WO2011048786A1 - 2線式伝送器 - Google Patents

2線式伝送器 Download PDF

Info

Publication number
WO2011048786A1
WO2011048786A1 PCT/JP2010/006136 JP2010006136W WO2011048786A1 WO 2011048786 A1 WO2011048786 A1 WO 2011048786A1 JP 2010006136 W JP2010006136 W JP 2010006136W WO 2011048786 A1 WO2011048786 A1 WO 2011048786A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wire transmitter
sensor
resistance element
transmission line
Prior art date
Application number
PCT/JP2010/006136
Other languages
English (en)
French (fr)
Inventor
友厚 棚橋
義郎 山羽
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to CN201080003441.7A priority Critical patent/CN102227757B/zh
Priority to JP2011508751A priority patent/JP4830058B2/ja
Priority to EP10824640.6A priority patent/EP2346011A4/en
Priority to US13/131,945 priority patent/US8405534B2/en
Publication of WO2011048786A1 publication Critical patent/WO2011048786A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Definitions

  • the present invention relates to a two-wire transmitter that is applied to a two-wire transmitter and outputs an input signal, for example, a sensor signal detected by a sensor as an analog signal.
  • the two-wire transmitter is a device that detects a physical quantity such as a flow rate or pressure and outputs a detection value (hereinafter referred to as “sensor signal”).
  • sensor signal An example of a two-wire transmitter that converts a sensor signal into an analog voltage signal and outputs the analog voltage signal is the two-wire transmitter described in Patent Document 1.
  • FIG. 5 is a diagram for explaining the prior art of the two-wire transmitter.
  • the illustrated two-wire transmitter 10 includes an operational amplifier 1 that amplifies the sensor signals M1 and M2 output from the sensor S, and a switch 3 that switches the connection destination according to the voltage value of the sensor signal Vsns output from the operational amplifier 1. And resistive elements 5, 6, 7 connected to the switch 3.
  • the two-wire transmitter 10 includes a reference voltage generator 4, a resistance element 6 connected to the switch 3, and an operational amplifier 2 whose output current Iout varies depending on the size of the resistance element 7.
  • the sensor S is a sensor that detects physical quantities such as magnetism, temperature, and pressure.
  • the two-wire transmitter 10 shown in FIG. 5 operates as follows.
  • the operational amplifier 1 outputs a continuously changing sensor signal Vsns.
  • the connection destination of the switch 3 is switched from the resistance element 6 to the resistance element 7.
  • the potential difference between the output signal Vout of the operational amplifier 2 and the ground (GND) is divided by the resistive element 5, the resistive element 6 connected to the switch 3, or the resistive element 7.
  • a signal corresponding to the divided potential is input to the operational amplifier 2 as a feedback signal Vfb.
  • the operational amplifier 2 is generated by the reference voltage generator 4, the operational amplifier 2 operates to make the voltage values of the reference voltage Vref and the feedback signal Vfb equal.
  • the operational amplifier 2 operates so as to increase the output current Iout when the voltage value of the feedback signal Vfb increases. At this time, the output signal Vout drops so that the reference voltage Vref and the voltage value of the feedback signal Vfb become equal. On the other hand, when the feedback signal Vfb decreases, the operational amplifier 2 operates to decrease the output current Iout. As a result, the output signal Vout of the operational amplifier 2 rises so that the reference voltage Vref and the feedback signal Vfb are equal.
  • FIG. 6 is a diagram showing the relationship between sensor signals and output signals in a conventional two-wire transmission line. 6 represents the output signal Vout, and the horizontal axis represents the resistance R of the two-wire transmitter.
  • the relationship between the resistance R of the two-wire transmitter and the output signal Vout is expressed by the following equation (1).
  • R0 is the resistance value of the illustrated resistance element 5
  • R is the resistance value (R1, R2) of either the resistance element 6 or the resistance element 7 selected by the switch 3.
  • Vout Vref + (R0 / R) ⁇ Vref (1)
  • the sensor signal Vsns output from the sensor S changes continuously. When the sensor signal Vsns exceeds a predetermined threshold, the connection destination of the switch 3 is switched from the resistance element 6 to the resistance element 7.
  • the output signal Vout changes discretely even though the sensor signal Vsns continuously changes. For this reason, the conventional 2-wire transmitter cannot obtain the output signal Vout reflecting the sensor signal Vsns because the output signal Vout is not proportional to the sensor signal Vsns. Since FIG. 6 shows a case where a plurality of resistance elements other than the resistance elements 6 and 7 are provided, the values of a plurality of discrete output signals Vout are shown.
  • the output signal Vout needs to be input to a CPU (Central Processing Unit: not shown) in the subsequent stage, and the output signal Vout needs to be further processed in the CPU.
  • the present invention has been made in view of the above points, and by converting a sensor signal into a continuous analog signal, a signal reflecting a continuous change in the sensor signal can be obtained, and the subsequent calculation is performed.
  • An object of the present invention is to provide a two-wire transmitter capable of simplifying the configuration and processing according to the above.
  • an analog voltage signal (for example, the output signal V3 illustrated in FIG. 1) based on an input signal (for example, the sensor signal V1 illustrated in FIG. 1) is first transmitted.
  • a two-wire transmitter for outputting to a line (for example, transmission line N1 shown in FIG. 1), wherein an intermediate potential between the first transmission line and the second transmission line (for example, transmission line N2 shown in FIG. 1) is
  • An intermediate potential generation circuit (for example, the resistance elements 103 and 104 shown in FIG. 1) to be generated, an amplifier (for example, the operational amplifier 101 shown in FIG.
  • a two-wire transmitter including a current generation circuit (for example, the current source 102 shown in FIG. 1) that generates a current flowing from the first transmission path to the second transmission path based on a control signal to be provided Is done.
  • a current generation circuit for example, the current source 102 shown in FIG. 1 that generates a current flowing from the first transmission path to the second transmission path based on a control signal to be provided Is done.
  • the first transmission line is connected to a power source (for example, Vcc illustrated in FIG. 3) via the first resistance element (for example, the resistance element 107 illustrated in FIG. 3). ) Is desirable.
  • the amplifier outputs the control signal so that the input signal and the intermediate potential are equal.
  • the intermediate potential signal generation circuit is a second resistance element (for example, connected in series between the first transmission line and the second transmission line). 1 and a third resistance element (for example, the resistance element 104 shown in FIG. 1), and generates the intermediate potential between the second resistance element and the third resistance element. It is desirable.
