WO2015100658A1 - 一种光发射器及发射方法、光接收器及接收方法 - Google Patents

一种光发射器及发射方法、光接收器及接收方法 Download PDF

Info

Publication number
WO2015100658A1
WO2015100658A1 PCT/CN2013/091207 CN2013091207W WO2015100658A1 WO 2015100658 A1 WO2015100658 A1 WO 2015100658A1 CN 2013091207 W CN2013091207 W CN 2013091207W WO 2015100658 A1 WO2015100658 A1 WO 2015100658A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
laser
lasers
selective
Prior art date
Application number
PCT/CN2013/091207
Other languages
English (en)
French (fr)
Inventor
周小平
胡菁
文玥
王磊
潘旭
徐成植
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13900701.7A priority Critical patent/EP3079274B1/en
Priority to PCT/CN2013/091207 priority patent/WO2015100658A1/zh
Priority to CN201380002299.8A priority patent/CN105122681A/zh
Publication of WO2015100658A1 publication Critical patent/WO2015100658A1/zh
Priority to US15/198,676 priority patent/US9831946B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0223Conversion to or from optical TDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0297Optical equipment protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical transmitter and a transmitting method, an optical receiver and receiving method, an optical line terminal, and a system. Background technique
  • PON Passive Optical Network
  • the PON system generally includes: an OLT (Optical Line Terminal), an ONU (Optical Network Unit), an Optical Network Terminal (ONT), and an ODN (Optical Network Network).
  • OLT Optical Line Terminal
  • ONU Optical Network Unit
  • ODN Optical Network Network
  • optical distribution network ODN includes Splitter (passive optical splitter), trunk fiber and branch fiber.
  • a single-fiber bidirectional transmission mechanism is used to transmit two waves of opposite directions and different wavelengths in one optical fiber, and each wave carries a digital signal in one direction.
  • the PON system uses the following two multiplexing techniques to transmit digital signals in the downstream transmission direction: see Figure 1B; in the upstream transmission direction: see Figure 1C Show.
  • TWDM Time Wavelength Division Multiplexing
  • WDM Widelength Division Multiplexing
  • the process of transmitting digital signals by the TWDM-PON system is as follows (for example, the type of light corresponding to the wavelength is from one booster P to four):
  • the four lasers of the OLT respectively emit light of four different wavelengths, pass through the combiner, enter the trunk fiber, and then reach the ONU; for the optical receiver of the ONU, only one of the wavelengths is selected.
  • Receiving therefore, it is necessary to add a tunable filter in front of the optical receiver; since one light of one of the four wavelengths is selected, different ONUs can prepare four different filters; Use a tunable filter to configure different wavelengths according to actual needs, thus reducing the type of filter;
  • any ONU can also emit light corresponding to one of four different wavelengths.
  • the ONU can use four different lasers, or a laser can be used to adjust to a specific The wavelength, which reduces the type of ONU.
  • the demultiplexer of the OLT After the light corresponding to the four different wavelengths of the uplink enters the ODN, it reaches the demultiplexer of the OLT, and the splitter separates the light corresponding to the four different wavelengths into different optical receivers.
  • the lasers are connected by photonic integration technology (including monolithic integration and hybrid integration).
  • the combiners are integrated to form a miniaturized integrated light emitter, or all optical receivers and splitters are integrated to form a miniaturized optical receiver.
  • the above-mentioned optical transmitter or optical receiver has the following problems: When one laser in the optical transmitter fails, in order to ensure system performance, the entire optical transmitter must be replaced, and similarly, any one of the optical receivers After the optical receiver fails, the entire optical receiver needs to be replaced. Therefore, the integrated module in the TWDM-PON system has low stability and high operating cost.
  • protection channels 1 to M are in the off state, and the output of the entire device is the output of the light emitted from the 1 to N channels; when 1 to N channels have one channel failure, the protection In channels 1 to M, a channel is emitted to emit light, and the wavelength and information of the signal are The light emitted by the failed channel is exactly the same. If there are multiple channels failing, open the multi-channel protection channel.
  • the embodiments of the present invention provide an optical transmitter, a transmitting method, an optical receiver, and a receiving method, which are used to solve the problem of excessive power loss and low light extraction efficiency of the integrated module in the passive optical network system in the prior art.
  • a light emitter comprising:
  • M lasers are coupled to the M inputs of the M wavelength selective optical elements, the M lasers corresponding to the M wavelength selective optical elements;
  • the M output terminals of the M wavelength selective optical elements are coupled into one path;
  • the M lasers comprise N lasers in an active state, N ⁇ M;
  • the N lasers correspond to N different wavelengths
  • the wavelength of the wavelength selective optical element coupled to the first laser is adjusted from the first wavelength to the second wavelength, The second wavelength is different from the N wavelengths;
  • M and N are integers greater than or equal to 1.
  • a wavelength of a wavelength selective optical element coupled to the second laser is set to the first wavelength.
  • the wavelength selective component is a thin film filter, and the M thin film filters are coupled by a mirror All the way.
  • the wavelength selective component is a microring resonator, and the M microring resonators are coupled into one path through an optical waveguide.
  • the optical transmitter further includes:
  • Control logic for controlling a first one of the N lasers to switch to a second laser that is idle among the M lasers.
  • an optical receiver in a second aspect, includes:
  • M light receivers are coupled to the M outputs of the M wavelength selective optical elements, the M light receivers corresponding to the M wavelength selective optical elements;
  • the input ends of the M wavelength selective optical elements are split into one input end by one optical splitting
  • the M optical receivers comprise N lasers in an active state, N ⁇ M;
  • the N optical receivers correspond to N different wavelengths
  • the wavelength of the wavelength selective optical element coupled by the first optical receiver is from the first Adjusting a wavelength to a second wavelength, the second wavelength being different from the N wavelengths;
  • M and N are integers greater than or equal to 1.
  • a wavelength of a wavelength selective optical element coupled to the second optical receiver is set to the first wavelength.
  • the wavelength selective component is a thin film filter
  • the M thin film filters pass the inverse The mirror splits all the light into M inputs.
  • the wavelength selective component is a micro ring resonator
  • the M microring resonators pass through an optical waveguide One way of light splitting into M inputs.
  • the optical receiver further includes:
  • Control logic for controlling a first one of the N lasers to switch to a second laser that is idle among the M lasers.
  • an optical network device including a light emitter and a light receiver, the light emitter being connected to the light receiver through a WDM, the light emitter comprising the first aspect, or the first aspect of the first aspect
  • an optical network device including an optical transmitter and an optical receiver, where the optical transmitter is connected to an optical receiver through a WDM, and the optical receiver includes the second aspect, or the first aspect of the second aspect The optical receiver of any one of the fourth possible implementations.
  • the fifth aspect provides a passive optical network PON system, including an optical line terminal OLT, at least one optical network unit ONU or an optical network terminal ONT, where the OLT is connected to the at least one ONU or ONT through an optical distribution network ODN.
  • the OLT or the ONU is the device as described in the third aspect, or the device as described in the fourth aspect.
  • a method for emitting light by a light emitter is provided.
  • the light emitter comprises M lasers, the M lasers being coupled to M inputs of the M wavelength selective optical elements, the M lasers corresponding to the M wavelength selective optical elements
  • the M lasers comprise N lasers in operation, N ⁇ M, and are characterized in that:
  • the method further includes:
  • the wavelength of the wavelength selective optical element to which the second laser is coupled is adjusted such that the wavelength of the wavelength selective optical element changes to the first wavelength.
  • the second possible method is to switch the first laser of the N lasers to the second laser that is idle among the M lasers, :
  • a seventh aspect a method for receiving light by an optical receiver is provided,
  • the optical receiver includes M optical receivers coupled to M outputs of the M wavelength selective optical elements, wherein the M optical receivers correspond to the M wavelength selective optical elements;
  • the input ends of the M wavelength selective optical elements are split into one M input by one optical split;
  • the M optical receivers comprise N active lasers, N ⁇ M, wherein the method includes :
  • M and N are integers greater than or equal to 1.
  • the method further includes: adjusting a wavelength of the wavelength selective optical element coupled to the second optical receiver such that a wavelength of the wavelength selective optical element Becomes the first wavelength.
  • the method further includes: before switching the first optical receiver of the N optical receivers to the second optical receivers that are idle among the M optical receivers, the method further includes: Assuming that the first one of the N optical receivers fails, the first laser is turned off.
  • the optical transmitter includes M lasers, and N are in an active state, N ⁇ M; when the first laser of the N lasers is switched to the second laser in the idle state of the M lasers, the first a wavelength of a wavelength selective optical element coupled to a laser such that it changes from a first wavelength to a second wavelength, said second wavelength being incapable of being equivalent to N wavelengths of light emitted by said N lasers; likewise, receiving The same is true of the machine principle.
  • FIG. 1A is a schematic diagram of a network architecture of a PON system in the prior art
  • 1B is a schematic diagram of downlink transmission of a PON system in the prior art
  • 1C is a schematic diagram of uplink transmission of a PON system in the prior art
  • 1D is a schematic diagram showing the functional structure of a TWDM-PON system in the prior art
  • 1E is a schematic structural view of a light emitter module in the prior art
  • FIG. 2 is a schematic diagram of a laser failure in an optical transmitter according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a laser failure in an optical transmitter according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a failure of an optical receiver in an optical receiver according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a failure of an optical receiver in an optical receiver according to an embodiment of the present invention.
  • Figure 7 is a schematic view showing the second structure of the device in the embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a PON according to an embodiment of the present invention.
  • FIG. 9 is a detailed flowchart of a light emitted by a light emitter according to an embodiment of the present invention.
  • FIG. 10 is a detailed flowchart of receiving light by an optical receiver according to an embodiment of the present invention. detailed description
  • an optical transmitter and an optical receiver are provided, where the optical transmitter includes:
  • M lasers are coupled to the M inputs of the M wavelength selective optical elements, the M lasers corresponding to the M wavelength selective optical elements, and the wavelength setting of each of the wavelength selective optical elements Consistent with the wavelength of the coupled laser;
  • the M output terminals of the M wavelength selective optical elements are coupled into one path;
  • the M lasers comprise N lasers in an active state, N ⁇ M;
  • the N lasers correspond to N different wavelengths
  • the wavelength of the wavelength selective optical element coupled to the first laser is adjusted from the first wavelength to the second wavelength, The second wavelength is different from the wavelength of the N lasers;
  • M and N are integers greater than or equal to 1.
  • the invention also provides an optical receiver, the optical receiver comprising:
  • M light receivers are coupled to the M outputs of the M wavelength selective optical elements, the M light receivers corresponding to the M wavelength selective optical elements, and each of the wavelength selective optics
  • the wavelength of the component is set to coincide with the wavelength of the coupled optical receiver
  • the input ends of the M wavelength selective optical elements are split into one input end by one optical splitting
  • the M optical receivers comprise N lasers in an active state, N ⁇ M;
  • the N optical receivers correspond to N different wavelengths
  • the wavelength of the wavelength selective optical element coupled by the first optical receiver is from the first Adjusting a wavelength to a second wavelength, the second wavelength being different from a wavelength of the N optical receivers;
  • M and N are integers greater than or equal to 1.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the light emitter of the first embodiment of the present invention is as follows:
  • the light emitter of the first embodiment comprises: M lasers, and M inputs coupled to the M lasers to the M wavelength selective optical elements, the M lasers and the M wavelength selective optical elements -
  • the wavelength of each of the wavelength selective optical elements is set to coincide with the wavelength of the coupled laser.
