JP4573602B2 - 増幅装置 - Google Patents

増幅装置 Download PDF

Info

Publication number
JP4573602B2
JP4573602B2 JP2004246464A JP2004246464A JP4573602B2 JP 4573602 B2 JP4573602 B2 JP 4573602B2 JP 2004246464 A JP2004246464 A JP 2004246464A JP 2004246464 A JP2004246464 A JP 2004246464A JP 4573602 B2 JP4573602 B2 JP 4573602B2
Authority
JP
Japan
Prior art keywords
terminal
resistance element
signal
input
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004246464A
Other languages
English (en)
Other versions
JP2006067166A (ja
Inventor
弘 小島
由紀 桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004246464A priority Critical patent/JP4573602B2/ja
Priority to TW094116240A priority patent/TWI302054B/zh
Priority to CN2005100813243A priority patent/CN1741374B/zh
Priority to KR1020050078154A priority patent/KR100646725B1/ko
Priority to US11/212,310 priority patent/US7224226B2/en
Publication of JP2006067166A publication Critical patent/JP2006067166A/ja
Application granted granted Critical
Publication of JP4573602B2 publication Critical patent/JP4573602B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/14Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only with amplifying devices having more than three electrodes or more than two PN junctions
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/02Manually-operated control
    • H03G3/04Manually-operated control in untuned amplifiers
    • H03G3/10Manually-operated control in untuned amplifiers having semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

