JP2014053593A - 半導体発光素子およびその製造方法 - Google Patents

半導体発光素子およびその製造方法 Download PDF

Info

Publication number
JP2014053593A
JP2014053593A JP2013146701A JP2013146701A JP2014053593A JP 2014053593 A JP2014053593 A JP 2014053593A JP 2013146701 A JP2013146701 A JP 2013146701A JP 2013146701 A JP2013146701 A JP 2013146701A JP 2014053593 A JP2014053593 A JP 2014053593A
Authority
JP
Japan
Prior art keywords
electrode
light emitting
semiconductor layer
layer
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013146701A
Other languages
English (en)
Inventor
Takashi Kurisu
崇 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013146701A priority Critical patent/JP2014053593A/ja
Publication of JP2014053593A publication Critical patent/JP2014053593A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】動作電圧を上昇させずに光取り出し効率を向上させることが出来る半導体発光素子を提供する。
【解決手段】半導体発光素子は、少なくとも第1導電型半導体層、発光層および第2導電型半導体層がこの順で積層され、発光層からの光が第1導電型半導体層側から放射するフリップチップ型の半導体発光素子である。この半導体発光素子は、第2導電型半導体層上に設けられた透明電極と、透明電極上に設けられ、屈折率の異なる誘電体からなる層が交互に積層された多重反射膜と、多重反射膜上に設けられ、発光層からの光に対して高反射率を有する金属からなり、少なくとも一部が透明電極に接するように設けられた電極と、電極上に設けられた接合電極17aとを備える。接合電極17aが電極と接する接触部と、電極が透明電極と接する接触部Rとは平面視において異なる位置に形成される。
【選択図】図1

Description

本発明は、半導体発光素子およびその製造方法に関し、特にフリップチップ型の半導体発光素子及びその製造方法に関する。
近年、窒化物半導体素子を発光素子として用いた青色発光素子と蛍光体とを備えた白色発光装置が、大型液晶テレビのバックライトおよび照明用の光源等に用いられるようになりつつある。このような大型液晶テレビおよび照明等の製品には、一度に大量の白色発光装置を使用する。そのため、これらの製品に用いられる青色発光素子には、良質に大量生産できることが求められている。
このような、大型液晶テレビのバックライトおよび照明用の光源等に用いられる窒化物半導体発光素子は、従来の窒化物半導体発光素子のような20mA程度の比較的低電流領域ではなく、例えば80mA以上の大電流領域で駆動されるのが一般的となりつつある。
しかしながら、上記従来の窒化物半導体発光素子を大電流、高温で駆動すると、発光効率の低下を招くことがあることが問題となっていた。これにより、単位電力当たりの電力効率の低下を招くことがあった。
上記従来の窒化物半導体発光素子は熱伝導率の悪いサファイア基板等の絶縁性の基板上に形成され、このサファイア基板が実装基板に固定されていた。そのため、特に大電流駆動時における窒化物半導体発光素子の放熱が課題となっていた。
そこで、上記放熱特性が改善された窒化物半導体発光素子として、例えば、特許文献1に示すような、フリップチップタイプの窒化物半導体発光素子が提案されている。
特許文献1には、フリップチップ型のIII族窒化物系化合物半導体発光素子について開示されている。図20は、フリップチップ型の半導体発光素子について示しており、この半導体発光素子では、サファイア基板などの透光性基板32の側から光が外部に出力される。透光性基板32の上には、バッファ層31、n型コンタクト層30、歪み緩和層29、発光層28およびp型クラッド層27などのIII族窒化物半導体からなる半導体層が積層されており、最上層がp型コンタクト層26である。このp型コンタクト層26の上に、順次、透明導電膜25、誘電体からなる多重反射膜(DBR)24および金属からなる反射膜23が形成されている。n型コンタクト層30上にはn電極21が形成されている。n電極21と対角の位置にある透明導電膜25の上面には多重反射膜(DBR)24と反射膜23とが形成されていない露出部が設けられており、この露出部上にp電極である電極層22が形成されている。
特許文献1には、前記多重反射膜により反射膜と透明導電膜との界面反応が抑制されるので、透明導電膜の透過率および反射膜の反射率の低下を防止することができ、よって、透光性基板を通して外部に出力される光の取出し効率が向上するという技術が開示されている。
特開2006−120913号公報
しかしながら、特許文献1に記載の発明では、p電極である電極層の上面に、外部との接続用の接合電極を形成している。そのため、接合電極の形成時や接合電極を介して発光素子を実装基板などへ搭載する時などに加わる応力等により、透明導電膜に歪みやクラックが入る可能性がある。これが原因で、発光素子の動作電圧の上昇を招くという問題があった。
本発明は、上記課題を解決するためになされたものであり、発光素子の動作電圧を上昇させずに、光の取り出し効率を向上させることが可能な半導体発光素子及びその製造方法を提供することを目的とする。