  • the light emitter includes five lasers, wherein one to four of the light emitters are in an active state, and the light emitters 5 are in an idle state.
  • the wavelength selective optical component is a TFF (Thin Film Filter) with adjustable wavelengths, and the M outputs of the M TFFs are coupled into one path by a mirror; the M lasers include N operating states.
  • the laser, N ⁇ M; the N lasers correspond to N different wavelengths, respectively corresponding to four different wavelengths of ⁇ , 4, ⁇ , 4 .
  • the optical transmitter further includes control logic for controlling the first laser of the N lasers to switch to the idle second laser of the M lasers.
  • the light emitter has four working lasers 1 ⁇ 4, one idle laser 5, four TFF1 4 coupled to the working lasers 1 ⁇ 4, and one TFF5 coupled to the idle laser 5.
  • laser 4 operating emit ⁇ , 4, ⁇ , ⁇ ⁇ four different wavelengths of light, respectively, corresponding to the four TFF can transmit only ⁇ , ⁇ , ⁇ , four different wavelengths of light, the whole light of other wavelengths
  • the reflection, that is, the TFF2 corresponding to the laser 2 can only transmit light of a wavelength, totally reflect light of other wavelengths, and so on.
  • the function of the device shown in Fig. 2 is to finally synthesize four different wavelengths of light of ⁇ , ⁇ , ⁇ , ⁇ emitted by four working lasers into one light.
  • the laser 5 when the second laser 2 fails (the wavelength of the emitted light of the second laser 2 before the failure is ⁇ ), the laser 5 is set to emit light of the same wavelength as the failed laser 2, and the corresponding The wavelength of TFF2 transmission is such that it is adjusted to a wavelength different from any of ⁇ , 4, 4, ⁇ , that is, the TFF2 is totally reflected by the light of the wavelengths of ⁇ , 4, ⁇ , and the laser 5 is set corresponding to The wavelength of the TFF5 transmission is adjusted to ⁇ to ensure that the light emitted by the laser 5 can be transmitted by the TFF 5.
  • the TFF2 corresponding to the malfunctioning laser 2 still transmits the light of the wavelength
  • the light of the wavelength transmitted by the TFF5 passes through the TFF2 corresponding to the failed laser 2, and is transmitted again, then, respectively
  • the corresponding light will not be completely overlapped, so that one light cannot be synthesized; if the main TFF2 corresponding to the malfunctioning laser 2 does not transmit light of wavelength ⁇ 1 ⁇ 4 , the wavelength of light transmitted by TFF5 occurs.
  • the faulty laser 2 corresponds to TFF2
  • it will be totally reflected, instead of being transmitted, and the corresponding lights of ⁇ l ⁇ A will all coincide, and finally merge into one light.
  • the second laser 2 fails (the wavelength of the emitted light is ⁇ before the second laser 2 fails)
  • the detecting that the second laser 2 is faulty may be implemented by the control logic or by an external controller connected to the light emitter.
  • setting the laser 5 to emit light of the same wavelength as the failed laser 2 and adjusting the wavelength of the corresponding TFF2 transmission may be implemented by control logic inside the light emitter, and may also be emitted by light.
  • the external controller of the connected device is implemented.
  • setting the wavelength of the TFF5 transmission corresponding to the laser 5 to be adjusted to 4 may be implemented by the control logic or by an external controller connected to the optical transmitter.
  • setting the wavelength of the TFF 2 corresponding to the laser 2 to be adjusted to a wavelength different from any one may be implemented by the control logic or by an external controller connected to the optical transmitter.
  • adjusting the wavelength of TFF2 can be accomplished by changing the temperature or changing the angle of TFF2.
  • the laser 5 in order to ensure that the laser 5 can replace the malfunctioning laser 2 in the event of failure of any of the lasers 1 to 4, and the light emitted by the laser 5 can finally be emitted with all the lasers that have not failed.
  • the light is superimposed and combined into one light, not only to cause the laser 5 to emit light of the same wavelength as the malfunctioning laser 2, but also to adjust the wavelength of the corresponding TFF2 of the malfunctioning laser 2 to ensure that the pair does not occur from any one.
  • the faulty laser and the light emitted by the laser 5 are not transmitted but are totally reflected.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the light emitter of the second embodiment of the present invention is as follows: M lasers, and M inputs coupled to the M wavelength selective optical elements, the M lasers corresponding to the M wavelength selective optical elements, each of the wavelength selective The wavelength of the optical element is set to coincide with the wavelength of the coupled laser.
  • the light emitter includes five lasers, wherein one to four of the light emitters are in an active state, and the light emitters 5 are in an idle state.
  • the wavelength selective optical element is an MRR (Micor-Ring Resonator) with adjustable wavelength, and M outputs of the M MRRs are coupled into one path through an optical waveguide;
  • the M lasers include N The working state of the laser, N ⁇ M; the N lasers correspond to N different wavelengths, respectively corresponding to four different wavelengths of ⁇ , 4, ⁇ , 4 .
  • the optical transmitter further includes control logic for controlling the first laser of the N lasers to switch to the idle second laser of the M lasers.
  • the optical transmitter has four working lasers 1 ⁇ 4 and respectively coupled MRR1-4, an idle laser 5 and a coupled MRR5.
  • four lasers 1 to 4 respectively transmit light of four different wavelengths of ⁇ , ⁇ 2 , ⁇ 3 and ⁇ 4 .
  • the second laser 2 sorted from top to bottom fails (the wavelength of the emitted light is ⁇ before the second laser 2 fails)
  • the laser 5 emits light of wavelength ⁇
  • MRR5 The resonant wavelength is adjusted to 4 to ensure that the wavelength of the laser 5 emitted by the laser 5 can be deflected by the MRR5, such as counterclockwise to 90. , transfer from bottom to top.
  • the wavelength of the MRR2 corresponding to the second laser 2 that has failed is also adjusted so that the wavelength thereof is different from the wavelength of any one of ⁇ , ⁇ 2 , ⁇ 3 , and ⁇ 4 so as to be the second with the failure.
  • the MRR2 corresponding to the laser 2 does not cause any optical path turning effect on the light pairs of wavelengths ⁇ , ⁇ 2 , ⁇ 3 , ⁇ 4 , because if the MRR 2 corresponding to the second laser 2 still performs the propagation direction of the wavelength ⁇ Adjust, MRR5 adjusts the optical path to the wavelength of ⁇ through the second laser 2 corresponding to MRR2, the optical path will be turned again, then ⁇ corresponding light will not all overlap; if the faulty second laser 2 The corresponding MRR2 does not produce any optical path turning effect on the light of ⁇ , and then the MRR5 does not change the optical path when the light of the wavelength adjusted by the optical path passes through the MRR2 corresponding to the second laser 2, that is, the propagation direction does not change.
  • the emission wavelength of the laser 5 can also be adjusted to be different.
  • the light of any one of ⁇ , ⁇ 2 , ⁇ 3 , and ⁇ 4 is not equivalent to the MRR2 adjusted wavelength, and the resonant wavelength of the MRR 5 is adjusted to be equal to the adjusted wavelength of the laser 5 .
  • the detecting that the second laser 2 is faulty may be implemented by the control logic or by an external controller connected to the light emitter.
  • setting the laser 5 to emit light of the same wavelength as the failed laser 2 and adjusting the wavelength of the corresponding MRR2 transmission may be implemented by control logic inside the light emitter, and may also be emitted by light.
  • the external controller of the connected device is implemented.
  • setting the wavelength of the MRR5 transmission corresponding to the laser 5 to be adjusted to ⁇ may be implemented by the control logic, or may be implemented by an external controller connected to the optical transmitter.
  • adjusting the wavelength of the MRR2 coupled to the laser 2 can be accomplished by the control logic or by an external controller coupled to the optical transmitter.
  • adjusting the wavelength of MRR2 can be done by changing the temperature of MRR2 or injecting current.
  • the light emitted by the laser 5 can finally be transmitted with the light emitted by other non-faulty lasers. If the coincidence, the wavelength of the MRR2 corresponding to the second laser 2 must be adjusted to ensure that it does not cause any optical path turning effect on the light emitted from any one of the lasers, so that the light emitted by any one laser passes through the second laser 2 In MRR2, the optical path does not change, that is, the direction of propagation does not change, and it still propagates according to the original propagation direction.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • optical receiver of the first embodiment of the present invention is as follows:
  • each The wavelength of the wavelength selective optical element is set to coincide with the wavelength of the coupled optical receiver.
  • the optical receiver includes five optical receivers, wherein one to four optical receivers are in an active state, and the optical receiver 5 is in an idle state.
  • the wavelength selective optical element is a TFF (Thin Film Filter) with adjustable wavelength, and the input ends of the M TFFs are split into one M input by one optical split; the N optical receivers correspond to N Different wavelengths, corresponding to ⁇ , 4, ⁇ , four different wavelengths of light.
  • the optical receiver further includes control logic for controlling the first one of the N optical receivers to switch to the second optical receiver that is idle among the M optical receivers.
  • the second optical receiver 2 sorted from top to bottom fails (the wavelength of the received light is ⁇ before the second optical receiver 2 fails), the light is received.
  • the wavelength of the light received by the device 5 is adjusted to 4, and the wavelength of the TFF 5 corresponding to the optical receiver 5 is adjusted to 4 to ensure that the light received by the optical receiver 5 can be transmitted by the corresponding TFF 5.
  • the wavelength of the TFF2 corresponding to the second optical receiver 2 that has failed is adjusted, so that the wavelength of the TFF2 is not equal to any wavelength of ⁇ , ⁇ , ⁇ , so that the second optical receiver with the failure occurs.
  • 2 corresponding TFF2 is totally reflected by light of wavelengths ⁇ , 4, ⁇ , because if TFF2 corresponding to the second optical receiver 2 still transmits light of wavelength, the corresponding TFF5 of the optical receiver 5 cannot be received.
  • the light of the wavelength ⁇ can not transmit the light of the wavelength ⁇ , therefore, the light receiver 5 cannot receive the light of the wavelength, although the TFF2 corresponding to the second light receiver 2 still has the light of the wavelength ⁇ Transmission is performed, but the second optical receiver 2 fails and cannot receive light of a wavelength, and therefore, the optical receiver 2 cannot receive light of a wavelength.
  • the wavelength of the light received by the optical receiver 5 can also be adjusted. It is different from ⁇ , 4, ⁇ , any wavelength, and cannot be equal to the adjusted wavelength of TFF2, and at the same time, the wavelength of the TFF 5 corresponding to the optical receiver 5 is adjusted to be equal to the wavelength of the optical receiver 5.