本発明は、増幅装置に関する。
様々な分野の制御システムでは、アナログセンサにおいて検出された段階でのアナログ信号は微小な電流/電圧レベルであるために、当該制御システム内部で処理可能なレベルまで増幅すべく、初段の増幅装置(プリアンプ)が設けられる。
ここで、増幅装置を有した制御システムの一例として、主に携帯電話の送話側のマイクロフォンとして利用されるエレクトレットコンデンサマイクロフォン(以下、ECM)システム(例えば、以下に示す特許文献1参照)を図12に例示する。
ECMシステムは、Vin端子901、Vdd端子902、Gnd端子903を有した増幅装置としての3端子増幅装置900に対して、Vin端子901には導電性薄膜を接地させたエレクトレットコンデンサ203の固定電極と接続し、Vdd端子902には抵抗値Rlの負荷抵抗200を介して電源ライン201と接続し、Gnd端子903を接地して構成される。
エレクトレットコンデンサ203は、導電性薄膜と固定電極とを対向させて構成される。なお、導電性薄膜は、予め直流電源(数10〜100V程度)によって帯電させており、導電性薄膜に対して音声信号が空気の疎密波として伝わると膜の振動がなされる。そして、エレクトレットコンデンサ203の容量値Cmic(3pF程度)が変化し、この容量値Cmicの変化に応じた交流の電圧波形(以下、交流信号)が生じる。なお、この交流信号は、通常、直流成分が接地電位であり、数10mV程度の微小な振幅レベルを有する。
3端子増幅装置900は、ゲート電極にはVin端子901が接続され、ドレイン電極にはVdd端子902が接続され、ソース電極にはGnd端子903が接続されたソース接地の接合型電界効果トランジスタ(以下、J−FET)904と、J−FET904のゲート電極とソース電極との間を配線した信号ライン間に設けられゲート電極のレベルを接地電位に安定化させるための抵抗素子905と、によって構成される。
ここで、3端子増幅装置900の入力部の特性としては、入力抵抗(抵抗素子905等)及び入力容量(J−FET904の寄生容量等)に対してつぎの点が求められる。
まず、入力抵抗の場合、高抵抗値が求められる。すなわち、エレクトレットコンデンサ203と、入力抵抗と、によって高域通過フィルタが構成されており、100Hz程度の可聴帯域にある音声信号を減衰させることなく、3端子増幅装置900へと入力させるためには、抵抗素子905の抵抗値は数100M〜数G(Ω)程度が必要となる。なお、高域通過フィルタのカットオフ周波数f1は、入力抵抗の抵抗値をRinとして表した場合、つぎの(式1)で定められる。
f1=1/(2×π×Rin×Cmic) ・・・ (式1)
例えば、エレクトレットコンデンサ203の容量値Cmicを3pF、カットオフ周波数f1を50Hzとした場合、入力抵抗の抵抗値Rinは1061M(Ω)となる。
つぎに、入力容量の場合、低容量値が求められる。すなわち、3端子増幅装置900の入力容量は、エレクトレットコンデンサ203と直列接続される。このため、入力容量の容量値が大きい場合、エレクトレットコンデンサ203において発生した交流信号が分割されてしまい、3端子増幅装置900へ入力する段階で交流信号のレベルが低下する恐れがある。また、入力抵抗の抵抗値が大きいため、入力抵抗と入力容量との積で定まる時定数を抑える点からも、入力容量は低容量が求められる。
また、3端子増幅装置900で用いられる増幅素子としては、高入力抵抗、低入力容量、低雑音といった点でのバランスに優れたソース接地型のJ−FET904が採用される。なお、ソース接地型のJ−FET904の増幅利得Avは、J−FET904のコンダクタンスをgm、入力容量等による減衰量をATTinとして表した場合、つぎの(式2)で定められる。
Av=gm×Rl−ATTin ・・・ (式2)
特開2003−243944号公報
ところで、J−FETの増幅利得は、(式2)で示したように、J−FETのコンダクタンスgmに応じて変化する。しかし、J−FETのコンダクタンスgmは、一般的に、“−50〜200”%程度の潜在的なバラつきがあり、コンダクタンスgmのランク分類がなされて管理される程である。よって、同一タイプのJ−FETであったとしても、コンダクタンスgmのバラつきによってJ−FETの増幅利得にもバラつきが生じてしまい、ひいては、J−FETを用いた増幅装置(3端子増幅装置900等)の増幅利得にもバラつきが生じるのである。
さらに、図13に示すように、J−FETの増幅利得を増加させる場合には、ドレイン飽和電流Idss(200μA程度)をも増加させなければならない。ドレイン飽和電流Idssが増加することで消費電流も増加するため、J−FETの増幅利得の増加には消費電流の点から制限がなされる。すなわち、J−FETの増幅利得の向上と、消費電流の低減化、との間には二律背反の関係が成り立つのである。
このように、増幅装置として用いられる増幅素子として、J−FETは高入力抵抗、低入力容量、低雑音といった点でのバランスに優れるものの、その増幅利得を調整しづらいという課題が生じていた。
前述した課題を解決するための主たる第1の本発明は、交流信号が入力される第1の端子と、外付けの第1の抵抗素子を介して電源ラインと接続される第2の端子と、接地させる第3の端子と、前記第2の端子と前記第3の端子との間を配線した信号ライン間に設ける第2の抵抗素子と、正の電源端子は前記第2の端子と前記第2の抵抗素子との間の信号ラインと接続されるとともに、負の電源端子は前記第3の端子と接続され、反転/非反転入力端子のうち、一方の入力端子には前記第1の端子から前記交流信号が入力されるとともに、他方の入力端子には前記交流信号に応じた出力が前記第2の端子と前記第2の抵抗素子との間の信号ラインを介して帰還され、前記一方の入力端子と前記他方の入力端子との間には、前記一方の入力端子の接地電位を基準とした、前記交流信号の最大振幅レベルを超える正のオフセット電圧を予め生じさせてある差動増幅器と、前記第1の端子と前記一方の入力端子との間の信号ラインと、前記第3の端子と、の間を配線した信号ライン間に設けられ、前記一方の端子に入力される前記交流信号の直流成分を接地電位へと安定化させる第3の抵抗素子と、を有しており、前記第1の抵抗素子及び前記第2の抵抗素子の抵抗値に基づいて増幅させた前記交流信号の電圧波形を前記第2の端子に生じさせること、とする。
また、前述した課題を解決するための主たる第2の本発明は、交流信号が入力される第1の端子と、外付けの第1の抵抗素子を介して第1の電源ラインと接続される第2の端子と、接地させる第3の端子と、第2の電源ラインと接続される第4の端子と、前記第2の端子と前記第3の端子との間を配線した信号ライン間に設ける第2の抵抗素子と、正の電源端子は前記第4の端子と接続されるとともに、負の電源端子は前記第3の端子と接続され、反転/非反転入力端子のうち、一方の入力端子には前記第1の端子から前記交流信号が入力されるとともに、他方の入力端子には前記交流信号に応じた出力が前記第2の端子と前記第2の抵抗素子との間の信号ラインを介して帰還され、前記一方の入力端子と前記他方の入力端子との間には、前記一方の入力端子の接地電位を基準とした、前記交流信号の最大振幅レベルを超える正のオフセット電圧を予め生じさせてある差動増幅器と、前記第1の端子と前記一方の入力端子との間の信号ラインと、前記第3の端子と、の間を配線した信号ライン間に設けられ、前記一方の端子に入力される前記交流信号の直流成分を接地電位へと安定化させる第3の抵抗素子と、を有しており、前記第1の抵抗素子及び前記第2の抵抗素子の抵抗値に基づいて増幅させた前記交流信号の電圧波形を前記第2の端子に生じさせること、とする。
