WO2011037187A1 - 車載通信システム、光通信ハーネス及び光分配装置 - Google Patents

車載通信システム、光通信ハーネス及び光分配装置 Download PDF

Info

Publication number
WO2011037187A1
WO2011037187A1 PCT/JP2010/066561 JP2010066561W WO2011037187A1 WO 2011037187 A1 WO2011037187 A1 WO 2011037187A1 JP 2010066561 W JP2010066561 W JP 2010066561W WO 2011037187 A1 WO2011037187 A1 WO 2011037187A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical communication
communication
light
distributor
Prior art date
Application number
PCT/JP2010/066561
Other languages
English (en)
French (fr)
Inventor
柚木 勇人
内野 剛雄
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009219418A external-priority patent/JP2011071638A/ja
Priority claimed from JP2010099769A external-priority patent/JP5402815B2/ja
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN2010800428423A priority Critical patent/CN102577188A/zh
Priority to DE112010003769T priority patent/DE112010003769T8/de
Priority to US13/384,737 priority patent/US8929732B2/en
Publication of WO2011037187A1 publication Critical patent/WO2011037187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/417Bus networks with decentralised control with deterministic access, e.g. token passing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle

Definitions

  • the present invention relates to an in-vehicle communication system that performs communication among a plurality of electronic devices (communication devices) mounted on a vehicle, and more particularly to an in-vehicle communication system that performs optical communication, an optical communication harness, and an optical distribution device.
  • a vehicle is equipped with a large number of electronic devices.
  • Each electronic device is connected via a communication line and cooperates while exchanging information with each other. Control related to comfort is realized.
  • CAN Controller Area Network
  • Patent Document 1 a configuration in which a part is realized by optical communication has been proposed.
  • a plurality of electronic devices are connected to a CAN bus configured by a twisted pair cable that transmits a differential signal, and each electronic device transmits and receives a digital signal represented by the differential signal.
  • CAN is a serial communication protocol, and only one electronic device among a plurality of electronic devices connected to the CAN bus can perform transmission processing, and the other electronic devices can perform transmission processing of one electronic device. Need to wait until it finishes. Further, when a plurality of electronic devices perform transmission processing simultaneously (that is, when a communication collision occurs), communication arbitration processing (arbitration) is performed in each electronic device, and the priority is high. Communication is performed.
  • each electronic device In order to perform arbitration processing for communication collision, each electronic device outputs a transmission signal to the CAN bus and simultaneously detects the signal level of the CAN bus. Each electronic device determines that a communication collision has occurred when the signal level of the detected signal changes with respect to the transmission signal output by itself (when it changes from recessive to dominant), and stops transmission processing. .
  • the dominant signal is dominant over the recessive signal on the CAN bus. Therefore, even if a communication collision occurs, the electronic device that outputs the dominant signal can continue the transmission process.
  • an optical communication system can be configured using a passive star optical coupler (hereinafter simply referred to as an optical coupler).
  • an optical coupler When constructing an optical communication system with a large number of nodes (number of electronic devices) using optical couplers, it is possible to distribute optical signals to a large number of nodes at one time using one optical coupler. It is uneconomical in terms of routing, and it is reasonable to configure an optical communication system by connecting electronic devices to one optical coupler to form a subnode and connecting a plurality of subnodes by an optical coupler. For example, in the case of a vehicle, it is reasonable to configure subnodes in each part such as an engine room, a vehicle compartment, and a trunk room, and connect the optical couplers of each subnode to configure the entire optical communication system.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an in-vehicle communication system capable of realizing communication based on a predetermined communication protocol performed by an electric signal even by optical communication.
  • An optical communication harness and an optical distribution device are provided.
  • An in-vehicle communication system includes a plurality of light input units and a plurality of light output units, and distributes and outputs light input from one light input unit to a plurality of light output units. And a plurality of optical communication devices connected in a star shape through the optical communication line around the optical distributor, and each optical communication device inputs light to one optical input unit of the optical distributor An optical transmission unit that transmits an optical signal, an optical reception unit that receives an optical signal by receiving light output from one optical output unit of the optical distributor, and the optical reception unit And detecting means for detecting a collision of transmission of an optical signal with another communication device in accordance with the received optical signal.
  • the detection unit may detect a collision when the optical signal received by the optical receiver changes with respect to the optical signal transmitted by the optical transmitter.
  • the optical communication device stops the transmission of the optical signal and receives the optical signal transmitted by another optical communication device when the detection means detects a collision of the transmission of the optical signal. It is characterized by that.
  • the optical communication device converts one or a plurality of electric transmission units and electric reception units that transmit and receive electric signals, and the optical signals received by the optical reception unit into electric signals.
  • a photoelectric conversion unit that converts an electrical signal received by the electrical reception unit into an optical signal, and communicates with one or more electrical communication devices that transmit and receive electrical signals to and from other optical communication devices. It is characterized by mediating.
  • the in-vehicle communication system includes the optical transmission unit, the optical reception unit, and the detection unit, one or more electrical transmission units and an electrical reception unit that transmit and receive electrical signals, and the optical reception unit.
  • a photoelectric conversion unit that converts the received optical signal into an electrical signal and converts the electrical signal received by the electrical reception unit into an optical signal, and transmits and receives electrical signals to or from the one or more optical communication devices. It further includes a photoelectric conversion device that mediates communication with one or a plurality of devices.
  • an in-vehicle communication system includes a plurality of optical communication networks including the optical communication device and the photoelectric conversion device connected in a star shape with the optical distributor as a center.
  • the conversion device is connected via a telecommunication line.
  • the plurality of optical communication lines connecting the optical input unit of one optical distributor and the optical communication device or the photoelectric conversion device have substantially the same length.
  • an in-vehicle communication system includes a plurality of the optical distributors connected to each other by an optical input unit and an optical output unit, and the plurality of optical communication devices includes the plurality of optical distributors.
  • the optical input unit and the optical output unit are connected to a part of the optical input unit and the optical output unit via an optical communication line.
  • the in-vehicle communication system is connected to an optical output unit connected to another optical distributor among the plurality of optical output units of the plurality of optical distributors, and the plurality of optical communication devices It further comprises one or a plurality of filters for attenuating light having a wavelength different from the wavelength of the optical signal transmitted by.
  • the in-vehicle communication system includes a first optical distributor and a second optical distributor connected to each other by an optical input unit and an optical output unit, and the optical input units of the first and second optical distributors. And a part of the optical output unit, each connected in star shape via an optical communication line, transmits an optical signal of the first or second wavelength, and has a plurality of different wavelengths including the first or second wavelength.