  • the detecting that the second optical receiver 2 is faulty may be implemented by the control logic, or may be implemented by an external controller connected to the optical receiver.
  • setting the optical receiver 5 to receive the same wavelength of light as the failed optical receiver 2 and adjusting the wavelength of the corresponding TFF2 transmission may be implemented by control logic inside the optical receiver, or may be implemented by Implemented by an external controller connected to the optical receiver.
  • setting the wavelength of the TFF5 transmission corresponding to the optical receiver 5 to be adjusted by the control logic may also be implemented by an external controller connected to the optical receiver.
  • setting the wavelength of the TFF2 corresponding to the optical receiver 2 to be adjusted to a wavelength different from any one of 4 1 ⁇ 4 may be implemented by the control logic, or may be externally controlled by the optical receiver. Implemented.
  • adjusting the wavelength of TFF2 can be accomplished by changing the temperature or changing the angle of TFF2.
  • the second optical receiver 2 can receive the light of the wavelength ⁇ , then the second The wavelengths of the TFF2 transmission corresponding to the respective optical receivers 2 are adjusted to ensure that the light having the wavelengths of ⁇ , 4, 4, ⁇ is not transmitted, but is totally reflected.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the optical receiver of the second embodiment of the present invention is as follows:
  • the optical receiver includes five optical receivers, wherein one to four optical receivers are in an active state, and the optical receiver 5 is in an idle state. .
  • the wavelength selective optical element is an MRR (Micor-Ring Resonator) with adjustable wavelength, and the input ends of the M MRRs are split into one M input by one optical split; the N optical receivers Corresponding to N different wavelengths, corresponding to four different wavelengths of ⁇ , ⁇ , ⁇ , and 4 .
  • MRR Mericor-Ring Resonator
  • the optical receiver further includes control logic for controlling the first one of the N optical receivers to switch to the second optical receiver that is idle among the M optical receivers.
  • the second optical receiver 2 sorted from top to bottom fails (the second optical receiver 2 receives a light having a wavelength of ⁇ before the failure occurs), the light is received.
  • the device 5 is adjusted to receive light having a wavelength of 4, and at the same time, the resonance wavelength of the MRR 5 is adjusted to 4 to ensure that the light received by the light receiver 5 can be optically converted by the MRR 5, for example, rotated clockwise by 90. .
  • the wavelength of the MRR2 corresponding to the second optical receiver 2 that has failed is adjusted, so that the wavelength of the MMR2 is not equal to any wavelength of ⁇ , 4, ⁇ , so that the second optical receiver with the failure occurs.
  • the corresponding MRR2 does not produce any optical path turning effect on the light of wavelengths ⁇ , ⁇ , ⁇ , because if the corresponding MRR2 of the second optical receiver 2 still produces a light path turning effect on the light of the wavelength ⁇ , then the MRR5 receives The light of the wavelength is not included in the light of one path, and the optical path cannot be turned, and the optical receiver 5 cannot receive the light of the wavelength ⁇ , although the MRR2 corresponding to the second optical receiver 2 still has a wavelength of ⁇ The light generates an optical path turning effect, but the second optical receiver 2 fails and cannot receive light, and therefore, the light of the wavelength ⁇ cannot be received by the optical receiver 2 included in the optical receiver.
  • the resonance of the MRR2 corresponding to the second optical receiver 2 must be The wavelength is adjusted to ensure that the light of the wavelengths ⁇ , ⁇ , ⁇ , does not produce a light path turning effect, and the passing light still propagates according to the original propagation direction.
  • the optical receiver 5 is adjusted to receive the wavelength is not equal. Any wavelength of 4, 4, ⁇ , and cannot be equal to the adjusted wavelength of the MRR2, The resonant wavelength of the MRR 5 is adjusted to be equal to the wavelength of the optical receiver 5.
  • the detecting that the second optical receiver 2 is faulty may be implemented by the control logic, or may be implemented by an external controller connected to the optical receiver.
  • setting the optical receiver 5 to receive the same wavelength of light as the failed optical receiver 2 and adjusting the wavelength of the corresponding TFF2 transmission may be implemented by control logic inside the optical receiver, or may be implemented by Implemented by an external controller connected to the optical receiver.
  • setting the wavelength of the TFF5 transmission corresponding to the optical receiver 5 to be adjusted by the control logic may also be implemented by an external controller connected to the optical receiver.
  • setting the wavelength of the TFF2 corresponding to the optical receiver 2 to be adjusted to a wavelength different from any one of 4 1 ⁇ 4 may be implemented by the control logic, or may be externally controlled by the optical receiver. Implemented.
  • adjusting the wavelength of TFF2 can be accomplished by changing the temperature or changing the angle of TFF2.
  • an optical network device including an optical transmitter 600 and an optical receiver 610.
  • the optical transmitter is connected to the optical receiver through the WDM, where the optical transmitter is as an embodiment. Or a light emitter as in the second embodiment.
  • the optical network device may be an OLT, or an ONU, or an ONT.
  • an optical network device including a light emitter 700 and a light receiver 710.
  • the light emitter is connected to the optical receiver through the WDM, wherein the optical receiver is as in the third embodiment or as in the fourth embodiment.
  • Light receiver is as in the third embodiment or as in the fourth embodiment.
  • the optical network device may be an OLT, or an ONU, or an ONT.
  • a PON system including an OLT, at least one ONU or an ONT, and the OLT is connected to at least one ONU or ONT through an ODN, and the OLT Or the ONU is an optical network device as shown in FIG. 6 or FIG. 7.
  • an embodiment of the present invention provides a method for emitting light by a light emitter, where the light emitter is a light emitter as described in Embodiment 1 or Embodiment 2.
  • the light emitter includes M lasers.
  • the M lasers are coupled to M inputs of M wavelength selective optical elements, the M lasers corresponding to the M wavelength selective optical elements, and each of the wavelength selective optical elements
  • the wavelength is set to be consistent with the wavelength of the coupled laser
  • the M lasers comprise N lasers in an operating state, N ⁇ M, characterized in that:
  • Step 910 Switching a first laser of the N lasers to a second laser that is idle among the M lasers;
  • Step 920 Adjust a wavelength of the wavelength selective optical element coupled to the first laser such that a wavelength of the wavelength selective optical element is adjusted from a first wavelength to a second wavelength, the second wavelength being different from the N
  • the wavelengths are: wherein the M and N are integers greater than or equal to 1.
  • the method further includes:
  • the wavelength of the second laser and its coupled wavelength selective optical element is adjusted such that the wavelength of the wavelength selective optical element becomes the first wavelength.
  • the method further includes:
  • the second laser and the wavelength selective optical element to which it is coupled are arranged to have a wavelength different from the wavelength of the N lasers and different from the second wavelength.
  • the method further includes: confirming that the first laser of the N lasers is faulty, and turning off the first a laser.
  • the wavelength selective optical element to which the first laser is coupled for example: when the wavelength selective optical element is TFF, adjust the rotation angle or change the temperature.
  • the wavelength selective optical element is an MRR
  • the wavelength of the MRR is adjusted by changing the temperature or injecting a current.
  • an embodiment of the present invention provides a method for receiving light by an optical receiver, where the optical receiver is an optical receiver as described in Embodiment 3 or Embodiment 4;
  • An optical receiver coupled to the M outputs of the M wavelength selective optical elements, the M optical receivers corresponding to the M wavelength selective optical elements, and each of the wavelength selective optical elements The wavelength is set to be consistent with the wavelength of the coupled optical receiver; wherein, the input ends of the M wavelength selective optical elements are split into one M input by one optical; the M optical receivers include N Working state laser, N ⁇ M, the method includes:
  • Step 1100 Switching a first optical receiver of the N optical receivers to a second optical receiver that is idle among the M optical receivers;
  • Step 1200 Adjust a wavelength of the wavelength selective optical element coupled to the first optical receiver, such that a wavelength of the wavelength selective optical element is adjusted from a first wavelength to a second wavelength, where the second wavelength is different from Said N wavelengths;
  • M and N are integers greater than or equal to 1.
  • the method further includes:
  • the wavelength of the second light receiver and its coupled wavelength selective optical element is adjusted such that the wavelength of the wavelength selective optical element changes to the first wavelength.
  • the method further includes:
  • the wavelength of the second receiver and its coupled wavelength selective optical elements is set to be different from the wavelength of the N light receivers and different from the second wavelength.
  • the method further includes: before switching the first optical receiver of the N optical receivers to the second optical receivers that are idle among the M optical receivers, the method further includes:
  • the first laser is turned off.
  • the wavelength selective optical element to which the first laser is coupled for example: when the wavelength selective optical element is TFF, adjust the rotation angle or change the temperature.
  • the wavelength selective optical element is an MRR, the wavelength of the MRR is adjusted by changing the temperature or injecting a current.
  • the optical transmitter or the optical receiver when a working laser fails, sets an idle laser to emit light of the same wavelength as the faulty laser, and adjusts and fails.
