WO2011049095A1 - 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置 - Google Patents

複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置 Download PDF

Info

Publication number
WO2011049095A1
WO2011049095A1 PCT/JP2010/068401 JP2010068401W WO2011049095A1 WO 2011049095 A1 WO2011049095 A1 WO 2011049095A1 JP 2010068401 W JP2010068401 W JP 2010068401W WO 2011049095 A1 WO2011049095 A1 WO 2011049095A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
tip
cutting edge
end side
diameter
Prior art date
Application number
PCT/JP2010/068401
Other languages
English (en)
French (fr)
Inventor
浩文 嶋田
Original Assignee
福井県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福井県 filed Critical 福井県
Priority to US13/503,193 priority Critical patent/US20120269591A1/en
Priority to KR1020127010171A priority patent/KR20120089685A/ko
Priority to EP10824944.2A priority patent/EP2492034A4/en
Priority to CN2010800474987A priority patent/CN102574219A/zh
Publication of WO2011049095A1 publication Critical patent/WO2011049095A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/0081Conical drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/08Drills combined with tool parts or tools for performing additional working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • B23D77/14Reamers for special use, e.g. for working cylinder ridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • B23B2251/043Helix angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • B23B2251/043Helix angles
    • B23B2251/046Variable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/03Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/65Means to drive tool
    • Y10T408/675Means to drive tool including means to move Tool along tool-axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • Y10T408/9095Having peripherally spaced cutting edges with axially extending relief channel
    • Y10T408/9097Spiral channel

