WO2011049216A1 - 炭化ケイ素研磨用組成物 - Google Patents

炭化ケイ素研磨用組成物 Download PDF

Info

Publication number
WO2011049216A1
WO2011049216A1 PCT/JP2010/068765 JP2010068765W WO2011049216A1 WO 2011049216 A1 WO2011049216 A1 WO 2011049216A1 JP 2010068765 W JP2010068765 W JP 2010068765W WO 2011049216 A1 WO2011049216 A1 WO 2011049216A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
polishing
polishing rate
composition
chelating agent
Prior art date
Application number
PCT/JP2010/068765
Other languages
English (en)
French (fr)
Inventor
浩士 新田
Original Assignee
ニッタ・ハース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ・ハース株式会社 filed Critical ニッタ・ハース株式会社
Priority to JP2011537328A priority Critical patent/JPWO2011049216A1/ja
Publication of WO2011049216A1 publication Critical patent/WO2011049216A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a silicon carbide polishing composition used when polishing silicon carbide.
  • Silicon carbide (hereinafter sometimes referred to simply as “SiC”) is characterized by high heat resistance, high pressure resistance, high corrosion resistance, high thermal conductivity, high strength materials, and the like, and thus gallium nitride, diamond, silicon nitride, and aluminum nitride. It is attracting attention as engineering ceramics.
  • Silicon carbide is used, for example, as a constituent material for power devices, light emitting diodes, and the like, and surface polishing of a single crystal SiC substrate is required.
  • silicon carbide is a chemically stable and high-strength material, surface flattening by polishing is very difficult.
  • the crystal structure of silicon carbide will be briefly described. There are ⁇ -types belonging to hexagonal crystals and ⁇ -types belonging to cubic crystals, and ⁇ -type crystals have 4H type, 6H type, and 15R type due to the difference in the laminated structure.
  • As the substrate material 4H type and 6H type are mainly used.
  • the conventional composition for polishing a SiC single crystal substrate preferably polishes the (0001) Si face and the (000-1) C face of the 4H type SiC single crystal substrate and the 6H type SiC single crystal substrate in particular. It is aimed.
  • the polishing composition described in Patent Document 1 is disclosed to contain an iodine compound and have a pH of 8 or less for the purpose of suitably polishing the (000-1) C-plane.
  • Periodic acid or periodate is preferable as the iodine compound, and orthoperiodic acid or sodium metaperiodate is more preferable.
  • sulfuric acid is used as a pH adjuster.
  • the polishing composition described in Patent Document 2 is disclosed for the purpose of suitably polishing a (0001) Si surface, containing abrasive grains and an iodine compound, and having a pH of 6 or more.
  • a iodine compound it is described that periodate is preferable, and sodium metaperiodate is more preferable.
  • lithium hydroxide or ammonia is used as a pH adjuster.
  • the polishing composition described in Patent Document 3 is intended to suitably polish the (0001) Si face and the (000-1) C face, contains abrasive grains and an iodine compound, and has a pH of 6-8. It is disclosed that. Periodic acid or periodate is preferable as the iodine compound, and orthoperiodic acid or sodium metaperiodate is more preferable. In the examples, ammonia is used as a pH adjuster.
  • JP 2007-27663 A Japanese Patent Laid-Open No. 2007-21703 JP 2007-21704 A
  • Each of the polishing compositions described in Patent Documents 1 to 3 is characterized in that the SiC single crystal substrate can be suitably polished by using an iodine compound.
  • the polishing rate of the (0001) Si surface is disclosed in Patent Document 2, As described in Example 3, the highest value is 67.9 nm / h, and it cannot be said that the polishing rate has been sufficiently improved.
  • An object of the present invention is to provide a silicon carbide polishing composition capable of improving the polishing rate of a SiC crystal substrate.
  • the present invention is a silicon carbide polishing composition comprising abrasive grains, an oxidizing agent which is a peroxide, and a chelating agent.
  • the present invention is characterized by being alkaline.
  • the present invention is characterized in that it contains abrasive grains, an oxidizing agent that is a peroxide, and a chelating agent, and by including these, the polishing rate of the silicon carbide crystal substrate, particularly the (0001) Si surface, Can be improved.
  • the silicon carbide polishing composition is alkaline, the effect of improving the polishing rate of the silicon carbide crystal substrate can be more stably exhibited.
  • the present invention is suitable for polishing a (0001) Si surface of a silicon carbide crystal substrate, particularly a single crystal substrate, and can improve the polishing rate of the (0001) Si surface.
  • the silicon carbide polishing composition of the present invention is characterized by containing abrasive grains, an oxidizing agent that is a peroxide, and a chelating agent, and by including these, particularly (0001) of a silicon carbide crystal substrate.
  • the polishing rate of the Si surface can be improved.
  • the oxidizing agent contained in the silicon carbide polishing composition of the present invention is a peroxide, and examples thereof include hydrogen peroxide, sodium peroxide, and carbamide peroxide. Among these, hydrogen peroxide is particularly preferable.
  • Hydrogen peroxide can be added to the polishing composition for silicon carbide, for example, an aqueous solution of hydrogen peroxide (hydrogen peroxide solution) may be added, or a compound that generates hydrogen peroxide in water, such as sodium percarbonate, may be added. May be.
  • the content of the oxidizing agent in the silicon carbide polishing composition of the present invention is 3.0% by weight or more, preferably 5.0% by weight or more, based on the total amount of the silicon carbide polishing composition. If the content of the oxidizing agent is less than 3.0% by weight, a sufficient polishing rate cannot be obtained, and if it exceeds 10% by weight, the polishing rate is almost constant and no further improvement is obtained.
  • the chelating agent contained in the silicon carbide polishing composition of the present invention may be any nitrogen-containing ligand capable of forming a metal complex by coordination with silicon (Si) as a central metal, such as ethylenediaminetetraacetic acid.
  • Amine ligands such as (EDTA) and piperazine can be used as chelating agents.
  • amino acids containing amino acids and amino acid derivatives can be used as chelating agents.
  • amino acids examples include glycine, alanine, valine, leucine, isoleucine, serine, aspartic acid, glutamic acid and the like, and these two amino acids having a COOH group (carboxyl group) and NH 2 group (amino group) coordinated to silicon. It can be used as a chelating agent because it produces a chelating effect on a silicon atom with a coordinating group.
  • amino acid derivatives include N, N-bis (2-hydroxyethyl) glycine (hereinafter also referred to as bicine) and N-tris (hydroxymethyl) methylglycine, which are derivatives obtained by substituting hydrogen in the amino group of amino acids.