また、前述した課題を解決するための主たる第3の本発明は、交流信号が入力される第1の端子と、電源ラインと接続される第2の端子と、接地させる第3の端子と、前記第2の端子と前記第3の端子との間を配線した信号ライン間に直列接続させた第1の抵抗素子及び第2の抵抗素子と、前記第1の抵抗素子と前記第2の抵抗素子との間の信号ラインと接続される第4の端子と、正の電源端子は前記第2の端子と接続されるとともに、負の電源端子は前記第3の端子と接続され、反転/非反転入力端子のうち、一方の入力端子には前記第1の端子から前記交流信号が入力されるとともに、他方の入力端子には前記交流信号に応じた出力が前記第1の抵抗素子と前記第2の抵抗素子との間の信号ラインを介して帰還され、前記一方の入力端子と前記他方の入力端子との間には、前記一方の入力端子の電位を基準とした、前記交流信号の最大振幅レベルを超える正のオフセット電圧を予め生じさせてある差動増幅器と、前記第1の端子と前記一方の入力端子との間の信号ラインと、前記第3の端子と、の間を配線した信号ライン間に設けられ、前記一方の端子に入力される前記交流信号の直流成分を接地電位へと安定化させる第3の抵抗素子と、を有しており、前記第1の抵抗素子及び前記第2の抵抗素子の抵抗値に基づいて増幅させた前記交流信号の電圧波形を前記第4の端子に生じさせること、とする。
また、前述した課題を解決するための主たる第4の本発明は、交流信号が入力される第1の端子と、電源ラインと接続される第2の端子と、接地させる第3の端子と、正の電源端子は前記第2の端子と接続されるとともに、負の電源端子は前記第3の端子と接続され、反転/非反転入力端子のうち、一方の入力端子には前記第1の端子から前記交流信号が入力されるとともに、他方の入力端子には前記交流信号に応じた出力が第1の抵抗素子を介して帰還され、前記一方の入力端子と前記他方の入力端子との間には、前記一方の入力端子の電位を基準とした、前記交流信号の最大振幅レベルを超える正のオフセット電圧を予め生じさせてある差動増幅器と、前記第1の抵抗素子と前記他方の入力端子との間の信号ラインと、前記第3の端子と、の間を配線した信号ライン間に設ける第2の抵抗素子と、前記差動増幅器の出力と接続される第4の端子と、前記第1の端子と前記一方の入力端子との間の信号ラインと、前記第3の端子と、の間を配線した信号ライン間に設けられ、前記一方の端子に入力される前記交流信号の直流成分を接地電位へと安定化させる第3の抵抗素子と、を有しており、前記第1の抵抗素子及び前記第2の抵抗素子の抵抗値に基づいて増幅させた前記交流信号の電圧波形を前記第4の端子に生じさせること、とする。
本発明によれば、増幅利得の調整が容易な増幅装置を提供することができる。
=== 3端子増幅装置 ===
<第1実施形態>
<<3端子増幅装置の構成>>
図1は、本願請求項1及び2に記載の『増幅装置』の一実施形態に係る3端子増幅装置100を用いたECMシステムの構成を示す図である。なお、3端子増幅装置100のVin端子101、Vdd端子102、Gnd端子103に外付けされる部品は、図12に示した従来のECMシステムと同様であるため、同一の符号を付する。
図2は、3端子増幅装置100の構成を示す図である。なお、本願請求項1との対応づけとして、Vin端子101は『第1の端子』、Vdd端子102は『第2の端子』、Gnd端子103は『第3の端子』、負荷抵抗200は『第1の抵抗素子』、抵抗素子104は『第2の抵抗素子』、差動増幅器105は『差動増幅器』、抵抗素子107は『第3の抵抗素子』に夫々対応するものである。また、N型MOSFET106は、本願請求項2に記載の『トランジスタ』と対応するものである。
Vin端子101は、直流成分が接地電位(ゼロ電位)である交流信号が入力される端子である。なお、交流信号とは、エレクトレットコンデンサ203において発生した音声信号に応じた交流電圧波形である。Vdd端子102は、外付けされる抵抗値Rlの負荷抵抗200を介して電源電圧Vddの電源ライン201と接続される端子である。Gnd端子103は、接地用の端子である。
すなわち、3端子増幅装置100は、従来のECMシステムにおける従来の3端子増幅装置900と同一な端子構成であり、従来の3端子増幅装置900の外付け回路を変更する必要がなく、ECMシステムに組み込むことができる。
抵抗値Rsの抵抗素子104は、Vdd端子102とGnd端子103との間を配線した信号ライン間に設けるものである。抵抗素子104は、負荷抵抗200との組み合わせによって、N型MOSFET106のドレイン−ソース電流Idsを設定するために用いられる。
差動増幅器105は、つぎのように構成される。まず、正の電源端子はVdd端子102と抵抗素子104との間の信号ラインと接続されるとともに負の電源端子はGnd端子103と接続される。また、非反転入力端子(『一方の入力端子』)にはVin端子101から交流信号が入力されるとともに、反転入力端子(『他方の入力端子』)には交流信号に応じた出力がVdd端子102と抵抗素子104との間の信号ラインを介して帰還される。すなわち、差動増幅器105は、増幅利得が“1”のボルテージフォロワ構成を呈する。
さらに、非反転入力端子と反転入力端子との間には、非反転入力端子に入力される交流信号の接地電位(直流成分)を基準とした、交流信号の最大振幅レベルを超える正のオフセット電圧Vbを予め生じさせてある。すなわち、非反転入力端子と反転入力端子との間に正のオフセット電圧Vbを生じさせない場合には、N型MOSFET106のソース電極と抵抗素子104との間において、非反転入力端子に入力される交流信号をそのまま再現することができない。なぜなら、抵抗素子104の一方の端子は接地させた状態にあるため、非反転入力端子に入力される交流信号は正の振幅のみを有した半波波形として再現されるからである。このため、非反転入力端子と反転入力端子との間に予め生じさせるオフセット電圧Vbとしては、非反転入力端子に入力される交流信号の最大増幅レベルを超えることとする。
N型MOSFET106は、導通/非導通を制御するためのゲート電極(『制御電極』)と、Vdd端子102側の信号ラインに接続するドレイン電極(『第1の電極』)と、抵抗素子104側の信号ラインに接続するソース電極(『第2の電極』)とを有した、Vdd端子102と抵抗素子104との間の信号ライン間に設けるものであり、所謂ソース接地型の構成を呈する。よって、N型MOSFET106の増幅利得Avは、「抵抗値Rl/抵抗値Rs」で定めることができる。また、差動増幅器105の出力をN型MOSFET106のゲート電極に接続させるとともに、N型MOSFET106のソース電極と反転入力端子との間を接続させることで、差動増幅器105の出力を非反転入力端子に帰還させてある。
抵抗値Rinの抵抗素子107は、Vin端子101と非反転入力端子との間の信号ラインと、Gnd端子103と、の間を配線した信号ライン間に設けるものである。なお、抵抗素子107の抵抗値Rinは、数100M〜数G(Ω)程度であり、非反転入力端子に入力される交流信号の直流成分を接地電位に安定化させる目的で用いられる。この抵抗素子107は、ダイオード素子に置き換えてもよい。すなわち、ダイオード素子のアノード/カソード電極間の電位差がほとんどなく、当該ダイオード素子は高インピーダンス状態となるからである。さらに、抵抗素子107は、定常的に導通状態とさせたトランジスタへと置き換えても良い。なお、導通状態のトランジスタとしては、例えば、ゲート電極に電源電圧を供給したN型MOSFETや、ゲート電極を接地させたP型MOSFET等であり、等価的に抵抗素子として取り扱うことができる。