  • the current generating circuit includes a current source that generates the current based on the intermediate potential.
  • the analog voltage signal is preferably supplied as power to the amplifier via the first transmission line in the above-described invention.
  • the two-wire transmitter of the present invention further includes a receiver (for example, the CPU receiver 106 shown in FIG. 3) connected to the first transmission line and receiving the analog voltage signal in the above-described invention. It is desirable.
  • a processing circuit that converts the input signal into a digital signal and processes the digital signal (for example, the A / A shown in FIG. 4).
  • the input signal is preferably a sensor signal output from a sensor (for example, the sensor S shown in FIG. 1).
  • the two-wire transmitter of the present invention preferably further includes a sensor that outputs the sensor signal.
  • the two-wire transmitter of the present invention further includes the first resistance element connected to the first transmission line and the power source connected to the first resistance element in the above-described invention. Is desirable.
  • the intermediate potential between the transmission line and the reference transmission line and the input signal can be output to the amplifier, and an analog voltage signal can be generated based on this signal.
  • the amplifier operates so that the inputted input signal is equal to the intermediate potential. For this reason, since the output of the amplifier changes in accordance with the input signal, an analog voltage signal reflecting the input signal can be obtained.
  • information such as temperature, magnetism, and pressure detected by a sensor can be easily extracted from this signal. Therefore, it is possible to provide a two-wire transmitter that can obtain an input signal, for example, a signal reflecting a continuous change of a sensor signal.
  • the external power source is connected to the transmission line via the first resistance element, the potential of the transmission line from which the analog voltage signal is output can be maintained appropriately. Further, it is possible to prevent the transmission line from being short-circuited with an external power source.
  • the intermediate potential between the transmission line and the reference transmission line and the input signal can be output to the amplifier, and an analog voltage signal can be generated based on this signal.
  • the amplifier operates so that the inputted input signal is equal to the intermediate potential. For this reason, since the output of the amplifier changes in accordance with the input signal, an analog signal reflecting the input signal can be obtained.
  • the intermediate potential generation circuit includes the second resistance element and the third resistance element connected in series between the transmission line and the reference transmission line, and the second resistance element and the second resistance element Since an intermediate potential is output from between the three resistance elements, the voltage range of the output signal output from the amplifier is not limited to the reference voltage or the like.
  • the current generation circuit since the current generation circuit includes a current source that generates a current based on the intermediate potential, the potential between the transmission line and the reference transmission line can be easily controlled. .
  • the analog voltage signal is supplied to the amplifier via the transmission line, it is possible to simplify the circuit configuration by providing two amplifier input systems.
  • the detection value detected by, for example, the sensor can be directly obtained from the analog signal output to the transmission path. For this reason, it is possible to simplify the calculation of an input signal, for example, a sensor signal, at the stage subsequent to the receiver.
  • the input signal when the input signal is an analog signal, the input signal is converted into a digital signal and processed, and the processed digital signal is converted into an analog signal and output to the amplifier. it can. For this reason, for example, it is possible to easily correct an offset or sensitivity of an input signal, for example, a sensor signal, and output an analog signal having an arbitrary characteristic.
  • information such as temperature, magnetism, and pressure detected by the sensor can be easily extracted.
  • a compact two-wire transmitter including a sensor can be realized.
  • a compact two-wire transmitter including a resistance element and a power source connected to the resistance element can be realized.
  • FIG. 1 is a circuit diagram for explaining a two-wire transmitter according to the first embodiment of the present invention.
  • the illustrated two-wire transmitter includes a sensor S.
  • the sensor S is, for example, a sensor that detects physical quantities such as magnetism, temperature, and pressure and outputs them as a sensor signal V1.
  • the sensor S may be separately provided outside the two-wire transmitter.
  • the two-wire transmitter is a two-wire transmitter that converts an input signal (for example, sensor signal V1) into an analog voltage signal and outputs the analog voltage signal to the transmission line, and is between the transmission line N1 and the reference transmission line N2.
  • an output signal V3 that is an analog voltage signal is generated.
  • a current source 102 In such a configuration, since the intermediate potential is fed back to the operational amplifier 101, it is hereinafter referred to as a feedback signal V2 in the present embodiment.
  • the operational amplifier 101 generates a signal o that controls the potential between the transmission line N1 and the reference transmission line N2 so that the input sensor signal V1 and the feedback signal V2 are equal.
  • the current source 102 changes the output current I3 according to the control signal o of the operational amplifier 101.
  • the intermediate potential generation circuit 100 includes a resistance element 103 and a resistance element 104 connected in series between the transmission line N1 and the reference transmission line N2, and a feedback signal V2 from between the resistance element 103 and the resistance element 104. Is output.
  • the signal line of the sensor signal V1 output from the sensor S is connected to the inverting input terminal of the operational amplifier 101. Further, the signal line of the feedback signal V2 is connected to the non-inverting input terminal of the operational amplifier 101.
  • the output terminal of the operational amplifier 101 is connected to the current source 102.
  • the above configuration and the intermediate potential generation circuit 100 are both connected between the transmission line N1 serving as a power supply line and the reference transmission line N2, and the transmission line N1 supplies power for the output signal V3.
  • the reference transmission line N2 is supplied with electric power applied to the GND potential.
  • an external power source is connected to the transmission line N1 via a resistance element (not shown) so that the output signal V3 is pulled up, and the reference transmission line N2 is installed at the GND. .