  • Such an amino acid derivative can also be used as a chelating agent because a carboxyl group and a substituted amino group form a coordination group.
  • one having two or more coordination groups per molecule as described above is defined as a chelating agent.
  • the content of the chelating agent in the silicon carbide polishing composition of the present invention is 2.5% by weight or less, preferably 0.3% by weight or more and 1.0% by weight or less of the total amount of the silicon carbide polishing composition. .
  • the polishing rate tends to decrease.
  • the silicon carbide polishing composition of the present invention is considered to realize a high polishing rate with respect to the (0001) Si surface of a silicon carbide single crystal, for example, by the following action.
  • a halogen-based oxidizing agent such as periodic acid oxidizes silicon carbide by its oxidizing power to form an oxide film by silicon-oxygen bonds, and polishing speed is improved by polishing the oxide film with abrasive grains.
  • peroxides such as hydrogen peroxide are highly reactive radicals that are generated when they decompose in the presence of an alkaline environment, such as the silicon-carbon bond described above. It acts on a strong covalent bond and weakens its bond strength.
  • a chelating agent acts on the silicon atom, and the chelating agent coordinates to the silicon atom whose bond strength is weakened by the chelating effect.
  • the chelating agent When the chelating agent is coordinated, an oxide film is not formed, and a surface layer in which the chelating agent is coordinated to silicon is formed. Since the coordination bond between the chelating agent and silicon is more fragile than the silicon-oxygen bond, the formed surface layer becomes a brittle layer more fragile than the oxide film, and can be easily polished with abrasive grains. And the polishing rate is further improved.
  • the silicon carbide polishing composition of the present invention greatly changes the surface characteristics of the silicon carbide single crystal substrate by the oxidizing agent and the chelating agent, and sufficiently exhibits the polishing characteristics. Even if the oxidizing agent that is a peroxide is used alone, the effect of improving the polishing rate is seen, but due to the presence of the chelating agent, the effect of improving the polishing rate that cannot be obtained by using the peroxide alone, That is, the synergistic effect by combined use is exhibited.
  • abrasive grains contained in the silicon carbide polishing composition of the present invention those commonly used in this field can be used, and examples thereof include colloidal silica, fumed silica, ceria and alumina. Among these, colloidal silica is particularly preferable.
  • the content of abrasive grains in the silicon carbide polishing composition of the present invention may be appropriately adjusted according to the composition of the silicon carbide polishing composition.
  • the silicon carbide polishing composition is prepared to be alkaline as a whole composition, and the pH is preferably 8 to 11.5.
  • the pH of the silicon carbide polishing composition is less than 8, the polishing rate is not sufficiently improved, and when the pH exceeds 11.5, colloidal silica is dissolved and aggregates are generated.
  • the pH of the silicon carbide polishing composition is adjusted by adding a pH adjusting agent such as an organic acid or an inorganic acid, and examples thereof include potassium hydroxide, lithium hydroxide, ammonium hydroxide, and sulfuric acid.
  • a pH adjusting agent such as an organic acid or an inorganic acid, and examples thereof include potassium hydroxide, lithium hydroxide, ammonium hydroxide, and sulfuric acid.
  • the silicon carbide polishing composition of the present invention may further contain an additive.
  • the additive may include one or more of various additives conventionally used in polishing compositions in this field as long as the preferable characteristics of the polishing composition are not impaired.
  • the balance of the silicon carbide polishing composition of the present invention is water, and the water used is not particularly limited. However, considering use in the manufacturing process of semiconductor devices, for example, pure water, ultrapure water, ions Exchange water, distilled water and the like are preferred.
  • the method for producing the silicon carbide polishing composition of the present invention an existing method for producing a polishing composition can be used.
  • the silicon carbide polishing composition of the present invention can be diluted to an arbitrary concentration when used.
  • the chelating agent content of the silicon carbide polishing composition of the present invention was examined.
  • the composition of the silicon carbide polishing composition used for the study is as follows.
  • colloidal silica (NALCO 2360, manufactured by NALCO) was used as abrasive grains, hydrogen peroxide was used as an oxidizing agent, and piperazine was used as a chelating agent.
  • the pH of the silicon carbide polishing composition was adjusted by adjusting the content of the pH adjusting agent.
  • polishing rate of the (0001) Si surface of the silicon carbide single crystal substrate was measured. Polishing conditions and methods for evaluating the polishing rate are as follows.
  • Polishing device Poli500 (G & P) Polishing pad: Suba800 (made by Nitta Haas Co., Ltd.) Polishing platen rotation speed: 50 (rpm) Head rotation speed: 50 (rpm) Polishing load surface pressure: 350 (g / cm 2 ) Flow rate of polishing composition: 100 (ml / min) Polishing time: 120 (min)
  • the polishing rate is represented by the thickness (nm / h) of the silicon carbide single crystal substrate removed by polishing per unit time.
  • the thickness of the single crystal substrate removed by polishing was calculated by measuring the decrease in the substrate weight before and after polishing and dividing by the specific gravity and the area of the polished surface of the single crystal substrate.
  • FIG. 1 is a graph showing the influence of the chelating agent content on the polishing rate of silicon carbide.
  • the horizontal axis represents the chelating agent content (% by weight), and the vertical axis represents the polishing rate (nm / h).
  • a polishing rate of 70 nm / h or more is preferable.
  • the polishing rate exceeds 70 nm / h, which is higher than the polishing rate by the conventional single crystal silicon carbide polishing composition.
  • the polishing rate is shown.
  • the polishing rate exceeded 100 nm / h was obtained.
  • the polishing rate decreased to 34 nm / h.
  • the content of the chelating agent is preferably 2.5% by weight or less, and more preferably 0.3% by weight or more and 1.0% by weight or less.
  • colloidal silica (NALCO 2360, manufactured by NALCO) was used as abrasive grains, hydrogen peroxide was used as an oxidizing agent, and piperazine was used as a chelating agent.
  • the pH of the silicon carbide polishing composition was adjusted by adjusting the content of the pH adjusting agent.