  • the wavelength of the laser-coupled optical element is such that its wavelength is different from the wavelength of the light emitted by the originally operating laser to facilitate its total reflection of the light emitted by the originally operating laser.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus functions in one or more blocks of a flow or a flow diagram and/or block diagram of a flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions in one or more blocks of the flowchart or in a flow or block of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及通信技术领域,公开了一种光发射器及发射方法、光接收器及接收方法, N个激光器中的第一激光器切换到 M个激光器中空闲的第二激光器时,所述第一激光器所耦合的波长选择性光学元件的波长从第一波长调整成第二波长,所述第二波长不同于所述 N个波长;同理,N个光接收器中的第一光接收器切换到 M个光接收器中空闲的第二光接收器时,所述第一光接收器所耦合的波长选择性光学元件的波长从第一波长调整成第二波长,所述第二波长不同于所述 N个波长。通过以上技术方案,本发明实施例降低了光发射器、光接收器的复杂度、降低了额外功率损耗,及提高了出光功率。

Description

一种光发射器及发射方法、 光接收器及接收方法 技术领域
本发明涉及通信技术领域, 特别涉及一种光发射器及发射方法、 光接收 器及接收方法、 光线路终端及系统。 背景技术
随着通信技术的发展, PON ( Passive Optical Network, 无源光网络) 系 统由于具有带宽大、 可扩展性好、 节省主干光纤、 覆盖范围广等优点, 在宽 带接入领域的应用越来越广泛。
PON系统如图 1A所示, 一般包括: OLT ( Optical Line Terminal, 光线路 终端)、 ONU ( Optical Network Unit, 光网络单元) /ONT ( Optical Network Terminal, 光网络终端), 及 ODN ( Optical Distribution Network, 光分配网络), ODN包括 Splitter (无源光分路器) 、 主干光纤和分支光纤。
PON系统在传输过程中, 釆用单纤双向传输机制, 在一根光纤里传两个 方向相反、 波长不同的波, 每个波承载一个方向的数字信号。 为了分离同一 根光纤上多个用户的来去方向的信号, PON系统釆用以下两种复用技术传输 数字信号, 在下行传输方向: 参阅图 1B所示; 在上行传输方向: 参阅图 1C 所示。
随着通信技术的发展,为了提升带宽,在 PON系统的基础上扩充的 TWDM ( Time Wavelength Division Multiplexing, 时分 /波分混合复用) PON系统应运 而生, 具体如图 1D所示, 其中, TWDM是 TDM ( Time Division Multiplexing, 时分复用)和 WDM ( Wavelength Division Multiplexing, 波分复用) 的缩写。 TWDM-PON系统与 PON系统的相同点是整个 ODN网络结构不变;主要不同点 是上下行的光对应波长的种类由一种增加至两种以上。
TWDM-PON系统传输数字信号的过程如下(以光对应波长的种类由一种 增力 P至四种为例): 在下行传输方向: OLT 的四个激光器分别发出四种不同波长对应的光, 经过合波器, 进入主干光纤, 然后再到达 ONU; 对 ONU的光接收器, 只选 择其中一种波长对应的光进行接收, 因此, 需要在光接收器前加一个可调滤 波器; 由于要选择四种波长中的一种波长对应的光, 因此, 不同的 ONU, 可 以准备四种不同的滤波器; 也可以选用可调滤波器, 根据实际需要, 配置到 不同的波长, 从而减小滤波器的种类;
在上行传输方向:任一 ONU也可以发出四种不同波长中的一种波长对应 的光, 同时, ONU可以选用四种不同的激光器, 也可以釆用一种激光器, 根 据需要, 调节到特定的波长, 从而减少 ONU的种类。 上行的四种不同波长分 别对应的光进入 ODN后, 到达 OLT的分波器, 该分波器把四种不同波长分 别对应的光分开, 进入到不同的光接收器。
在实际应用中, 在 TWDM-PON系统中, 为了减少 OLT模块的尺寸, 降 低总功耗, 提高线卡的端口密度, 通过光子集成技术(包括单片集成和混合 集成), 将所有的激光器与合波器集成在一起, 形成一个小型化的集成光发射 器, 或者, 把所有的光接收器与分波器集成在一起, 形成一个小型化的光接 收器。 但是, 上述光发射器或者光接收器存在如下问题: 当光发射器中的一 路激光器发生故障后, 为了保障系统性能, 必须把整个光发射器换掉, 同理, 光接收器中的任何一路光接收器发生故障后 , 也需要把整个光接收器替换掉, 因此, TWDM-PON系统中集成模块的稳定性较低、 运营成本较高。
为了解决上述问题, 现有技术中, 在正常工作的通道之外, 增加一些保 护通道。 以光发射器为例, 见图 1E所示, 通道 1至 N是用于正常工作的激光 器, 彼此发出不同波长的光, 通过一个光合波器把所有的发射的光合在一起; 1至 M是用于发射保护用的光的激光器; 1至 N通道发射的光和保护用的 1 至 M通道发射的光通过一个合光器件合在一起后, 从右端的公共端口输出。 当通道 1至 N正常工作时,保护通道 1至 M处在关闭状态,整个器件的输出, 就是 1至 N通道发射的光的输出; 当 1至 N通道中,有一路通道发生故障时, 保护通道 1至 M中, 就开通一路通道发射光, 该路信号的波长以及信息, 与 发生故障的通道发射的光完全一致。 如果有多路通道发生故障, 就开通多路 保护通道。
以上技术方案中的光发射器中, 要设置多个用于发射保护用的光的激光 器, 因此, 复杂度较高, 同时, 该光发射器由于釆用的合光器件会带来额外 的损耗, 并且无论保护通道是否起作用, 所有的正常工作通道都要承受合光 器件带来的额外功率损耗, 降低了整个模块的出光效率。 发明内容
本发明实施例提供一种光发射器及发射方法、 光接收器及接收方法, 用 以解决现有技术中无源光网络系统中集成模块额外功率损耗过大、 出光效率 较低的问题。
本发明实施例提供的具体技术方案如下:
第一方面, 提供一种光发射器, 所述光发射器包括:
M个激光器耦合到 M个波长选择性光学元件的 M个输入端, 所述 M个 激光器与所述 M个波长选择性光学元件——对应;
其中, 所述 M个波长选择性光学元件的 M个输出端耦合成一路; 所述 M个激光器包含 N个处于工作状态的激光器, N<M ;
所述 N个激光器对应 N个不同波长;
所述 N个激光器中的第一激光器切换到 M个激光器中空闲的第二激光器 时, 所述第一激光器所耦合的波长选择性光学元件的波长从第一波长调整成 第二波长, 所述第二波长不同于所述 N个波长;
其中, 所述 M, N均为大于等于 1的整数。
结合第一方面, 在第一种可能的实现方式中, 所述第二激光器所耦合的 波长选择性光学元件的波长设置成所述第一波长。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述波长选择性元件是薄膜滤波器, 所述 M个薄膜滤波器通过反 射镜耦合成一路。 结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所述波长选择性元件是为微环谐振器, M个微环谐振器通过光波导耦合成一 路。
结合第一方面或第一方面的任意一种可能的实现方式, 在第四种可能的 实现方式中, 所述光发射器还包括:
控制逻辑,用于控制所述 N个激光器中的第一激光器切换到 M个激光器 中空闲的第二激光器。
在该方案中, 当光发射器某一个出去工作状态的激光器发生故障, 某个 处于空闲状态的激光器被激活, 同时, 更改故障的激光器耦合的光学元件的 波长, 使得其波长不等同于处于工作状态的激光器发射的光的波长。 本技术 方案与现有技术中使用的合光器(比如 Splitter )相比, 功率损耗更小, 因此, 该方案还可以降低功率损耗, 提高出光效率。
第二方面, 提供一种光接收器, 所述光接收器包括:
M个光接收器耦合到 M个波长选择性光学元件的 M个输出端, 所述 M 个光接收器与所述 M个波长选择性光学元件——对应;
其中,所述 M个波长选择性光学元件的输入端由一路光分波成 M个输入 端;
所述 M个光接收器包含 N个处于工作状态的激光器, N<M;
所述 N个光接收器对应 N个不同波长;
所述 N个光接收器中的第一光接收器切换到 M个光接收器中空闲的第二 光接收器时, 所述第一光接收器所耦合的波长选择性光学元件的波长从第一 波长调整成第二波长, 所述第二波长不同于所述 N个波长;
其中, 所述 M, N均为大于等于 1的整数。
结合第二方面, 在第一种可能的实现方式中, 所述第二光接收器所耦合 的波长选择性光学元件的波长设置成所述第一波长。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述波长选择性元件是薄膜滤波器, 所述 M个薄膜滤波器通过反 射镜将一路光分波成 M个输入端。
结合第二方面或第二方面的第一种可能的实现方式, 在第三种可能的实 现方式中, 所述波长选择性元件是为微环谐振器, M个微环谐振器通过光波 导将一路光分波成 M个输入端。
结合第二方面或第二方面的任意一种可能的实现方式, 在第四种可能的 实现方式中, 所述光接收器还包括:
控制逻辑,用于控制所述 N个激光器中的第一激光器切换到 M个激光器 中空闲的第二激光器。
第三方面, 提供一种光网络设备, 包括光发射器和光接收器, 所述光发 射器通过 WDM与光接收器相连, 所述光发射器包括如第一方面, 或者第一 方面的第一至第四种种可能的实现方式中任意一所述的光发射器。
第四方面, 提供一种光网络设备, 包括光发射器和光接收器, 所述光发 射器通过 WDM与光接收器相连, 所述光接收器包括如第二方面, 或者第二 方面的第一至第四种可能的实现方式中任意一所述的光接收器。
第五方面, 提供一种无源光网络 PON系统, 包括光线路终端 OLT, 至少 一个光网络单元 ONU或者光网络终端 ONT,所述 OLT通过光分配网络 ODN 与所述至少一个 ONU或 ONT相连 , 所述 OLT或所述 ONU为如第三方面所 述的装置, 或者如第四方面所述的装置。
第六方面, 提供一种光发射器发射光的方法,
所述光发射器包括 M个激光器, 所述 M个激光器耦合到 M个波长选择 性光学元件的 M个输入端, 所述 M个激光器与所述 M个波长选择性光学元 件——对应, 所述 M个激光器包含 N个处于工作状态的激光器, N<M, 其 特征在于, 包括:
切换 N个激光器中的第一激光器到 M个激光器中空闲的第二激光器; 调整所述第一激光器所耦合的波长选择性光学元件的波长, 使得所述波 长选择性光学元件的波长从第一波长调整至第二波长, 所述第二波长不同于 所述 N个波长; 其中, 所述 M, N均为大于等于 1的整数。 结合第六方面, 在第一种可 能的实现方式中, 所述方法还包括:
调整所述第二激光器所耦合的波长选择性光学元件的波长, 使得所述波 长选择性光学元件的波长变为所述第一波长。
结合第六方面, 或者第六方面的第一种可能的实现方式, 在第二种可能 所述方法在切换 N个激光器中的第一激光器到 M个激光器中空闲的第二 激光器之前, 还包括:
确认所述 N个激光器中的第一激光器发生故障, 关闭所述第一激光器。 第七方面, 提供一种光接收器接收光的方法,
所述光接收器包括 M个光接收器耦合到 M个波长选择性光学元件的 M 个输出端, 所述 M个光接收器与所述 M个波长选择性光学元件——对应; 其 中, 所述 M个波长选择性光学元件的输入端由一路光分波成 M个输入端; 所 述 M个光接收器包含 N个处于工作状态的激光器, N<M, 其特征在于, 所述 方法包括:
切换 N个光接收器中的第一光接收器到 M个光接收器中空闲的第二光接 收器;
调整所述第一光接收器所耦合的波长选择性光学元件的波长, 使得所述 波长选择性光学元件的波长从第一波长调整至第二波长, 所述第二波长不同 于所述 N个波长;