  • a second wavelength is connected between a plurality of first and second optical communication devices that receive an optical signal, one optical output unit of the first optical distributor, and one optical input unit of the second optical distributor.
  • a second filter for attenuating light of the first wavelength connected between a first filter for attenuating light of the first light, a light output part of the second light distributor, and a light input part of the first light distributor. And a filter.
  • the on-vehicle communication system is characterized in that the optical communication device transmits and receives an optical signal based on a CAN protocol.
  • the optical distributor is configured by using one or a plurality of optical couplers having the two optical input units and the two optical output units. .
  • the optical communication harness includes a plurality of light input units and a plurality of light output units, and distributes and outputs light input from one light input unit to the plurality of light output units.
  • a distributor an optical communication line connected to any of the plurality of light input units and the light output unit; and a specific light output unit of the plurality of light output units.
  • one or a plurality of filters that are connected to the optical communication line and attenuate the light of a predetermined wavelength.
  • the optical communication harness according to the present invention is characterized in that the filter is provided inside a connector for connection to another optical distributor of the optical communication line.
  • the light distribution device includes a plurality of light input units and a plurality of light output units, and distributes and outputs light input from one light input unit to the plurality of light output units. It is characterized by comprising a distributor and one or a plurality of filters that are connected to a specific light output unit among the plurality of light output units and attenuate light of a predetermined wavelength.
  • an optical distributor having a plurality of light input units and a light output unit and distributing and outputting light input from one light input unit to the plurality of light output units.
  • An in-vehicle communication system is configured by connecting a plurality of optical communication devices in a star shape to each device via optical communication lines.
  • the plurality of optical signals are combined and output from all the optical output units.
  • Each optical communication device is connected to one optical input unit and one optical output unit of the optical distributor via an optical communication line.
  • the optical communication device can transmit an optical signal to one optical input unit of the optical distributor and receive an optical signal distributed and output by the optical distributor.
  • the optical communication apparatus can perform communication arbitration similar to the CAN protocol by making the presence / absence of light correspond to dominant / recessive of the CAN protocol, and perform communication processing according to the CAN protocol. Is possible. Therefore, it is possible to configure the optical communication device of the present invention simply by installing an interface circuit for connecting to an optical communication line, etc. with respect to the conventional communication device, and developing the optical communication device at low cost. can do.
  • the optical communication device transmits an optical signal with another optical communication device when a change occurs in the optical signal received via the optical distributor with respect to the optical signal transmitted by itself. Detect collisions. When a collision is detected, the optical communication device stops the transmission of the optical signal and receives the optical signal transmitted by another optical communication device.
  • the processes such as collision detection and transmission stop are obtained by applying substantially the same method as the CAN protocol arbitration to optical communication. Therefore, the optical communication apparatus according to the present invention can be realized by modifying or adding a relatively small number of circuits to a communication apparatus that performs communication according to the conventional CAN protocol.
  • the function which transmits / receives an electrical signal with the function which transmits / receives an optical signal is mounted in the 1 or several optical communication apparatus contained in a vehicle-mounted communication system.
  • this optical communication device perform mutual conversion between electric signals to be transmitted and received and optical signals, and mediating communication between other optical communication devices and the telecommunication device
  • the in-vehicle communication system can perform telecommunication and optical communication. It can be mixed.
  • the in-vehicle communication system includes a photoelectric conversion device that has an optical communication function and an electric communication function and performs mutual conversion between an electrical signal and an optical signal, and the photoelectric conversion device is one or more optical communication devices and one or more optical communication devices.
  • the structure which mediates communication between these telecommunications apparatuses it is possible to mix electrical communication and optical communication in the in-vehicle communication system. Since the communication line of the in-vehicle communication system is arranged in a limited space in the vehicle, there is a possibility that the communication line needs to be bent. However, when an optical fiber is used as the optical communication line, There is a problem that it is difficult to bend and arrange the fiber, that is, the optical fiber has a low degree of freedom of arrangement. Therefore, by allowing the electric communication lines that are resistant to bending to be mixed, the degree of freedom of arrangement of the in-vehicle communication system in the vehicle can be increased.
  • a single optical communication network is configured by connecting an optical communication device and a photoelectric conversion device in a star shape with the optical distributor as the center, and photoelectric conversion of a plurality of optical communication networks is performed via an electric communication line.
  • An in-vehicle communication system is configured by connecting devices.
  • an in-vehicle communication system that performs optical communication within a star-type optical communication network and performs electrical communication between the optical communication networks is realized.
  • optical communication is performed at locations where many devices are concentrated, such as in the engine room at the front of the vehicle, and there is a possibility that the communication line may be bent at a relatively long distance such as between the front of the vehicle and the rear of the vehicle.
  • the lengths of the optical communication lines that connect the optical input unit of the optical distributor, the optical communication device, and the photoelectric conversion device are substantially the same for one optical distributor included in the in-vehicle communication system. . This makes it difficult for the timing of the optical signal input from the optical communication device and the photoelectric conversion device to the optical distributor to be shifted, so that processing such as communication collision detection and arbitration can be reliably performed.
  • a plurality of light distributors that have a plurality of light input units and a light output unit and distribute and output light input from one light input unit to a plurality of light output units
  • An optical communication device that transmits an optical signal to an optical input unit included in the optical distributor and receives an optical signal output from the optical output unit is connected to each star via an optical communication line. Since the optical distributors are also connected by the optical input unit and the optical output unit, the entire optical communication is realized.
  • the optical communication device connected to the optical distributor transmits an optical signal
  • the transmitted optical signal is input to the optical input unit of one optical distributor.
  • One of the plurality of optical output units is connected to the optical communication apparatus that has transmitted the optical signal. Therefore, the optical communication apparatus can monitor the optical signal transmitted by itself. From the optical output unit of the optical distributor, it is also output to other optical communication devices connected in a star shape so that each optical communication device can receive and also input to the optical input unit of the other optical distributor.
  • the other optical distributors are also distributed and output from a plurality of optical output units, so that the same optical signal is similarly received by the optical communication devices connected in a star shape. Thereby, even in optical communication, communication using a protocol such as CAN that requires collision detection, arbitration, and the like is possible.
  • the optical communication device is included in an optical output unit not connected to the optical communication device, that is, an optical output unit connected to another optical distributor.
  • One or more filters for attenuating light having a wavelength different from the wavelength of the optical signal to be transmitted are connected.
  • the optical signal transmitted from the optical communication device connected to one optical distributor is input to the one optical distributor and output to another optical communication device connected to the optical distributor.
  • it is output to the input section of another optical distributor without being attenuated.
  • the light input from the optical input unit is output from each optical output unit, and thus the light output from one optical distributor and input is output without discrimination.
