FIG. 1 is a schematic structural view of an optical transceiver device in the prior art
  • FIG. 2 is a schematic structural diagram of a wavelength control system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a detailed structure of a wavelength control system according to an embodiment of the present application.
  • FIG. 4 is a second schematic structural diagram of a wavelength control system according to an embodiment of the present application.
  • FIG. 5 is a third schematic structural diagram of a wavelength control system according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing changes in polarization state during optical signal propagation in an embodiment of the present application.
  • FIG. 7 is a flowchart of a wavelength control method in an embodiment of the present application.
  • FIG. 8 is a second flowchart of a wavelength control method according to an embodiment of the present application.
  • the embodiment of the present application provides a wavelength control system, method, and optical transceiver. Different from the existing wavelength locking device disposed in the optical transceiver device, the cost of the optical transceiver device is increased.
  • at least two optical transceiver devices pass the wavelength multiplexing/demultiplexing device in the wavelength control system. (English abbreviation: MUX/DMUX) shares a wavelength locking device, which recognizes the wavelength offset based on the method of detecting the reflected light power to achieve stable wavelength control.
  • the structure of the wavelength control system is simplified, reducing the cost of the wavelength control system in achieving the locking wavelength of at least two optical transceivers.
  • the method provided by the embodiment of the present application is also applicable to the case where the number of optical transceivers is only one.
  • optical transceiver The optical transceiver, the wavelength control system and the method provided by the embodiments of the present application are described in detail below with reference to FIG.
  • the wavelength control system 200 includes at least two optical transceivers 201, a wavelength multiplexing/demultiplexing unit 202, and a shared wavelength locking device 203 through which the at least two optical transceivers 201 are connected.
  • the shared wavelength locking device 203 is described. That is, each optical transceiver 201 is connected to one end of the wavelength multiplexing/demultiplexing unit 202, and the other end of the wavelength multiplexing/demultiplexing unit 202 is connected to the shared wavelength locking device 203.
  • optical transceiver 201 For example, as shown in FIG. 3, the specific structure of the optical transceiver 201 is described in detail with reference to any one of the plurality of optical transceivers 201 in FIG. Only one optical transceiver 201 is shown in Figures 3 - 5, and the remaining optical transceivers are not shown.
  • the optical transceiver 201 includes a plurality of entities such as an entity that transmits an optical signal, a processing entity, and the like.
  • entities such as an entity that transmits an optical signal, a processing entity, and the like.
  • an entity that emits an optical signal may be referred to as a light emitting device, and a processing entity may be referred to as a processor.
  • the light emitting device is generally a laser; the processing entity is generally a microcontroller.
  • the optical transceiver 201 includes a light emitting device 2011, a controller 2012, a first optical receiver 2013, and a second optical receiver 2014, and the controller 2012, the first optical receiver Both the 2013 and the second optical receivers 2014 are connected to the light emitting device 2011, and the first optical receiver 2013 and the second optical receiver 2014 are both connected to the controller 2012.
  • the light emitting device 2011 in each of the optical transceivers 201 is configured to transmit an optical signal, transmit a part of the optical signal to the wavelength multiplexing/demultiplexing device 202, and transmit another partial optical signal to the first Two-light receiver 2014.
  • the light emitting device 2011 is a laser.
  • the semiconductor wavelength tunable laser ie the wavelength emitted by the laser, can be varied by tuning the current or temperature, and the wavelength tuning does not affect the output power of the laser.
  • the power of the light-emitting signal of the light-emitting device 2011 inevitably causes power fluctuation, which causes a certain degree of interference to the wavelength control.
  • the wavelength multiplexing/demultiplexing unit 202 is configured to aggregate the part of the optical signals emitted by the light emitting device 2011 in each of the optical transceivers 201 to generate a composite wavelength optical signal, and to share the
  • the wavelength locking device 203 transmits the composite wavelength optical signal.
  • the wavelength multiplexing/demultiplexing device 202 in the embodiment of the present application has the function of combining the optical signals of different wavelengths and distributing the optical signals of different wavelengths that are gathered together.
  • the shared wavelength locking device 203 is configured to filter the composite wavelength optical signal and rotate the polarization state to obtain a composite wavelength reflected optical signal, and transmit the composite wavelength reflected optical signal to the wavelength multiplexing/resolving User 202;
  • the wavelength multiplexing/demultiplexing unit 202 is further configured to receive the composite wavelength reflected light signal, and decompose the composite wavelength reflected light signal into reflected light signals corresponding to the respective optical transceivers 201, and then respectively The optical transceiver 201 feeds back the corresponding reflected light signal.
  • the first optical receiver 2013 in each of the optical transceivers 201 is configured to receive a reflected optical signal fed back by the wavelength multiplexing/demultiplexing device 202, and convert the reflected optical signal into a first electrical Signaling and transmitting the first electrical signal to the controller 2012.
  • the second optical receiver 2014 in each of the optical transceivers 201 is configured to convert the another partial optical signal emitted by the light emitting device 2011 into a second electrical signal, and the second electrical signal Transfer to the controller 2012.
  • the first optical receiver 2013 and the second optical receiver 2014 are low speed optical receivers.
  • the parameters are consistent and have the same responsiveness.
  • the second optical receiver 2014 is connected to the backlight surface of the light emitting device 2011, and the other partial light signal emitted by the light emitting device 2011 is reflected by the backlight surface of the light emitting device 2011.
  • the first electrical signal is a first current value obtained by the first optical receiver according to the received reflected light signal; and the second electrical signal is the second optical receiver according to the other partial light The second current value obtained by the power of the signal.
  • the controller 2012 in each of the optical transceivers 201 is configured to obtain the wavelength offset information according to the first electrical signal and the second electrical signal, and control according to the wavelength offset information.
  • the wavelength of the optical signal emitted by the light emitting device is configured to obtain the wavelength offset information according to the first electrical signal and the second electrical signal, and control according to the wavelength offset information.
  • the backlight surface of the laser generally has a reflectivity of 99%, which means that about 1% of the optical signal is transmitted from the backlight surface of the laser, and the second optical receiver 2014 and the laser The backlight is connected to receive the optical signal transmitted by the backlight surface of the laser.
  • the backlight surface of the existing laser is also connected with a low-speed optical receiver to detect the power of the optical signal transmitted by the backlight surface of the laser, and send the detected power information to the laser driver to feedback control the driving current of the laser, thereby controlling The luminous power of the laser.
  • the existing low-speed optical receiver that can connect the backlight surface of the laser is connected to the laser driver, and the second optical receiver 2014 is also connected to the controller 2012 to detect the detected optical signal.
  • the power is simultaneously sent to the controller 2012.
  • the controller 2012 can obtain the wavelength offset information according to the power of the reflected optical signal detected by the first optical receiver 2013, combined with the power of the optical signal detected by the second optical receiver 2014, and obtain the wavelength offset information.
  • the existing low-speed optical receiver of the laser backlight surface as the second optical receiver 2014 can make the structure of the optical transceiver 201 as simple as possible, reduce the cost of the optical transceiver 201, and further reduce the wavelength. The cost of the control system 200.
  • the optical transceiver 201 further includes a polarization beam splitter (English: Polarization Beam Splitter, PBS) 2015, and the first optical receiver 2013 passes through the polarization beam splitter 2015 and the light emitting device. 2011 connection.
  • a polarization beam splitter English: Polarization Beam Splitter, PBS
  • the optical signal emitted by the light emitting device 2011 passes through the polarization beam splitter 2015 and is transmitted to the shared wavelength locking device 203.
  • the shared wavelength locking device 203 includes an etalon 2021 and an optical rotator 2022.
  • the etalon 2021 is coupled to the rotator 2022.
  • the rotator 2022 is a Faraday Rotator Mirror (abbreviation: FRM).
  • the polarizing beam splitter 2015 is configured to transmit the received part of the optical signal emitted by the light emitting device 2011 to the etalon 2021;
  • the etalon 2021 After the light signal emitted by the light emitting device 2011 passes through the polarization beam splitter 2015, a part of it is filtered by the etalon 2021.
  • the rotator 2022 is configured to receive the optical signal filtered by the etalon 2021, rotate the polarization state of the received optical signal by an angle, and reflect it to the etalon 2021 for filtering to form the reflected optical signal; preferably
  • the set angle is 90°.
  • the polarization beam splitter 2015 is further configured to deflect the reflected light signal returned by the etalon 2021 to the first optical receiver 2013.
  • the role of the polarization beam splitter 2015 includes deflecting the reflected light signal to the first optical receiver 2013; and isolating the reflected light signal to prevent the reflected light signal from re-entering the light emitting device 2011.