其中, 所述 M, N均为大于等于 1的整数。
结合第七方面, 在第一种可能的实现方式中, 所述方法还包括: 调整所述第二光接收器所耦合的波长选择性光学元件的波长, 使得所述 波长选择性光学元件的波长变为所述第一波长。
结合第七方面, 或者第七方面的第一种可能的实现方式, 在第二种可能 的实现方式中,
所述方法在切换 N个光接收器中的第一光接收器到 M个光接收器中空闲 的第二光接收器之前, 还包括: 确认所述 N个光接收器中的第一光接收器发生故障, 关闭所述第一激光 器。
本发明有益效果如下:
本发明实施例中光发射器包括 M个激光器, N个处于工作状态, N<M; 当 N个激光器的第一激光器切换到 M个激光器中处于空闲状态的第二激光器 时, 调整所述第一激光器所耦合的波长选择性光学元件的波长, 使得其从第 一波长改变为第二波长, 所述第二波长不能等同于所述 N个激光器所发射的 N种光波长; 同理, 接收机原理亦如此。 通过在 M个激光器中设置部分处于 空闲状态, 使得当 N个激光器中出现故障时, 切换到空闲的激光器, 同时更 改该故障激光器所耦合的波长选择性光学元件的波长, 以使得光发射器正常 发光。 这种技术方案, 可以降低现有技术中存在的光发射器复杂度较高、 额 外功率损耗较大、 出光率较低的问题。 附图说明
图 1A为现有技术中 PON系统的网络架构示意图;
图 1B为现有技术中 PON系统下行传输的示意图;
图 1C为现有技术中 PON系统上行传输的示意图;
图 1D为现有技术中 TWDM-PON系统的功能结构示意图;
图 1E为现有技术中光发射器模块的结构示意图;
图 2为本发明实施例中光发射器中激光器发生故障的示意图;
图 3为本发明实施例中光发射器中激光器发生故障的示意图;
图 4为本发明实施例中光接收器中光接收器发生故障的示意图; 图 5为本发明实施例中光接收器中光接收器发生故障的示意图; 图 6为本发明实施例中装置的第一结构示意图;
图 7为本发明实施例中装置的第二结构示意图
图 8为本发明实施例中 PON的结构示意图;
图 9为本发明实施例中一种光发射器发射光的详细流程; 图 10为本发明实施例中一种光接收器接收光的详细流程。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
另外, 本文中术语"系统,,和"网络"在本文中常被可互换使用。本文中术语
"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例 如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三 种情况。 另外, 本文中字符" /", 一般表示前后关联对象是一种"或"的关系。
为了降低额外的光功率损耗, 提高出光效率, 本发明实施例中, 提供一 种光发射器和光接收器, 其中, 光发射器包括:
M个激光器耦合到 M个波长选择性光学元件的 M个输入端, 所述 M个 激光器与所述 M个波长选择性光学元件——对应, 且每个所述波长选择性光 学元件的波长设置为与所耦合的激光器的波长一致;
其中, 所述 M个波长选择性光学元件的 M个输出端耦合成一路; 所述 M个激光器包含 N个处于工作状态的激光器, N<M ;
所述 N个激光器对应 N个不同波长;
所述 N个激光器中的第一激光器切换到 M个激光器中空闲的第二激光器 时, 所述第一激光器所耦合的波长选择性光学元件的波长从第一波长调整成 第二波长, 所述第二波长不同于所述 N个激光器的波长;
其中, 所述 M, N均为大于等于 1的整数。 在该方案中, 当光发射器某 一个出去工作状态的激光器发生故障, 某个处于空闲状态的激光器被激活, 同时, 更改故障的激光器耦合的光学元件的波长, 使得其波长不等同于处于 工作状态的激光器发射的光的波长。 本技术方案与现有技术中使用的合光器 (比如 Splitter )相比, 功率损耗更小, 因此, 该方案还可以降低功率损耗, 提高出光效率;
本发明还提供一种光接收器, 光接收器包括:
M个光接收器耦合到 M个波长选择性光学元件的 M个输出端, 所述 M 个光接收器与所述 M个波长选择性光学元件——对应, 且每个所述波长选择 性光学元件的波长设置为与所耦合的光接收器的波长一致;
其中,所述 M个波长选择性光学元件的输入端由一路光分波成 M个输入 端;
所述 M个光接收器包含 N个处于工作状态的激光器, N<M;
所述 N个光接收器对应 N个不同波长;
所述 N个光接收器中的第一光接收器切换到 M个光接收器中空闲的第二 光接收器时, 所述第一光接收器所耦合的波长选择性光学元件的波长从第一 波长调整成第二波长, 所述第二波长不同于所述 N个光接收器的波长;
其中, 所述 M, N均为大于等于 1的整数。
下面结合附图对本发明优选的实施方式进行详细说明。
实施例一:
参阅图 2所示, 本发明第一个实施例的光发射器如下:
第一个实施例的光发射器包括: M个激光器, 以及与 M个激光器耦合到 M个波长选择性光学元件的 M个输入端, 所述 M个激光器与所述 M个波长 选择性光学元件——对应, 每个所述波长选择性光学元件的波长设置为与所 耦合的激光器的波长一致。
在该实施例中, 以 Μ=5 , N=4为例进行说明, 即该光发射器包括 5个激 光器, 其中光发射器 1~4个处于工作状态, 光发射器 5处于空闲状态。 该波 长选择性光学元件为可调节波长的 TFF ( Thin Film Filter, 薄膜滤波器), 所 述 M个 TFF的 M个输出端通过反射镜耦合成一路;所述 M个激光器包含 N 个处于工作状态的激光器, N<M ; 所述 N个激光器对应 N个不同波长, 分 别对应 ^、 4、 ^、 4四种波长不同的光。 可选地, 光发射器还包括控制逻辑, 所述控制逻辑用于控制所述 N个激 光器中的第一激光器切换到 M个激光器中的空闲的第二激光器。
例如, 以图 2所示, 光发射器有 4个工作的激光器 1~4 , 一个空闲的激 光器 5 , 4个与工作的激光器 1~4耦合的 TFF1 4和一个与空闲激光器 5耦合 的 TFF5 , 4个工作的激光器分别发射 ^、 4、 ^、 λΛ 四种不同波长的光, 对 应的 4个 TFF分别只可以透射 ^、 ^、 ^、 四种不同波长的光, 对其他波 长的光全反射, 即与激光器 2对应的 TFF2只可以透射 ^波长的光, 对其他波 长的光全反射, 依次类推。 图 2所示的装置的作用是将 4个工作的激光器分 别发射的 ^、 ^、 ^、 ^四种不同波长的光最终合成为一路光。
其中, 当第二个激光器 2发生故障时(第二个激光器 2在发生故障前, 发射的光的波长为 ^ ), 设置激光器 5发射与发生故障的激光器 2同样波长的 光, 并调整其对应的 TFF2透射的波长, 使得其由 调整为不同于 ^、 4、 4、 ^的任意一种的波长, 即该 TFF2其对 ^、 4、 ^、 波长的光都全反射, 设 置激光器 5对应的 TFF5透射的波长调整为 ^ ,以确保激光器 5发射的 ^的光 可以被 TFF5透射。
在该实施例中,若发生故障的激光器 2对应的 TFF2仍对波长为 的光进 行透射, 则 TFF5透射的波长为 的光经过发生故障的激光器 2对应的 TFF2 时, 再次被透射, 那么, 分别对应的光将不能全部重合, 也就无法合 成一路光;若发生故障的激光器 2对应的主用 TFF2对波长为^ 1^ 4的光均不 进行透射,则 TFF5透射的波长为 的光经过发生故障的激光器 2对应的 TFF2 时, 将被全反射, 而不是被透射, ^ l^A分别对应的光将全部重合, 最终合 为一路光。
可选地, 在另一个具体应用中, 当第二个激光器 2发生故障时(第二个 激光器 2在发生故障前, 发射的光的波长为 ^ ), 还可以设置激光器 5发射不 同于 ^、 4、 ^、 的任意一种波长的光, 并且不等于所述 TFF2调整后的波 长, 并调整激光器 5对应的 TFF5的波长等于该激光器 5调整后的波长。
可选地, 所述检测第二个激光器 2发生故障, 可以由所述控制逻辑来实 现, 还可以由与光发射器所连接的外部控制器实现。
可选地, 设置激光器 5发射波长与发生故障的激光器 2同样波长的光, 并调整其对应的 TFF2透射的波长,可以由所述光发射器内部的控制逻辑来实 现, 还可以由与光发射器连接的外部控制器实现。
可选地, 设置激光器 5对应的 TFF5透射的波长调整为 4 , 可以由所述控 制逻辑来实现, 还可以由与光发射器所连接的外部控制器实现。
可选地,设置激光器 2对应的 TFF2的波长由 调整为不同于 任意 一种的波长, 可以由所述控制逻辑来实现, 还可以由与光发射器所连接的外 部控制器实现。
进一步地, 调整 TFF2的波长可以通过改变温度或改变 TFF2的角度来实 现。
综上所述, 为了确保激光器 5在任意一激光器 1~4发生故障的情况下, 能够替代该发生故障的激光器 2发射光, 且激光器 5发射的光最终能够与所 有未发生故障的激光器发射的光进行重合, 合为一路光, 不仅要使激光器 5 发射与发生故障的激光器 2同样波长的光, 还要使发生故障的激光器 2对应 的 TFF2的波长进行调整,确保其对来自任意一个未发生故障的激光器及激光 器 5发射的光不进行透射, 而是全反射。
在该方案中, 当光发射器某一个出去工作状态的激光器发生故障, 某个 处于空闲状态的激光器被激活, 同时, 更改故障的激光器耦合的光学元件的 波长, 使得其波长不等同于处于工作状态的激光器发射的光的波长。 本技术 方案与现有技术中使用的合光器(比如 Splitter )相比, 功率损耗更小, 因此, 该方案还可以降低功率损耗, 提高出光效率。
实施例二:
参阅图 3所示, 本发明第二个实施例的光发射器如下: M个激光器, 以及与 M个激光器耦合到 M个波长选择性光学元件的 M 个输入端, 所述 M个激光器与所述 M个波长选择性光学元件——对应,每个 所述波长选择性光学元件的波长设置为与所耦合的激光器的波长一致。
在该实施例中, 以 Μ=5 , N=4为例进行说明, 即该光发射器包括 5个激 光器, 其中光发射器 1~4个处于工作状态, 光发射器 5处于空闲状态。 该波 长选择性光学元件为可调节波长的 MRR( Micor-Ring Resonator,微环谐振器), 所述 M个 MRR的 M个输出端通过光波导耦合成一路; 所述 M个激光器包 含 N个处于工作状态的激光器, N<M ;所述 N个激光器对应 N个不同波长, 分别对应 ^、 4、 ^、 4四种波长不同的光。
可选地, 光发射器还包括控制逻辑, 所述控制逻辑用于控制所述 N个激 光器中的第一激光器切换到 M个激光器中的空闲的第二激光器。
例如, 以图 3 所示, 光发射器有 4 个工作的激光器 1~4及分别耦合的 MRR1-4, 一个空闲激光器 5及耦合的 MRR5。 其中, 4个激光器 1~4分别发 送 λ, λ2, λ3, λ4四种不同波长的光。 若从上往下排序的第二个激光器 2发生故 障时 (第二个激光器 2在发生故障前, 发射的光的波长为 ^ ), 则将激光器 5 发射波长为 ^的光, 同时, 将 MRR5的谐振波长调整为 4 , 以确保激光器 5 发射的波长为 ^的光路可以被用 MRR5 进行光路偏转, 比如逆时针旋转转 90。, 从下往上传输。 此时, 还要调整与发生故障的第二个激光器 2 对应的 MRR2的波长, 使得其波长不同于 λ, λ2, λ3, λ4任意一种的波长, 以使得与发 生故障的第二个激光器 2对应的 MRR2对波长为 λ, λ2, λ3, λ4的光对不产生任 何光路转折作用, 因为, 若第二个激光器 2对应的 MRR2仍对波长为 ^的的 传播方向进行调整, MRR5 将光路进行调整后的波长为 ^的光经过第二个激 光器 2对应的 MRR2, 光路将再次被转折, 那么^ 分别对应的光将不能 全部重合; 若发生故障的第二个激光器 2对应的 MRR2对^ 的光不产生 任何光路转折作用, 则 MRR5将光路调整后的波长为 ^的光经过第二个激光 器 2对应的 MRR2时, 光路不会发生变化, 也就是, 传播方向不改变, 仍从 下往上进行传播, 则最终 分别对应的光将全部重合, 合为一路光。 可选地, 在另一种具体应用中, 当第二个激光器 2发生故障时(第二个 激光器 2在发生故障前, 发射的光的波长为 ^ ), 还可以调整激光器 5发射波 长为不同于 λ, λ2, λ3, λ4任意一种的波长的光, 并且不能等同于 MRR2调整后 的波长, 同时, 将 MRR5的谐振波长调整为等于该激光器 5调整后的波长。
可选地, 所述检测第二个激光器 2发生故障, 可以由所述控制逻辑来实 现, 还可以由与光发射器所连接的外部控制器实现。
可选地, 设置激光器 5发射波长与发生故障的激光器 2同样波长的光, 并调整其对应的 MRR2透射的波长, 可以由所述光发射器内部的控制逻辑来 实现, 还可以由与光发射器连接的外部控制器实现。