Definitions

  • the present invention relates to a drill suitable for drilling a composite material such as a fiber reinforced composite material represented by CFRP (Carbon Fiber Reinforced Plastics).
  • CFRP Carbon Fiber Reinforced Plastics
  • the present invention relates to a composite material drill that can perform high-quality drilling without causing delamination on the drilled surface without causing any problems.
  • Patent Documents 2 and 3 describe drills that provide a small-diameter portion on the tip side to suppress burrs in through holes.
  • Patent Document 4 describes a double angle drill in which a primary cutting edge having a tip angle of 118 ° and a secondary cutting blade having a tip angle of about 30 ° are connected as a drill suitable for simultaneous drilling of CFRP and an aluminum alloy plate. ing.
  • Patent Document 5 as a drill suitable for CFRP drilling, a shape having a prepared hole processing part for machining a prepared hole and a finished part, and the diameter difference between the finished part and the prepared hole processed part is 0.1 mm or more and 2 mm or less. A two-stage drill is described.
  • Fiber-reinforced composite materials are lightweight and have high strength and rigidity, and are often used in aircraft structural materials.
  • CFRP used for aircraft structural materials has strict requirements regarding quality. For example, there is no burr protruding on the mating surface with other members, and no delamination occurs on the perforated surface of CFRP. .
  • CFRP has a structure in which carbon fibers containing hard-to-cut carbon fibers and a resin material that is a binder for binding the carbon fibers are formed in layers. Burrs are more likely to occur in the processed part than the workpiece, and delamination is likely to occur due to the thrust resistance during processing. With respect to the problems related to the perforating process of the fiber reinforced composite material, the techniques described in Patent Documents 1 and 2 described above cannot obtain a practically sufficient effect.
  • the “thrust resistance” is a resistance force applied in the direction opposite to the drill feed direction in drilling.
  • Patent Document 3 since only a small diameter portion is formed on the tip side of the drill as in Patent Document 2, when the work material is CFRP, the technique described in Patent Document 3 is also satisfactory in terms of suppressing burrs. The effect is not obtained.
  • the drill described in Patent Document 4 is a two-stage drill having a pilot hole machining section and a finishing machining section, and has a machining configuration in which burrs generated in the pilot hole machining section are removed by the finishing machining section.
  • it has a shape in which the diameter difference between the finished machined part and the prepared hole machined part is increased, and the cutting mechanism is the same as that of normal drilling, and it does not fundamentally solve the suppression of peeling and burrs.
  • Patent Document 4 measures are taken to reduce the occurrence of burrs due to chip jamming by reducing the twist angle and improving chip discharge.
  • the technology described in Patent Document 4 cannot be achieved by reducing the thrust resistance at the time of machining only by using a straight cutting edge structure at the machined portion, and does not lead to an improvement in wear resistance of the tool edge.
  • a satisfactory effect cannot be obtained.
  • Patent Document 5 since the prepared part of the prepared hole has a plurality of stepped structures, the thrust resistance received by the drill during diameter expansion is large, and there is a problem in improving the wear resistance of the tool edge.
  • the present invention has been made in view of such problems of the prior art, and by performing combined machining with a drill having a tapered portion and a straight portion having a tapered shape, almost no burrs or delaminations are caused on the workpiece. It is an object to enable high-quality drilling to be performed in one step without being generated.
  • the composite material drill according to the present invention is a composite material drill for perforating a workpiece including at least a part of a fiber reinforced composite material, the tip portion having a tip cutting edge formed thereon, and the rear portion of the tip portion. And a tapered portion formed in a tapered shape with a diameter difference between a tip side diameter and a rear end side diameter larger than the tip side diameter. Is formed such that a spirally twisted outer peripheral cutting edge is formed to continuously increase the drilling diameter, and is formed to be connected to the rear end side of the tapered portion and the rear end of the tapered portion.
  • the present invention is characterized in that it has a straight portion formed entirely in the same diameter so that a finishing diameter larger than the side diameter can be formed.
  • the taper portion is formed with a chip discharge groove that is spirally twisted along the outer peripheral cutting edge. Further, the taper portion is characterized in that a taper angle between an outer diameter line in contact with the outer diameter on the front end side and the outer diameter on the rear end side and a drill axis center line is set to 45 ° or less. Further, the tip cutting edge of the tip portion has a tip angle of 60 ° to 140 °, and the outer peripheral cutting edge of the taper portion is formed continuously with the tip cutting edge and A rake angle or a rake angle and a clearance angle are formed with respect to a conical surface in contact with the outer periphery of the land of the taper portion.
  • the tip portion, the taper portion, and the straight portion are integrated coaxially.
  • the straight portion is formed in a round land drill shape or a reamer shape.
  • the axial center of the tip part, the taper part, and the straight part is made to coincide with the rotational axis.
  • the connecting portion between the tapered portion and the straight portion is connected in such a manner that the outer diameter on the front end side of the straight portion is tapered toward the outer diameter on the rear end side of the tapered portion.
  • the machining method according to the present invention is a machining method for drilling a workpiece including at least a part of a fiber-reinforced composite material using the above-described drill, wherein the tip cutting edge and the taper portion of the tip portion A prepared hole is drilled in the workpiece by the outer peripheral cutting edge, and the formed prepared hole is drilled by finishing by the straight portion.
  • a machining apparatus includes a driving unit that holds the above-described drill and rotationally drives the central axis of the drill, and a supporting unit that supports a workpiece including at least a part of a fiber-reinforced composite material. And a moving means for relatively moving the drive means and / or the support means so as to drill the drill into the workpiece.
  • the drill for composite materials according to the present invention can be drilled by expanding the diameter of the prepared hole while keeping the cutting resistance low at the taper portion, and it is difficult for burrs to occur in the processed portion, and further, in the drilling direction with respect to the workpiece.
  • the thrust resistance is also reduced, and the peeling force with respect to the interface in the composite material is also reduced, so that delamination hardly occurs.
  • the straight part to be finished is set to be coaxial with the tapered part and connected and integrated, high-precision drilling can be performed.
  • it has an outer peripheral cutting edge having a rake angle or a rake angle and a clearance angle with respect to a conical surface that has a tip cutting edge and is in contact with the outer periphery of the land of the taper portion, and a straight portion connected to the outer peripheral cutting edge.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 1.
  • FIG. 6 is a cross-sectional view taken along line CC in FIG. 5. It is an expanded sectional view regarding the outer periphery cutting edge of the drill shown in FIG.
  • the straight portion is formed as a reamer as the first embodiment, and the straight portion is rounded as the second embodiment.
  • Two forms of the land drill are described with reference to the drawings.
  • FIG. 1 is a side view of a drill 1 according to the first embodiment.
  • FIG. 2 is a front view of the tapered portion of FIG. 1 as viewed from the front end side toward the rear end side.
  • 3 is a cross-sectional view taken along the line AA in FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • the drill 1 is a two-blade drill, in which a straight portion 3 that forms a reamer is connected to the tip of the shank 2, and a tapered portion 4 is integrally connected to the tip of the straight portion 3. At the tip of the taper portion 4, a tip cutting edge 5 that is a tip portion is formed.
  • the tip cutting edge 5 is a cutting edge that first bites and cuts the workpiece, and induces diameter expansion processing by the outer peripheral cutting edge 7 formed in the tapered portion 4. Further, by forming the tip angle in the range of 60 ° to 140 °, the biting and centripetal properties of the drill are improved, and the rotation of the drill is reduced.
  • the axial step length L1 between the protrusion at the center portion of the blade sharpening surface and the cutting blade surface is set to 0.5 mm or more.
  • the centripetality at the time of preparing the pilot hole is improved.
  • the tip angle ⁇ 1 of the tip cutting edge 5 is set to an angle of 90 °, the rigidity and centripetal property of the drill tip are improved, and the sharpness of the tip cutting edge 5 is improved.
  • the taper portion 4 has a tapered shape formed by the difference in diameter between the front end side outer diameter D1 and the rear end side outer diameter D2, and the straight portion 3 is integrally connected to the rear end side.
  • the straight portion 3 is formed to have a larger diameter than the tapered portion 4.
  • “taper” means a shape in which a predetermined angle is set between a straight line in contact with the outer diameter on the front end side and the outer diameter on the rear end side and the drill central axis.
  • the tapered portion 4 is shaped like a candle and has two outer peripheral cutting edges 7 formed continuously with the tip cutting edge 5.
  • an outer peripheral cutting edge 7 that is spirally twisted is formed so as to continuously increase the perforation diameter.
  • a chip discharge groove 6 that is spirally twisted along the blade 7 is formed.
  • the chip discharge groove 6 provided on the outer periphery of the taper portion 4 is formed as a groove having a twist angle ⁇ 3.
  • the twist angle ⁇ 3 of the chip discharge groove 6 depends on the size of the tip angle and the material of the workpiece, but it can be set to 60 ° or less in order to prevent the cutting edge from becoming too sharp and easily chipped.
  • the chips containing the fiber material of the composite material can be quickly discharged by setting the angle to 60 ° or less.
  • the outer peripheral cutting edge 7 is formed by the intersection ridge of the margin 8 and the chip discharge groove 6 and has a positive rake angle ⁇ 4 of 10 to 10 with respect to the conical surface in contact with the land outer periphery of the taper portion 4. It is formed as a cutting edge set at 30 °. By forming in this way, the angle of a blade edge becomes sharp and sharpness can be remarkably improved.
  • the taper angle ⁇ 2 resulting from the diameter difference between the front end side outer diameter D1 and the rear end side outer diameter D2 of the taper portion 4 is set to 45 ° or less.
  • the taper angle ⁇ 2 is greater than 45 °, the thrust resistance exceeds the rotational force, so that a large burr is generated and cannot be reliably removed at the straight portion.
  • the length L2 from the front end side outer diameter D1 to the rear end side outer diameter D2 of the taper portion 4 is determined by the taper angle ⁇ 2.
  • a margin 8 is formed on the outer periphery of the taper portion 4 and is set as a cutting edge having a positive rake angle ⁇ 4 of 10 to 30 °.
  • a tapered portion 4 is connected to the tip of the straight portion 3, and a shank is connected to the rear end of the straight portion 3.
  • the front end side of the straight part 3 is processed into the taper shape.
  • the straight portion 3 is formed in a reamer shape for shaping a portion left uncut by the tapered portion 4 that performs the pilot hole machining, and is 0.01 mm to 0 mm from the outer diameter D2 on the rear end side of the tapered portion 4. It is formed to a finishing diameter D3 having a large diameter of 1 mm.
  • the axial centers of the tip cutting edge 5, the tapered portion 4 and the straight portion 3 are aligned with the rotational axis, and the connecting portion between the tapered portion 4 and the straight portion 3 has an outer diameter on the distal end side of the straight portion 3 that is the tapered portion 4.
  • drilling can be performed with good machining quality without generating burrs.
  • the tip cutting edge 5, the taper portion 4, the straight portion 3, and the shank 2 are also connected with a tolerance of coaxiality 0.01.
  • the material of the drill includes cemented carbide, high speed steel, tool steel, etc., but it is desirable to use cemented carbide for the taper portion 4 and the tip cutting edge 5 for drilling the prepared hole. Moreover, you may comprise the taper part 4 and the straight part 3 with a respectively different raw material.