  • polishing rate of the (0001) Si surface of the silicon carbide single crystal substrate was measured. Polishing conditions and the method for evaluating the polishing rate are the same as described above.
  • Reference Examples 1 to 7 corresponding to each of Examination Examples 10 to 16 were prepared in the same manner except that no chelating agent was contained as a polishing composition as a control of Examination Examples 10 to 16, and a silicon carbide single crystal was prepared. The polishing rate of the (0001) Si surface of the substrate was measured.
  • FIG. 2 is a graph showing the influence of the oxidizing agent content on the polishing rate of silicon carbide.
  • the horizontal axis represents the oxidant content (% by weight), and the vertical axis represents the polishing rate (nm / h).
  • the ⁇ plots show the study examples 10 to 16, and the ⁇ plots show the reference examples 1 to 7.
  • the polishing rate did not exceed 60 nm / h, and became almost constant at 5.0% by weight or more.
  • the content of the oxidizing agent is preferably 3.0% by weight or less, and more preferably 5.0% by weight or more.
  • the bonding strength of the silicon-carbon covalent bond is weakened by the oxidizing agent, and the silicon carbide surface is weakened by the chelating effect of the chelating agent.
  • simply increasing the chelating agent content does not increase the polishing rate. This is because, since the oxidant content is constant, the silicon-carbon covalent bond whose bond strength is weakened is also constant, and there is an upper limit on the silicon carbide surface that becomes brittle even if the chelating agent content is increased. It is.
  • the polishing rate does not exceed 60 nm / h, and the details will be described later, but the improvement effect of the polishing rate by the chelating agent is low.
  • the polishing rate exceeding 120 nm / h as described above is a synergistic effect resulting from the combined use of a peroxide oxidizing agent and a chelating agent.
  • the pH range of the silicon carbide polishing composition of the present invention was examined.
  • the composition of the silicon carbide polishing composition used for the study is as follows.
  • colloidal silica (NALCO 2360, manufactured by NALCO) was used as abrasive grains, hydrogen peroxide was used as an oxidizing agent, and piperazine was used as a chelating agent.
  • the pH of the silicon carbide polishing composition was adjusted to the values shown in Table 3 by adjusting the content of the pH adjusting agent.
  • polishing rate of the (0001) Si surface of the silicon carbide single crystal substrate was measured. Polishing conditions and the method for evaluating the polishing rate are the same as described above.
  • FIG. 3 is a graph showing the influence of the pH of the silicon carbide polishing composition on the polishing rate of silicon carbide.
  • the horizontal axis represents pH, and the vertical axis represents the polishing rate (nm / h).
  • the pH of the silicon carbide polishing composition was preferably in the range of 8 to 11.5.
  • compositions of the silicon carbide polishing compositions of Example 1 and Comparative Examples 1 to 3 are as follows.
  • colloidal silica manufactured by NALCO, NALCO 2360
  • piperazine was used as a chelating agent.
  • the pH of the silicon carbide polishing composition was adjusted to the values shown in Table 3 by adjusting the content of the pH adjusting agent.
  • Example 1 and Comparative Examples 1 to 3 the polishing rate of the (0001) Si surface of the silicon carbide single crystal substrate was measured. Polishing conditions and the method for evaluating the polishing rate are the same as described above.
  • FIG. 4 is a graph showing the polishing rate of Example 1 and Comparative Examples 1 to 3.
  • the vertical axis represents the polishing rate (nm / h).
  • Comparative Examples 1 and 2 were lower than 20 nm / h, and Comparative Example 3 had a low polishing rate of about 30 nm / h, whereas Example 1 showed a polishing rate exceeding 100 nm / h.
  • Comparative Examples 1 and 3 have configurations similar to the compositions disclosed in Patent Documents 1 to 3, and the polishing rate is low. Moreover, although the comparative example 2 is the structure which added the chelating agent to the comparative example 1, the improvement of the polishing rate by chelating agent addition is not seen. From this, it is considered that a synergistic effect by the combination of the oxidizing agent and the chelating agent which is a peroxide is exhibited, and the polishing rate of the silicon carbide single crystal substrate is greatly improved in the silicon carbide polishing composition of the present invention. It is done.
  • colloidal silica (NALCO 2360, manufactured by NALCO) was used as abrasive grains, and hydrogen peroxide was used as an oxidizing agent.
  • the pH of the silicon carbide polishing composition was adjusted to the values shown in Table 5 by adjusting the content of the pH adjuster.
  • polishing rate of the (0001) Si surface of the silicon carbide single crystal substrate was measured. Polishing conditions and the method for evaluating the polishing rate are the same as described above.
  • FIG. 5 is a graph showing the polishing rate of Examples 2 to 7.
  • the vertical axis represents the polishing rate (nm / h).
  • the results of Example 1 are also shown in the same graph for reference.
  • the polishing rate was sufficiently improved when amino acids such as EDTA, glycine, L-serine, isoleucine, aspartic acid, and amino acids such as bicine were used as chelating agents. .
  • both amines and amino acids can be used, and any nitrogen-containing ligand capable of forming a metal complex by coordination with silicon (Si) as the central metal is effective. It was found that
  • Example 8 the polishing rate of the (0001) Si surface of the silicon carbide single crystal substrate when the type of the oxidizing agent was changed was examined.
  • colloidal silica manufactured by NALCO, NALCO 2360
  • piperazine was used as a chelating agent.
  • the pH of the silicon carbide polishing composition was adjusted to the values shown in Table 6 by adjusting the content of the pH adjusting agent.
  • Example 8 the polishing rate of the (0001) Si surface of the silicon carbide single crystal substrate was measured. Polishing conditions and the method for evaluating the polishing rate are the same as described above.
  • FIG. 6 is a graph showing the polishing rate of Example 8.
  • the vertical axis represents the polishing rate (nm / h).
  • the results of Example 1 are also shown in the same graph for reference.
  • the silicon carbide polishing composition of the present invention contains abrasive grains, an oxidizing agent that is a peroxide, and a chelating agent, so that the silicon carbide crystal substrate, in particular, the (0001) Si surface.
  • the polishing rate can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明の目的は、SiC結晶基板の研磨速度を向上することができる炭化ケイ素研磨用組成物を提供することである。 本発明の炭化ケイ素研磨用組成物は、砥粒と、過酸化物である酸化剤と、キレート剤とを含むことを特徴とし、これらを含むことで、炭化ケイ素結晶基板の、特に(0001)Si面の研磨速度を向上することができる。