可选地, 设置激光器 5对应的 MRR5透射的波长调整为 ^, 可以由所述 控制逻辑来实现, 还可以由与光发射器所连接的外部控制器实现。
可选地, 调整激光器 2耦合的 MRR2的波长, 可以由所述控制逻辑来实 现, 还可以由与光发射器所连接的外部控制器实现。
进一步地, 调整 MRR2的波长, 可以通过改变 MRR2的温度或注入电流 的方式。
综上所述, 为了确保激光器 5在第二个激光器 2发生故障的情况下, 能 够替代第二个激光器 2发射光, 且激光器 5发射的光最终能够与其他未发生 故障的激光器发射的光进行重合, 则必须对第二个激光器 2对应的 MRR2的 波长进行调整, 确保其对来自任意一个激光器发射的光不产生任何光路转折 作用, 使任意一个激光器发射的光经过第二个激光器 2对应的 MRR2时, 光 路不发生变化, 即传播方向不变化, 仍按照原来的传播方向进行传播。
在该方案中, 当光发射器某一个出去工作状态的激光器发生故障, 某个 处于空闲状态的激光器被激活, 同时, 更改故障的激光器耦合的光学元件的 波长, 使得其波长不等同于处于工作状态的激光器发射的光的波长。 本技术 方案与现有技术中使用的合光器(比如 Splitter )相比, 功率损耗更小, 因此, 该方案还可以降低功率损耗, 提高出光效率。
实施例三:
参阅图 4所示, 本发明第一个实施例的光接收器如下:
M个光接收器, 以及 M个光接收器耦合到 M个波长选择性光学元件的 M个输出端, 所述 M个光接收器与所述 M个波长选择性光学元件——对应, 且每个所述波长选择性光学元件的波长设置为与所耦合的光接收器的波长一 致。
在该实施例中, 以 Μ=5 , N=4为例进行说明, 即该光接收器包括 5个光 接收器, 其中光接收器 1~4个处于工作状态, 光接收器 5处于空闲状态。 该 波长选择性光学元件为可调节波长的 TFF ( Thin Film Filter, 薄膜滤波器), 所述 M个 TFF的输入端由一路光分波成 M个输入端; 所述 N个光接收器对 应 N个不同波长, 分别对应 ^、 4、 ^、 四种波长不同的光。
可选地, 所述光接收器还包括控制逻辑, 用于控制所述 N个光接收器中 的第一光接收器切换到 M个光接收器中空闲的第二光接收器。
例如, 以图 4所示, 从上往下排序的第二个光接收器 2发生故障时(第 二个光接收器 2在发生故障前, 接收的光的波长为 ^ ), 则将光接收器 5接收 的光的波长调整为 4 , 同时, 将光接收器 5对应的 TFF5 的波长调整为 4 , 以确保光接收器 5接收的 的光可以被对应的 TFF5透射。
此时,调整与发生故障的第二个光接收器 2对应 TFF2的波长,使得 TFF2 的波长不等同于 ^、 ^、 ^、 任意一种波长, 以使得与发生故障的第二个光 接收器 2对应的 TFF2对波长为 ^、 4、 ^、 的光全反射, 因为若第二个光 接收器 2对应的 TFF2仍对波长为 的光进行透射,则光接收器 5对应的 TFF5 无法接收到波长为 ^的光, 也就不能对波长为 ^的光进行透射, 因此, 光接 收器 5不能接收到波长为 的光,虽然第二个光接收器 2对应的 TFF2仍对波 长为 ^的光进行透射,但是第二个光接收器 2发生故障,无法接收波长为 的 光, 因此, 光接收器 2无法接收波长为 的光。 可选地, 当第二个光接收器 2发生故障时(第二个光接收器 2在发生故 障前, 接收的光的波长为 ^ ), 还可以将光接收器 5接收的光的波长调整为不 同于 ^、 4、 ^、 任意一种波长, 并且不能等于 TFF2调整后的波长, 同时, 将光接收器 5对应的 TFF5的波长调整为等于光接收器 5的波长。
可选地, 所述检测第二个光接收器 2发生故障, 可以由所述控制逻辑来 实现, 还可以由与光接收器所连接的外部控制器实现。
可选地, 设置光接收器 5接收与发生故障的光接收器 2同样波长的光, 并调整其对应的 TFF2透射的波长,可以由所述光接收器内部的控制逻辑来实 现, 还可以由与光接收器连接的外部控制器实现。
可选地, 设置光接收器 5对应的 TFF5透射的波长调整为 , 可以由所述 控制逻辑来实现, 还可以由与光接收器所连接的外部控制器实现。
可选地,设置光接收器 2对应的 TFF2的波长由 调整为不同于 4 1^ 4任 意一种的波长, 可以由所述控制逻辑来实现, 还可以由与光接收器所连接的 外部控制器实现。
进一步地, 调整 TFF2的波长可以通过改变温度或改变 TFF2的角度来实 现。
综上所述,为了确保光接收器 5及其对应的 TFF5在第二个光接收器发生 故障的情况下, 能够替代第二个光接收器 2接收波长为 ^的光, 则必须对第 二个光接收器 2对应的 TFF2透射的波长进行调整, 确保不对波长为 ^、 4、 4、 ^的光进行透射, 而是进行全反射。
实施例四:
参阅图 5A所示, 本发明第二个实施例的光接收器如下:
M个光接收器, 以及 M个光接收器耦合到 M个波长选择性光学元件的 M个输出端, 所述 M个光接收器与所述 M个波长选择性光学元件——对应, 且每个所述波长选择性光学元件的波长设置为与所耦合的光接收器的波长一 致。 在该实施例中, 以 Μ=5 , N=4为例进行说明, 即该光接收器包括 5个光 接收器, 其中光接收器 1~4个处于工作状态, 光接收器 5处于空闲状态。 该 波长选择性光学元件为可调节波长的 MRR ( Micor-Ring Resonator, 微环谐振 器), 所述 M个 MRR的输入端由一路光分波成 M个输入端; 所述 N个光接 收器对应 N个不同波长, 分别对应 ^、 ^、 ^、 4四种波长不同的光。
可选地, 所述光接收器还包括控制逻辑, 用于控制所述 N个光接收器中 的第一光接收器切换到 M个光接收器中空闲的第二光接收器。
例如, 以图 5所示, 从上往下排序的第二个光接收器 2发生故障时(第 二个光接收器 2在发生故障前, 接收的光的波长为 ^ ), 则将光接收器 5调整 为接收波长为 4的光, 同时, 将 MRR5的谐振波长调整为 4 , 以确保光接收 器 5接收的 的光可以被 MRR5产生光路转折作用, 比如顺时针旋转 90。。
此时, 调整与发生故障的第二个光接收器 2对应 MRR2 的波长, 使得 MMR2 的波长不等同于 ^、 4、 ^、 任意一种波长, 以使得与发生故障的 第二个光接收器 2对应的 MRR2对波长为 ^、 ^、 ^、 的光不产生任何光 路转折作用, 因为若第二个光接收器 2对应的 MRR2仍对波长为 ^的光产生 光路转折作用, 那么 MRR5接收到的一路光中不包括波长为 ^的光, 也就无 法进行光路转折, 则光接收器 5也不能接收到波长为 ^的光, 虽然第二个光 接收器 2对应的 MRR2仍对波长为 ^的光产生光路转折作用, 但是第二个光 接收器 2发生故障, 无法接收光, 因此, 波长为 ^的光无法被光接收器包括 的光接收器 2进行接收。 为此, 为了确保光接收器 5在第二个光接收器 2发 生故障的情况下, 能够替代第二个光接收器 2接收光, 则必须对第二个光接 收器 2对应的 MRR2的谐振波长进行调整, 确保其对波长为 ^、 ^、 ^、 的 光不产生光路转折作用, 经过的光仍按照原来的传播方向进行传播。
可选地, 当第二个光接收器 2发生故障时(第二个光接收器 2在发生故 障前,接收的光的波长为 ^ ),则将光接收器 5调整为接收波长为不等同于 4、 4、 ^、 任意一种波长, 并且不能等于所述 MRR2调整后的波长, 同时, 将 MRR5的谐振波长调整等于光接收器 5的波长。
可选地, 所述检测第二个光接收器 2发生故障, 可以由所述控制逻辑来 实现, 还可以由与光接收器所连接的外部控制器实现。
可选地, 设置光接收器 5接收与发生故障的光接收器 2同样波长的光, 并调整其对应的 TFF2透射的波长,可以由所述光接收器内部的控制逻辑来实 现, 还可以由与光接收器连接的外部控制器实现。
可选地, 设置光接收器 5对应的 TFF5透射的波长调整为 , 可以由所述 控制逻辑来实现, 还可以由与光接收器所连接的外部控制器实现。
可选地,设置光接收器 2对应的 TFF2的波长由 调整为不同于 4 1^ 4任 意一种的波长, 可以由所述控制逻辑来实现, 还可以由与光接收器所连接的 外部控制器实现。
进一步地, 调整 TFF2的波长可以通过改变温度或改变 TFF2的角度来实 现。
实施例五
本发明实施例中, 如图 6 所示, 还提供一种光网络设备, 包括光发射器 600和光接收器 610, 光发射器通过 WDM与光接收器相连, 其中, 光发射器 为如实施例一或如实施例二的光发射器。
具体地, 光网络设备可以是 OLT, 或 ONU, 或 ONT。
实施例六
如图 7所示,还提供一种光网络设备,包括光发射器 700和光接收器 710, 光发射器通过 WDM与光接收器相连, 其中, 光接收器为如实施例三或如实 施例四的光接收器。
具体地, 光网络设备可以是 OLT, 或 ONU, 或 ONT。
实施例七
本发明实施例中, 如图 8所示, 还提供一种 PON系统, 包括 OLT, 至少 一个 ONU或者 ONT, OLT通过 ODN与至少一个 ONU或 ONT相连, OLT 或 ONU为如图 6或图 7所示的光网络设备。
实施例八
如图 9所示, 本发明实施例提供一种光发射器发射光的方法, 所述光发 射器为如实施例一或实施例二所述的光发射器; 光发射器包括 M个激光器, 所述 M个激光器耦合到 M个波长选择性光学元件的 M个输入端, 所述 M个 激光器与所述 M个波长选择性光学元件——对应, 且每个所述波长选择性光 学元件的波长设置为与所耦合的激光器的波长一致, 所述 M个激光器包含 N 个处于工作状态的激光器, N<M, 其特征在于, 包括:
步骤 910: 切换 N个激光器中的第一激光器到 M个激光器中空闲的第二 激光器;
步骤 920: 调整所述第一激光器所耦合的波长选择性光学元件的波长,使 得所述波长选择性光学元件的波长从第一波长调整至第二波长, 所述第二波 长不同于所述 N个波长; 其中, 所述 M, N均为大于等于 1的整数。
可选地, 所述方法还包括:
调整所述第二激光器以及其所耦合的波长选择性光学元件的波长, 使得 所述波长选择性光学元件的波长变为所述第一波长。
可选地, 所述方法还包括:
设置所述第二激光器以及其所耦合的波长选择性光学元件的波长不同于 所述 N个激光器的波长, 且不同于所述第二波长。 可选地, 所述方法在切换 N个激光器中的第一激光器到 M个激光器中空闲的第二激光器之前,还包括: 确认所述 N个激光器中的第一激光器发生故障, 关闭所述第一激光器。 具体地, 调整所述第一激光器所耦合的波长选择性光学元件的波长的方 式有多种, 例如: 当所述波长选择性光学元件为为 TFF时, 釆用旋转角度, 或改变温度来调整 TFF的波长;
当所述波长选择性光学元件为 MRR时, 釆用改变温度, 或注入电流的方 式来调整 MRR的波长。 在实际应用中, 还有多种其他实现方式, 在此不再进 行 详述。 实施例九
如图 10所示, 本发明实施例提供一种光接收器接收光的方法, 所述光接 收器为如实施例三或实施例四所述的光接收器; 所述光接收器包括 M个光接 收器耦合到 M个波长选择性光学元件的 M个输出端, 所述 M个光接收器与 所述 M个波长选择性光学元件——对应, 且每个所述波长选择性光学元件的 波长设置为与所耦合的光接收器的波长一致; 其中, 所述 M个波长选择性光 学元件的输入端由一路光分波成 M个输入端; 所述 M个光接收器包含 N个 处于工作状态的激光器, N<M, 所述方法包括:
步骤 1100:切换 N个光接收器中的第一光接收器到 M个光接收器中空闲 的第二光接收器;
步骤 1200:调整所述第一光接收器所耦合的波长选择性光学元件的波长, 使得所述波长选择性光学元件的波长从第一波长调整至第二波长, 所述第二 波长不同于所述 N个波长;
其中, 所述 M, N均为大于等于 1的整数。
可选地, 所述方法还包括:
调整所述第二光接收器及其所耦合的波长选择性光学元件的波长, 使得 所述波长选择性光学元件的波长变为所述第一波长。
可选地, 所述方法还包括:
设置所述第二接收器及其所耦合的波长选择性光学元件的波长不同于所 述 N个光接收器的波长且不同于所述第二波长。
可选地, 所述方法在切换 N个光接收器中的第一光接收器到 M个光接收 器中空闲的第二光接收器之前, 还包括:
确认所述 N个光接收器中的第一光接收器发生故障, 关闭所述第一激光 器。
具体地, 调整所述第一激光器所耦合的波长选择性光学元件的波长的方 式有多种, 例如: 当所述波长选择性光学元件为为 TFF时, 釆用旋转角度, 或改变温度来调整 TFF的波长; 当所述波长选择性光学元件为 MRR时, 釆用改变温度, 或注入电流的方 式来调整 MRR的波长。 在实际应用中, 还有多种其他实现方式, 在此不再进 行 详述。