本発明に係る半導体発光素子は、少なくとも第1導電型半導体層、発光層および第2導電型半導体層がこの順で積層され、発光層からの光が第1導電型半導体層側から放射するフリップチップ型の半導体発光素子である。半導体発光素子は、第2導電型半導体層上に設けられた透明電極と、透明電極上に設けられ、屈折率の異なる誘電体からなる層が交互に積層された多重反射膜と、多重反射膜上に設けられ、発光層からの光に対して高反射率を有する金属からなり、少なくとも一部が透明電極に接するように設けられた電極と、電極上に設けられた接合電極とを備える。接合電極が電極と接する接触部と、電極が透明電極と接する接触部とは平面視において異なる位置に形成される。
電極が透明電極と接する接触部は、複数個形成されていることが好ましい。電極は、p側電極及びn側電極のいずれか一方であることが好ましい。p側電極及びn側電極の他方は、第1導電型半導体層とのオーミック接続電極を兼ねることが好ましい。
第1導電型半導体層に対して発光層とは反対側には、透光性を有する基板が設けられていることが好ましい。
第1導電型半導体層、発光層および第2導電型半導体層を含む半導体層を備えていることが好ましく、透明電極から最も離れて位置する半導体層の面は、凹凸形状を有することが好ましい。
接合電極は、電極上に設けられた絶縁膜をテーパー状に加工して形成された開口部において電極と接することが好ましい。接合電極は、導電性バンプであることが好ましい。接合電極は、多層金属膜により形成されていることが好ましい。
電極が透明電極と接する接触部の下方であって少なくとも第2導電型半導体層と透明電極との間には、電流非注入層が第2導電型半導体層に接して設けられていることが好ましい。
本発明に係る半導体発光素子の製造方法は、少なくとも第1導電型半導体層、発光層および第2導電型半導体層がこの順で積層されてなる半導体層を備え、発光層からの光が第1導電型半導体層側から放射するフリップチップ型半導体発光素子を製造する方法である。本発明に係る半導体発光素子の製造方法は、半導体層を形成する工程と、第2導電型半導体層上に、透明電極を形成する工程と、透明電極上に、屈折率の異なる誘電体からなる層が交互に積層された多重反射膜を形成する工程と、少なくとも一部が透明電極に接するように、多重反射膜上に、発光層からの光に対して高反射率を有する金属からなる電極を形成する工程と、電極上に、接合電極を形成する工程とを備える。接合電極を形成する工程は、平面視において、電極が透明電極と接する接触部とは異なる位置に、接合電極が電極と接する接触部を形成する工程を有する。
半導体層を形成する工程は、透光性を有する基板上に半導体層を形成する工程を有することが好ましい。半導体層を形成する工程の後に、基板を除去する工程を行なうことが好ましい。
透明電極から最も離れて位置する半導体層の面を凹凸形状に加工する工程をさらに含むことが好ましい。
接合電極を形成する工程は、蒸着リフトオフ法、スパッタ法、メッキ法または印刷法により接合電極を形成することが好ましい。
本発明に係る半導体発光素子及びその製造方法によれば、動作電圧を上昇させずに、光の取り出し効率を向上させることができる。
本発明の一実施形態に係る半導体発光素子の平面図である。 本発明の一実施形態に係る半導体発光素子の一断面図である。 本発明の一実施形態に係る半導体発光素子の一断面図である。 本発明の一実施形態に係る半導体発光素子の一断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一製造工程を説明する平面図及び断面図である。 本発明の一実施形態に係る半導体発光素子の一断面図である。 本発明の一実施形態に係る半導体発光装置の平面図である。 本発明の一実施形態に係る半導体発光装置の平面図である。 本発明の一実施形態に係る半導体発光装置の断面図である。 従来技術に関する断面図である。
以下、本発明の実施形態として、本発明をLED(Light Emitting Diode)に適用した場合を例示する。ただし、本発明が適用可能な半導体発光素子は、LEDに限られない。例えばレーザダイオードなど、半導体発光素子の全般に対して、本発明を適用することが可能である。
尚、本実施形態に係る発明の図面において、長さ、幅、及び厚さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。以下では、同一の構成については同一の符号を付してその説明は省略するものとする。
<第1の実施形態>
図1は、本発明の第1の実施形態に係る半導体発光素子の平面図であり、図2〜図4は、図1に示す平面図においてA−A’、B−B’、C−C’の断面で切断したときの断面図を示している。上記各図面を用いて、本実施形態により得られる半導体発光素子の説明を行う。尚、図1〜図4で示す各部材の詳細については後述するものとする。
図1において、10aはp側電極、17aはp側接合電極、17bはn側接合電極であり、図1中に示すRは、p側電極10aと透明電極5とが接触する接触部である。p側接合電極17aおよびn側接合電極17bのそれぞれは、導電性を有し、半導体発光素子とリードパターンとを接続するバンプの機能を有する導電性バンプであることが好ましい。
図2は、図1におけるA−A’で切断したときの断面図を示していて、1は基板、2はn型窒化物半導体層、3は発光層、4はp型窒化物半導体層、5は透明電極、8は多重反射膜、11は絶縁膜である。10aはp側電極、10bはn側電極である。また、図2中のRは、p側電極10aと透明電極5とが接触する接触部であり、この接触部は、応力等が透明電極5に直接かかることを防止するために、p側接合電極17aの下面とは異なる位置に形成している。つまり、平面視したときには、p側接合電極17aがp側電極10aと接する接触部と、p側電極10aが透明電極5と接する接触部とが異なる位置に形成されるということである。