  • the drill 1 is mounted on a known machining device and used for drilling a composite material as a workpiece.
  • the composite material is suitable for perforating a fiber-reinforced composite material, and particularly suitable for a composite material in which fibers are laminated in layers.
  • fiber reinforced composite materials include carbon fiber reinforced plastic (CFRP), glass fiber reinforced plastic (GFRP), long glass fiber reinforced plastic (GMT), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP), Examples thereof include polyethylene fiber reinforced plastic (DFRP).
  • a workpiece may contain a fiber reinforced composite material in part, and is not specifically limited.
  • FIG. 5 is a side view relating to the second embodiment of the present invention.
  • FIG. 6 is a front view relating to the tip of the drill shown in FIG. 7 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 8 is an enlarged cross-sectional view of the outer peripheral cutting edge of the drill shown in FIG.
  • the drill 10 includes a tip cutting edge 14 that is a tip, a taper portion 13 having an outer peripheral cutting edge 16, a straight portion 12 formed in a round land drill shape, and a shank 11. Each of them is configured to be connected and integrated on the same axis.
  • the drill 10 is a two-blade drill, in which a straight portion 12 is connected to the tip of the shank 11, and a tapered portion 13 is connected to the tip of the straight portion 12 integrally.
  • the taper part 13, the straight part 12, and the shank 11 are connected with a tolerance of coaxiality 0.01.
  • the taper portion 13 has a tapered shape formed by a difference in diameter between the front end side outer diameter D4 and the rear end side outer diameter D5, and the straight portion 12 is integrally connected to the rear end side.
  • the straight portion 12 is formed to have a larger diameter than the tapered portion 13.
  • a tip end cutting edge 14 having a tip end angle ⁇ 1 is connected to the tip end side of the tapered portion 13.
  • a tapered outer periphery cutting edge 16 is formed on the tapered outer periphery formed from the front end side outer diameter D4 to the rear end side outer diameter D5 of the taper portion 13 so that the diameter of the drilling hole continuously increases.
  • Two pieces of chip discharge grooves 15 that are set and twisted spirally along the outer peripheral cutting edge 16 are formed.
  • the straight portion 12 is formed in a round land drill shape so as to shape a portion left uncut by the tapered portion 13 which is a prepared hole processing portion.
  • the tip cutting edge 14 which is the tip portion has a tip angle ⁇ 1 formed by ridgelines 17 and 18 of the cutting edge, and the tip angle ⁇ 1 is set in a range of 60 ° to 140 °. .
  • chip discharge grooves 15 are continuously formed in a spiral shape with a twist angle ⁇ 3.
  • the twist angle ⁇ 3 of the chip discharge groove 15 depends on the size of the tip angle and the material of the workpiece, but it can be set to 60 ° or less in order to prevent the cutting edge from becoming too sharp and easily chipped.
  • the chips containing the fiber material of the composite material can be quickly discharged by setting the angle to 60 ° or less.
  • the marginal edge 16 as shown in FIG. 3 is not set on the outer peripheral cutting edge 16 of the tapered portion 13 which is a pilot hole machining portion, and as shown in FIG.
  • the rake angle ⁇ 5 and the relief angle ⁇ 4 are set in the range of 5 ° to 20 °, and the outer peripheral cutting edge 16 is formed on the outer peripheral edge of the tapered portion 13.
  • the taper angle ⁇ 2 resulting from the diameter difference between the front end side outer diameter D4 and the rear end side outer diameter D5 of the taper portion 13 is set to 45 ° or less.
  • the taper angle ⁇ 2 is greater than 45 °, the thrust resistance exceeds the rotational force, so that a large burr is generated and cannot be reliably removed at the straight portion.
  • the length L5 from the front end side outer diameter D4 to the rear end side outer diameter D5 of the taper portion 13 is determined by the taper angle ⁇ 2.
  • FIG. 7 is a cross-sectional view of the straight portion 12 when the CC cross section shown in FIG. 5 is viewed from the rear end side of the straight portion 12 toward the tapered portion 13.
  • the straight portion 12 is formed in a round land shape and has a finishing diameter D6 that is 0.01 mm to 0.1 mm larger than the outer diameter D5 on the rear end side of the tapered portion 13.
  • the axial centers of the tip cutting edge 14, the taper part 13 and the straight part 12 are aligned with the axis of rotation, and the connecting part between the taper part 13 and the straight part 12 has an outer diameter on the tip side of the straight part 12 of the taper part 13. It is connected in a tapered shape with a reduced diameter toward the rear end side outer diameter.
  • the tip cutting edge 14, the taper portion 13, the straight portion 12, and the shank 11 are integrated with a tolerance of coaxiality 0.01.
  • the surface of the drill 10 main body is covered with a coating 19 made of diamond, as shown in FIG.
  • the coating film 19 can be formed by, for example, a well-known CVD method or PVD method, and may be a DLC film.
  • Drills specializing in the processing of composite materials such as fiber reinforced resin materials need to sharpen the cutting edge and improve sharpness.
  • the cutting edge radius can be reduced. Can be shaped small.
  • chipping and abrasion of the cutting edge tip are likely to occur. Therefore, by forming the coating film 19 with nano-diamond coating, the outer peripheral cutting edge has a good sharpness without increasing the diameter of the cutting edge radius.
  • FIG. 9 is an explanatory diagram using a model for the taper angle of the taper portion forming the outer peripheral cutting edge and the thrust resistance applied during processing.
  • the taper portion has a taper angle ⁇ 2 ( ⁇ 2 in the second embodiment), and the cutting resistance F applied at the time of drilling is displayed as a vector up to the intersection with the perpendicular drawn from the center of the taper surface toward the center line.
  • the vertical component of the cutting force F is the thrust resistance H
  • the horizontal component of F is the back component U.
  • FIG. 9A shows a model with a taper angle ⁇ 2 of less than 45 °
  • FIG. 9B shows a model with a taper angle ⁇ 2 of 45 °
  • FIG. 9C shows a taper angle ⁇ 2 of 45 °.
  • the thrust resistance H increases as the taper angle ⁇ 2 increases, and the taper angle ⁇ 2 should be 45 ° or less.
  • the thrust resistance H is reduced, which can contribute to the reduction of occurrence of burrs and delamination.
  • FIG. 10 is an explanatory diagram regarding the difference between the cutting action of the conventional straight twist drill and the drill of the present invention.
  • FIG. 10A is an explanatory diagram regarding the cutting action of a straight twist drill, in which a linear blade provided at the tip rotates and cuts in the axial direction, similar to the case of cutting with a scissors. This is the cutting action.
  • FIG. 10B is an explanatory diagram relating to the cutting action by the drill of the present invention, and the portion B2 is cut in the same manner as the cutting action of the straight twist drill, but for guiding the outer peripheral cutting edge provided in the tapered portion. It also plays a role in improving centripetality.
  • Part B1 shows the cutting action by the outer peripheral cutting edge of the taper portion, and the outer peripheral cutting edge provided in the taper portion is formed in an arc shape and a spiral shape, and is formed into a tapered shape as a whole.
  • the material is continuously cut by point contact, generates powdery chips, and contributes to reduced wear of the outer peripheral cutting edge.
  • the outer peripheral cutting edge has the same cutting action as that of cutting with a knife due to the inclination by the twist angle and the rotation of the cutting edge along the outer peripheral surface direction accompanying the drill rotation, and a sharp cutting edge is obtained. Further, since the outer peripheral cutting edge is spiral and formed in a tapered shape as a whole, the total extension of the cutting edge for expanding the diameter can be taken longer, which contributes to the improvement of the tool life.
  • FIG. 11 is an explanatory diagram relating to a machining method when the drill according to the present invention is used.
  • FIG. 11A shows a state immediately before the start of drilling, and the tip of the drill 10 is set so as to abut on the plate-shaped workpiece M vertically.
  • tip part bites with respect to the workpiece M (for example, fiber reinforced composite material), and the outer periphery of a taper part is cut
  • FIG. 11C the taper portion enters the workpiece M while the drill 10 rotates, and the diameter expanding process is performed by the outer peripheral cutting edge.
  • pilot hole processing is performed without causing delamination and burrs in the processed portion.
  • the straight portion enters the workpiece while the drill 10 is rotated, and finishing is performed. Then, after the straight portion is removed from the workpiece M while finishing, the drill 10 is pulled up and the drilling process is completed.
  • FIG. 12 is an external perspective view of a machining apparatus using the drill according to the present invention.
  • the machining apparatus 100 includes a moving means including a XYZ three-axis movable mechanism by a ball screw mechanism or a linear motor mechanism and a five-axis mechanism to which a rotation mechanism around the X and Y axes is added.
  • the Z-axis moving mechanism 101 supports the drill 104 attached to the spindle shaft 103 and moves it up and down.
  • a ball screw mechanism or a linear motor mechanism is used as the moving means.
  • the Z-axis moving mechanism 101 includes a drive source that rotationally drives the spindle shaft 103.
  • the XY axis moving mechanism 102 moves the installation table to the X axis, the Y axis, or the XY compound axis.
  • a ball screw mechanism or a linear motor mechanism is used as the moving means.
  • a support tool 106 such as a vise or a restraining jig is disposed on the installation table, and a workpiece 105 made of a fiber reinforced composite material or the like is placed and fixed on the support tool 106.
  • the XY axis moving mechanism 102 is driven by a ball screw mechanism or a linear motor mechanism.
  • the Z-axis moving mechanism 101 and the XY-axis moving mechanism 102 are controlled to perform drilling while rotating the drill 104 with respect to the workpiece 105.
  • the support tool 106 what has the function to pinch
  • the spindle axis may be arranged on the X axis or the Y axis.
  • Example 1 As shown in FIG. 5, a cutting test was performed on a drill having a tip portion having a tip cutting edge and a tapered portion and a straight portion on which an outer peripheral cutting edge was formed, and a thrust resistance (force applied in the drill axial direction) was measured.
  • the drill base material is cemented carbide and diamond coating
  • the tip angle ⁇ 1 135 ° of the tip of the drill
  • the tip of the taper Side outer diameter D4 3.0 mm
  • rear end side outer diameter D5 5.0 mm of the tapered portion
  • outer diameter D6 5.0 mm of the straight portion
  • clearance angle ⁇ 4 of the outer peripheral cutting edge of the tapered portion 10 °
  • the drill base material was high speed, TiCN coating was performed
  • the cutting test was performed under the following conditions, and carbon fiber reinforced plastic was cut for the purpose of measuring the thrust resistance (force applied to the drill axis direction) in drilling.
  • ⁇ Work material> A plate-shaped body made of carbon fiber reinforced plastic (manufactured by Toray; model T700) with a thickness of 5 mm
  • Kistler cutting dynamometer model 9123C
  • FIG. 13 is a table showing measurement results in a cutting test when using the drills A to D and the comparative drills E to G shown in FIG. 5 in which no margin is set on the outer peripheral cutting edge.
  • the thrust resistance unit: N
  • the average value of the measured values at the time of processing 1 to 5 holes was calculated.
  • Example 2 Next, the same cutting test was performed using the same seven types of drills as in Example 1, and the presence or absence of burrs near the through hole of the workpiece (carbon fiber reinforced plastic) was observed with the naked eye.
  • FIG. 14 is a table showing the observation results when the number of burrs in the vicinity of the through hole by 7 types of drills is processed up to the number of processing of 10 holes, 40 holes, 80 holes, and 120 holes.
  • FIG. 15 shows the case where drills A and G, which are comparative examples, and the drills E to G, which are comparative examples, are processed to the number of holes of 1 hole, 10 holes, 40 holes, and 100 holes, respectively, with respect to the presence or absence of burrs. It is a table
  • the composite material is provided with a structure in which a tip portion having a tip cutting edge, a taper portion having an outer peripheral cutting edge, and a straight portion for finishing are connected and integrated like a drill according to the present invention.
  • stable cutting without burrs and delamination can be performed, and high-definition and high-precision drilling can be realized with a single drill with a simple structure and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