综上所述, 本发明实施例中提供的光发射器或光接收器, 当某一个工作 中的激光器发生故障时, 设置空闲中的激光器发射同故障的激光器同样波长 的光, 并调整与故障激光器耦合的光学元件的波长, 使得其波长与原工作的 激光器发射的光波长不同, 以便于其对原工作的激光器发射的光进行全反射。
通过以上的技术方案, 解决了现有技术中功率损耗过大、 出光效率较低 的问题。
本发明是参照根据本发明实施例的方法、 设备(系统) 、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流 程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算 机、 嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器, 使 得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其它可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上, 使得在计算机或其它可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中的功能的步骤。
尽管已描述了本发明的上述实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括上述实施例以及落入本发明范围的所有变更和修改。 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种光发射器, 其特征在于, 所述光发射器包括:
M个激光器耦合到 M个波长选择性光学元件的 M个输入端, 所述 M个 激光器与所述 M个波长选择性光学元件——对应, 且每个所述波长选择性光 学元件的波长设置为与所耦合的激光器的波长一致;
其中, 所述 M个波长选择性光学元件的 M个输出端耦合成一路; 所述 M个激光器包含 N个处于工作状态的激光器, N<M ;
所述 N个激光器对应 N个不同波长;
所述 N个激光器中的第一激光器切换到 M个激光器中空闲的第二激光器 时, 所述第一激光器所耦合的波长选择性光学元件的波长从第一波长调整成 第二波长, 所述第二波长不同于所述 N个激光器的波长;
其中, 所述 M, N均为大于等于 1的整数。
2、 如权利要求 1所述的光发射器, 其特征在于, 所述第二激光器及其所 耦合的波长选择性光学元件的波长设置成所述第一波长; 或者所述第二激光 器及其所耦合的波长选择性光学元件的波长设置成不同于所述 N个激光器的 波长且不同于所述第二波长。
3、 如权利要求 1或 2所述的光发射器, 其特征在于, 所述波长选择性元 件是薄膜滤波器 , 所述 M个薄膜滤波器通过反射镜耦合成一路。
4、 如权利要求 1或 2所述的光发射器, 其特征在于, 所述波长选择性元 件是为微环谐振器, M个微环谐振器通过光波导耦合成一路。
5、 如权利要求 1~4任意一项所述的光发射器, 其特征在于, 所述光发射 器还包括:
控制逻辑,用于控制所述 N个激光器中的第一激光器切换到 M个激光器 中空闲的第二激光器。
6、 一种光接收器, 其特征在于, 所述光接收器包括:
M个光接收器耦合到 M个波长选择性光学元件的 M个输出端, 所述 M 个光接收器与所述 M个波长选择性光学元件——对应, 且每个所述波长选择 性光学元件的波长设置为与所耦合的光接收器的波长一致;
其中,所述 M个波长选择性光学元件的输入端由一路光分波成 M个输入 端;
所述 M个光接收器包含 N个处于工作状态的激光器, N<M;
所述 N个光接收器对应 N个不同波长;
所述 N个光接收器中的第一光接收器切换到 M个光接收器中空闲的第二 光接收器时, 所述第一光接收器所耦合的波长选择性光学元件的波长从第一 波长调整成第二波长, 所述第二波长不同于所述 N个光接收器的波长;
其中, 所述 M, N均为大于等于 1的整数。
7、 如权利要求 6所述的光接收器, 其特征在于, 所述第二光接收器及其 所耦合的波长选择性光学元件的波长设置成所述第一波长; 或者所述第二光 接收器及其所耦合的波长选择性光学元件的波长设置成不同于所述 N个光接 收器的波长且不同于所述第二波长。
8、 如权利要求 6或 7所述的光接收器, 其特征在于, 所述波长选择性元 件是薄膜滤波器,所述 M个薄膜滤波器通过反射镜将一路光分波成 M个输入 端。
9、 如权利要求 6或 7所述的光接收器, 其特征在于, 所述波长选择性元 件是为微环谐振器, M个微环谐振器通过光波导将一路光分波成 M个输入端。
10、 如权利要求 6~9任意一项所述的光接收器, 其特征在于, 所述光接 收器还包括:
控制逻辑,用于控制所述 N个光接收器中的第一光接收器切换到 M个光 接收器中空闲的第二光接收器。
11、 一种光网络设备, 包括光发射器和光接收器, 所述光发射器通过波 分复用器 WDM与光接收器相连,其特征在于, 光发射器包括如权利要求 1~5 任意一项所述的光发射器。
12、 一种光网络设备, 包括光发射器和光接收器, 所述光发射器通过波 分复用器 WDM与光接收器相连, 其特征在于, 所述光接收器包括如权利要 求 6~10任意一项所述的光接收器。
13、 一种无源光网络 PON系统, 包括光线路终端 OLT, 至少一个光网络 单元 ONU或者光网络终端 ONT, 所述 OLT通过光分配网络 ODN与所述至 少一个 ONU或 ONT相连 , 其特征在于 , 所述 OLT或所述 ONU为如权利要 求 11所述的光网络设备, 或者如权利要求 12所述的光网络设备。
14、 一种光发射器发射光的方法,应用于包括 M个激光器和 M个波长选 择性光学元件的光发射器上, 其中, 所述 M个激光器耦合到 M个波长选择性 光学元件的 M个输入端, 所述 M个激光器与所述 M个波长选择性光学元件 ——对应, 且每个所述波长选择性光学元件的波长设置为与所耦合的激光器 的波长一致; 其中, 所述 M个波长选择性光学元件的 M个输出端耦合成一 路; 所述 M个激光器包含 N个处于工作状态的激光器, N<M, 所述方法包 括:
切换 N个激光器中的第一激光器到 M个激光器中空闲的第二激光器; 调整所述第一激光器所耦合的波长选择性光学元件的波长, 使得所述波 长选择性光学元件的波长从第一波长调整至第二波长, 所述第二波长不同于 所述 N个激光器的波长;
其中, 所述 M, N均为大于等于 1的整数。
15、 如权利要求 14所述的方法, 其特征在于, 所述方法还包括: 调整所述第二激光器及其所耦合的波长选择性光学元件的波长, 使得所 述波长选择性光学元件的波长变为所述第一波长; 或者调整所述第二激光器 及其所耦合的波长选择性光学元件的波长设置成不同于所述 N个激光器的波 长且不同于所述第二波长。
16、 如权利要求 13或 14所述的方法, 其特征在于, 所述方法在切换 N 个激光器中的第一激光器到 M个激光器中空闲的第二激光器之前, 还包括: 确认所述 N个激光器中的第一激光器发生故障, 关闭所述第一激光器。
17、 一种光接收器接收光的方法,应用于包括 M个光接收器和 M个波长 选择性光学元件的光接收器, 其中, 所述 M个光接收器耦合到 M个波长选择 性光学元件的 M个输出端, 所述 M个光接收器与所述 M个波长选择性光学 元件——对应, 且每个所述波长选择性光学元件的波长设置为与所耦合的光 接收器的波长一致; 其中, 所述 M个波长选择性光学元件的输入端由一路光 分波成 M个输入端; 所述 M个光接收器包含 N个处于工作状态的激光器, N<M, 所述方法包括:
切换 N个光接收器中的第一光接收器到 M个光接收器中空闲的第二光接 收器;
调整所述第一光接收器所耦合的波长选择性光学元件的波长, 使得所述 波长选择性光学元件的波长从第一波长调整至第二波长, 所述第二波长不同 于所述 N个光接收器的波长;
其中, 所述 M, N均为大于等于 1的整数。
18、 如权利要求 17所述的方法, 其特征在于, 所述方法还包括: 调整所述第二光接收器及其所耦合的波长选择性光学元件的波长, 使得 所述波长选择性光学元件的波长变为所述第一波长; 或者所述第二光接收器 及其所耦合的波长选择性光学元件的波长设置成不同于所述 N个光接收器的 波长且不同于所述第二波长。
19、 如权利要求 17或 18所述的方法, 其特征在于, 所述方法在切换 N 个光接收器中的第一光接收器到 M个光接收器中空闲的第二光接收器之前, 还包括:
确认所述 N个光接收器中的第一光接收器发生故障, 并关闭所述第一激 光器。
PCT/CN2013/091207 2013-12-31 2013-12-31 一种光发射器及发射方法、光接收器及接收方法 WO2015100658A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13900701.7A EP3079274B1 (en) 2013-12-31 2013-12-31 Optical transmitter, transmission method, optical receiver and reception method
PCT/CN2013/091207 WO2015100658A1 (zh) 2013-12-31 2013-12-31 一种光发射器及发射方法、光接收器及接收方法
CN201380002299.8A CN105122681A (zh) 2013-12-31 2013-12-31 一种光发射器及发射方法、光接收器及接收方法
US15/198,676 US9831946B2 (en) 2013-12-31 2016-06-30 Optical transmitter and transmission method, and optical receiver and receiption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091207 WO2015100658A1 (zh) 2013-12-31 2013-12-31 一种光发射器及发射方法、光接收器及接收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/198,676 Continuation US9831946B2 (en) 2013-12-31 2016-06-30 Optical transmitter and transmission method, and optical receiver and receiption method

Publications (1)

Publication Number Publication Date
WO2015100658A1 true WO2015100658A1 (zh) 2015-07-09

Family

ID=53492999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091207 WO2015100658A1 (zh) 2013-12-31 2013-12-31 一种光发射器及发射方法、光接收器及接收方法

Country Status (4)

Country Link
US (1) US9831946B2 (zh)
EP (1) EP3079274B1 (zh)
CN (1) CN105122681A (zh)
WO (1) WO2015100658A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352900A (zh) * 2016-03-03 2018-07-31 华为技术有限公司 一种复用/解复用器及无源光网络系统
CN109212663A (zh) * 2017-07-06 2019-01-15 三星电子株式会社 光子集成电路和光学发送器
WO2024012307A1 (zh) * 2022-07-11 2024-01-18 中兴通讯股份有限公司 光信号传输装置和光学系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6818899B2 (ja) * 2016-10-11 2021-01-27 華為技術有限公司Huawei Technologies Co.,Ltd. 光トランシーバアセンブリ
CN106888050B (zh) * 2017-03-09 2019-02-15 桂林电子科技大学 PNoC中MRR故障检测装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936630A (zh) * 2006-10-27 2007-03-28 华为技术有限公司 一种对光电集成设备进行保护的方法和系统
CN1945991A (zh) * 2006-10-27 2007-04-11 华为技术有限公司 一种对光电集成设备进行保护的方法和光电集成设备