  • controller 2012 is specifically configured to:
  • the reference value is that the wavelength of the optical signal emitted by the light emitting device 2011 is at the target wavelength, based on the first And calculating, by the electrical signal and the second electrical signal, a value obtained by calculating the predetermined operation manner;
  • adjusting a wavelength of the optical signal emitted by the light emitting device to the target wavelength based on the monitored value obtained in real time and the reference value. Specifically, adjusting the wave of the optical signal emitted by the light emitting device 2011 Long until the monitored value obtained during the adjustment is close to or the same as the reference value.
  • the reference value is determined by the following means:
  • the controller 2012 controls the light emitting device 2011 to adjust the wavelength of the emitted optical signal and monitor the value of the first electrical signal;
  • the target value of the first electrical signal when the wavelength of the emitted optical signal is the target wavelength is calculated according to the maximum value of the first electrical signal, specifically: the maximum value of the first electrical signal is preset a product of a fixed value as a target value of the first electrical signal; the predetermined fixed value is: a power of the optical signal corresponding to the optical signal at the first wavelength according to a wavelength of the optical signal The difference in power of the corresponding optical signal at the wavelength of the target wavelength is the product of the optical receiver converting the power of the received optical signal into a conversion coefficient of the current.
  • the responsiveness of the first optical receiver 2013 is that the first optical receiver 2013 converts the power of the received optical signal into a conversion coefficient of the current.
  • the shared wavelength locking device 203 further includes an optical coupler 2023 and an optical isolator 2024. At least two optical transceivers 201 pass through the wavelength multiplexing/demultiplexing unit 202 and the shared wave Long locking devices 203 are coupled to enable at least two optical transceivers 201 to share the shared wavelength locking device.
  • the optical isolator 2024 is used to isolate the interference caused by the reflection of the line end to the light emitting device 2011.
  • the wavelength control system includes only the first optical receiver 2013 and does not include the second optical receiver 2014
  • the difference between the current values detected by the first optical receiver 2013 is changed by the differential method
  • Obtain wavelength offset information since the transmission power of the light emitting device 2011 may fluctuate, and the first optical receiver 2013 detects the absolute power value of the reflected light signal, the fluctuation of the transmission power of the light emitting device 2011 may also result in the power of the detected reflected signal. Changes, controller 2012 can not distinguish between the power changes caused by what factors, so the correct control of the wavelength of the optical signal can not be achieved.
  • the optical power detected by the second optical receiver 2014 is used as a basic reference value, and the monitoring value is obtained by performing calculation of a predetermined operation manner based on the first electrical signal and the second electrical signal, when the optical signal emitted by the light emitting device 2011 is
  • the values of the first electrical signal and the second electrical signal are both changed by the fluctuation of the transmission power of the light-emitting device 2011, and the first electrical signal and the first
  • the calculation of the predetermined operation mode of the two electrical signals does not change; when the wavelength of the optical signal emitted by the light emitting device 2011 does not change, and the transmission power of the light emitting device 2011 fluctuates, the first electrical signal and the second electrical signal
  • the value of the signal will change due to the fluctuation of the transmission power of the light-emitting device 2011, and the calculation value of the first electrical signal and the second electrical signal calculated by the predetermined operation mode will also change.
  • the wavelength control system provided by the present application makes the identified wavelength offset information more accurate, and removes interference caused by fluctuations in the luminous power of the light emitting device.
  • the optical signal emitted by any one of the light-emitting devices 2011 in the embodiment of the present application is deflected to the optical path of the first optical receiver 2013 by the polarizing beam splitter PBS2015 and the optical rotator 2022. Description.
  • the optical signal emitted by the light-emitting device 2011 is merged into the optical signal emitted by the MUX/DMUX 202 and other light-emitting devices through the PBS 2015 to obtain a composite wavelength optical signal, and the composite wavelength optical signal is obtained.
  • the number is a composite of optical signals of different wavelengths emitted by at least two light emitting devices.
  • the MUX/DMUX 202 functions to multiplex and demultiplex at least two wavelength optical signals.
  • the composite wavelength optical signal outputted by the MUX/DMUX 202 enters the shared wavelength locking device 203, it is split into two paths through the optical coupler 2023, one through the optical isolator 2024 and directly output to the line end; the other path is passed through an etalon 2021. After filtering, the polarization state is rotated by 90° by the rotator 2022 and reflected back.
  • the reflected reflected light signal of the composite wavelength is re-entered into the MUX/DMUX 202 for splitting, and the reflected light signals after the splitting are respectively input into the respective light emitting device modules.
  • the splitting action of MUX/DMUX202 removes interference between channels of different wavelengths.
  • the reflected light signal After the reflected light signal enters the optical transceiver 201, it is first deflected by the PBS 2015 to the first optical receiver 2013 by the PBS 2015, and the first optical receiver 2013 performs power detection on the received transmitted optical signal to obtain a first current value.
  • the change of the polarization state during the propagation of the optical signal emitted by the above-described light emitting device 2011 to the first optical receiver 2013 is as shown in FIG. 6.
  • the optical signal is emitted by the light-emitting device 2011 and the post-polarization state is shown as 601 in FIG. 6, and Ex and Ey are two components of the optical signal vector on the x-axis and the y-axis.
  • the polarization state is 602.
  • some passive components such as MUX/DMUX202 and etalon 2021 and optical fibers are passed. These passive devices and optical fibers introduce a random phase difference ⁇ for Ex and Ey.
  • the polarization state is 603. After the optical rotator 2022, the polarization state is rotated by 90°, and the polarization state is as shown by 604.
  • the polarization state is as shown by 605, and 605 is compared with 601, and the two components Ex and Ey are passive.
  • the phase difference introduced by the device and the optical fiber just cancels each other, and the polarization state is rotated by 90°, so that it can resist the interference caused by external factors such as passive components and optical fibers.
  • the reflected light signal Since the reflected light signal is rotated by 90° due to the polarization state, it cannot enter the inside of the light-emitting device 2011 through the PBS 2015, but is deflected into the first optical receiver 2013 by the PBS 2015, and power detection is performed to obtain the first current value.
  • the axis of the PBS2015 is aligned with the polarization state of the optical signal emitted by the light emitting device 2011 to avoid Avoid introducing additional optical power losses.
  • the embodiment of the present application further provides a wavelength control method.
  • the specific process is:
  • Step 701 The optical transceiver device transmits an optical signal, and transmits a part of the transmitted optical signal to the shared wavelength locking device through a wavelength multiplexing/demultiplexing device.
  • the shared wavelength locking device is configured to process the received part of the optical signal and feed back the reflected optical signal
  • Step 702 The optical transceiver device receives the reflected optical signal of the part of the optical signal, where the reflected optical signal is used by the shared wavelength locking device to filter the part of the optical signal, and after rotating the polarization state, the wavelength multiplexing/decomposing The multiplexer feeds back to the first optical receiver.
  • Step 703 The optical transceiver device obtains wavelength offset information according to another part of the optical signal except the part of the optical signal, and the received reflected optical signal.
  • the optical transceiver converts the reflected optical signal into a first electrical signal and converts the other partial optical signal into a second electrical signal;
  • the reference value is a value obtained by performing calculation of the predetermined operation mode based on the first electrical signal and the second electrical signal when the wavelength of the optical signal is at the target wavelength.
  • Step 704 The optical transceiver device controls the wavelength of the emitted optical signal according to the obtained wavelength offset information.
  • the optical transceiver adjusts the wavelength of the emitted optical signal until the monitored value obtained during the adjustment is close to or the same as the reference value.
  • the reference value is determined by:
  • the optical transceiver adjusts a wavelength of the transmitted optical signal and monitors a value of the first electrical signal
  • the specific process of calculating, by the optical transceiver device, the target value of the first electrical signal when the wavelength of the emitted optical signal is the target wavelength, according to the maximum value of the first electrical signal, is that the first electrical signal is The product of the maximum value and the preset fixed value as the target value of the first electrical signal; the preset fixed value is: the power of the optical signal corresponding to the wavelength of the optical signal at the first wavelength The difference between the power of the optical signal corresponding to the wavelength of the optical signal at the target wavelength, and the product of the optical receiver converting the power of the received optical signal into a conversion coefficient of the current.
  • the wavelength control method provided in the embodiment of the present application will be further described in detail below by taking the structure of the wavelength control system shown in FIG. 5 as an example.
  • Step 801 The controller 2012 scans the wavelength of the optical signal emitted by the light emitting device 2011, and monitors the first electrical signal output by the first optical receiver 2013, that is, the first current value I 1 .
  • Step 802 Determine whether the first current value I 1 is a maximum value by a differential method. If yes, execute step 803; otherwise, return to step 801.