繊維強化複合材料を少なくとも一部に含む被加工材の穿孔加工において、バリ及び層間剥離のほとんど発生しない高品質の穿孔加工を可能にする複合材料用ドリルを提供することを目的とする。複合材料用ドリル1は、先端切れ刃5が形成された先端部と、先端部の後端側に連接して形成されるとともに先端側外径及び当該先端側外径よりも大径の後端側外径の径差でテーパ形状に形成されたテーパ部4と、テーパ部4の後端側に連接して形成されるとともにテーパ部4の後端側外径よりも大径の仕上げ加工径が形成可能となるように全体が同径に形成されたストレート部3とを有し、テーパ部4の外周には、螺旋状にねじれた外周切れ刃7が形成されて連続的に穿孔径が大きくなるように設定されている。

Description

複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
 本発明は、CFRP(Carbon Fiber Reinforced Plastics;炭素繊維強化プラスチック)に代表される繊維強化複合材料等の複合材料の穿孔加工に好適なドリル、より詳しくは、1回の穿孔作業で加工部分にバリを生じることなく、穿孔加工面に層間剥離を発生させない高品位の穿孔加工を行うことができる複合材料用ドリルに関する。
 CFRPに代表される繊維強化複合材料等の穿孔加工では、ダイヤモンドコートしたストレートの超硬ドリルを用いて行う方法が公知である。
 しかし、この方法で一気に穿孔加工を行う場合、穿孔時の切削抵抗が大きく穿孔加工部分にバリが発生しやすい。バリの発生を抑える方法としては、例えば、特許文献1では、FPC(Flexible Printed Circuits;フレキシブルプリント基板)加工用のドリルについて、逃げ面を二番逃げ面及び三番逃げ面で形成し、三番逃げ面の逃げ角を33~50°に設定することでチゼル刃よりも外周側の切れ刃の長さを短縮した点が記載されている。そして、その切れ刃によって生成される切屑の幅が小さくなることで切屑の排出性が向上し、排出性の悪化により発生するバリを抑制している。
 また、特許文献2及び3には、先端側に小径部を設けて貫通穴のバリを抑制するドリルが記載されている。特許文献4には、CFRP及びアルミ合金板の同時穿孔に適したドリルとして、先端角118°の一次切刃と先端角約30°の二次切刃を連ならせたダブルアングルドリルが記載されている。特許文献5には、CFRPの穿孔に適したドリルとして、下穴を加工する下穴加工部と仕上げ部を持つ形状で、仕上げ部と下穴加工部との径差を0.1mm以上2mm以下とした2段構造ドリルが記載されている。
特開2005-88088号公報 特開2001-54810号公報 実開平1-99517号公報 実用新案登録第2602032号公報 特開2008-836号公報
 繊維強化複合材料、中でもCFRPは、軽量でありながら高い強度と剛性を備えており、航空機の構造材等に多用されている。航空機の構造材に用いられるCFRPは、品質に関する要求が厳しく、例えば、他部材との合わせ面等において突出するバリが生じておらず、CFRPの穿孔面で層間剥離が生じていないことが求められる。
 ところが、CFRPは、切断しにくい炭素繊維を含み、炭素繊維とそれを結合させるバインダーである樹脂材料とが層状に形成された構造であるため、穿孔加工では、樹脂材料又は金属材料の単独材料からなる被加工材よりも加工部分にバリが発生しやすく、加工時のスラスト抵抗により層間剥離が発生しやすい。こうした繊維強化複合材料の穿孔加工に関する課題に対して、上記の特許文献1及び2に記載された技術では実用面で十分な効果が得られない。ここで「スラスト抵抗」とは、ドリル加工における穿孔送り方向と反対方向にかかる抵抗力のことである。
 特許文献3では、特許文献2と同様にドリルの先端側に小径部を形成するだけの対応であるため、被加工材がCFRPの場合、特許文献3に記載された技術でもバリの抑制に関して満足な効果が得られない。
 このため、CFRPの穿孔加工において高品位の加工処理が求められるときには、特許文献4に記載されているような専用のドリルが採用されているが、特許文献4に記載されたダブルアングルドリルは耐久性に問題があり、30~40穴の加工回数で加工部分にバリが発生して新しいドリルとの交換が必要となる。
 特許文献4に記載されたドリルは、下穴加工部と仕上げ加工部を有する2段構造のドリルであり、下穴加工部で発生したバリを仕上げ加工部で取り除く加工形態をとっている。しかし、仕上げ加工部と下穴加工部との間の径差を大きくした形状で、切削機構は通常のドリル加工と同じで、むしれやバリの抑制を根本的に解決するものではない。
 このため、特許文献4では、ねじれ角を小さくし切屑排出性を良くすることで、切屑づまりによるバリの発生を抑える対策を行っている。しかし、加工部を直線状の切り刃構造とするだけでは、加工時のスラスト抵抗の低減を図ることができず、工具刃先の耐摩耗性向上にはつながらないため、特許文献4に記載された技術でも満足な効果が得られない。
 特許文献5では、下穴加工部が複数の段状構造であるため、拡径時のドリルが受けるスラスト抵抗が大きく、工具刃先の耐摩耗性向上に問題がある。
 本発明は、こうした従来技術の課題を鑑みてなされたものであって、テーパ形状を有するテーパ部及びストレート部を備えたドリルによる複合加工を行うことで、被加工材にバリや層間剥離をほとんど発生させず高品位の穿孔加工を1工程で行うことができるようにすることを課題としている。
 本発明に係る複合材料用ドリルは、繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する複合材料用ドリルであって、先端切れ刃が形成された先端部と、前記先端部の後端側に連接して形成されるとともに先端側直径及び当該先端側直径よりも大径の後端側直径の径差でテーパ形状に形成されたテーパ部とを有し、前記テーパ部の外周には、螺旋状にねじれた外周切れ刃が形成されて連続的に穿孔径が大きくなるように設定され、また前記テーパ部の後端側に連接して形成されるとともに前記テーパ部の前記後端側直径よりも大径の仕上げ加工径が形成可能となるように全体が同径に形成されたストレート部を有していることを特徴とする。さらに、前記テーパ部には、前記外周切れ刃に沿って螺旋状にねじれた切屑排出溝が形成されていることを特徴とする。さらに、前記テーパ部は、その先端側外径及び後端側外径に接する外径線とドリル軸中心線との間のテーパ角を45°以下に設定していることを特徴とする。さらに、前記先端部の前記先端切れ刃は、60°~140°の先端角を有しており、前記テーパ部の前記外周切れ刃は、前記先端切れ刃と連続して形成されているとともに前記テーパ部のランド外周に接する円錐面に対してすくい角又はすくい角及び逃げ角が形成されていることを特徴とする。さらに、前記先端部、前記テーパ部及び前記ストレート部は、同軸状に一体化されていることを特徴とする。さらに、前記ストレート部は、丸ランドドリル状又はリーマ状に形成されていることを特徴とする。さらに、前記先端部、前記テーパ部及び前記ストレート部の軸心を回転軸心に合致させていることを特徴とする。さらに、前記テーパ部及び前記ストレート部の間の連接部は、前記ストレート部の先端側外径が前記テーパ部の後端側外径に向けてテーパ状に縮径して連接していることを特徴とする。
 本発明に係る機械加工方法は、上記のドリルを用いて繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する機械加工法であって、前記先端部の前記先端切れ刃及び前記テーパ部の前記外周切れ刃により前記被加工材に下穴加工を行い、形成された下穴に前記ストレート部により仕上げ加工を行って穿孔することを特徴とする。
 本発明に係る機械加工装置は、上記のドリルを保持するとともに前記ドリルの中心軸を中心に回転駆動する駆動手段と、繊維強化複合材料を少なくとも一部に含む被加工材を支持する支持手段と、前記ドリルを前記被加工材に対して穿孔加工を行うように前記駆動手段及び/又は前記支持手段を相対的に移動させる移動手段とを備えていることを特徴とする。
 本発明に係る複合材料用ドリルは、下穴をテーパ部で切削抵抗を低く抑えながら拡径して穿孔加工でき、加工部分にバリが生じにくく、さらに被加工材に対して穿孔加工方向にかかるスラスト抵抗も低減し、複合材料内の境界面に対する剥離力も減少するため層間剥離が生じにくい。また、仕上げ加工を行うストレート部をテーパ部と同軸に設定して連接一体化した構成で行うため、高精度の穿孔加工を行うことができる。
 また、先端切れ刃を有しテーパ部のランド外周に接する円錐面に対してすくい角又はすくい角及び逃げ角が形成された外周切れ刃と、それに連接したストレート部を備えているので、切削抵抗を低減させ、バリや層間剥離をほとんど発生させず高精度の穿孔加工が実現できる。
本発明に係る第一実施形態に関する側面図である。 図1に示すドリルの先端部に関する正面図である。 図1のA-A線矢視の断面図である。 図1のB-B線矢視の断面図である。 本発明に係る第二実施形態に関する側面図である。 図5に示すドリルの先端部に関する正面図である。 図5のC-C線矢視の断面図である。 図5に示すドリルの外周切れ刃に関する拡大断面図である。 外周切れ刃を形成するテーパ部のテーパ角及び加工時に加わるスラスト抵抗についてモデルを用いた説明図である。 従来のストレートツイストドリルと本発明のドリルの切削作用との違いに関する説明図である。 本発明に係るドリルを用いた場合の機械加工方法に関する説明図である。 本発明に係るドリルを用いた機械加工装置に関する外観斜視図である。 切削試験における測定結果を示す表である。 貫通穴付近のバリの発生の有無に関する観察結果を示す表である。 貫通穴付近のバリの発生の有無を撮影した写真を示す表である。
 本発明の実施形態について、本発明を二つのねじれ溝を有する2枚刃ドリルに適用した場合について、第一実施形態としてストレート部をリーマ状に形成したもの、第二実施形態としてストレート部を丸ランドドリル状に形成したものの二形態について図面を参照して説明する。