CN101527610A (zh) * 2008-03-05 2009-09-09 中国科学院半导体研究所 具有1:n波长备份功能的波分复用无源光网络系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515194A (en) * 1993-05-28 1996-05-07 Interdigital Technology Corporation Optical interconnect for high speed processors
US6271949B1 (en) * 1996-12-18 2001-08-07 Nec Corporation Optical communication system using wavelength-division multiplexed light
US6400477B1 (en) * 1997-09-09 2002-06-04 Worldcom, Inc. Optical cross-connect (OXC) network connectivity
US6262820B1 (en) 1998-07-15 2001-07-17 Lucent Technologies Inc. Optical transmission system including optical restoration
EP1360790B1 (en) 2000-08-25 2008-04-30 Broadwing Corporation Optical transmission systems including optical protection systems, apparatuses, and methods
US20020071149A1 (en) 2000-12-12 2002-06-13 Xu Dexiang John Apparatus and method for protection of an asynchronous transfer mode passive optical network interface
WO2002075997A1 (en) * 2001-03-16 2002-09-26 Photuris, Inc. Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter
EP1368924A4 (en) 2001-03-16 2010-01-06 Meriton Networks Us Inc METHOD AND APPARATUS FOR TRANSFERRING WDM SIGNALS BETWEEN DIFFERENT WDM COMMUNICATION SYSTEMS OPTICALLY TRANSPARENTLY
CN1222821C (zh) 2002-07-01 2005-10-12 华为技术有限公司 基于波分复用层的光通道保护装置及方法
US7336901B1 (en) 2004-02-24 2008-02-26 Avanex Corporation Reconfigurable optical add-drop multiplexers employing optical multiplex section shared protection
JP2005269112A (ja) 2004-03-17 2005-09-29 Fujitsu Ltd 光プロテクション装置
JP4500136B2 (ja) * 2004-08-31 2010-07-14 株式会社日立製作所 波長多重光送信機
US8204374B2 (en) 2004-12-10 2012-06-19 Ciena Corporation Reconfigurable multichannel (WDM) optical ring network with optical shared protection
JP4528147B2 (ja) 2005-02-01 2010-08-18 株式会社日立製作所 光波長挿入分岐装置およびそれを用いた光ネットワーク装置
WO2009152668A1 (zh) * 2008-06-19 2009-12-23 华为技术有限公司 提供无源光网络系统中上行突发数据的方法及装置
US8068558B2 (en) * 2008-12-17 2011-11-29 Nortel Networks Limited Selective peak power reduction
US8467676B2 (en) * 2009-01-16 2013-06-18 Cisco Technology, Inc. Sparing for multi-wavelength optical transmitter
CN101640818B (zh) 2009-09-08 2012-09-05 中兴通讯股份有限公司 光网络保护装置和保护方法
JP2011066339A (ja) * 2009-09-18 2011-03-31 Nec Corp 光通信モジュール、および光通信モジュールの製造方法
US8606009B2 (en) 2010-02-04 2013-12-10 Microsoft Corporation High dynamic range image generation and rendering
US20120087658A1 (en) 2010-10-12 2012-04-12 Tyco Electronics Subsea Communications Llc Wavelength Selective Switch Band Aggregator and Band Deaggregator and Systems and Methods Using Same
JP5767327B2 (ja) * 2011-07-19 2015-08-19 日本電信電話株式会社 マルチフロー光トランシーバ、マルチフロー光トランスポンダ及びマルチフロー光ノード
SG11201408322YA (en) * 2012-06-13 2015-02-27 Huawei Tech Co Ltd Wavelength configuration method and apparatus for multi-wavelength passive optical network, and multi-wavelength passive optical network system
WO2015154267A1 (zh) * 2014-04-10 2015-10-15 华为技术有限公司 一种光时域反射仪实现装置及系统
EP3402101B1 (en) * 2014-07-15 2020-01-08 Huawei Technologies Co., Ltd. Passive optical network communications method, apparatus and system
US9705630B2 (en) * 2014-09-29 2017-07-11 The Royal Institution For The Advancement Of Learning/Mcgill University Optical interconnection methods and systems exploiting mode multiplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936630A (zh) * 2006-10-27 2007-03-28 华为技术有限公司 一种对光电集成设备进行保护的方法和系统
CN1945991A (zh) * 2006-10-27 2007-04-11 华为技术有限公司 一种对光电集成设备进行保护的方法和光电集成设备
CN101527610A (zh) * 2008-03-05 2009-09-09 中国科学院半导体研究所 具有1:n波长备份功能的波分复用无源光网络系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079274A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352900A (zh) * 2016-03-03 2018-07-31 华为技术有限公司 一种复用/解复用器及无源光网络系统
US10419122B2 (en) 2016-03-03 2019-09-17 Huawei Technologies Co., Ltd. Multiplexer/demultiplexer and passive optical network system
CN109212663A (zh) * 2017-07-06 2019-01-15 三星电子株式会社 光子集成电路和光学发送器
CN109212663B (zh) * 2017-07-06 2020-08-25 三星电子株式会社 光子集成电路和光学发送器
WO2024012307A1 (zh) * 2022-07-11 2024-01-18 中兴通讯股份有限公司 光信号传输装置和光学系统

Also Published As

Publication number Publication date
US9831946B2 (en) 2017-11-28
CN105122681A (zh) 2015-12-02
US20160315698A1 (en) 2016-10-27
EP3079274A1 (en) 2016-10-12
EP3079274A4 (en) 2016-12-14
EP3079274B1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
CN108496314B (zh) 用于光数据通信链路的多波长激光系统和相关联的方法
CN111181653B (zh) 波分复用偏振无关反射调制器
KR100993182B1 (ko) 파장 분할 다중화 광 스위치를 통해 복수의 광 트랜스듀서를 상호연결하기 위한 방법 및 장치
WO2015100658A1 (zh) 一种光发射器及发射方法、光接收器及接收方法
WO2012149810A1 (zh) 无源光网络系统及其下行传输方法
CN111614431A (zh) 具有改进的光放大的、基于wdm梳状源的光链路
JP5194847B2 (ja) 光パケットスイッチ装置および光パケットスイッチ方法
WO2014067047A1 (zh) 波长可调激光器、无源光网络系统和设备
JP2009044734A (ja) 再構成可能な光スイッチ及びバックアップチューナブルレーザ送信機を備える波長多重光通信システム
CN113556183B (zh) 一种量子通信系统
WO2012106920A1 (zh) 光模块及其突发发射方法、激光器及光网络系统
WO2008113273A1 (fr) Équipement de multiplexage en longueur d&#39;ondes et procédé de mise en œuvre de la fonction de multiplexage en longueur d&#39;ondes
CN114124229A (zh) 光收发器装置和光网络系统
JP6738311B2 (ja) ネットワークノード
WO2017041222A1 (zh) 一种wdm系统中的oadm节点及方法
WO2014187482A1 (en) Resilience in passive optical networks
WO2011050612A1 (zh) 一种锁定光信号的波长的方法、装置和系统
WO2015127606A1 (zh) 无源光网络系统、无源光网络保护方法及装置
WO2014134770A1 (zh) 光发射机、信号传输方法以及系统
US10630413B2 (en) Optical communications system with centralized wavelength source
WO2018000311A1 (zh) 一种网络节点和上下波节点
JPH07231305A (ja) 光波長多重ネットワーク
US12028153B2 (en) Wavelength switching and configuration method and device for passive optical network
JPH01108530A (ja) 光駆動形スイッチ
JP2002325066A (ja) 光合波器システム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900701

Country of ref document: EP