  • the operational amplifier 101 operates so that the sensor signal V1 and the feedback signal V2 are equal. Specifically, the operational amplifier 101 controls the current source 102 to decrease the output current I3 and increase the output voltage V3 when the sensor signal V1 increases. By this operation, the current flowing through the resistance elements 103 and 104 increases and the feedback signal V2 rises.
  • the feedback signal V2 increases in accordance with the increase in the sensor signal V1, and the sensor signal V1 and the feedback signal V2 become equal. That is, the output signal V3 of the operational amplifier 101 rises so that the sensor signal V1 and the feedback signal V2 are equal.
  • the operational amplifier 101 controls the current source 102 to increase the output current I3 and decrease the output voltage V3.
  • the current flowing through the resistance elements 103 and 104 decreases, and the feedback signal V2 decreases. Since the increase in the output current I3 corresponds to the decrease in the sensor signal V1, the feedback signal V2 decreases in accordance with the decrease in the sensor signal V1, and the sensor signal V1 and the feedback signal V2 become equal. That is, the output signal V3 drops so that the sensor signal V1 and the feedback signal V2 are equal.
  • Equation (2) The relationship between the sensor signal V1 and the output signal V3 in the above operation is expressed by the following equation (2).
  • R0 is the resistance value of the resistance element 103
  • R1 is the resistance value of the resistance element 104.
  • V3 (1+ (R0 / R1)) ⁇ V1 Formula (2)
  • FIG. 2 is a diagram illustrating the relationship between the output signal V3 and the sensor signal V1 represented by the equation (2), where the vertical axis indicates the output signal V3 and the horizontal axis indicates the sensor signal V1.
  • FIG. 2 shows that the sensor signal V1 is converted into a continuous analog voltage signal, that is, the output signal V3 is proportional to the sensor signal V1.
  • the feedback signal V2 related to the intermediate potential between the transmission line N1 and the reference transmission line N2 and the sensor signal V1 are output to the operational amplifier 101, and the analog voltage signal is converted based on this signal. Can be generated.
  • the operational amplifier 101 controls the potential between the transmission line N1 and the reference transmission line N2 so that the input sensor signal V1 and the feedback signal V2 are equal to each other.
  • the potential changes according to the sensor signal V1. For this reason, since the output of the operational amplifier 101 changes according to the sensor signal V1, an analog signal reflecting the sensor signal V1 can be obtained.
  • information such as temperature, magnetism, and pressure detected by the sensor S can be easily extracted from this signal.
  • FIG. 3 is a circuit diagram for explaining the two-wire transmitter according to the second embodiment of the present invention.
  • the same configurations as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is partially omitted.
  • Configuration The two-wire transmitter of the second embodiment is configured by connecting the receiver CPU 106 to the two-wire transmitter of the embodiment shown in FIG.
  • the external power supply Vcc connected to the transmission line N1 the resistance element 107, and the GND line connected to the reference transmission line N2 are clearly shown, and a state where a two-wire transmitter is used is shown.
  • the two-wire transmitter is supplied with electric power applied to the output signal V3 from the external power supply Vcc via the resistance element 107 and the transmission line N1.
  • the two-wire transmitter may be configured to include the external power supply Vcc and the resistance element 107, or may be configured to be provided outside the unit without being included in the two-wire transmitter.
  • the receiver CPU 106 is configured to receive the output signal V3 of the two-wire transmitter and detect the magnitude and intensity of the physical quantity detected by the sensor S.
  • all current sources other than the current source 102 are collectively expressed as a current source 105 inside the two-wire transmitter, and the total sum of all currents other than the output current I3 is indicated as I4. .
  • the output signal V3 of the two-wire transmitter according to the second embodiment is pulled up to the external power supply Vcc via the resistance element 107.
  • the sensor signal V1 decreases and the output current I3 increases
  • the voltage drop in the resistance element 107 increases and the voltage of the output signal V3 decreases.
  • the output signal V3 that continuously decreases in accordance with the decrease in the sensor signal V1.
  • the sensor signal V1 rises and the output current I3 decreases
  • the voltage drop in the resistance element 107 decreases and the voltage of the output signal V3 increases.
  • the two-wire transmitter of the second embodiment can convert the sensor signal V1 into a continuous analog voltage signal V3 that is proportional to the sensor signal V1.
  • the receiver CPU 106 can obtain information on the temperature, magnetism, pressure and the like detected by the sensor S by receiving the output signal V3 from the two-wire transmitter.
  • the output signal Vout is discrete and not proportional to the sensor signal Vsns.
  • the output signal V3 is an analog signal proportional to the sensor signal V1, and therefore the receiver CPU can extract information contained in the sensor signal by a simple calculation.
  • the voltage of the output signal Vout cannot be made equal to or lower than the reference voltage Vref in the conventional technique, there is no such restriction in the two-wire transmitter of the second embodiment.
  • the voltage of the output signal V3 can be arbitrarily obtained by changing the values of the resistance element 103 and the resistance element 104.
  • FIG. 4 is a circuit diagram for explaining the two-wire transmitter according to the third embodiment of the present invention.
  • Configuration The A / D converter 401, the digital arithmetic unit 402, and the D / A converter 403 are added to the two-wire transmitter of the first embodiment shown in FIG. Configured.
  • all current sources other than the current source 102 are collectively expressed as a current source 105 inside the two-wire transmitter, and the total sum of all currents other than the output current I3 is I4. It shall be shown as
  • the sensor signal V1 is converted into a digital signal by the A / D converter 401.
  • the converted digital signal is arithmetically processed by the digital arithmetic unit 402 and then converted into an analog signal V1 ′ by the D / A converter 403.
  • the same processing as that of the first embodiment can be performed.
  • the third embodiment is advantageous, for example, when the sensor signal offset and sensitivity are corrected and then converted into the output signal V3.
  • the present invention described above can be applied to any two-wire transmitter as long as it is desirable to obtain a signal that continuously changes to reflect the detection value detected by the sensor. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

