WO2011037209A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2011037209A1
WO2011037209A1 PCT/JP2010/066601 JP2010066601W WO2011037209A1 WO 2011037209 A1 WO2011037209 A1 WO 2011037209A1 JP 2010066601 W JP2010066601 W JP 2010066601W WO 2011037209 A1 WO2011037209 A1 WO 2011037209A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting layer
light emitting
fluorescent
phosphorescent
green
Prior art date
Application number
PCT/JP2010/066601
Other languages
English (en)
French (fr)
Inventor
佐々木 博之
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/497,796 priority Critical patent/US20120248424A1/en
Priority to CN201080048292.6A priority patent/CN102668707B/zh
Priority to KR1020127010075A priority patent/KR101417789B1/ko
Priority to EP10818881A priority patent/EP2482619A1/en
Publication of WO2011037209A1 publication Critical patent/WO2011037209A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission

Definitions

  • the present invention relates to an organic electroluminescent device, and more particularly to an organic electroluminescent device suitable for white light emission.
  • An organic electroluminescence element (organic electroluminescence element) formed by laminating an organic material layer including a light emitting layer in a single layer or a multilayer between electrodes is known.
  • This organic electroluminescent element has one electrode as an anode and the other electrode as a cathode. By applying a voltage between both electrodes, electrons injected and transported from the cathode side into the organic material layer are transferred to the anode side. The light is recombined with holes injected and transported from the surface to obtain light emission.
  • An organic electroluminescent element is a thin light emitting element capable of obtaining surface light emission, and has recently attracted attention as a light source for various uses and a display unit of a self-luminous thin display device.
  • Japanese Patent Application Laid-Open No. 2007-173827 discloses a white organic electroluminescent element including a phosphorescent material that emits red light, a phosphorescent material that emits green light, and a fluorescent material that emits blue light.
  • the layer of fluorescent material emitting blue light is a rule, and the chromaticity of light emission of the entire device changes, and the layer of fluorescent blue light emitting material changes in chromaticity. Therefore, there is a problem that the lifetime of the organic electroluminescent element is shortened when viewed from the lifetime due to the amount of change in chromaticity.
  • there are various colors such as D, N, W, WW, and L, and these individual white colors are within the range of JIS standards. It was difficult to emit light without changing the chromaticity.
  • the present invention has been made in view of the above points, and is an organic electroluminescent device having high luminous efficiency, a long lifetime, and a good balance of light emission, particularly a white light-emitting organic electroluminescent device with high efficiency and long lifetime. Is intended to provide.
  • the organic electroluminescent element of the present invention comprises a phosphorescent red light emitting layer 12, a phosphorescent green light emitting layer 11, a fluorescent blue light emitting layer 22, and a fluorescent green light emitting layer 21.
  • green light emission is generated by phosphorescence and fluorescence to improve the light emission balance, and the conversion efficiency from electric energy to light can be improved. Since the change in chromaticity can be suppressed, an organic electroluminescent element with high luminous efficiency and long life can be obtained.
  • the phosphorescent unit 1 including the phosphorescent red light-emitting layer 12 and the phosphorescent green light-emitting layer 11, the fluorescent light including the fluorescent blue light-emitting layer 22 and the fluorescent green light-emitting layer 21. It is preferable that the phosphor unit 1 and the fluorescent unit 2 are connected via an intermediate layer 3. According to this configuration, since the element can be configured by a two-stage multi-unit, an organic electroluminescent element with higher efficiency and longer life can be obtained.
  • the phosphorescent unit 1 including the phosphorescent red light-emitting layer 12 and the phosphorescent green light-emitting layer 11, the fluorescent light including the fluorescent blue light-emitting layer 22 and the fluorescent green light-emitting layer 21. It is preferable that the unit 2, the anode 4 b, and the cathode 4 a are provided, and the phosphorescent unit 1 is disposed on the cathode 4 a side with respect to the fluorescent unit 2. According to this configuration, electrons can be injected into the phosphorescence unit and holes can be injected into the fluorescence unit first, so that the luminous efficiency can be further increased.
  • the phosphorescent unit 1 including the phosphorescent red light-emitting layer 12 and the phosphorescent green light-emitting layer 11, the fluorescent light including the fluorescent blue light-emitting layer 22 and the fluorescent green light-emitting layer 21.
  • ⁇ GT ⁇ GT/ I ( ⁇ RT)] satisfies I ( ⁇ GT) / I ( ⁇ RT) ⁇ 0.65, and the maximum intensity [I ( ⁇ BS)] of the blue emission wavelength ( ⁇ BS) in the fluorescent unit 2 and green light emission
  • the ratio [I ( ⁇ GS) / I ( ⁇ BS)] of the wavelength ( ⁇ GS) to the maximum intensity [I ( ⁇ GS)] preferably satisfies I ( ⁇ GS) / I ( ⁇ BS)> 0.3. According to this configuration, the light emission balance of each unit can be improved, and an organic electroluminescent element with excellent light emission balance and little change in chromaticity can be obtained.
  • the phosphorescent unit 1 including the phosphorescent red light emitting layer 12 and the phosphorescent green light emitting layer 11, and the fluorescent unit 2 including the fluorescent blue light emitting layer 22 and the fluorescent green light emitting layer 21.
  • the wavelength difference between the green emission wavelength ( ⁇ GT) in the phosphorescent unit 1 and the green emission wavelength ( ⁇ GS) in the fluorescent unit 2 is preferably 10 nm or less in absolute value. According to this configuration, the green wavelength in the phosphorescent unit and the green wavelength in the fluorescent unit are close to each other, so that the luminous efficiency can be increased and the lifetime can be extended, and further, the organic electric field with high efficiency and long lifetime can be achieved. A light emitting element can be obtained.
  • the ionization potential (IpB) of the light emitting dopant of the fluorescent blue light emitting layer 22 is larger than the ionization potential (IpG) of the light emitting dopant of the fluorescent green light emitting layer 21, and the light emitting dopant of the fluorescent blue light emitting layer 22.
  • the electron affinity (EaB) of the fluorescent green light emitting layer 21 is preferably larger than the electron affinity (EaG) of the light emitting dopant.
  • the color mixture of the luminescent color in the phosphorescent red light emitting layer 12, the phosphorescent green light emitting layer 11, the fluorescent blue light emitting layer 22, and the fluorescent green light emitting layer 21 is W color. , WW color, or L color is preferable. According to this configuration, the light emission life can be extended, and an organic electroluminescence device having a longer life can be obtained.
  • the maximum intensity (IR) in the red wavelength region, the maximum intensity (IG) in the green wavelength region, and the maximum intensity (IB) in the blue wavelength region are weak in this order.
  • IR> IG> IB is preferable.
  • the emission intensity is in the order of red, blue, and green, the emission balance can be improved, and a high-efficiency, long-life organic electroluminescence device with excellent emission balance can be obtained. Can do.
  • the phosphorescent red light emitting layer 12 includes a phosphorescent red light emitting dopant that emits red phosphorescence, and the phosphorescent red light emitting dopant is bis- (3- (2- (2- (2-pyridyl) benzothienyl) mono-acetylacetonate) iridium (III)), Bis (2-phenylbenzothiazolato) (acetylacetonate) iridium (III) (bis- (2-phenylbenzothiazolate) (acetylacetonate) Iridium Bt 2 Ir (acac)), 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphyrin platinum (II) (2,3,7,8,12,13, It is preferably formed from one substance selected from the group consisting of 17,18-octaethyl-21H, 23H-porphyrin platinum (II) (2,3,7,8,12,13
  • the phosphorescent green light-emitting layer 11 includes a phosphorescent green light-emitting dopant that emits green phosphorescence, and the phosphorescent green light-emitting dopant is factory (2-phenylpyridine).
  • Iridium Bis (2-phenylpyridine) (acetylacetonate) iridium (III) (Bis- (2phenylpyridine) (acetylacetonato) iridium / Ir (ppy) 2 (acac)), Tris [2- (p-tolyl) pyridine It is preferably formed from one substance selected from the group consisting of] iridium (III) (tris [2- (para-tolyl) pyridine] iridium ⁇ Ir (mppy) 3 ). Thereby, green phosphorescence can be reliably emitted from the phosphorescent green light emitting layer 11.
  • the fluorescent blue light emitting layer 22 includes a fluorescent blue light emitting dopant that emits blue fluorescence, and the fluorescent blue light emitting dopant is 1-tert-butyl-perylene (TBP), 4 , 4'-Bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl (4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl BCzVBi), from perylene
  • TBP 1-tert-butyl-perylene
  • TBP 1-tert-butyl-perylene
  • the fluorescent green light-emitting layer 21 includes a fluorescent green light-emitting dopant that emits green fluorescence, and the fluorescent green light-emitting dopant includes 2,3,6,7-Tetrahydro-1, 1,7,7, -tetramethyl-1H, 5H, 11H-10- (2-benzothiazolyl) quinolizino- [9,9a, 1gh] coumarin (2,3,6,7-tetrahydro-1,1,7,7 , -Tetramethyl-1H, 5H, 11H-10 (2-benzothiazolyl) quinolidino- [9,9a, 1gh] coumarin / C545T), N, N′-Dimethyl-quinacridone (N, N′-dimethyl-quinacridone / DMQA) ), Coumarin 6 and rubrene, and is preferably formed from one substance selected from the group consisting of rubrene.
  • the host incorporating the fluorescent green light emitting dopant is tris (8-oxoquinoline) aluminum (III), 9,10-Di- (2naphthyl) anthracene (9,10-di- (2-naphthyl) anthracene / ADN). ), Bis (9,9′-diarylfluorene) (bis (9,9′-diarylfluorene) ⁇ BDAF).
  • the doping concentration of the fluorescent green light-emitting dopant is preferably 1 to 20% by mass. Thereby, green fluorescence can be reliably emitted from the fluorescent green light emitting layer 21.
  • FIG. 6 It is a schematic sectional drawing which shows an example of embodiment of the organic electroluminescent element of this invention.
  • 6 is a graph showing emission spectra of Examples 1 to 5.
  • 6 is a graph showing emission spectra of Comparative Examples 1 to 5.
  • 6 is a graph showing emission spectra of Examples 6 to 10.
  • a and B are graphs showing an emission spectrum of an evaluation element for explaining the present invention.
  • A is a potential diagram for explaining the energy levels of Examples 1 to 5 and B is for Examples 11 to 15.
  • FIG. It is a graph which shows the emission spectrum of rubrene.
  • FIG. 1 shows an example of an embodiment of the organic electroluminescent element of the present invention.
  • This organic electroluminescent element is configured by laminating each layer between a pair of electrodes 4 and 4 on the surface of a substrate 5 such as a glass substrate.
  • the organic electroluminescent element includes a phosphorescent red light emitting layer 12, a phosphorescent green light emitting layer 11, a fluorescent blue light emitting layer 22, and a fluorescent green light emitting layer 21. Accordingly, the emission color is formed by phosphorescence exhibiting red and green and fluorescence exhibiting blue and green. In this way, phosphorescence and fluorescence are used to emit light, and in particular, green light emission is generated by two types of phosphorescence and fluorescence. Become good.
  • the conversion efficiency from electrical energy to light can be improved, and changes in luminance and chromaticity can be suppressed even when light is emitted for a long time. That is, since the luminance life of green light emission is extended by the lamination of two green light emitting layers of phosphorescent green and fluorescent green, as a result, the change in chromaticity is reduced and the life can be prolonged.
  • the substrate 5 supports the organic electroluminescent element and is formed of a material such as a glass substrate. In order to take out the emitted light from the substrate 5 side, the substrate 5 is preferably a transparent substrate.
  • the electrode 4 is formed of a material such as a conductive metal, and one is a cathode 4a and the other is an anode 4b.
  • the anode 4 b is formed as a layer in contact with the substrate 5.
  • the anode 4b is formed as a transparent electrode so that light is extracted from at least the substrate 5 side. It has become.
  • the cathode 4a may be a transparent electrode, and light may be extracted from the cathode 4a side, or light may be extracted from both sides of the electrodes 4 and 4.
  • the phosphorescent red light emitting layer 12 and the phosphorescent green light emitting layer 11 are formed as layers in contact with each other.
  • the phosphorescent red light emitting layer 12 is disposed on the anode 4b side
  • the phosphorescent green light emitting layer 11 is disposed on the cathode 4a side.