このように、3端子増幅装置100は、従来の場合のようにJ−FETを用いるのではなく、差動増幅器105を用いて構成する。そして、3端子増幅装置100は、負荷抵抗200の抵抗値Rlと抵抗素子104の抵抗値Rsで定められる増幅利得Av(=抵抗値Rl/抵抗値Rs)に応じて増幅させた交流信号の電圧波形を、Vdd端子102やVout端子202に生じさせるのである。
なお、Vdd端子102やVout端子202に現れる交流信号の電圧波形は、N型MOSFET106がソース接地型のため、非反転入力端子に入力された段階の交流信号と比較して位相が反転することとなる。また、Vdd端子102やVout端子202に現れる交流信号の直流成分は、電源電圧Vddから負荷抵抗200の電圧降下分(=(Rl/Rs)・Vb)を減算したものとなる。
3端子増幅装置100では、従来の場合のようにJ−FETを用いないため、J−FETのコンダクタンスgmのバラつきを何ら考慮することがなくなる。なお、抵抗値Rl、Rsのバラつきは、一般的なICプロセスの場合、“±20”%程度に抑えられるため、従来のJ−FETを用いた場合と比較して、増幅利得のバラつき幅を低減することができる。
また、3端子増幅装置100では、J−FETのコンダクタンスgmのランク分類が不要となるため、その分、製造工数の低減化や歩留まりを安定化させることができる。さらに、J−FETにおいては高温時にゲートリークが発生しやすくなるが、その点も考量する必要がなくなる。
さらに、従来のJ−FETを用いた場合では、増幅利得の増加に応じてドレイン飽和電流Iddsも増加するので、消費電流の観点から増幅利得の制限がなされる。一方、3端子増幅装置100では、負荷抵抗200の抵抗値Rlと抵抗素子104の抵抗値Rsに基づいて、消費電流の影響が少なく、増幅利得を調整できる。
以上、本発明に係る3端子増幅装置100によれば、増幅利得を容易に調整することができるのである。
<<差動増幅器>>
図3をもとに差動増幅器105の詳細な構成例を説明する。
差動増幅器105は、Vin端子101及び非反転入力端子を導通/非導通を制御するためのゲート電極(『第1の制御電極』)と接続させたP型MOSFET112(『第1のトランジスタ』)と、N型MOSFET106と抵抗素子104との接続点及び反転入力端子を導通/非導通を制御するためのゲート電極(『第2の制御電極』)と接続させたP型MOSFET113(『第2のトランジスタ』)と、によって構成される差動トランジスタ対を有する。なお、差動トランジスタ対において、互いのソース電極が共通に接続させており、この共通ソース接続点には、ゲート電極がバイアスされ且つソース電極がVdd端子102に接続されたP型MOSFET110のドレイン電極が接続される。また、差動トランジスタ対において、ドレイン電極側には、N型MOSFET114、115によって構成される電流ミラー回路が接続される。
差動増幅器105は、さらに、ゲート電極がバイアスされ且つソース電極がVdd端子102に接続されたP型MOSFET111と、ゲート電極が電流ミラー回路の出力(P型MOSFET112とN型MOSFET114との接続点)と接続され且つソース電極がGnd端子103に接続されたN型MOSFET116が直列接続される。また、P型MOSFET111とN型MOSFET116との接続点は、N型MOSFET106のゲート電極と接続される。
差動増幅器105は、前述したような構成に基づいて、つぎのような動作を呈する。すなわち、負荷抵抗200からVdd端子102に流れ込む電流は、N型MOSFET106のドレイン−ソース電流Idsと、差動増幅器105へのバイアス電流Isとに分流されており、さらに、バイアス電流Isは、P型MOSFET110、111夫々のドレイン−ソース電流Idsへと分流される。
ここで、差動トランジスタ対では、非反転入力端子(P型MOSFET112のゲート電極)と反転入力端子(P型MOSFET113のゲート電極)に夫々入力される信号レベルの割合に応じて、P型MOSFET110のドレイン−ソース電流Idsを分配し、P型MOSFET112、113夫々にドレイン−ソース電流Idsを流すこととなる。
なお、差動増幅器105はボルテージフォロワ構成であるため、非反転入力端子と反転入力端子に夫々入力される信号の交流成分は同一振幅となる。また、非反転入力端子と反転入力端子に夫々入力される信号の直流成分は、予め生じさせておいたオフセット電圧Vb分、反転入力端子側が高くなる。
よって、差動トランジスタ対では、P型MOSFET113と比較して、P型MOSFET112にはオフセット電圧Vb分だけ少ないドレイン−ソース電流Idsが流れる。そして、N型MOSFET116には、そのドレイン−ソース電流Idsの差分に応じたゲート−ソース間電圧Vgsが誘起される。この結果、N型MOSFET106のソース電極と抵抗素子104との間の接続点には、非反転入力端子に入力された交流信号と同一の信号振幅であり、且つ、直流成分が接地電位からオフセット電圧Vb分レベルシフトした信号が現れる。
また、N型MOSFET106のソース電極と抵抗素子104との間の接続点に現れた信号は、抵抗素子104によって電流へと変換される。ここで、N型MOSFET106のドレイン電極は負荷抵抗200を介して電源ライン201と接続されており、負荷抵抗200にも抵抗素子104と同様の電流が流れる。この結果、Vout端子202には、非反転入力端子に入力された交流信号に対して、位相が反転しており、且つ、増幅利得Av(=Rl/Rs)によって振幅の増幅がなされた、出力信号が現れるのである。なお、出力信号の振幅レベルは、言うまでもなく、負荷抵抗200の抵抗値Rlによって調整可能となる。
<オフセット電圧Vb>
図4は、差動増幅器105において差動トランジスタ対を構成するP型MOSFET112、113の模式図である。
P型MOSFET112、113は、N型シリコン基板10上にP型拡散層のドレイン電極11及びソース電極12が形成される。また、N型シリコン基板10上において、ドレイン電極11とソース電極12との間にはシリコン酸化膜を介してゲート電極13が形成される。一般的に、ゲート電極13は、ゲート長L及びゲート幅Wによって当該サイズが設定される。
よって、非反転入力端子と反転入力端子との間のオフセット電圧Vbは、例えば、P型MOSFET112、113夫々のゲート−ソース間電圧Vgs自体にオフセット電圧を生じさせるべく、夫々のゲート電極13のサイズを異ならせておくことで、予め生じさせることができる。具体的には、例えば、P型MOSFET112と比べてP型MOSFET113のゲート−ソース間電圧Vgsを予め低く設定すればよい。よって、P型MOSFET112と比べてP型MOSFET113のゲート幅Wを予め長く設定したり、ゲート長Lを短く設定することで、夫々のゲート電極13における電流密度に差を与えて、所望のオフセット電圧Vbを生じさせるのである。
<第2実施形態>