  • FIG. 9 is a schematic diagram of a filtered spectrum in the embodiment of the present application.
  • I 1 is the maximum value
  • the corresponding etalon has the highest point of the filtered spectrum, and the wavelength of the optical signal is ⁇ A.
  • Step 803 Record that the value of I 1 is I 1A at this time, and the wavelength of the optical signal is ⁇ A.
  • Step 804 Tuning the wavelength of the optical signal output by the light emitting device, and continuously monitoring the first electrical signal output by the first optical receiver 2013, that is, the first current value I 1 .
  • the wavelength of the optical signal output from the light emitting device is tuned in the direction of the long wavelength with the wavelength ⁇ A as a starting point.
  • Step 805 determining whether a ratio of I 1 and I is equal to a fixed value. 1A Ql? If yes, go to step 806. Otherwise, go to step 804.
  • the wavelength of the corresponding optical signal is ⁇ B
  • ⁇ B is the target wavelength of the optical signal, that is, ⁇ B is aligned with the ITU-GRID.
  • Step 806 Record the value I 1 I 1B, and a second recording current obtained by the optical receiver 2014 I 2B, calculate and record the ratio of I. IB and 2B I Q2.
  • the important parameter Q2 of the control wavelength can be obtained, and the Q2 value is recorded as an important basis for identifying the wavelength drift.
  • Q2 is only related to power loss such as passive components, and is related to different wavelength channels, and has nothing to do with the luminous power of the light-emitting device 2011. And can be updated periodically.
  • Step 807 a light emitting device continues to scan the emission wavelength of the light signal, the monitor current I 2 of the first optical receiver 2013 to obtain current I 1 and a second optical receiver 2014 is obtained.
  • Step 808 Determine whether the ratio of I 1 to I 2 is equal to Q2. If yes, determine that the wavelength of the optical signal emitted by the light emitting device 2011 is the target wavelength. Otherwise, return to step 807.
  • an embodiment of the present application further provides an optical transceiver, and the optical transceiver
  • the device can implement the functions in the optical transceiver device in any of the structures of FIG. 2 to FIG. 5, and the method that can be implemented by the optical transceiver device described in FIG. 6-8, which can be implemented by hardware or by
  • the hardware implements the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the functions described above. The specific functions and methods are as described above, and the embodiments of the present application are not described herein again.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种波长控制系统、方法和光收发装置,解决DWDM网络波长控制带来的成本较高的问题。该波长控制系统包括至少两个光收发装置、波长复用/解复用器和共享波长锁定装置。光收发装置包括发光器件、控制器、第一光接收机和第二光接收机。发光器件发射的光信号,一部分传送给波长复用/解复用器,另一部分被第二光接收机接收。波长复用/解复用器将多个一部分光信号汇聚发送到共享波长锁定装置进行滤波、旋转片偏振态,接收反射光信号并分别反馈到各个光反射装置由第一光接收机接收。控制器根据第一光接收机的电信号与第二光接收机的电信号获得波长偏移信息,进一步控制发光器件发射的光信号的波长。

Description

一种光收发装置、波长控制系统和方法 技术领域
本申请涉及光通信技术领域,特别涉及一种光收发装置、波长控制系统和方法。
背景技术
随着新业务、新应用的产生,网络流量飞速增长。为提高网络容量,密集波分复用(英文:Dense Wavelength Division Multiplexing,缩写:DWDM)技术进入城域网、接入网以及数据中心内部互连等客户侧应用场景的需求日益迫切。DWDM技术通过在一根光纤中同时传输多路不同波长通道的信号,可以成倍的提升单光纤的传输容量,同时引入波长维度进行网络管理和规划。
在DWDM网络中,按照国际电信联盟电信标准部门(ITU-T)规定的波长网格要求,波长通道带宽通常为50GHz或100GHz。为保证发光器件发出的信号光谱在规定的通道带宽内,每个发光器件发射的光信号的波长必须满足其在温度、湿度等外界因素的影响下,信号光谱中心频率的偏差在寿命周期之内能够控制在一定的范围内。为了保证波长稳定度和精度,需要采用波长锁定的方式进行控制。
现有技术中,如图1所示,光收发装置100包括波长锁定装置101与发光器件102,波长锁定装置101与发光器件102连接,可以控制调整发光器件102发出的光信号的波长。其中,波长锁定装置101中包括标准具(英文:Etalon)1010、微控制器(英文缩写:μC)1012、两个监测光接收机(英文:monitoring Photo-Detector,缩写:mPD)1013,两个mPD分别用mPD1和mPD2表示。
图1中波长锁定的具体实现过程为:发光器件102发出的光信号,一部分通过Etalon进行滤波后,由mPD1检测后最终获得电信号I0;一部分则直接由mPD2检测后获得电信号Iref,μC1012通过对比两个电信号I0和Iref,就可以获得光信号的波长偏移量,根据获得的波长偏移量向发光器件102输出反馈控制 信号,进行波长调整,从而实现对发光器件102输出光信号波长的控制,使光信号的波长保持稳定。
图1所示的结构中,波长锁定装置101置于光收发装置100中,与发光器件102配合使用。由于波长锁定装置101的成本很高,导致光收发装置100的成本提升,并且,对于需要大量光收发装置的DWDM网络,无疑会承受更大的成本。
发明内容
本申请提供一种光收发装置、波长控制系统和方法,用以解决DWDM网络波长控制带来的成本较高的问题。
第一方面,提供一种光收发装置,所述光收发装置与至少一个其他光收发装置通过波长复用/解复用器连接共享波长锁定装置;
所述光收发装置包括发光器件、控制器、第一光接收机和第二光接收机;其中:
所述控制器、所述第一光接收机和所述第二光接收机均与所述发光器件连接,所述第一光接收机和所述第二光接收机均与所述控制器连接;
所述发光器件,用于发射光信号,将一部分光信号由所述波长复用/解复用器传送给所述共享波长锁定装置,将另一部分光信号传送给所述第二光接收机;
所述第一光接收机,用于接收所述一部分光信号的反射光信号,将所述反射光信号转换为第一电信号,并将所述第一电信号传送给所述控制器,其中,所述反射光信号是所述共享波长锁定装置对所述一部分光信号进行滤波、旋转偏振态后经所述波长复用/解复用器向所述第一光接收机反馈的;
所述第二光接收机,用于将所述另一部分光信号转换为第二电信号,并将所述第二电信号传送给所述控制器;
所述控制器,用于根据所述第一电信号与所述第二电信号获得所述波长偏移信息,并根据所述波长偏移信息,控制所述发光器件发射的光信号的波 长。