 本発明に係る第一実施形態を図1~図4に基づいて説明する。図1は、第一実施形態に関するドリル1の側面図である。図2は、図1のテーパ部を先端側から後端側に向かって見た正面図である。図3は、図1のA-A線矢視の断面図である。図4は、図1のB-B線矢視の断面図である。
 本実施形態に係るドリル1は、2枚刃ドリルであって、シャンク2の先端にリーマを形成するストレート部3を連接し、ストレート部3の先端にテーパ部4を一体に連接してなる。テーパ部4の先端には、先端部である先端切れ刃5が形成されている。
 先端切れ刃5は、被加工材に対して最初に食付きを行い、切削加工を行う切れ刃で、テーパ部4に形成された外周切れ刃7による拡径加工を誘導するものである。また、その先端角を60°~140°の範囲で形成することでドリルの食付き性および求心性が向上し、ドリルの回転ぶれが低減する。
 図1に示すように、ローソク研ぎ形状の刃立て面中央部の突起部と切り刃面との軸方向段差長さL1は、0.5mm以上に設定される。刃立て面中央部を切り刃面よりも突出させることで、下穴加工時の求心性が良くなる。先端切れ刃5の先端角α1は、90°の角度に設定することで、ドリル先端の剛性と求心性を向上させ、先端切れ刃5の切れ味が良くなる。
 テーパ部4は、先端側外径D1と後端側外径D2の径差で形成されるテーパ状の形態をなし、その後端側にはストレート部3が一体に連接されている。ストレート部3は、テーパ部4よりも大径に形成されている。ここで、「テーパ」とは、先端側外径及び後端側外径に接する直線とドリル中心軸との間に所定の角度が設定されている形状を意味する。
 テーパ部4は、図2に示すように、ローソク研ぎ形状とし、先端切れ刃5と連続して形成される2枚の外周切れ刃7を有する。先端側外径D1から後端側外径D2まで形成されるテーパ状外周には、螺旋状にねじれた外周切れ刃7が形成されて連続的に穿孔径が大きくなるように設定され、外周切れ刃7に沿って螺旋状にねじれた切屑排出溝6が形成されている。
 テーパ部4の外周に設けられる切屑排出溝6は、ねじれ角α3をもつ溝として形成される。切屑排出溝6のねじれ角α3は、先端角の大きさや被加工材の材質にもよるが、切れ刃が鋭くなりすぎて欠け易くなることを防止するために、60°以下に設定することが好ましく、60°以下に設定することで複合材料の繊維材料を含んだ切屑を速やかに排出できる。
 図3に示すように、外周切れ刃7は、マージン8及び切屑排出溝6の交差稜で形成されており、テーパ部4のランド外周に接する円錐面に対して正のすくい角α4を10~30°に設定した切れ刃として形成される。このように形成することで、刃先の角度が鋭くなり切れ味を著しく向上させることができる。
 図1に示すように、テーパ部4の先端側外径D1及び後端側外径D2の径差から生じるテーパー角α2は、45°以下に設定される。テーパ角α2が45°より大きくなるとスラスト抵抗が回転力を上回るため、大きいバリが発生してストレート部で確実に除去することができなくなる。テーパ部4の先端側外径D1から後端側外径D2までの長さL2は、テーパ角α2で決定される。
 図3に示すように、テーパ部4の外周にはマージン8が形成されており、10~30°の正のすくい角α4を有する切れ刃として設定される。
 図1及び図4に示すように、ストレート部3の先端にはテーパ部4が連接され、ストレート部3の後端にはシャンクが連接される。特に、テーパ部4とストレート部3との連接部においては、極端な段差形状を無くすために、ストレート部3の先端側がテーパ状に加工されている。
 ストレート部3は、下穴加工を行うテーパ部4によって切り残された部分を整形加工するためにリーマ状に形成されており、テーパ部4の後端側外径D2よりも0.01mm~0.1mm大径の仕上げ加工径D3に形成されている。先端切れ刃5、テーパ部4及びストレート部3の軸心を回転軸心に合致させ、テーパ部4及びストレート部3の間の連接部は、ストレート部3の先端側外径がテーパ部4の後端側外径に向けてテーパ状に縮径して同軸度0.01の公差で連接されて加工を行うことで、バリを発生させず加工品質の良い穿孔加工が可能となる。また、先端切れ刃5、テーパ部4、ストレート部3及びシャンク2についても、同軸度0.01の公差で連接されている。
 ドリルの素材としては、超硬合金、ハイス、工具鋼などが挙げられるが、下穴加工を行うテーパ部4及び先端切れ刃5には超硬合金を使うのが望ましい。また、テーパ部4及びストレート部3は、それぞれ異なる素材で構成してもよい。
 繊維強化複合材料の穿孔加工では、ドリル刃先のチッピングや磨耗が激しいため、ドリル表面をダイヤモンド薄膜やDLC膜でコーティングすることが望ましい。
 ドリル1は、公知の機械加工装置に装着され、被加工材として複合材料の穿孔加工に用いられる。複合材料としては、繊維強化複合材料の穿孔加工に好適であり、特に繊維が層状に積層した複合材料に好適である。繊維強化複合材料としては、炭素繊維強化プラスチック(CFRP)、ガラス繊維強化プラスチック(GFRP)、ガラス長繊維強化プラスチック(GMT)、ボロン繊維強化プラスチック(BFRP)、アラミド繊維強化プラスチック(AFRP, KFRP)、ポリエチレン繊維強化プラスチック(DFRP)が挙げられる。なお、被加工材は、一部に繊維強化複合材料を含むものでもよく、特に限定されない。
 次に、本発明に係る第二実施形態を図5~図8に基づいて説明する。図5は、本発明に係る第二実施形態に関する側面図である。図6は、図5に示すドリルの先端部に関する正面図である。図7は、図5のC-C線矢視の断面図である。図8は、図5に示すドリルの外周切れ刃に関する拡大断面図である。
 本実施形態に係るドリル10は、図5に示すように、先端部である先端切れ刃14、外周切れ刃16を有するテーパ部13、丸ランドドリル状に形成されたストレート部12及びシャンク11から構成され、それぞれが同軸上に連接一体化されて構成する。
 ドリル10は、2枚刃ドリルであって、シャンク11の先端にストレート部12を連接し、ストレート部12の先端にテーパ部13を一体に連接してなる。テーパ部13、ストレート部12及びシャンク11は、同軸度0.01の公差で連接される。
 テーパ部13は、先端側外径D4及び後端側外径D5の径差で形成されるテーパ状の形態をなし、その後端側にはストレート部12が一体に連接されている。ストレート部12は、テーパ部13よりも大径に形成されている。テーパ部13の先端側には、先端角β1を有する先端切れ刃14が連接されている。
 テーパ部13の先端側外径D4から後端側外径D5までに形成されるテーパ状外周には、螺旋状にねじれた外周切れ刃16が形成されて連続的に穿孔径が大きくなるように設定され、外周切れ刃16に沿って螺旋状にねじれた2条の切屑排出溝15が形成されている。ストレート部12は、下穴加工部であるテーパ部13によって切り残された部分を整形加工するために丸ランドドリル状に形成されている。
 図5に示すように、先端部である先端切れ刃14は、刃先の稜線17及び18で先端角β1が形成されており、先端角β1は、60°~140°の範囲に設定されている。
 図5に示すように、テーパ部13及びストレート部12の外周には、切屑排出溝15がねじれ角β3で螺旋状に連続して形成されている。切屑排出溝15のねじれ角β3は、先端角の大きさや被加工材の材質にもよるが、切れ刃が鋭くなりすぎて欠け易くなることを防止するために、60°以下に設定することが好ましく、60°以下に設定することで複合材料の繊維材料を含んだ切屑を速やかに排出できる。
 下穴加工部であるテーパ部13の外周切れ刃16は、図3に示すようなマージン8が設定されておらず、図6に示すように、テーパ部13のランド外周に接する円錐面に対して、すくい角β5及び逃げ角β4をそれぞれ5°~20°の範囲で設定しており、テーパ部13の外周縁に外周切れ刃16が形成されている。
 図5に示すように、テーパ部13の先端側外径D4及び後端側外径D5の径差から生じるテーパー角β2は、45°以下に設定される。テーパ角β2が45°より大きくなるとスラスト抵抗が回転力を上回るため、大きいバリが発生してストレート部で確実に除去することができなくなる。テーパ部13の先端側外径D4から後端側外径D5までの長さL5は、テーパ角β2で決定される。
 図7は、図5に示すC-C断面をストレート部12の後端側からテーパ部13方向に見たストレート部12の断面図である。ストレート部12は、丸ランド形状に形成され、テーパ部13の後端側外径D5よりも0.01mm~0.1mm大径の仕上げ加工径D6に形成されている。先端切れ刃14、テーパ部13及びストレート部12の軸心を回転軸心に合致させ、テーパ部13及びストレート部12の間の連接部は、ストレート部12の先端側外径がテーパ部13の後端側外径に向けて縮径したテーパ形状で連接している。また、先端切れ刃14、テーパ部13、ストレート部12及びシャンク11は、同軸度0.01の公差で一体化される。
 ドリル10本体の表面は、図8に示すように、ダイヤモンドからなる被膜19に覆われている。被膜19は、例えば、周知のCVD法又はPVD法で形成することができ、DLC膜であってもよい。繊維強化樹脂材料等の複合材料の加工に特化したドリルでは、刃先を鋭くし切れ味を向上させることが必要で、ドリル母材に超微粒子超硬合金材料を使用することで、刃先先端半径を小さく整形することができる。また、刃先を鋭くした場合刃先先端の欠けや磨耗が発生しやすいため、ナノダイヤモンドコーティングで被膜19を形成することで、刃先先端半径の径を大きくすることなく、外周切れ刃の良好な切れ味を長時間維持することができる。また、刃先の磨耗等により切れ味が悪くなった場合でも、下穴加工時に発生したバリをストレート部12によって効果的に除去することができるので、高精度の穿孔加工を安定して行うことができる。