Description

炭化ケイ素研磨用組成物
 本発明は、炭化ケイ素を研磨するときに使用する炭化ケイ素研磨用組成物に関する。
 炭化ケイ素(以下では単に「SiC」という場合がある。)は、高耐熱性、高耐圧性、高耐食性、高熱伝導性、高強度材料などの特性から、窒化ガリウム、ダイヤモンド、窒化ケイ素、窒化アルミニウムなどと同様に、エンジニアリングセラミックスとして注目される。
 炭化ケイ素は、たとえば、パワーデバイス、発光ダイオードなどの構成材料として用いられ、単結晶SiC基板の表面研磨が必要とされる。
 しかしながら、炭化ケイ素は化学的に安定で高強度材料であることから研磨による表面平坦化が非常に困難である。ここで、炭化ケイ素の結晶構造について簡単に説明すると、六方晶に属するα型と立方晶に属するβ型とがあり、α型結晶にはさらに積層構造の違いから4H型、6H型、15R型などがあり、基板材料としては主に4H型、6H型が用いられる。
 したがって、従来のSiC単結晶基板研磨用組成物は、4H型SiC単結晶基板および6H型SiC単結晶基板の、特に(0001)Si面、(000-1)C面を好適に研磨することを目的としている。
 特許文献1記載の研磨用組成物は、(000-1)C面を好適に研磨することを目的とし、ヨウ素化合物を含有して、pHが8以下であることが開示されている。ヨウ素化合物としては、過ヨウ素酸または過ヨウ素酸塩が好ましく、オルト過ヨウ素酸またはメタ過ヨウ素酸ナトリウムがより好ましいことが記載され、実施例では、pH調整剤として硫酸が用いられている。
 特許文献2記載の研磨用組成物は、(0001)Si面を好適に研磨することを目的とし、砥粒とヨウ素化合物とを含有して、pHが6以上であることが開示されている。ヨウ素化合物としては、過ヨウ素酸塩が好ましく、メタ過ヨウ素酸ナトリウムがより好ましいことが記載され、実施例では、pH調整剤として水酸化リチウムまたはアンモニアが用いられている。
 特許文献3記載の研磨用組成物は、(0001)Si面、(000-1)C面を好適に研磨することを目的とし、砥粒とヨウ素化合物とを含有して、pHが6~8であることが開示されている。ヨウ素化合物としては、過ヨウ素酸または過ヨウ素酸塩が好ましく、オルト過ヨウ素酸またはメタ過ヨウ素酸ナトリウムがより好ましいことが記載され、実施例では、pH調整剤としてアンモニアが用いられている。
特開2007-27663号公報 特開2007-21703号公報 特開2007-21704号公報
 特許文献1~3記載の研磨用組成物はいずれもヨウ素化合物を用いることで、SiC単結晶基板を好適に研磨できることを特徴としているが、(0001)Si面の研磨速度は、特許文献2,3の実施例に記載されているように最も高くて67.9nm/hであり、研磨速度としては未だ十分に改善されているとはいえない。
 本発明の目的は、SiC結晶基板の研磨速度を向上することができる炭化ケイ素研磨用組成物を提供することである。
 本発明は、砥粒と、過酸化物である酸化剤と、キレート剤とを含むことを特徴とする炭化ケイ素研磨用組成物である。
 また本発明は、アルカリ性であることを特徴とする。
 本発明によれば、砥粒と、過酸化物である酸化剤と、キレート剤とを含むことを特徴とし、これらを含むことで、炭化ケイ素結晶基板の、特に(0001)Si面の研磨速度を向上することができる。
 また本発明によれば、炭化ケイ素研磨用組成物がアルカリ性であることで、炭化ケイ素結晶基板の研磨速度向上効果をより安定して発揮することができる。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
炭化ケイ素の研磨速度に対するキレート剤の含有量の影響を示すグラフである。 炭化ケイ素の研磨速度に対する酸化剤の含有量の影響を示すグラフである。 炭化ケイ素の研磨速度に対する炭化ケイ素研磨用組成物のpHの影響を示すグラフである。 実施例1および比較例1~3の研磨速度を示すグラフである。 実施例2~7の研磨速度を示すグラフである。 実施例8の研磨速度を示すグラフである。
 以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
 本発明は、炭化ケイ素の結晶基板、特に単結晶基板の(0001)Si面の研磨に好適であり、(0001)Si面の研磨速度を向上させることができる。
 本発明の炭化ケイ素研磨用組成物は、砥粒と、過酸化物である酸化剤と、キレート剤とを含むことを特徴とし、これらを含むことで、炭化ケイ素結晶基板の、特に(0001)Si面の研磨速度を向上することができる。
 以下、本発明の炭化ケイ素研磨用組成物について詳細に説明する。
 本発明の炭化ケイ素研磨用組成物に含まれる酸化剤は、過酸化物であって、たとえば、過酸化水素、過酸化ナトリウム、過酸化カルバミドなどが挙げられる。これらの中でも特に過酸化水素が好ましい。炭化ケイ素研磨用組成物に対する過酸化水素の添加は、たとえば、過酸化水素の水溶液(過酸化水素水)を添加してもよいし、過炭酸ナトリウムなど水中で過酸化水素を発生する化合物を添加してもよい。