这样,光收发装置可以与其他光收发装置通过波长复用/解复用器来共同享用同一个共享波长锁定装置,能够有效解决波长锁定带来的高成本的问题,尤其在需要大量光收发装置的应用环境中,能够大幅减小波长锁定的成本;并且,通过在光收发装置中设计两个光接收机,将第二光接收机接收的原光信号作为有效的参考信号,能够去除因发光器件的功率抖动引入的干扰,而且这种结构简单,易于实现,不需要额外的成本,总之,实现了低成本的基础上使得控制波长的结果更加准确。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第二光接收机与所述发光器件的背光面连接;
所述另一部分光信号由所述发光器件的背光面透出。
利用现有的光收发装置中的安置在发光器件背面的光接收机作为第二光接收机,不仅能够使得获得的波长偏移信息更加准确,还可以使得光收发装置的构造尽量的简洁,降低光收发装置的成本,进一步降低波长控制系统的成本。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一光接收机和所述第二光接收机为具有相同的响应度的低速光接收机,所述响应度用于表征光接收机将所接收的光信号的功率转换为电流的转换系数。
这样使得第一光接收机和第二光接收机转换的电信号更具有可比性,更能获得准确的波长偏移信息。
结合第一方面和第一方面的第一种至第二种可能的实现方式中的任一种,在第一方面的第三种可能的实现方式中,所述光收发装置还包括偏振分束器,所述第一光接收机通过所述偏振分束器与所述发光器件连接;
所述偏振分束器,用于将接收到的所述发光器件发出的所述一部分光信号由所述波长复用/解复用器传送给所述共享波长锁定装置,以及,将所述共享波长锁定装置经所述波长复用/解复用器反馈的所述反射光信号偏转至所述 第一光接收机。
偏振分束器能够防止反射光信号进入发光器件内部形成干扰,起到了光隔离的作用。
结合第一方面和第一方面的第一种至第三种可能的实现方式中的任一种,在第一方面的第四种可能的实现方式中,所述控制器用于:
对所述第一电信号与所述第二电信号进行预定运算方式的计算,获得监测值;
在所述监测值与预设的参考值发生偏差时,确定所述发光器件发出的光信号的波长发生偏移;所述参考值为所述发光器件发出的光信号的波长在目标波长时、基于所述第一电信号与所述第二电信号进行所述预定运算方式的计算获得的值;以及
调整所述发光器件发出的光信号的波长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
这样,根据第一光接收机获得的第一电信号和第二光接收机获得的第二电信号来共同获得波长偏移信息,能够去除发光器件的功率抖动引入的干扰,更准确的控制光收发装置发出的光信号的波长。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述参考值通过以下方式确定:
所述控制器调整所述发光器件发射的光信号的波长,并监测所述第一电信号的值;
当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
以所述第一波长为起点,调整所述发光器件发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预设 运算方式的计算,获得所述参考值。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述控制器还用于:
将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
第二方面,提供一种波长控制系统,该波长控制系统包括至少两个光收发装置、波长复用/解复用器和共享波长锁定装置,所述至少两个光收发装置通过所述波长复用/解复用器连接所述共享波长锁定装置,也就是,每一个光收发装置连接到所述波长复用/解复用器的一端,所述波长复用/解复用器的另一端连接到所述共享波长锁定装置。
每个所述光收发装置包括发光器件、控制器、第一光接收机和第二光接收机,所述控制器、所述第一光接收机和所述第二光接收机均与所述发光器件连接,所述第一光接收机和所述第二光接收机均与所述控制器连接,其中:
每个所述光收发装置中的所述发光器件,用于发射光信号,将一部分光信号传送给所述波长复用/解复用器,将另一部分光信号发射到所述第二光接收机;
所述波长复用/解复用器,用于将每个所述光收发装置中的所述发光器件发射的所述一部分光信号汇聚,生成复合波长光信号,并向所述共享波长锁定装置传送所述复合波长光信号;
所述共享波长锁定装置,用于对所述复合波长光信号进行滤波、旋转偏振态后,得到复合波长反射光信号,将所述复合波长反射光信号传送给所述波长复用/解复用器;
所述波长复用/解复用器,还用于接收所述复合波长反射光信号,并将所述复合波长反射光信号分解成各个光收发装置对应的反射光信号后,分别向 各个光收发装置反馈对应的反射光信号;
每个所述光收发装置中的所述第一光接收机,用于接收所述波长复用/解复用器反馈的反射光信号,将所述反射光信号转换为第一电信号,并将所述第一电信号传送给所述控制器;
每个所述光收发装置中的所述第二光接收机,用于将所述发光器件发射的所述另一部分光信号转换为第二电信号,并将所述第二电信号传送给所述控制器;
每个所述光收发装置中的所述控制器,用于根据所述第一电信号与所述第二电信号获得所述波长偏移信息,并根据所述波长偏移信息,控制所述发光器件发射的光信号的波长。
这样,多个光收发装置通过波长复用/解复用器来共同享用同一个共享波长锁定装置,能够有效解决波长锁定带来的高成本的问题,尤其在需要大量光收发装置的应用环境中,能够大幅减小波长锁定的成本;并且,通过在光收发装置中设计两个光接收机,将第二光接收机接收的原光信号作为有效的参考信号,能够去除因发光器件的功率抖动引入的干扰,而且这种结构简单,易于实现,不需要额外的成本,总之,实现了低成本的基础上使得控制波长的结果更加准确。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第二光接收机与所述发光器件的背光面连接;所述另一部分光信号由所述发光器件的背光面透出。
利用现有的光收发装置中的安置在发光器件背面的光接收机作为第二光接收机,不仅能够使得获得的波长偏移信息更加准确,还可以使得光收发装置的构造尽量的简洁,降低光收发装置的成本,进一步降低波长控制系统的成本。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第一光接收机和所述第二光接收机为具有相同响应度的低速光接收机,所述响应度用于表征光接收机将所接收的光信号的功 率转换为电流的转换系数。
这样使得第一光接收机和第二光接收机转换的电信号更具有可比性,更能获得准确的波长偏移信息。
结合第二方面和第二方面的第一种至第二种可能的实现方式中的任一种,在第二方面的第三种可能的实现方式中,所述光收发装置还包括偏振分束器,所述第一光接收机通过所述偏振分束器与所述发光器件连接;
所述偏振分束器,用于将接收到的所述发光器件发出的所述一部分光信号传送给所述波长复用/解复用器,以及将所述波长复用/解复用器反馈的所述反射光信号偏转至所述第一光接收机。
偏振分束器能够防止反射光信号进入发光器件内部形成干扰,起到了光隔离的作用。
结合第二方面和第二方面的第一种至第三种可能的实现方式中的任一种,在第二方面的第四种可能的实现方式中,所述共享波长锁定装置包括标准具和旋光器,所述标准具和所述旋光器连接;
所述标准具,用于对所述其中一路复合波长光信号进行滤波;
所述旋光器,用于接收经过所述标准具滤波后的光信号,将接收到的光信号的偏振态旋转设定角度,并反射给所述标准具;
所述标准具,还用于对所述旋光器反射回来的光信号进行滤波,形成所述复合波长反射光信号。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述设定角度为90°。
结合第二方面的第四种或第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述共享波长锁定装置还包括光耦合器和光隔离器;所述波长复用/解复用器、所述标准具、所述光隔离器均与所述光耦合器连接;
所述共享波长锁定装置中的所述光耦合器,用于接收所述波长复用/解复用器传送的所述复合波长光信号,并将所述复合波长光信号分成两路,将所述其中一路复合波长光信号传送给所述标准具,将另一路复合波长光信号传 送给所述光隔离器,所述复合波长光信号、所述其中一路复合波长光信号和所述另一路复合波长光信号的波长相同,所述其中一路复合波长光信号的功率和所述另一路复合波长光信号的功率之和为所述复合波长光信号的功率。
所述光隔离器,用于将所述另一路复合波长光信号传送给线路端。
结合第二方面和第二方面的第一种至第六种可能的实现方式中的任一种,在第二方面的第七种可能的实现方式中,所述控制器用于:
对所述第一电信号与所述第二电信号进行预定运算方式的计算,获得监测值;
在所述监测值与预设的参考值发生偏差时,确定所述发光器件发出的光信号的波长发生偏移;所述参考值为所述发光器件发出的光信号的波长在目标波长时、基于所述第一电信号与所述第二电信号进行所述预定运算方式的计算获得的值;以及
调整所述发光器件发出的光信号的波长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
这样,根据第一光接收机获得的第一电信号和第二光接收机获得的第二电信号来共同获得波长偏移信息,能够去除发光器件的功率抖动引入的干扰,更准确的控制光收发装置发出的光信号的波长。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,所述光收发装置通过以下方式确定所述参考值:
所述光收发装置中的控制器调整所述发光器件发出的光信号的波长,并监测所述第一电信号的值;
当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
以所述第一波长为起点,调整所述发光器件发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预设运算方式的计算,获得所述参考值。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,所述控制器还用于:
将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
第三方面,提供一种波长控制方法,包括:
光收发装置发射光信号,将发射的一部分光信号通过波长复用/解复用器传送给共享波长锁定装置;
所述光收发装置接收所述一部分光信号的反射光信号,所述反射光信号是所述共享波长锁定装置对所述一部分光信号进行滤波、旋转偏振态后经所述波长复用/解复用器向所述第一光接收机反馈的;