  • the filter connected to the other distributor attenuates light having a wavelength different from the wavelength of the optical signal transmitted by the optical communication device connected to the other distributor. Therefore, the light output from one optical distributor and input to the other optical distributor is output again from the other optical distributor, but is attenuated by the filter and does not return to the first optical distributor. .
  • the optical communication apparatus performs communication based on a predetermined protocol for comparing the optical signal being transmitted and the optical signal being received to determine whether transmission is successful.
  • a predetermined protocol for comparing the optical signal being transmitted and the optical signal being received to determine whether transmission is successful.
  • the predetermined protocol is, for example, CAN.
  • the cost of the in-vehicle communication system can be reduced by configuring an optical distributor using one or a plurality of inexpensive two-input two-output optical couplers. For example, when optical communication is performed between two optical communication devices, one optical coupler may be used, and when optical communication is performed between four optical communication devices, four optical couplers may be used. When optical communication is performed between optical communication devices, 12 optical couplers may be used.
  • a harness is configured by connecting a filter to be attenuated in advance.
  • a filter may be provided inside the connection connector between the harnesses, whereby an optical communication system capable of easily performing a predetermined protocol communication can be configured by connecting the harnesses together.
  • the filter may constitute an optical distribution device together with the optical distributor.
  • Optical communication that allows easy protocol communication by connecting multiple optical distribution devices with different wavelengths of light to be attenuated by the filter and connecting optical communication devices corresponding to the wavelength of the filter to each optical distribution device
  • the system can be configured.
  • a plurality of optical communication devices are connected in a star shape centering on the optical distributor, and each optical communication device transmits an optical signal to one optical input unit of the optical distributor, and the optical distributor
  • the communication of the in-vehicle communication system is converted to optical communication to eliminate the influence of ringing, disturbance noise, etc.
  • communication processing similar to that of the conventional CAN protocol can be performed, the in-vehicle communication system can be optically communicated at low cost.
  • a plurality of optical communication devices are connected to the optical distributor, and the optical distributors are further connected to form a communication system.
  • each optical communication device can always monitor the signal transmitted to the communication line including the signal transmitted by itself.
  • communication using a protocol such as CAN that requires collision detection, arbitration, and the like can be realized.
  • FIG. 10 is a block diagram showing a configuration of an in-vehicle optical communication system in a fourth embodiment.
  • FIG. 10 is a block diagram showing a configuration of an optical communication apparatus in a fourth embodiment.
  • FIG. 10 is a schematic diagram schematically showing the configuration of an optical distributor and a connector and transmission / reception of an optical signal via the optical distributor and the connector in the fourth embodiment.
  • FIG. 10 is a graph showing the characteristics of a filter in the fourth embodiment.
  • FIG. 10 is a block diagram showing a configuration of an in-vehicle optical communication system in a fifth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of an optical distribution device in a fifth embodiment.
  • FIG. 1 is a block diagram showing a configuration of an in-vehicle communication system according to Embodiment 1 of the present invention.
  • the in-vehicle communication system according to Embodiment 1 has a configuration in which a plurality (two) of optical communication devices 1a and 1b are connected to an optical coupler 3 via optical communication lines 4 and 5, respectively. It is a star type network system.
  • Optical communication devices 1a and 1b of an in-vehicle communication system are those in which an optical communication function is mounted on an electronic device such as an ECU (Electronic Control Unit) mounted on a vehicle (not shown).
  • ECU Electronic Control Unit
  • FIG. 1 only one optical communication device 1a is shown in a detailed configuration, and the other optical communication device 1b has the same configuration, and therefore the detailed configuration is not shown.
  • Each of the optical communication devices 1a and 1b includes a CPU (Central Processing Unit) 11, a CAN control unit 12, and an optical communication unit 13.
  • CPU Central Processing Unit
  • the CPU 11 of the optical communication devices 1a and 1b performs processing such as various operations necessary for operation control and control of each unit in the device by executing a program stored in advance in a ROM (Read Only Memory) or the like. It is. In addition, when it is necessary to exchange information with other optical communication apparatuses 1a and 1b in these processing steps, the CPU 11 gives a communication instruction to the CAN control unit 12 to thereby transmit the other optical communication apparatuses 1a and 1b. Can communicate with. When the CPU 11 transmits data to the other optical communication apparatuses 1 a and 1 b, the CPU 11 gives this data to the CAN control unit 12. Further, when receiving data from the other optical communication devices 1a and 1b, the CAN control unit 12 gives this data to the CPU 11.
  • ROM Read Only Memory
  • the CAN control unit 12 converts the data into data for transmission according to the data format of the CAN protocol, and gives the data to the optical transmission unit 15 of the optical communication unit 13.
  • Data transmitted / received by the CAN protocol is composed of a plurality of fields such as an arbitration field, a control field, a data field, a CRC (Cyclic Redundancy Check) field, and an ACK (ACKnowledgement) field.
  • the arbitration field is data for arbitrating communication collisions. A value corresponding to the priority of transmission data is stored, and data “0 (dominant)” has a higher priority than data “1 (recessive)”. high.
  • the CAN control unit 12 is provided with data received by the optical receiving unit 14 of the optical communication unit 13. Since this received data is in the CAN protocol data format, the CAN control unit 12 extracts necessary data from the data field of the received data and gives it to the CPU 11. Thereby, CPU11 can perform the process according to the received data from other optical communication apparatuses 1a and 1b.
  • the optical communication unit 13 includes an optical reception unit 14 and an optical transmission unit 15, and an electrical signal transmitted / received to / from the CAN control unit 12 and light transmitted / received to / from other optical communication devices 1 a and 1 b. It performs mutual conversion with signals.
  • the optical transmission unit 15 of the optical communication unit 13 includes a light source such as a light emitting diode and a drive circuit for turning on / off the light source, and transmits transmission data given as an electrical signal from the CAN control unit 12. The optical signal is converted into an optical signal, and this optical signal is output to the optical communication line 4 for transmission.
  • the optical receiver 14 of the optical communication unit 13 includes a light receiving element such as a photodiode, for example, and detects light emitted from the optical communication line 5 for reception.
  • the optical receiver 14 can output an electrical signal corresponding to the light detected by the light receiving element, thereby receiving the optical signal transmitted by the other optical communication devices 1a and 1b and converting it into an electrical signal, This can be given to the CAN control unit 12.
  • the optical coupler 3 of the in-vehicle communication system has a configuration in which two optical input units 31 are provided on one side and two optical output units 32 are provided on the other side, and light input from the optical input unit 31 is provided. Is a light distributor that distributes the light to two light output units 32.