 図9は、外周切れ刃を形成するテーパ部のテーパ角及び加工時に加わるスラスト抵抗にについてモデルを用いた説明図である。テーパ部は、テーパ角α2(第二実施形態ではβ2)とし、穿孔加工時に加わる切削抵抗Fは、テーパ面中心から中心線に向かって引いた垂線との交点までをベクトルで表示する。そして、切削抵抗Fの垂直成分をスラスト抵抗H、Fの水平成分を背分力Uとする。
 図9(a)は、テーパ角α2が45°未満のモデルであり、図9(b)は、テーパ角α2が45°のモデルであり、図9(c)は、テーパ角α2が45°より大きいモデルであり、それぞれ切削抵抗F、スラスト抵抗H及び背分力Uについてベクトル表示している。図9(a)、図9(b)及び図9(c)をみると、テーパ角α2が大きくなるに従いスラスト抵抗Hが増加するようになっており、テーパ角α2を45°以下とすることでスラスト抵抗Hが小さくなってバリ及び層間剥離の発生の低減に寄与することができる。
 図10は、従来のストレートツイストドリルと本発明のドリルの切削作用との違いに関する説明図である。図10(a)は、ストレートツイストドリルの切削作用に関する説明図であり、先端に設けられた直線状の刃が軸方向に回転して切削するようになっており、鉋で切削する場合と同様の切削作用である。図10(b)は、本発明のドリルによる切削作用に関する説明図であり、部分B2は、ストレートツイストドリルの切削作用と同様に切削するが、テーパ部に設けた外周切れ刃を誘導するための求心性向上の役割も担っている。部分B1は、テーパ部の外周切れ刃による切削作用を示し、テーパ部に設けた外周切れ刃は円弧状で螺旋状に形成され全体としてテーパ状に形成されているため、外周切れ刃及び被加工材は、点接触による切削が連続的に行われ、粉体状の切屑を生成し、外周切れ刃の磨耗低減に寄与する。また、外周切れ刃は、ねじれ角による傾斜とドリル回転に伴う外周面方向に沿う切れ刃の回転により、ナイフで切削する場合と同様の切削作用となり、鋭い切れ味が得られる。また、外周切れ刃は、螺旋状で全体としてテーパ状に形成されているため、拡径を行う切れ刃の総延長を長く取ることができるため、工具寿命の向上にも寄与する。
 図11は、本発明に係るドリルを用いた場合の機械加工方法に関する説明図である。図11(a)では、穿孔開始直前の状態を示しており、ドリル10の先端部が板状の被加工材Mに対して垂直に当接するように設定されている。次に、図11(b)では、ドリル10が回転しながら先端部の先端切れ刃が被加工材M(例;繊維強化複合材料)に対して最初に食付きを行い、テーパ部の外周切れ刃による拡径加工を誘導する。次に、図11(c)は、ドリル10が回転しながらテーパ部が被加工材Mに進入して外周切れ刃による拡径加工が行われる。この段階では、加工部分に層間剥離及びバリを発生させないで下穴加工が行われる。次に、図11(d)では、ドリル10が回転しながらストレート部が被加工材に進入して仕上げ加工が行われる。そして、ストレート部が仕上げ加工を行いながら被加工材Mから抜け出た後、ドリル10を引き上げて穿孔加工が終了する。
 図12は、本発明に係るドリルを用いた機械加工装置に関する外観斜視図である。機械加工装置100は、ボールねじ機構又はリニアモータ機構等によるXYZの3軸方向の可動機構並びにX軸及びY軸周りの回転機構を付加した5軸機構を備える移動手段を備えている。Z軸移動機構101は、スピンドル軸103に取り付けられたドリル104を支持して上下方向に移動させる。移動手段としては、ボールねじ機構又はリニアモータ機構が用いられる。また、Z軸移動機構101は、スピンドル軸103を回転駆動する駆動源を備えている。
 XY軸移動機構102は、X軸又はY軸あるいはXY複合軸に設置テーブルを移動させる。移動手段としては、ボールねじ機構又はリニアモータ機構が用いられる。設置テーブルには、バイス又は拘束治具等の支持具106が配置されており、支持具106に繊維強化複合材料等からなる被加工材105が載置固定されている。XY軸移動機構102は、ボールねじ機構又はリニアモータ機構により駆動される。
 そして、Z軸移動機構101及びXY軸移動機構102を制御して被加工材105に対してドリル104を回転駆動しながら穿孔加工が行われる。
 なお、支持具106としては、被加工材105の厚み方向又は面方向から挟む機能を有するものを用いてもよい。また、スピンドル軸をX軸又はY軸に配置するようにすることもできる。
 [実施例1]
 図5に示すように、先端切れ刃を有する先端部並びに外周切れ刃が形成されたテーパ部及びストレート部を備えたドリルについて切削試験を行い、スラスト抵抗(ドリル軸方向にかかる力)測定した。
 切削試験では、外周切れ刃にマージンが設定されていない図5に示す4種類のドリル及び比較例として3種類のドリルの計7種類のドリルを使用した。
 図5に示すドリルとしては、ドリル母材を超硬合金、ダイヤモンドコーティングとし、ドリルの先端部の先端角β1=135°、ドリル全長103mm、テーパ部のテーパ角β2=2°、テーパ部の先端側外径D4=3.0mm、テーパ部の後端側外径D5=5.0mm、ストレート部の外径D6=5.0mm、シャンク径6.0mm、テーパ部の外周切れ刃の逃げ角β4=10°、テーパ部の外周切れ刃のすくい角β5=10°を共通仕様とし、切屑排出溝のねじれ角β3を、β3=20°(ドリルA)、β3=30°(ドリルB)及びβ3=40°(ドリルC)に設定した3種類ドリルA~Cを使用した。また、ドリル母材をハイスとし、TiCNコーティングを行い、ねじれ角β3=20°(ドリルD)に設定し、それ以外はドリルA~Cと同様に設定したドリルDの計4種類を使用した。
 比較例のドリルとしては、ドリル外周縁の外周切れ刃にテーパ角が付いていない(β2=0°)ドリルを比較対象とし、ドリル母材を超硬合金、ダイヤモンドコーティング、ドリルの先端角β1=118°、外周切れ刃のねじれ角β3=30°、ドリルの外径D4=D5=D6=5.0mm(ドリルE)、ドリル母材を超硬合金、TiCコーティング、ドリルの先端角β1=140°、外周切れ刃のねじれ角β3=30°、ドリルの外径D4=D5=D6=5.0mm(ドリルF)、ドリル母材をハイス、先端形状を特殊刃立て(ローソク形)、外周切れ刃のねじれ角β3=30°、ドリルの外径D4=D5=D6=5.0mm(ドリルG)の計3種類を使用した。
 切削試験は、以下の条件で行い、穿孔加工におけるスラスト抵抗(ドリル軸方向にかかる力)測定を目的として、炭素繊維強化プラスチックの切削加工を行った。
<切削速度>
ドリル母材が超硬合金の場合100m/min
ドリル母材がハイスの場合24m/min
<ドリルの送り速度>
ドリル母材が超硬合金の場合200mm/min
ドリル母材がハイスの場合150mm/min
<被加工材>
炭素繊維強化プラスチック(東レ製;型式T700)からなる板厚5mmの板状体
<切削油>
使用しない
<ドリル加工機>
株式会社松浦機械製作所製縦型MC(型式MC-510VF-Gr 型番BT40)
<切削抵抗測定機器>
キスラー社製切削動力計(型式9123C)
 図13は、外周切れ刃にマージンが設定されていない図5に示すドリルA~D及び比較例のドリルE~Gを使用した場合の切削試験における測定結果を示す表である。スラスト抵抗(単位;N)については、1穴~5穴加工時の測定値の平均値を算出した。
 スラスト抵抗の値をみると、実施例ではすべて50N以下であり、比較例よりも低い値となった。また、一般に炭素繊維強化プラスチックの切削には不適とされる、母材がハイスからなるドリルDで切削した場合でも、比較例の超硬合金からなるドリルEよりスライス抵抗が低く、良好な切削特性を示している。
 以上の結果から、図5に示すように、先端切れ刃を有する先端部並びに外周切れ刃が形成されたテーパ部及びストレート部を備えたドリルは、スラスト抵抗の低減に効果があることがわかった。また、外周切れ刃のねじれ角を大きくすることでスラスト抵抗が低下することがわかった。
 [実施例2]
 次に、実施例1と同様の7種類のドリルを用いて同様の切削試験を行い、被加工材(炭素繊維強化プラスチック)の貫通穴付近のバリの有無について肉眼で観察した。
 図14は、7種類のドリルによる貫通穴付近のバリの発生の有無について、10穴、40穴、80穴、120穴の加工数までそれぞれ加工した場合の観察結果を示す表である。
 観察結果をみると、実施例であるドリルA及びBについては、120穴の加工時においてもバリの発生は無かった。ドリルCについては、92穴目で折損した。ドリルCの折損は、切屑排出溝の角度であるねじれ角を大きくすることにより、ドリル心厚が細くなるとともに切屑の排出性の悪化が相乗して生じたと考えられる。一方、ドリルDについては、ハイス製のドリルでありながらドリルEとほぼ同等の効果を得ることができ、実施例のドリルは、バリ発生の抑制効果が大きいことがわかった。
 図15は、実施例であるドリルA及び比較例であるドリルE~Gについて切削試験後のバリ発生の有無について、1穴、10穴、40穴、100穴の加工数までそれぞれ加工した場合における貫通穴を撮影した写真を示す表である。
 写真で示すように、比較例のドリルを使用した場合、1穴目からバリが発生して良好な加工ができなかった。
 以上の結果から、本発明に係るドリルのように、先端切れ刃を有する先端部、外周切れ刃を有するテーパ部及び仕上げ加工を行うストレート部を連接一体化した構造を備えることで、複合材料に対してバリ及び層間剥離の発生しない安定した切削加工を行うことが可能となり、簡易構造かつ低コストで高品位・高精度の穿孔加工を1本のドリルで実現することができた。
1・・ドリル、2・・シャンク、3・・ストレート部、4・・テーパ部、5・・先端切れ刃、6・・切屑排出溝、7・・外周切れ刃、8・・マージン、10・・ドリル、11・・シャンク、12・・ストレート部、13・・テーパ部、14・・先端切れ刃、15・・切屑排出溝、16・・外周切れ刃、17・・刃先の稜線、18・・刃先の稜線、19・・被膜、100・・機械加工装置、101・・Z軸移動機構、102・・XY軸移動機構、103・・スピンドル軸、104・・ドリル、105・・被加工材、106・・支持具