所述光收发装置根据所述发射的光信号中除所述一部分光信号之外的另一部分光信号,与接收到的所述反射光信号,获得波长偏移信息;
所述光收发装置根据获得的波长偏移信息,控制发射的光信号的波长。
这样,能够去除因发光器件的功率抖动引入的干扰,使得控制波长的结果更加准确。
结合第三方面,在第三方面的第一种可能的实现方式中,所述光收发装置根据所述另一部分光信号与接收到的所述反射光信号,获得波长偏移信息,包括:
所述光收发装置将所述反射光信号转换为第一电信号,并将所述另一部分光信号转换为第二电信号;
所述光收发装置基于所述第一电信号与所述第二电信号进行预定运算方式的计算,获得监测值;
在所述监测值与预设的参考值发生偏差时,确定发射的光信号的波长发生偏移;其中,所述参考值为所述光信号的波长在目标波长时,基于第一电信号与第二电信号进行所述预定运算方式的计算获得的值;
所述光收发装置根据获得的波长偏移信息,控制发射的光信号的波长,包括:
所述光收发装置调整发出的光信号的波长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
这样,根据第一光接收机获得的第一电信号和第二光接收机获得的第二电信号来共同获得波长偏移信息,能够去除发光器件的功率抖动引入的干扰,更准确的控制光收发装置发出的光信号的波长。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述光收发装置通过以下方式确定所述参考值:
所述光收发装置调整发射的光信号的波长,并监测所述第一电信号的值;
当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
以所述第一波长为起点,调整发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预定运算方式的计算,获得所述参考值。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值,包括:
将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功 率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
本申请实施例中,多个光收发装置通过波长复用/解复用器来共同享用同一个共享波长锁定装置,能够有效解决波长锁定带来的高成本的问题,尤其在需要大量光收发装置的应用环境中,能够大幅减小波长锁定的成本;并且,通过在光收发装置中设计两个光接收机,将第二光接收机接收的原光信号作为有效的参考信号,能够去除因发光器件的功率抖动引入的干扰,而且这种结构简单,易于实现,不需要额外的成本,总之,实现了低成本的基础上使得控制波长的结果更加准确。
附图说明
图1为现有技术中光收发装置结构示意图;
图2为本申请实施例提供的波长控制系统的架构示意图;
图3为本申请实施例中波长控制系统详细结构示意图之一;
图4为本申请实施例中波长控制系统详细结构示意图之二;
图5为本申请实施例中波长控制系统详细结构示意图之三;
图6为本申请实施例中光信号传播过程中偏振态变化示意图;
图7为本申请实施例中波长控制方法流程之一;
图8为本申请实施例波长控制方法流程之二。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
鉴于DWDM网络中波长锁定的成本较高。为了节省成本,并提高波长控 制的准确度,本申请实施例提供一种波长控制系统、方法及光收发装置。不同于现有的波长锁定装置置于光收发装置中,增加了光收发装置的成本,本申请实施例中,在波长控制系统中,至少两个光收发装置通过波长复用/解复用器(英文缩写:MUX/DMUX)共享一个波长锁定装置,基于对反射光功率检测的方式,对波长偏移进行识别,实现波长的稳定控制。这样,简化了波长控制系统的结构,降低了波长控制系统在实现至少两个光收发装置锁定波长时的成本。当然本申请实施例提供的方法也适用于光收发装置的数目只有一个的情况。
下面结合附图2-附图8对本申请实施例提供的光收发装置、波长控制系统和方法进行详细说明。
本申请实施例中,波长控制系统的架构图如图2所示。波长控制系统200包括至少两个光收发装置201、波长复用/解复用器202和共享波长锁定装置203,至少两个光收发装置201通过所述波长复用/解复用器202连接所述共享波长锁定装置203。也就是,每一个光收发装置201连接到所述波长复用/解复用器202的一端,所述波长复用/解复用器202的另一端连接到所述共享波长锁定装置203。
以图2中多个光收发装置201中的其中任意一个光收发装置201为例,如图3所示,将光收发装置201中的具体结构进行详细说明,需要说明的是,为简洁显示,图3-图5中仅示出了一个光收发装置201,其余光收发装置并未示出。
光收发装置201包括发射光信号的实体、处理实体等多个实体。本申请实施例中,发射光信号的实体可称为发光器件,处理实体可称为处理器。实际应用中,发光器件一般为激光器;处理实体一般为微控制器。
具体来说,如图3所示,光收发装置201包括发光器件2011、控制器2012、第一光接收机2013和第二光接收机2014,所述控制器2012、所述第一光接收机2013和所述第二光接收机2014均与所述发光器件2011连接,所述第一光接收机2013和所述第二光接收机2014均与所述控制器2012连接。
每个所述光收发装置201中的所述发光器件2011,用于发射光信号,将一部分光信号传送给所述波长复用/解复用器202,将另一部分光信号发射到所述第二光接收机2014。
一般来说,发光器件2011为激光器。较佳的,为半导体波长可调谐激光器,即激光器发出的波长可以通过调谐电流或者温度来改变,波长调谐不会影响激光器的输出功率。
实际应用中,可能由于发光器件2011驱动电流的扰动,或者是器件老化,发光器件2011的发射光信号的功率不可避免的会出现功率波动,对波长控制造成一定程度的干扰。
所述波长复用/解复用器202,用于将每个所述光收发装置201中的所述发光器件2011发射的所述一部分光信号汇聚,生成复合波长光信号,并向所述共享波长锁定装置203传送所述复合波长光信号。
本申请实施例中的波长复用/解复用器202具有对不同波长的光信号进行合波,以及对汇聚在一起的不同波长的光信号进行分拨的作用。
所述共享波长锁定装置203,用于对所述复合波长光信号进行滤波、旋转偏振态后,得到复合波长反射光信号,将所述复合波长反射光信号传送给所述波长复用/解复用器202;
所述波长复用/解复用器202,还用于接收所述复合波长反射光信号,并将所述复合波长反射光信号分解成各个光收发装置201对应的反射光信号后,分别向各个光收发装置201反馈对应的反射光信号。
每个所述光收发装置201中的所述第一光接收机2013,用于接收所述波长复用/解复用器202反馈的反射光信号,将所述反射光信号转换为第一电信号,并将所述第一电信号传送给所述控制器2012。
每个所述光收发装置201中的所述第二光接收机2014,用于将所述发光器件2011发射的所述另一部分光信号转换为第二电信号,并将所述第二电信号传送给所述控制器2012。
较佳的,上述第一光接收机2013和第二光接收机2014为低速光接收机, 且参数一致,具有相同的响应度。第二光接收机2014与发光器件2011的背光面连接,所述发光器件2011发出的所述另一部分光信号由所述发光器件2011的背光面透出。
所述第一电信号为所述第一光接收机根据接收到的反射光信号的功率获得的第一电流值;所述第二电信号为所述第二光接收机根据所述另一部分光信号的功率获得的第二电流值。
每个所述光收发装置201中的所述控制器2012,用于根据所述第一电信号与所述第二电信号获得所述波长偏移信息,并根据所述波长偏移信息,控制所述发光器件发射的光信号的波长。
以发光器件2011为激光器举例来说,激光器的背光面一般具有99%的反射率,也就意味着大约有1%光信号会从激光器的背光面透射出去,第二光接收机2014与激光器的背光面连接,接收激光器的背光面透射出去的光信号。
现有的激光器的背光面也会连接有一个低速光接收机,检测激光器背光面透射的光信号的功率,并把检测到的功率信息发送至激光器驱动器,以反馈控制激光器的驱动电流,进而控制激光器的发光功率。本申请实施例中,可将激光器背光面连接的现有的低速光接收机在连接到激光器驱动器的基础上,作为第二光接收机2014还连接到控制器2012,将检测到的光信号的功率同时发送给控制器2012。进而,控制器2012可以根据第一光接收机2013检测的反射光信号的功率,结合第二光接收机2014检测到的光信号的功率,对比获得波长偏移信息,使得获得的波长偏移信息更加准确,去除了发光器件2011的功率波动对波长控制造成的干扰。并且,本申请实施例中将激光器背光面现有的低速光接收机作为所述第二光接收机2014可以使得光收发装置201的构造尽量的简洁,降低光收发装置201的成本,进一步降低波长控制系统200的成本。
较佳的,参阅图4所示,光收发装置201还包括偏振分束器(英文:Polarization Beam Splitter,缩写:PBS)2015,所述第一光接收机2013通过偏振分束器2015与发光器件2011连接。
发光器件2011发射的光信号经过偏振分束器2015,传送到共享波长锁定装置203。
共享波长锁定装置203包括标准具2021和旋光器2022,标准具2021和旋光器2022连接;较佳的,旋光器2022为法拉第旋光镜(英文:Faraday Rotator Mirror,缩写:FRM)。
偏振分束器2015,用于将接收到的所述发光器件2011发出的所述一部分光信号传送给所述标准具2021;
标准具2021,用于对接收到的任意光信号进行滤波;
发光器件2011发射的光信号经过偏振分束器2015后,有一部分经过标准具2021进行滤波。标准具根据光收发装置发射光信号波长的标准频段进行滤波。由于Etalon的滤波作用,反射信号的功率大小与波长偏移量相关。
旋光器2022,用于接收经过标准具2021滤波后的光信号,将接收到的光信号的偏振态旋转设定角度,并反射给标准具2021进行滤波以形成所述反射光信号;较佳的,所述设定角度为90°。
偏振分束器2015,还用于将标准具2021返回的所述反射光信号偏转至所述第一光接收机2013。
偏振分束器2015的作用包括,将反射光信号偏转至第一光接收机2013;以及,隔离反射光信号,防止反射光信号再次进入到发光器件2011。
较佳的,控制器2012具体用于:
实时监测第一电信号与第二电信号,并基于第一电信号与第二电信号进行预定运算方式的计算,获得监测值;
在监测值与参考值发生偏差时,确定发光器件2011发出的光信号的波长发生偏移;所述参考值为所述发光器件2011发出的光信号的波长在目标波长时、基于所述第一电信号与所述第二电信号进行所述预定运算方式的计算获得的值;