図5に示す3端子増幅装置100は、図2に示した3端子増幅装置100に対して、抵抗素子108、109を新たに設けた場合である。なお、図5に示す3端子増幅装置100は、本願請求項3に記載の『増幅装置』に対応したものである。よって、本願請求項3との対応づけとして、抵抗素子108は『第4の抵抗素子』、抵抗素子109は『第5の抵抗素子』に夫々対応する。
抵抗値Rbの抵抗素子108は、N型MOSFET106のソース電極と反転入力端子との間を配線した信号ライン間に設けるものである。抵抗値Raの抵抗素子109は、抵抗素子108と反転入力端子との間の信号ラインと、Gnd端子103と、の間を配線した信号ライン間に設けるものである。
すなわち、差動増幅器105は、増幅利得が“1”のボルテージフォロワ構成ではなく、増幅利得が“(Ra+Rb)/Ra”の非反転増幅器の構成を呈することとなる。よって、非反転入力端子に入力される交流信号の振幅をXとした場合、N型MOSFET106のソース電極と抵抗素子104との間の接続点に現れる信号の振幅は、“(Ra+Rb)/Ra・X)”となり、図2に示した3端子増幅装置100の増幅利得よりも高くなる。
ところで、差動増幅器105は、本来、差動トランジスタ対夫々のトランジスタへのバイアスが同一であることが好ましく、オフセット電圧Vbの大きさは、差動出力の歪を生じさせないように仕様上制限がなされる。よって、オフセット電圧Vbは低いほど好ましいのである。そこで、図5に示す3端子増幅装置100は、図2に示した3端子増幅装置100の増幅利得よりも高くできるため、反転入力端子と非反転入力端子との間に必要なオフセット電圧Vbを、抵抗素子108の抵抗値Rb及び抵抗素子109の抵抗値Raに基づいて減少させることができるのである。
<第3実施形態>
図2や図5に示した3端子増幅装置100において、N型MOSFET106をP型MOSFETや、NPN型バイポーラトランジスタ、PNP型バイポーラトランジスタへと置き換えてもよい。図6は、図2に示した3端子増幅装置100におけるN型MOSFET106をP型MOSFET119へと置き換えた場合を示したものである。図6に示すように、N型MOSFET106の場合と比較してゲート電極とドレイン電極が反転するため、差動増幅器105の極性もまた逆となる。
=== 4端子増幅装置 ===
<第1実施形態>
図7は、本願請求項4及び5に記載の『増幅装置』の一実施形態に係る4端子増幅装置400を用いたECMシステムの構成を示す図である。
図8は、4端子増幅装置400の構成を示す図である。なお、本願請求項4との対応づけとして、Vin端子401は『第1の端子』、Vdd端子402は『第2の端子』、Gnd端子403は『第3の端子』、Vdd2端子404は『第4の端子』、負荷抵抗200は『第1の抵抗素子』、抵抗素子405は『第2の抵抗素子』、差動増幅器406は『差動増幅器』、抵抗素子408は『第3の抵抗素子』に夫々対応するものである。また、N型MOSFET407は、本願請求項5に記載の『トランジスタ』と対応するものである。
Vin端子401は、直流成分が接地電位(ゼロ電位)である交流信号が入力される端子である。Vdd端子402は、外付けされる抵抗値Rlの負荷抵抗200を介して電源電圧Vddの電源ライン201と接続される端子である。Gnd端子403は、接地用の端子である。Vdd2端子404は、電源電圧Vddとは独立した電源電圧Vdd2の電源ライン206と接続される。
抵抗値Rsの抵抗素子405は、Vdd端子402とGnd端子403との間を配線した信号ライン間に設けるものである。
差動増幅器406は、つぎのように構成される。まず、正の電源端子はVdd2端子404と接続されるとともに負の電源端子はGnd端子403と接続される。また、非反転入力端子(『一方の入力端子』)にはVin端子401から交流信号が入力されるとともに、反転入力端子(『他方の入力端子』)には交流信号に応じた出力がVdd端子402と抵抗素子405との間の信号ラインを介して帰還される。すなわち、差動増幅器406は、ボルテージフォロワ構成を呈する。さらに、非反転入力端子と反転入力端子との間には、非反転入力端子に入力される交流信号の接地電位(直流成分)を基準とした、交流信号の最大振幅レベルを超える正のオフセット電圧Vbを予め生じさせてある。
N型MOSFET407は、導通/非導通を制御するためのゲート電極(『制御電極』)と、Vdd端子402側の信号ラインに接続するドレイン電極(『第1の電極』)と、抵抗素子405側の信号ラインに接続するソース電極(『第2の電極』)とを有した、Vdd端子402と抵抗素子405との間の信号ライン間に設けるものであり、所謂ソース接地型の構成を呈する。よって、N型MOSFET407の増幅利得Avは、「抵抗値Rl/抵抗値Rs」で定めることができる。また、差動増幅器406の出力をN型MOSFET407のゲート電極に接続させるとともに、N型MOSFET407のソース電極と反転入力端子との間を接続させることで、差動増幅器406の出力を反転入力端子に帰還させてある。
抵抗値Rin(数100M〜数G(Ω)程度)の抵抗素子408は、Vin端子401と非反転入力端子との間の信号ラインと、Gnd端子403と、の間を配線した信号ライン間に設けるものであり、非反転入力端子に入力される交流信号の直流成分を接地電位に安定化させる目的で用いられる。なお、抵抗素子107と同様に、ダイオード素子や導通状態のトランジスタに置き換えてもよい。
ここで、4端子増幅装置400は、3端子増幅装置100と基本的には同様な構成であるため、3端子増幅装置100の場合と同様に、増幅利得の調整を容易とさせる効果が得られる。なお、4端子増幅装置400の構成において、3端子増幅装置100と大きく異なる点は、Vdd2端子404を設け、さらに、差動増幅器406へと供給する電源電圧Vdd2の供給ラインを、負荷抵抗200を介してN型MOSFET407へと供給する電源電圧Vddの供給ラインとは独立させた点にある。
よって、3端子増幅装置100の場合、差動増幅器105へと供給する電流Ibが負荷抵抗200に流れてしまい、その結果生じるノイズ成分が、Vout端子202に出現する波形へと重畳されていたが、4端子増幅装置400の場合、電源ライン206から差動増幅器406へと流れる電流Ibが、負荷抵抗200へと流れなくて済む。このため、4端子増幅装置400では、源電圧特性が優れるとともに、Vout端子202に出現する波形のS/N比の改善がなされる。
<第2実施形態>
図9は、本願請求項6及び7に記載の『増幅装置』の一実施形態に係る4端子増幅装置500を用いたECMシステムの構成を示す図である。
図10は、4端子増幅装置500の構成を示す図である。なお、本願請求項6との対応づけとして、Vin端子501は『第1の端子』、Vdd端子502は『第2の端子』、Gnd端子503は『第3の端子』、Vout端子504は『第4の端子』、負荷抵抗505は『第1の抵抗素子』、抵抗素子506は『第2の抵抗素子』、差動増幅器507は『差動増幅器』、抵抗素子509は『第3の抵抗素子』に夫々対応するものである。また、N型MOSFET508は、本願請求項7に記載の『トランジスタ』と対応するものである。
Vin端子501は、直流成分が接地電位(ゼロ電位)である交流信号が入力される端子である。Vdd端子502は、電源電圧Vddの電源ライン201と接続される端子である。Gnd端子503は、接地用の端子である。Vout端子504は、負荷抵抗505と抵抗素子506との接続点と接続される端子である。