 センサ信号の連続的な変化を反映した信号が得られ、しかも後段の演算にかかる構成や処理を簡易化することができる2線式伝送器を提供する。センサ信号V1に基づくアナログ電圧信号V3を伝送路N1に出力する2線式伝送器を、伝送路N1と伝送路N2との間の中間電位を生成する中間電位生成回路(100)と、センサ信号V1とフィードバック信号V2とが供給されるオペアンプ(101)と、オペアンプ(101)によって出力される制御信号に基づいて、伝送路N1から伝送路N2へ流れる電流I3を生成する電流源(102)とによって構成する。このとき、制御信号が、オペアンプ(101)が、センサ信号V1とフィードバック信号V2とが等しくなるように制御する。

Description

2線式伝送器
 本発明は、2線式伝送器にかかり、入力信号、例えばセンサによって検出されたセンサ信号、をアナログ信号として出力する2線式伝送器に関する。
 2線式伝送器は、流量や圧力といった物理量を検出し、検出値(以降、「センサ信号」と記す)を出力する機器である。センサ信号をアナログ電圧信号に変換して出力する2線式伝送器としては、例えば、特許文献1に記載された2線式伝送器が挙げられる。
 図5は、2線式伝送器の従来技術を説明するための図である。図示した2線式伝送器10は、センサSによって出力されるセンサ信号M1、M2を増幅するオペアンプ1と、オペアンプ1から出力されたセンサ信号Vsnsの電圧値に応じて接続先が切り替えられるスイッチ3と、スイッチ3に接続された抵抗素子5、6、7を備えている。また、2線式伝送器10は、基準電圧発生部4と、スイッチ3に接続される抵抗素子6、抵抗素子7の大きさによって出力電流Ioutが変化するオペアンプ2を備えている。
 センサSは、例えば、磁気、温度、圧力といった物理量を検出するセンサである。
 図5に示した2線式伝送器10は、以下のように動作する。
 オペアンプ1は、連続的に変化するセンサ信号Vsnsを出力する。センサ信号Vsnsが所定の閾値を超えると、スイッチ3の接続先が抵抗素子6から抵抗素子7に切り替わる。オペアンプ2の出力信号Voutとグラウンド(GND)の電位差は、抵抗素子5、スイッチ3に接続されている抵抗素子6または抵抗素子7によって分圧される。分圧された電位に応じた信号は、フィードバック信号Vfbとしてオペアンプ2に入力される。オペアンプ2は、基準電圧発生部4によって生成されると基準電圧Vrefとフィードバック信号Vfbの電圧値を等しくするように動作する。
 このため、オペアンプ2は、フィードバック信号Vfbの電圧値が上昇すると、出力電流Ioutを増加させるように動作する。このとき、出力信号Voutは、基準電圧Vrefとフィードバック信号Vfbの電圧値とが等しくなるように低下する。
 一方、フィードバック信号Vfbが低下すると、オペアンプ2は出力電流Ioutを減少させるように動作する。この結果、オペアンプ2の出力信号Voutは、基準電圧Vrefとフィードバック信号Vfbとが等しくなるように上昇する。
 図6は、従来の2線式伝送路における、センサ信号と出力信号との関係を示した図である。図6の縦軸は出力信号Voutを示し、横軸は2線式伝送器の抵抗Rを示している。2線式伝送器の抵抗Rと出力信号Voutの関係は、次の式(1)で表される。式(1)において、R0は図示した抵抗素子5の抵抗値、Rは、スイッチ3によって選択される、抵抗素子6、抵抗素子7のいずれか一方の抵抗値(R1、R2)である。
 Vout=Vref+(R0/R)・Vref            …(1)
 センセSから出力されるセンサ信号Vsnsは、連続的に変化する。そして、センサ信号Vsnsが所定のしきい値を超えた場合に、スイッチ3の接続先が抵抗素子6から抵抗素子7に切り替えられる。
USP 6437581 B1
 しかしながら、上記した式(1)によれば、センサ信号Vsnsが連続的に変化するにも関わらず、出力信号Voutが離散的に変化する。このため、従来の2線式伝送器は、出力信号Voutがセンサ信号Vsnsに比例せず、センサ信号Vsnsを反映した出力信号Voutを得ることができない。図6では、抵抗素子として抵抗素子6、7以外に複数有する場合を示しているので、離散的な複数の出力信号Voutの値が示されている。
 この点を解消するため、従来の構成では、出力信号Voutを後段のCPU(Central Processing Unit:図示せず)に入力させ、CPUにおいて出力信号Voutをさらに演算処理する必要があった。
 本発明は、上記した点に鑑みて行われたものであり、センサ信号を連続的なアナログ信号に変換することにより、センサ信号の連続的な変化を反映した信号が得られ、しかも後段の演算にかかる構成や処理を簡易化することができる2線式伝送器を提供することを目的とする。
 以上の課題を解決するため、本発明のある態様によれば、入力信号(例えば図1に示したセンサ信号V1)に基づくアナログ電圧信号(例えば図1に示した出力信号V3)を第1伝送路(例えば図1に示した伝送路N1)に出力する2線式伝送器であって、前記第1伝送路と第2伝送路(例えば図1に示した伝送路N2)との中間電位を生成する中間電位生成回路(例えば図1に示した抵抗素子103、104)と、前記入力信号と前記中間電位とが供給される増幅器(例えば図1に示したオペアンプ101)と、前記増幅器によって出力される制御信号に基づいて、前記第1伝送路から前記第2伝送路に流れる電流を生成する電流生成回路(例えば図1に示した電流源102)と、を含む2線式伝送器が提供される。
 また、本発明の2線式伝送器は、上記した発明において、第1伝送路が、第1抵抗素子(例えば図3に示した抵抗素子107)を介して電源(例えば図3に示したVcc)に接続されることが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記増幅器が、入力された前記入力信号と前記中間電位とが等しくなるように、前記制御信号を出力することが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記中間電位信号生成回路が、前記第1伝送路と前記第2伝送路との間に直列接続された第2抵抗素子(例えば図1に示した抵抗素子103)と第3抵抗素子(例えば図1に示した抵抗素子104)とを含み、前記第2抵抗素子と前記第3抵抗素子との間において前記中間電位を生成することが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記電流生成回路が、前記中間電位に基づき、前記電流を生成する電流源を含むことが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記アナログ電圧信号が、前記第1伝送路を介して前記増幅器に電力として供給されることが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記第1伝送路に接続され、前記アナログ電圧信号を受信する受信機(例えば図3に示したCPU受信器106)をさらに含むことが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記入力信号がアナログ信号である場合、前記入力信号をデジタル信号に変換して加工する加工回路(例えば図4に示したA/D変換回路401、デジタル演算器402)と、前記加工回路によって加工されたデジタル信号を、アナログ信号に変換して前記増幅器に出力するデジタル・アナログ変換回路(例えば図4に示したD/A変換回路403)と、をさらに含むことが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記入力信号が、センサ(例えば図1に示したセンサS)から出力されるセンサ信号であることが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記センサ信号を出力するセンサをさらに含むことが望ましい。