 本発明の炭化ケイ素研磨用組成物における酸化剤の含有量は、炭化ケイ素研磨用組成物全量の3.0重量%以上であり、好ましくは5.0重量%以上である。酸化剤の含有量が、3.0重量%よりも少ないと十分な研磨速度が得られず、10重量%を越えても研磨速度はほぼ一定でありさらなる向上は得られない。
 本発明の炭化ケイ素研磨用組成物に含まれるキレート剤は、ケイ素(Si)を中心金属として配位結合し、金属錯体を形成可能な含窒素配位子であればよく、たとえば、エチレンジアミン四酢酸(EDTA)およびピペラジンなどアミン類の配位子をキレート剤として用いることができる。また、アミノ酸とアミノ酸の誘導体とを含むアミノ酸類をキレート剤として用いることができる。
 アミノ酸としては、たとえばグリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、アスパラギン酸、グルタミン酸などケイ素に配位するCOOH基(カルボキシル基)とNH基(アミノ基)とを有するアミノ酸は、これら2つの配位基でケイ素原子に対してキレート効果を生じるためキレート剤として用いることができる。
 アミノ酸の誘導体としては、たとえば、N,N-ビス(2-ヒドロキシエチル)グリシン(以下では、ビシンともいう)、N-トリス(ヒドロキシメチル)メチルグリシンは、アミノ酸のアミノ基の水素を置換した誘導体であり、このようなアミノ酸の誘導体もカルボキシル基と置換されたアミノ基とが配位基なるのでキレート剤として用いることができる。本発明では、前記のように1分子で2以上の配位基を有するものをキレート剤として定義する。
 本発明の炭化ケイ素研磨用組成物におけるキレート剤の含有量は、炭化ケイ素研磨用組成物全量の2.5重量%以下であり、好ましくは0.3重量%以上1.0重量%以下である。キレート剤の含有量が、2.5重量%を越えると研磨速度が低下する傾向がある。
 本発明の炭化ケイ素研磨用組成物は、たとえば以下に示すような作用で、炭化ケイ素単結晶の(0001)Si面に対して高い研磨速度を実現しているものと考えられる。
 たとえば過ヨウ素酸のようなハロゲン系酸化剤は、その酸化力によって炭化ケイ素を酸化してケイ素-酸素結合による酸化膜を形成し、その酸化膜を砥粒で研磨することで研磨速度が向上する。これに対して、過酸化物である、たとえば過酸化水素は、アルカリ性環境下に存在することで自らが分解する際に生ずる反応性の高いラジカルが、上述したケイ素-炭素間結合のような強固な共有結合に作用してその結合強度を弱める。過酸化物の作用に次いで、ケイ素原子に対してキレート剤が作用し、そのキレート効果によって結合強度が弱まったケイ素原子にキレート剤が配位する。キレート剤が配位することで、酸化膜は形成されず、キレート剤がケイ素に配位結合した表面層が形成される。キレート剤とケイ素との配位結合は、ケイ素-酸素結合よりも脆弱であるので、形成された表面層は、酸化膜よりも脆弱な脆化層となって、砥粒により容易に研磨することができ、研磨速度がより一層向上する。
 このように、本発明の炭化ケイ素研磨用組成物は、酸化剤とキレート剤とによって炭化ケイ素単結晶基板の表面特性を大きく変化させ、研磨特性を十分に発揮させている。過酸化物である酸化剤は単独で用いた場合にも研磨速度を向上させる効果は見られるが、キレート剤の存在によって、過酸化物単独で使用しただけでは得られない研磨速度の向上効果、すなわち併用による相乗効果が発揮される。
 本発明の炭化ケイ素研磨用組成物に含まれる砥粒としては、この分野で常用されるものを使用でき、たとえば、コロイダルシリカ、ヒュームドシリカ、セリアおよびアルミナなどが挙げられる。これらの中でも特にコロイダルシリカが好ましい。
 本発明の炭化ケイ素研磨用組成物における砥粒の含有量は、炭化ケイ素研磨用組成物の組成などに応じて適宜調整すればよい。
 炭化ケイ素研磨用組成物は、組成物全体としてアルカリ性に調製され、pHは、好ましくは8~11.5である。炭化ケイ素研磨用組成物のpHが8未満であると、研磨速度が十分に向上せず、pHが11.5を超えるとコロイダルシリカが溶解して凝集物が発生してしまう。
 炭化ケイ素研磨用組成物のpHの調整は、有機酸または無機酸などのpH調整剤の添加によって調整され、たとえば、水酸化カリウム、水酸化リチウム、水酸化アンモニウムおよび硫酸などが挙げられる。
 本発明の炭化ケイ素研磨用組成物には、上記の組成に加えてさらに、添加剤を含んでいてもよい。
 添加剤としては、研磨用組成物の好ましい特性を損なわない範囲で、従来からこの分野の研磨用組成物に常用される各種の添加剤の1種または2種以上を含むことができる。
 本発明の炭化ケイ素研磨用組成物の残部は水であり、用いられる水としては特に制限はないが、半導体デバイスなどの製造工程での使用を考慮すると、たとえば、純水、超純水、イオン交換水、蒸留水などが好ましい。
 本発明の炭化ケイ素研磨用組成物の製造方法については、既存の研磨用組成物の製造方法を用いることができる。なお、本発明の炭化ケイ素研磨用組成物は、使用する際に任意の濃度に希釈できる。
 [キレート剤の含有量]
 本発明の炭化ケイ素研磨用組成物のキレート剤の含有量について検討した。検討に用いた炭化ケイ素研磨用組成物の組成は以下のとおりである。