  • the first optical input unit 31 of the optical coupler 3 is connected to the optical transmission unit 15 of the optical communication device 1a via the optical communication line 4, and the second optical input unit 31 is connected to the optical transmission unit 15 of the optical communication device 1b. They are connected via an optical communication line 4.
  • the first optical output unit 32 of the optical coupler 3 is connected to the optical receiver 14 of the optical communication device 1a via the optical communication line 5, and the second optical output unit 32 is the optical receiver 14 of the optical communication device 1b. Are connected to each other via an optical communication line 5.
  • the optical signal transmitted from the optical transmission unit 15 of the optical communication device 1a via the optical communication line 4 is input to the input unit 31 of the optical coupler 3, and is distributed by the optical coupler 3 to be transmitted to the two optical output units. 32 and received by both of the optical communication devices 1a and 1b.
  • the optical signal transmitted by the optical communication device 1b is distributed by the optical coupler 3 and received by both the optical communication devices 1a and 1b.
  • the optical communication devices 1a and 1b both transmit optical signals, the two optical signals are combined and distributed by the optical coupler 3, and the combined optical signals are output from the two optical output units 32, respectively. And received by both of the optical communication apparatuses 1a and 1b.
  • the optical signals transmitted by the optical communication devices 1a and 1b are obtained by associating digital data with / without light. Since the optical coupler 3 outputs light to both of the two optical output units 32 when light is input to one of the two optical input units 31, the presence or absence of light in the optical signal is determined. By making correspondence with dominant / recessive in the data format of the CAN protocol, arbitration similar to that of the CAN protocol can be performed.
  • the optical communication line 4 connecting the optical transmission unit 15 of the optical communication device 1a and the optical input unit 31 of the optical coupler 3 is connected to the optical transmission unit 15 of the optical communication device 1b and the optical input unit 31 of the optical coupler 3. It is preferable that the optical communication line 4 has substantially the same length. This is to suppress the occurrence of a difference in the timing at which the optical signal transmitted from the optical communication device 1 a and the optical signal transmitted from the optical communication device 1 b are input to the optical coupler 3. However, there may be some difference in the lengths of the two optical communication lines 4 depending on the communication speed of the optical communication.
  • the optical data of the optical communication unit 13 is converted from the transmission data converted into a predetermined data format by the CAN control unit 12.
  • the transmitter 15 converts the optical signal and transmits it.
  • the optical communication devices 1a and 1b convert the optical signal received by the optical receiving unit 14 of the optical communication unit 13 after the transmission of the optical signal into the received data of the electric signal, and the data transmitted by the received data. Is determined by the CAN control unit 12 to detect occurrence of a collision of optical signal transmission with the other optical communication apparatuses 1a and 1b.
  • the optical communication devices 1a and 1b can continue the transmission process.
  • the optical communication apparatuses 1a and 1b that have detected the collision stop the transmission process, and the data transmitted by the other optical communication apparatuses 1a and 1b Receive processing. Even if optical signal collision actually occurs, the optical communication devices 1a and 1b that transmit high priority data do not detect the collision and may continue the transmission process. it can.
  • FIG. 2 is a flowchart showing a procedure of transmission processing performed by the optical communication apparatuses 1a and 1b of the in-vehicle communication system according to the present invention.
  • the CPU 11 of the optical communication devices 1a and 1b first gives the data to be transmitted to the CAN control unit 12, and the CAN control unit 12 converts the data format.
  • the optical transmission unit 15 converts the transmission data into an optical signal and outputs it, thereby transmitting the optical signal (step S1).
  • the optical communication devices 1a and 1b receive the optical signal at the optical receiving unit 14 (step S2), convert the received optical signal into received data of the electrical signal, and send it to the CAN control unit 12. give.
  • the optical communication devices 1a and 1b determine in the CAN control unit 12 whether or not the optical signal (transmission signal) transmitted in step S1 matches the optical signal (reception signal) received in step S2. (Step S3).
  • the transmission signal and the reception signal do not match (S3: NO)
  • a collision of transmission of the optical signal with the other optical communication devices 1a and 1b is detected, and the optical communication devices 1a and 1b stop the transmission process
  • the CAN control unit 12 performs reception processing of optical signals transmitted from the other optical communication devices 1a and 1b (step S4), and determines whether the reception processing is completed (step S5).
  • the optical communication devices 1a and 1b return the process to step S4 and continue the reception process.
  • the optical communication devices 1a and 1b return the process to step S1 and perform the transmission process again.
  • the optical communication devices 1a and 1b can continue the transmission process because the collision of the optical signals is not detected. Therefore, the optical communication devices 1a and 1b determine whether or not the transmission of the optical signal related to the transmission data is finished (step S6). If the transmission is not finished (S6: NO), the process proceeds to step S1. To continue the transmission process. When the transmission of the optical signal related to the transmission data is finished (S6: YES), the optical communication devices 1a and 1b finish the transmission process.
  • a plurality of optical communication devices 1a and 1b are arranged in a star shape through the optical communication lines 4 and 5 with the optical coupler 3 that distributes the input light as a center.
  • the optical communication devices 1a and 1b input the optical signal to the optical input unit 31 of the optical coupler 3 at the optical transmission unit 15 and the optical signal output from the optical output unit 32 of the optical coupler 3 to the optical signal.
  • the CAN control unit 12 provided in each optical communication device 1a, 1b is the same as that provided in the communication device that performs telecommunications.
  • the optical communication devices 1a and 1b can be realized by providing the optical communication unit 13 in a conventional communication device that performs telecommunications, the optical communication devices 1a and 1b can be developed at low cost.
  • Each optical communication device 1a, 1b receives an optical signal at the optical receiver 14 after transmitting an optical signal at the optical transmitter 15, and depends on whether the transmitted signal and the received signal match.
  • optical communication arbitration can be performed by the same method as the CAN protocol by stopping the transmission process of its own optical signal and performing the reception process.
  • the optical communication line 4 connecting the optical transmission unit 15 of the optical communication device 1a and the optical input unit 31 of the optical coupler 3 and the optical transmission unit 15 of the optical communication device 1b and the optical input unit 31 of the optical coupler 3 are connected.
  • optical communication line 4 By making the optical communication line 4 substantially the same length, there is a difference in the timing at which the optical signal transmitted from the optical communication device 1a and the optical signal transmitted from the optical communication device 1b are input to the optical coupler 3. Occurrence can be suppressed, and processing such as collision detection and arbitration in optical communication can be reliably performed.
  • the in-vehicle communication system is configured to perform optical communication between the two optical communication devices 1a and 1b using the two-input two-output optical coupler 3.