 また、本発明の2線式伝送器は、上記した発明において、前記第1伝送路に接続される前記第1抵抗素子と、前記第1抵抗素子に接続される前記電源と、をさらに含むことが望ましい。
 請求項1に記載の発明によれば、伝送路と基準伝送路との間の中間電位と、入力信号とを増幅器に出力し、この信号に基づいてアナログ電圧信号を生成することができる。増幅器は、入力された入力信号と中間電位とが等しくなるように動作する。このため、増幅器の出力が入力信号に応じて変化するので、入力信号を反映したアナログ電圧信号を得ることができる。また、この信号から、例えばセンサによって検出された温度、磁気、圧力などの情報を容易に抽出することができる。このため、入力信号、例えばセンサ信号の連続的な変化を反映した信号が得られる2線式伝送器を提供することができる。
 請求項2に記載の発明によれば、第1抵抗素子を介して伝送路に外部からの電源を接続したので、アナログ電圧信号が出力される伝送路の電位を適正に保つことができる。また、伝送路が外部の電源とショートすることを防ぐこともできる。
 請求項3に記載の発明によれば、伝送路と基準伝送路との間の中間電位と、入力信号とを増幅器に出力し、この信号に基づいてアナログ電圧信号を生成することができる。増幅器は、入力された入力信号と中間電位とが等しくなるように動作する。このため、増幅器の出力が入力信号に応じて変化するので、入力信号を反映したアナログ信号を得ることができる。
 請求項4に記載の発明によれば、中間電位生成回路が、伝送路と基準伝送路との間に直列接続された第2抵抗素子と第3抵抗素子とを含み、第2抵抗素子と第3抵抗素子との間から中間電位を出力するので、増幅器から出力された出力信号の電圧範囲が基準電圧等に制限されることがない。
 請求項5に記載の発明によれば、電流生成回路が、中間電位に基づいて電流を生成する電流源を含むから、伝送路と基準伝送路との間の電位を簡易に制御することができる。
 請求項6に記載の発明によれば、アナログ電圧信号が、伝送路を介して増幅器に供給されるから、増幅器の入力系統を2系統にし、回路構成を簡易化することができる。
 請求項7に記載の発明によれば、伝送路に接続される受信機をさらに設けたので、伝送路に出力されるアナログ信号から例えばセンサによって検出された検出値を直接得ることができる。このため、受信器以降の段における入力信号、例えばセンサ信号の演算を簡易化することができる。
 請求項8に記載の発明によれば、入力信号がアナログ信号である場合、入力信号をデジタル信号に変換して加工し、加工されたデジタル信号をアナログ信号に変換して増幅器に出力することができる。このため、例えば、入力信号、例えばセンサ信号のオフセットや感度の補正を容易に行って、任意の特性のアナログ信号を出力することができる。
 請求項9に記載の発明によれば、センサによって検出された温度、磁気、圧力などの情報を容易に抽出することができる。
 請求項10に記載の発明によれば、センサを含むコンパクトな2線式伝送器が実現できる。
 請求項11に記載の発明によれば、抵抗素子及び抵抗素子に接続される電源を含むコンパクトな2線式伝送器が実現できる。
本発明の実施形態1の2線式伝送器を説明するための回路図である。 本発明の実施形態1の出力信号とセンサ信号との関係を示した図である。 本発明の実施形態2の2線式伝送器を説明するための回路図である。 本発明の実施形態3の2線式伝送器を説明するための回路図である。 2線式伝送器の従来技術を説明するための図である。 従来の2線式伝送路における、センサ電圧と出力電圧との関係を示した図である。
 以下、本発明の実施形態1、実施形態2、実施形態3について図面を用いて説明する。
(実施形態1)
 ・回路構成
 図1は、本発明の実施形態1の2線式伝送器を説明するための回路図である。図示した2線式伝送器は、センサSを備えている。センサSは、例えば、磁気、温度、圧力といった物理量を検出し、センサ信号V1として出力するセンサである。ここで、2線式伝送器は、センサSを備えているとしたが、2線式伝送器には含まず外部に別途センサSを備える構成としてもよい。
 2線式伝送器は、入力信号(例えば、センサ信号V1)をアナログ電圧信号に変換して伝送路に出力する2線式伝送器であって、伝送路N1と基準伝送路N2との間の中間電位を生成する中間電位生成回路100と、センサ信号V1と中間電位とが供給されるオペアンプ101と、オペアンプ101によって出力される信号oに基づいて、アナログ電圧信号である出力信号V3を生成する電流源102と、を含んでいる。このような構成において、中間電位はオペアンプ101にフィードバックされることから、以降、本実施形態ではフィードバック信号V2と記す。
 オペアンプ101は、入力されたセンサ信号V1とフィードバック信号V2とが等しくなるように、伝送路N1と基準伝送路N2との間の電位を制御する信号oを生成する。電流源102は、オペアンプ101の制御信号oによって出力電流I3を変化させる。
 また、中間電位生成回路100は、伝送路N1と基準伝送路N2との間に直列接続された抵抗素子103と抵抗素子104とを含み、抵抗素子103と抵抗素子104との間からフィードバック信号V2を出力している。
 センサSから出力されたセンサ信号V1の信号線はオペアンプ101の反転入力端子に接続される。また、フィードバック信号V2の信号線はオペアンプ101の非反転入力端子に接続されている。オペアンプ101の出力端子は電流源102に接続されている。以上の構成及び中間電位生成回路100は、いずれも電源の供給線となる伝送路N1と基準伝送路N2との間に接続されていて、伝送路N1からは出力信号V3にかかる電力の供給を受け、基準伝送路N2からはGND電位にかかる電力の供給を受けている。
 なお、実施形態1の2線式伝送器は、出力信号V3がプルアップされるように外部電源が図示しない抵抗素子を介して伝送路N1に接続され、基準伝送路N2はGNDに設置される。
 ・動作
 次に、以上述べた2線式伝送器の動作について説明する。
 出力信号V3とGNDの電位差は、抵抗素子103、抵抗素子104によって分圧される。フィードバック信号V2は、抵抗素子103、抵抗素子104に分圧された電圧を示す信号である。オペアンプ101は、センサ信号V1、フィードバック信号V2が等しくなるように動作する。