Figure JPOXMLDOC01-appb-T000001
 なお、砥粒としてコロイダルシリカ(NALCO社製、NALCO2360)を用い、酸化剤として過酸化水素を用い、キレート剤としてピペラジンを用いた。炭化ケイ素研磨用組成物のpHは、pH調整剤の含有量などを調整することで調整した。
 これらの検討例1~9を用いて、炭化ケイ素単結晶基板の(0001)Si面の研磨速度を測定した。研磨条件、および研磨速度の評価方法は以下に示すとおりである。
 [研磨条件]
  研磨装置:Poli500(G&P社製)
  研磨パッド:Suba800(ニッタ・ハース株式会社製)
  研磨定盤回転速度:50(rpm)
  ヘッド回転速度:50(rpm)
  研磨荷重面圧:350(g/cm
  研磨用組成物の流量:100(ml/min)
  研磨時間:120(min)
 [研磨速度]
 研磨速度は、単位時間当たりに研磨によって除去された炭化ケイ素単結晶基板の厚み(nm/h)で表される。研磨によって除去された単結晶基板の厚みは、研磨前後の基板重量の減少量を測定し、比重および単結晶基板の研磨面の面積で割ることで算出した。
 図1は、炭化ケイ素の研磨速度に対するキレート剤の含有量の影響を示すグラフである。横軸はキレート剤含有量(重量%)を示し、縦軸は研磨速度(nm/h)を示す。
 上記のような研磨条件では、70nm/h以上の研磨速度が好ましい。キレート剤の含有量が0.1重量%~2.5重量%の検討例1~8は、研磨速度が70nm/hを超え、従来の単結晶炭化ケイ素研磨用組成物による研磨速度よりも高い研磨速度を示した。特にキレート剤の含有量が0.3重量%~1.0重量%の検討例3~5は、100nm/hを超える研磨速度が得られた。キレート剤の含有量が4.0重量%の検討例9は、研磨速度が34nm/hにまで低下した。
 以上の検討例1~9より、キレート剤の含有量としては、2.5重量%以下が好ましい範囲であり、0.3重量%以上1.0重量%以下がさらに好ましい範囲である。
 [酸化剤の含有量]
 本発明の炭化ケイ素研磨用組成物の酸化剤の含有量について検討した。検討に用いた炭化ケイ素研磨用組成物の組成は以下のとおりである。
Figure JPOXMLDOC01-appb-T000002
 なお、砥粒としてコロイダルシリカ(NALCO社製、NALCO2360)を用い、酸化剤として過酸化水素を用い、キレート剤としてピペラジンを用いた。炭化ケイ素研磨用組成物のpHは、pH調整剤の含有量などを調整することで調整した。
 これらの検討例10~16を用いて、炭化ケイ素単結晶基板の(0001)Si面の研磨速度を測定した。研磨条件、および研磨速度の評価方法は上記と同様である。
 さらに、検討例10~16の対照となる研磨用組成物として、キレート剤を含まないこと以外は同様にして検討例10~16にそれぞれ対応する参考例1~7を調製し、炭化ケイ素単結晶基板の(0001)Si面の研磨速度を測定した。
 図2は、炭化ケイ素の研磨速度に対する酸化剤の含有量の影響を示すグラフである。横軸は酸化剤含有量(重量%)を示し、縦軸は研磨速度(nm/h)を示す。○のプロットは、検討例10~16を示し、△のプロットは、参考例1~7を示す。
 酸化剤の含有量が5.0重量%~10.0重量%の検討例13~16は、研磨速度が100nm/hを超えており、特に8.0重量%以上では120nm/hを超える研磨速度となった。酸化剤の含有量が1.2重量%~3.0重量%の検討例10~12は、研磨速度が60nm/h以下であった。
 また、参考例1~7については、研磨速度が60nm/hを超えることはなく、5.0重量%以上でほぼ一定となった。
 以上の検討例10~16より、酸化剤の含有量としては、3.0重量%以下が好ましい範囲であり、5.0重量%以上がさらに好ましい範囲である。
 検討例1~16から、酸化剤含有量を一定にしてキレート剤含有量を変化させると、キレート剤含有量に応じて研磨速度が変化し、キレート剤含有量を一定にして酸化剤含有量を変化させると、酸化剤含有量に応じて研磨速度が変化することがわかった。
 本発明の作用では、酸化剤によってケイ素-炭素間共有結合の結合強度を弱め、キレート剤のキレート効果によって炭化ケイ素表面を脆弱化する。図1に示すように、単にキレート剤含有量を増加させれば研磨速度が上昇するものではない。これは、酸化剤の含有量を一定としているために、結合強度が弱まるケイ素-炭素間共有結合も一定となり、キレート剤含有量を増加させても脆弱化する炭化ケイ素表面には上限があるからである。
 キレート剤を含まない参考例は、酸化剤による研磨速度の向上効果を示すが研磨速度が60nm/hを超えることはなく、詳細は後述するが、キレート剤による研磨速度の向上効果は低いので、上記のような120nm/hを超える研磨速度は、過酸化物である酸化剤とキレート剤との併用から生じた相乗効果である。
 [炭化ケイ素研磨用組成物のpH]
 本発明の炭化ケイ素研磨用組成物のpH範囲について検討した。検討に用いた炭化ケイ素研磨用組成物の組成は以下のとおりである。
Figure JPOXMLDOC01-appb-T000003