基于实时获得的监测值与所述参考值,调整所述发光器件发出的光信号的波长至所述目标波长。具体的,调整所述发光器件2011发出的光信号的波 长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
其中,参考值的通过以下方式确定:
控制器2012控制发光器件2011调整发射的光信号的波长,并监测所述第一电信号的值;
当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
以所述第一波长为起点,调整发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
当监测到的所述第一电信号的值为所述目标值时,将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预定运算方式的计算,获得所述参考值。
其中,根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值,具体为:将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
由于发光器件2011发射的光信号经过的一些无源器件的滤波形状是固定的,因此光信号的波长在第一波长和目标波长时对应的光功率差值是固定的,第一光接收机2013检测到的所述第一电信号的目标值和所述第一电信号的最大值满足关系:最大值与目标值的比值=第一光接收机2013的响应度与上述光功率差值的乘积。第一光接收机2013的响应度为第一光接收机2013将所接收的光信号的功率转换为电流的转换系数。
较佳的,如图5所示,共享波长锁定装置203还包括光耦合器2023和光隔离器2024。至少两个光收发装置201通过波长复用/解复用器202与共享波 长锁定装置203连接,以实现至少两个光收发装置201共享所述共享波长锁定装置。
光隔离器2024用于隔离线路端的反射对发光器件2011带来的干扰。
本申请实施例中,若波长控制系统中仅包含第一光接收机2013,不包含第二光接收机2014,通过差分的方法判断第一光接收机2013检测的电流值发生变化时,也能获得波长偏移信息。但是,由于发光器件2011的发射功率可能会出现波动,而第一光接收机2013检测到的是反射光信号的绝对功率值,发光器件2011的发射功率波动也可能导致检测到的反射信号的功率变化,控制器2012并无法区分是什么因素导致的功率变化,因此无法实现正确对光信号波长的控制。而本申请实施例通过第二光接收机2014检测的光功率作为基础参考值,基于第一电信号与第二电信号进行预定运算方式的计算获得监测值,当发光器件2011发射的光信号的波长没有发生变化,而是发光器件2011的发射功率发生波动时,第一电信号与第二电信号的值均会因发光器件2011的发射功率发生波动而产生变化,而第一电信号与第二电信号进行预定运算方式的计算获得监测值不会发生改变;当发光器件2011发射的光信号的波长没有发生变化,且发光器件2011的发射功率发生波动时,第一电信号与第二电信号的值均会因发光器件2011的发射功率发生波动而产生变化,且第一电信号与第二电信号进行预定运算方式的计算获得监测值也会发生改变,这种情况下,只需调整监测值与参考值逼近或者相同,就能去除因为发光器件2011的发射功率波动带来的干扰,准确调整发光器件2011发射的光信号的波长。
综上,本申请提供的波长控制系统使识别的波长偏移信息更加准确,去除了因发光器件的发光功率波动带来的干扰。
下面参阅图6所示的结构,将本申请实施例中任意一个发光器件2011发射的光信号由偏振分束器PBS2015和旋光器2022等器件后,偏转至第一光接收机2013的光路进行详细说明。
1)、发光器件2011发射的光信号,通过PBS2015,进入到MUX/DMUX202与其他发光器件发射的光信号进行汇聚得到复合波长光信号,复合波长光信 号为至少两个发光器件发射的不同波长的光信号复合而成。
MUX/DMUX202起到对至少两个波长光信号复用、解复用的作用。
2)MUX/DMUX202输出的复合波长光信号进入共享波长锁定装置203后,经过光耦合器2023分成两路,一路经过光隔离器2024后直接输出到线路端;另一路则经过一个标准具2021进行滤波后,由旋光器2022将偏振态旋转90°后反射回来。
3)反射回来的复合波长反射光信号,再次进入到MUX/DMUX202进行分波,分波后的反射光信号分别进入到各个发光器件模块中。
MUX/DMUX202的分波作用能够去除不同波长通道之间的干扰。
4)反射光信号进入光收发装置201后,首先通过PBS2015,被PBS2015偏转至第一光接收机2013,第一光接收机2013对接收到的发射光信号进行功率检测,获得第一电流值。
具体地,上述发光器件2011发射的光信号最终到达第一光接收机2013的传播过程中偏振态的变化如图6所示。
光信号由发光器件2011发出后偏振态为图6中的601所示,Ex和Ey为光信号矢量在x轴和y轴的两个分量。经过PBS2015后偏振态为602所示,到达旋光器2022之前经过一些如MUX/DMUX202、标准具2021等无源器件和光纤,这些无源器件和光纤等对Ex和Ey引入一个随机的相位差φ,偏振态为603所示。经过旋光器2022后偏振态旋转90°,偏振态如604所示。再次经过相同的无源器件和光纤等,对Ex’和Ey’引入一个同样的相位差φ后,偏振态如605所示,605与601相比,两个分量Ex和Ey之间由无源器件和光纤等引入的相位差刚好相互抵消,而偏振态则旋转了90°,这样,可以抵抗系统因外界的无源器件、光纤等外界因素带来的干扰。
反射光信号由于偏振态旋转了90°,则无法通过PBS2015进入到发光器件2011内部,而是被PBS2015偏转至第一光接收机2013中,进行功率检测,获得第一电流值。
其中,PBS2015的轴与发光器件2011发射的光信号的偏振态对准,以避 免引入额外的光功率损耗。
基于同一发明构思,参阅图7所示,本申请实施例还提供了一种波长控制方法。具体流程为:
步骤701:光收发装置发射光信号,将发射的一部分光信号通过波长复用/解复用器传送给共享波长锁定装置。
所述共享波长锁定装置用于对接收到的所述一部分光信号进行处理,并反馈反射光信号
步骤702:光收发装置接收所述一部分光信号的反射光信号,所述反射光信号是所述共享波长锁定装置对所述一部分光信号进行滤波、旋转偏振态后经所述波长复用/解复用器向所述第一光接收机反馈的。
步骤703:光收发装置根据所述发射的光信号中除所述一部分光信号之外的另一部分光信号,与接收到的所述反射光信号,获得波长偏移信息。
所述光收发装置将所述反射光信号转换为第一电信号,并将所述另一部分光信号转换为第二电信号;
将另一部分光信号转换为第二电信号;
基于所述第一电信号与所述第二电信号进行预定运算方式的计算,获得监测值;
在所述监测值与预设的参考值发生偏差时,确定发射的光信号的波长发生偏移;
其中,所述参考值为所述光信号的波长在目标波长时,基于第一电信号与第二电信号进行所述预定运算方式的计算获得的值。
步骤704:光收发装置根据获得的波长偏移信息,控制发射的光信号的波长。
具体地,所述光收发装置调整发出的光信号的波长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
其中,所述参考值通过以下方式确定:
所述光收发装置调整发射的光信号的波长,并监测所述第一电信号的值;
当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
以所述第一波长为起点,调整发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
当监测到的所述第一电信号的值为所述目标值时,将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预定运算方式的计算,获得所述参考值。
其中,所述光收发装置根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值的具体过程为,将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
下面以图5所示的波长控制系统的结构为例,将本申请实施例中提供的波长控制方法做进一步详细说明。
参阅图8所示,本申请实施例波长控制方法详细流程为:
步骤801:控制器2012对发光器件2011发射的光信号的波长进行扫描,并监测第一光接收机2013输出的第一电信号,即第一电流值I1
步骤802:通过差分方式判断第一电流值I1是否为极大值,若是,则执行步骤803,否则,返回执行步骤801。
图9所示为本申请实施例中滤波谱形示意图。当I1为极大值时,对应标准具滤波谱形的最高点,此时光信号的波长为λA。
步骤803:记录此时I1的值为I1A,光信号的波长为λA。
步骤804:调谐发光器件输出的光信号的波长,继续监测第一光接收机2013输出的第一电信号,即第一电流值I1
具体地,以波长为λA为起点,向长波长的方向调谐发光器件输出的光信号的波长。
步骤805:判断I1与I1A的比值是否等于固定值Q1?若是则执行步骤806,否则,执行步骤804。
其中,当I1与I1A的比值等于固定值Q1时,对应的光信号的波长为λB,λB为光信号的目标波长,即λB对准ITU-GRID。通过监测I1与I1A的比值等于Q1,来判定光信号的波长调至λB。
Q1值通过λA、I1A和λB三者确定,由于MUX/DMUX303和标准具2021的滤波形状固定,那么在A、B点的波长λA、λB对应的光信号的功率差值ΔP1便为可知的值,那么,Q1=I1/I1A=R*ΔP1,R为第一光接收机2013的响应度,响应度即将光接收机将所接收的光信号的功率转换为电流值的转换系数。
步骤806:记录此时I1的值为I1B,并记录第二光接收机2014获得的电流I2B,计算并记录I1B与I2B的比值Q2。
由于第一光接收机2013和第二光接收机2014检测到的光信号的功率差值ΔP2是由MUX/DMUX303、标准具2021等无源器件引入的,因此对应检测到的I1B与I2B之间存在固定的电流比值ΔIth,即ΔIth=I1B/I2B=R*ΔP2=Q2。R为第一光接收机2013和第二光接收机2014的响应度,响应度即将光接收机将所接收的光信号的功率转换为电流值的转换系数。
至此,可以获得控制波长的重要参数Q2,Q2值被记录下来以后,作为识别波长漂移的重要依据。
其中,Q2仅跟无源器件等功率损耗有关,跟不同波长通道有关,跟发光器件2011的发光功率无关。且可以进行周期性的更新。