  • the present invention is not limited to this.
  • a configuration in which three or more optical communication devices perform optical communication using an optical coupler having many inputs and outputs may be employed. Even if three or more optical communication devices are configured to perform optical communication, each optical communication device is connected to a star type centered on an optical coupler via an optical communication line, and the above-described optical communication collision detection and arbitration is performed. Such processing may be performed by each optical communication device.
  • FIG. 3 and 4 are block diagrams showing the configuration of the in-vehicle communication system according to Embodiment 2 of the present invention.
  • FIG. 3 shows the overall configuration of the in-vehicle communication system, and FIG. The detailed configuration of the apparatus is shown.
  • the in-vehicle communication system according to the first embodiment described above is configured such that the two optical communication devices 1a and 1b perform only optical communication.
  • the in-vehicle communication system according to the second embodiment is a system in which optical communication and telecommunication are mixed.
  • the in-vehicle communication system according to the second embodiment includes two optical communication devices 7a and 7b and one optical coupler 3 as in the first embodiment, and includes four telecommunication devices 9a to 9d.
  • the optical communication devices 7a and 7b of the in-vehicle communication system according to the second embodiment include an optical communication function that performs optical communication via the optical communication lines 4 and 5 and electrical communication that performs electrical communication via the CAN bus 6. It is the structure which has a function.
  • the optical transmission unit 15 is connected to the first optical input unit 31 of the optical coupler 3 via the optical communication line 4, and the optical reception unit 14 is optical communication.
  • the first optical output unit 31 of the optical coupler 3 is connected via the line 5.
  • the optical transmission unit 15 is connected to the second optical input unit 31 of the optical coupler 3 via the optical communication line 4, and the optical reception unit 14 is connected to the optical coupler via the optical communication line 5.
  • the two optical communication devices 7 a and 7 b are connected in a star shape with the optical coupler 3 as the center through the optical communication lines 4 and 5.
  • the optical communication devices 7a and 7b have the CPU 11, the CAN control unit 12 and the optical communication unit 13 similar to the optical communication devices 1a and 1b of the first embodiment, and the CAN control unit 71 and the electric communication unit 72.
  • the CAN control unit 71 performs the same processing as the CAN control unit 12, converts the data given from the CPU 11 into transmission data according to the data format of the CAN protocol, and gives the data to the telecommunication unit 72. While transmitting, necessary data is extracted from the received data received by the telecommunication unit 72 and given to the CPU 11. Therefore, the CPU 11 can use the CAN control unit 12 when performing optical communication, and can use the CAN control unit 71 when performing electrical communication.
  • the CAN control unit 71 performs processing such as communication collision detection and mediation using the CAN protocol.
  • the telecommunication units 72 of the optical communication devices 7a and 7b are connected to the CAN bus 6, and output the transmission data given from the CAN control unit 71 to the CAN bus 6 as electric signals, so that the telecommunication devices 9a to 9a- The electric signal is transmitted to 9d. Further, the telecommunication unit 72 receives an electric signal by detecting the potential of the CAN bus 6, and gives the received data obtained thereby to the CAN control unit 71. The CAN control unit 71 can detect a communication collision depending on whether the transmitted data matches the received data.
  • the optical communication device 7a and the telecommunication devices 9a and 9b are connected to a common CAN bus 6 and can perform electrical communication according to the CAN protocol.
  • the device 7b and the telecommunication devices 9c and 9d are connected to a common CAN bus 6 and can perform telecommunication in accordance with the CAN protocol.
  • the telecommunication devices 9a to 9d include a CPU 91, a CAN control unit 92, a telecommunication unit 93, and the like.
  • the CPU 91, the CAN control unit 92, and the telecommunication unit 93 included in the telecommunication devices 9a to 9d have substantially the same configuration as the CPU 11, the CAN control unit 71, and the telecommunication unit 72 included in the optical communication devices 7a, 7b. Therefore, the telecommunication devices 9a to 9d can transmit and receive electrical signals via the CAN bus 6, and can perform processing such as communication collision detection and arbitration by the CAN protocol.
  • the optical communication devices 7a and 7b are configured to have not only an optical communication function but also an electric communication function, so that the in-vehicle communication system has optical communication and electric communication. And the versatility of the in-vehicle communication system can be improved. In addition, since the optical communication devices 7a and 7b can perform both optical communication and electrical communication by a communication method based on the CAN protocol, an increase in development cost of the optical communication devices 7a and 7b can be suppressed.
  • telecommunication devices 9a and 9b connected to one CAN bus 6 are connected to telecommunication devices 9c and 9d connected to the other CAN bus 6 via optical communication devices 7a and 7b and an optical coupler 3, respectively. It can also be set as the structure which communicates, By this, the versatility of a vehicle-mounted communication system can be improved more.
  • the two telecommunication devices 9a to 9d are connected to the optical communication devices 7a and 7b via the CAN bus 6.
  • the present invention is not limited to this.
  • the number of telecommunication devices 9a to 9d connected to is arbitrary.
  • the in-vehicle communication system according to the above-described first and second embodiments has a configuration in which two optical communication devices 1a, 1b or 7a, 7b perform optical communication using one two-input two-output optical coupler 3.
  • the in-vehicle communication system according to Embodiment 3 enables more optical communication devices to perform optical communication.
  • FIGS. 5 to 7 are schematic diagrams showing an example of the configuration of an optical distributor used in an in-vehicle communication system.
  • FIG. 5 shows a two-input two-output optical coupler 3 used in the in-vehicle communication system according to the first and second embodiments (however, in this figure, the optical input unit 31 and the optical output unit 32 are shown. Are omitted and the input / output of the optical signal is indicated by arrows).
  • two optical communication devices can perform optical communication.
  • FIG. 6 shows an example in which a four-input four-output optical distributor is configured by using four optical couplers 3a to 3d.
  • this optical distributor two two-input two-output optical couplers 3a and 3b are provided at the front stage (input side), and four optical signals output from the four optical communication devices are supplied to the optical input unit 31 of the optical couplers 3a and 3b. Each can be entered. Further, the two optical couplers 3c and 3d are set as the subsequent stage (output side), and the two optical output units 32 of the preceding optical coupler 3a are connected to the optical input units 31 of the two subsequent optical couplers 3c and 3d, respectively.
  • the two optical output units 32 of the optical coupler 3b are connected to the optical input units 31 of the two subsequent optical couplers 3c and 3d.
  • the optical signal input to one of the optical input units 31 of the upstream optical couplers 3a and 3b is output from all the optical output units 32 of the downstream optical couplers 3c and 3d.
  • these optical signals are combined and output from all the optical output units 32 of the subsequent optical couplers 3c and 3d.
