WO2011047527A1 - 一种双微孔—介孔复合分子筛及其制备方法 - Google Patents

一种双微孔—介孔复合分子筛及其制备方法 Download PDF

Info

Publication number
WO2011047527A1
WO2011047527A1 PCT/CN2010/001368 CN2010001368W WO2011047527A1 WO 2011047527 A1 WO2011047527 A1 WO 2011047527A1 CN 2010001368 W CN2010001368 W CN 2010001368W WO 2011047527 A1 WO2011047527 A1 WO 2011047527A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous
molecular sieve
phase
mesoporous
composite molecular
Prior art date
Application number
PCT/CN2010/001368
Other languages
English (en)
French (fr)
Inventor
王东青
李全芝
王刚
张志华
李旭光
孙发民
田然
戴宝琴
于春梅
黄耀
王甫村
李海岩
李井泉
郭淑芝
张庆武
马守涛
吕倩
李淑杰
孙生波
李瑞峰
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to NZ600105A priority Critical patent/NZ600105A/en
Publication of WO2011047527A1 publication Critical patent/WO2011047527A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof

Definitions

  • Double microporous-mesoporous composite molecular sieve and preparation method thereof Double microporous-mesoporous composite molecular sieve and preparation method thereof
  • the invention relates to a catalyst carrier material prepared by combining a double microporous phase (Y-type and Beta-type zeolite) and a mesoporous phase (MCM-41) molecular sieve and a preparation method thereof.
  • microporous molecular sieves are widely used as catalysts, adsorbents, ion exchangers and new functional materials due to their large specific surface area, high hydrothermal stability, uniform pore size and adjustable surface properties.
  • the first industrial application of molecular sieves to the field of catalysis was in 1959 when the United States Carbide Company applied a Y-type zeolite-based catalyst to the isomerization reaction. Then, in 1962, US Mobile Company applied X-type zeolite to catalytic cracking. In 1969, Grace Corporation An ultra-stable Y-type zeolite (USY) catalyst was developed.
  • molecular sieve catalytic removal was mainly applied to cracking and hydrocracking, and industrialization was realized in the isomerization of normal paraffins, low-temperature isomerization of C 8 aromatic hydrocarbons, disproportionation of toluene, and shape-selective catalysis.
  • Microporous molecular sieves have uniformly developed micropores and strong acidity, but their pore size is small (less than 2 nm), and it is difficult for macromolecules to enter the pores, which greatly limits the industrial application range. Since the synthesis of M41S series mesoporous molecular sieves by Mobile in 1992, the synthesis technology, performance characterization and crystallization mechanism of mesoporous molecular sieves (pore size 2nn! ⁇ 50nm) have been the hotspots of international research. However, due to the amorphous shape of the mesoporous molecular sieve pores, the weak acidity and hydrothermal stability are poor.
  • Microporous-mesoporous composite molecular sieve has a microporous and mesoporous double model pore structure, combined with mesoporous material.
  • both the pore size and the acidity can be adjusted, that is, by selecting two materials of different pore structure and acid property for optimal compounding, composite materials with different pore structure and acid distribution can be prepared.
  • Internationally renowned molecular sieve chemist Davis pointed out that the successful preparation and diversification of multi-stage molecular sieve materials characterized by assembly will have broad application prospects in more fields.
  • the mesoporous shell pores of the Y/MCM-41 composite molecular sieve synthesized by the former are disorderly arranged, and the synthesis efficiency is very low, and the acid properties and hydrothermal stability are not ideal; the latter synthesized ZSM-5 MCM-41 composite molecular sieve
  • the disorder of the mesoporous wall is still high, and the crystallized portion exists only on the surface of the mesoporous wall, so the hydrothermal stability is lacking.
  • the composite molecular sieve prepared by the method has high acidity and remarkable hydrothermal stability, but the seed crystal of the microporous molecular sieve is prepared first, and the process of preparing the seed crystal is difficult to control, and the seed crystal is easy to control. Excessive assembly affects the assembly effect, while too small will affect the acid properties of the material. Then there are successively
  • Microporous-mesoporous composite molecular sieves have excellent catalytic properties.
  • ZSM-5/MCM-41 composite molecular sieves have higher catalytic activity for the normal dodecyl cracking reaction than their mechanical mixtures.
  • binary microporous-mesoporous composite molecular sieves at home and abroad have many studies on binary microporous-mesoporous composite molecular sieves at home and abroad, but the compounding of ternary double microporous mesoporous composite molecular sieves has not been reported yet.