步骤807:继续扫描发光器件发射光信号的波长,监测第一光接收机2013获得的电流I1和第二光接收机2014获得的电流I2
步骤808:判断I1与I2的比值是否等于Q2,若是,则确定发光器件2011发射的光信号的波长为目标波长,否则,返回执行步骤807。
基于同一发明构思,本申请实施例还提供了一种光收发装置,该光收发 装置可以实现如图2-图5任一结构中光收发装置中的功能,以及可以实现图6-图8中所述的光收发装置执行的方法,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。具体功能及方法如上所述,本申请实施例在此不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了 基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种光收发装置,其特征在于,所述光收发装置与至少一个其他光收发装置通过波长复用/解复用器连接共享波长锁定装置,所述光收发装置包括发光器件、控制器、第一光接收机和第二光接收机;所述控制器、所述第一光接收机和所述第二光接收机均与所述发光器件连接,所述第一光接收机和所述第二光接收机均与所述控制器连接;其中:
    所述发光器件,用于发射光信号,将一部分光信号由所述波长复用/解复用器传送给所述共享波长锁定装置,将另一部分光信号传送给所述第二光接收机;
    所述第一光接收机,用于接收所述一部分光信号的反射光信号,将所述反射光信号转换为第一电信号,并将所述第一电信号传送给所述控制器,其中,所述反射光信号是所述共享波长锁定装置对所述一部分光信号进行滤波、旋转偏振态后经所述波长复用/解复用器向所述第一光接收机反馈的;
    所述第二光接收机,用于将所述另一部分光信号转换为第二电信号,并将所述第二电信号传送给所述控制器;
    所述控制器,用于根据所述第一电信号与所述第二电信号获得波长偏移信息,并根据所述波长偏移信息,控制所述发光器件发射的光信号的波长。
  2. 如权利要求1所述的光收发装置,其特征在于,所述第二光接收机与所述发光器件的背光面连接;
    所述另一部分光信号由所述发光器件的背光面透出。
  3. 如权利要求1或2所述的光收发装置,其特征在于,所述第一光接收机和所述第二光接收机为具有相同的响应度的低速光接收机,所述响应度用于表征光接收机将所接收的光信号的功率转换为电流的转换系数。
  4. 如权利要求1-3任一项所述的光收发装置,其特征在于,所述光收发装置还包括偏振分束器,所述第一光接收机通过所述偏振分束器与所述发光器件连接;
    所述偏振分束器,用于将接收到的所述发光器件发出的所述一部分光信号由所述波长复用/解复用器传送给所述共享波长锁定装置,以及,将所述共享波长锁定装置经所述波长复用/解复用器反馈的所述反射光信号偏转至所述第一光接收机。
  5. 如权利要求1-4任一项所述的光收发装置,其特征在于,所述控制器用于:
    对所述第一电信号与所述第二电信号进行预定运算方式的计算,获得监测值;
    在所述监测值与预设的参考值发生偏差时,确定所述发光器件发出的光信号的波长发生偏移;所述参考值为所述发光器件发出的光信号的波长在目标波长时、基于所述第一电信号与所述第二电信号进行所述预定运算方式的计算获得的值;以及
    调整所述发光器件发出的光信号的波长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
  6. 如权利要求5所述的光收发装置,其特征在于,所述参考值通过以下方式确定:
    所述控制器调整所述发光器件发射的光信号的波长,并监测所述第一电信号的值;
    当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
    根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
    以所述第一波长为起点,调整所述发光器件发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
    将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预设运算方式的计算,获得所述参考值。
  7. 如权利要求6所述的光收发装置,其特征在于,所述控制器还用于:
    将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
  8. 一种波长控制系统,其特征在于,包括至少两个光收发装置、波长复用/解复用器和共享波长锁定装置,所述至少两个光收发装置通过所述波长复用/解复用器连接所述共享波长锁定装置,每个所述光收发装置包括发光器件、控制器、第一光接收机和第二光接收机,其中:
    每个所述光收发装置中的所述发光器件,用于发射光信号,将一部分光信号传送给所述波长复用/解复用器,将另一部分光信号发射到所述第二光接收机;
    所述波长复用/解复用器,用于将每个所述光收发装置中的所述发光器件发射的所述一部分光信号汇聚,生成复合波长光信号,并向所述共享波长锁定装置传送所述复合波长光信号;
    所述共享波长锁定装置,用于对所述复合波长光信号进行滤波、旋转偏振态后,得到复合波长反射光信号,将所述复合波长反射光信号传送给所述波长复用/解复用器;
    所述波长复用/解复用器,还用于接收所述复合波长反射光信号,并将所述复合波长反射光信号分解成各个光收发装置对应的反射光信号后,分别向各个光收发装置反馈对应的反射光信号;
    每个所述光收发装置中的所述第一光接收机,用于接收所述波长复用/解复用器反馈的反射光信号,将所述反射光信号转换为第一电信号,并将所述第一电信号传送给所述控制器;
    每个所述光收发装置中的所述第二光接收机,用于将所述发光器件发射的所述另一部分光信号转换为第二电信号,并将所述第二电信号传送给所述控制器;
    每个所述光收发装置中的所述控制器,用于根据所述第一电信号与所述第二电信号获得所述波长偏移信息,并根据所述波长偏移信息,控制所述发光器件发射的光信号的波长。
  9. 如权利要求8所述的波长控制系统,其特征在于,所述第二光接收机与所述发光器件的背光面连接;
    所述另一部分光信号由所述发光器件的背光面透出。
  10. 如权利要求8或9所述的波长控制系统,其特征在于,所述第一光接收机和所述第二光接收机为具有相同响应度的低速光接收机,所述响应度用于表征光接收机将所接收的光信号的功率转换为电流的转换系数。
  11. 如权利要求8-10任一项所述的波长控制系统,其特征在于,所述光收发装置还包括偏振分束器,所述第一光接收机通过所述偏振分束器与所述发光器件连接;
    所述偏振分束器,用于将接收到的所述发光器件发出的所述一部分光信号传送给所述波长复用/解复用器,以及将所述波长复用/解复用器反馈的所述反射光信号偏转至所述第一光接收机。
  12. 如权利要求8-11任一项所述的波长控制系统,其特征在于,所述共享波长锁定装置包括标准具和旋光器,所述标准具和所述旋光器连接;
    所述标准具,用于对所述其中一路复合波长光信号进行滤波;
    所述旋光器,用于接收经过所述标准具滤波后的光信号,将接收到的光信号的偏振态旋转设定角度,并反射给所述标准具;
    所述标准具,还用于对所述旋光器反射回来的光信号进行滤波,形成所述复合波长反射光信号。
  13. 如权利要求12所述的波长控制系统,其特征在于,所述设定角度为90°。
  14. 如权利要求12或13所述的波长控制系统,其特征在于,所述共享波长锁定装置还包括光耦合器和光隔离器;所述波长复用/解复用器、所述标准具、所述光隔离器均与所述光耦合器连接;
    所述光耦合器,用于接收所述波长复用/解复用器传送的所述复合波长光信号,并将所述复合波长光信号分成两路,将所述其中一路复合波长光信号传送给所述标准具,将另一路复合波长光信号传送给所述光隔离器,所述复合波长光信号、所述其中一路复合波长光信号和所述另一路复合波长光信号的波长相同;
    所述光隔离器,用于将所述另一路复合波长光信号传送给线路端。
  15. 如权利要求8-14任一项所述的波长控制系统,其特征在于,所述控制器用于:
    对所述第一电信号与所述第二电信号进行预定运算方式的计算,获得监测值;
    在所述监测值与预设的参考值发生偏差时,确定所述发光器件发出的光信号的波长发生偏移;所述参考值为所述发光器件发出的光信号的波长在目标波长时、基于所述第一电信号与所述第二电信号进行所述预定运算方式的计算获得的值;以及
    调整所述发光器件发出的光信号的波长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
  16. 如权利要求15所述的波长控制系统,其特征在于,所述光收发装置通过以下方式确定所述参考值:
    所述光收发装置中的控制器调整所述发光器件发出的光信号的波长,并监测所述第一电信号的值;
    当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
    根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
    以所述第一波长为起点,调整所述发光器件发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
    将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预设 运算方式的计算,获得所述参考值。
  17. 如权利要求16所述的波长控制系统,其特征在于,所述控制器还用于:
    将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
  18. 一种波长控制方法,其特征在于,包括:
    光收发装置发射光信号,将发射的一部分光信号通过波长复用/解复用器传送给共享波长锁定装置;
    所述光收发装置接收所述一部分光信号的反射光信号,所述反射光信号是所述共享波长锁定装置对所述一部分光信号进行滤波、旋转偏振态后经所述波长复用/解复用器向所述第一光接收机反馈的;
    所述光收发装置根据所述发射的光信号中除所述一部分光信号之外的另一部分光信号,与接收到的所述反射光信号,获得波长偏移信息;
    所述光收发装置根据获得的波长偏移信息,控制发射的光信号的波长。
  19. 如权利要求18所述的方法,其特征在于,所述光收发装置根据所述另一部分光信号与接收到的所述反射光信号,获得波长偏移信息,包括:
    所述光收发装置将所述反射光信号转换为第一电信号,并将所述另一部分光信号转换为第二电信号;