  • FIG. 7 shows an example in which an optical splitter 30 having 8 inputs and 8 outputs is configured by using 12 optical couplers 3a to 3l.
  • This optical distributor 30 has four optical couplers 3a to 3d arranged in the front stage, four optical couplers 3e to 3h arranged in the middle stage, and four optical couplers 3i to 3l arranged in the rear stage.
  • the optical signals output from the two preceding optical couplers 3a and 3b are respectively input to the two middle optical couplers 3e and 3f, and the optical signals output from the two preceding optical couplers 3c and 3d are Are respectively input to the two optical couplers 3g and 3h in the middle stage.
  • the optical couplers 3a, 3b, 3e, and 3f form a 4-input 4-output optical distributor similar to that in FIG. 6, and the optical couplers 3c, 3d, 3g, and 3h have the same 4-input as in FIG. A 4-output optical distributor is configured.
  • optical signals output from the two middle optical couplers 3e and 3g of the optical distributor 30 are respectively input to the subsequent two optical couplers 3i and 3j and output from the two middle optical couplers 3f and 3h.
  • the optical signals are input to the two subsequent optical couplers 3k and 3l.
  • the optical signals input to any one of the optical input units 31 of the preceding four optical couplers 3a to 3d are output from all the optical output units 32 of the subsequent four optical couplers 3i to 3l.
  • a plurality of optical signals are input to the preceding optical couplers 3a to 3d, these optical signals are combined and output from all the optical output units 32 of the subsequent optical couplers 3i to 3l.
  • FIG. 8 is a block diagram showing the configuration of the in-vehicle communication system according to Embodiment 3 of the present invention.
  • the in-vehicle communication system according to Embodiment 3 includes three 8-input 8-output optical distributors 30 shown in FIG. In each optical distributor 30, seven optical communication devices 1 and one photoelectric conversion device 7 are connected in a star shape via optical communication lines 4 and 5, and form star networks 8a to 8c, respectively. is doing.
  • the 8-input 8-output optical splitter 30 is indicated by an octagonal symbol
  • the optical communication device 1 is indicated by a circular symbol
  • the photoelectric conversion device 7 is indicated by a square symbol.
  • the optical communication devices 1 are not shown in the star networks 8b and 8c, seven optical communication devices 1 are connected to the optical distributor 30, respectively.
  • the optical communication device 1 has the same configuration as that of the optical communication devices 1a and 1b described in the first embodiment, and the optical transmission unit 15 includes any of the optical input units 31 of the optical couplers 3a to 3d that constitute the optical distributor 30. And the optical receiver 14 is connected to one of the optical output units 32 of the optical couplers 3i to 3l constituting the optical distributor 30 via the optical communication line 5. Yes. As a result, the optical communication device 1 communicates with another optical communication device 1 and the photoelectric conversion device 7 in the same star network 8a to 8c (that is, connected to the same optical distributor 30) by the CAN protocol. It can be performed.
  • the photoelectric conversion device 7 has the same configuration as the optical communication devices 7a and 7b shown in the second embodiment, and has an optical communication function and an electric communication function.
  • the optical transmitter 15 is connected to one of the optical input units 31 of the optical distributor 30 via the optical communication line 4, and the optical receiver 14 is connected to any of the optical output units 32 of the optical distributor 30.
  • the photoelectric conversion device 7 of the other star type networks 8 a to 8 c via the CAN bus 6.
  • the photoelectric conversion device 7 can perform optical communication with the optical communication device 1 in the same star network 8a to 8c, and can communicate with other photoelectric conversion devices 7 via the CAN bus 6. Communication can be performed.
  • the photoelectric conversion device 7 when receiving an optical signal from the optical communication device 1 in the same star network 8a to 8c by optical communication, the photoelectric conversion device 7 converts the received optical signal into an electric signal by the optical communication unit 13, and converts the optical signal. By outputting the electrical signal from the electrical communication unit 72 to the CAN bus 6, the electrical signal can be transmitted to the photoelectric conversion devices 7 of the other star networks 8a to 8c.
  • the photoelectric conversion device 7 receives an electrical signal from another photoelectric conversion device 7, the photoelectric conversion device 7 converts the received electrical signal into an optical signal by the optical communication unit 13 and outputs the optical signal to the optical communication line 4. Can be transmitted to the optical communication device 1 in the type networks 8a to 8c. That is, the photoelectric conversion device 7 mediates electrical communication and optical communication.
  • an optical signal transmitted from one optical communication device 1 of the star network 8a is received by the other optical communication device 1 and the photoelectric conversion device 7 in the same star network 8a, and the photoelectric conversion device. 7 is converted into an electrical signal and transmitted to the photoelectric conversion devices 7 of the other star type networks 8b and 8c.
  • the photoelectric conversion devices 7 of the other star type networks 8b and 8c that have received this electrical signal convert it into an optical signal. It is converted and transmitted to the optical communication apparatus 1 in the star type networks 8b and 8c. That is, each optical communication device 1 can transmit / receive data to / from all other optical communication devices 1 included in the in-vehicle communication system.
  • FIG. 9 is a schematic diagram illustrating an example in which the vehicle-mounted communication system according to the third embodiment is mounted on the vehicle 100.
  • a star network 8 a is disposed at the front of the vehicle 100
  • a star network 8 b is disposed at the center of the vehicle 100
  • a star network 8 c is disposed at the rear of the vehicle 100.
  • the three star networks 8a to 8c are connected to the photoelectric conversion device 7 via a CAN bus 6 arranged along the vehicle body of the vehicle 100, and can transmit and receive electrical signals to and from each other. it can.
  • a star network 8a can be configured by connecting a plurality of optical communication devices 1 through optical communication lines 4 and 5 around the device 30. Thereby, the optical communication between the optical communication apparatuses 1 performed in the star network 8a can be performed with high accuracy without being affected by ringing, disturbance noise, and the like. The same applies to the optical communication in the star-type networks 8b and 8c arranged at the center and the rear of the vehicle 100.
  • an electric communication line is used.
  • the star networks 8a to 8c arranged in the front, center, and rear portions of the vehicle 100 are connected using the CAN bus 6 and are electrically communicated by the photoelectric conversion device 7, whereby the vehicle 100 The communication line can be easily arranged.
  • the in-vehicle communication system configures the star networks 8a to 8c that perform optical communication centered on the optical distributor 30 at locations where the distance between the electronic devices in the vehicle 100 is short.
  • the optical communication device 1 and the photoelectric conversion device 7 are connected to each other with the optical distributor 30 as a center to form star networks 8a to 8c.