差動増幅器507は、つぎのように構成される。まず、正の電源端子はVdd端子502と接続されるとともに負の電源端子はGnd端子503と接続される。また、非反転入力端子(『一方の入力端子』)にはVin端子501から交流信号が入力されるとともに、反転入力端子(『他方の入力端子』)には交流信号に応じた出力が負荷抵抗505と抵抗素子506との間の信号ラインを介して帰還される。すなわち、差動増幅器507は、ボルテージフォロワ構成を呈する。さらに、非反転入力端子と反転入力端子との間には、非反転入力端子に入力される交流信号の接地電位(直流成分)を基準とした、交流信号の最大振幅レベルを超える正のオフセット電圧Vbを予め生じさせてある。
N型MOSFET508は、導通/非導通を制御するためのゲート電極(『制御電極』)と、負荷抵抗505側の信号ラインに接続するドレイン電極(『第1の電極』)と、抵抗素子506側の信号ラインに接続するソース電極(『第2の電極』)とを有した、負荷抵抗505と抵抗素子506との間の信号ライン間に設けるものであり、所謂ソース接地型の構成を呈する。よって、N型MOSFET508の増幅利得Avは、「抵抗値Rl/抵抗値Rs」で定めることができる。また、差動増幅器507の出力をN型MOSFET508のゲート電極に接続させるとともに、N型MOSFET508のソース電極と反転入力端子との間を接続させることで、差動増幅器507の出力を反転入力端子に帰還させてある。
抵抗値Rin(数100M〜数G(Ω)程度)の抵抗素子509は、Vin端子501と非反転入力端子との間の信号ラインと、Gnd端子503と、の間を配線した信号ライン間に設けるものであり、非反転入力端子に入力される交流信号の直流成分を接地電位に安定化させる目的で用いられる。なお、抵抗素子107と同様に、ダイオード素子や導通状態のトランジスタに置き換えてもよい。
ここで、4端子増幅装置500は、3端子増幅装置100及び4端子増幅装置400と基本的には同様な構成であるため、3端子増幅装置100及び4端子増幅装置400の場合と同様に、増幅利得の調整を容易とさせる効果が得られる。なお、4端子増幅装置500の構成において、3端子増幅装置100及び4端子増幅装置400と大きく異なる点は、Vout端子504を設け、さらに、外付けされていた負荷抵抗505を内蔵した点にある。
よって、4端子増幅装置500の内部において、要求される増幅利得に応じて負荷抵抗505の抵抗値Rlと抵抗素子506の抵抗値Rsの比率を予め設定しておくことが可能となる。また、負荷抵抗505の抵抗値Rlと抵抗素子506の抵抗値Rsの比率は、CMOSプロセスにおいて負荷抵抗505及び抵抗素子506を隣接配置する等によって、バラつきを数%程度に抑えることが可能となる。
<第3実施形態>
図11は、本願請求項8に記載の『増幅装置』の一実施形態に係る4端子増幅装置500の構成を示す図である。
図11に示す4端子増幅装置500は、図10に示した4端子増幅装置500に対して、負荷抵抗505、N型MOSFET508、抵抗素子506を省くとともに、新たに、抵抗素子510、511を設けた場合である。なお、本願請求項8との対応づけとして、抵抗素子510は『第1の抵抗素子』、抵抗素子511は『第2の抵抗素子』に夫々対応する。
図11に示す4端子増幅装置500において、差動増幅器507はつぎのように構成される。まず、正の電源端子はVdd端子502と接続されるとともに負の電源端子はGnd端子503と接続される。また、非反転入力端子(『一方の入力端子』)にはVin端子501から交流信号が入力されるとともに、反転入力端子(『他方の入力端子』)には交流信号に応じた出力が抵抗値Rcの抵抗素子510を介して帰還される。また、抵抗素子510と反転入力端子との間の信号ラインを、抵抗値Rdの抵抗素子511を介してGnd端子503と接続する。すなわち、差動増幅器507は、増幅利得が“(Rc+Rd)/Rc”である非反転増幅器の構成を呈する。さらに、非反転入力端子と反転入力端子との間には、非反転入力端子に入力される交流信号の接地電位(直流成分)を基準とした、交流信号の最大振幅レベルを超える正のオフセット電圧Vbを予め生じさせてある。
また、図11に示す4端子増幅装置500において、Vout端子504には、差動増幅器507の出力が直接接続される。
ここで、図11に示す4端子増幅装置500は、抵抗素子510の抵抗値Rc及び抵抗素子511の抵抗値Rdに基づいて増幅利得を調整できるため、前述した実施形態と同様に増幅利得の調整を容易とさせる効果が得られる。また、N型MOSFET508を設けない点など、構成上の簡略化が図られる。
<第4実施形態>
図8に示した4端子増幅装置400や、図10、図11に示した4端子増幅装置500において、3端子増幅装置100の場合と同様に、N型MOSFET407、508を、P型MOSFET、NPN型バイポーラトランジスタ、PNP型バイポーラトランジスタのいずれかに置き換えてもよい。なお、P型MOSFET又はPNP型バイポーラトランジスタに置き換える場合は、差動増幅器406、507の極性を反転させることとする。
以上、本発明の実施形態について説明したが、前述した実施形態は、本発明の理解を容易にするためのものであって、本発明を限定して解釈するものではない。本発明は、その趣旨を逸脱することなく、変更/改良がなされ得るとともに、本発明にはその等価物も含まれる。
例えば、3端子増幅装置100、4端子増幅装置400、500は、ECMシステムの初段増幅器という用途に限定されるものではない。3端子増幅装置100、4端子増幅装置400、500は、様々な制御システムにおいて、アナログセンサによって検出されたアナログ信号を、当該制御システム内で取り扱い可能なレベルまで増幅する初段増幅器として用いることができる。
本発明の一実施形態に係るECMシステムの構成を示す図である。 本発明の一実施形態に係る3端子増幅装置の構成を示す図である。 本発明の一実施形態に係る3端子増幅装置の詳細な構成を示す図である。 N型MOSFETの構造を説明する図である。 本発明の一実施形態に係る3端子増幅装置の構成を示す図である。 本発明の一実施形態に係る3端子増幅装置の構成を示す図である。 本発明の一実施形態に係るECMシステムの構成を示す図である。 本発明の一実施形態に係る4端子増幅装置の構成を示す図である。 本発明の一実施形態に係るECMシステムの構成を示す図である。 本発明の一実施形態に係る4端子増幅装置の構成を示す図である。 本発明の一実施形態に係る4端子増幅装置の構成を示す図である。 従来のECMシステムの構成を示す図である。 JFETのVgs対Ids特性を示す図である。
符号の説明
10 N型シリコン基板
11 ドレイン電極
12 ソース電極
13 ゲート電極
100、900 3端子増幅装置
105、406、507 差動増幅器
104、107、108、109 抵抗素子
110、111、112、113、119 P型MOSFET
106、114、115、116、407、508 N型MOSFET
200、505 負荷抵抗
201、206 電源ライン
202 Vout端子
203 エレクトレットコンデンサ
101、401、501、901 Vin端子
102、402、502、902 Vdd端子
103、403、503、903 Gnd端子
404 Vdd2端子
405、408 抵抗素子
504 Vout端子
400、500 4端子増幅装置
506、509、510、511 抵抗素子
904 J−FET
905 抵抗素子