図3は、主にp側接合電極17aを通過するように、図1におけるB−B’で切断したときの断面図を示している。15は金属バリア層である。また、図4は、主にn側接合電極17bを通過するように、図1におけるC−C’で切断したときの断面図である。
上述したように、p側接合電極を多重反射膜を介してp側電極上に形成し、p側接合電極の下面以外の部分、すなわちp側接合電極の直下以外の部分において、p側電極と透明電極とを接触させている。そのため、p側接合電極の形成時やp側接合電極を介して半導体発光素子を実装基板などへ搭載する際などにおいて、透明導電膜に対して応力が加わることを防止できる。よって、透明導電膜に歪みやクラックが入ることを防止できるので、発光素子の動作電圧の上昇を防止することができる。本実施形態に係る半導体発光素子の構成部材の材料などについては、以下において半導体発光素子の製造方法を説明しながら示す。
以下、本発明の実施形態に係る半導体発光素子の製造方法の一例について、主に半導体層を形成するまでを図5を用いて説明する。半導体発光素子の電極部分等の成膜に係る工程の詳細については後述する。図5は、本発明の実施形態に係る半導体発光素子の製造方法の一例を示す断面図である。
最初に、図5(a)に示すように、サファイアなどからなる透光性を有する基板1を用意する。そして、図5(b)に示すように、基板1の一方の主面(以下、表面とする)を凹凸形状に加工する。例えば、このような凹凸形状は、凹部(溝)を形成すべき部分を除いて基板1の表面上にフォトレジストマスクを形成し、BCl3またはCl2などとArなどとの混合ガスなどのハロゲン系ガスを用いたICP(Inductively Coupled Plasma)等のエッチングを行うことで形成することができる。
基板1は、例えばGaN、SiCまたはZnOなどからなる導電性基板であっても良い。尚、基板1がサファイアからなる場合、後述する電極部分の成膜後に、レーザーリフト法など種々の好適な周知技術を用いて基板1を除去しても良い。つまり、本実施形態に係る半導体発光素子は、基板1を備えていなくても良い。
次に、図5(c)に示すように、凹凸状になった基板1の表面上に、例えばn型のGaNからなるn型窒化物半導体層2、例えばGaNからなる障壁層と例えばInxGa1-xN(0<x≦1)からなる井戸層とが交互に積層されるとともに最初及び最後の層が障壁層となる多重量子井戸構造を備えた発光層3、および、例えばp型のGaNからなるp型窒化物半導体層4をこの順番で積層する。このようにして、基板1の表面上に、n型窒化物半導体層2、発光層3およびp型窒化物半導体層4を有する半導体層が形成される。よって、n型窒化物半導体層2側に位置する半導体層の表面(透明電極5から最も離れて位置する半導体層の面)は凹凸形状を有することとなる。
上記多重量子井戸構造における各井戸層の組成は、半導体発光素子に求められる発光波長に合わせて調整されることが好ましく、例えばAlaGabIn(1-a-b)N(0≦a<1、0<b≦1)であることが好ましく、より好ましくはAlを含まないIncGa(1-c)N(0<c≦1)である。例えば、波長が375nm以下の紫外光を本実施形態に係る半導体発光素子が発光する場合、MQW発光層のバンドギャップエネルギーを大きくする必要があり、よって、各井戸層の組成はAlを含むこととなる。
また、最初の障壁層及び最後の障壁層を含む各障壁層を構成する材料は、それぞれ、各井戸層を構成する材料よりもバンドギャップエネルギーが大きい方が好ましい。具体的には、AldGaeIn(1-d-e)N(0≦d<1、0<e≦1)からなることが好ましく、Alを含まないInfGa(1-f)N(0<f≦1、c>f)からなることがより好ましく、格子定数が井戸層を構成する材料とほぼ同一であるAlgGahIn(1-g-h)N(0≦g<1、0<h≦1)からなることがさらに好ましい。
n型窒化物半導体層2、発光層3及びp型窒化物半導体層4は、例えばMOCVD(Metal Organic Chemical Vapor Deposition)法などによって形成可能である。
上記n型窒化物半導体層2は、単層であっても良いし、下地層、コンタクト層、クラッド層、中間層、歪み緩和層または超格子層などの組成またはドーパント濃度などが異なる複数の窒化物半導体層が組み合わせられたものであっても良い。
上記p型窒化物半導体層4は、単層であっても良いし、中間層、蒸発防止層、超格子層、クラッド層またはコンタクト層などの組成またはドーパント濃度などが異なる複数の窒化物半導体層が組み合わせられたものであっても良い。
n型窒化物半導体層2に含まれるn型ドーパントとしては、例えばSiを用いることができ、p型窒化物半導体層4に含まれるp型ドーパントとしては、例えばMgを用いることができる。
尚、このp型窒化物半導体層4の形成後、p型ドーパンドを活性化させるべくアニールを行ってもよい。また、n型窒化物半導体層2、発光層3及びp型窒化物半導体層4を構成するGaNまたはInxGa(1-x)Nに、Alなどの他の元素が含まれていても良い。
次に、図5(d)に示すように、p型窒化物半導体層4上に、ITO(Indium Tin Oxide)からなる透明電極5を形成する。この透明電極5は、例えばスパッタリング法などによって形成することができる。形成された透明電極5の厚さは、例えば130nmであることが好ましい。
本実施形態における半導体発光素子の製造方法では、後の工程でn型窒化物半導体層2上に電極(n側電極10b)を形成するため、当該電極を形成する領域においてはn型窒化物半導体層2を露出させる必要がある。そこで、図5(e)に示すように、当該領域における透明電極5と、p型窒化物半導体層4と、発光層3と、n型窒化物半導体層2の一部とを除去する。