 なお、砥粒としてコロイダルシリカ(NALCO社製、NALCO2360)を用い、酸化剤として過酸化水素を用い、キレート剤としてピペラジンを用いた。炭化ケイ素研磨用組成物のpHは、pH調整剤の含有量などを調整することで表3に示す値にそれぞれ調整した。
 これらの検討例17~23を用いて、炭化ケイ素単結晶基板の(0001)Si面の研磨速度を測定した。研磨条件、および研磨速度の評価方法は上記と同様である。
 図3は、炭化ケイ素の研磨速度に対する炭化ケイ素研磨用組成物のpHの影響を示すグラフである。横軸はpHを示し、縦軸は研磨速度(nm/h)を示す。
 検討例19~21は、研磨速度が70nm/hを超え、従来の炭化ケイ素研磨用組成物による研磨速度よりも高い研磨速度を示した。
 pHが4.0および6.0の検討例17、検討例18は、十分な研磨速度が得られなかった。また、pHが11.5(検討例21)では、120nm/hを超える研磨速度が得られたが、pHが11.7および12.0の検討例22、検討例23では、コロイダルシリカが溶解してコロイダルシリカの凝集体が発生したため、研磨速度が低下した。
 以上の検討例17~23より、炭化ケイ素研磨用組成物のpHとしては、8~11.5の範囲が好ましいことがわかった。
 以下では、本発明の実施例および比較例について説明する。
 実施例1および比較例1~3の炭化ケイ素研磨用組成物の組成は以下のとおりである。
Figure JPOXMLDOC01-appb-T000004
 なお、砥粒としてコロイダルシリカ(NALCO社製、NALCO2360)を用い、キレート剤としてピペラジンを用いた。炭化ケイ素研磨用組成物のpHは、pH調整剤の含有量などを調整することで表3に示す値にそれぞれ調整した。
 実施例1および比較例1~3を用いて、炭化ケイ素単結晶基板の(0001)Si面の研磨速度を測定した。研磨条件、および研磨速度の評価方法は上記と同様である。
 図4は、実施例1および比較例1~3の研磨速度を示すグラフである。縦軸は研磨速度(nm/h)を示す。
 比較例1,2は、20nm/hより低く、比較例3でも30nm/h程度の低い研磨速度であるのに対し、実施例1は、100nm/hを超える研磨速度を示した。
 比較例1,3は、特許文献1~3に開示された組成に類似の構成であり、研磨速度は低い。また、比較例2は、比較例1にキレート剤を追加した構成であるが、キレート剤添加による研磨速度の向上はみられない。このことから、過酸化物である酸化剤とキレート剤との組み合わせによる相乗効果が発揮され、本発明の炭化ケイ素研磨用組成物では、炭化ケイ素単結晶基板の研磨速度が大きく向上したものと考えられる。
 さらに、実施例2~7としてキレート剤の種類を変えたときの炭化ケイ素単結晶基板の(0001)Si面の研磨速度を検討した。
Figure JPOXMLDOC01-appb-T000005
 なお、砥粒としてコロイダルシリカ(NALCO社製、NALCO2360)を用い、酸化剤として過酸化水素を用いた。炭化ケイ素研磨用組成物のpHは、pH調整剤の含有量などを調整することで表5に示す値にそれぞれ調整した。
 実施例2~7を用いて、炭化ケイ素単結晶基板の(0001)Si面の研磨速度を測定した。研磨条件、および研磨速度の評価方法は上記と同様である。
 図5は、実施例2~7の研磨速度を示すグラフである。縦軸は研磨速度(nm/h)を示す。参考のために実施例1の結果も同じグラフに示す。
 実施例2~7の結果からもわかるように、キレート剤としてEDTAやグリシン、L-セリン、イソロイシン、アスパラギン酸などのアミノ酸およびビシンなどのアミノ酸誘導体を用いた場合も、十分に研磨速度が向上した。
 このように、キレート剤としては、アミン類、アミノ酸類のいずれも使用可能であり、ケイ素(Si)を中心金属として配位結合し、金属錯体を形成可能な含窒素配位子であれば効果が発揮されることがわかった。
 さらに、実施例8として酸化剤の種類を変えたときの炭化ケイ素単結晶基板の(0001)Si面の研磨速度を検討した。
Figure JPOXMLDOC01-appb-T000006
 なお、砥粒としてコロイダルシリカ(NALCO社製、NALCO2360)を用い、キレート剤としてピペラジンを用いた。炭化ケイ素研磨用組成物のpHは、pH調整剤の含有量などを調整することで表6に示す値に調整した。
 実施例8を用いて、炭化ケイ素単結晶基板の(0001)Si面の研磨速度を測定した。研磨条件、および研磨速度の評価方法は上記と同様である。
 図6は、実施例8の研磨速度を示すグラフである。縦軸は研磨速度(nm/h)を示す。参考のために実施例1の結果も同じグラフに示す。
 実施例8の結果からもわかるように、酸化剤として過酸化ナトリウムを用いた場合も、十分に研磨速度が向上した。
 以上のように、本発明の炭化ケイ素研磨用組成物は、砥粒と、過酸化物である酸化剤と、キレート剤とを含むことにより、炭化ケイ素結晶基板の、特に(0001)Si面の研磨速度を向上することができる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。