  • Beta-type zeolites currently used in the hydrocracking industry, we combine the characteristics of the two in hydrocracking: Y-type zeolite heavy naphtha aromatic potential, low BMC1 value; Beta-type zeolite oil selection Good in nature, high in activity, but low in aromatic potential and high in BMC1 value. Invented the supramolecular self-assembly of cationic and nonionic mixed surfactants in alkaline systems, by hydrothermal epitaxial growth, synthesis A novel double microporous mesoporous composite molecular sieve (Y-Beta/MCM-41).
  • This invention is a further development of molecular sieve catalytic materials, and the synthetic double microporous mesoporous composite molecular sieve (Y-Beta/MCM-41) can be used as a novel carrier for hydrocracking catalysts, and has potential in the fields of petrochemicals and the like. Value.
  • the object of the present invention is to provide a catalyst carrier material comprising a double microporous phase (Y-type and Beta-type zeolite) and a mesoporous phase (MCM-41) molecular sieve, and a preparation method with simple operation and good reproducibility.
  • the double microporous-mesoporous composite molecular sieve of the invention is composed of Y-type and Beta-type double-microporous zeolite and MCM-41 molecular sieve, and the double microporous phase is tightly wrapped on the hexagonal mesoporous phase wall, showing many
  • the spherical or hemispherical hollow shell structure is interconnected with each other to form a network, and the microporous phase silicon-aluminum ratio and micropore content are adjustable.
  • the double microporous-mesoporous composite molecular sieve (Y-Beta/MCM-41) prepared by the invention is alkaline
  • the pre-treated microporous phase, silicon source and aluminum source are used as inorganic precursors ( ⁇ ) under the action of cation (s+) and nonionic (s Q ) mixed surfactants, passing the s+s Q r route.
  • Supramolecular self-assembly is carried out to achieve crystal growth of the mesoporous phase on the microporous phase.
  • Microporous phase pretreatment Take a certain amount of Y-type and Beta-type zeolite, mix them in proportion, add them to deionized water, stir evenly at a specific temperature, and record them as solution A for use.
  • the raw material ratio molar ratio: CTAB/Si0 2 is 0.10 ⁇ 0.25, 01 ⁇ /0?-10 is 5 ⁇ 7, 810 2 0 is 58 ⁇ 78, 8 ⁇ 1 ⁇ 25; by mass ratio ( ⁇ +861&) I Si0 2 is 0.26 ⁇ 0.80, and the amount of microporous phase Y type and Beta type zeolite can be adjusted in any ratio.
  • the microporous phase has a pretreatment temperature of 30 ° C to 50 ° C and a treatment time of 25 mir! ⁇ 30min ; the pH of the synthetic system is in the range of 10.1 ⁇ : 12.1;
  • the crystallization temperature is 100 ° C and the crystallization time is 481! ⁇ 72h;
  • the crystallization product is calcined in a nitrogen stream, and the calcination temperature is from 500 ° C to 550 ° C for a period of 1.0 h; the calcination temperature in air is from 500 ° C to 600 ° C, and the time is from 4.0 h to 6.0 h ;
  • the concentration of the ammonium salt solution is 0.05 mol/L to 0.20 mol/L, and the ratio of the calcined product to the ammonium salt solution is lg: 150 mol/L to 300 mol/L, and the exchange time is 2.0 h to 4.0 h.
  • the inorganic acid used in the present invention may be any one or a mixture of two of hydrochloric acid, sulfuric acid or nitric acid; the inorganic base is mainly sodium hydroxide or potassium hydroxide.
  • the present invention may use industrial grade water glass as the silicon source in the alkaline system, and the aluminum source may be any one or a mixture of two of aluminum chloride, aluminum sulfate or aluminum nitrate.
  • the stirring time before adjusting the pH of the system is generally 1.01! ⁇ 1.5h is appropriate.
  • the stirring time after adjusting the pH is around 0.5h.
  • the ammonium salt used may be one or a mixture of two or more of ammonium nitrate or ammonium chloride.
  • Fig. 5a XRD contrast spectrum of MCM-41 before and after hydrothermal treatment (hydrothermal treatment conditions: 4 h in steam at 550 °C, a and b are before and after hydrothermal treatment)
  • Fig. 5b XRD contrast spectrum of ⁇ -l before and after hydrothermal treatment (hydrothermal treatment conditions: treatment in water vapor at 550 °C for 4 h, a and b are before and after hydrothermal treatment)
  • the calcined product was ion-exchanged in a ratio of 1:200 in an ammonium nitrate solution of 0.1 mol of L for 2.5 h, filtered, dried, and finally calcined in air to obtain a ratio of 1:1 of the micropores synthesized by the alkaline system. , a relative content of 53% Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve, this sample Named ⁇ -1.
  • Figure 2 shows the relationship between the pore volume and pore size of the ⁇ -l low temperature ⁇ 2 adsorption-desorption isotherm and BJH desorption.
  • the specific surface area is 829.68 m 2 /g