 具体的には、オペアンプ101は、センサ信号V1が上昇すると、出力電流I3を減少させて出力電圧V3を上昇させるように電流源102を制御する。この動作により、抵抗素子103、104に流れる電流が増加してフィードバック信号V2が上昇する。出力電流I3の減少分はセンサ信号V1の上昇分に対応しているから、センサ信号V1の上昇に応じてフィードバック信号V2が上昇し、センサ信号V1、フィードバック信号V2は等しくなる。すなわち、オペアンプ101の出力信号V3は、センサ信号V1とフィードバック信号V2とが等しくなるように上昇する。
 一方、センサ信号V1が低下すると、オペアンプ101は、出力電流I3を増加させて出力電圧V3を低下させるように電流源102を制御する。この動作により、抵抗素子103、104に流れる電流が減少してフィードバック信号V2が低下する。出力電流I3の増加分はセンサ信号V1の低下分に対応しているから、センサ信号V1の低下に応じてフィードバック信号V2が低下し、センサ信号V1、フィードバック信号V2は等しくなる。すなわち、出力信号V3は、センサ信号V1とフィードバック信号V2が等しくなるように低下する。
 上記動作におけるセンサ信号V1と出力信号V3の関係は、次の式(2)で表される。なお、式(2)において、R0は抵抗素子103の抵抗値、R1は抵抗素子104の抵抗値である。
 V3=(1+(R0/R1))・V1            …式(2)
 上記した式(2)によれば、本実施形態の2線式伝送器では、センサ信号V1が連続的なアナログ電圧信号に変換されることが明らかである。
 図2は、式(2)によって表される出力信号V3とセンサ信号V1との関係を示した図であって、縦軸に出力信号V3を、横軸にセンサ信号V1を示している。図2によれば、センサ信号V1が連続的なアナログ電圧信号に変換される、すなわち、出力信号V3がセンサ信号V1に比例していることが分かる。
 以上述べた実施形態1によれば、伝送路N1と基準伝送路N2との間の中間電位に関するフィードバック信号V2と、センサ信号V1とをオペアンプ101に出力し、この信号に基づいてアナログ電圧信号を生成することができる。オペアンプ101は、入力されたセンサ信号V1とフィードバック信号V2とが等しくなるように伝送路N1と基準伝送路N2との間の電位を制御するから、伝送路N1と基準伝送路N2との間の電位がセンサ信号V1に応じて変化する。このため、オペアンプ101の出力がセンサ信号V1に応じて変化するので、センサ信号V1を反映したアナログ信号を得ることができる。また、この信号から、センサSによって検出された温度、磁気、圧力などの情報を容易に抽出することができる。
(実施形態2)
 図3は、本発明の実施形態2の2線式伝送器を説明するための回路図である。なお、実施形態2では、図3中に示した構成のうち、図1に示した構成と同様の構成については同様の符号を付し、説明を一部略するものとする。
 ・構成
 実施形態2の2線式伝送器は、図1に示した実施形態の2線式伝送器に受信機CPU106を接続して構成されている。また、図3では、伝送路N1に接続された外部電源Vccや抵抗素子107、基準伝送路N2に接続されるGND線を明示し、2線式伝送器が使用されている状態を表すものとする。2線式伝送器は、外部電源Vccから抵抗素子107、伝送路N1を介して出力信号V3にかかる電力の供給を受ける。
 ここで、2線式伝送器は外部電源Vccや抵抗素子107を備える構成としてもよく、2線式伝送器内には含まず外部に別途備える構成としてもよい。
 受信器CPU106は、2線式伝送器の出力信号V3を入力し、センサSによって検出された物理量の大きさや強度等を検出する構成である。図3の回路では、2線式伝送器の内部で電流源102以外のすべての電流源をまとめて電流源105と表現し、出力電流I3以外のすべての電流の総和をI4として示すものとする。
 ・動作
 次に、実施形態2の2線式伝送器の動作を説明する。
 実施形態2の2線式伝送器の出力信号V3は、抵抗素子107を介して外部電源Vccにプルアップされている。センサ信号V1が低下して出力電流I3が増加すると、実施形態2では、抵抗素子107における電圧降下が増加して出力信号V3の電圧が低下する。このため、実施形態2では、センサ信号V1の低下に応じて連続的に低下する出力信号V3を得ることができる。
 一方、センサ信号V1が上昇して出力電流I3が減少すると、抵抗素子107における電圧降下が減少し、出力信号V3の電圧が上昇する。このため、実施形態2では、センサ信号V1の上昇に応じて連続的に上昇する出力信号V3を得ることができる。
 したがって、実施形態2の2線式伝送器は、センサ信号V1を、センサ信号V1に比例する連続的なアナログ電圧信号V3に変換することができる。
 また、受信機CPU106は、2線式伝送器からの出力信号V3を受信することにより、センサSによって検出された温度、磁気、圧力等に関する情報を得ることができる。
 以上述べた実施形態1、2に対し、図5に示した従来技術では、出力信号Voutが離散的、かつセンサ信号Vsnsに比例していないため、受信機CPUが出力信号Voutから温度、磁気、圧力などの情報を抽出するために複雑な演算を行う必要がある。一方、実施形態2の2線式伝送器では、出力信号V3がセンサ信号V1に比例するアナログ信号であるから、受信機CPUは単純な演算でセンサ信号に含まれる情報を抽出することができる。
 また、従来技術では出力信号Voutの電圧を基準電圧Vref以下にすることができないが、実施形態2の2線式伝送器ではそのような制約はない。実施形態2は、抵抗素子103及び抵抗素子104の値を変えることにより、出力信号V3の電圧を任意に得ることができる。
(実施形態3)
 図4は、本発明の実施形態3の2線式伝送器を説明するための回路図である。なお、実施形態3では、図4中に示した構成のうち、図1に示した構成と同様の構成については同様の符号を付し、説明を一部略するものとする。
 ・構成
 実施形態3の2線式伝送器は、図1に示した実施形態1の2線式伝送器に、A/D変換器401、デジタル演算器402、D/A変換器403を追加して構成されている。また、実施形態3の図4においても、2線式伝送器の内部で電流源102以外のすべての電流源をまとめて電流源105と表現し、出力電流I3以外のすべての電流の総和をI4として示すものとする。
 ・動作
 センサ信号V1はA/D変換器401によってデジタル信号に変換される。変換後のデジタル信号は、デジタル演算器402によって演算処理された後、D/A変換器403によってアナログ信号V1’に変換される。このような実施形態3によれば、センサ信号V1を任意の特性のアナログ信号V1’に変換した後に、実施形態1と同様の処理をすることができる。
 実施形態3は、例えば、センサ信号のオフセットや感度を補正した後、出力信号V3に変換する場合に有利である。
 以上説明した本発明は、センサによって検出された検出値を反映して連続的に変化する信号を得ることが望ましい2線式伝送器であれば、どのような2線式伝送器にも適用することができる。
 100 中間電位生成回路
 101 オペアンプ
 102、105 電流源
 103、104、107 抵抗素子
 106 CPU受信機
 401 A/D変換器
 402 デジタル演算器
 403 D/A変換器