Claims (11)

  1.  繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する複合材料用ドリルであって、先端切れ刃が形成された先端部と、前記先端部の後端側に連接して形成されるとともに先端側外径及び当該先端側外径よりも大径の後端側外径の径差でテーパ形状に形成されたテーパ部と、前記テーパ部の後端側に連接して形成されるとともに前記テーパ部の前記後端側外径よりも大径の仕上げ加工径が形成可能となるように全体が同径に形成されたストレート部とを有し、前記テーパ部の外周には、螺旋状にねじれた外周切れ刃が形成されて連続的に穿孔径が大きくなるように設定されていることを特徴とする複合材料用ドリル。
  2.  前記テーパ部には、前記外周切れ刃に沿って螺旋状にねじれた切屑排出溝が形成されていることを特徴とする請求項1に記載のドリル。
  3.  前記テーパ部は、前記先端側外径及び前記後端側外径に接する外径線とドリル軸の中心線との間のテーパ角を45°以下に設定していることを特徴とする請求項1又は2に記載のドリル。
  4.  前記先端部の前記先端切れ刃は、60°~140°の先端角を有しており、前記テーパ部の前記外周切れ刃は、前記先端切れ刃と連続して形成されているとともに前記テーパ部のランド外周に接する円錐面に対してすくい角又はすくい角及び逃げ角が形成されていることを特徴とする請求項1から3のいずれかに記載のドリル。
  5.  前記先端部、前記テーパ部及び前記ストレート部は、同軸状に一体化されていることを特徴とする請求項1から4のいずれかに記載のドリル。
  6.  前記ストレート部は、丸ランドドリル状又はリーマ状に形成されていることを特徴とする請求項5に記載のドリル。
  7.  前記先端部、前記テーパ部及び前記ストレート部の軸心を回転軸心に合致させていることを特徴とする請求項5又は6に記載のドリル。
  8.  前記テーパ部及び前記ストレート部の間の連接部は、前記ストレート部の先端側外径が前記テーパ部の前記後端側外径に向けてテーパ状に縮径して連接していることを特徴とする請求項5から7のいずれかに記載のドリル。
  9.  請求項1から8のいずれかに記載のドリルを備えた穿孔加工具。
  10.  請求項1から8のいずれかに記載のドリルを用いて繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する機械加工法であって、前記先端部の前記先端切れ刃及び前記テーパ部の前記外周切れ刃により前記被加工材に下穴加工を行い、形成された下穴に前記ストレート部により仕上げ加工を行って穿孔することを特徴とする機械加工方法。
  11.  請求項1から8のいずれかに記載のドリルを保持するとともに前記ドリルの中心軸を中心に回転駆動する駆動手段と、繊維強化複合材料を少なくとも一部に含む被加工材を支持する支持手段と、前記ドリルを前記被加工材に対して穿孔加工を行うように前記駆動手段及び/又は前記支持手段を相対的に移動させる移動手段とを備えていることを特徴とする機械加工装置。
PCT/JP2010/068401 2009-10-21 2010-10-19 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置 WO2011049095A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/503,193 US20120269591A1 (en) 2009-10-21 2010-10-19 Drill for composite material as well as machining method using same and machining apparatus using same
KR1020127010171A KR20120089685A (ko) 2009-10-21 2010-10-19 복합 재료용 드릴 및 그것을 사용한 기계 가공 방법 및 기계 가공 장치
EP10824944.2A EP2492034A4 (en) 2009-10-21 2010-10-19 DRILLING MACHINE FOR A COMPOSITE MATERIAL AND PROCESSING METHOD THEREFOR AND MACHINING DEVICE THEREWITH
CN2010800474987A CN102574219A (zh) 2009-10-21 2010-10-19 复合材料用钻头及使用其的机械加工方法及机械加工装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009241971 2009-10-21
JP2009-241971 2009-10-21
JP2010-234838 2010-10-19
JP2010234838A JP5135614B2 (ja) 2009-10-21 2010-10-19 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置

Publications (1)

Publication Number Publication Date
WO2011049095A1 true WO2011049095A1 (ja) 2011-04-28

Family

ID=43900318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068401 WO2011049095A1 (ja) 2009-10-21 2010-10-19 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置

Country Status (6)

Country Link
US (1) US20120269591A1 (ja)
EP (1) EP2492034A4 (ja)
JP (1) JP5135614B2 (ja)
KR (1) KR20120089685A (ja)
CN (1) CN102574219A (ja)
WO (1) WO2011049095A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157468A1 (ja) * 2011-05-18 2012-11-22 Uht株式会社 ドリル及びそれを用いた穿孔装置
FR2983422A1 (fr) * 2011-12-01 2013-06-07 Airbus Operations Sas Meche pour outil alesant conique
CN104999118A (zh) * 2015-07-13 2015-10-28 大连理工大学 一种用于碳纤维复合材料制孔的高效专用钻头
US9694432B2 (en) 2011-09-19 2017-07-04 Exactaform Cutting Tools Limited Drill reamer
US11084723B2 (en) 2016-12-08 2021-08-10 Arkema France Method for drying and purifying LiFSI