  • the pore volume is 1.104 cm 3 . /g (wherein the pore volume of the micropores is 0.046 cm 3 /g), the average pore diameter is 5.32 nm (the size of the mesoporous distribution is 2.84 nm), and the pore wall thickness of the mesopores is about 1.52 nm.
  • the molecular sieve formed by the combination of the double microporous phase and the mesoporous phase has a plurality of spherical or hemispherical empty shell structures which are interconnected with each other to form a network.
  • Figure 4 compares the catalytic properties of the mechanical mixture of ⁇ -l and Y, Beta and MCM-41 on the probe molecule ⁇ -methylnaphthalene. It can be seen that the Y-Beta/MCM-41 synthesized by the basic system
  • the double microporous-mesoporous composite molecular sieve has strong acidity, and is superior to the mechanical mixture in the ability of ring opening, depurination and isomerization, and has strong catalytic activity.
  • Fig. 5b shows the XRD spectrum of MYp-1 after hydrothermal treatment. It can be seen that after ⁇ -l is hydrothermally treated, the [100] diffraction peak intensity is strong, and the [110] and [200] diffraction peaks can be identified, indicating The sample is still hexagonal ordered mesoporous structure, and the order degree retention is better. However, in the XRD spectrum of MCM-41 after hydrothermal treatment, MCM-41 is hydrothermally treated, [100] diffraction. The peak intensity is greatly reduced, and the [110] and [200] diffraction peaks have disappeared, indicating that the structural order degree is greatly reduced.
  • Example 2 0.47 g of Y type and 0.47 g of Beta zeolite powder were mixed and pretreated, added to a mixed solution containing CTAB and OP-10, stirred at room temperature for 30 min, and then 5 ml of water glass (Si0) was slowly added dropwise to the mixture.
  • Example 3 0.235 g of Y type and 0.235 g of Beta zeolite powder were mixed and pretreated, added to a mixed solution containing CTAB and OP-10, stirred at room temperature for 30 min, and then slowly added 5 ml of water glass (Si0) to the mixture.
  • the product was filtered, washed, dried and calcined. , the calcined product was ion exchanged in a ratio of 1:200 in an ammonium nitrate solution of 0.5 mol/L for 2.5 h. After suction filtration, drying, and finally roasting in air, the Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve with a ratio of 1:1 and a relative content of 27% is obtained. The sample was named ⁇ -3.
  • Example 4 0.3 lg of Y type and 0.62 g of Beta zeolite powder were mixed and pretreated, added to a mixed solution containing CTAB and OP-10, stirred at room temperature for 30 min, and then 5 ml of water glass (Si0) was slowly added dropwise to the mixture.
  • the novel double microporous-mesoporous composite molecular sieve (Y-Beta/MCM-41) proposed by the invention has the following characteristics:
  • the double microporous-mesoporous composite molecular sieve exhibits many spherical or hemispherical empty shell structures, which are interconnected with each other to form a network, and the microporous phase is tightly wrapped around the mesoporous pore wall.
  • the mechanical mixture there is a clear difference from the mechanical mixture.
  • the double microporous mesoporous composite molecular sieve has a specific surface area of 829.68 m 2 /g, a pore volume of 1.104 cm 3 /g (where the pore volume of the micropores is 0.046 cm 3 /g), and an average pore diameter of 532 nm (the The size of the mesopores is 2.84 nm, and the thickness of the mesopores is about 1.52 nm.
  • the double microporous-mesoporous composite molecular sieve is obtained by a supramolecular assembly action of a mixed surfactant (CTAB and OP-10) by a hydrothermal epitaxial growth synthesis method.
  • CTAB and OP-10 a mixed surfactant
  • the double microporous mesoporous composite molecular sieve Y-Beta/MCM-41 with microporous phase silicon-aluminum ratio and microporous content adjustable in the alkaline system can be synthesized in the alkaline system.
  • the double microporous-mesoporous composite molecular sieve has good hydrothermal stability, and can maintain good structural order by steam treatment at 550 °C for 4 hours.
  • the double microporous-mesoporous composite molecular sieve has strong acidity, and combines the advantages of Y-type and Beta-type zeolite in hydrocracking, and has good catalytic reaction performance.
  • the novel double microporous mesoporous composite molecular sieve (Y-Beta MCM-41) proposed by the present invention is a good catalyst carrier material, and the structure is substantially different from the mechanical mixture.
  • two kinds of zeolite structural units were introduced to make a synergistic effect between the microporous phase and the microporous phase and the microporous phase and the mesoporous phase in the composite molecular sieve, showing better catalytic reaction activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Description