Claims (11)

  1.  入力信号に基づくアナログ電圧信号を第1伝送路に出力する2線式伝送器であって、前記第1伝送路と第2伝送路との中間電位を生成する中間電位生成回路と、
     前記入力信号と前記中間電位とが供給される増幅器と、
     前記増幅器によって出力される制御信号に基づいて、前記第1伝送路から前記第2伝送路に流れる電流を生成する電流生成回路と、
     を含むことを特徴とする2線式伝送器。
  2.  前記第1伝送路は、
     第1抵抗素子を介して電源に接続されることを特徴とする請求項1に記載の2線式伝送器。
  3.  前記増幅器は、
     入力された前記入力信号と前記中間電位とが等しくなるように、前記制御信号を出力することを特徴とする請求項1または2に記載の2線式伝送器。
  4.  前記中間電位信号生成回路は、
     前記第1伝送路と前記第2伝送路との間に直列接続された第2抵抗素子と第3抵抗素子とを含み、前記第2抵抗素子と前記第3抵抗素子との間において前記中間電位を生成することを特徴とする請求項1から3のいずれか1項に記載の2線式伝送器。
  5.  前記電流生成回路は、前記中間電位に基づき、前記電流を生成する電流源を含むことを特徴とする請求項1から4のいずれか1項に記載の2線式伝送器。
  6.  前記アナログ電圧信号は、前記第1伝送路を介して前記増幅器に電力として供給されることを特徴とする請求項1から5のいずれか1項に記載の2線式伝送器。
  7.  前記第1伝送路に接続され、前記アナログ電圧信号を受信する受信機をさらに含むことを特徴とする請求項1から6のいずれか1項に記載の2線式伝送器。
  8.  前記入力信号がアナログ信号である場合、前記入力信号をデジタル信号に変換して加工する加工回路と、
     前記加工回路によって加工されたデジタル信号を、アナログ信号に変換して前記増幅器に出力するデジタル・アナログ変換回路と、
     をさらに含むことを特徴とする請求項1から7のいずれか1項に記載の2線式伝送器。
  9.  前記入力信号はセンサから出力されるセンサ信号であることを特徴とする請求項1から8のいずれか1項に記載の2線式伝送器。
  10.  前記センサ信号を出力するセンサをさらに含むことを特徴とする請求項1から9のいずれか1項に記載の2線式伝送器。
  11.  前記第1伝送路に接続される前記第1抵抗素子と、前記第1抵抗素子に接続される前記電源と、をさらに含むことを特徴とする請求項1から10のいずれか1項に記載の2線式伝送器。
PCT/JP2010/006136 2009-10-21 2010-10-15 2線式伝送器 WO2011048786A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080003441.7A CN102227757B (zh) 2009-10-21 2010-10-15 两线式传送器
JP2011508751A JP4830058B2 (ja) 2009-10-21 2010-10-15 2線式伝送器
EP10824640.6A EP2346011A4 (en) 2009-10-21 2010-10-15 BIFILAR TRANSMITTER
US13/131,945 US8405534B2 (en) 2009-10-21 2010-10-15 Two-wire transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009242722 2009-10-21
JP2009-242722 2009-10-21