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011016960A1 (de) * 2011-02-02 2012-08-02 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Bohrwerkzeug und Verfahren zur Herstellung von Bohrungen
DE102011086422B4 (de) * 2011-11-15 2014-04-24 Kennametal Inc. Verfahren zur Herstellung eines Werkzeuges, sowie ein solches Werkzeug
WO2014073610A1 (ja) * 2012-11-09 2014-05-15 株式会社ミヤギタノイ ドリル及び穿孔の形成方法
JP5476590B1 (ja) * 2013-03-08 2014-04-23 福井県 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
CN104107935A (zh) * 2013-04-19 2014-10-22 苏州文鼎模具有限公司 一种阶梯钻
US9340998B2 (en) 2014-02-25 2016-05-17 Schlage Lock Company Llc Electronic lock with movable in-line locking lug
KR102434577B1 (ko) * 2015-05-08 2022-08-19 대구텍 유한책임회사 절삭 공구
CN105034076B (zh) * 2015-08-18 2016-07-27 大连理工大学 一种纤维增强复合材料高效制孔的专用刀具
JP2017113361A (ja) * 2015-12-25 2017-06-29 マニー株式会社 歯科用根管切削具
JP6961744B2 (ja) * 2015-12-25 2021-11-05 マニー株式会社 歯科用根管切削具
CN105499665B (zh) * 2016-01-08 2017-06-23 大连理工大学 用于叠层结构零件整体制孔的多阶梯多刃刀具
CN105499661B (zh) * 2016-01-13 2017-11-21 江西杰浩硬质合金工具有限公司 左螺旋右刃的匕首钻
EP3251776B1 (en) * 2016-06-02 2023-04-19 Sandvik Intellectual Property AB Method and apparatuses related to hole cutting
JP6896762B2 (ja) * 2016-12-01 2021-06-30 三菱重工業株式会社 ドリル及びこれを備えた穴開け加工装置
KR102027299B1 (ko) * 2017-11-24 2019-10-01 (주)우남기공 탄소복합소재 가공 형상 드릴
WO2021181518A1 (ja) * 2020-03-10 2021-09-16 住友電工ハードメタル株式会社 リーマ
TWI749587B (zh) * 2020-06-11 2021-12-11 惠亞工程股份有限公司 用於地板加工之多工裝置
CN113369543B (zh) * 2021-04-20 2023-03-24 遵义中铂硬质合金有限责任公司 一种耐磨合金涂层钻头及制备方法
CN113579648A (zh) * 2021-07-21 2021-11-02 成都飞机工业(集团)有限责任公司 一种含胶叠层材料的精孔加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156494A (en) * 1976-06-22 1977-12-26 Toshiba Corp Drill for working taper hole
JPS5318888A (en) * 1976-08-06 1978-02-21 Kubota Ltd Tapered punching device
JPS53103292A (en) * 1977-02-18 1978-09-08 V Nauchinooisusuredobuaterusuk Rotary tool for use in forming hole
JPS5431294U (ja) * 1977-08-04 1979-03-01
JPH0199517U (ja) 1987-12-22 1989-07-04
JP2602032Y2 (ja) 1993-04-06 1999-12-20 富士重工業株式会社 ダブルアングルドリル
JP2001054810A (ja) 1999-08-13 2001-02-27 Nissan Motor Co Ltd ドリル
JP2005088088A (ja) 2003-09-12 2005-04-07 Tungaloy Corp ドリル
JP2007144526A (ja) * 2005-11-24 2007-06-14 Next I&D株式会社 ツイストドリル
JP2008000836A (ja) 2006-06-21 2008-01-10 Sumitomo Electric Hardmetal Corp ドリル

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US252704A (en) * 1882-01-24 Combined drill and countersink
US716441A (en) * 1902-06-12 1902-12-23 George W Latham Boring-tool.
US1260068A (en) * 1917-01-05 1918-03-19 James Milton Sanders Auger.
US2258674A (en) * 1940-03-05 1941-10-14 George D Ceska Reamer
US2411209A (en) * 1944-07-26 1946-11-19 Pure Oil Co Bit
SE417680B (sv) * 1977-02-04 1981-04-06 Vnii Mekhanizirovannogo I Ruch Roterbart verktyg for upptagande av hal
JPS6338914U (ja) * 1986-08-28 1988-03-12
JPH0747243B2 (ja) * 1987-06-05 1995-05-24 富士重工業株式会社 複合材穿孔用ドリル
US4936721A (en) * 1989-07-03 1990-06-26 Meyer Jerry H Drill reamer bit
FR2656554A1 (fr) * 1989-12-28 1991-07-05 Snecma Outil de percage de precision pour materiaux composites.
JPH08257816A (ja) * 1995-03-28 1996-10-08 Nachi Fujikoshi Corp テーパ孔用工具
JPH09277109A (ja) * 1996-04-11 1997-10-28 Nachi Fujikoshi Corp ツイストドリル
JP2001328016A (ja) * 2000-05-19 2001-11-27 Hitachi Tool Engineering Ltd ツイスト用ドリル
JP2002166314A (ja) * 2000-11-29 2002-06-11 Alps Electric Co Ltd 孔開け工具
US6964546B1 (en) * 2002-06-04 2005-11-15 Northrop Grumman Corporation Method and apparatus for drilling countersunk holes
US7575401B1 (en) * 2004-11-18 2009-08-18 Precorp, Inc. PCD drill for composite materials
US7665935B1 (en) * 2006-07-27 2010-02-23 Precorp, Inc. Carbide drill bit for composite materials
JP2010017817A (ja) * 2008-07-11 2010-01-28 Nachi Fujikoshi Corp 繊維強化プラスチック用ドリル
US8052361B2 (en) * 2008-12-22 2011-11-08 Afzaal Mir Drill bit for drilling holes in carboresin laminates

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156494A (en) * 1976-06-22 1977-12-26 Toshiba Corp Drill for working taper hole
JPS5318888A (en) * 1976-08-06 1978-02-21 Kubota Ltd Tapered punching device
JPS53103292A (en) * 1977-02-18 1978-09-08 V Nauchinooisusuredobuaterusuk Rotary tool for use in forming hole
JPS5431294U (ja) * 1977-08-04 1979-03-01
JPH0199517U (ja) 1987-12-22 1989-07-04
JP2602032Y2 (ja) 1993-04-06 1999-12-20 富士重工業株式会社 ダブルアングルドリル
JP2001054810A (ja) 1999-08-13 2001-02-27 Nissan Motor Co Ltd ドリル
JP2005088088A (ja) 2003-09-12 2005-04-07 Tungaloy Corp ドリル
JP2007144526A (ja) * 2005-11-24 2007-06-14 Next I&D株式会社 ツイストドリル
JP2008000836A (ja) 2006-06-21 2008-01-10 Sumitomo Electric Hardmetal Corp ドリル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492034A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157468A1 (ja) * 2011-05-18 2012-11-22 Uht株式会社 ドリル及びそれを用いた穿孔装置
US9434009B2 (en) 2011-05-18 2016-09-06 Uht Corporation Drill and boring device using same
US9694432B2 (en) 2011-09-19 2017-07-04 Exactaform Cutting Tools Limited Drill reamer
FR2983422A1 (fr) * 2011-12-01 2013-06-07 Airbus Operations Sas Meche pour outil alesant conique
CN104999118A (zh) * 2015-07-13 2015-10-28 大连理工大学 一种用于碳纤维复合材料制孔的高效专用钻头
US11084723B2 (en) 2016-12-08 2021-08-10 Arkema France Method for drying and purifying LiFSI

Also Published As

Publication number Publication date
JP5135614B2 (ja) 2013-02-06
CN102574219A (zh) 2012-07-11
US20120269591A1 (en) 2012-10-25
EP2492034A1 (en) 2012-08-29
EP2492034A4 (en) 2014-04-16
KR20120089685A (ko) 2012-08-13
JP2011104766A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5135614B2 (ja) 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
EP2121224B1 (en) Cutter for drilling and reaming
JP5366003B2 (ja) ルーターエンドミル
US8602698B2 (en) Combination end milling/drilling/reaming cutting tool
JP6747791B2 (ja) ドリル及び被穿孔品の製造方法
WO2013099841A1 (ja) ドリル
JP5184902B2 (ja) 繊維強化複合材の穴あけ工具と穴あけ方法
JP5451831B2 (ja) 繊維強化複合材の穴あけ工具と穴あけ方法
JP2017024158A (ja) ドリル及びドリルヘッド
JP2009039811A (ja) 繊維強化複合材の穴あけ工具と穴あけ方法
JPWO2014073610A1 (ja) ドリル及び穿孔の形成方法
JP7340319B2 (ja) ドリル及び被穿孔品の製造方法
JP2008000836A (ja) ドリル
JP5476590B1 (ja) 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
WO2010086988A1 (ja) ダブルアングルドリル
JP2014012302A (ja) 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
JP5258677B2 (ja) トリプルアングルドリル
EP2758200B1 (en) Drill reamer
CN110744108A (zh) 一种加工复合材料具有刃倾槽结构的钻头加工方法
JP2020044616A (ja) 炭素繊維複合材用ドリル
JP2008142834A (ja) ドリル
JP2009039810A (ja) 繊維強化複合材の穴あけ方法
JP5540167B1 (ja) エンドミルの製造方法
JP2010260115A (ja) 繊維強化複合材料用穴あけ工具
JP7477308B2 (ja) 切削工具用のシャンク、切削工具及び切削加工方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047498.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010171

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010824944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010824944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13503193

Country of ref document: US