一种双微孔-介孔复合分子筛及其制备方法
技术领域
本发明涉及一种双微孔相 (Y型和 Beta型沸石)和介孔相 (MCM-41 ) 分子筛复合而成的催化剂载体材料及其制备方法。
背景技术
微孔分子筛作为一种重要的无机材料, 由于具有比表面积大、 水热 稳定性高、 孔径均一、 表面性质可调等性能, 被广泛地用作催化剂、 吸 附剂、 离子交换剂和新型功能材料。 首次在工业上将分子筛应用于催化 领域是 1959年美国联合碳化物公司将 Y型沸石基催化剂应用于异构化反 应, 接着 1962年美国 Mobile公司将 X型沸石应用于催化裂化, 1969年 Grace公司开发了超稳 Y型沸石 (USY)催化剂。 当时分子筛催化除去主要 应用于裂解与加氢裂解以外, 已在正构烷烃的异构化、 C8芳烃的低温异 构化、 甲苯的歧化和择形催化等方面实现了工业化。
微孔分子筛具有均匀发达的微孔和强酸性, 但其孔径较小 (小于 2nm), 大分子难以进入孔道,这大大限制了其工业应用范围。 自从 1992 年 Mobile公司合成出 M41S系列介孔分子筛以来, 介孔分子筛 (孔径为 2nn!〜 50nm) 的合成技术、 性能表征及结晶机理等问题一直是国际上研 究的热点。 但由于介孔分子筛孔壁无定形, 导致其弱酸性和水热稳定性 差。 20世纪 90年代以来, 随着石油化工、精细化工产业的发展和环保要 求的日趋严格, 对新型催化材料的需求也不断增加。 因此研究者希望结 合微孔、 介孔两种分子筛各自的优势, 合成新型微孔 -介孔复合分子筛材 料。 微孔-介孔复合分子筛具有微孔和介孔双模型孔结构, 结合了介孔材 料的孔道优势与微孔材料的强酸性和高水热稳定性等优势, 可使两种材 料协同作用而优势互补。 而且孔径和酸性均可调变, 即通过选择不同孔 道结构和酸性质的两种材料进行优化复合, 可制备出不同孔结构和酸分 布的复合材料。国际著名的分子筛化学家 Davis指出, 以组装为特征的多 级孔分子筛材料的成功制备和多样化模式, 将在更多的领域具有广阔的 应用前景。
因此, 近年来关于复合分子筛的研究较多。 研究者用各种方法来合 成复合分子筛。 Huang 等采用双模板和两步晶化的方法合成了 ZSM-5/MCM-41 ( J Phys Chem B, 2000, 104(13): 2817〜 2823 ) 和 β/ΜΟΜ-41 (高等化学学报, 1999, 20(3): 356〜358)两种微孔-介孔复合 分子筛, 但该方法要求微孔和介孔两种分子筛的合成条件相差不大或合 成范围有交叉。 Kloetstra等报道了在 Y型分子筛上附晶生长介孔 MCM-41 分子蹄的技术 iMicroporous Mesoporous Mater, 1996, 6(5〜 6):287 ~ 293 ) 及用四丙基铵离子交换法对 MCM-41进行再晶化的方法 (Div Pet Chem, 1996, 41(2): 412〜414)。但前者合成的 Y/MCM-41复合分子筛的介孔壳层 孔道排列无序, 且合成效率很低, 酸性质、 水热稳定性均不理想; 后者 合成的 ZSM-5 MCM-41复合分子筛的介孔孔壁的无序度仍然很高, 结晶 的部分仅存在于介孔孔壁表面, 因此水热稳定性有所欠缺。 美国的 Pinnavaia等通过纳米组装法制备嵌入式复合分子筛, 首先预制 Y沸石的 晶种, 然后再与 CTAB进行自组装 U Am Chem Soc, 2000, 122: 8791〜 8792)。 该方法制备的复合分子筛具有很高的酸性和显著的水热稳定性, 但是要先制备出微孔分子筛的晶种, 而制备晶种的过程难易控制, 晶种 过大会影响组装效果, 而过小又会影响材料的酸性质。 随后相继又有
Y/MCM-4K β/ΜΟΜ-4Κ p/MCM-48的报道。 微孔-介孔复合分子筛具有 优良的催化性能, 如 ZSM-5/MCM-41复合分子筛对正十二垸裂化反应的 催化活性比它们的机械混合物高。 目前, 国内外对二元微孔 -介孔复合分 子筛的研究较多, 但对三元双微孔-介孔复合分子筛的复合尚未见报道。 我们针对目前在加氢裂化工业上已普遍使用的 Y型和 Beta型沸石,综合 二者在加氢裂化中的特点: Y型沸石重石脑油芳潜高、 BMC1值低; Beta 型沸石中油选择性好、 活性高, 但芳潜低、 BMC1值高的不足, 发明了在 碱性体系中利用阳离子、 非离子混合表面活性剂的超分子自组装作用, 通过水热附晶生长的方法, 合成新型双微孔-介孔复合分子筛 (Y-Beta/MCM-41 )。 这一发明是对分子筛催化材料的进一步开拓, 并且 合成的双微孔-介孔复合分子筛 (Y-Beta/MCM-41 )可作为加氢裂化催化 剂的新型载体, 在石油化工等领域有着潜在的应用价值。
发明内容
本发明的目的是提供一种含双微孔相(Y型和 Beta型沸石)和介孔 相(MCM-41 )分子筛复合而成的催化剂载体材料及操作简便、重现性好 的制备方法。
本发明所述的双微孔 -介孔复合分子筛由 Y型和 Beta型双微孔沸石 和 MCM-41分子筛复合而成, 双微孔相紧密包裹在六方介孔相孔壁上, 呈现出许多球形或半球形的空壳结构, 彼此之间相互交连成网状, 微孔 相硅铝比及微孔含量可调。
本发明制备的双微孔-介孔复合分子筛(Y-Beta/MCM-41 ) 是在碱性 体系中将预先处理过的微孔相、硅源和铝源作为无机前驱体(Γ)在阳离 子 (s+)、 非离子(sQ)混合表面活性剂的作用下, 通过 s+sQr路线进行 超分子自组装, 实现介孔相在微孔相上附晶生长。
其制备步骤如下:
( 1 )微孔相预处理: 取一定量的 Y型和 Beta型沸石, 按比例混合 均匀后加入到去离子水中, 在特定温度下搅拌均匀, 记作溶液 A待用。