  • the phosphorescent unit 1 is composed of the two phosphorescent light emitting layers.
  • the phosphorescent light-emitting layers are formed by doping the host material of the light-emitting layer with a phosphorescent dopant at an appropriate concentration. At this time, if a red light emitting dopant is used as the light emitting dopant, the phosphorescent red light emitting layer 12 is obtained, and if a green light emitting dopant is used, the phosphorescent green light emitting layer 11 is obtained.
  • the fluorescent blue light emitting layer 22 and the fluorescent green light emitting layer 21 are formed as layers in contact with each other.
  • the fluorescent blue light emitting layer 22 is disposed on the anode 4b side
  • the fluorescent green light emitting layer 21 is disposed on the cathode 4a side.
  • the two fluorescent light emitting layers constitute a fluorescent unit 2.
  • the fluorescent light emitting layer (fluorescent blue light emitting layer 22 and fluorescent green light emitting layer 21) is formed by doping a host material of the light emitting layer with a fluorescent light emitting dopant at an appropriate concentration. In that case, if a blue light emission dopant is used as a light emission dopant, the fluorescence blue light emission layer 22 will be obtained, and if a green light emission dopant is used, the fluorescence green light emission layer 21 will be obtained.
  • An intermediate layer 3 is formed between the phosphorescent unit 1 and the fluorescent unit 2.
  • the intermediate layer 3 is formed of a conductive material such as a metal compound or a mixture of a metal compound and an organic material, and smoothly moves electrons and holes between the light emitting units.
  • the phosphorescence unit 1 and the fluorescence unit 2 are electrically connected in series via the intermediate layer 3. That is, the phosphorescence unit 1, the intermediate layer 3, and the fluorescence unit 2 are arranged between the electrodes 4 and 4 in series, not in parallel.
  • Such an element structure is called a two-stage multi-unit. Thereby, since electrons and holes flow in each light emitting layer without any bias, light emission with a good balance can be obtained, and high efficiency and long life can be obtained. Moreover, if it comprises a two-stage multi-unit, lamination can be facilitated and productivity can be improved.
  • the intermediate layer 3 may be a single layer or a plurality of layers.
  • a single layer simplifies the device configuration and facilitates manufacturing.
  • a layer material suitable for electron transport and hole transport to each light-emitting unit can be adopted, and further improvement in efficiency and longer life can be achieved.
  • the phosphorescence unit 1 is arranged on the cathode 4a side and the fluorescence unit 2 is arranged on the anode 4b side. That is, electrons are injected into the phosphorescence unit 1 and holes are injected into the fluorescence unit 2 first.
  • the light emission efficiency is further increased.
  • the phosphorescent unit 1 is arranged on the anode 4b side and the fluorescent unit 2 is arranged on the cathode 4a side, the lifetime can be extended, but the luminous efficiency is lowered, which is not preferable.
  • an organic electroluminescence element can observe an emission spectrum in the visible light region (wavelength: about 400 to 800 nm) by using an optical device such as a spectral radiance meter (see the emission spectrum in FIG. 2).
  • This emission spectrum relatively indicates the intensity of light emission at each wavelength.
  • the blue light emitting dopant having the maximum light emission intensity in the blue wavelength region (wavelength: about 450 to 490 nm) and the maximum light emission intensity in the green wavelength region (wavelength: about 500 to 570 nm).
  • An organic electroluminescent device is configured using a green light emitting dopant having a red light emitting dopant having a maximum light emission intensity in a red wavelength region (wavelength: about 590 to 650 nm). That is, by combining the three primary colors of red, green, and blue, various emission colors can be obtained, and in particular, white emission can be obtained.
  • the color of the luminescent dopant in the present invention is defined from the value of the wavelength having the maximum luminescence intensity as described above. Depending on the spread of the emission spectrum, the color may become unclear or may have a different color, but the emission color is defined only by the above wavelength.
  • the luminescent dopant rubrene is yellow light emission (or yellow-green light emission) and can be called a yellow light emission dopant. This is because the emission spectrum broadens to the long wavelength side. Since the maximum emission wavelength is around 560 nm, it is classified as a green emission dopant.
  • an emission spectrum of rubrene is shown in FIG.
  • JIS standard color temperature
  • D Daylight color: 5700-7100K: Color of sunlight at noon in fine weather
  • N White color: 4600-5400K: Color of sunlight in the time zone between noon in fine weather
  • W White: 3900-4500K: Color of sunlight 2 hours after sunrise
  • WW Warm white: 3200-3700K: Color of evening sunlight
  • L Light bulb color: 2600-3150K: Color of white light bulb
  • JIS standard Is “Classification by JIS Z 9112 fluorescent lamp light source color and color rendering”.
  • the unit of color temperature “K” is “Kelvin”.
  • the organic electroluminescent element by this invention can make the light emission balance of red (R), green (G), blue (B) favorable by the above structures, and was excellent in JIS standard. Since white light emission can be obtained, it is particularly suitable for white light emission.
  • the phosphorescent unit 1 when the wavelength at which the emission intensity in the red emission region is maximum is the red emission wavelength ( ⁇ RT) and the wavelength at which the emission intensity in the green emission region is maximum is the green emission wavelength ( ⁇ GT)
  • the relationship (ratio) between the maximum intensity [I ( ⁇ GT)] at the red emission wavelength ( ⁇ RT) and the maximum intensity [I ( ⁇ GT)] at the green emission wavelength ( ⁇ GT) satisfies the following equation: Is preferred.
  • the wavelength at which the emission intensity in the blue emission region is maximized is the blue emission wavelength ( ⁇ BS)
  • the wavelength at which the emission intensity in the green emission region is maximum is the green emission wavelength green emission wavelength ( ⁇ GS)
  • the relationship (ratio) between the maximum intensity [I ( ⁇ BS)] at the blue emission wavelength ( ⁇ BS) and the maximum intensity [I ( ⁇ GS)] at the green emission wavelength ( ⁇ GS) is It is preferable to satisfy the formula:
  • the relative intensity of each luminescent color has the above-mentioned numerical relationship, so that the emission balance in each unit of green and red in the phosphorescent unit 1 and blue and green in the fluorescent unit 2 is good. Can be. If the above relationship is not satisfied, the light emission balance is lowered, and a desired light emission color may not be obtained. If the relationship between the spectral intensities is as described above, the light emission that falls within the white range defined in the JIS standard is maintained without change, and the element has a high efficiency and a long life.
  • the wavelength difference between the green emission wavelength ( ⁇ GT) in the phosphorescence unit 1 and the green emission wavelength ( ⁇ GS) in the fluorescence unit 2 is preferably 10 nm or less in absolute value. That is, the relationship is
  • the ionization potential (IpB) of the light emitting dopant (blue light emitting dopant) of the fluorescent blue light emitting layer 22 is preferably larger than the ionization potential (IpG) of the light emitting dopant (green light emitting dopant) of the fluorescent green light emitting layer 21. That is, IpB> IpG.
  • the electron affinity (EaB) of the light emitting dopant (blue light emitting dopant) of the fluorescent blue light emitting layer 22 is preferably larger than the electron affinity (EaG) of the light emitting dopant (green light emitting dopant) of the fluorescent green light emitting layer 21. That is, the relationship EaB> EaG.
  • the emission level of the fluorescent blue light-emitting layer 22 is higher than that of the fluorescent green light-emitting layer 21 in terms of both the ionization potential (Ip) and the electron affinity (Ea).
  • Ip ionization potential
  • Ea electron affinity
  • the light emission color is one of W color (white), WW color (warm white), and L color (bulb color) among the above-described white types.
  • W color white
  • WW color warm white
  • L color bulb color
  • the light emission lifetime can be further extended, and a long-life organic electroluminescence device can be obtained. That is, as described above, although there are various emission colors even if it is white light emission, the conventional organic electroluminescence device cannot sufficiently prevent a minute change in chromaticity, and the color of the white emission color due to the change in chromaticity. It was difficult to maintain the taste.
  • the organic electroluminescent device according to the present invention in particular, if the emission color is W, WW, or L, the chromaticity change is small and the color of white light emission can be maintained and the lifetime can be extended. It is.
  • the maximum intensity (IR) in the red wavelength region, the maximum intensity (IG) in the green wavelength region, and the maximum intensity (IB) in the blue wavelength region are in this order. It is preferable to become weak. That is, IR> IG> IB. Thereby, the light emission balance becomes good, and a high-efficiency and long-life organic electroluminescence device with excellent light emission balance can be obtained.
  • a hole injection layer 31 and a hole transport layer 32 are laminated in this order between the anode 4b and the fluorescent unit 2.
  • An electron transport layer 33 is laminated between the fluorescent unit 2 and the intermediate layer 3.
  • a hole transport layer 34 is laminated between the intermediate layer 3 and the phosphorescent unit 1.
  • An electron transport layer 35 and an electron injection layer 36 are laminated in this order between the phosphorescence unit 1 and the cathode 4a.
  • the layer configuration (stacking order) of the organic electroluminescent element is not limited to the form shown in FIG.
  • the stacking order from the lower side of the figure is the substrate 5, anode 4 b, fluorescent unit 2, intermediate layer 3, phosphorescent unit 1.
  • the cathode 4a is in this order, but the reverse order may be the substrate 5, the cathode 4a, the phosphor unit 1, the intermediate layer 3, the fluorescent unit 2, and the anode 4b.
  • the thickness of the phosphorescent red light emitting layer 12 is about 5 to 40 nm
  • the thickness of the phosphorescent green light emitting layer 11 is about 5 to 40 nm
  • the thickness of the fluorescent blue light emitting layer 22 is 5 nm.
  • the film thickness of the fluorescent green light emitting layer 21 can be set to about 5 to 40 nm.
  • the film thickness ratio of the phosphorescent red light emitting layer 12 and the phosphorescent green light emitting layer 11 is about 1: 8 to 8: 1, and the film thickness of the fluorescent blue light emitting layer 22 and the fluorescent light emitting layer 22 are fluorescent.
  • the film thickness of the green light emitting layer 21 can be set to about 1: 8 to 8: 1, and the film thickness of the fluorescent unit 2 and the film thickness of the phosphorescent unit 1 can be set to about 1: 3 to 3: 1. can do.
  • the film thickness of the intermediate layer 3 can be set to about 3 to 50 nm.
  • the material of the anode 4b include metals such as gold, conductive materials such as CuI, ITO (indium-tin oxide), SnO 2 , ZnO, IZO (indium-zinc oxide), PEDOT, and polyaniline.
  • a conductive polymer doped with a polymer and an optional acceptor, a conductive light-transmitting material such as a carbon nanotube, or the like can be used.
  • the electrode material which consists of a metal, an alloy, an electroconductive compound, and these mixtures with a small work function for the other electrode 4 (cathode 4a).
  • the material of the cathode 4a include alkali metals, alkaline earth metals, and the like, and alloys thereof with other metals such as sodium, sodium-potassium alloy, lithium, magnesium, magnesium-silver mixture, magnesium-indium mixture.
  • An aluminum-lithium alloy can be mentioned as an example.
  • one or more conductive materials such as metals may be laminated and used.
  • an alkali metal / Al laminate, an alkaline earth metal / Al laminate, an alkaline earth metal / Ag laminate, a magnesium-silver alloy / Ag laminate, and the like can be given as examples.
  • CBP, CzTT, TCTA, mCP, CDBP, or the like can be used as a host of the light emitting layer.
  • Ir (ppy) 3 , Ir (ppy) 2 (acac), Ir (mppy) 3, or the like can be used as the phosphorescent green light-emitting dopant.
  • the dope concentration is usually 1 to 40% by mass.
  • CBP, CzTT, TCTA, mCP, CDBP or the like can be used as a host of the light emitting layer.
  • phosphorescent red light emitting dopant Btp 2 Ir (acac), Bt 2 Ir (acac), PtOEP, or the like can be used.
  • the dope concentration is usually 1 to 40% by mass.
  • Alq 3 , ADN, BDAF, or the like can be used as a host of the light emitting layer.
  • the fluorescent green light-emitting dopant C545T, DMQA, coumarin 6, rubrene, or the like can be used.