Claims (2)

  1.  砥粒と、過酸化物である酸化剤と、キレート剤とを含むことを特徴とする炭化ケイ素研磨用組成物。
  2.  アルカリ性であることを特徴とする請求項1記載の炭化ケイ素研磨用組成物。
PCT/JP2010/068765 2009-10-23 2010-10-22 炭化ケイ素研磨用組成物 WO2011049216A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537328A JPWO2011049216A1 (ja) 2009-10-23 2010-10-22 炭化ケイ素研磨用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-244968 2009-10-23
JP2009244968 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011049216A1 true WO2011049216A1 (ja) 2011-04-28

Family

ID=43900439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068765 WO2011049216A1 (ja) 2009-10-23 2010-10-22 炭化ケイ素研磨用組成物

Country Status (3)

Country Link
JP (1) JPWO2011049216A1 (ja)
TW (1) TW201124514A (ja)
WO (1) WO2011049216A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387796A (zh) * 2012-05-10 2013-11-13 气体产品与化学公司 具有化学添加剂的化学机械抛光组合物及其使用方法
US8999193B2 (en) 2012-05-10 2015-04-07 Air Products And Chemicals, Inc. Chemical mechanical polishing composition having chemical additives and methods for using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029417A (zh) * 2020-09-30 2020-12-04 常州时创新材料有限公司 一种用于碳化硅cmp的抛光组合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029465A1 (ja) * 2005-09-09 2007-03-15 Asahi Glass Company, Limited 研磨剤、被研磨面の研磨方法および半導体集積回路装置の製造方法
WO2008030420A1 (en) * 2006-09-05 2008-03-13 Cabot Microelectronics Corporation Silicon carbide polishing method utilizing water-soluble oxidizers
JP2010162649A (ja) * 2009-01-15 2010-07-29 Admatechs Co Ltd 研磨用組成物、研磨用部材、及び研磨方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029465A1 (ja) * 2005-09-09 2007-03-15 Asahi Glass Company, Limited 研磨剤、被研磨面の研磨方法および半導体集積回路装置の製造方法
WO2008030420A1 (en) * 2006-09-05 2008-03-13 Cabot Microelectronics Corporation Silicon carbide polishing method utilizing water-soluble oxidizers
JP2010162649A (ja) * 2009-01-15 2010-07-29 Admatechs Co Ltd 研磨用組成物、研磨用部材、及び研磨方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387796A (zh) * 2012-05-10 2013-11-13 气体产品与化学公司 具有化学添加剂的化学机械抛光组合物及其使用方法
EP2662427A3 (en) * 2012-05-10 2014-01-01 Air Products And Chemicals, Inc. Chemical mechanical polishing composition having chemical additives and methods for using same
US8999193B2 (en) 2012-05-10 2015-04-07 Air Products And Chemicals, Inc. Chemical mechanical polishing composition having chemical additives and methods for using same
CN103387796B (zh) * 2012-05-10 2015-08-12 气体产品与化学公司 具有化学添加剂的化学机械抛光组合物及其使用方法

Also Published As

Publication number Publication date
TW201124514A (en) 2011-07-16
JPWO2011049216A1 (ja) 2013-03-14

Similar Documents

Publication Publication Date Title
TWI628042B (zh) 含鈷之基材的化學機械硏磨
TWI648359B (zh) 含鈷基材的化學機械研磨
US8721917B2 (en) Polishing of sapphire with composite slurries
JP5935865B2 (ja) 炭化ケイ素単結晶基板の製造方法
WO2012165376A1 (ja) 研磨剤および研磨方法
JP6396740B2 (ja) 研磨用組成物及び研磨方法
JP2012511251A5 (ja)
JP6538368B2 (ja) 研磨用組成物及び研磨方法
US6805812B2 (en) Phosphono compound-containing polishing composition and method of using same
TW201024397A (en) Combination, method, and composition for chemical mechanical planarization of a tungsten-containing substrate
JP2012248569A (ja) 研磨剤および研磨方法
WO2011049216A1 (ja) 炭化ケイ素研磨用組成物
JP6050839B2 (ja) 表面選択性研磨組成物
JP2015532005A (ja) 白金及びルテニウム材料を選択的に研磨するための組成物及び方法
JP6908480B2 (ja) 研磨用組成物及びその製造方法並びに研磨方法並びに基板の製造方法
KR101884020B1 (ko) 관통실리콘비아 (tsv) 웨이퍼를 연마하기 위한 연마 조성물 및 그의 용도
JP2016141765A (ja) 研磨用組成物
JP7329035B2 (ja) 半導体工程用研磨組成物及び研磨組成物を適用した基板の研磨方法
JP4546039B2 (ja) 半導体ウェハ研磨用組成物
WO2023085008A1 (ja) 化学機械研磨用組成物およびその製造方法、ならびに研磨方法
JP2010023198A (ja) 研磨用組成物及び研磨方法
TW202340404A (zh) 半導體製程用組合物和半導體元件的製造方法
TW202421735A (zh) 具有含硫陰離子界面活性劑之鎢之化學機械拋光(cmp)組合物
JP2007021704A (ja) 研磨用組成物及び研磨方法
JP2018104528A (ja) 研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537328

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10825065

Country of ref document: EP

Kind code of ref document: A1