Publications (1)

Publication Number Publication Date
WO2011048786A1 true WO2011048786A1 (ja) 2011-04-28

Family

ID=43900031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006136 WO2011048786A1 (ja) 2009-10-21 2010-10-15 2線式伝送器

Country Status (5)

Country Link
US (1) US8405534B2 (ja)
EP (1) EP2346011A4 (ja)
JP (1) JP4830058B2 (ja)
CN (1) CN102227757B (ja)
WO (1) WO2011048786A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140074303A1 (en) * 2012-09-10 2014-03-13 Kevin M. Haynes Two-wire transmitter terminal power diagnostics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737279Y2 (ja) * 1975-06-11 1982-08-17
JP3051038B2 (ja) * 1994-10-12 2000-06-12 日立造船株式会社 ごみ貯留装置
US6437581B1 (en) * 1999-04-27 2002-08-20 Micronas Gmbh Two wire sensor device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205327A (en) * 1978-03-13 1980-05-27 Rosemount Inc. Two wire current transmitter with adjustable current control linearization
US4206397A (en) * 1978-03-13 1980-06-03 Rosemount Inc. Two wire current transmitter with improved voltage regulator
JPS5737279A (en) * 1980-08-15 1982-03-01 Fujitsu Ltd Decca coordinate converter
JPS5947697A (ja) 1982-08-11 1984-03-17 横河電機株式会社 2線式伝送回路
FR2668257B1 (fr) * 1990-10-18 1994-05-13 Telemecanique Detecteur du type deux fils a tension regulee.
US5373226A (en) * 1991-11-15 1994-12-13 Nec Corporation Constant voltage circuit formed of FETs and reference voltage generating circuit to be used therefor
US5481200A (en) * 1993-09-15 1996-01-02 Rosemont Inc. Field transmitter built-in test equipment
DE19723645B4 (de) * 1997-06-05 2006-04-13 Endress + Hauser Gmbh + Co. Kg Anordnung zur Signalübertragung zwischen einer Geberstelle und einer Empfangsstelle
JP3422015B2 (ja) 1997-09-09 2003-06-30 横河電機株式会社 2線式信号伝送器
DE19930661A1 (de) * 1999-07-02 2001-01-18 Siemens Ag Meßumformer
WO2002073792A2 (en) * 2001-03-09 2002-09-19 Techtronic A/S An electret condensor microphone preamplifier that is insensitive to leakage currents at the input
DE10119471A1 (de) * 2001-04-20 2002-10-31 Micronas Gmbh Verfahren und Zweidrahtsensor zur Messung einer physikalischen Größe
JP2004062374A (ja) 2002-07-26 2004-02-26 Seiko Instruments Inc ボルテージ・レギュレータ
JP4443301B2 (ja) 2004-05-17 2010-03-31 セイコーインスツル株式会社 ボルテージ・レギュレータ
JP4573602B2 (ja) 2004-08-26 2010-11-04 三洋電機株式会社 増幅装置
US7719411B2 (en) * 2007-06-12 2010-05-18 Robert Bosch Gmbh Method and system of transmitting a plurality of movement parameters of a vehicle via a two-wire interface
JP2010019781A (ja) 2008-07-14 2010-01-28 Tokai Rika Co Ltd 磁気センサデバイス
JP5144559B2 (ja) * 2008-08-29 2013-02-13 セイコーインスツル株式会社 2端子型半導体温度センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737279Y2 (ja) * 1975-06-11 1982-08-17
JP3051038B2 (ja) * 1994-10-12 2000-06-12 日立造船株式会社 ごみ貯留装置
US6437581B1 (en) * 1999-04-27 2002-08-20 Micronas Gmbh Two wire sensor device

Also Published As

Publication number Publication date
JP4830058B2 (ja) 2011-12-07
CN102227757B (zh) 2014-06-25
US20110234434A1 (en) 2011-09-29
EP2346011A1 (en) 2011-07-20
EP2346011A4 (en) 2014-04-30
JPWO2011048786A1 (ja) 2013-03-07
US8405534B2 (en) 2013-03-26
CN102227757A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
EP2730990B1 (en) Current output circuit and two-wire transmitter
JP2014174737A (ja) 定電圧回路
CN105743340A (zh) 雪崩光电二极管的偏压产生电路及相关的控制电路
JP5805145B2 (ja) 温度検出機能を具えたアナログデジタル変換回路及びその電子装置
JP2010025889A (ja) 電流検出装置
KR101996505B1 (ko) 센서 신호 처리 장치 및 이를 포함하는 리드아웃 회로부
CN110114638B (zh) 模拟输入单元以及基准电压稳定化电路
JP4830058B2 (ja) 2線式伝送器
US9116028B2 (en) Thermal flow sensor and method of generating flow rate detection signal by the thermal flow sensor
JP6448077B2 (ja) 電圧検出装置
JP5725305B2 (ja) 2線式伝送器起動回路
JP2007323450A (ja) 伝送器システム
JP2010107331A (ja) 物理量検出装置および物理量検出システム
US9979330B2 (en) Three-phase motor control apparatus
JP6229831B2 (ja) 電流出力回路、および同回路を有する広帯域2線式伝送器
JP5820303B2 (ja) 2線式電磁流量計
JP5040520B2 (ja) 2線式伝送器
JP4534544B2 (ja) 伝送器システム
JP4894996B2 (ja) 現場指示計
JP2012073937A (ja) 2線式伝送器、補正回路
JP2007323449A (ja) 伝送器システム
JP5315184B2 (ja) 温度検出回路
JP2020187480A (ja) 伝送回路
JP2013186120A (ja) 湿度検出器
JP2012047545A (ja) ガス濃度測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003441.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011508751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13131945

Country of ref document: US

Ref document number: 2010824640

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824640

Country of ref document: EP

Kind code of ref document: A1