(2)取一定量的表面活性剂十六烷基三甲基溴化铵 (CTAB)和垸 基酚聚氧乙烯醚 (OP-10), 按比例混合后加入到去离子水中, 并于室温 下匀速搅拌, 待溶液澄清后, 记作溶液 B待用。
(3)将得到的溶液 A加入到溶液 B中, 于室温下搅拌均匀, 然后 向混合液中缓慢滴加硅源和铝源或只滴加硅源, 继续在室温下搅拌, 待 混合液中各组分均匀稳定后,用无机酸或碱调节体系的 pH值,再匀速搅 拌, 待体系稳定后将得到的胶液装入带有内衬的不锈钢反应釜中, 于特 定温度下晶化。
(4) 将 (3 )得到的晶化产物进行抽滤、 洗涤、 烘干处理得到白色 固体粉末。 将此固体产物先在氮气流中焙烧, 然后移到马弗炉中在空气 中焙烧, 将焙烧产物按比例在铵盐溶液中离子交换, 抽滤、 烘干。 最后 在空气中焙烧得到氢型 Y-Beta/MCM-41双微孔 -介孔复合分子筛。
本发明中, 原料配比按摩尔比: CTAB/Si02为 0.10〜0.25, 01^/0?-10为5〜7,8102 0为58〜78,8 八1^25;按质量比(丫+861&) I Si02为 0.26〜0.80,微孔相 Y型和 Beta型沸石用量可以进行任意比例的 调节。 微孔相的预处理温度为 30°C〜50°C、 处理时间为 25mir!〜 30min; 合成体系的 pH值在 10.1〜: 12.1的范围内;
晶化温度 100°C、 晶化时间为 481!〜 72h;
晶化产物在氮气流中焙烧,其焙烧温度在 500°C〜550°C, 时间 l.Oh; 在空气中焙烧的温度在 500°C〜600°C、 时间为 4.0h〜6.0h;
铵盐溶液浓度为 0.05mol/L〜0.20mol/L,焙烧产物和铵盐溶液的比例 为 lg: 150mol/L〜300mol/L, 交换时间为 2.0h〜4.0h。
本发明使用的无机酸可以为盐酸、 硫酸或硝酸中的任何一种或两种 的混合物; 无机碱主要为氢氧化钠或氢氧化钾。
本发明在碱性体系中可用工业级水玻璃作为硅源, 铝源可以为氯化 铝、 硫酸铝或硝酸铝中的任何一种或两种的混合物。
本发明中, 向混合液加入硅源、 铝源时, 在调节体系 pH值之前的 搅拌时间一般在 1.01!〜 1.5h为宜。 调节 pH值之后的搅拌时间在 0.5h左 右。
本发明提出的将一次焙烧产物进行离子交换时, 所用的铵盐可以是 硝酸铵或氯化铵中的一种或两种的混合物。 附图说明
图 la ΜΥβ-l的 XRD谱图
图 lb ΜΥβ-l的 XRD谱图
图 2 ΜΥβ-l的低温 Ν2吸附 -脱附等温线以及按 BJH脱附得到的孔体积 与孔径关系图 (插图) 图 3a ΜΥβ-l的 SEM图
图 3b ΜΥβ-l的 SEM图
图 4 ΜΥβ-l及 Y、 Beta和 MCM-41三种材料的机械混合物对探针分子 α-甲基萘的催化性能的比较图
图 5a MCM-41水热处理前后的 XRD对比谱图 (水热处理条件: 550°C 的水蒸气中处理 4h, a、 b分别为水热处理前后)
图 5b ΜΥβ-l水热处理前后的 XRD对比谱图(水热处理条件: 550°C的 水蒸气中处理 4h, a、 b分别为水热处理前后)
具体实施方式
下面通过实施例进一步描述本发明的实施方式,但本发明并不局限于 这些实施例。
实施例 1
将 0.47g Y型和 0.47g Beta型沸石粉末混合预处理后加入到含 CTAB 和 OP-10的混合溶液中, 于室温搅拌 30min, 然后向混合液中缓慢滴加 5ml 水玻璃 (Si02 25.4% , Na20 7.4% ), 5min 后缓慢加入 0.389g A12(S04)3.18H20, 原料摩尔配比为 lSi02 : 0.15CTAB : 0.025OP-10 : x(Y+Beta): 0.02Α12Ο3: 0.28Na2O: 60H2O,其中(Y+Beta) /Si02 (质量比) =0.53。搅拌 l.Oh后调节体系 pH ll.l ,再继续搅拌 30min后将胶液装入 带内衬的反应釜中, 于 100°C晶化 48h, 产物经抽滤、洗涤、烘干、焙烧, 将焙烧产物以 1 : 200比例在 O.lOmol L的硝酸铵溶液中离子交换 2.5h, 抽滤、 烘干, 最后在空气中焙烧即得碱性体系合成的投料微孔相比为 1: 1、 相对含量为 53%的 Y-Beta/MCM-41双微孔 -介孔复合分子筛, 此样品 命名为 ΜΥβ-1。
由图 la、 图 lb ΜΥβ-l的 X射线衍射(XRD)谱图可以看出, 在低 角衍射区, [100]处呈现出较强的六方介孔相衍射峰, 而且 [110]和 [200]等 强度较弱的代表六方介孔相内部精细结构的衍射峰也清晰可见, 这说明 所合成的双微孔-介孔复合分子筛 (Y-Beta/MCM-41 )有较好的规整度。 在高角衍射区,分属于 Y沸石的 [111]特征峰和 Beta沸石的 [302]特征峰均 清晰可见。 说明微孔相在体系中没有完全被破坏。
图 2给出了 ΜΥβ-l的低温 Ν2吸附-脱附等温线以及 BJH脱附得到的 孔体积与孔径关系图(插图), 它的比表面积为 829.68m2/g,孔体积 1.104 cm3/g (其中微孔的孔体积为 0.046cm3/g), 平均孔径为 5.32nm (其中介 孔分布最多的尺寸为 2.84nm), 介孔的孔壁厚度在 1.52nm左右。
由图 3a、 图 3b MYp-l的 SEM图可以看出, 双微孔相、 介孔相复合 而成的分子筛具有许多球形或半球形的空壳结构, 彼此之间相互交连成 网状。
图 4 比较了 ΜΥβ-l及 Y、 Beta和 MCM-41三种材料的机械混合物 对探针分子 α-甲基萘的催化性能, 可以看出, 碱性体系合成的 Y-Beta/MCM-41双微孔-介孔复合分子筛酸性较强, 在开环能力、 脱垸基 能力以及异构化能力均明显优于机械混合物, 具有较强的催化活性。