    所述光收发装置基于所述第一电信号与所述第二电信号进行预定运算方式的计算,获得监测值;
    在所述监测值与预设的参考值发生偏差时,确定发射的光信号的波长发生偏移;其中,所述参考值为所述光信号的波长在目标波长时,基于第一电信号与第二电信号进行所述预定运算方式的计算获得的值;
    所述光收发装置根据获得的波长偏移信息,控制发射的光信号的波长, 包括:
    所述光收发装置调整发出的光信号的波长,直至在调整过程中获得的监测值与所述参考值逼近或相同为止。
  20. 如权利要求19所述的方法,其特征在于,所述光收发装置通过以下方式确定所述参考值:
    所述光收发装置调整发射的光信号的波长,并监测所述第一电信号的值;
    当所述第一电信号的值为最大值时,记录发射的光信号的第一波长;
    根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值;
    以所述第一波长为起点,调整发射的光信号的波长,直至在调整过程中监测到的所述第一电信号的值为所述目标值为止,并记录当所述第一电信号的值为所述目标值时监测到的所述第二电信号的值;
    将监测的所述第二电信号的值与所述第一电信号的目标值进行所述预定运算方式的计算,获得所述参考值。
  21. 如权利要求20所述的方法,其特征在于,根据所述第一电信号的最大值计算当发射的光信号的波长为目标波长时所述第一电信号的目标值,包括:
    将所述第一电信号的最大值与预设固定值的乘积,作为所述第一电信号的目标值;所述预设固定值为:根据所述光信号的波长在所述第一波长时对应的光信号的功率与所述光信号的波长在所述目标波长时对应的光信号的功率的差值,与光接收机将所接收的光信号的功率转换为电流的转换系数的乘积。
PCT/CN2016/080510 2016-04-28 2016-04-28 一种光收发装置、波长控制系统和方法 WO2017185300A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/080510 WO2017185300A1 (zh) 2016-04-28 2016-04-28 一种光收发装置、波长控制系统和方法
CN201680077765.2A CN108476069B (zh) 2016-04-28 2016-04-28 一种光收发装置、波长控制系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080510 WO2017185300A1 (zh) 2016-04-28 2016-04-28 一种光收发装置、波长控制系统和方法

Publications (1)

Publication Number Publication Date
WO2017185300A1 true WO2017185300A1 (zh) 2017-11-02

Family

ID=60161598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080510 WO2017185300A1 (zh) 2016-04-28 2016-04-28 一种光收发装置、波长控制系统和方法

Country Status (2)

Country Link
CN (1) CN108476069B (zh)
WO (1) WO2017185300A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055091A (zh) * 2019-12-26 2021-06-29 中兴通讯股份有限公司 通信组件、通信设备、通信控制方法及存储介质
CN115348490A (zh) * 2022-10-18 2022-11-15 武汉长光科技有限公司 一种动态调度业务波长通道方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057424A (zh) * 2005-02-22 2007-10-17 中兴通讯股份有限公司 一种dwdm系统中波长集中监控的装置及方法
CN101369713A (zh) * 2008-09-16 2009-02-18 中兴通讯股份有限公司 一种实现光模块波长锁定的控制装置和方法
EP2573966A1 (en) * 2011-07-20 2013-03-27 ADVA Optical Networking SE A wavelength locking method for an optical transceiver device and optical transceiver device
CN103208739A (zh) * 2012-01-16 2013-07-17 昂纳信息技术(深圳)有限公司 一种波长锁定器及其波长锁定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057424A (zh) * 2005-02-22 2007-10-17 中兴通讯股份有限公司 一种dwdm系统中波长集中监控的装置及方法
CN101369713A (zh) * 2008-09-16 2009-02-18 中兴通讯股份有限公司 一种实现光模块波长锁定的控制装置和方法
EP2573966A1 (en) * 2011-07-20 2013-03-27 ADVA Optical Networking SE A wavelength locking method for an optical transceiver device and optical transceiver device
CN103208739A (zh) * 2012-01-16 2013-07-17 昂纳信息技术(深圳)有限公司 一种波长锁定器及其波长锁定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055091A (zh) * 2019-12-26 2021-06-29 中兴通讯股份有限公司 通信组件、通信设备、通信控制方法及存储介质
CN113055091B (zh) * 2019-12-26 2024-04-19 中兴通讯股份有限公司 通信组件、通信设备、通信控制方法及存储介质
CN115348490A (zh) * 2022-10-18 2022-11-15 武汉长光科技有限公司 一种动态调度业务波长通道方法及相关装置

Also Published As

Publication number Publication date
CN108476069A (zh) 2018-08-31
CN108476069B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
US7903979B2 (en) Low-cost WDM source with an incoherent light injected Fabry-Perot laser diode
US8606107B2 (en) Colorless dense wavelength division multiplexing transmitters
US7073956B1 (en) Optical transceiver and passive optical network using the same
US9106361B2 (en) Passive wavelength division multiplexing device for automatic wavelength locking and system thereof
US7450849B2 (en) Wavelength-division multiplexing passive optical network
US6862303B2 (en) Multiwavelength locking method and apparatus using acousto-optic tunable filter
JP2005277686A (ja) 波長多重光伝送システム及びそれにおける送信波長制御方法
US10567085B2 (en) Wavelength tunable optical transmitter apparatus
CN105511029B (zh) 一种光模块及光模块中激光器波长偏移的调整方法、装置
WO2017185300A1 (zh) 一种光收发装置、波长控制系统和方法
KR100324798B1 (ko) 고밀도 파장분할다중화 광통신 시스템의 광파장 제어 장치
WO2017049444A1 (zh) 一种端口匹配方法及装置
CN103229441A (zh) 光模块及其突发发射方法、激光器及光网络系统
KR100944865B1 (ko) 파장분할다중화 수동형 광가입자망의 선로종단장치 파장안정화 방법
KR101778555B1 (ko) 간섭형 잡음억제기를 이용한 듀얼 패브리-페롯 레이저 기반의 광송신기
KR101886289B1 (ko) 광 부품, 레이저, 광 네트워크 시스템 및 모니터링 방법
CN107346989B (zh) 一种多通道激光波长相关性监测器及监测方法
CN111385027A (zh) 光收发组件,信号光的管理方法及装置,pon系统
US20230269002A1 (en) Apparatus and method for maintaining wavelength interval of light sources
CN110459937B (zh) 激光器
JP2016524818A5 (zh)
WO2023020676A1 (en) Apparatus and method of carrier suppression in frequency referenced passive optical network
JPH01308090A (ja) 半導体レーザの発振周波数安定化方法
CN116260508A (zh) 相位稳定的tf-qkd方法、系统及其相位扰动监测方法
JP2013090184A (ja) 波長調整方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899813

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899813

Country of ref document: EP

Kind code of ref document: A1