Claims (4)

  1. 交流信号が入力される第1の端子と、
    外付けの第1の抵抗素子を介して電源ラインと接続される第2の端子と、
    接地させる第3の端子と、
    前記第2の端子と前記第3の端子との間の信号ライン間に設ける第2の抵抗素子と、
    正の電源端子は前記第2の端子と前記第2の抵抗素子との間の信号ラインと接続されるとともに負の電源端子は前記第3の端子と接続され、反転/非反転入力端子のうち一方の入力端子には前記第1の端子から前記交流信号が入力されるとともに他方の入力端子には前記交流信号に応じた出力が前記第2の端子と前記第2の抵抗素子との間の信号ラインを介して帰還され、前記一方の入力端子と前記他方の入力端子との間には前記一方の入力端子の接地電位を基準とした前記交流信号の最大振幅レベルを超える正のオフセット電圧を予め生じさせてある差動増幅器と、
    前記第1の端子と前記一方の入力端子との間の信号ラインと、前記第3の端子と、の間の信号ライン間に設けられ、前記一方の端子に入力される前記交流信号の直流成分を接地電位へと安定化させる第3の抵抗素子と、
    前記第2の端子と前記第2の抵抗素子との間の信号ライン間には導通/非導通を制御するための制御電極と前記第2の端子側の信号ラインに接続する第1の電極と前記第2の抵抗素子側の信号ラインに接続する第2の電極とを有したトランジスタと、
    前記第2の電極と前記他方の入力端子との間の信号ライン間に設ける第4の抵抗素子と、
    前記第4の抵抗素子と前記他方の入力端子との間の信号ラインと、前記第3の端子と、の間の信号ライン間に設ける第5の抵抗素子と、を有しており、
    前記第1の抵抗素子及び前記第2の抵抗素子の抵抗値に基づいて増幅させた前記交流信号の電圧波形を前記第2の端子に生じさせ、
    前記差動増幅器の出力を前記制御電極に接続させるとともに、前記第2の電極と前記他方の入力端子との間を接続させることで、前記差動増幅器の出力を前記他方の入力端子に帰還させており、
    前記第1の抵抗素子の抵抗値÷前記第2の抵抗素子の抵抗値で定められる増幅利得に応じて増幅させた前記交流信号の電圧波形を前記第2の端子に生じさせ、
    前記一方の入力端子と前記他方の入力端子との間に必要な前記オフセット電圧を、前記第4の抵抗素子及び前記第5の抵抗素子の抵抗値に基づいて減少させること、を特徴とする増幅装置。
  2. 前記差動増幅器は、前記一方の入力端子を導通/非導通を制御するための第1の制御電極と接続させた第1のトランジスタと、前記他方の入力端子を導通/非導通を制御するための第2の制御電極と接続させた第2のトランジスタと、によって構成される差動トランジスタ対を有しており、
    前記オフセット電圧を、前記第1及び前記第2の制御電極夫々のサイズを異ならせて予め生じさせておくこと、
    を特徴とする請求項1に記載の増幅装置。
  3. 前記第3の抵抗素子を、ダイオード素子又は導通状態のトランジスタに置き換えること、を特徴とする請求項1又は2のいずれかに記載の増幅装置。
  4. 前記第1の端子を、エレクトレットコンデンサマイクロフォンにおける一方の電極を予め帯電させたエレクトレットコンデンサの他方の電極と接続させ、
    音声信号に基づく前記エレクトレットコンデンサの容量値の変化に応じた交流信号が、前記第1の端子へと入力されること、を特徴とする請求項1乃至3のいずれかに記載の増幅装置。
JP2004246464A 2004-08-26 2004-08-26 増幅装置 Expired - Fee Related JP4573602B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004246464A JP4573602B2 (ja) 2004-08-26 2004-08-26 増幅装置
TW094116240A TWI302054B (en) 2004-08-26 2005-05-19 Amplification device
CN2005100813243A CN1741374B (zh) 2004-08-26 2005-06-24 放大装置
KR1020050078154A KR100646725B1 (ko) 2004-08-26 2005-08-25 증폭 장치
US11/212,310 US7224226B2 (en) 2004-08-26 2005-08-26 Amplifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246464A JP4573602B2 (ja) 2004-08-26 2004-08-26 増幅装置