  • the photoelectric conversion devices 7 of 8a to 8c are connected by the CAN bus 6, an in-vehicle communication system in which optical communication and telecommunications are mixed can be realized, so that the versatility of the in-vehicle communication system can be improved. .
  • an 8-input 8-output optical distributor 30 using a plurality of 2-input 2-output optical couplers 3a to 3l, an optical distributor 30 having more inputs and outputs can be realized at low cost, and in-vehicle communication Increase in system cost can be suppressed.
  • the in-vehicle communication system is configured to include the three star networks 8a to 8c, but is not limited thereto, and is configured to include two or less star networks or four or more star networks. There may be. Further, each star network 8a to 8c is configured to include seven optical communication devices 1, but the present invention is not limited to this, and may be configured to include six or less optical communication devices 1, and many more. A configuration including eight or more optical communication apparatuses 1 using an optical distributor having the following inputs and outputs may be used.
  • FIG. 10 is a block diagram illustrating a configuration of the in-vehicle optical communication system according to the fourth embodiment.
  • the in-vehicle optical communication system is installed in the vehicle 100, and includes a plurality of optical communication devices 110a, 110a, ..., 110b, 110b, ..., optical distributors 102a, 102b, optical communication lines 103, 103, ..., and a connector 104a. , 104b.
  • the optical distributor 102a, the optical communication line 103, and the connector 104a constitute an optical communication harness 105a.
  • the optical distributor 102b, the optical communication line 103, and the connector 104b constitute an optical communication harness 105b.
  • the plurality of optical communication devices 110a, 110a,... are connected to the optical distributor 102a in a star shape via the optical communication line 103, respectively.
  • the plurality of optical communication devices 110b, 110b,... are connected to the optical distributor 102b in a star shape via the optical communication line 103, respectively.
  • a connector 104 a is connected to the optical distributor 102 a via an optical communication line 103.
  • a connector 104b is connected to the optical distributor 102b via an optical communication line 103. By connecting the connector 104a and the connector 104b, the optical distributor 102a and the optical distributor 102b are connected.
  • the optical communication line 103 is an optical fiber.
  • the upstream line from the optical communication device 110a to the optical distributor 102a is distinguished from the downstream line from the optical distributor 102a to the optical communication device 110a.
  • an upstream line from the optical communication device 110b to the optical distributor 102b is distinguished from a downstream line from the optical distributor 102b to the optical communication device 110b.
  • the optical communication line 103 between the optical distributor 102a and the optical distributor 102b is also distinguished by a line from the optical distributor 102a to the optical distributor 102b and a line from the optical distributor 102b to the optical distributor 102a. Is done.
  • FIG. 11 is a block diagram illustrating a configuration of the optical communication device 110a (110b) according to the fourth embodiment.
  • the optical communication device 110a includes a microcomputer 111 (described as ⁇ C in FIG. 11) and an optical transceiver 112.
  • the optical communication device 110a is an ECU that controls each device mounted on the vehicle. Since the optical communication device 110a and the optical communication device 110b have the same configuration except for the wavelength of the optical signal transmitted from the optical transceiver, a detailed description of the internal configuration of the optical communication device 110b will be described. Omitted.
  • a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) reads a program stored in a ROM (Read Only Memory) and executes a process of controlling the in-vehicle device (both shown in FIG. Not shown).
  • the microcomputer 111 has the function of the CAN controller 113. Thereby, the microcomputer 111 transmits / receives data based on the CAN protocol, and executes control processing based on the received data.
  • the CAN controller 113 outputs, to the optical transceiver 112, a transmission signal Tx converted into transmission data in accordance with the data format of the CAN protocol based on an instruction from the processor in the microcomputer 111.
  • the CAN controller 113 receives the received signal Rx from the optical transceiver 112, interprets the signal based on the CAN protocol, and notifies the processor of the contents.
  • the CAN controller 113 inputs the reception signal Rx while sequentially outputting the transmission signal Tx bit by bit, and compares an arbitration field (described later) of the reception signal Rx with an arbitration field of its own transmission signal Tx.
  • the CAN controller 113 continues to output the transmission signal Tx if the arbitration field of the transmission signal Tx and the reception signal Rx match, and if not, enters the reception mode and stops outputting the transmission signal Tx.
  • arbitration processing when signals are simultaneously transmitted from a plurality of optical communication devices 110a (or optical communication devices 110b) is realized.
  • a signal transmitted / received by the CAN protocol is a digital signal composed of a plurality of fields such as an arbitration field, a control field, a data field, a CRC (Cyclic Redundancy Check) field, and an ACK (ACKnowledgement) field.
  • Data given from the processor of the microcomputer 111 is stored in the data field.
  • the arbitration field is a field for performing the above-described arbitration processing when a collision occurs in communication, and stores a value corresponding to the priority of the signal.
  • the CAN controller 113 on the transmission side determines whether or not it has been received based on the presence or absence of an ACK bit in the ACK field of the transmitted signal, and determines whether or not retransmission is necessary. In the CAN protocol, “0 (dominant)” of a digital signal is given priority over “1 (recessive)”.
  • the optical transceiver 112 converts the transmission signal Tx generated in accordance with the CAN protocol by the CAN controller 113 into an optical signal and sends it to the optical communication line 103.
  • the optical transceiver 112 converts “0 (dominant)” / “1 (recessive)” in the CAN protocol in correspondence with optical “present” / “absent”, respectively.
  • the optical transceiver 112 receives a digital signal obtained by converting a signal received via the optical communication line 103, that is, “present” / “not present” of light into “0 (dominant)” / “1 (recessive)”.
  • the signal Rx is output to the CAN controller 113.
  • the optical transceiver 112 of the optical communication device 110a and the optical transceiver 112 of the optical communication device 110b have different wavelengths of optical signals to be transmitted.
  • the optical transceiver 112 of the optical communication apparatus 110a transmits a signal conforming to the CAN protocol using an optical signal having a wavelength of 650 nm, for example.
  • the optical transceiver 112 of the optical communication device 110a receives both the 550 nm optical signal and the 650 nm optical signal satisfactorily, converts the optical signal into a digital signal, and notifies the CAN controller 113 of the optical signal. However, the optical transceiver 112 of the optical communication device 110a ignores an optical signal weaker than a predetermined power among optical signals of 650 nm.
  • the optical transceiver 112 of the optical communication device 110b uses, for example, an optical signal having a wavelength of 550 nm.
  • the wavelengths used by the optical transceiver 112 of the optical communication device 110a and the optical transceiver 112 of the optical communication device 110b are preferably separated from each other by 50 to 100 nm or more.
  • an optical signal weaker than a predetermined power Is ignored.