图 5b MYp-l水热处理后的 XRD谱图中, 可以看出, ΜΥβ-l经水热 处理后, [100]衍射峰强度较强, 并且 [110]和 [200]衍射峰可以辨认出, 表 明样品仍为六方有序介孔结构, 结构有序度保留的比较好, 而图 5a MCM-41水热处理后的 XRD谱图中, MCM-41经水热处理后, [100]衍射 峰强度大幅降低, [110]和 [200]衍射峰已经消失, 说明其结构有序度大幅 度下降。
实施例 2 将 0.47g Y型和 0.47g Beta型沸石粉末混合预处理后加入到含 CTAB 和 OP-10的混合溶液中, 于室温搅拌 30min, 然后向混合液中缓慢滴加 5ml 水玻璃 (Si02 25.4% , Na20 7.4% ), 5min 后缓慢加入 0.156g A12(S04)3-18H20, 原料摩尔配比为 lSi02 : 0.15CTAB : 0.025OP-10 : x(Y+Beta): 0.008Α12Ο3: 0.28Na2O: 60H2O, 其中 (Y+Beta) /Si02 (质量 比) =0.53。搅拌 l.Oh后调节体系 ρΗ-11.1, 再继续搅拌 30min后将胶液 装入带内衬的反应釜中, 于 100Ό晶化 48h, 产物经抽滤、 洗涤、 烘干、 焙烧, 将焙烧产物以 1 : 300比例在 0.15mol/L的氯化铵溶液中离子交换 2.0h, 抽滤、烘干, 最后在空气中焙烧即得碱性体系合成投料 Si/Al= 62.5 的 Y-Beta/MCM-41双微孔 -介孔复合分子筛, 此样品命名为 ΜΥβ-2。 实施例 3 将 0.235g Y型和 0.235g Beta型沸石粉末混合预处理后加入到含 CTAB和 OP-10的混合溶液中,于室温搅拌 30min,然后向混合液中缓慢 滴加 5ml水玻璃 (Si02 25.4%, Na20 7.4%), 5min后缓慢加入 0.389g A12(S04)3-18H20 , 原料摩尔配比为 lSi02 : 0.15CTAB : 0.025OP-10 : x(Y+Beta): 0.02Α12Ο3: 0.28Na2O: 60H2O,其中(Y+Beta) /Si02 (质量比) =0.27。搅拌 l.Oh后调节体系 pB=ll,l,再继续搅拌 30min后将胶液装入 带内衬的反应釜中, 于 100°C晶化 48h, 产物经抽滤、洗涤、烘干、焙烧, 将焙烧产物以 1 : 200比例在 O.lOmol/L的硝酸铵溶液中离子交换 2.5h, 抽滤、 烘干, 最后在空气中焙烧即得碱性体系合成投料微孔相比为 1 : 1、 相对含量为 27%的 Y-Beta/MCM-41双微孔 -介孔复合分子筛,此样品命名 为 ΜΥβ-3。 实施例 4 将 0.3 lg Y型和 0.62g Beta型沸石粉末混合预处理后加入到含 CTAB 和 OP-10的混合溶液中, 于室温搅拌 30min, 然后向混合液中缓慢滴加 5ml 水玻璃 (Si02 25.4% , Na20 7.4% ), 5min 后缓慢加入 0.078g A12(S04)3-18H20 , 原料摩尔配比为 lSi02 : 0.15CTAB: 0.025OP-10: x(Y+Beta): 0.004Al2O3: 0.28Na2O: 60H2O,其中(Y+Beta) /Si02 (质量比) =0.53。搅拌 l.Oh后调节体系 pH ll.l,再继续搅拌 30min后将胶液装入 带内衬的反应釜中, 于 100Ό晶化 48h, 产物经抽滤、洗涤、烘干、焙烧, 将焙烧产物以 1: 300比例在 0.0 5mol/L的氯化铵溶液中离子交换 3.0h, 抽滤、 烘干, 最后在空气中焙烧即得碱性体系合成的投料微孔相比为 1 : 2、 相对含量为 53%、 Si/Al= 125的 Y-Beta/MCM-41双微孔 -介孔复合分 子筛, 此样品命名为 ΜΥβ-4。 工业实用性
本发明提出的新型双微孔-介孔复合分子筛(Y-Beta/MCM-41 ),具有 以下特点:
( 1 ) 从微观形态来看, 该双微孔 -介孔复合分子筛呈现出许多球形 或半球形的空壳结构, 彼此之间相互交连成网状, 微孔相紧密包裹在介 孔孔壁上, 与机械混合物有着明显的不同。 (2) 该双微孔-介孔复合分子筛比表面积可达 829.68m2/g, 孔体积 1.104cm3/g (其中微孔的孔体积为 0.046cm3/g), 平均孔径为 532nm (其 中介孔分布最多的尺寸为 2.84nm), 介孔的孔壁厚度在 1.52nm左右。
(3 ) 该双微孔 -介孔复合分子筛是利用混合表面活性剂 (CTAB和 OP-10) 的超分子组装作用, 采用水热附晶生长的合成方法得到。
(4) 该双微孔-介孔复合分子筛在碱性体系中可合成出微孔相硅铝 比及微孔含量可调的双微孔-介孔复合分子筛 Y-Beta/MCM-41。
(5)该双微孔-介孔复合分子筛具有良好的水热稳定性, 经 550°C水 蒸汽处理 4h, 仍能保持良好的结构有序度。
(6)该双微孔-介孔复合分子筛酸性较强, 综合了 Y型和 Beta型沸 石在加氢裂化中各自的优点, 具有良好的催化反应性能。
本发明提出的新型双微孔-介孔复合分子筛(Y-Beta MCM-41 ) 是一 种良好的催化剂载体材料, 结构与机械混合物有着本质的不同。 通过控 制合成条件, 引入两种沸石结构单元, 使复合分子筛中微孔相与微孔相 之间、 微孔相与介孔相之间产生协同作用, 表现出了更好的催化反应活 性。 合成的双微孔-介孔复合分子筛 (Y-Beta/MCM-41 )对探针分子 α-甲 基萘的催化反应中, α-甲基萘的转化率为 Y、 Beta及 MCM-41机械混合 物的 2倍多, 所以此种新型双微孔-介孔复合分子筛具有较大的潜在工业 应用价值。

Claims

权利 要求书
1.一种双微孔 -介孔复合分子筛, 其特征在于: 由 Y型和 Beta型双微 孔沸石和 MCM-41分子筛复合而成, 双微孔相紧密包裹在六方介孔相孔 壁上, 呈现出许多球形或半球形的空壳结构, 彼此之间相互交连成网状, 微孔相硅铝比及微孔含量可调。
2.根据权利要求 1所述的双微孔-介孔复合分子筛的制备方法, 其特 征在于:
( 1 )微孔相预处理: 将 Y型和 Beta型沸石及去离子水混合, 搅拌均 匀, 记作混合液 A待用;
(2)将表面活性剂十六'烷基三甲基溴化铵、烷基酚聚氧乙烯醚和去离 子水混合, 搅拌均匀, 记作溶液 B待用;
(3 )将混合液 A和溶液 B搅拌均匀,滴加硅源和铝源或只滴加硅源, 搅拌后使用无机酸碱调节体系的 pH值, 搅拌, 然后晶化、 抽滤、 烘 干、 得到白色固体粉末; 将固体粉末先在氮气流中焙烧, 将焙烧产物 在铵盐溶液中离子交换, 抽滤、 烘干; 最后在空气中焙烧得到氢型 Y-Beta CM-41双微孔 -介孔复合分子筛;
原料配比按摩尔比: CTAB/Si〇2为 0.10〜0.25, CTAB/OP-10为 5〜7, Si02/H20为 58〜78, Si /A1^25;按质量比(Y+Beta) /Si02为 0.26〜0.80, 微孔相 Y型和 Beta型沸石用量可以进行任意比例的调节;
微孔相的预处理温度为 30° (:〜 50°C、 处理时间为 25mir!〜 30min; 合成体系的 pH值在 10.1〜12.1的范围内; 晶化温度 100° (、 晶化时间为 481!〜 72h;
晶化产物在氮气流中焙烧,其焙烧温度在 500°C〜550°C, 时间 l.Oh; 在空气中焙烧的温度在 500°C〜600°C;、 时间为 4.01!〜 6.0h;
铵盐溶液浓度为 0.05mol/L〜0.20mol/L,焙烧产物和铵盐溶液的比例 为 lg: 150mol/L〜300mol/L, 交换时间为 2.0h〜4.0h。
3.根据权利要求 2所述的双微孔-介孔复合分子筛的制备方法, 其特 征在于: 无机酸为盐酸、硫酸或硝酸中的任何一种或任何两种的混合物; 无机碱为氢氧化钠或氢氧化钾。
4.根据权利要求 2所述的双微孔-介孔复合分子筛的制备方法, 其特 征在于: 硅源为工业级水玻璃; 铝源为氯化铝、 硫酸铝或硝酸铝中的任 何一种或其中两种的混合物。
5.根据权利要求 2所述的双微孔-介孔复合分子筛的制备方法, 其特 征在于: 调节体系 pH值之前的搅拌时间一般在 1.0h〜1.5h, 调节 pH值 之后的搅拌时间在 0.5h。
6.根据权利要求 2所述的双微孔-介孔复合分子筛的制备方法, 其特 征在于: 将焙烧产物在铵盐溶液中离子交换, 所用的铵盐是硝酸铵或氯 化铵中的一种或两种的混合物。
PCT/CN2010/001368 2009-10-22 2010-09-07 一种双微孔—介孔复合分子筛及其制备方法 WO2011047527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ600105A NZ600105A (en) 2009-10-22 2010-09-07 A bi-microporous/mesoporous composite molecular sieve and preparation process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910236168.1 2009-10-22
CN2009102361681A CN102039201A (zh) 2009-10-22 2009-10-22 一种双微孔-介孔复合分子筛及其制备方法

Publications (1)

Publication Number Publication Date
WO2011047527A1 true WO2011047527A1 (zh) 2011-04-28

Family

ID=43899784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001368 WO2011047527A1 (zh) 2009-10-22 2010-09-07 一种双微孔—介孔复合分子筛及其制备方法

Country Status (3)

Country Link
CN (1) CN102039201A (zh)
NZ (1) NZ600105A (zh)
WO (1) WO2011047527A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435838A (zh) * 2015-11-05 2016-03-30 太原理工大学 一种t-l复合分子筛及其制备方法
CN109205636A (zh) * 2017-06-29 2019-01-15 中国石油天然气股份有限公司 Y/sapo-34/zsm-11/asa多级孔材料的制备方法
US11351527B2 (en) * 2017-06-15 2022-06-07 King Fahd University Of Petroleum And Minerals Zeolite composite catalysts for conversion of heavy reformate to xylenes
CN114920264A (zh) * 2022-06-28 2022-08-19 安阳工学院 不同形貌Analcime分子筛及其上晶面大小的可控制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014012670B1 (pt) * 2011-11-25 2021-11-23 National University Corporation Yokohama National University Zeólita tipo b, catalisador de craqueamento catalítico para a parafina e método de produção de uma zeólita tipo b
CN102602955B (zh) * 2012-03-26 2013-10-09 辽宁工业大学 具有酸性介孔壳层的中空硅铝球形分子筛的制备方法
CN104263526A (zh) * 2014-10-08 2015-01-07 佛山市天晟隆油脂化工有限公司 一种生物柴油的制备方法
CN105903487B (zh) * 2016-05-09 2019-04-16 厦门大学 一种合成气催化转化制柴油馏分的催化剂及其制备方法
CN107519925B (zh) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/Sm2O3/SBA-3/ASA复合材料及其制备方法
CN115504483B (zh) * 2021-06-23 2024-02-02 中国石油化工股份有限公司 一种介孔Beta-USY型复合分子筛及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356265A (zh) * 2001-08-20 2002-07-03 复旦大学 形貌可控的大孔径介孔分子筛的制备方法
JP2006240920A (ja) * 2005-03-03 2006-09-14 Japan Science & Technology Agency ナノポーラスゼオライト触媒表面を持つ触媒の調製方法
CN101081372A (zh) * 2006-05-31 2007-12-05 中国石油大学(北京) 一种高岭土/NaY/MCM-41复合基质及其制备方法
CN101186311A (zh) * 2007-11-22 2008-05-28 复旦大学 Y/mcm-48复合分子筛及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356265A (zh) * 2001-08-20 2002-07-03 复旦大学 形貌可控的大孔径介孔分子筛的制备方法
JP2006240920A (ja) * 2005-03-03 2006-09-14 Japan Science & Technology Agency ナノポーラスゼオライト触媒表面を持つ触媒の調製方法
CN101081372A (zh) * 2006-05-31 2007-12-05 中国石油大学(北京) 一种高岭土/NaY/MCM-41复合基质及其制备方法
CN101186311A (zh) * 2007-11-22 2008-05-28 复旦大学 Y/mcm-48复合分子筛及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435838A (zh) * 2015-11-05 2016-03-30 太原理工大学 一种t-l复合分子筛及其制备方法
CN105435838B (zh) * 2015-11-05 2018-01-19 太原理工大学 一种t‑l复合分子筛及其制备方法
US11351527B2 (en) * 2017-06-15 2022-06-07 King Fahd University Of Petroleum And Minerals Zeolite composite catalysts for conversion of heavy reformate to xylenes
CN109205636A (zh) * 2017-06-29 2019-01-15 中国石油天然气股份有限公司 Y/sapo-34/zsm-11/asa多级孔材料的制备方法
CN109205636B (zh) * 2017-06-29 2020-02-14 中国石油天然气股份有限公司 Y/sapo-34/zsm-11/asa多级孔材料的制备方法
CN114920264A (zh) * 2022-06-28 2022-08-19 安阳工学院 不同形貌Analcime分子筛及其上晶面大小的可控制备方法
CN114920264B (zh) * 2022-06-28 2023-10-20 安阳工学院 不同形貌Analcime分子筛及其上晶面大小的可控制备方法

Also Published As

Publication number Publication date
CN102039201A (zh) 2011-05-04
NZ600105A (en) 2013-12-20

Similar Documents

Publication Publication Date Title
WO2011047527A1 (zh) 一种双微孔—介孔复合分子筛及其制备方法
Javdani et al. Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review
TWI643817B (zh) 製造分子篩的方法
WO2011047528A1 (zh) 一种y-beta/mcm-41双微孔—介孔复合分子筛及制备方法
JP2005519847A (ja) ナノ結晶性無機ベースゼオライトおよびその作成方法
US10335777B2 (en) ZSM-5 catalyst
CN102666385A (zh) 使用纳米晶态zsm-5晶种制备zsm-5沸石的方法
WO2018205841A1 (zh) 中孔NaY型沸石分子筛的制备方法
JP5805878B2 (ja) 均質アモルファスシリカアルミナからゼオライトを形成するための方法
Li et al. Direct synthesis of high-silica nano ZSM-5 aggregates with controllable mesoporosity and enhanced catalytic properties
KR20210098543A (ko) C4-c7 탄화수소로부터 경질 올레핀의 제조를 위한 촉매
CN101279743B (zh) 共生分子筛及其合成方法
CN101722024B (zh) 一种zsm-5/累托石复合催化材料及其制备方法
CN101514004B (zh) 共生分子筛及其合成方法
CN101514008B (zh) 丝光沸石/y沸石共生分子筛及其合成方法
Shan et al. Synthesis of meso-/macroporous zeolite (Fe, Al)-ZSM-5 microspheres from diatomite
CN102259890B (zh) Zsm-5/ecr-1/丝光沸石三相共生材料及其制备方法
Liu et al. Static synthesis of high-quality MCM-22 zeolite with high SiO 2/Al 2 O 3 ratio
CN107777699B (zh) Zsm-11/ssz-13复合结构分子筛及其合成方法
CN107758685B (zh) 纳米聚集片形丝光沸石
CN114425417B (zh) 一种石脑油催化裂解催化剂及其制备方法与应用
CN107021504B (zh) 一种介孔im-5分子筛的制备方法
CN100586858C (zh) 多孔共生材料及其合成方法
WO2012141833A1 (en) Process for producing molecular sieve materials
CN100586859C (zh) 三相共生分子筛及其合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824368

Country of ref document: EP

Kind code of ref document: A1