Publications (2)

Publication Number Publication Date
JP2006067166A JP2006067166A (ja) 2006-03-09
JP4573602B2 true JP4573602B2 (ja) 2010-11-04

Family

ID=35942252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246464A Expired - Fee Related JP4573602B2 (ja) 2004-08-26 2004-08-26 増幅装置

Country Status (5)

Country Link
US (1) US7224226B2 (ja)
JP (1) JP4573602B2 (ja)
KR (1) KR100646725B1 (ja)
CN (1) CN1741374B (ja)
TW (1) TWI302054B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279968B2 (en) * 2005-01-25 2007-10-09 Analog Devices, Inc. Amplifier output voltage swing extender circuit and method
JP2010103842A (ja) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd 増幅素子
JP2010161475A (ja) * 2009-01-06 2010-07-22 Toshiba Corp アレーアンテナ
JP4830058B2 (ja) 2009-10-21 2011-12-07 旭化成エレクトロニクス株式会社 2線式伝送器
CA2864612C (en) * 2012-03-29 2019-09-10 George Townsend Differential amplifier and electrode for measuring a biopotential
US9681211B2 (en) 2013-07-12 2017-06-13 Infineon Technologies Ag System and method for a microphone amplifier
US9357295B2 (en) 2013-10-22 2016-05-31 Infineon Technologies Ag System and method for a transducer interface
DE112015006229T5 (de) 2015-02-27 2017-11-09 Tdk Corporation Integrierte Schaltungsanordnung für ein Mikrofon, Mikrofonsystem und Verfahren zum Justieren eines oder mehrerer Schaltungsparameter des Mikrofonsystems
JP7191598B2 (ja) * 2018-09-06 2022-12-19 日清紡マイクロデバイス株式会社 増幅装置
JP2021191079A (ja) * 2020-05-28 2021-12-13 ミツミ電機株式会社 直流電源装置およびそれに用いる電流安定化回路並びに電源ラインのノイズ抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069224U (ja) * 1992-07-07 1994-02-04 明 永井 増幅器
JP2000156615A (ja) * 1998-11-19 2000-06-06 Mitsubishi Electric Corp 半導体集積回路
JP2001102875A (ja) * 1999-10-01 2001-04-13 Hosiden Corp 半導体増幅回路及び半導体エレクトレットコンデンサマイクロホン
JP2002026664A (ja) * 2000-07-10 2002-01-25 Toshiba Microelectronics Corp 増幅回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768028A (en) * 1972-03-22 1973-10-23 Optimation Inc A.c.-d.c. amplifier system
JPS525204A (en) * 1975-07-01 1977-01-14 Seiko Epson Corp Hearing aid
JPH0612856B2 (ja) * 1985-09-30 1994-02-16 株式会社東芝 増幅回路
JP2707667B2 (ja) * 1988-12-27 1998-02-04 日本電気株式会社 比較回路
IT1250825B (it) * 1991-07-29 1995-04-21 St Microelectronics Srl Amplificatore,particolarmente amplificatore integrato.
JPH05281972A (ja) * 1992-03-30 1993-10-29 Kawai Musical Instr Mfg Co Ltd 効果装置
US5345185A (en) * 1992-04-14 1994-09-06 Analog Devices, Inc. Logarithmic amplifier gain stage
JPH05333950A (ja) * 1992-06-03 1993-12-17 Nec Corp 定電流回路
JP3046152B2 (ja) * 1992-09-08 2000-05-29 株式会社日立製作所 増幅回路
CN1089768A (zh) * 1993-01-04 1994-07-20 赵杰 宽频带电视天线放大器
FR2743243B1 (fr) * 1995-12-29 1998-01-30 Thomson Multimedia Sa Circuit de traitement numerique a controle de gain
US6268770B1 (en) 1998-07-17 2001-07-31 Anthony T. Barbetta Wide bandwidth, current sharing, MOSFET audio power amplifier with multiple feedback loops
US6064261A (en) * 1999-04-23 2000-05-16 Guzik Technical Enterprises Write amplifier with improved switching performance, output common-mode voltage, and head current control
US6433611B1 (en) * 2000-03-24 2002-08-13 Sige Microsystems Inc. Voltage level shifting circuit
JP2003243944A (ja) 2002-02-15 2003-08-29 Sanyo Electric Co Ltd 高入力インピーダンス増幅器及びエレクトレットコンデンサマイクロフォン用の半導体集積回路。
JP3696590B2 (ja) 2002-11-25 2005-09-21 東光株式会社 定電圧電源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069224U (ja) * 1992-07-07 1994-02-04 明 永井 増幅器
JP2000156615A (ja) * 1998-11-19 2000-06-06 Mitsubishi Electric Corp 半導体集積回路
JP2001102875A (ja) * 1999-10-01 2001-04-13 Hosiden Corp 半導体増幅回路及び半導体エレクトレットコンデンサマイクロホン
JP2002026664A (ja) * 2000-07-10 2002-01-25 Toshiba Microelectronics Corp 増幅回路

Also Published As

Publication number Publication date
TWI302054B (en) 2008-10-11
TW200608701A (en) 2006-03-01
US20060044062A1 (en) 2006-03-02
CN1741374B (zh) 2010-04-21
CN1741374A (zh) 2006-03-01
KR20060050639A (ko) 2006-05-19
JP2006067166A (ja) 2006-03-09
US7224226B2 (en) 2007-05-29
KR100646725B1 (ko) 2006-11-23

Similar Documents

Publication Publication Date Title
KR100646725B1 (ko) 증폭 장치
KR101408529B1 (ko) 용량성 신호 소스 증폭기를 위한 시스템 및 방법
WO2011132240A1 (ja) コンデンサマイクロフォン用増幅装置
KR100733288B1 (ko) 마이크로폰 증폭기
US9681211B2 (en) System and method for a microphone amplifier
US7298211B2 (en) Power amplifying apparatus
KR101834255B1 (ko) 영상신호 출력 회로
GB2560588A (en) MEMS transducer amplifiers
KR20130044576A (ko) 음향 감지 회로 및 그것의 증폭 회로
US11626848B2 (en) Biased amplifier
US11101776B2 (en) Common source preamplifier for a MEMS capacitive sensor
JP4180411B2 (ja) トランスコンダクタンス増幅器
JP2006033091A (ja) センサユニット及びセンサ信号処理回路
JP2010249786A (ja) センサ信号処理回路
JP5433615B2 (ja) 音響用プッシュプル増幅装置
JPH07106888A (ja) 電圧リミッタ回路
JP2005109842A (ja) コンデンサ・マイクロフォン用増幅回路
JP2017211944A (ja) 電源回路
JP6933797B2 (ja) オーディオアンプおよびオーディオパワーアンプ
JP2019205000A (ja) 電荷検知回路および圧電マイクロフォン
KR101109199B1 (ko) 마이크로폰 증폭기
KR101109392B1 (ko) 마이크로폰 증폭기
JP2018186376A (ja) 増幅回路
JP2020043406A (ja) 増幅装置及びセンサ信号出力装置
JPWO2018180111A1 (ja) ノイズ除去回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees