WO2011040478A1 - 発光素子、および発光素子の製造方法 - Google Patents

発光素子、および発光素子の製造方法 Download PDF

Info

Publication number
WO2011040478A1
WO2011040478A1 PCT/JP2010/066969 JP2010066969W WO2011040478A1 WO 2011040478 A1 WO2011040478 A1 WO 2011040478A1 JP 2010066969 W JP2010066969 W JP 2010066969W WO 2011040478 A1 WO2011040478 A1 WO 2011040478A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
conductive
semiconductor layer
light emitting
Prior art date
Application number
PCT/JP2010/066969
Other languages
English (en)
French (fr)
Inventor
克明 正木
義之 川口
和博 西薗
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2011500778A priority Critical patent/JP4772168B2/ja
Priority to EP10820593.1A priority patent/EP2485279B1/en
Priority to CN201080040200.XA priority patent/CN102484176B/zh
Priority to US13/499,136 priority patent/US8796718B2/en
Publication of WO2011040478A1 publication Critical patent/WO2011040478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a light emitting element and a method for manufacturing the light emitting element.
  • a light emitting element that emit ultraviolet light, blue light, green light, and the like are being developed.
  • a light emitting element for example, there is a light emitting element including an optical semiconductor layer in which a plurality of semiconductor layers are stacked and an electrode for applying a voltage to the optical semiconductor layer (see, for example, JP-A-2006-222288).
  • a light emitting device includes an optical semiconductor layer in which a first semiconductor layer, a light emitting layer, and a second semiconductor layer are sequentially stacked, and a first electrode layer electrically connected to the first semiconductor layer. And a second electrode layer electrically connected to the second semiconductor layer.
  • the second electrode layer includes a conductive reflective layer positioned on the second semiconductor layer and a conductive layer positioned on the conductive reflective layer and having a plurality of through holes penetrating in the thickness direction.
  • a method for manufacturing a light emitting device provides a stacked body in which an optical semiconductor layer, a first metal layer, and a second metal layer having a melting point higher than that of the oxide of the first metal layer are sequentially stacked. And a step of forming a plurality of through holes penetrating in the thickness direction in the second metal layer.
  • the manufacturing method of the light emitting element concerning one Embodiment of this invention WHEREIN: After that, a laminated body is higher than melting
  • FIG. 2 is a cross-sectional view of the light-emitting element shown in FIG. 1 and corresponds to when cut along the line A-A ′ of FIG. 1. It is an expanded sectional view of the through-hole of the light emitting element shown in FIG. 1, a conductive reflective layer, and a conductive layer.
  • FIG. 2 is an enlarged cross-sectional view of a through hole, a concave portion, and the periphery of the light emitting element shown in FIG. It is an expanded sectional view of the through-hole of a modification of the light emitting element shown in FIG. 1, a recessed part, and its periphery.
  • FIG. 1 is a cross-sectional view of the light-emitting element shown in FIG. 1 and corresponds to when cut along the line A-A ′ of FIG. 1.
  • FIG. 2 is an expanded sectional view of the through-hole of the light emitting element shown in FIG. 1, a conductive reflective layer, and a conductive layer.
  • FIG. 2 is an
  • FIG. 2 is an enlarged view of a through hole, a concave portion, and the periphery thereof in a modification of the light emitting device shown in FIG. 1, (a) is an enlarged cross-sectional view of a cross section cut in the thickness direction, and (b) is an enlarged view when viewed from above Each corresponds to a plan view. It is a top view of the modification of the light emitting element shown in FIG. 1, and is equivalent when the light emitting element is planarly viewed from above.
  • FIG. 7 is a cross-sectional view of a modification of the light-emitting element shown in FIG. 1, corresponding to when cut along the line A-A ′ of FIG. 1.
  • FIG. 7 is a cross-sectional view of a modification of the light-emitting element shown in FIG. 1, corresponding to when cut along the line A-A ′ of FIG. 1.
  • 2 is a light emitting device in which the light emitting element shown in FIG. 1 is mounted in a package. It is sectional drawing of the light emitting element which shows the manufacturing process of the light emitting element shown in FIG. It is sectional drawing of the light emitting element which shows the manufacturing process of the light emitting element shown in FIG. It is sectional drawing of the light emitting element which shows the manufacturing process of the light emitting element shown in FIG. It is sectional drawing of the light emitting element which shows the manufacturing process of the light emitting element shown in FIG. It is sectional drawing of the light emitting element which shows the manufacturing process of the light emitting element shown in FIG. It is a graph which shows the analysis result of the light emitting element shown in FIG. It is a graph which shows the analysis result of the light emitting element shown in FIG. It is a graph which shows the analysis result
  • ⁇ About light emitting element> 1 is a perspective view of the light emitting device 20 according to the present embodiment
  • FIG. 2 is a cross-sectional view of the light emitting device 20 shown in FIG. 1, which corresponds to a cross section taken along line AA ′ of FIG.
  • the light emitting element 20 includes a substrate 1, an optical semiconductor layer 2 formed on the substrate 1, and a first electrode layer electrically connected to a part of the optical semiconductor layer 2. 3 and a second electrode layer 7 having a conductive layer 5 having a plurality of conductive reflective layers 4 and through-holes 6.
  • the substrate 1 may be any substrate that can grow the optical semiconductor layer 2 using chemical vapor deposition.
  • the substrate 1 is formed of a flat plate having a polygonal shape such as a square shape or a circular shape in plan view. Examples of the material used for the substrate 1 include sapphire, gallium nitride, aluminum nitride, zinc oxide, silicon carbide, silicon, and zirconium diboride.
  • the translucent substrate When taking out light emitted from the optical semiconductor layer 2 from the substrate 1 side, a method using a translucent base material that transmits light emitted from the optical semiconductor layer 2 can be used.
  • the wavelength of light emitted from the optical semiconductor layer 2 may be considered.
  • the substrate 1 is made of sapphire, and the thickness of the substrate 1 is about 10 ⁇ m or more and 1000 ⁇ m or less.
  • the optical semiconductor layer 2 includes a first semiconductor layer 2a formed on the main surface 1A of the substrate 1, a light emitting layer 2b formed on the first semiconductor layer 2a, and a light emitting layer 2b. And the formed second semiconductor layer 2c.
  • the first semiconductor layer 2a, the light emitting layer 2b, and the second semiconductor layer 2c for example, a group III-V semiconductor can be used.
  • the group III-V semiconductor include a group III nitride semiconductor, gallium phosphide, gallium arsenide, and the like.
  • the group III nitride semiconductor for example, gallium nitride, aluminum nitride, indium nitride, or the like can be used.
  • Al x1 Ga (1-x1-y1) In y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, x1 + y1 ⁇ 1).
  • zinc oxide can be used in addition to the group III-V semiconductor.
  • the optical semiconductor layer 2 has a laminated structure in which a first semiconductor layer 2a, a light emitting layer 2b, and a second semiconductor layer 2c are sequentially formed on the main surface 1A of the substrate 1.
  • the first semiconductor layer 2a is set to exhibit n-type semiconductor properties as one conductivity type
  • the second semiconductor layer 2c is set to exhibit p-type semiconductor properties opposite to those of the first semiconductor layer 2a.
  • the first semiconductor layer 2a and the second semiconductor layer 2c are formed of gallium nitride which is a group III nitride semiconductor.
  • the first semiconductor layer 2a made of gallium nitride an n-type gallium nitride for example, a group IV element in the periodic table of elements may be added to gallium nitride as a dopant.
  • a group IV element in the periodic table of elements may be added to gallium nitride as a dopant.
  • silicon or the like can be used as the dopant of the group IV element.
  • the thickness of the first semiconductor layer 2a can be set to 0.5 ⁇ m or more and 200 ⁇ m or less, for example.
  • the second semiconductor layer 2c made of gallium nitride into p-type gallium nitride for example, a group II element in the element periodic table may be added as a dopant.
  • a group II element in the element periodic table for example, magnesium can be used.
  • the thickness of the second semiconductor layer 2c can be set to, for example, 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the light emitting layer 2b is provided between the first semiconductor layer 2a and the second semiconductor layer 2c.
  • the light emitting layer 2b may have, for example, a multilayer quantum well structure (Multi (Quantum Well abbreviation MQW).
  • the multilayer quantum well structure may be formed by repeatedly stacking a quantum well structure including a barrier layer having a wide forbidden band and a well layer having a narrow forbidden band a plurality of times (for example, 2 to 10 times).
  • the total thickness of the light emitting layer 2b can be set to, for example, 25 nm or more and 150 nm or less.
  • the barrier layer for example, an In 0.01 Ga 0.99 N layer can be used.
  • the well layer for example, an In 0.11 Ga 0.89 N layer or the like can be used.
  • the thickness of the barrier layer can be set to 2 nm to 15 nm, for example, and the thickness of the well layer can be set to 2 nm to 10 nm, for example.
  • the light emitting layer 2b configured in this manner emits light having a wavelength of 350 nm or more and 600 nm or less, for example.
  • the optical semiconductor layer 2 is provided with a first electrode layer 3 and a second electrode layer 7.
  • the first electrode layer 3 is electrically connected to the first semiconductor layer 2a
  • the second electrode layer 7 is electrically connected to the second semiconductor layer 2c.
  • the light emitting element 20 can cause the optical semiconductor layer 2 to emit light by applying a voltage between the first electrode layer 3 and the second electrode layer 7.
  • the first electrode layer 3 and the second electrode layer 7 are disposed on the same side of the optical semiconductor layer 2 and on the opposite side of the substrate 1 with respect to the optical semiconductor layer 2.
  • the first electrode layer 3 is electrically connected to the first semiconductor layer 2a.
  • the first electrode layer 3 is provided in an exposed region of the first semiconductor layer 2a exposed by removing a part of the second electrode layer 2c and a part of the light emitting layer 2b.
  • the first electrode layer 3 for example, a metal material such as aluminum, titanium, nickel, chromium, indium, tin, molybdenum, silver, gold, niobium, tantalum, vanadium, platinum, lead, or beryllium can be used.
  • a metal oxide such as tin oxide, indium oxide, or indium tin oxide, or an alloy containing the above-described metal material as a main component may be used.
  • the alloy containing the metal material as a main component for example, an alloy such as an alloy of gold and silicon, an alloy of gold and germanium, an alloy of gold and zinc, or an alloy of gold and beryllium can be used. .
  • the first electrode 3 may be formed by laminating a plurality of layers selected from the materials such as metals, metal oxides, and alloys described above. For example, when gold is used as the first electrode 3, titanium with aluminum interposed therebetween may be provided as an ohmic contact layer for making ohmic contact between the first electrode 3 and the first semiconductor layer 2 a. it can. When the substrate 1 has conductivity, the first electrode 3 may be provided on the main surface or side surface opposite to the main surface 1A of the substrate 1 on which the optical semiconductor layer 2 is formed.
  • the second electrode layer 7 is provided at a position on the main surface 2A of the second semiconductor layer 2c, and is electrically connected to the second semiconductor layer 2c.
  • the second electrode layer 7 is configured by sequentially laminating the conductive reflective layer 4 and the conductive layer 5.
  • the conductive reflection layer 4 is formed on the main surface 2A of the second semiconductor layer 2c in order to reflect the light emitted from the light emitting layer 2b in the direction of the substrate 1.
  • the conductive reflective layer 4 is formed so as to cover, for example, 80% or more of the main surface 2A of the second semiconductor layer 2c.
  • the conductive reflective layer 4 is formed of a conductive material that reflects the light emitted from the light emitting layer 2b in the direction of the substrate 1 and can electrically connect the second semiconductor layer 2c and the second electrode layer 7. Is done.
  • the thickness of the conductive reflective layer 4 is set to, for example, 2 nm or more and 2000 nm or less.
  • the conductive reflective layer 4 can be made of a metal material such as aluminum, titanium, nickel, chromium, indium, tin, molybdenum, silver, gold, niobium, tantalum, vanadium, platinum, lead, or beryllium.
  • a metal oxide such as tin oxide, indium oxide, or indium tin oxide, or an alloy containing the above-described metal material as a main component can be used.
  • the alloy containing the metal material as a main component include an alloy of silver and gallium, an alloy of silver and aluminum, an alloy of gold and silicon, an alloy of gold and germanium, an alloy of gold and zinc, or gold.
  • An alloy such as an alloy of beryllium can be preferably used.
  • the conductive reflection layer 4 since the light emitted from the light emitting layer 2b has a wavelength of, for example, 350 nm or more and 600 nm or less, silver is used as the conductive reflection layer 4 from the viewpoint of reflectance with respect to the wavelength.
  • the thickness of the conductive reflective layer 4 can be set to, for example, 10 nm or more and 1000 nm or less.
  • the conductive layer 5 is formed so as to be positioned on the upper surface 4A of the conductive reflective layer 4, and is electrically connected to the second semiconductor layer 2c via the conductive reflective layer 4.
  • the thickness of the conductive layer 5 is set to 1 nm or more and 4000 nm or less, for example.
  • the conductive layer 5 is made of aluminum.
  • the thickness of the conductive layer 5 can be set to, for example, 1 nm or more and 100 nm or less.
  • the conductive layer 5 has a plurality of through holes 6 penetrating in the thickness direction. A part of the upper surface 4 ⁇ / b> A of the conductive reflective layer 4 is exposed from the conductive layer 5 through the plurality of through holes 6.
  • the plurality of through holes 6 are provided so that the area of the conductive reflective layer 4 exposed from the conductive layer 5 is, for example, 10% or more and 60% or less with respect to the area of the upper surface 4A of the conductive reflective layer 4.
  • the plurality of through holes 6 have a distance F1 between two adjacent through holes 6, that is, the width of the conductive layer 5 located between the two adjacent through holes 6 is, for example, 0.4 ⁇ m or more and 30 ⁇ m. It is as follows.
  • the through-hole 6 is selected from a truncated cone shape, a cylindrical shape, a polygonal frustum shape, a polygonal column shape, or the like.
  • the dimension F2 of the bottom surface of the through hole 6, that is, the surface of the upper surface 4A of the conductive reflective layer 4 exposed by the through hole 6, is set to 0.02 ⁇ m or more and 50 ⁇ m or less, for example.
  • the through hole 6 is formed in a cylindrical shape.
  • the second electrode layer 7 has a plurality of through holes 6 through which the conductive reflective layer 4 is exposed. Therefore, when the 2nd semiconductor layer 2c and the conductive reflective layer 4 are heated, the conductive reflective layer 4 and oxygen can be made easy to contact.
  • the amount of oxygen in the interface region where the second semiconductor layer 2c and the conductive reflective layer 4 are in contact can be increased.
  • the second semiconductor layer 2c and the conductive reflective layer 4 are in ohmic contact, and the contact resistance value between the second semiconductor layer 2c and the conductive reflective layer 4 can be reduced. Therefore, the electrical characteristics of the optical semiconductor layer 2 and the second electrode layer 7 can be improved.
  • the contact resistance value between the second semiconductor layer 2c and the conductive reflective layer 4 refers to the electrical resistance value existing on the contact surface between the second semiconductor layer 2c and the conductive reflective layer 4. This is because the contact surface between the second semiconductor layer 2c and the conductive reflective layer 4 has a contact potential difference and a discontinuous potential difference corresponding to the current flowing through the contact surface, and the ratio of this to the current is the contact resistance value. become.
  • the amount of oxygen may be increased in the interface region where the optical semiconductor layer and the conductive reflective layer are in contact with each other. was difficult. For this reason, the contact resistance value between the optical semiconductor layer and the conductive reflective layer is increased, and the light emission efficiency of the optical semiconductor layer is likely to be reduced.
  • the conductive layer 5 has a plurality of through holes 6, a part of the upper surface 4 ⁇ / b> A of the conductive reflective layer 4 can be exposed.
  • the distance between the second semiconductor layer 2c at the position overlapping the exposed conductive reflective layer 4 and the outside can be shortened, and the temperature of the second semiconductor layer 2c can be suppressed from becoming high.
  • the light emitting element 20 of the present embodiment has the through hole 6 in the electrode layer 5 as compared with the case of the light emitting element having a configuration in which the conductive layer having no through hole is provided on the conductive reflective layer. Since the surface area of the second electrode layer 7 in contact with the outside can be increased, the heat dissipation of the heat generated in the optical semiconductor layer 2 can be improved.
  • the conductive reflective layer 4 may be provided with a recess 12 at a position corresponding to the through hole 6 of the conductive layer 5.
  • the recess 12 may be a cylinder, a polygonal column, a truncated cone, a polygonal frustum, or the like.
  • the diameter of the recess 12 may be set to the same dimension as the diameter of the through hole 6, and is set to 0.02 ⁇ m or more and 3 ⁇ m or less, for example. Since the conductive reflective layer 4 has the recess 12, the area where the conductive reflective layer 4 and oxygen are in contact with each other can be increased. Since the surface area where the conductive reflective layer 4 is exposed can be increased, the heat dissipation of the heat generated in the optical semiconductor layer 2 can be improved.
  • the recess 12 may be provided so that the first cross-sectional area, which is a cross-sectional area perpendicular to the thickness direction of the conductive reflective layer 4, increases toward the conductive layer 5 side. That is, as the recess 12, a shape in which the area of the top surface is larger than the area of the bottom surface of the recess 12 can be used. As the recess 12, for example, a truncated cone shape or a polygonal truncated cone shape can be used. By providing the recess 12 in this manner, the exposed surface area of the conductive reflective layer 4 can be further increased.
  • the through-hole 6 may be provided so that the second cross-sectional area, which is the area of the cross section perpendicular to the thickness direction of the conductive layer 5, decreases toward the conductive reflective layer 4 side. That is, the through-hole 6 may be formed so that the side 18 thereof has an acute angle ⁇ with respect to the main surface 4A of the conductive reflective layer 4 when viewed in cross section.
  • the side 18 of the through hole 6 is inclined with respect to the main surface 4A of the conductive reflective layer 4, the surface area can be increased, so that the heat dissipation can be further improved. Further, when a protective metal layer 13 to be described later is provided on the second electrode layer 7, the protective metal layer 13 can be provided on the inclined through hole 6 with high coverage.
  • the recess 12 may be provided inside the through hole 6 in a plan view.
  • the through-hole 6 is provided so that the outer periphery of the first opening 8 of the through-hole 6 is located outside the outer periphery of the second opening 9 of the recess 12 in a plan view.
  • the first opening 8 indicates an opening on one end side of the through hole 6 located on the surface of the conductive layer 5 on the conductive reflective layer 4 side
  • the second opening 9 is the conductive layer of the conductive reflective layer 4.
  • the opening part of the recessed part 12 located in the surface of 5 side is pointed out.
  • the shape of the first opening 8 and the shape of the second opening 9 may be different.
  • the area of the first opening 8 is set to be 1.1 to 2.5 times the area of the second opening 9, for example.
  • the conductive layer 5 may be provided so that the density of the plurality of through holes 6 increases as it goes inward in plan view.
  • the density of the plurality of through holes 6 provided in the conductive layer 5 refers to the ratio of the area of the through holes 6 to the area of the conductive layer 5 in plan view of the conductive layer 5.
  • the light emitting element 20 may further include a protective metal layer 13 as shown in FIG. Specifically, the protective metal layer 13 is provided so as to fill the through hole 6 and cover the surface of the conductive layer 5.
  • the thermal expansion coefficient of the material constituting the protective metal layer 13 is set to be smaller than the thermal expansion coefficient of the material constituting the conductive layer 5.
  • the protective metal layer 13 by forming the protective metal layer 13 from a material having a smaller thermal expansion coefficient than that of the second electrode layer 5, it is possible to suppress the conductive layer 5 from being deformed by thermal expansion. By filling the through hole 6 with the material of the protective metal layer 13, it is possible to suppress the thermal expansion of the conductive layer 5 in the lateral direction. As a result, the protective metal layer 13 can suppress the peeling of the conductive layer 5 and the conductive reflective layer 4 due to heat, and suppress poor connection between the conductive layer 5 and the conductive reflective layer 4.
  • thermal expansion coefficient 30.2 ⁇ 10 ⁇ 6 [K ⁇ 1 ] is used as the conductive layer 5
  • tantalum thermal expansion coefficient 6.3 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • gold thermal expansion coefficient 14.2 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • tin thermal expansion coefficient 22.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • copper thermal expansion coefficient 16.5 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • nickel coefficient of thermal expansion 13.4 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • the exemplified thermal expansion coefficient is a value at 273K.
  • the concave portion 12 when the concave portion 12 is provided in the conductive reflective layer 4, the concave portion 12 may be filled with the protective metal layer 13.
  • the recess 12 When the recess 12 is filled with the material of the protective metal layer 13, a material having a smaller thermal expansion coefficient than the material of the conductive reflective layer 4 and the material of the conductive layer 5 may be used as the protective metal layer 13.
  • silver thermal expansion coefficient 18.9 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • tantalum thermal expansion coefficient 6.3 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • gold Thermal expansion coefficient 14.2 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • copper thermal expansion coefficient 16.5 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • nickel thermal expansion coefficient 13.4 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • a simple substance or an alloy containing can be used.
  • the protective metal layer 13 is made of an alloy of tantalum and gold (thermal expansion coefficient 6.3 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or more 14.2 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or less) may be used.
  • the second semiconductor layer 2c is made of gallium nitride, the interface between the second semiconductor layer 2c and the conductive reflective layer 4 when the second semiconductor layer 2c and the conductive reflective layer 4 are heated.
  • the region may contain gallium oxide.
  • the contact resistance value between the second semiconductor layer 2 c and the conductive reflective layer 4 can be reduced.
  • the conductive reflection layer 4 is made of silver, when the second semiconductor layer 2c and the conductive reflection layer 4 are heated, the conductive reflection layer 4 contains silver oxide. Specifically, the conductive reflective layer 4 is easily oxidized from the exposed portion of the upper surface 4 ⁇ / b> A of the conductive reflective layer 4 exposed by the conductive layer 5 through the through hole 6 and the side surface portion of the conductive reflective layer 4. Therefore, the conductive reflective layer 4 is likely to contain silver oxide in the exposed part and the side part.
  • the conductive reflective layer 4 has a first contact portion 10 and a second contact portion 11 having a lower electrical resistance than the first contact portion 10 at a location where the conductive reflective layer 4 is in contact with the second semiconductor layer 2 c. It may be.
  • the electrical resistance value of the first contact portion 10 and the electrical resistance value of the second contact portion 11 can be formed by changing the contact resistance value at the contact interface between the second semiconductor layer 2c and the conductive reflective layer 4.
  • the second semiconductor layer 2c and the conductive reflection layer 4 can be formed in ohmic contact.
  • the electric resistance value can be varied by changing the amount of oxygen near or in the vicinity of the contact interface.
  • the second electrode layer 7 has a through-hole 6 that exposes a part of the upper surface of the conductive reflective layer 4 at a location overlapping the second contact portion 11 in a plan view.
  • the second contact portion 11 has an electric resistance smaller than that of the first contact portion 10, the current easily flows from the first contact portion 10 to the second contact portion 11, and the second contact portion 11 comes into contact with the second contact portion 11. Heat generation in the semiconductor layer 2c tends to increase.
  • the through-hole 6 formed in the conductive layer 5 is located in a position where it overlaps with the second contact portion 11 in a plan view, thereby shortening the heat dissipation path between the second contact portion 11 that tends to be high temperature and the outside. It is possible to improve heat dissipation. As a result, the temperature of the second semiconductor layer 2c can be stabilized, and the light emission efficiency can be improved.
  • a protective metal layer 13 is formed between the wiring electrode 15 of the package body 16 and the light emitting element 20. And may be used as a bump for bonding.
  • the protective metal layer 13 as a bump in this way, the heat generated between the wiring electrode 15 and the second electrode layer 7 is compared with the case where the protective metal layer 13 is not provided and bonded to the wiring electrode 15. Connection failure can be suppressed.
  • the material of the protective metal layer 13 a material having a smaller electrical resistance than that of the conductive layer 5 may be used.
  • silver electric resistance value 1.47 [10 ⁇ 8 ⁇ ⁇ m]
  • aluminum electric resistance value 2.50 [10 ⁇ 8 ⁇ ⁇ m] is used as the second electrode layer 5 having the through holes 6.
  • the protective metal layer 13 is electrically connected to the conductive reflective layer 4 through the through-hole 6, so that the power consumption is further reduced as compared with the case where the through-hole 6 is not provided. be able to.
  • the exemplified electrical resistance value is a value of 273K.
  • the light emitting element 20 may be sealed with a protective resin layer.
  • a protective resin layer for example, a silicone resin can be used.
  • a silicone resin can be used.
  • the light emitting layer 2b emits light having a wavelength of 350 nm or more and 500 nm or less
  • such a silicone resin is mixed with a phosphor or phosphor that can be excited at the wavelength of the emitted light, and the light from the light emitting layer 2b is mixed. You may convert into white light.
  • 11 to 16 are cross-sectional views for explaining a method of manufacturing the light-emitting element 20, and show a portion corresponding to a cross section taken along the line AA 'of the light-emitting element 20 shown in FIG. Portions that overlap with the light emitting element 20 described above are denoted by the same reference numerals and description thereof is omitted.
  • an optical semiconductor layer 2 in which a first semiconductor layer 2 a, a light emitting element 2 b, and a second semiconductor layer 2 c are sequentially stacked is formed on a substrate 1.
  • a mixed crystal of nitride containing at least one of gallium, indium, and aluminum can be used.
  • MBE molecular beam epitaxy
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • HVPE hydride vapor phase growth
  • PLD pulsed laser deposition
  • a stacked body 30 in which the first metal layer 21 and the second metal layer 22 are sequentially stacked is formed on the second semiconductor layer 2 c of the optical semiconductor layer 2.
  • a material that becomes the conductive reflective layer 4 can be used as the first metal layer 21, and a material that becomes the conductive layer 5 can be used as the second metal layer 22.
  • the second metal layer 22 is preferably made of a material having a higher melting point than the oxide of the first metal layer 21.
  • the first metal layer 21 and the second metal layer 22 are selected from the material of the conductive reflective layer 4 described above or the material of the conductive layer 5 described above.
  • a method for laminating the first metal layer 21 and the second metal layer 22 a method such as a sputtering method or a vapor deposition method can be used.
  • the lamination method may be appropriately selected depending on the material to be laminated.
  • the thickness of the first metal layer 21 can be appropriately changed depending on the reflectance of the selected material, and can be set to, for example, 10 nm or more and 5000 nm or less.
  • the thickness of the second metal layer 22 can be set to, for example, 1 nm or more and 50 nm or less.
  • the first metal layer 21 is formed from a material containing silver as a main component
  • the second metal layer 22 is formed from a material containing aluminum as a main component.
  • a plurality of through holes 6 penetrating in the thickness direction of the second metal layer 22 are formed in the second metal layer 22.
  • a method for forming the through hole 6 for example, a photolithography method or a lift-off method using a mask such as a resist can be used. In the present embodiment, a photolithography method is used. When the lift-off method or the like is used, a step of providing a resist pattern on the first metal layer 21 may be included in the step of laminating the laminate 30 described above. As another method, a focused ion beam (abbreviated as FIB) method or the like can be used. When the photolithography method or the lift-off method is used, the plurality of through holes 6 can be formed at the same time, so that the through holes 6 can be formed with high productivity.
  • FIB focused ion beam
  • a resist 23 for exposing a part of the second metal layer 22 forming the through hole 6 is formed on the second metal layer 22. Etching is performed from the surface of the second metal layer 22 exposed from the resist 23 to a depth at which the upper surface 21A of the first metal layer 21 is exposed, and a part of the second metal layer 22 is removed. Thereafter, by removing the resist 23, a plurality of through holes 6 can be formed in the second metal layer 22 as shown in FIG. In the present embodiment, the diameter of the through hole 6 is set to, for example, 0.2 ⁇ m or more and 20 ⁇ m or less.
  • etching method for removing a part of the second metal layer 22 a wet etching method or a dry etching method can be used.
  • a wet etching method is used to remove a part of the second metal layer 22
  • a chemical solution having a high etching rate for the second metal layer 22 and a low etching rate for the first metal layer 21 is used as the etching solution.
  • the second metal layer 22 can be removed while suppressing the first metal layer 21 from being removed more than expected, and the second metal layer 22 can be selectively removed. Can be etched.
  • a part of the first metal layer 21 exposed by the second metal layer 22 is easily oxidized.
  • the first metal layer 21 is mainly composed of silver, a part of the first metal layer 21 exposed from the second metal layer 22 is likely to contain a large amount of silver oxide.
  • the laminated body 30 which consists of the 1st metal layer 21 and the 2nd metal layer 22 in which the through-hole 6 was formed is heated.
  • the second semiconductor layer 2c is also heated.
  • the temperature at which the stacked body 30 is heated can be set, for example, to a temperature higher than the melting point of the oxide of the first metal layer 21 and lower than the melting points of the first metal layer 21 and the second metal layer 22.
  • the second semiconductor layer 2c and the first metal layer 21 come into contact with each other as shown in FIG. 14 while suppressing the aggregation of the first metal layer 21.
  • An ohmic contact portion 25 in which the interface region is in ohmic contact can be formed.
  • the interface region where the second semiconductor layer 2c and the first metal layer 21 are in contact with each other is from the contact surface where the atomic concentration of the second semiconductor layer 2c and the atomic concentration of the first metal layer 21 are the same. For example, it indicates a region in the range of 20 nm.
  • the ohmic contact is a contact between a metal and a semiconductor that has an extremely small contact resistance value as compared to a series resistance value due to the resistance of the semiconductor bulk. That is, the ohmic contact refers to a contact that has a small voltage drop compared to the voltage drop in the operating region of the device.
  • the contact resistance value in the case of ohmic contact is set to 0.012 ⁇ ⁇ cm 2 or less, for example.
  • an oxide is formed up to the lower surface of the first metal layer 21, or oxygen is diffused into the first metal layer 21. Or the like can be used.
  • the second semiconductor layer 2c and the first metal layer 21 can be in ohmic contact in the interface region where the second semiconductor layer 2c and the first metal layer 21 contact, the second semiconductor layer 2c and the first metal The contact resistance value with the layer 21 can be reduced. For this reason, it is possible to facilitate the flow of current from the first metal layer 21 to the second semiconductor layer 2c. As a result, current can easily flow through the entire interface region where the second semiconductor layer 2c and the first metal layer 21 are in contact with each other, and uneven emission of light emitted from the optical semiconductor layer 2 can be reduced.
  • the first metal layer 21 is mainly silver (melting point 961 ° C.)
  • the oxidized first metal layer 21 is silver oxide (melting point 280 ° C.)
  • the second metal layer 22 is mainly aluminum (melting point 660 ° C.). Contains as an ingredient. Therefore, the temperature for heating the laminate 30 can be set to, for example, 300 ° C. or more and 600 ° C. or less.
  • the heating temperature may be appropriately set in consideration of the melting point.
  • the material used for the first metal layer 21 and the second metal layer 22 may be an alloy material or a material containing impurities.
  • the range in which the second semiconductor layer 2c and the first metal layer 21 are in ohmic contact with each other can be adjusted by the heating temperature, the heating time, and the like of the stacked body 30.
  • Whether or not the second semiconductor layer 2c and the first metal layer 21 are in ohmic contact can be confirmed by, for example, a method of examining the amount of oxygen in the interface region between the second semiconductor layer 2c and the first metal layer 21. . As another method, a method of measuring a contact resistance value between the second semiconductor layer 2c and the first metal layer 21 can be used.
  • the amount of oxygen in the interface region between the second semiconductor layer 2c and the first metal layer 21 can be determined by, for example, dynamic secondary ion mass spectrometry (Dynamic-Secondary-Ion-microprobe MassmeterSpectrometer) D-SIMS method, X-ray photoelectron spectroscopy ( It can be confirmed by analyzing by an analysis method such as X-ray® Photoelectron® Spectroscopy (abbreviated XPS) method or Auger Electron Spectroscopy (abbreviated AES).
  • XPS X-ray® Photoelectron® Spectroscopy
  • AES Auger Electron Spectroscopy
  • the second metal layer 22 is etched until the surface of the first metal layer 21 is exposed to form the through holes 6, and then the first metal layer is formed from the surface of the first metal layer 21. 21 may be etched. After the second metal layer 22 is etched, the first metal layer 21 is continuously etched, so that the recesses 12 are formed in the first metal layer 21 at positions corresponding to the through holes 6 as shown in FIG. Can be formed.
  • etching may be performed so that the etching rates of the second metal layer 22 and the first metal layer 21 are different.
  • the second opening 9 can be provided outside the outer periphery.
  • the laminate 30 may be heated in an oxygen atmosphere having a higher oxygen concentration than the atmosphere.
  • an oxygen atmosphere having a higher oxygen concentration than the atmosphere.
  • FIG. 15 shows a part of the result of analyzing the light emitting element 20 according to the present embodiment in the depth direction from the surface of the second metal layer 22 using the XPS method. Specifically, the atomic concentrations of oxygen, silver, gallium, and aluminum existing in the depth direction from the surface of the second metal layer 22 to the second semiconductor layer 2c were measured.
  • the horizontal axis indicates the depth from the second metal layer 22
  • the vertical axis indicates the atomic concentration
  • only the atomic concentration of oxygen is a natural logarithm value.
  • the sample used for the analysis by the XPS method used this time is one that is in ohmic contact in the interface region where the second semiconductor layer 2c and the first metal layer 21 are in contact with each other.
  • the contact surface where the second semiconductor layer 2c and the first metal layer 21 are in contact is the position where the atomic concentration of the second semiconductor layer 2c and the atomic concentration of the first metal layer 21 are the same, that is, in FIG.
  • the curve indicating the atomic concentration of the second semiconductor layer 2c and the curve indicating the atomic concentration of the first metal layer 21 intersect each other.
  • the interface between the second semiconductor layer and the first metal layer is in contact with each other.
  • the amount of oxygen in the area could not be increased.
  • ohmic contact could not be made in the interface region where the second semiconductor layer and the first metal layer were in contact.
  • FIG. 16 the analysis result when the second metal layer 22 is heated in the configuration having the through-hole 6 as in the above-described embodiment is shown in FIG. 16, and the second metal layer is heated in the structure having no through-hole.
  • the analysis result of the comparative example is shown in FIG. 16 and 17 both show the results of measurement using the D-SIMS method in the depth direction from the surface of the second metal layer 22. Specifically, the amounts of oxygen, silver, gallium, and aluminum present in the depth direction from the surface of the second metal layer 22 to the second semiconductor layer 2c were measured. 16 and 17, the horizontal axis indicates the depth from the second metal layer 22, and the vertical axis indicates the amount of each element.
  • the second metal layer 22 is compared with the configuration in which the second metal layer does not have a through hole. It can be seen that the amount of oxygen is relatively increased about 10 times in the case of the structure having the through hole 6 in the center.
  • the light emitting element 20 in the present embodiment light is emitted from the entire surface where the optical semiconductor layer 2 and the first metal layer 22 are in contact, whereas in the comparative light emitting element, the first metal is formed in the interface region.
  • Current did not flow easily from the layer to the second semiconductor layer, resulting in uneven light emission.
  • the first metal layer made of silver is formed on the optical semiconductor layer without providing the second metal layer, and then the optical semiconductor layer and the first metal layer are heated, silver aggregates and conducts reflection. A layer could not be formed.
  • the heating temperature of the optical semiconductor layer and the first metal layer was reduced, sufficient ohmic contact could not be formed between the second semiconductor layer and the first metal layer.
  • a transmission line A model Transmission Line Model: TLM
  • the contact resistance value between the second semiconductor layer 2c and the first metal layer 21 was 0.012 ⁇ ⁇ cm 2 or less.

Abstract

 本発明の一実施形態にかかる発光素子は、第1半導体層2a、発光層2bおよび第2半導体層2cが順次積層された光半導体層2と、第1半導体層2aに電気的に接続された第1電極層3と、第2半導体層2cに電気的に接続された第2電極層7とを備えている。また、第2電極層7は、第2半導体層2c上に位置する導電反射層4および導電反射層4上に位置しているとともに厚み方向を貫通する貫通孔6を複数持つ導電層5を有している。 本発明の発光素子の製造方法は、光半導体層2、第1金属層21および第1金属層21の酸化物よりも融点が高い第2金属層22が順次積層された積層体30を準備する工程と、第2金属層22に厚み方向に貫通する貫通孔6を複数形成する工程を有している。そして、本発明の発光素子の製造方法は、その後、積層体30を、第1金属層21の酸化物の融点よりも高くかつ第1金属層21の融点および第2金属層22の融点のいずれよりも低い温度で加熱し、光半導体層2の第1金属層21との界面領域を酸化する工程を備えている。

Description

発光素子、および発光素子の製造方法
 この発明は、発光素子、および発光素子の製造方法に関するものである。
 現在、紫外光、青色光、緑色光等を発する発光素子の開発が行われている。このような発光素子としては、例えば複数の半導体層を積層した光半導体層と該光半導体層に電圧を印加する電極とからなる発光素子がある(例えば、特開2006-222288号公報参照)。
 そこで、このような発光素子の開発において、光半導体層と電極との間の電気特性を向上させることが求められている。
 本発明の一実施形態にかかる発光素子は、第1半導体層、発光層および第2半導体層が順次積層された光半導体層と、第1半導体層に電気的に接続された第1電極層と、第2半導体層に電気的に接続された第2電極層とを備えている。また、第2電極層は、第2半導体層上に位置する導電反射層および導電反射層上に位置しているとともに厚み方向を貫通する貫通孔を複数持つ導電層を有している。
 本発明の一実施形態にかかる発光素子の製造方法は、光半導体層、第1金属層および第1金属層の酸化物よりも融点が高い第2金属層が順次積層された積層体を準備する工程と、第2金属層に厚み方向に貫通する貫通孔を複数形成する工程を有している。そして、本発明の一実施形態にかかる発光素子の製造方法は、その後、積層体を、第1金属層の酸化物の融点よりも高くかつ第1金属層の融点および第2金属層の融点のいずれよりも低い温度で加熱し、光半導体層の第1金属層との界面領域を酸化する工程を備えている。
本発明の一実施形態にかかる発光素子の斜視図である。 図1に示す発光素子の断面図であり、図1のA-A’線で切断したときに相当する。 図1に示す発光素子の貫通孔、導電反射層および導電層の拡大断面図である。 図1に示す発光素子の貫通孔、凹部およびその周辺の拡大断面図である。 図1に示す発光素子の変形例の貫通孔、凹部およびその周辺の拡大断面図である。 図1に示す発光素子の変形例の貫通孔、凹部およびその周辺の拡大図であり、(a)は厚み方向に切断した断面の拡大断面図、(b)は上方から平面視したときの拡大平面図にそれぞれ相当する。 図1に示す発光素子の変形例の平面図であり、発光素子を上方から平面視したときに相当する。 図1に示す発光素子の変形例の断面図であり、図1のA-A’線で切断したときに相当する。 図1に示す発光素子の変形例の断面図であり、図1のA-A’線で切断したときに相当する。 図1に示す発光素子をパッケージに実装した発光装置である。 図1に示す発光素子の製造工程を示す発光素子の断面図である。 図1に示す発光素子の製造工程を示す発光素子の断面図である。 図1に示す発光素子の製造工程を示す発光素子の断面図である。 図1に示す発光素子の製造工程を示す発光素子の断面図である。 図1に示す発光素子の分析結果を示すグラフである。 図1に示す発光素子の分析結果を示すグラフである。 比較例の発光素子の分析結果を示すグラフである。
 以下に図面を参照して、本発明にかかる発光素子の実施形態について詳細に説明する。
 本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々変更を施すことができる。
 <発光素子について>
 図1は本実施形態にかかる発光素子20の斜視図、図2は図1に示す発光素子20の断面図であり、図1のA-A’線で切断したときの断面に相当する。
 発光素子20は、図1および図2に示すように、基板1と、基板1上に形成された光半導体層2と、光半導体層2の一部と電気的に接続された第1電極層3と、導電反射層4および貫通孔6を複数持つ導電層5を有する第2電極層7と、を備えている。
 基板1は、化学気相成長法を用いて、光半導体層2を成長させることが可能なものであればよい。基板1は、平面視形状が例えば四角形状などの多角形状または円形状の平板などから形成されている。基板1に用いられる材料としては、例えば、サファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウムなどを挙げることができる。
 光半導体層2で発光した光を基板1側から取り出す場合には、光半導体層2で発光した光を透過させる透光性の基材を用いる方法などを用いることができる。透光性の基材としては、光半導体層2で発光する光の波長を考慮すればよく、例えば、後述する発光層2bの構成を用いた場合、例えば、サファイア、窒化ガリウム、酸化亜鉛またはシリコンカーバイドなどを用いることができる。本実施形態において、基板1はサファイアからなり、基板1の厚みとしては10μm以上1000μm以下程度である。
 光半導体層2は、図2に示すように、基板1の主面1Aに形成された第1半導体層2aと、第1半導体層2a上に形成された発光層2bと、発光層2b上に形成された第2半導体層2cと、から構成されている。
 第1半導体層2a、発光層2bおよび第2半導体層2cとしては、例えばIII-V族半導体を用いることができる。具体的なIII-V族半導体としては、III族窒化物半導体、ガリウム燐またはガリウムヒ素などを例示できる。III族窒化物半導体としては、例えば、窒化ガリウム、窒化アルミニウムまたは窒化インジウムなどを用いることができ、化学式で例示するとAlx1Ga(1-x1-y1)Iny1N(0≦x1≦1、0≦y1≦1、x1+y1≦1)と表すことができる。第1半導体層2a、発光層2bおよび第2半導体層2cとしては、III-V族半導体以外に、例えば酸化亜鉛などを用いることができる。
 光半導体層2は、第1半導体層2a、発光層2bおよび第2半導体層2cが、基板1の主面1Aに順次形成された積層構造からなる。第1半導体層2aは一導電型としてn型半導体の性質を呈するように設定され、第2半導体層2cは第1半導体層2aとは逆導電型のp型半導体の性質を呈するように設定されている。本実施形態において、第1半導体層2aおよび第2半導体層2cは、III族窒化物半導体である窒化ガリウムにより形成されている。
 窒化ガリウムからなる第1半導体層2aをn型窒化ガリウムとするには、例えば元素周期律表においてIV族の元素をドーパントとして窒化ガリウムに添加すればよい。IV族の元素のドーパントとしては、例えばシリコンなどを用いることができる。第1半導体層2aの厚みは、例えば0.5μm以上200μm以下に設定することができる。
 窒化ガリウムからなる第2半導体層2cをp型窒化ガリウムとするには、例えば元素周期律表においてII族の元素をドーパントとして添加すればよい。II族の元素のドーパントとしては、例えばマグネシウムなどを用いることができる。第2半導体層2cの厚みは、例えば0.5μm以上2μm以下に設定することができる。
 発光層2bは、第1半導体層2aと第2半導体層2cとの間に設けられている。発光層2bは、例えば多層量子井戸構造(Multi Quantum Well 略称MQW)としてもよい。多層量子井戸構造は、禁制帯幅の広い障壁層と禁制帯幅の狭い井戸層とから構成される量子井戸構造を複数回(例えば、2回以上10回以下)繰り返して積層すればよい。発光層2b全体の厚みは、例えば25nm以上150nm以下に設定することができる。
 障壁層としては、例えばIn0.01Ga0.99N層などを用いることができる。井戸層としては、例えばIn0.11Ga0.89N層などを用いることができる。この場合、障壁層の厚みは、例えば2nm以上15nm以下、井戸層の厚みは例えば2nm以上10nm以下に設定することができる。このように構成された発光層2bでは、例えば350nm以上600nm以下の波長の光を発する。
 光半導体層2には、第1電極層3および第2電極層7が設けられている。第1電極層3は第1半導体層2aと電気的に接続され、第2電極層7は第2半導体層2cと電気的に接続されている。発光素子20は、第1電極層3と第2電極層7との間に電圧を印加することにより、光半導体層2を発光させることができる。本実施形態においては、第1電極層3および第2電極層7が、光半導体層2の同じ側であって、光半導体層2に対して基板1と反対側に配置されている。
 第1電極層3は、第1半導体層2aと電気的に接続されている。第1電極層3は、第2電極層2cの一部および発光層2bの一部が除去されて露出した第1半導体層2aの露出領域に設けられている。
 第1電極層3としては、例えば、アルミニウム、チタン、ニッケル、クロム、インジウム、スズ、モリブデン、銀、金、ニオブ、タンタル、バナジウム、白金、鉛またはベリリウムなどの金属材料を用いることができる。さらに、第1電極層3として、例えば、酸化スズ、酸化インジウムまたは酸化インジウムスズなどの金属酸化物または前述した金属材料を主成分に含む合金を用いてもよい。前述した金属材料を主成分に含む合金としては、例えば、金とシリコンとの合金、金とゲルマニウムとの合金、金と亜鉛との合金または金とベリリウムとの合金などの合金を用いることができる。
 第1電極3は、前述した、金属、金属酸化物または合金などの材料の中から選択した層を複数層積層したものとしてもよい。第1電極3として、例えば金を用いた場合には、第1電極3と第1半導体層2aとの間でオーミック接触させるためのオーミック接触層としてアルミニウムを間に介在させたチタンを設けることができる。第1電極3は、基板1が導電性を有する場合、光半導体層2が形成された基板1の主面1Aとは反対側主面または側面に設けてもよい。
 第2電極層7は、第2半導体層2cの主面2A上の位置に設けられ、第2半導体層2cと電気的に接続されている。第2電極層7は、導電反射層4と導電層5とを順次積層することにより構成されている。
 導電反射層4は、発光層2bで発光した光を基板1の方向に反射させるため、第2半導体層2cの主面2A上に形成されている。導電反射層4は、第2半導体層2cの主面2Aを例えば80%以上覆うように形成されている。
 導電反射層4は、発光層2bで発光した光を基板1の方向に反射するとともに、第2半導体層2cと第2電極層7とを電気的に接続することができる導電性の材料から形成される。導電反射層4の厚みは、例えば2nm以上2000nm以下に設定されている。
 導電反射層4は、具体的には、アルミニウム、チタン、ニッケル、クロム、インジウム、スズ、モリブデン、銀、金、ニオブ、タンタル、バナジウム、白金、鉛またはベリリウムなどの金属材料を用いることができる。さらに、導電反射層4としては、酸化スズ、酸化インジウムまたは酸化インジウムスズなどの金属酸化物または前述した金属材料を主成分に含む合金などを用いることができる。前述した金属材料を主成分に含む合金としては、例えば銀とガリウムとの合金、銀とアルミニウムとの合金、金とシリコンとの合金、金とゲルマニウムとの合金、金と亜鉛との合金または金とベリリウムとの合金などの合金を好適に用いることができる。
 本実施形態では、発光層2bで発する光が例えば350nm以上600nm以下の波長を有するため、導電反射層4として、波長に対する反射率の観点から銀を用いている。その場合、導電反射層4の厚みは、例えば10nm以上1000nm以下に設定することができる。
 導電層5は、導電反射層4の上面4Aに位置するように形成され、導電反射層4を介して第2半導体層2cと電気的に接続されている。導電層5の厚みは、例えば1nm以上4000nm以下に設定されている。導電層5の材料としては、導電反射層4と異なる材料を用いることができ、前述した導電反射層4の材料の中から選択すればよい。
 本実施形態において、導電層5は、アルミニウムで形成されている。その場合、導電層5の厚みは、例えば1nm以上100nm以下に設定することができる。
 導電層5は、厚み方向を貫通する貫通孔6を複数持っている。導電反射層4の上面4Aの一部が、複数の貫通孔6によって、導電層5から露出している。複数の貫通孔6は、導電層5から露出する導電反射層4の面積が、導電反射層4の上面4Aの面積に対して、例えば10%以上60%以下となるように設けられている。
 複数の貫通孔6は、図3に示すように、隣接する2つの貫通孔6の距離F1、すなわち隣接する2つの貫通孔6の間に位置する導電層5の幅が、例えば0.4μm以上30μm以下となっている。貫通孔6は、円錐台形状、円柱形状、多角錐台形状または多角柱形状などから選択される。貫通孔6の底面すなわち貫通孔6が露出させる導電反射層4の上面4Aの面の寸法F2は、例えば直径が0.02μm以上50μm以下に設定される。本実施形態において、貫通孔6は円柱形状により形成されている。
 以上のように構成された発光素子20は、第2電極層7が導電反射層4を露出させる複数の貫通孔6を有している。そのため、第2半導体層2cと導電反射層4とを加熱した際に、導電反射層4と酸素とを接触しやすくすることができる。
 その結果、第2半導体層2cと導電反射層4とが接触する界面領域における酸素の量を多くすることができる。これにより、第2半導体層2cと導電反射層4とがオーミック接触することとなり、第2半導体層2cと導電反射層4との接触抵抗値を小さくすることができる。そのため、光半導体層2と第2電極層7との電気特性を向上させることができる。
 ここで、第2半導体層2cと導電反射層4との接触抵抗値とは、第2半導体層2cと導電反射層4との接触面に存在する電気抵抗値を指す。これは、第2半導体層2cと導電反射層4との接触面には接触電位差と、接触面を流れる電流に対応する不連続的な電位差とがあり、これと電流との比が接触抵抗値になる。
 一方、貫通孔をもたない導電層が導電反射層上に設けられた構成の発光素子の場合には、光半導体層と導電反射層とが接触する界面領域において酸素の量を多くすることが難しかった。そのため、光半導体層と導電反射層との接触抵抗値が高くなり、光半導体層の発光効率の低下を招きやすかった。
 さらに、本実施形態の発光素子20は、導電層5が複数の貫通孔6を有することから、導電反射層4の上面4Aの一部を露出させることができ、平面透視して、貫通孔6によって露出した導電反射層4と重なる位置の第2半導体層2cと外部との距離を短くすることができ、第2半導体層2cの温度が高温になるのを抑制することができる。
 また、本実施形態の発光素子20は、貫通孔をもたない導電層が導電反射層上に設けられた構成の発光素子の場合と比較して、電極層5に貫通孔6を有することにより、外部と接する第2電極層7の表面積を増やすことができるので、光半導体層2で発生した熱の放熱性を向上させることができる。
 (各種変形例について)
 導電反射層4は、図4に示すように、導電層5の貫通孔6と対応する位置に凹部12を設けてもよい。凹部12は、円柱、多角柱、円錐台または多角錐台などを用いることができる。凹部12の直径は、貫通孔6の直径と同じ寸法に設定してもよく、例えば0.02μm以上3μm以下に設定される。導電反射層4が凹部12を有することにより、導電反射層4と酸素とが接触する面積を増やすことができる。導電反射層4が露出する表面積を増やすことができることから、光半導体層2で発生した熱の放熱性を向上させることができる。
 凹部12は、図5に示すように、導電層5側に向かうにつれて、導電反射層4の厚み方向と垂直な断面の面積である第1断面積が大きくなるように設けてもよい。すなわち、凹部12としては、凹部12の底面の面積より上面の面積を大きくした形状を用いることができる。凹部12としては、例えば円錐台形状または多角錐台形状などを用いることができる。このように凹部12を設けることにより、導電反射層4の露出した表面積をさらに増やすことができる。
 貫通孔6は、図5に示すように、導電反射層4側に向かうにつれて、導電層5の厚み方向と垂直な断面の面積である第2断面積が小さくなるように設けてもよい。すなわち、貫通孔6は、断面視して、側辺18が導電反射層4の主面4Aに対する角度αが鋭角で形成してもよい。
 このように貫通孔6の側辺18が導電反射層4の主面4Aに対して傾斜していることにより、表面積を大きくすることができるため放熱性をさらに向上させることができる。さらに、後述する保護金属層13を第2電極層7上に設ける場合、傾斜した貫通孔6上に保護金属層13を高い被覆性で設けることができる。
 凹部12は、図6に示すように、平面透視して、貫通孔6より内側に設けられていてもよい。具体的に、貫通孔6は、平面透視において、貫通孔6の第1開口部8の外周が、凹部12の第2開口部9の外周よりも外側に位置するように設けられている。
 ここで、第1開口部8は、導電層5の導電反射層4側の表面に位置する貫通孔6の一端側の開口部を指し、第2開口部9は、導電反射層4の導電層5側の表面に位置する凹部12の開口部を指す。
 第1開口部8の形状と第2開口部9の形状とは、異なっていてもよい。第1開口部8の面積は、第2開口部9の面積に対して、例えば1.1倍以上2.5倍以下となるように設定される。このように凹部12および貫通孔6が設けられていることにより、導電反射層4の上面4Aの一部を露出させることができるため、導電反射層4の露出した表面積を増やすことができる。
 導電層5は、図7に示すように、平面視において、内方に向かうにつれて、複数の貫通孔6の存在する密度が高くなるように設けてもよい。ここで、導電層5に設けられた複数の貫通孔6の存在する密度とは、導電層5を平面視して、貫通孔6の面積が導電層5の面積に対して占める割合を指す。
 導電反射層4と第2半導体層2cとを加熱した場合、貫通孔6で露出した導電反射層4の表面からだけでなく導電反射層4の側面から酸素が浸透するようになる。そのため、貫通孔6をこのような密度で設けることにより、第2半導体層2cと導電反射層4とが接触する界面領域において、第2半導体層2cの主面2Aの面方向の酸素の量の差を、小さくすることができる。その結果、平面視して第2半導体層2cの主面2Aの面方向全体にわたって、導電反射層4との接触抵抗値を小さくすることができる。
 発光素子20は、図8に示すように、保護金属層13をさらに備えてもよい。具体的に、保護金属層13は、貫通孔6に充填されるとともに、導電層5の表面を被覆するように設けられる。保護金属層13を構成する材料の熱膨張係数は、導電層5を構成する材料の熱膨張係数と比べて小さくなるように設定されている。
 このように第2電極層5より小さな熱膨張係数をもつ材料から保護金属層13を形成することによって、導電層5が熱膨張により変形することを抑えることができる。貫通孔6に保護金属層13の材料が充填されていることにより、導電層5が横方向に熱膨張することを抑制することができる。その結果、保護金属層13は、熱によって導電層5と導電反射層4とが剥離するのを抑制することができ、導電層5と導電反射層4との接続不良を抑えることができる。
 具体的に、導電層5としてアルミニウム(熱膨張係数30.2×10-6[K-1])を用いた場合、保護金属層13としてタンタル(熱膨張係数6.3×10-6[K-1])、金(熱膨張係数14.2×10-6[K-1])、スズ(熱膨張係数22.0×10-6[K-1])、銅(熱膨張係数16.5×10-6[K-1])またはニッケル(熱膨張係数13.4×10-6[K-1])などを含む単体または合金を用いることができる。なお、例示した熱膨張係数は、273Kにおける値である。
 さらに、導電反射層4に凹部12を設けていた場合、凹部12に保護金属層13を充填してもよい。凹部12に保護金属層13の材料を充填する場合、保護金属層13として導電反射層4の材料および導電層5の材料より熱膨張係数の小さい材料を用いればよい。
 本実施形態では、導電反射層4として、銀(熱膨張係数18.9×10-6[K-1])を用いることから、タンタル(熱膨張係数6.3×10-6[K-1])、金(熱膨張係数14.2×10-6[K-1])、銅(熱膨張係数16.5×10-6[K-1])、ニッケル(熱膨張係数13.4×10-6[K-1])などを含む単体や合金を用いることができる。なお、保護金属層13は、熱膨張係数を考慮しつつ導電性等の観点から、タンタルと金の合金(熱膨張係数6.3×10-6[K-1]以上14.2×10-6[K-1]以下)などの合金を用いてもよい。
 本実施形態においては、第2半導体層2cが窒化ガリウムからなるため、第2半導体層2cと導電反射層4とを加熱した場合に、第2半導体層2cと導電反射層4とが接触する界面領域に酸化ガリウムを含むようにしてもよい。第2半導体層2cが導電反射層4との界面領域に酸化ガリウムを含むことにより、第2半導体層2cと導電反射層4との接触抵抗値を小さくすることができる。
 本実施形態においては、導電反射層4が銀からなるため、第2半導体層2cと導電反射層4とを加熱した場合に、導電反射層4は酸化銀を含むようになる。具体的には、導電反射層4は、貫通孔6によって導電層5によって露出した導電反射層4の上面4Aの露出部分と導電反射層4の側面部分とから酸化されやすくなる。そのため、導電反射層4は、露出部分と側面部分とに酸化銀が含まれやすくなる。
 導電反射層4は、図9に示すように、第2半導体層2cと接触する箇所に、第1接触部10と第1接触部10よりも電気抵抗が小さい第2接触部11とを有していてもよい。第1接触部10の電気抵抗値および第2接触部11の電気抵抗値は、第2半導体層2cと導電反射層4との接触界面における接触抵抗値を変化させることにより形成することができる。
 接触抵抗値を変化させる方法としては、例えば第2半導体層2cと導電反射層4とをオーミック接触させることにより形成することができる。オーミック接触の一例としては、例えば接触界面または接触界面付近の酸素の量を変化させることにより電気抵抗値を異ならせることができる。導電反射層4を銀で形成した場合を例示すると、第2接触部11には、酸化銀が多く含まれやすくなる。
 本実施形態において、第2電極層7は、平面透視して、第2接触部11と重なる箇所に、導電反射層4の上面の一部を露出する貫通孔6を有している。また、第2接触部11が第1接触部10より小さな電気抵抗を有することから、電流が第1接触部10より第2接触部11に流れやすくなり、第2接触部11に接触する第2半導体層2cにおける発熱が大きくなりやすい。
 そのため、導電層5に形成された貫通孔6が、平面透視して、第2接触部11と重なる箇所に位置することにより、高温になりやすい第2接触部11と外部との放熱経路を短くすることができ、放熱性を向上させることができる。その結果、第2半導体層2cの温度を安定させることができ、発光効率を向上させることができる。
 さらに、図10に示すように、発光素子20をパッケージ体16にフリップチップ実装して発光装置50を形成する際、このような保護金属層13を、パッケージ体16の配線電極15と発光素子20とを接合するバンプとして用いてもよい。このように保護金属層13をバンプとして用いることにより、保護金属層13を設けないで配線電極15と接合した場合と比較して、配線電極15と第2電極層7との間で起こる熱による接続不良を抑えることができる。
 保護金属層13の材料として、導電層5の電気抵抗より小さい材料を用いてもよい。本実施形態では、導電反射層4として銀(電気抵抗値1.47[10-8Ω・m])、貫通孔6を有する第2電極層5としてアルミニウム(電気抵抗値2.50[10-8Ω・m])で形成され、保護金属層13が貫通孔6を介して導電反射層4と電気的に接続されていることから、貫通孔6を設けない場合と比較して、消費電力をさらに低くすることができる。なお、例示した電気抵抗値は273Kの値である。
 さらに、発光素子20を保護樹脂層により封止してもよい。保護樹脂層としては、例えばシリコーン樹脂などを用いることができる。発光層2bが350nm以上500nm以下の波長の光を発する場合、このようなシリコーン樹脂の中に発光した光の波長で励起することができる蛍光体や燐光体を混ぜて発光層2bからの光を白色光に変換してもよい。
 <発光素子の製造方法について>
 次に、発光素子20の製造方法を説明する。図11から図16は、発光素子20の製造方法を説明するための断面図であり、図1に示す発光素子20のA―A’線における断面に相当する部分を示している。上述した発光素子20と重複する部分については同一符号を付し、その説明を省略する。
 (積層体を準備する工程)
 図11に示すように、基板1上に、第1半導体層2a、発光素子2bおよび第2半導体層2cを順次積層した光半導体層2を形成する。光半導体層2は、例えばガリウム、インジウムおよびアルミニウムのうち少なくとも一つを含む窒化物の混晶を用いることができる。
 光半導体層2の成長方法としては、分子線エピタキシー(Molecular Beam Epitaxy、略称MBE)法、有機金属エピタキシー(Metal Organic Vapor Phase Epitaxy、略称MOVPE)法、ハイドライド気相成長(Hydride Vapor Phase Epitaxy、略称HVPE)法またはパルスレーザデポジション(Pulsed Laser Deposition、略称PLD)法などが用いられる。光半導体層2で発光した光を基板1側から取り出す場合には、基板1上に光半導体層2を成長させた後に基板1を除去する方法を用いてもよい。
 その後、光半導体層2の第2半導体層2c上に、第1金属層21と第2金属層22とを順次積層した積層体30を形成する。第1金属層21として導電反射層4となる材料を用いることができ、第2金属層22として導電層5となる材料を用いることができる。第2金属層22は、第1金属層21の酸化物よりも融点が高い材料で構成されていることが好ましい。なお、第1金属層21および第2金属層22は、上述した導電反射層4の材料または上述した導電層5の材料から選択される。
 第1金属層21および第2金属層22の積層方法は、スパッタリング法または蒸着法などの方法を用いることができる。積層方法は、積層させる材料によって適宜選択すればよい。第1金属層21の厚みは、選択した材料の反射率によって適宜変更することができ、例えば10nm以上5000nm以下に設定することができる。第2金属層22の厚みは、例えば1nm以上50nm以下に設定することができる。
 本実施形態において、第1金属層21は銀を主成分とする材料から形成され、第2金属層22はアルミニウムを主成分とする材料から形成されている。
 (貫通孔を複数形成する工程)
 次に、第2金属層22に、第2金属層22の厚み方向に貫通する貫通孔6を複数形成する。貫通孔6を形成する方法としては、例えば、レジストなどのマスクを用いたフォトリソグラフィ法またはリフトオフ法を用いることができる。本実施形態においては、フォトリソグラフィ法を用いている。リフトオフ法などを用いる場合、前述した積層体30を積層する工程において、レジストパターンを第1金属層21上に設ける工程を有していてもよい。他の方法としては、集束イオンビーム(Focused Ion Beam、略称FIB)法などを用いることができる。フォトリソグラフィ法またはリフトオフ法を用いた場合、複数の貫通孔6を同時に形成することができるため、高い生産性で貫通孔6を形成することができる。
 フォトリソグラフィ法を用いて貫通孔6を形成する場合について説明する。
 まず、図12に示すように、貫通孔6を形成する第2金属層22の一部を露出させるレジスト23を、第2金属層22上に形成する。レジスト23から露出した第2金属層22の表面から第1金属層21の上面21Aが露出する深さまでエッチングを行ない、第2金属層22の一部を除去する。その後、レジスト23を除去することによって、図13に示すように、貫通孔6を第2金属層22に複数形成することができる。本実施形態において、貫通孔6の直径は、例えば0.2μm以上20μm以下に設定されている。
 第2金属層22の一部を除去するエッチング方法としては、ウエットエッチング法またはドライエッチング法を用いることができる。第2金属層22の一部を除去する際にウエットエッチング法を用いた場合、エッチング液として、第2金属層22のエッチングレートが高く、第1金属層21のエッチングレートが低い薬液を用いることができる。このような薬液をエッチング液として用いることにより、第1金属層21が想定以上に除去されるのを抑制しつつ、第2金属層22を除去することができ、第2金属層22を選択的にエッチングすることができる。
 貫通孔6を複数形成することにより、第2金属層22露出した第1金属層21の一部が自然酸化されやすくなる。本実施形態では、第1金属層21は銀を主成分とすることから、第2金属層22から露出した第1金属層21の一部には酸化銀が多く含まれやすくなる。
 (積層体を加熱する工程)
 その後、第1金属層21と貫通孔6が形成された第2金属層22とからなる積層体30を加熱する。このように積層体30を加熱することにより、第2半導体層2cも加熱される。積層体30を加熱する温度は、例えば、第1金属層21の酸化物の融点よりも高く、第1金属層21および第2金属層22の融点よりも低い温度に設定することができる。
 積層体30をこのような温度で加熱することにより、第1金属層21が凝集することを抑制しつつ、図14に示すように、第2半導体層2cと第1金属層21とが接触する界面領域をオーミック接触させたオーミック接触部25とすることができる。
 ここで、第2半導体層2cと第1金属層21とが接触する界面領域とは、第2半導体層2cの原子濃度と第1金属層21の原子濃度が同じになる接触面からそれぞれの層に例えば20nmの範囲の領域を指す。
 また、オーミック接触とは、半導体バルクの抵抗による直列抵抗値と比較して、極めて小さな接触抵抗値である金属と半導体との接触である。すなわち、オーミック接触とは、デバイスの動作領域での電圧降下と比べて、小さい電圧降下となる接触を指す。オーミック接触した場合の接触抵抗値は、例えば0.012Ω・cm以下に設定される。
 積層体30を加熱すると、第2金属層22が貫通孔6を有することより、酸素が貫通孔6を通り、第1金属層21に浸透するため、第2半導体層2cと第1金属層21とが接触する界面領域の全体の酸素の量を増やすことができる。その結果、第2半導体層2cと第1金属層21とが接触する界面領域をオーミック接触させることができる。
 第2半導体層2cと第1金属層21とが接触する界面領域をオーミック接触とする方法としては、第1金属層21の下面まで酸化物を形成する方法または第1金属層21に酸素を拡散させる方法などを用いることができる。
 第2半導体層2cと第1金属層21とが接触する界面領域において、第2半導体層2cと第1金属層21とをオーミック接触とすることができることから、第2半導体層2cと第1金属層21との接触抵抗値を小さくすることができる。そのため、第1金属層21から第2半導体層2cに電流を流れやすくすることができる。その結果、第2半導体層2cと第1金属層21とが接触する界面領域全体に電流が流れやすくなり、光半導体層2で発光した光の発光ムラなどを少なくすることができる。
 本実施形態では、第1金属層21は銀(融点961℃)、酸化された第1金属層21は酸化銀(融点280℃)、第2金属層22はアルミニウム(融点660℃)をそれぞれ主成分として含んでいる。そのことから積層体30を加熱する温度は、例えば300℃以上600℃以下に設定することができる。
 第1金属層21および第2金属層22に用いた材料の融点が、主成分の材料の融点と異なる場合には、適宜その融点を考慮して加熱する温度を設定すればよい。具体的には、第1金属層21および第2金属層22に用いた材料として、合金材料または不純物を含有する材料などを用いる場合がある。
 また、第2半導体層2cと第1金属層21とが接触する界面領域でオーミック接触される範囲は、積層体30の加熱温度、加熱時間などによって調節することができる。
 第2半導体層2cと第1金属層21とがオーミック接触されているかは、例えば第2半導体層2cと第1金属層21との界面領域の酸素の量を調べる方法などにより確認することができる。この他の方法としては、第2半導体層2cと第1金属層21との接触抵抗値を測定する方法を用いることができる。
 第2半導体層2cと第1金属層21との界面領域における酸素の量は、例えばダイナミック二次イオン質量分析(Dynamic-Secondary Ion-microprobe Mass Spectrometer 略称D-SIMS)法、X線光電子分光分析(X-ray Photoelectron Spectroscopy 略称XPS)法またはオージェ電子分光法(Auger Electron Spectroscopy 略称AES)などの分析方法で分析することにより確認することができる。D-SIMS法、XPS法またはAES法は、JIS K0146-2002などに準拠した方法を用いればよい。
 (各種変形例について)
 貫通孔6を複数形成する工程において、第1金属層21の表面が露出するまで第2金属層22をエッチングして貫通孔6を形成した後、第1金属層21の表面から第1金属層21をエッチングしてもよい。第2金属層22をエッチングした後、続けて第1金属層21のエッチングを行うことにより、図4または図5に示すように、第1金属層21に貫通孔6と対応した位置に凹部12を形成することができる。
 貫通孔6を複数形成する工程において、第2金属層22および第1金属層21のエッチングレートが異なるようにエッチングしてもよい。第2金属層22のエッチングレートを第1金属層21のエッチングレートより高くすることにより、図6に示すように、平面透視において、貫通孔6の第1開口部8の外周を、凹部12の第2開口部9の外周よりも外側に位置するように設けることができる。
 積層体30を加熱する工程において、大気より高い酸素濃度の酸素雰囲気中で積層体30を加熱してもよい。積層体30の加熱を酸素雰囲気中で行うことにより、第2半導体層2cと第1金属層21との間でより確実にオーミック接触をさせることができる。さらに、積層体30を大気より高い酸素濃度の雰囲気中で加熱することにより、積層体30を加熱する工程の加熱時間を短縮することができ、生産性を向上させることができる。
 (評価結果)
 本実施形態にかかる発光素子20を第2金属層22の表面から深さ方向にXPS法を用いて分析した結果の一部を、図15に示す。具体的には、第2金属層22の表面から第2半導体層2cまでの深さ方向に存在する酸素、銀、ガリウムおよびアルミニウムのそれぞれの原子濃度を測定した。図15において、横軸は第2金属層22からの深さを示し、縦軸は原子濃度を示しており、酸素の原子濃度のみ自然対数の値としている。今回のXPS法による分析に用いた試料は、第2半導体層2cと第1金属層21とが接触する界面領域においてオーミック接触されたものを用いた。
 図15に示すように、第2半導体層2cと第1金属層21とが接触する界面領域、すなわち銀の原子濃度が減少しかつガリウムの原子濃度が増加している領域では、酸素の原子濃度が多くなっていることがわかる。このことから、第2半導体層2cと第1金属層21とが接触する界面領域において、酸素の量が多くなっていることがわかる。この場合、第2半導体層2cと第1金属層21とが接触する接触面は、第2半導体層2cの原子濃度と第1金属層21の原子濃度とが同じになる位置、すなわち図15に示すように、第2半導体層2cの原子濃度を示す曲線と第1金属層21の原子濃度を示す曲線とが交差する位置である。
 一方、第2金属層に貫通孔を有しない構造では、第2金属層によって酸素が第1金属層に浸透することが遮断されるため、第2半導体層と第1金属層とが接触する界面領域の酸素の量を増やすことができなかった。その結果、第2半導体層と第1金属層とが接触する界面領域でオーミック接触させることはできなかった。
 ここで、上述した本実施形態のように第2金属層22が貫通孔6を有する構成で加熱した場合の分析結果を図16に示し、第2金属層に貫通孔を有しない構造で加熱した場合の比較例の分析結果を図17に示す。図16および図17は、ともに第2金属層22の表面から深さ方向にD-SIMS法を用いて測定した結果である。具体的に、第2金属層22の表面から第2半導体層2cまでの深さ方向に存在する酸素、銀、ガリウムおよびアルミニウムのそれぞれの量を測定した。図16および図17において、横軸は第2金属層22からの深さを示し、縦軸はそれぞれの元素の量を示している。
 図16および図17に示すように、第1金属層21と第2半導体層2cとが接触する界面領域において、第2金属層に貫通孔を有しない構成と比較して、第2金属層22に貫通孔6を有する構成の場合の方が、10倍程度酸素の量が相対的に多くなっていることがわかる。
 その結果、本実施形態における発光素子20では、光半導体層2と第1金属層22とが接触する面全体で発光していたのに対して、比較例の発光素子では界面領域において第1金属層から第2半導体層に電流が流れにくく、発光ムラがあった。さらに、光半導体層を発光させるために第1電極層と第2電極層との間に大きな電圧をかける必要があり、消費電力の増加を招いていた。
 一方、第2金属層を設けずに、光半導体層上に、銀からなる第1金属層を形成した後、光半導体層および第1金属層を加熱した場合、銀が凝集してしまい導電反射層を形成することができなかった。他方、光半導体層および第1金属層の加熱温度を小さくした場合には、第2半導体層と第1金属層との間で十分なオーミック接触を形成することができなかった。
 第2半導体層2cと第1金属層21とがオーミック接触されているかを、第2半導体層2cと第1金属層21との接触抵抗値を測定する方法を用いて確認する場合、例えば伝送線路モデル(Transmission Line Model 略称TLM)法などを用いることができる。
 上述の製造方法により作製した発光素子を、TLM法を用いて測定した結果、第2半導体層2cと第1金属層21との接触抵抗値が0.012Ω・cm以下の電気抵抗値だった。

Claims (15)

  1.  第1半導体層、発光層および第2半導体層が順次積層された光半導体層と、
    前記第1半導体層に電気的に接続された第1電極層と、
    前記第2半導体層に電気的に接続された、前記第2半導体層上に位置する導電反射層および該導電反射層上に位置しているとともに厚み方向を貫通する貫通孔を複数持つ導電層を有する第2電極層と
    を備えた発光素子。
  2.  前記導電反射層は、前記貫通孔に対応する部位に凹部を有する、請求項1に記載の発光素子。
  3.  前記凹部は、前記導電層側に向かうにつれて、前記導電反射層の厚み方向と垂直な断面の面積である第1断面積が大きくなっている、請求項2に記載の発光素子。
  4.  前記貫通孔は、前記導電反射層側に向かうにつれて、前記導電層の厚み方向と垂直な断面の面積である第2断面積が小さくなっている、請求項1~3のいずれかに記載の発光素子。
  5.  前記導電層は前記導電反射層側の表面に前記貫通孔の一端側の開口部である第1開口部を有し、前記導電反射層は前記導電層側の表面に前記凹部の開口部である第2開口部を有しており、平面透視において、前記第1開口部の外周は前記第2開口部の外周よりも外側に位置する、請求項2~4のいずれかに記載の発光素子。
  6.  平面視において、前記導電層は、内方に向かうにつれて、前記貫通孔の存在する密度が高くなっている、請求項1~5のいずれかに記載の発光素子。
  7.  前記貫通孔に充填されているとともに前記導電層の表面を被覆する保護金属層をさらに備え、
    該保護金属層を構成する材料の熱膨張係数は、前記導電層を構成する材料の熱膨張係数よりも小さい、請求項1~6のいずれかに記載の発光素子。
  8.  前記第2半導体層は前記導電反射層との界面領域に酸化ガリウムを含む、請求項1~7のいずれかに記載の発光素子。
  9.  前記導電反射層は酸化銀を含む、請求項1~8のいずれかに記載の発光素子。
  10.  前記導電反射層は20nm以上の厚みを有する、請求項9に記載の発光素子。
  11.  前記導電層はアルミニウムを含む、請求項1~10のいずれかに記載の発光素子。
  12.  前記導電層は1nm以上30nm以下の厚みを有する、請求項11に記載の発光素子。
  13.  光半導体層、第1金属層および該第1金属層の酸化物よりも融点が高い第2金属層が順次積層された積層体を準備する工程と、
    前記第2金属層に厚み方向に貫通する貫通孔を複数形成する工程と、
    前記積層体を、前記第1金属層の酸化物の融点よりも高くかつ前記第1金属層の融点および前記第2金属層の融点のいずれよりも低い温度で加熱し、前記光半導体層の前記第1金属層との界面領域を酸化する工程と
    を備える発光素子の製造方法。
  14.  前記第1金属層のうち前記貫通孔に対応する部位に凹部を形成する工程をさらに備える、請求項13に記載の発光素子の製造方法。
  15.  前記積層体の前記加熱を酸素雰囲気中で行なう、請求項13または14に記載の発光素子の製造方法。
PCT/JP2010/066969 2009-09-30 2010-09-29 発光素子、および発光素子の製造方法 WO2011040478A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011500778A JP4772168B2 (ja) 2009-09-30 2010-09-29 発光素子、および発光素子の製造方法
EP10820593.1A EP2485279B1 (en) 2009-09-30 2010-09-29 Light emitting element and method for manufacturing light emitting element
CN201080040200.XA CN102484176B (zh) 2009-09-30 2010-09-29 发光元件及发光元件的制造方法
US13/499,136 US8796718B2 (en) 2009-09-30 2010-09-29 Light emitting element and method for manufacturing light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-226248 2009-09-30
JP2009226248 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040478A1 true WO2011040478A1 (ja) 2011-04-07

Family

ID=43826292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066969 WO2011040478A1 (ja) 2009-09-30 2010-09-29 発光素子、および発光素子の製造方法

Country Status (5)

Country Link
US (1) US8796718B2 (ja)
EP (1) EP2485279B1 (ja)
JP (2) JP4772168B2 (ja)
CN (1) CN102484176B (ja)
WO (1) WO2011040478A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053593A (ja) * 2012-08-09 2014-03-20 Sharp Corp 半導体発光素子およびその製造方法
WO2014054224A1 (ja) * 2012-10-01 2014-04-10 パナソニック株式会社 構造体及びその製造方法、並びに構造体を用いた窒化ガリウム系半導体発光素子及びその製造方法
JP2016537815A (ja) * 2013-11-19 2016-12-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 半導体発光デバイスおよび半導体発光デバイスを製造する方法
JP2017054954A (ja) * 2015-09-10 2017-03-16 株式会社東芝 発光装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047013B2 (ja) * 2008-03-12 2012-10-10 株式会社東芝 半導体発光素子及びその製造方法
CN102751409B (zh) * 2012-07-09 2015-09-02 厦门市三安光电科技有限公司 一种垂直氮化镓发光二极管及其制作方法
CN104701426B (zh) * 2013-12-05 2017-07-28 上海蓝光科技有限公司 一种发光二极管的制造方法
US20160284957A1 (en) * 2015-03-23 2016-09-29 Toshiba Corporation REFLECTIVE CONTACT FOR GaN-BASED LEDS
KR102373677B1 (ko) * 2015-08-24 2022-03-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
US10862264B2 (en) * 2016-04-18 2020-12-08 Kyocera Corporation Light-emitting element housing member, array member, and light-emitting device
CN114093995A (zh) * 2016-06-20 2022-02-25 苏州乐琻半导体有限公司 半导体器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188421A (ja) * 1998-12-21 2000-07-04 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子
JP2006222288A (ja) 2005-02-10 2006-08-24 Toshiba Corp 白色led及びその製造方法
JP2006324661A (ja) * 2005-05-18 2006-11-30 Samsung Electro Mech Co Ltd 発光素子用のオーミックコンタクト層の製造方法及びこれを備えた発光素子の製造方法
JP2008010894A (ja) * 2003-08-19 2008-01-17 Nichia Chem Ind Ltd 半導体素子、発光素子及びその基板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156329A (ja) * 1999-11-24 2001-06-08 Hamamatsu Photonics Kk 半導体発光素子
US6730941B2 (en) * 2002-01-30 2004-05-04 Showa Denko Kabushiki Kaisha Boron phosphide-based semiconductor light-emitting device, production method thereof, and light-emitting diode
JP2004055646A (ja) * 2002-07-17 2004-02-19 Sumitomo Electric Ind Ltd 発光ダイオード素子のp側電極構造
JP4635985B2 (ja) * 2002-10-03 2011-02-23 日亜化学工業株式会社 発光ダイオード
TWI234298B (en) * 2003-11-18 2005-06-11 Itswell Co Ltd Semiconductor light emitting diode and method for manufacturing the same
KR100580634B1 (ko) * 2003-12-24 2006-05-16 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
KR20050095721A (ko) * 2004-03-27 2005-09-30 삼성전자주식회사 III - V 족 GaN 계 화합물 반도체 발광소자 및 그제조방법
JP2006245379A (ja) * 2005-03-04 2006-09-14 Stanley Electric Co Ltd 半導体発光素子
JP4954549B2 (ja) * 2005-12-29 2012-06-20 ローム株式会社 半導体発光素子およびその製法
KR101263934B1 (ko) * 2006-05-23 2013-05-10 엘지디스플레이 주식회사 발광다이오드 및 그의 제조방법
JP4782022B2 (ja) * 2007-01-09 2011-09-28 株式会社豊田中央研究所 電極の形成方法
CN201126829Y (zh) * 2007-10-24 2008-10-01 鼎元光电科技股份有限公司 发光二极管
JP2009260316A (ja) * 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd 半導体発光素子およびそれを用いる照明装置
US20100295088A1 (en) * 2008-10-02 2010-11-25 Soraa, Inc. Textured-surface light emitting diode and method of manufacture
KR101007117B1 (ko) * 2008-10-16 2011-01-11 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
WO2010056083A2 (ko) * 2008-11-14 2010-05-20 삼성엘이디 주식회사 반도체 발광소자
KR20100055750A (ko) * 2008-11-18 2010-05-27 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101064070B1 (ko) * 2008-11-25 2011-09-08 엘지이노텍 주식회사 반도체 발광소자
JP5066133B2 (ja) * 2009-05-20 2012-11-07 株式会社日立製作所 情報記録装置、省電力方法
KR101662037B1 (ko) * 2009-12-02 2016-10-05 삼성전자 주식회사 발광 소자 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188421A (ja) * 1998-12-21 2000-07-04 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子
JP2008010894A (ja) * 2003-08-19 2008-01-17 Nichia Chem Ind Ltd 半導体素子、発光素子及びその基板の製造方法
JP2006222288A (ja) 2005-02-10 2006-08-24 Toshiba Corp 白色led及びその製造方法
JP2006324661A (ja) * 2005-05-18 2006-11-30 Samsung Electro Mech Co Ltd 発光素子用のオーミックコンタクト層の製造方法及びこれを備えた発光素子の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053593A (ja) * 2012-08-09 2014-03-20 Sharp Corp 半導体発光素子およびその製造方法
WO2014054224A1 (ja) * 2012-10-01 2014-04-10 パナソニック株式会社 構造体及びその製造方法、並びに構造体を用いた窒化ガリウム系半導体発光素子及びその製造方法
JP5496436B1 (ja) * 2012-10-01 2014-05-21 パナソニック株式会社 構造体及びその製造方法、並びに構造体を用いた窒化ガリウム系半導体発光素子及びその製造方法
JP2016537815A (ja) * 2013-11-19 2016-12-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 半導体発光デバイスおよび半導体発光デバイスを製造する方法
JP2017054954A (ja) * 2015-09-10 2017-03-16 株式会社東芝 発光装置

Also Published As

Publication number Publication date
JP5762112B2 (ja) 2015-08-12
CN102484176B (zh) 2014-12-31
EP2485279B1 (en) 2018-08-15
US20120187442A1 (en) 2012-07-26
CN102484176A (zh) 2012-05-30
EP2485279A4 (en) 2015-04-15
JP4772168B2 (ja) 2011-09-14
EP2485279A1 (en) 2012-08-08
US8796718B2 (en) 2014-08-05
JPWO2011040478A1 (ja) 2013-02-28
JP2011176349A (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
JP4772168B2 (ja) 発光素子、および発光素子の製造方法
JP5152133B2 (ja) 発光素子
JP5305790B2 (ja) 半導体発光素子
US8546836B2 (en) Light-emitting element
US9112115B2 (en) Nitride semiconductor ultraviolet light-emitting element
US8420502B2 (en) Group III-V semiconductor device and method for producing the same
JP5404596B2 (ja) 発光素子およびその製造方法
JP4804485B2 (ja) 窒化物半導体発光素子及び製造方法
US20100019247A1 (en) Light emitting device using gan led chip
JP2011187679A (ja) 半導体発光装置及びその製造方法
JP5326957B2 (ja) 発光素子の製造方法及び発光素子
TW201108461A (en) Optoelectronic semiconductor body and optoelectronic semiconductor chip
JP5845134B2 (ja) 波長変換体および半導体発光装置
TW201519466A (zh) 半導體發光裝置
TW201205876A (en) Light emitting device and method of manufacturing the light emitting device
JP2019531606A (ja) オプトエレクトロニクス半導体チップおよびオプトエレクトロニクス半導体チップの製造方法
JP5151758B2 (ja) 発光素子
JP5608762B2 (ja) 半導体発光素子
JP5405039B2 (ja) 電流狭窄型発光素子およびその製造方法
JP5151764B2 (ja) 発光素子及び発光素子の製造方法
JP5851001B2 (ja) 半導体発光素子
JP2019135748A (ja) 垂直共振型面発光レーザ
JP2011138842A (ja) 発光素子
JP2011129621A (ja) 発光素子
JP2011159721A (ja) 発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040200.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011500778

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13499136

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010820593

Country of ref document: EP