  • the dope concentration is usually 1 to 20% by mass.
  • TBADN, ADN, BDAF, or the like can be used as a host of the light emitting layer.
  • TBP, BCzVBi, perylene, or the like can be used as the fluorescent blue light-emitting dopant, and NPD, TPD, Spiro-TAD, or the like can be used as the charge transfer assisting dopant.
  • the total doping concentration of the luminescent dopant and the charge transfer assisting dopant is usually 1 to 30% by mass.
  • the intermediate layer 3 BCP: Li, ITO, NPD: MoO 3 , Liq: Al, or the like can be used.
  • the intermediate layer 3 is made of ITO with the first layer made of BCP: Li on the anode 4 b side.
  • the second layer can be of a two-layer configuration in which the second layer is disposed on the cathode 4a side.
  • hole injection layer 31 CuPc, MTDATA, TiOPC, or the like can be used.
  • TPD hole transport layers 32 and 34
  • NPD NPD
  • TPAC TASi
  • DTASi DTASi
  • BCP As the electron transport layers 33 and 35, BCP, TAZ, BAlq, Alq 3 , OXD7, PBD, or the like can be used.
  • the electron injection layer 36 in addition to fluorides, oxides, and carbonates of alkali metals and alkaline earth metals such as LiF, Li 2 O, MgO, and Li 2 CO 3 , lithium, sodium, cesium, A layer doped with an alkali metal such as calcium or an alkaline earth metal can be used.
  • Bt 2 Ir (acac) represents Bis (2-phenylbenzothiazolato) (acetylacetonate) iridium (III) (bis- (2-phenylbenzothiazolate) (acetylacetonato) iridium)
  • PtOEP is 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphyrin platinum (II) (2,3,7,8,12,13,17,18-octaethyl-21H , 23H-porphyrin platinum)
  • Ir (ppy) 2 (acac) represents Bis (2-phenylpyridine) (acetylacetonate) iridium (III) (bis- (2 phenylpyridine) (acetylacetonato) iridium)
  • Ir (mppy) 3 represents Tris [2- (p-tolyl) pyridine] iridium (III) (tris [2- (para
  • An organic electroluminescent element can be obtained by laminating each layer using the above materials. Note that a vacuum deposition method, a sputtering method, or the like can be used as a lamination method.
  • ITO indium-tin oxide
  • the anode 4b having a sheet resistance of 10 ⁇ / ⁇ , thereby producing a glass substrate with ITO.
  • This glass substrate with ITO was subjected to ultrasonic cleaning with acetone, pure water and isopropyl alcohol for 15 minutes, then dried and UV ozone cleaned.
  • the glass substrate with ITO was set in a vacuum vapor deposition apparatus, and each organic layer or inorganic layer was sequentially heated by resistance heating at a vacuum degree of 5 ⁇ 10 ⁇ 5 Pa or less.
  • Al was vapor-deposited to form the cathode 4a.
  • Example 5 (Device structure of organic electroluminescence device) (Examples 1 to 5)
  • the device structure (layer structure) and the film thickness of each layer are shown below.
  • the layer structure of Examples 1 to 5 is the same as that in the form of FIG. However, the intermediate layer 3 is composed of two layers, a first layer and a second layer.
  • Substrate 5 Glass substrate (0.7mm) Anode 4b: ITO (150nm) Hole injection layer 31: CuPc (30nm) Hole transport layer 32: TPD (30nm) Fluorescent blue light emitting layer 22: TBADN: TBP: NPD (Xnm) Fluorescent green light-emitting layer 21: Alq 3: C545T (Ynm ) Electron transport layer 33: BCP (30nm) Intermediate layer 3 (first layer): BCP: Li (10 nm) Intermediate layer 3 (second layer): ITO (10 nm) Hole transport layer 34: TPD (30nm) Phosphorescent red light emitting layer 12: CBP: Btp 2 Ir (acac) ( ⁇ nm) Phosphorescent green light emitting layer 11: CBP: Ir (ppy) 3 ( ⁇ nm) Electron transport layer 35: BCP (20nm) Electron injection layer 36: LiF (1 nm) Cathode 4a: Al (80 nm) The details of each light
  • the fluorescent blue light-emitting layer 22 is obtained by doping the light-emitting layer host: TBADN with 1.5% blue light-emitting dopant: TBP and 5% with charge transfer auxiliary dopant: NPD.
  • the fluorescent green light emitting layer 21 is obtained by doping a light emitting layer host: Alq 3 with a green light emitting dopant: C545T by 1.5%.
  • the phosphorescent red light emitting layer 12 is obtained by doping the light emitting layer host: CBP with 10% red light emitting dopant: Btp 2 Ir (acac).
  • the phosphorescent green light emitting layer 11 is obtained by doping a light emitting layer host: CBP with 10% of a green light emitting dopant: Ir (ppy) 3 .
  • the unit “%” of the dope concentration is “mass%”.
  • the film thicknesses X, Y, ⁇ , and ⁇ of each light emitting layer are as shown in Table 1.
  • Example 6 to 10 In the organic electroluminescent elements in Examples 1 to 5, the organic electroluminescent elements in Examples 6 to 10 were the same as in Examples 1 to 5 except that the fluorescent green light emitting layer 21 of the fluorescent unit 2 was configured as follows. Configured.
  • Fluorescent green light-emitting layer 21 Alq 3: rubrene (Ynm )
  • the fluorescent green light-emitting layer 21 is obtained by doping a light-emitting layer host: Alq 3 with a green light-emitting dopant: rubrene (2%).
  • this fluorescent green light emitting layer 21 uses rubrene which exhibits yellow light emission in appearance, and can also be called a fluorescent yellow light emitting layer.
  • the film thickness is as shown in Table 1.
  • Example 11 to 15 In the organic electroluminescent elements in Examples 1 to 5, the organic electroluminescent elements in Examples 11 to 15 were the same as in Examples 1 to 5 except that the fluorescent green light emitting layer 21 of the fluorescent unit 2 was configured as follows. Configured.
  • Fluorescent green light-emitting layer 21 Alq 3: coumarin6 (Ynm )
  • the film thickness is as shown in Table 1.
  • Example 16 The device structure (layer structure) of Example 16 and the film thickness of each layer are shown below.
  • Substrate 5 Glass substrate (0.7mm)
  • Anode 4b ITO (150nm)
  • Hole injection layer 31 CuPc (30nm)
  • Hole transport layer 32 TPD (30nm)
  • Phosphorescent red light emitting layer 12 CBP: btp 2 Ir (acac) (30nm)
  • Phosphorescent green light emitting layer 11 CBP: Ir (ppy) 3 (10nm)
  • Hole transport layer 34 TPD (30nm)
  • Electron transport layer 35 BCP (20nm)
  • Each organic electroluminescent element was connected to a power source (KEYTHLEY 2400), a constant current having a current density of 10 mA / cm 2 was applied, and power efficiency was measured using an integrating sphere (SLMS-CDS manufactured by Labsphere).
  • each organic electroluminescence device Connect each organic electroluminescence device to a power supply (KEYTHLEY2400), and apply a constant current of 10 mA / cm 2 current density, and observe the luminance when continuously emitting light using a luminance meter (LS-110 manufactured by Konica Minolta). Then, the half-time when the luminance was reduced by half was measured. At the same time, the change in emission chromaticity was observed, and the color change time when the chromaticity change amount was 0.01 or more was measured compared with the initial emission chromaticity. Of the time when the luminance is reduced by half (half time) and the time when the chromaticity change amount is 0.01 or more (color change time), the shorter time is defined as the lifetime of the element.
  • FIG. 2 shows emission spectra of the organic electroluminescent elements of Examples 1 to 5.
  • FIG. 3 shows emission spectra of the organic electroluminescent elements of Comparative Examples 1 to 5. Each emission spectrum is normalized by setting the maximum emission intensity in the red wavelength region to “1”.
  • Table 2 shows the results (efficiency / lifetime) of comparing the examples and comparative examples for each luminescent color, together with the luminescent colors and CIE chromaticity coordinates of the examples and comparative examples.
  • the efficiency and lifetime value of the example in the same luminescent color is set to “1”
  • the efficiency and lifetime of the comparative example are shown as relative values (for example, comparative example 1 is compared with example 1).
  • the CIE chromaticity coordinates accurately mean “x and y coordinate values in the CIE1931 chromaticity diagram”.
  • the x-coordinate value in the CIE 1931 chromaticity diagram is described as “CIE-x”
  • the y-coordinate value in the CIE 1931 chromaticity diagram is described as “CIE-y”.
  • the emission color can be expressed by the x, y coordinate values in the CIE1931 chromaticity diagram, and the x and y coordinate values of the examples and comparative examples in the emission colors (D to L colors) in Table 2 are close. This means that they exhibit substantially the same emission color.
  • D color even if it is simply referred to as D color, since the range called D color is wide, even an organic electroluminescence device exhibiting the same external quantum efficiency is designed to exhibit a greenish emission color (above the black body locus). As a result, the current efficiency (power efficiency) increases due to the visual efficiency.
  • the coordinate values in the CIE1931 chromaticity diagram it is possible to show not only the color but also the stricter “same luminescent color”, and it is more possible to compare the efficiency and lifetime in the same luminescent color. It will be possible.
  • Example 3 W color
  • Example 4 WW color
  • Example 5 L color
  • Table 3 shows the relative relationship between the maximum emission intensity (IR) in the red wavelength range, the maximum emission intensity (IG) in the green wavelength range, and the maximum emission intensity (IB) in the blue wavelength range in Examples 1 to 5. Indicates strength.
  • the wavelengths indicating the maximum emission intensity of each color are as follows.
  • Example 16 in which the fluorescent unit 2 is arranged on the cathode 4a side and the phosphorescent unit 1 is arranged on the anode 4b side has the same life but is less efficient than Example 4. It was. That is, it was confirmed that Example 4 in which the phosphorescent unit 1 was arranged on the cathode 4a side was highly efficient.
  • the element for each light emitting unit used in Examples 1 to 5 was produced as an evaluation element.
  • the layer structure of the evaluation element and the film thickness of each layer are shown below.
  • ⁇ Fluorescent unit evaluation element Evaluation elements 1 to 5> Substrate 5: Glass substrate (0.7mm) Anode 4b: ITO (150nm) Hole injection layer 31: CuPc (30nm) Hole transport layer 32: TPD (30nm) Fluorescent blue light emitting layer 22: TBADN: TBP: NPD (Xnm) Fluorescent green light-emitting layer 21: Alq 3: C545T (Ynm ) Electron transport layer 33: BCP (30nm) Electron injection layer 36: LiF (1 nm) Cathode 4a: Al (80 nm) ⁇ Phosphorescence unit evaluation element: Evaluation elements 6 to 10> Substrate 5: Glass substrate (0.7mm) Anode 4b: ITO (150nm) Hole injection layer 31: CuPc (30nm) Hole transport layer 34: TPD (30nm) Phosphorescent red light emitting layer 12: CBP: btp 2 Ir (acac) ( ⁇ nm) Phos
  • FIG. 5A shows an emission spectrum of evaluation element 1 which is a fluorescent unit evaluation element
  • FIG. 5B shows an emission spectrum of evaluation element 6 which is a phosphorescence unit evaluation element.
  • Table 5 shows the relative light emission intensity of each evaluation element.
  • the maximum emission intensity in the blue wavelength region is set to “1”, and the maximum emission intensity in the green wavelength region is shown as the relative intensity.
  • the maximum emission intensity in the red wavelength region is “1”, and the maximum emission intensity in the green wavelength region is shown as the relative intensity.
  • the unit of the film thickness in Table 5 is nm.
  • Example 17 and 18 For reference, the light emission characteristics of Examples 17 and 18 and their evaluation elements 11 to 14 having the same layer structure as in Examples 1 to 5 and the film thicknesses shown in Table 6 were examined.
  • the film thickness of Example 17 is described in evaluation elements 11 and 13
  • the film thickness of Example 18 is described in evaluation elements 12 and 14.
  • the results are shown in Table 6.
  • Table 7 shows the results of the characteristic evaluation comparing the organic electroluminescent elements of Examples 6 to 10 and Examples 1 to 5.
  • FIG. 4 shows emission spectra of the organic electroluminescent elements of Examples 6 to 10.
  • Table 8 shows a comparison of energy levels of the light-emitting dopants used in Examples 1 to 5 and Examples 11 to 15.
  • Table 9 shows a comparison of efficiency and life between Examples 1 to 5 and Comparative Examples 11 to 15.
  • 6A and 6B show diagrams comparing the potential levels of the energy levels of Examples 1 to 5 and the energy levels of Examples 11 to 15, respectively.
  • TBP which is the light emitting dopant of the fluorescent blue light emitting layer 22
  • C545T which is the light emitting dopant of the fluorescent green light emitting layer 21
  • IpB ionization potential
  • IpG ionization potential
  • EaB electron affinity
  • Ip represents the ionization potential
  • Ea represents the electron affinity
  • each unit is eV.
  • TBP which is the light emitting dopant of the fluorescent blue light emitting layer 22
  • coumarin6 which is the light emitting dopant of the fluorescent green light emitting layer 21
  • TBP has an ionization potential (IpB) of ⁇ 5.5 eV. It is smaller than the ionization potential (IpG) of coumarin6-5.4 eV.
  • TBP has an electron affinity (EaB) of ⁇ 2.7 -eV, which is equal to coumarin6's electron affinity (EaG) of ⁇ 2.7 eV.
  • FIG. 6 (a) shows the relationship of Examples 1 to 5 and FIG. 6 (b) shows the relationship of Examples 11 to 15 for such energy level relationships.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

高効率・長寿命の白色発光の有機電界発光素子を提供する。特に白色発光の有機電界発光素子を提供する。本発明における有機電界発光素子は、リン光赤色発光層12と、リン光緑色発光層11と、蛍光青色発光層22と、蛍光緑色発光層21とを備える。リン光赤色発光層12とリン光緑色発光層11とによりリン光ユニット1が形成される。蛍光青色発光層22と蛍光緑色発光層21とにより蛍光ユニット2が形成される。リン光ユニット1と蛍光ユニット2とは中間層3を介して接続されている。好ましくは、リン光ユニット1が蛍光ユニット2よりも陰極4a側に配置されている。好ましくは、発光色が、W色、WW色、L色のいずれかである。

Description

有機電界発光素子
 本発明は、有機電界発光素子に関するものであり、より詳しくは、白色発光に適した有機電界発光素子に関するものである。
 電極と電極との間に、発光層を含む有機材料層を単層又は多層に積層して形成した有機電界発光素子(有機エレクトロルミネッセンス素子)が知られている。この有機電界発光素子は、一方の電極を陽極とすると共に他方の電極を陰極として、両電極間に電圧を印加することによって、陰極側から有機材料層内に注入・輸送された電子が陽極側から注入・輸送された正孔(ホール)と再結合して発光が得られるものである。有機電界発光素子は、面発光が得られる薄型の発光素子であり、各種用途の光源や自発光の薄型表示装置の表示単位を構成するものとして、近年注目されている。
 有機電界発光素子については、所望の発光色を得ることが試みられており、特に発光色を合成させて白色発光の有機電界発光素子を得る技術が提案されている。
 特開2007-173827号公報には、赤色を発光するリン光材料と、緑色を発光するリン光材料と、青色を発光する蛍光材料とを含んだ白色有機電界発光素子が開示されている。しかし、この有機電界発光素子は、青色を発光する蛍光材料の層が律則となって素子全体の発光の色度変化が生じるものであり、この蛍光青色発光材料の層は色度が変化しやすいので、色度変化量による寿命で見ると、有機電界発光素子の寿命が短くなるという問題があった。また、白色発光といっても、具体的な色味としては、D、N、W、WW、Lといった種々のものがあり、これらの個々の白色の色味において、JIS規格の範囲内での色度を変化させずに発光することが難しかった。
 本発明は上記の点に鑑みてなされたものであり、発光効率が高く、また、寿命が長く、さらに発光バランスのよい有機電界発光素子、とりわけ高効率・長寿命の白色発光の有機電界発光素子を提供することを目的とするものである。
 本発明の有機電界発光素子は、リン光赤色発光層12と、リン光緑色発光層11と、蛍光青色発光層22と、蛍光緑色発光層21とを備えてなることを特徴とする。この発明によれば、特に緑色発光をリン光と蛍光とにより生成して発光バランスを良好にし、電気エネルギーから光への変換効率を向上することができ、また、長期に発光させても輝度や色度の変化を抑制することができるので、発光効率が高く、寿命の長い有機電界発光素子を得ることができる。
 上記構成の有機電界発光素子において、上記リン光赤色発光層12と上記リン光緑色発光層11とを含むリン光ユニット1と、上記蛍光青色発光層22と上記蛍光緑色発光層21とを含む蛍光ユニット2とを備え、上記リン光ユニット1と上記蛍光ユニット2とが中間層3を介して接続されていることが好ましい。この構成によれば、二段マルチユニットで素子を構成することができるので、さらに高効率・長寿命の有機電界発光素子を得ることができる。
 上記構成の有機電界発光素子において、上記リン光赤色発光層12と上記リン光緑色発光層11とを含むリン光ユニット1と、上記蛍光青色発光層22と上記蛍光緑色発光層21とを含む蛍光ユニット2と、陽極4bと、陰極4aとを備え、上記リン光ユニット1が上記蛍光ユニット2よりも上記陰極4a側に配置されていることが好ましい。この構成によれば、電子をリン光ユニットに、正孔を蛍光ユニットに、それぞれ先に注入することができるので、発光効率をさらに高くすることができる。
 上記構成の有機電界発光素子において、上記リン光赤色発光層12と上記リン光緑色発光層11とを含むリン光ユニット1と、上記蛍光青色発光層22と上記蛍光緑色発光層21とを含む蛍光ユニット2とを備え、上記リン光ユニット1における、赤色発光波長(λRT)の最大強度[I(λRT)]と緑色発光波長(λGT)の最大強度[I(λGT)]との比[I(λGT)/I(λRT)]が、I(λGT)/I(λRT)<0.65を満たし、上記蛍光ユニット2における、青色発光波長(λBS)の最大強度[I(λBS)]と緑色発光波長(λGS)の最大強度[I(λGS)]との比[I(λGS)/I(λBS)]が、I(λGS)/I(λBS)>0.3を満たすことが好ましい。この構成によれば、各ユニットの発光のバランスを良好にすることができ、発光バランスが優れ、色度変化の少ない有機電界発光素子を得ることができる。
 上記構成の有機電界発光素子において、リン光赤色発光層12とリン光緑色発光層11とを含むリン光ユニット1と、蛍光青色発光層22と蛍光緑色発光層21とを含む蛍光ユニット2とを備え、リン光ユニット1における緑色発光波長(λGT)と、蛍光ユニット2における緑色発光波長(λGS)との波長差が、絶対値で10nm以下であることが好ましい。この構成によれば、リン光ユニットにおける緑色の波長と蛍光ユニットにおける緑色の波長とが近くなることにより、発光効率を高く、かつ寿命を長くすることができ、さらに高効率・長寿命の有機電界発光素子を得ることができる。
 上記構成の有機電界発光素子において、蛍光青色発光層22の発光ドーパントのイオン化ポテンシャル(IpB)は蛍光緑色発光層21の発光ドーパントのイオン化ポテンシャル(IpG)よりも大きく、蛍光青色発光層22の発光ドーパントの電子親和力(EaB)は蛍光緑色発光層21の発光ドーパントの電子親和力(EaG)よりも大きいことが好ましい。この構成によれば、青色と緑色との適切な発光バランスを得ることができ、また、発光効率を高く、かつ寿命を長くすることができるので、さらに高効率・長寿命の有機電界発光素子を得ることができる。
 上記構成の有機電界発光素子において、上記リン光赤色発光層12と、上記リン光緑色発光層11と、上記蛍光青色発光層22と、上記蛍光緑色発光層21における発光色の混色が、W色、WW色、L色のいずれかであることが好ましい。この構成によれば、発光寿命を長くすることができ、さらに長寿命の有機電界発光素子を得ることができるものである。
 上記構成の有機電界発光素子において、赤色波長領域での最大強度(IR)と、緑色波長領域での最大強度(IG)と、青色波長領域での最大強度(IB)とが、この順で弱くなる(IR>IG>IB)ことが好ましい。この構成によれば、発光強度が、赤、青、緑の順になることにより、発光バランスを良好にすることができ、さらに発光バランスの優れた高効率・長寿命の有機電界発光素子を得ることができる。
 上記構成の有機電界発光素子において、上記リン光赤色発光層12は、赤色のりん光を発するりん光赤色の発光ドーパントを含み、上記りん光赤色の発光ドーパントは、ビス-(3-(2-(2-ピリジル)ベンゾチエニル)モノ-アセチルアセトネート)イリジウム(III))、Bis(2-phenylbenzothiazolato)(acetylacetonate)iridium(III)(ビス‐(2‐フェニルベンゾチアゾレート)(アセチルアセトナート)イリジウム・Bt2Ir(acac))、2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum(II)(2,3,7,8,12,13,17,18-オクタエチル‐21H,23H‐ポルフィリン白金・PtOEP)からなる群より選択される一つの物質から形成されることが好ましい。これにより、赤色のりん光をリン光赤色発光層12から確実に発することができる。
 上記構成の有機電界発光素子において、上記リン光緑色発光層11は、緑色のりん光を発するりん光緑色の発光ドーパントを含み、上記りん光緑色の発光ドーパントは、ファクトリス(2-フェニルピリジン)イリジウム、Bis(2-phenylpyridine)(acetylacetonate)iridium(III)(ビス‐(2フェニルピリジン)(アセチルアセトナート)イリジウム・Ir(ppy)2(acac))、Tris[2-(p-tolyl)pyridine]iridium(III)(トリス[2‐(パラ‐トリル)ピリジン]イリジウム・Ir(mppy)3)からなる群より選択される一つの物質から形成されることが好ましい。これにより、緑色のりん光をリン光緑色発光層11から確実に発することができる。
 上記構成の有機電界発光素子において、上記蛍光青色発光層22は、青色の蛍光を発する蛍光青色の発光ドーパントを含み、上記蛍光青色の発光ドーパントは、1-tert-ブチル-ペリレン(TBP)、4,4'-Bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl(4,4'‐ビス(9‐エチル‐3‐カルバゾビニレン)‐1,1’‐ビフェニル・BCzVBi)、ペリレンからなる群より選択される一つの物質から形成されることが好ましい。さらに、上記蛍光青色発光層22は、電荷移動補助ドーパントをさらに含み、上記電荷移動補助ドーパントは、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル、N, N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine(N,N’-ビス(3-メチルフェニル)-N,N’-ビス(ビフェニル)-ベンジダイン・TPD)、N, N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-9,9-spirobifluorene(N,N’-ビス(3メチルフェニル)-N,N’-ビス(ビフェニル)-9,9-スピロビフルオレン・Spiro-TAD)からなる群より選択される一つの物質から形成されることが好ましい。これにより、青色の蛍光を蛍光青色発光層22から確実に発することができる。
 上記構成の有機電界発光素子において、上記蛍光緑色発光層21は、緑色の蛍光を発する蛍光緑色の発光ドーパントを含み、上記蛍光緑色の発光ドーパントは、2,3,6,7-Tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinolizino-[9,9a,1gh]coumarin(2,3,6,7‐テトラヒドロ-1,1,7,7,-テトラメチル-1H,5H,11H-10(2-ベンゾチアゾリル)キノリジノ-[9,9a,1gh]クマリン・C545T)、N,N'-Dimethyl-quinacridone(N,N’-ジメチル-キナクリドン・DMQA)、クマリン6、ルブレンからなる群より選択される一つの物質から形成されることが好ましい。さらに、上記蛍光緑色の発光ドーパントを取り込むホストは、トリス(8-オキソキノリン)アルミニウム(III)、9,10-Di-(2naphthyl)anthracene(9,10-ジ-(2-ナフチル)アントラセン・ADN)、bis(9,9'-diarylfluorene)(ビス(9,9’-ジアリールフルオレン)・BDAF)からなる群より選択される一つの物質から形成されることが好ましい。さらに、上記蛍光緑色の発光ドーパントのドープ濃度は1~20質量%であることが好ましい。これにより、緑色の蛍光を蛍光緑色発光層21から確実に発することができる。
本発明の有機電界発光素子の実施の形態の一例を示す概略断面図である。 実施例1~5の発光スペクトルを示すグラフである。 比較例1~5の発光スペクトルを示すグラフである。 実施例6~10の発光スペクトルを示すグラフである。 A及びBは、本発明を説明する評価素子の発光スペクトルを示すグラフである。 Aは実施例1~5の、Bは実施例11~15のエネルギーレベルを説明するポテンシャル図である。 rubreneの発光スペクトルを示すグラフである。
 図1に、本発明の有機電界発光素子の実施の形態の一例を示す。この有機電界発光素子は、ガラス基板などの基板5の表面に、一対の電極4,4に挟まれて各層が積層されて構成されている。そして、有機電界発光素子は、リン光赤色発光層12と、リン光緑色発光層11と、蛍光青色発光層22と、蛍光緑色発光層21とを備えている。したがって、発光色は、赤色と緑色とを呈するリン光と、青色と緑色とを呈する蛍光とによって形成される。このように、リン光と蛍光とを用いて発光し、特に緑色発光をリン光と蛍光との二種類の発光により生成することにより、発光の際の色度・輝度が調整されて発光バランスが良好になる。そして、電気エネルギーから光への変換効率を向上することができ、また、長期に発光させても輝度や色度の変化を抑制することができる。すなわち、リン光緑色と蛍光緑色との二つの緑色発光層の積層により緑色発光の輝度寿命が延びるため、結果として色度変化が小さくなり寿命を長期化することができるのである。
 基板5は、有機電界発光素子を支持するものであり、ガラス基板などの材料で形成される。発光した光を基板5側から取り出すためには、基板5は透明基板であることが好ましい。
 電極4は、導電性の金属等の材料で形成されるものであり、一方が陰極4aとなり、他方が陽極4bとなる。図示の形態では、陽極4bが基板5に接する層として形成されている。発光した光を外部に取り出すために、電極4の少なくとも一方は透明電極として形成されていることが好ましく、図示の形態では、陽極4bが透明電極として形成され、少なくとも基板5側から光を取り出すようになっている。なお、陰極4aを透明電極にして、陰極4a側から光を取り出したり、電極4,4の両側から光を取り出したりしてもよい。
 リン光赤色発光層12とリン光緑色発光層11とは、互いに接触した層として形成されている。図示の形態では、リン光赤色発光層12が陽極4b側に、リン光緑色発光層11が陰極4a側に配置されている。そして、この二つのリン光の発光層によりリン光ユニット1が構成されている。
 リン光の発光層(リン光赤色発光層12及びリン光緑色発光層11)は、発光層のホスト材料にリン光発光ドーパントを適宜の濃度でドープして形成されるものである。その際、発光ドーパントとして、赤発光ドーパントを用いればリン光赤色発光層12が得られ、緑発光ドーパントを用いればリン光緑色発光層11が得られる。
 蛍光青色発光層22と蛍光緑色発光層21とは、互いに接触した層として形成されている。図示の形態では、蛍光青色発光層22が陽極4b側に、蛍光緑色発光層21が陰極4a側に配置されている。そして、この二つの蛍光の発光層により蛍光ユニット2が構成されている。
 蛍光の発光層(蛍光青色発光層22及び蛍光緑色発光層21)は、発光層のホスト材料に蛍光発光ドーパントを適宜の濃度でドープして形成されるものである。その際、発光ドーパントとして、青発光ドーパントを用いれば蛍光青色発光層22が得られ、緑発光ドーパントを用いれば蛍光緑色発光層21が得られる。
 リン光ユニット1と蛍光ユニット2との間には、中間層3が形成されている。中間層3は、金属化合物や、金属化合物と有機物の混合物などの導電性材料などで形成されるものであり、発光ユニット間の電子及び正孔の移動をスムーズにするものである。このように、リン光ユニット1と蛍光ユニット2とは、中間層3を介して電気的に直列に接続されている。すなわち、電極4,4間に、並列ではなく直列に、リン光ユニット1、中間層3、蛍光ユニット2が配置されている。このような素子構造は、二段マルチユニットと呼ばれる。それにより、それぞれの発光層に偏りなく電子及び正孔が流れるため、バランスのよい発光が得られ、また、高効率・長寿命となる。また、二段マルチユニットで構成すれば、積層が容易になり生産性を向上することができる。
 中間層3は、単層であっても複数層からなるものであってもよい。単層であれば、素子構成が簡単になり製造が容易になる。一方、複数層にすれば、それぞれの発光ユニットへの電子輸送及び正孔輸送に適する層材料を採用することができ、さらなる効率の向上、寿命の長期化を図ることができる。
 リン光ユニット1と蛍光ユニット2の配置としては、リン光ユニット1が陰極4a側に、蛍光ユニット2が陽極4b側に配置されている。つまり、電子をリン光ユニット1に、正孔を蛍光ユニット2に、それぞれ先に注入することになる。このように素子を構成することにより、発光効率がより高くなる。リン光ユニット1を陽極4b側に、蛍光ユニット2を陰極4a側に配置した場合、寿命を長期化することはできるが、発光効率が低下するのであまり好ましくない。
 有機電界発光素子は、例えば、分光放射輝度計などの光学機器を用いることにより、可視光領域(波長:400~800nm程度)の発光スペクトルが観測される(図2の発光スペクトルなどを参照)。この発光スペクトルは、各波長における発光の強度を相対的に示すものである。そして、この可視光領域のうち、青色波長領域(波長:450~490nm程度)の間に最大発光強度を有する青発光ドーパントと、緑色波長領域(波長:500~570nm程度)の間に最大発光強度を有する緑発光ドーパントと、赤色波長領域(波長:590~650nm程度)の間に最大発光強度を有する赤発光ドーパントとを用いて有機電界発光素子を構成するものである。すなわち、この赤、緑、青の色の三原色を組み合わせることにより、種々の発光色が得られるものであり、特に、白色発光が得られるものである。
 ところで、本発明における発光ドーパントの色は、上記のように最大発光強度を有する波長の値から定義されるものである。発光スペクトルの拡がりなどにより、色が不鮮明になったり異なる色を呈したりすることがあるが、あくまで上記の波長により発光色は定義される。例えば、発光ドーパントのrubrene(ルブレン)は、見た目には黄色発光(または黄緑色発光)であり黄発光ドーパントとも呼べるものであるが、これは長波長側への発光スペクトルの拡がりが大きいためであり、最大発光波長は560nm近辺であるので、緑発光ドーパントに分類される。参考までに、図7にrubreneの発光スペクトルを示す。
 ここで、白色発光と一言でいっても、詳細には発光色として種々のものがある。特に蛍光灯などの照明分野では、白色発光の色の違いが重要であり、蛍光灯に置き換わるような有機電界発光素子や、蛍光灯の色味を呈したい有機電界発光素子においては、この発光色の規定が重要になる。
 以下に、白色発光の具体的な発光色(色味)を示す。
表示:名称 :JIS規格(色温度):色の説明
D :昼光色: 5700~7100K  :晴天の正午の日光の色
N :昼白色: 4600~5400K  :晴天の正午をはさんだ時間帯の日光の色
W :白色 : 3900~4500K  :日の出2時間後の日光の色
WW:温白色: 3200~3700K  :夕方の日光の色
L :電球色: 2600~3150K  :白色電球の色
 なお、上記において、JIS規格は、「JIS Z 9112 蛍光ランプの光源色及び演色性による区分」である。また、色温度の単位「K」は「ケルビン」である。
 そして、本発明による有機電界発光素子は、上記のような構成によって、赤(R)、緑(G)、青(B)の発光バランスを良好にすることができるので、JIS規格に入る優れた白色発光を得ることができるため、特に白色発光に適したものである。
 リン光ユニット1においては、赤色発光領域での発光強度が最大となる波長を赤色発光波長(λRT)とし、緑色発光領域での発光強度が最大となる波長を緑色発光波長(λGT)としたときに、赤色発光波長(λRT)での最大強度[I(λGT)]と、緑色発光波長(λGT)での最大強度[I(λGT)]との関係(比)が、次の式を満たすことが好ましい。
 I(λGT)/I(λRT)<0.65
 それと同時に、蛍光ユニット2においては、青色発光領域での発光強度が最大となる波長を青色発光波長(λBS)とし、緑色発光領域での発光強度が最大となる波長を緑色発光波長緑色発光波長(λGS)としたときに、青色発光波長(λBS)での最大強度[I(λBS)]と、緑色発光波長(λGS)での最大強度[I(λGS)]との関係(比)が、次の式を満たすことが好ましい。
 I(λGS)/I(λBS)>0.3
 このように、各発光色の相対強度が上記の数値関係になることにより、リン光ユニット1における緑色と赤色、蛍光ユニット2における青色と緑色、の各発光色の各ユニットでの発光バランスを良好にすることができる。上記の関係を満たさないと発光バランスが低下し、所望の発光色を得られなくなるおそれがある。そして、スペクトル強度の関係が上記のようになれば、JIS規格に規定される白色範囲に入る発光が変化することなく維持され、高効率・長寿命の素子になるものである。
 また、リン光ユニット1における緑色発光波長(λGT)と、蛍光ユニット2における緑色発光波長(λGS)との波長差は、絶対値で10nm以下であることが好ましい。すなわち、|λGT-λGS|≦10(nm)の関係であり、別式で表せば、-10≦λGT-λGS≦10の関係である。リン光ユニット1における緑色の波長と蛍光ユニット2における緑色の波長とが近くなることにより、発光効率を高く、かつ寿命を長くすることができる。
 なお、上記のような関係は、各ユニットの素子を評価素子として作製して、その発光スペクトルを測定することにより確認することができる。
 また、蛍光青色発光層22の発光ドーパント(青発光ドーパント)のイオン化ポテンシャル(IpB)は、蛍光緑色発光層21の発光ドーパント(緑発光ドーパント)のイオン化ポテンシャル(IpG)よりも大きいことが好ましい。すなわち、IpB>IpGの関係である。
 それと同時に、蛍光青色発光層22の発光ドーパント(青発光ドーパント)の電子親和力(EaB)は、蛍光緑色発光層21の発光ドーパント(緑発光ドーパント)の電子親和力(EaG)よりも大きいことが好ましい。すなわち、EaB>EaGの関係である。
 このように、蛍光青色発光層22の発光ドーパントが、蛍光緑色発光層21の発光ドーパントよりもイオン化ポテンシャル(Ip)と電子親和力(Ea)の両方においてエネルギーレベルが高くなることにより、青色と緑色との適切な発光バランスを得ることができ、また、発光効率を高く、かつ寿命を長くすることができる。
 有機電界発光素子にあっては、上記の白色の種類のうち、発光色が、W色(白色)、WW色(温白色)、L色(電球色)のいずれかであることがさらに好ましい。それにより、発光寿命をさらに長くすることができ、長寿命の有機電界発光素子を得ることができる。すなわち、上記のとおり、白色発光といっても種々の発光色があるが、従来の有機電界発光素子では微小な色度変化を十分に防ぐことができず、色度変化により白色発光色の色味を維持することが難しかった。しかしながら、本発明による有機電界発光素子では、特に発光色をW色、WW色、L色にすれば、色度変化が小さく白色発光の色味を維持して、長寿命化が可能になるものである。
 また、有機電界発光素子の発光スペクトルにおいて、赤色波長領域での最大強度(IR)と、緑色波長領域での最大強度(IG)と、青色波長領域での最大強度(IB)とが、この順で弱くなることが好ましい。すなわち、IR>IG>IBの関係である。それにより、発光バランスが良好になり、発光バランスの優れた高効率・長寿命の有機電界発光素子を得ることができる。
 有機電界発光素子には、図1のように、一方の電極4(陰極4a)と他方の電極(陽極4b)との間に、電子や正孔(ホール)を注入したり輸送したりするための層を設けてもよい。このようにすれば、電子や正孔の移動がスムーズになるので、効率化、長寿命化を促進することができる。
 図示の形態では、陽極4bと蛍光ユニット2との間に、正孔注入層31と正孔輸送層32とがこの順で積層されている。また、蛍光ユニット2と中間層3との間に、電子輸送層33が積層されている。また、中間層3とリン光ユニット1との間に、正孔輸送層34が積層されている。また、リン光ユニット1と、陰極4aとの間に電子輸送層35と電子注入層36とがこの順で積層されている。
 なお、有機電界発光素子の層構成(積層順)としては、図1の形態に限られるものではない。例えば、図1の形態では、電子及び正孔の注入層・輸送層を除けば、積層順が、図の下側から、基板5、陽極4b、蛍光ユニット2、中間層3、リン光ユニット1、陰極4aの順となっているが、逆順となって、基板5、陰極4a、リン光ユニット1、中間層3、蛍光ユニット2、陽極4bとなるような構成であってもよい。
 発光層の膜厚としては、リン光赤色発光層12の膜厚を5~40nm程度に、リン光緑色発光層11の膜厚を5~40nm程度に、蛍光青色発光層22の膜厚を5~40nm程度に、蛍光緑色発光層21の膜厚を5~40nm程度に設定することができる。また、膜厚の比としては、リン光赤色発光層12の膜厚とリン光緑色発光層11の膜厚とを1:8~8:1程度に、蛍光青色発光層22の膜厚と蛍光緑色発光層21の膜厚とを1:8~8:1程度に設定することができ、蛍光ユニット2の膜厚とリン光ユニット1の膜厚とを1:3~3:1程度に設定することができる。なお、中間層3の膜厚については3~50nm程度に設定することができる。膜厚をこのように設定することで、有機電界発光素子を高効率・長寿命にすることができる。
 ここで、各層の材料例を説明する。なお、本発明はこの材料例に限られるものではない。
 電極4としては、基板5に接する電極4(陽極4b)に、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物からなる電極材料を用いることが好ましい。このような陽極4bの材料としては、例えば、金などの金属、CuI、ITO(インジウム-スズ酸化物)、SnO2、ZnO、IZO(インジウム-亜鉛酸化物)等、PEDOT、ポリアニリン等の導電性高分子及び任意のアクセプタ等でドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料などを用いることができる。また、他方の電極4(陰極4a)に、仕事関数の小さい金属、合金、電気伝導性化合物及びこれらの混合物からなる電極材料を用いることが好ましい。このような陰極4aの材料としては、アルカリ金属、アルカリ土類金属等、およびこれらと他の金属との合金、例えばナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を例として挙げることができる。さらに金属等の導電材料を1層以上積層して用いてもよい。例えば、アルカリ金属/Alの積層、アルカリ土類金属/Alの積層、アルカリ土類金属/Agの積層、マグネシウム-銀合金/Agの積層などが例として挙げられる。また、ITO、IZOなどに代表される透明電極を用い、陰極4a側から光を取りだす構成としても良い。
 リン光緑色発光層11としては、発光層のホストに、CBP、CzTT、TCTA、mCP、CDBPなどを用いることができる。リン光緑色の発光ドーパントとしては、Ir(ppy)3、Ir(ppy)2(acac)、Ir(mppy)3などを用いることができる。ドープ濃度は通常1~40質量%である。
 リン光赤色発光層12としては、発光層のホストに、CBP、CzTT、TCTA、mCP、CDBPなどを用いることができる。リン光赤色の発光ドーパントとしては、Btp2Ir(acac)、Bt2Ir(acac)、PtOEPなどを用いることができる。ドープ濃度は通常1~40質量%である。
 蛍光緑色発光層21としては、発光層のホストに、Alq3、ADN、BDAFなどを用いることができる。蛍光緑色の発光ドーパントとしては、C545T、DMQA、coumarin6、rubreneなどを用いることができる。ドープ濃度は通常1~20質量%である。
 蛍光青色発光層22としては、発光層のホストに、TBADN、ADN、BDAFなどを用いることができる。蛍光青色の発光ドーパントとしては、TBP、BCzVBi、peryleneなどを用いることができ、電荷移動補助ドーパントとして、NPD、TPD、Spiro-TADなどを用いることができる。発光ドーパントと電荷移動補助ドーパントとを合わせた合計のドープ濃度は通常1~30質量%である。
 中間層3としては、BCP:Li、ITO、NPD:MoO3、Liq:Alなどを用いることができ、例えば、中間層3を、BCP:Liからなる第1層を陽極4b側に、ITOからなる第2層を陰極4a側に配置した二層構成のものにすることができる。
 正孔注入層31としては、CuPc、MTDATA、TiOPCなどを用いることができる。
 正孔輸送層32,34としては、TPD、NPD、TPAC、DTASiなどを用いる
ことができる。
 電子輸送層33,35としては、BCP、TAZ、BAlq、Alq3、OXD7、PBDなどを用いることができる。
 電子注入層36としては、LiF、Li2O、MgO、Li2CO3などのアルカリ金属やアルカリ土類金属のフッ化物や酸化物、炭酸化物の他に、有機物層にリチウム、ナトリウム、セシウム、カルシウム等のアルカリ金属、アルカリ土類金属をドープした層を用いることができる。
 なお、上記の材料中、
 Bt2Ir(acac)は、Bis(2-phenylbenzothiazolato)(acetylacetonate)iridium(III)(ビス‐(2‐フェニルベンゾチアゾレート)(アセチルアセトナート)イリジウム)を表し、
 PtOEPは、2,3,7,8,12,13,17,18-octaethyl―21H,23H―porphyrin platinum(II)(2,3,7,8,12,13,17,18-オクタエチル‐21H,23H‐ポルフィリン白金)を表し、
 Ir(ppy)2(acac)は、Bis(2―phenylpyridine)(acetylacetonate)iridium(III)(ビス‐(2フェニルピリジン)(アセチルアセトナート)イリジウム)を表し、
 Ir(mppy)3は、Tris[2―(p―tolyl)pyridine]iridium(III)(トリス[2‐(パラ‐トリル)ピリジン]イリジウム)を表し、
 BCzVBiは、4,4'―Bis(9―ethyl―3―carbazovinylene)―1,1'―biphenyl(4,4‘‐ビス(9‐エチル‐3‐カルバゾビニレン)‐1,1’‐ビフェニル)を表し、
 TPDは、N, N‘-Bis(3-methylphenyl)-N,N’-bis(phenyl)-benzidine(N,N’-ビス(3-メチルフェニル)-N,N’-ビス(ビフェニル)-ベンジダイン)を表し、
 Spiro-TADは、N,N‘-Bis(3-methylphenyl)-N,N’-bis(phenyl)-9,9-spirobifluorene(N,N’-ビス(3メチルフェニル)-N,N’-ビス(ビフェニル)-9,9-スピロビフルオレン)を表し、
 C545Tは、2,3,6,7-Tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10―(2-benzothiazolyl)quinolizino―[9,9a,1gh]coumarin(2,3,6,7‐テトラヒドロ-1,1,7,7,-テトラメチル-1H,5H,11H-10(2-ベンゾチアゾリル)キノリジノ-[9,9a,1gh]クマリン)を表し、
 DMQAは、N,N‘-Dimethyl-quinacridone(N,N’―ジメチル―キナクリドン)を表し、
 ADNは、9,10-Di-(2naphthyl)anthracene(9,10-ジ-(2-ナフチル)アントラセン)を表し、
 BDAFは、bis(9,9'-diarylfluorene)(ビス(9,9’-ジアリルフルオレン)を表し、
 CBPは、4,4’-N,N’-ジカルバゾールビフェニルを表し、
 Alq3は、トリス(8-オキソキノリン)アルミニウム(III)を表し、
 TBADNは、2-t-ブチル-9,10-ジ(2-ナフチル)アントラセンを表し、
 Ir(ppy)3は、ファクトリス(2-フェニルピリジン)イリジウムを表し、
 Btp2Ir(acac)は、ビス-(3-(2-(2-ピリジル)ベンゾチエニル)モノ-アセチルアセトネート)イリジウム(III))を表し、
 C545Tは、クマリンC545Tのことであり、10-2-(ベンゾチアゾリル)-2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-(1)ベンゾピロピラノ(6,7,-8-ij)キノリジン-11-オンを表し、
 TBPは、1-tert-ブチル-ペリレンを表し、
 NPDは、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニルを表し、
 BCPは、2,9-ジメチル-4,7-ジフェニル-1,10-フェナンスロリンを表し、
 CuPcは、銅フタロシアニンを表し、
 TPDは、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミンを表している。
 上記の材料を用い、各層を積層することにより有機電界発光素子を得ることができる。なお、積層の方法としては、真空蒸着法やスパッタ法などを使用することができる。
 次に、本発明を実施例により詳細に説明する。
 [有機電界発光素子の作製]
 各実施例及び比較例の有機電界発光素子の作製を次の手順で行った。
 基板5として厚み0.7mmのガラス基板上に、ITO(インジウム-スズ酸化物)をスパッタしてシート抵抗10Ω/□の陽極4bを形成し、ITO付ガラス基板を作製した。このITO付ガラス基板を、アセトン、純水、イソプロピルアルコールで15分間超音波洗浄した後、乾燥し、UVオゾン洗浄した。次に、ITO付ガラス基板を真空蒸着装置にセットし、5×10-5Pa以下の真空度にて、各有機層又は無機層を順に抵抗加熱蒸着した。最後に、Alを蒸着し、陰極4aを形成した。
 (有機電界発光素子のデバイス構造)
 (実施例1~5)
 以下に、デバイス構造(層構成)と各層の膜厚を示す。実施例1~5の層構成については、図1の形態と同じである。ただし、中間層3は第1層と第2層との二つの層で構成されている。
基板5       : ガラス基板(0.7mm)
陽極4b      : ITO  (150nm)
正孔注入層31   : CuPc (30nm)
正孔輸送層32   : TPD  (30nm)
蛍光青色発光層22 : TBADN:TBP:NPD  (Xnm)
蛍光緑色発光層21 : Alq3:C545T  (Ynm)
電子輸送層33   : BCP  (30nm)
中間層3(第1層) : BCP:Li (10nm)
中間層3(第2層) : ITO  (10nm)
正孔輸送層34   : TPD  (30nm)
リン光赤色発光層12: CBP:Btp2Ir(acac) (αnm)
リン光緑色発光層11: CBP:Ir(ppy)3 (βnm)
電子輸送層35   : BCP  (20nm)
電子注入層36   : LiF  (1nm)
陰極4a      : Al (80nm)
 上記の有機電界発光素子において、各発光層の詳細を次に示す。
 蛍光青色発光層22は、発光層ホスト:TBADNに、青発光ドーパント:TBPを1.5%ドープ、かつ、電荷移動補助ドーパント:NPDを5%ドープしたものである。
 蛍光緑色発光層21は、発光層ホスト:Alq3に、緑発光ドーパント:C545Tを1.5%ドープしたものである。
 リン光赤色発光層12は、発光層ホスト:CBPに、赤発光ドーパント:Btp2Ir(acac)を10%ドープしたものである。
 リン光緑色発光層11は、発光層ホスト:CBPに、緑発光ドーパント:Ir(ppy)3を10%ドープしたものである。
 なお、本発明において、ドープ濃度の単位「%」は「質量%」のことである。
 各発光層の膜厚X、Y、α、βについては、表1に示す通りである。
 (比較例1~5)
 以下に、比較例1~5のデバイス構造(層構成)と各層の膜厚を示す。
基板5       : ガラス基板(0.7mm)
陽極4b      : ITO  (150nm)
正孔注入層31   : CuPc (30nm)
正孔輸送層32   : TPD  (30nm)
蛍光青色発光層22 : TBADN:TBP:NPD  (Xnm)
電子輸送層33   : BCP  (30nm)
中間層3(第1層) : BCP:Li (10nm)
中間層3(第2層) : ITO  (10nm)
正孔輸送層34   : TPD  (30nm)
リン光赤色発光層12: CBP:btp2Ir(acac) (αnm)
リン光緑色発光層11: CBP:Ir(ppy)3 (βnm)
電子輸送層35   : BCP  (20nm)
電子注入層36   : LiF  (1nm)
陰極4a      : Al (80nm)
 比較例の有機電界発光素子は、実施例の有機電界発光素子から蛍光緑色発光層21を除去した構成となっており、特許文献1の層構成の考え方に近いものである。ただし、発光色の調整のため、各発光層の膜厚を調整している。なお、各発光層の詳細は実施例と同様であり、各発光層の膜厚X、α、βについては、表1に示す通りである。
 (実施例6~10)
 実施例1~5における有機電界発光素子において、蛍光ユニット2の蛍光緑色発光層21を以下の構成とした以外は、実施例1~5と同様に、実施例6~10の有機電界発光素子を構成した。
 蛍光緑色発光層21  : Alq3:rubrene  (Ynm)
 蛍光緑色発光層21は、発光層ホスト:Alq3に、緑発光ドーパント:rubrene(ルブレン)を2%ドープしたものである。なお、この蛍光緑色発光層21は、見た目には黄色発光を呈するrubreneを用いており、蛍光黄色発光層とも呼べる。また、膜厚については、表1に示すとおりである。
 (実施例11~15)
 実施例1~5における有機電界発光素子において、蛍光ユニット2の蛍光緑色発光層21を以下の構成とした以外は、実施例1~5と同様に、実施例11~15の有機電界発光素子を構成した。
 蛍光緑色発光層21  : Alq3:coumarin6  (Ynm)
 蛍光緑色発光層21は、発光層ホスト:Alq3に、緑発光ドーパント:coumarin6(クマリン6、λmax=510nm)を2%ドープしたものである。また、膜厚については、表1に示すとおりである。
 (実施例16)
 以下に、実施例16のデバイス構造(層構成)と各層の膜厚を示す。
基板5       : ガラス基板(0.7mm)
陽極4b      : ITO  (150nm)
正孔注入層31   : CuPc (30nm)
正孔輸送層32   : TPD  (30nm)
リン光赤色発光層12: CBP:btp2Ir(acac) (30nm)
リン光緑色発光層11: CBP:Ir(ppy)3 (10nm)
電子輸送層33   : BCP  (30nm)
中間層3(第1層) : BCP:Li (10nm)
中間層3(第2層) : ITO  (10nm)
正孔輸送層34   : TPD  (30nm)
蛍光青色発光層22 : TBADN:TBP:NPD  (20nm)
蛍光緑色発光層21 : Alq3:C545T  (15nm)
電子輸送層35   : BCP  (20nm)
電子注入層36   : LiF  (1nm)
陰極4a      : Al (80nm)
 なお、実施例16の有機電界発光素子は、実施例4の有機電界発光素子について、リン光ユニット1と蛍光ユニット2とを入れ替えた構成となっている。これにより、積層順の違いによる素子特性を評価することができる。
Figure JPOXMLDOC01-appb-T000001
 [測定]
 (発光スペクトル)
 各有機電界発光素子の発光スペクトルを、分光放射輝度計(コニカミノルタ製CS-2000)を用いて測定した。
 (効率)
 各有機電界発光素子を電源(KEYTHLEY2400)に接続し、電流密度10mA/cm2の定電流を通電し、積分球(ラブスフェア社製SLMS-CDS)を用いて電力効率を測定した。
 (寿命)
 各有機電界発光素子を電源(KEYTHLEY2400)に接続し、電流密度10mA/cm2の定電流を通電し、連続発光させたときの輝度を輝度計(コニカミノルタ製LS-110)を用いて観測し、輝度が半減する半減時間を測定した。また同時に、発光色度の変化について観測し、初期の発光色度と比較して色度変化量が0.01以上となる変色時間を測定した。輝度が半減する時間(半減時間)と、色度変化量が0.01以上となる時間(変色時間)のうち、短いほうの時間を素子の寿命とした。
 [各有機電界発光素子の比較]
 図2に、実施例1~5の有機電界発光素子の発光スペクトルを示す。また、図3に、比較例1~5の有機電界発光素子の発光スペクトルを示す。なお、各発光スペクトルは、赤色波長領域での最大発光強度を「1」として規格化したものである。
 表2に、各実施例・比較例の発光色及びCIE色度座標とともに、発光色ごとに実施例と比較例とを比較した結果(効率・寿命)を示す。なお、同一発光色における実施例の効率及び寿命の値を「1」として、比較例の効率及び寿命を相対値で示している(例えば、比較例1は実施例1と比較)。
 ところで、CIE色度座標とは、正確には「CIE1931色度図におけるx,y座標値」を意味している。表2では、CIE1931色度図におけるx座標値を‘CIE-x’、CIE1931色度図におけるy座標値を‘CIE-y’として記載している。CIE1931色度図におけるx,y座標値によって、発光色を表記することが可能であり、表2における各発光色(D~L色)での実施例と比較例のx,y座標値が近いということは、ほぼ同じ発光色を呈すること意味している。例えばD色と一口に言っても、D色と呼ばれる範囲は広いため、同じ外部量子効率を示す有機電界発光素子であっても、緑っぽい(黒体軌跡より上側)発光色を呈する設計にすると視感効率の関係で電流効率(電力効率)は高くなってしまう。すなわち、CIE1931色度図における座標値を明記することによって、色味だけではなくさらに厳密な「同じ発光色」を示すことができ、また、同じ発光色での効率や寿命を比較することがより可能になるものである。
 表2に示すとおり、いずれの実施例においても同一発光色の比較例と比較して、寿命が長時間化した。また、特に実施例3(W色)、実施例4(WW色)、実施例5(L色)においては、比較例よりも効率が向上した。
Figure JPOXMLDOC01-appb-T000002
 表3に、実施例1~5の赤色波長領域での最大発光強度(IR)と、緑色波長領域で
の最大発光強度(IG)と、青色波長領域での最大発光強度(IB)との相対強度を示す。ここで、各色の最大発光強度を示す波長は、次の通りである。
 青:λ(blue) :462nm
緑:λ(green):525nm
赤:λ(red)  :620nm
 表3に示すように、実施例1~5で得られる発光スペクトルの強度は、赤が最も強く、緑、青の順になっている。なお、表3中の波長は、各実施例における、赤色波長領域での最大発光強度(IR)を1としたときの相対値である。
Figure JPOXMLDOC01-appb-T000003
 表4に、実施例16と実施例4を比較した結果を示す。表に示すとおり、蛍光ユニット2を陰極4a側、リン光ユニット1を陽極4b側に配置した実施例16は、実施例4と比較し、寿命が同等であるものの、効率が低いことが確認された。すなわち、陰極4a側にリン光ユニット1を配置した実施例4が高効率であることが確認された。
Figure JPOXMLDOC01-appb-T000004
 ここで、各発光ユニットの特性を説明する。
 実施例1~5で用いられた発光ユニットごとの素子を評価素子として作製した。以下に、評価素子の層構成と各層の膜厚を示す。
 <蛍光ユニット評価素子:評価素子1~5>
基板5       : ガラス基板(0.7mm)
陽極4b      : ITO  (150nm)
正孔注入層31   : CuPc (30nm)
正孔輸送層32   : TPD  (30nm)
蛍光青色発光層22 : TBADN:TBP:NPD  (Xnm)
蛍光緑色発光層21 : Alq3:C545T  (Ynm)
電子輸送層33   : BCP  (30nm)
電子注入層36   : LiF  (1nm)
陰極4a      : Al (80nm)
 <リン光ユニット評価素子:評価素子6~10>
基板5       : ガラス基板(0.7mm)
陽極4b      : ITO  (150nm)
正孔注入層31   : CuPc (30nm)
正孔輸送層34   : TPD  (30nm)
リン光赤色発光層12: CBP:btp2Ir(acac) (αnm)
リン光緑色発光層11: CBP:Ir(ppy)3 (βnm)
電子輸送層35   : BCP  (20nm)
電子注入層36   : LiF  (1nm)
陰極4a      : Al (80nm)
 なお、各評価素子の膜厚については、表5に示すとおりである。すなわち、評価素子1~5、及び評価素子6~10の膜厚が、それぞれ実施例1~5の膜厚に対応している。
 各評価素子の発光スペクトルを測定し、発光色(青、緑、赤)間の発光強度を対比した。図5Aに蛍光ユニット評価素子である評価素子1の発光スペクトルを、図5Bにリン光ユニット評価素子である評価素子6の発光スペクトルを示す。
 表5に、各評価素子の相対発光強度を示す。蛍光ユニット評価素子については、青色波長領域での最大発光強度を「1」とし、緑色波長領域での最大発光強度を相対強度として示している。リン光ユニット評価素子については、赤色波長領域での最大発光強度を「1」とし、緑色波長領域での最大発光強度を相対強度として示している。なお、表5中の膜厚の単位はnmである。
 表及び発光スペクトルに示すとおり、蛍光ユニット評価素子(評価素子1~5)では、青色発光波長(λBS)の最大発光強度[I(λBS)]と、緑色発光波長(λGS)の最大発光強度[I(λGS)]との関係が、[I(λGS)]/[I(λBS)]>0.3となっている。
 また、リン光ユニット評価素子(評価素子6~10)では、赤色発光波長(λRT)の最大強度[I(λRT)]と、緑色発光波長(λGT)の最大強度[I(λGT)]との関係が、[I(λGT)]/[I(λRT)]<0.65となっている。
 したがって、実施例1~5の、蛍光ユニット2及びリン光ユニット1における発光強度も、上記のような数値範囲を満たしていることが確認された。この数値関係により、発光バランスがよく、高効率・長寿命になると考えられる。
Figure JPOXMLDOC01-appb-T000005
 参考のため、実施例1~5と同様の層構成で膜厚を表6のようにした、実施例17、18及びそれらの評価素子11~14の発光特性を調べた。なお、実施例17の膜厚は評価素子11及び13に、実施例18の膜厚は評価素子12及び14に記載しているものである。結果を表6に示す。上記の数値範囲を満たさない場合、D、N色で寿命の低下が見られ、また、W、WW、L色の作製は困難であった。
Figure JPOXMLDOC01-appb-T000006
 表7に、実施例6~10と実施例1~5の有機電界発光素子を比較した特性評価の結果を示す。また、図4に、実施例6~10の有機電界発光素子の発光スペクトルを示す。
 各発光ドーパントの最大発光強度を示す波長は次の通りである。
Ir(ppy)3:λmax=520nm  (リン光緑色発光層11)
C545T:λmax=525nm  (蛍光緑色発光層21)
rubrene:λmax=560nm  (蛍光緑色発光層21)
 すなわち、リン光緑色発光層11の発光ドーパントの波長と蛍光緑色発光層21の発光ドーパントの波長との波長差は、実施例1~5では5nm、実施例6~10では40nmとなっている。この波長差は、リン光ユニット1における最大発光強度を示す緑色発光波長(λGT)と、蛍光ユニット2における最大発光強度を示す緑色発光波長(λGS)との波長差に等しいといえる。すなわち、実施例1~5では、λGS-λGT=5<10の関係になっている。
 表7に示すとおり、発光ドーパントとして緑発光ドーパントのrubrene(λmax=560nm)を用いた実施例6~10の有機電界発光素子は、対応する実施例1~5よりも効率・寿命がともに低かった。すなわち、実施例1~5の有機電界発光素子は、実施例6~10の有機電界発光素子よりも、効率及び寿命がともに高いことが確認された。
Figure JPOXMLDOC01-appb-T000007
 表8に実施例1~5と実施例11~15に用いた発光ドーパントのエネルギーレベルの比較を示す。表9に実施例1~5と比較例11~15の効率・寿命の比較を示す。また、図6のAとBには、それぞれ実施例1~5のエネルギーレベルと、実施例11~15のエネルギーレベルとのポテンシャルレベルを比較した図を示している。
 表8に示すように、実施例1~5において、蛍光青色発光層22の発光ドーパントであるTBPと、蛍光緑色発光層21の発光ドーパントであるC545Tとを比較すると、TBPは、イオン化ポテンシャル(IpB)が-5.5 eVであり、C545Tのイオン化ポテンシャル(IpG)-5.6よりも大きい。また、TBPは、電子親和力(EaB)が-2.7 eVであり、C545Tの電子親和力(EaG)-3.0 eVよりも大きい。なお、表8において、Ipはイオン化ポテンシャル、Eaは電子親和力を示し、それぞれの単位はeVである。
 一方、実施例11~15において、蛍光青色発光層22の発光ドーパントであるTBPと、蛍光緑色発光層21の発光ドーパントであるcoumarin6とを比較すると、TBPは、イオン化ポテンシャル(IpB)が-5.5 eVであり、coumarin6のイオン化ポテンシャル(IpG)-5.4 eVよりも小さい。また、TBPは、電子親和力(EaB)が-2.7 eVであり、coumarin6の電子親和力(EaG)-2.7 eVと等しい。
 このようなエネルギーレベルの関係について、図6の(a)には実施例1~5の関係が、(b)には実施例11~15の関係が示されている。
 そして、表9に示すとおり、緑発光ドーパントとしてcoumarin6(λmax=510nm)を用いた実施例11~15の有機電界発光素子は、対応する実施例1~5よりも効率・寿命がともに低かった。すなわち、実施例1~5の有機電界発光素子は、実施例11~15の有機電界発光素子よりも、効率及び寿命がともに高いことが確認された。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上の結果をまとめて表10に示す。表より、実施例1~5が高効率・長寿命であることが確認された。
Figure JPOXMLDOC01-appb-T000010

Claims (18)

  1.  リン光赤色発光層と、リン光緑色発光層と、蛍光青色発光層と、蛍光緑色発光層とを備えてなることを特徴とする有機電界発光素子。
  2.  上記リン光赤色発光層と上記リン光緑色発光層とを含むリン光ユニットと、上記蛍光青色発光層と上記蛍光緑色発光層とを含む蛍光ユニットとを備え、上記リン光ユニットと上記蛍光ユニットとが中間層を介して接続されていることを特徴とする請求項1に記載の有機電界発光素子。
  3.  陽極と、陰極と、上記リン光赤色発光層と上記リン光緑色発光層とを含むリン光ユニットと、上記蛍光青色発光層と上記蛍光緑色発光層とを含む蛍光ユニットとを備え、上記リン光ユニットが上記蛍光ユニットよりも上記陰極側に配置されていることを特徴とする請求項1に記載の有機電界発光素子。
  4.  陽極と、陰極と、上記リン光ユニットと、上記蛍光ユニットとを備え、上記リン光ユニットが上記蛍光ユニットよりも上記陰極側に配置されていることを特徴とする請求項2に記載の有機電界発光素子。
  5.  上記リン光赤色発光層と上記リン光緑色発光層とを含むリン光ユニットと、上記蛍光青色発光層と上記蛍光緑色発光層とを含む蛍光ユニットとを備え、上記リン光ユニットにおける、赤色発光波長(λRT)の最大強度[I(λRT)]と緑色発光波長(λGT)の最大強度[I(λGT)]との比[I(λGT)/I(λRT)]が、I(λGT)/I(λRT)<0.65を満たし、上記蛍光ユニットにおける、青色発光波長(λBS)の最大強度[I(λBS)]と緑色発光波長(λGS)の最大強度[I(λGS)]との比[I(λGS)/I(λBS)]が、I(λGS)/I(λBS)>0.3を満たすことを特徴とする請求項1に記載の有機電界発光素子。
  6.  上記リン光ユニットと、上記蛍光ユニットとを備え、上記リン光ユニットにおける、赤色発光波長(λRT)の最大強度[I(λRT)]と緑色発光波長(λGT)の最大強度[I(λGT)]との比[I(λGT)/I(λRT)]が、I(λGT)/I(λRT)<0.65を満たし、上記蛍光ユニットにおける、青色発光波長(λBS)の最大強度[I(λBS)]と緑色発光波長(λGS)の最大強度[I(λGS)]との比[I(λGS)/I(λBS)]が、I(λGS)/I(λBS)>0.3を満たすことを特徴とする請求項2~4のいずれか1項に記載の有機電界発光素子。
  7.  上記リン光赤色発光層と上記リン光緑色発光層とを含むリン光ユニットと、上記蛍光青色発光層と上記蛍光緑色発光層とを含む蛍光ユニットとを備え、上記リン光ユニットにおける緑色発光波長(λGT)と、上記蛍光ユニットにおける緑色発光波長(λGS)との波長差が、絶対値で10nm以下であることを特徴とする請求項1に記載の有機電界発光素子。
  8.  上記リン光ユニットと、上記蛍光ユニットとを備え、上記リン光ユニットにおける緑色発光波長(λGT)と、上記蛍光ユニットにおける緑色発光波長(λGS)との波長差が、絶対値で10nm以下であることを特徴とする請求項2~6のいずれか1項に記載の有機電界発光素子。
  9.  上記蛍光青色発光層の発光ドーパントのイオン化ポテンシャル(IpB)は上記蛍光緑色発光層の発光ドーパントのイオン化ポテンシャル(IpG)よりも大きく、上記蛍光青色発光層の発光ドーパントの電子親和力(EaB)は上記蛍光緑色発光層の発光ドーパントの電子親和力(EaG)よりも大きいことを特徴とする請求項1~8のいずれか1項に記載の有機電界発光素子。
  10.  上記リン光赤色発光層と、上記リン光緑色発光層と、上記蛍光青色発光層と、上記蛍光緑色発光層における発光色の混色が、W色、WW色、L色のいずれかであることを特徴とする請求項1~9のいずれか1項に記載の有機電界発光素子。
  11.  赤色波長領域での最大強度(IR)と、緑色波長領域での最大強度(IG)と、青色波長領域での最大強度(IB)とが、この順で弱くなる(IR>IG>IB)ことを特徴とする請求項1~10のいずれか1項に記載の有機電界発光素子。
  12.  請求項1~11に記載の有機電界発光素子において、上記リン光赤色発光層は、赤色のりん光を発するりん光赤色の発光ドーパントを含み、上記りん光赤色の発光ドーパントは、ビス-(3-(2-(2-ピリジル)ベンゾチエニル)モノ-アセチルアセトネート)イリジウム(III))、ビス‐(2‐フェニルベンゾチアゾレート)(アセチルアセトナート)イリジウム(Bis(2-phenylbenzothiazolato)(acetylacetonate)iridium(III))、2,3,7,8,12,13,17,18-オクタエチル‐21H,23H‐ポルフィリン白金(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum(II))からなる群より選択される一つの物質から形成される。
  13.  請求項1~12に記載の有機電界発光素子において、上記リン光緑色発光層は、緑色のりん光を発するりん光緑色の発光ドーパントを含み、上記りん光緑色の発光ドーパントは、ファクトリス(2-フェニルピリジン)イリジウム、ビス‐(2フェニルピリジン)(アセチルアセトナート)イリジウム(Bis(2-phenylpyridine)(acetylacetonate)iridium(III))、トリス[2‐(パラ‐トリル)ピリジン]イリジウム(Tris[2-(p-tolyl)pyridine]iridium(III))からなる群より選択される一つの物質から形成される。
  14.  請求項1~13に記載の有機電界発光素子において、上記蛍光青色発光層は、青色の蛍光を発する蛍光青色の発光ドーパントを含み、上記蛍光青色の発光ドーパントは、1-tert-ブチル-ペリレン(TBP)、4,4'‐ビス(9‐エチル‐3‐カルバゾビニレン)‐1,1’‐ビフェニル(4,4'-Bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl)、ペリレンからなる群より選択される一つの物質から形成される。
  15.  請求項14に記載の有機電界発光素子において、上記蛍光青色発光層は、電荷移動補助ドーパントをさらに含み、上記電荷移動補助ドーパントは、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(ビフェニル)-ベンジダイン(N, N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine)、N,N’-ビス(3メチルフェニル)-N,N’-ビス(ビフェニル)-9,9-スピロビフルオレン(N, N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-9,9-spirobifluorene)からなる群より選択される一つの物質から形成される。
  16.  請求項1~15に記載の有機電界発光素子において、上記蛍光緑色発光層は、緑色の蛍光を発する蛍光緑色の発光ドーパントを含み、上記蛍光緑色の発光ドーパントは、2,3,6,7‐テトラヒドロ-1,1,7,7,-テトラメチル-1H,5H,11H-10(2-ベンゾチアゾリル)キノリジノ-[9,9a,1gh]クマリン(2,3,6,7-Tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinolizino-[9,9a,1gh]coumarin)、N,N’-ジメチル-キナクリドン(N,N'-Dimethyl-quinacridone)、クマリン6、ルブレンからなる群より選択される一つの物質から形成される。
  17.  請求項16に記載の有機電界発光素子において、上記蛍光緑色の発光ドーパントを取り込むホストは、トリス(8-オキソキノリン)アルミニウム(III)、9,10-ジ-(2-ナフチル)アントラセン(9,10-Di-(2naphthyl)anthracene)、ビス(9,9’-ジアリールフルオレン)(bis(9,9'-diarylfluorene))からなる群より選択される一つの物質から形成される。
  18.  請求項16または17に記載の有機電界発光素子において、上記蛍光緑色の発光ドーパントのドープ濃度は1~20質量%である。
PCT/JP2010/066601 2009-09-25 2010-09-24 有機電界発光素子 WO2011037209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/497,796 US20120248424A1 (en) 2009-09-25 2010-09-24 Organic electroluminescent element
CN201080048292.6A CN102668707B (zh) 2009-09-25 2010-09-24 有机电致发光元件
KR1020127010075A KR101417789B1 (ko) 2009-09-25 2010-09-24 유기 전계 발광 소자
EP10818881A EP2482619A1 (en) 2009-09-25 2010-09-24 Organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009221589A JP5162554B2 (ja) 2009-09-25 2009-09-25 有機電界発光素子
JP2009-221589 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011037209A1 true WO2011037209A1 (ja) 2011-03-31

Family

ID=43795951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066601 WO2011037209A1 (ja) 2009-09-25 2010-09-24 有機電界発光素子

Country Status (6)

Country Link
US (1) US20120248424A1 (ja)
EP (1) EP2482619A1 (ja)
JP (1) JP5162554B2 (ja)
KR (1) KR101417789B1 (ja)
CN (1) CN102668707B (ja)
WO (1) WO2011037209A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190618A (ja) * 2011-03-09 2012-10-04 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
US8941102B2 (en) 2011-03-24 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
JP5735162B1 (ja) * 2014-07-18 2015-06-17 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置
US20150207092A1 (en) * 2012-07-13 2015-07-23 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
TWI503313B (zh) * 2014-03-14 2015-10-11 Nat Univ Tsing Hua 含卡唑及苯胺之不對稱苯乙烯衍生物及其有機發光二極體

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124478A (ja) * 2010-11-19 2012-06-28 Semiconductor Energy Lab Co Ltd 照明装置
CN103477714A (zh) * 2011-03-24 2013-12-25 松下电器产业株式会社 有机电致发光元件
JP5167380B2 (ja) * 2011-03-24 2013-03-21 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP5180338B2 (ja) * 2011-03-24 2013-04-10 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP5699282B2 (ja) 2011-03-24 2015-04-08 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子及び照明器具
KR101803537B1 (ko) 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
JP5889730B2 (ja) * 2012-06-27 2016-03-22 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置
KR101980759B1 (ko) * 2012-12-18 2019-05-21 엘지디스플레이 주식회사 유기 발광 표시 장치
KR20150138315A (ko) * 2013-05-17 2015-12-09 파나소닉 아이피 매니지먼트 가부시키가이샤 유기 전계 발광 소자
US9786859B2 (en) * 2013-05-17 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element and lighting device
CN105325057B (zh) 2013-06-13 2017-02-22 柯尼卡美能达株式会社 有机电致发光元件的驱动方法
KR102047230B1 (ko) * 2013-08-30 2019-11-21 엘지디스플레이 주식회사 백색 유기발광다이오드 및 이를 이용한 표시장치
KR102129780B1 (ko) 2013-08-30 2020-07-03 엘지이노텍 주식회사 조명 장치
DE102013113486B4 (de) * 2013-12-04 2022-03-17 Pictiva Displays International Limited Organisches Licht emittierendes Bauelement
KR102126544B1 (ko) * 2013-12-30 2020-06-24 엘지디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 표시 장치
EP3032601B1 (en) * 2014-12-08 2018-02-07 LG Display Co., Ltd. Organic light emitting display device
US10903440B2 (en) 2015-02-24 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP6022015B2 (ja) * 2015-10-27 2016-11-09 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置
KR102520026B1 (ko) * 2015-12-30 2023-04-07 엘지디스플레이 주식회사 유기 발광 소자
US11276835B2 (en) * 2016-03-01 2022-03-15 Pioneer Corporation Method of manufacturing light emitting device and light emitting device
WO2018100476A1 (en) * 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR20210014798A (ko) 2019-07-30 2021-02-10 삼성디스플레이 주식회사 발광소자 및 이를 포함하는 표시패널
CN110635056B (zh) * 2019-09-25 2022-08-23 京东方科技集团股份有限公司 一种oled器件、显示面板、显示装置以及照明装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267990A (ja) * 2004-03-18 2005-09-29 Hitachi Ltd 有機発光表示装置
JP2006172762A (ja) * 2004-12-13 2006-06-29 Toyota Industries Corp 有機el素子
JP2008277193A (ja) * 2007-05-02 2008-11-13 Seiko Epson Corp 有機el素子の製造方法及びラインヘッド
WO2009008347A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627333B2 (en) * 2001-08-15 2003-09-30 Eastman Kodak Company White organic light-emitting devices with improved efficiency
US9070884B2 (en) * 2005-04-13 2015-06-30 Universal Display Corporation Hybrid OLED having phosphorescent and fluorescent emitters
US8945722B2 (en) * 2006-10-27 2015-02-03 The University Of Southern California Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs
US20080284318A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
US8426036B2 (en) * 2007-07-07 2013-04-23 Idemitsu Kosan Co., Ltd. Organic EL device and anthracene derivative
KR100957781B1 (ko) * 2007-08-24 2010-05-13 한국전자통신연구원 하이브리드 백색 유기 전계 발광 소자 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267990A (ja) * 2004-03-18 2005-09-29 Hitachi Ltd 有機発光表示装置
JP2006172762A (ja) * 2004-12-13 2006-06-29 Toyota Industries Corp 有機el素子
JP2008277193A (ja) * 2007-05-02 2008-11-13 Seiko Epson Corp 有機el素子の製造方法及びラインヘッド
WO2009008347A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190618A (ja) * 2011-03-09 2012-10-04 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
US8941102B2 (en) 2011-03-24 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
US20150207092A1 (en) * 2012-07-13 2015-07-23 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
US9431624B2 (en) * 2012-07-13 2016-08-30 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
TWI503313B (zh) * 2014-03-14 2015-10-11 Nat Univ Tsing Hua 含卡唑及苯胺之不對稱苯乙烯衍生物及其有機發光二極體
JP5735162B1 (ja) * 2014-07-18 2015-06-17 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置
WO2016009991A1 (ja) * 2014-07-18 2016-01-21 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置

Also Published As

Publication number Publication date
JP2011070963A (ja) 2011-04-07
JP5162554B2 (ja) 2013-03-13
US20120248424A1 (en) 2012-10-04
EP2482619A1 (en) 2012-08-01
CN102668707A (zh) 2012-09-12
CN102668707B (zh) 2015-02-18
KR101417789B1 (ko) 2014-08-06
KR20120088714A (ko) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5162554B2 (ja) 有機電界発光素子
KR101898442B1 (ko) 발광 소자 및 조명 장치
JP4895742B2 (ja) 白色有機電界発光素子
WO2014068970A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
KR101614403B1 (ko) 청색 발광층을 갖는 백색 oled
KR101710988B1 (ko) 유기 전계 발광 소자
KR101225673B1 (ko) 높은 색 온도의 탠덤 백색 oled
TWI478411B (zh) 有機電致發光元件及照明器具
JP6418533B2 (ja) 有機エレクトロルミネッセンス素子
KR101407580B1 (ko) 백색 유기발광소자 및 그를 포함하는 표시장치와 조명장치
TWI488350B (zh) 有機電致發光元件
JP2001155860A (ja) 有機el素子
KR20100018503A (ko) 고성능 탠덤 백색 oled
WO2013179668A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP2017045650A (ja) 白色発光有機el素子及びこれを含む白色発光有機elパネル
JP2014225415A (ja) 有機エレクトロルミネッセンス素子
JP5662990B2 (ja) 有機電界発光素子
KR100760901B1 (ko) 백색 유기 전계 발광 소자
JP2016106347A (ja) 有機エレクトロルミネッセンス素子
TW201316583A (zh) 白光有機發光二極體構造
JP5544040B2 (ja) 有機エレクトロルミネッセンス素子
JP6078701B1 (ja) 白色発光有機elパネル及びその製造方法
TW201115805A (en) White-emitting organic light emitting diode (OLED) structure
D'Andrade et al. Phosphorescent OLEDs with saturated colors
JP2014225414A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048292.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010818881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010818881

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127010075

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13497796

Country of ref document: US