透明電極5は、例えば王水等によるエッチングによって除去することができる。また、p型窒化物半導体層4、発光層3及びn型窒化物半導体層2は、例えばSiCl4ハロゲン系ガスを用いたICP等のエッチングによって除去することができる。ただし、これらのエッチングを行う場合、除去すべき部分を除いてフォトレジストマスクを形成する必要がある。尚、エッチングで使用したフォトレジストマスクは、当該エッチングの終了後に除去する。
次に、主に電極部分の成膜工程について工程図を用いて説明する。図6(a)は、透明電極5上にフォトレジストマスク6を形成した後の半導体発光素子の平面図を示している。図6(b)、(c)、(d)は、図6(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。尚、A−A’、B−B’、C−C’は、それぞれ、後述するp側接合電極17a、p側電極10aと前記透明電極5とが接触する接触部、n側接合電極17bの断面を主に示すための切断線である。
図6(b)、(c)、(d)に示すように、p型窒化物半導体層4上に形成されたITO(Indium Tin Oxide)からなる透明電極5上に、フォトレジストマスク6を形成する。
図7(a)は、テーパーエッチング後の半導体発光素子の平面図を示している。図7(b)、(c)、(d)は、図7(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
図7(b)、(d)に示すように、n型窒化物半導体層2が露出するまで、フォトレジストマスク6から露出したp型窒化物半導体層4および発光層3をテーパー状にエッチングする(テーパーエッチング)。これにより、フォトレジストマスク6から露出した部分には、側面がp型窒化物半導体層4の厚さ方向に対して傾斜するメサ部が形成される。このテーパーエッチングは、例えばCl2ガスをエッチングガスに用いたRIE(Reactive Ion Etching)により行うことが好ましい。このテーパーエッチングを行った後にフォトレジストマスク6を除去する。
図8(a)は、多重反射膜8の形成後にフォトレジストマスク7のリフトオフを行った後の平面図を示している。図8(b)、(c)、(d)は、図8(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
図8(b)、(c)、(d)に示すようなフォトレジストマスク7のパターンを形成し、発光層3からの光を基板1側に向かって反射させる多重反射膜8であるDBR(Distributed Bragg Reflector)を蒸着などにより形成する。多重反射膜8は、屈折率の異なる誘電体からなる層が交互に積層されてなり、たとえば高屈折率を有する誘電体からなる層と低屈折率を有する誘電体からなる層との多層構造からなる。多重反射膜8は、厚さが下部(n型窒化物半導体層2側)から上部(DBRの表層側)にかけて少しずつ変化するチャープ構造をとることが好ましい。より具体的には、多重反射膜8は、下部から上部へ向かって、厚さが556nmのSiO2膜、厚さが60nmのTiO2膜、厚さが78nmのSiO2膜、厚さが78nmのTiO2膜および厚さが55nmのSiO2膜が順に積層されて構成されていることが好ましい。多重反射膜8の形成後に、フォトレジストマスク7をリフトオフする。
図9(a)は、電極(p側電極10aおよびn側電極10bの両方を示す場合には「電極」と記す)の形成後に、フォトレジストマスク9のリフトオフを行った後の平面図を示している。図9(b)、(c)、(d)は、図9(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
多重反射膜8であるDBRは、特定の角度範囲から入射する光に対しては高い反射率を有するが、それ以外の角度範囲から入射する光に対しては高い反射率を有さず、透過させる。そのため、DBRにより反射されなかった光を基板1側に向かって反射させる目的で反射膜を兼ねる電極を形成する。図9(b)、(c)、(d)に示すようにフォトレジストマスク9のパターンを形成してから、反射膜を兼ねる電極を蒸着などにより形成する。10aがp側電極で、10bがn側電極である。尚、本実施形態では、p側電極10aが透明電極5およびp側接合電極17aのそれぞれに接しており、n側電極10bが反射膜だけでなくn型窒化物半導体層2とのオーミック接続電極も兼ねている。
電極は、発光層3からの光に対して高反射率を有する金属からなり、例えばAlからなることが好ましい。これにより、電極は、紫外〜赤色までの波長の光を比較的高効率(比較的高い反射率)で反射させることができる。電極は、Agからなっても良い。これにより、窒化物半導体発光素子が発する近紫外〜青色領域の光を高効率(高い反射率)で反射させることが可能である。しかし、マイグレーションを起こし易い為、取り扱いに注意が必要である。
また、図9(c)において、Rは、p側電極10aと透明電極5とが接触する接触部である。半導体発光素子の製造工程において、この接触部が後述するp側接合電極17aの下面に形成されることを防止することにより、透明電極5に対してp側接合電極17aによる応力等が直接かからないようにしている。言い換えるならば、平面視したときには、p側接合電極17aがp側電極10aと接する接触部と、p側電極10aが透明電極5と接する接触部とが異なる位置に形成されるということである。なお、p側電極10aと透明電極5とが接触する接触部は複数個形成されることが好ましい。これにより、半導体発光素子において抵抗を低く抑えることができる。電極の形成後に、フォトレジストマスク9をリフトオフする。
図10(a)は、絶縁膜11の形成後の平面図を示している。図10(b)、(c)、(d)は、図10(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
図10(b)、(c)、(d)に示すように、層間膜として絶縁膜11をプラズマCVD法などにより形成する。
尚、絶縁膜11としては、例えばSiO2膜、ZnO膜、Al23膜、AiN膜、AlON膜またはSiN膜などが用いられる。
図11(a)は、絶縁膜11のエッチング後であってフォトレジストマスク12を除去する前の平面図を示している。図11(b)、(c)、(d)は、図11(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
図11(b)、(c)、(d)に示すように、絶縁膜11上にフォトレジストマスク12を形成し、ICP等のドライエッチングによりフォトレジストマスク12から露出する絶縁膜11を除去する。これにより、絶縁膜11には凹部13が形成される。凹部13は、電極と後述するp側接合電極17aまたはn側接合電極17bとの電気的導通を得るために形成される。絶縁膜11のエッチングの後に、フォトレジストマスク12を除去する。ここで、凹部13は、絶縁膜11をテーパー状に加工して形成された開口部であることが更に好ましい。これにより、後述する金属バリア層15を形成する際に、絶縁膜11の角部において金属バリア層15が形成され難くなることを防止でき、いわゆる「段落切れ」の発生を抑制する効果を有する。
図12(a)は、フォトレジストマスク14の形成後の平面図を示している。図12(b)、(c)、(d)は、図12(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
図12(b)に示すように、チップの端を除いてフォトレジストマスク14を形成し、ICP等のドライエッチングによりフォトレジストマスク14から露出する絶縁膜11を除去する。これにより、チップ分割用溝が形成される。絶縁膜11のエッチングの後にフォトレジストマスク14を除去する。
図13(a)は、金属バリア層15を形成した後の平面図を示している。図13(b)、(c)、(d)は、図13(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
図13(b)、(c)、(d)に示すように、金属バリア層15として、タングステンを主要成分とする合金膜であるTiWをスパッタリング法により形成する。金属バリア層15は、たとえばAlからなる前記電極と後述するp側接合電極17aまたはn側接合電極17bとが相互拡散することを防止するために設けられる層である。また、金属バリア層15は、Ni層、Au層、Ti層、W層、Al層およびPt層のうちの2以上の層が積層されてなる金属多層膜であってもよい。金属バリア層15は、Ni/Au層であることが好ましく、これにより、金属バリア層15は、Alと相互拡散し易くなり、後述するp側接合電極17aまたはn側接合電極17bに共晶接合し易くなる。
図14(a)は、p側接合電極17aおよびn側接合電極17bの形成後であってフォトレジストマスク16を除去する前の平面図を示している。図14(b)、(c)、(d)は、図14(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。
図14(b)、(c)、(d)に示すように、フォトレジストマスク16を形成し、厚さが3μmのAu層からなる接合電極(p側接合電極17aおよびn側接合電極17bの両方を示す場合には「接合電極」と記す)を蒸着リフトオフ法、スパッタ法、メッキ法、ペースト法または印刷法により形成する。接合電極は、互いに異なる金属からなる2種以上の金属膜が積層されてなる多層金属膜であることが好ましく、たとえばNi/Au層、TiW/Au層、Ni/Ag層またはNi/AuSn層であることが好ましい。紙面に向かって左側に形成される接合電極がp側接合電極17aであり、紙面に向かって右側に形成される接合電極がn側接合電極17bである。接合電極を形成した後に、フォトレジストマスク16を除去し、接合電極の下面以外の部分に形成された金属バリア層15をエッチングして絶縁膜11を露出させる。これにより、図15(a)〜(d)に示す半導体発光素子が得られる。図15(a)は、得られた半導体発光素子の平面図を示している。図15(b)、(c)、(d)は、図15(a)において示すA−A’、B−B’、C−C’で切断した切断面に係る断面図である。得られた半導体発光素子では、p側接合電極17aは凹部13において金属バリア層15を挟んでp側電極10a上に設けられ、n側接合電極17bは凹部13において金属バリア層15を挟んでn側電極10b上に設けられる。上述のように、凹部13が絶縁膜11をテーパー状に加工して形成された開口部であれば、絶縁膜11の角部において金属バリア層15が形成され難くなることを防止できる。よって、p側接合電極17aとp側電極10aとの間の電気抵抗を低く維持することができ、n側接合電極17bとn側電極10bとの間の電気抵抗を低く維持することができる。
上述したように、本実施形態に係る半導体発光素子では、p側接合電極を多重反射膜を介してp側電極(反射膜を兼ねる)に接続し、p側接合電極とp側電極との接続部以外の部分でp側電極と透明電極とを接触させている。よって、透明電極に対して応力をかけることなく、p側電極と透明電極との電気的導通を得ることができる。
また、このような構成にすることにより、p側接合電極の位置や数量にかかわらず、p側接合電極の数量よりも多くの箇所で、反射膜を兼ねるp側電極の反射率を損なうことなく、p側電極(p側電極は、電流拡散効果が高く、発光層からの光の反射膜を兼ねる)と透明電極(透明電極は、p型窒化物半導体層とのオーミック接続が比較的容易で、発光層の光に対して高い透光性を有する)とを接続させることができる。よって、透明電極とp型窒化物半導体層とのオーミック接続部での電極の反射率の低下を抑制できるので、電流を発光層により均一に供給でき、均一な発光が可能になる。したがって、光の取り出し効率を向上させることができる。
尚、本実施形態では、n側電極10bがn側接合電極17bに接していても良い。その場合には、p側電極10aが反射膜だけでなくp型窒化物半導体層4とのオーミック電極も兼ねていることが好ましい。また、基板1上には、p型窒化物半導体層4、発光層3およびn型窒化物半導体層2が順に設けられていても良い。
<第2の実施形態>
図16に第2の実施形態に係る半導体発光素子の一断面図を示す。本実施形態は、電極が透明電極5と接する接触部の下方であってp型窒化物半導体層4と透明電極5との間に電流非注入層51がp型窒化物半導体層4に接して形成されていることを除いては、上記第1の実施形態と同一である。電流非注入層51は、本実施形態に係る半導体発光素子に電圧を印加したときであっても電流が流れない部分であり、フォトリソグラフィ法などを用いてSiO2などで形成されることが好ましい。
電流非注入層が設けられていない場合、電極が透明電極と接する接触部は、多重反射膜を有さないので、発光層からの光を透過または吸収しやすい構造となる。また、電流は、電極が透明電極と接する接触部の直下のp型窒化物半導体層に流れやすく、透明電極中に拡散し難くなる。しかし、本実施形態では、電流非注入層51が設けられているので、電極が透明電極5と接する接触部の直下における電流集中が抑制される。また、発光層3からの光を反射率の高い電流非注入層51で反射させることができるので、電極が透明電極5と接する接触部における光の透過および吸収が抑制される。
本願発明のフリップチップタイプの半導体発光素子を実装した白色半導体発光装置の例を図17〜図19に示す。
図17、18は、本実施形態に係るフリップチップタイプの半導体発光素子を実装した白色半導体発光装置の平面図であり、図19は、図17においてD−D’で切断した断面図である。図17は当該半導体発光装置における下面図で、図18はその上面図である。
図19に示すように、半導体発光素子は、基板1の裏面側を上面として、半導体層が形成された基板1の面側を下面として、透明封止材20で封止されている。このような半導体発光素子は、例えばセラミックや樹脂パッケージなどの基体上に設けられており、p側接合電極17a及びn側接合電極17bを介して上記基体に電気的に接続されている。
基体19の形状としては、用途に応じて選択することができる。基体19は、たとえば、平面板状であっても良いし、細長い棒状であっても良いし、窪みを有し且つその窪みの側面がリフレクタとして作用するバスタブ状であっても良い。基体19には、外部との接続用の配線であるリードパターン18a,18bが形成されており、この配線を通して外部より電流が供給される。
尚、実装の簡便性や放熱特性、外部光出力の向上などの観点から、半導体発光素子と基体19との間にサブマウントを設けても良い。基体19上に実装された半導体発光素子は、当該半導体発光素子からの光を他の波長の光に変換する蛍光体を含む樹脂によりコーティングされていることが好ましく、半導体発光素子が発する光と蛍光体が発する光とが混色されて白色光を放射する。
以上の様に、本発明の電極構成を用いることにより、p側接合電極の形成時や発光素子を実装基板などへ搭載する際などに加わる応力等により、透明電極に歪みやクラックが入ることを防止できる。よって、発光素子の動作電圧を上昇させずに、光の取り出し効率を向上することが可能となる。
1 基板、2 n型窒化物半導体層、3,28 発光層、4 p型窒化物半導体層、5 透明電極、6,7,9,12,14,16 フォトレジストマスク、8 多重反射膜、10a p側電極、10b n側電極、11 絶縁膜、13 凹部、15 金属バリア層、17a p側接合電極、17b n側接合電極、18a,18b リードパターン、19 基体、20 透明封止材、21 n電極、22 電極層(p電極)、23 反射膜、25 透明導電膜、26 p型コンタクト層、27 p型クラッド層、29 歪み緩和層、30 n型コンタクト層、31 バッファ層、32 透光性基板、51 電流非注入層。

Claims (13)

  1. 少なくとも第1導電型半導体層、発光層および第2導電型半導体層がこの順で積層され、前記発光層からの光が前記第1導電型半導体層側から放射するフリップチップ型の半導体発光素子であって、
    前記第2導電型半導体層上に設けられた透明電極と、
    前記透明電極上に設けられ、屈折率の異なる誘電体からなる層が交互に積層された多重反射膜と、
    前記多重反射膜上に設けられ、前記発光層からの光に対して高反射率を有する金属からなり、少なくとも一部が前記透明電極に接するように設けられた電極と、
    前記電極上に設けられた接合電極とを備え、
    前記接合電極が前記電極と接する接触部と、前記電極が前記透明電極と接する接触部とは平面視において異なる位置に形成される半導体発光素子。
  2. 前記電極が前記透明電極と接する接触部は、複数個形成されていることを特徴とする請求項1に記載の半導体発光素子。
  3. 前記電極は、p側電極及びn側電極のいずれか一方であり、前記p側電極及び前記n側電極の他方は、前記第1導電型半導体層とのオーミック接続電極を兼ねることを特徴とする請求項1または2に記載の半導体発光素子。
  4. 前記第1導電型半導体層に対して前記発光層とは反対側には、透光性を有する基板が設けられていることを特徴とする請求項1〜3のいずれかに記載の半導体発光素子。
  5. 前記第1導電型半導体層、前記発光層および前記第2導電型半導体層を含む半導体層を備え、
    前記透明電極から最も離れて位置する半導体層の面は、凹凸形状を有することを特徴とする請求項1〜4のいずれかに記載の半導体発光素子。
  6. 前記接合電極は、前記電極上に設けられた絶縁膜をテーパー状に加工して形成された開口部において、前記電極と接することを特徴とする請求項1〜5のいずれかに記載の半導体発光素子。
  7. 前記接合電極は、導電性バンプであることを特徴とする請求項1〜6のいずれかに記載の半導体発光素子。
  8. 前記接合電極は、多層金属膜により形成されていることを特徴とする請求項1〜7のいずれかに記載の半導体発光素子。
  9. 前記電極が前記透明電極と接する接触部の下方であって少なくとも前記第2導電型半導体層と前記透明電極との間には、電流非注入層が前記第2導電型半導体層に接して設けられていることを特徴とする請求項1〜8のいずれかに記載の半導体発光素子。
  10. 少なくとも第1導電型半導体層、発光層および第2導電型半導体層がこの順で積層されてなる半導体層を備え、前記発光層からの光が前記第1導電型半導体層側から放射するフリップチップ型半導体発光素子を製造する方法であって、
    前記半導体層を形成する工程と、
    前記第2導電型半導体層上に、透明電極を形成する工程と、
    前記透明電極上に、屈折率の異なる誘電体からなる層が交互に積層された多重反射膜を形成する工程と、
    少なくとも一部が前記透明電極に接するように、前記多重反射膜上に、前記発光層からの光に対して高反射率を有する金属からなる電極を形成する工程と、
    前記電極上に、接合電極を形成する工程とを備え、
    前記接合電極を形成する工程は、平面視において、前記電極が前記透明電極と接する前記接触部とは異なる位置に、前記接合電極が前記電極と接する接触部を形成する工程を有することを特徴とする半導体発光素子の製造方法。
  11. 前記半導体層を形成する工程は、透光性を有する基板上に前記半導体層を形成する工程を有し、
    前記半導体層を形成する工程の後に、前記基板を除去する工程を行なうことを特徴とする請求項10に記載の半導体発光素子の製造方法。
  12. 前記透明電極から最も離れて位置する半導体層の面を凹凸形状に加工する工程をさらに含むことを特徴とする請求項10に記載の半導体発光素子の製造方法。
  13. 前記接合電極を形成する工程は、蒸着リフトオフ法、スパッタ法、メッキ法または印刷法により前記接合電極を形成することを特徴とする請求項10〜12のいずれかに記載の半導体発光素子の製造方法。
JP2013146701A 2012-08-09 2013-07-12 半導体発光素子およびその製造方法 Pending JP2014053593A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146701A JP2014053593A (ja) 2012-08-09 2013-07-12 半導体発光素子およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012176692 2012-08-09
JP2012176692 2012-08-09
JP2013146701A JP2014053593A (ja) 2012-08-09 2013-07-12 半導体発光素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2014053593A true JP2014053593A (ja) 2014-03-20

Family

ID=50611737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146701A Pending JP2014053593A (ja) 2012-08-09 2013-07-12 半導体発光素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2014053593A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047950A1 (en) * 2014-09-26 2016-03-31 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
KR20180024555A (ko) * 2016-08-30 2018-03-08 엘지이노텍 주식회사 반도체 소자, 발광 소자 및 이를 구비한 조명 장치
US10804451B2 (en) 2017-10-26 2020-10-13 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device and production method therefor
JP2022079935A (ja) * 2020-11-17 2022-05-27 日亜化学工業株式会社 発光素子及び発光素子の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224138A (ja) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd 液晶表示素子の製造方法およびこれを用いた液晶表示装置
JP2008112957A (ja) * 2006-10-06 2008-05-15 Mitsubishi Cable Ind Ltd GaN系LEDチップ
JP2008192710A (ja) * 2007-02-01 2008-08-21 Nichia Chem Ind Ltd 半導体発光素子
WO2011040478A1 (ja) * 2009-09-30 2011-04-07 京セラ株式会社 発光素子、および発光素子の製造方法
WO2011071100A1 (ja) * 2009-12-11 2011-06-16 昭和電工株式会社 半導体発光素子、半導体発光素子を用いた発光装置および電子機器
US20110233589A1 (en) * 2010-03-25 2011-09-29 Kim Sungkyoon Light-emitting device, light-emitting device package and lighting system
JP2012059745A (ja) * 2010-09-06 2012-03-22 Toshiba Corp 半導体素子
JP2012074665A (ja) * 2010-09-01 2012-04-12 Hitachi Cable Ltd 発光ダイオード
JP2012114130A (ja) * 2010-11-22 2012-06-14 Panasonic Corp 発光素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224138A (ja) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd 液晶表示素子の製造方法およびこれを用いた液晶表示装置
JP2008112957A (ja) * 2006-10-06 2008-05-15 Mitsubishi Cable Ind Ltd GaN系LEDチップ
JP2008192710A (ja) * 2007-02-01 2008-08-21 Nichia Chem Ind Ltd 半導体発光素子
WO2011040478A1 (ja) * 2009-09-30 2011-04-07 京セラ株式会社 発光素子、および発光素子の製造方法
WO2011071100A1 (ja) * 2009-12-11 2011-06-16 昭和電工株式会社 半導体発光素子、半導体発光素子を用いた発光装置および電子機器
US20110233589A1 (en) * 2010-03-25 2011-09-29 Kim Sungkyoon Light-emitting device, light-emitting device package and lighting system
JP2012074665A (ja) * 2010-09-01 2012-04-12 Hitachi Cable Ltd 発光ダイオード
JP2012059745A (ja) * 2010-09-06 2012-03-22 Toshiba Corp 半導体素子
JP2012114130A (ja) * 2010-11-22 2012-06-14 Panasonic Corp 発光素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047950A1 (en) * 2014-09-26 2016-03-31 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
US10283685B2 (en) 2014-09-26 2019-05-07 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
US10700249B2 (en) 2014-09-26 2020-06-30 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
KR20180024555A (ko) * 2016-08-30 2018-03-08 엘지이노텍 주식회사 반도체 소자, 발광 소자 및 이를 구비한 조명 장치
KR102571788B1 (ko) 2016-08-30 2023-09-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자, 발광 소자 및 이를 구비한 조명 장치
US10804451B2 (en) 2017-10-26 2020-10-13 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device and production method therefor
JP2022079935A (ja) * 2020-11-17 2022-05-27 日亜化学工業株式会社 発光素子及び発光素子の製造方法
JP7300603B2 (ja) 2020-11-17 2023-06-30 日亜化学工業株式会社 発光素子及び発光素子の製造方法

Similar Documents

Publication Publication Date Title
JP6087096B2 (ja) 半導体発光素子及びその製造方法
JP5633477B2 (ja) 発光素子
KR101627010B1 (ko) 반도체 발광소자
JP5012187B2 (ja) 発光装置
TWI819258B (zh) 發光二極體晶片
JP4899825B2 (ja) 半導体発光素子、発光装置
JP5719110B2 (ja) 発光素子
JP5100301B2 (ja) 発光装置
JP5531575B2 (ja) Iii族窒化物化合物半導体発光素子
WO2011071100A1 (ja) 半導体発光素子、半導体発光素子を用いた発光装置および電子機器
JP2012164930A (ja) 半導体発光素子
KR20120072711A (ko) 발광 다이오드 칩 및 그것을 제조하는 방법
KR20080017180A (ko) 반도체 발광장치
JP2012146926A (ja) 発光素子、発光素子ユニットおよび発光素子パッケージ
KR20130052002A (ko) Ⅲ족 질화물 반도체 발광 소자의 제조 방법
KR100826424B1 (ko) 반도체 발광 다이오드 및 그 제조방법
JP4849866B2 (ja) 照明装置
JP2014053593A (ja) 半導体発光素子およびその製造方法
US8711892B2 (en) Nitride semiconductor laser device
JP5378131B2 (ja) 窒化物半導体発光ダイオード素子
JP2011071444A (ja) 発光素子
TWI765450B (zh) 發光二極體
TWI672826B (zh) 發光元件
JP5745250B2 (ja) 発光デバイス
US20240113262A1 (en) Light-emitting device, backlight unit and display apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627