  • FIG. 12 is a schematic diagram schematically illustrating the configuration of the optical distributors 102a and 102b and the connectors 104a and 104b and the transmission / reception of optical signals via the optical distributors 102a and 102b and the connectors 104a and 104b according to the fourth embodiment. . Since the configurations of the optical distributor 102a and the optical distributor 102b are the same, the details of the optical distributor 102a will be described below, and the detailed description of the optical distributor 102b will be omitted.
  • the optical distributor 102a includes four optical input units 120a and four optical output units 121a, and three optical communication devices 110a are connected.
  • the optical communication device 110a may include five or more optical input units 120a and optical output units 121a, and may be connected to four or more optical communication devices 110a as shown in FIG.
  • the light distributor 102a has four light input sections 120a on one side and four light output sections 121a on the other side.
  • the optical input unit 120a is a guide for introducing an optical signal from the optical communication line 103
  • the optical output unit 121a is a guide for introducing the light propagated in the optical distributor 102a to the connected optical communication line 103. is there.
  • the light output unit 121 a may include a light receiving element to receive light again and output it to the optical communication line 103. As a result, light input to one light input unit 120a is output from all four light output units 121a.
  • the optical distributor 102a is configured by using four inexpensive optical couplers with two inputs and two outputs. Two optical couplers are provided at the front stage (input side) and the rear stage (output side) two by two, and the two output units of the two optical couplers at the front stage are respectively connected to the two optical couplers at the rear stage. As a result, the light input to one input unit of the two preceding optical couplers is output to each of the two subsequent optical couplers, and is output from all the two output units of each of the two subsequent optical couplers. .
  • the light distributor 102a is formed of a transparent material such as a cylindrical or prismatic transparent resin or glass, and light input to one light input unit 120a propagates to the entire interior, and all four light output units 121a are transmitted. May be output.
  • optical distributor 102a When the optical distributor 102a has eight optical input units 120a and eight optical output units 121a, a configuration in which up to seven optical communication devices 110a are connected to the optical distributor 102a and then connected to one optical distributor 102b. Is possible.
  • the optical distributor 102a When the optical distributor 102a includes eight optical input units 120a and optical output units 121a, twelve inexpensive optical couplers with two inputs and two outputs, that is, four front stages (input side), four middle stages, and rear stages (output) Side) Four 2-input 2-outputs may be branched and connected.
  • the connector 104 a and the connector 104 b guide an optical signal propagating through the connected optical communication line 103 and introduce it to another optical communication line 103.
  • the connector 104a has a filter 140a inside, and the connector 104b has a filter 140b inside.
  • the filter 140a is an optical filter (HPF: High Path Filter), and the filter 140b is an optical filter (LPF: Low Path Filter).
  • FIG. 13 is a graph showing the characteristics of the filters 140a and 140b in the first embodiment.
  • the filter 140a transmits, for example, a 650 nm optical signal among the optical signals propagating through the optical communication line 103, and attenuates the 550 nm optical signal.
  • the filter 140b transmits an optical signal of 550 nm and attenuates an optical signal of 650 nm.
  • the optical communication device 110a and the optical communication device 110b can communicate according to the CAN protocol.
  • the details will be described below.
  • the optical communication device 110a transmits a data signal so that the data obtained by its own processing can be used by another optical communication device 110a or the optical communication device 110b.
  • the data signal is transmitted as an optical signal having a wavelength of 650 nm.
  • This optical signal is input to one optical input unit 120 a of the optical distributor 102 a connected via the optical communication line 103.
  • the optical distributor 102a outputs an optical signal input to one optical input unit 120a from all four optical output units 121a. Since three of the four optical output units 121a are connected to the three optical communication devices 110a including the optical communication device 110a that is the transmission source, all three optical communication devices 110a receive data signals from the transmission source. Can be received. As a result, in the optical communication device 110a that is the transmission source, the CAN controller 113 can compare the arbitration field of the data signal being output from the CAN controller 113 with the arbitration field of the received signal that is input. Communication can be realized.
  • the remaining one of the four light output sections 121a of the light distributor 102a is connected to the other light distributor 102b via a connector 104a that incorporates a filter 140a. Since the filter 140a transmits 100% of light of the wavelength (650 nm) of the optical signal transmitted by the optical communication device 110a connected to the optical distributor 102a, the optical signal transmitted from one optical communication device 110a is: It also reaches the distributor 102b.
  • the optical signal input to one optical input unit 120b of the optical distributor 102b is similarly output from all four optical output units 121b of the optical distributor 102b.
  • Three of the four optical output units 121b are connected to the three optical communication devices 110b via the optical communication lines 103, respectively. Since the optical communication device 110b receives the optical signals output from these three optical output units 121b regardless of the wavelength, the optical communication device 110b can receive the optical signals transmitted from the optical communication device 110a. Thereby, the light transmitted from the optical communication device 110a can also be received by the optical communication device 110b.
  • the remaining one of the four light output sections 121b of the light distributor 102b is connected to the light distributor 102a via a connector 104b that incorporates a filter 140b. Therefore, an optical signal transmitted from the optical communication device 110a and output from the optical distributor 102a is input to the optical distributor 102b, and then output from the output unit 121b of the optical distributor 102b without being distinguished from other optical signals. Then, it tries to return to the light distributor 102a again.
  • the filter 140b of the connector 104b transmits 100% of the light of the wavelength (550 nm) of the optical signal transmitted by the optical communication device 110b connected to the optical distributor 102b, but attenuates light of a different wavelength (650 nm). Let Therefore, the optical signal transmitted from the optical communication device 110a and output from the optical distributor 102a is weak in power even after returning to the optical distributor 102a after being input to the optical distributor 102b. Not received by transceiver 112.
  • the optical communication device 110b transmits a data signal so that the data obtained by its own processing can be used by another optical communication device 110b or the optical communication device 110a.
  • An optical signal having a wavelength of 550 nm transmitted from the optical communication device 110b is input to one optical input unit 120b of the optical distributor 102b and output from the four optical output units 121b. Thereby, it is possible to receive the optical signal from the optical communication device 110b by the four optical communication devices 110b including the transmission source.
  • the optical signal is output from one optical output unit 121b of the four optical output units 121b to the optical distributor 102a side through the connector 104b incorporating the filter 140b.
  • the filter 140b Since the filter 140b transmits an optical signal having a wavelength of 550 nm and attenuates an optical signal having a wavelength of 650 nm, the optical signal from the optical communication device 110b is transmitted. Therefore, the optical signal from the optical communication device 110b reaches the optical distributor 102a.
  • the optical signal is input to the optical input unit 120a of the optical distributor 102a and is also output from the optical output unit 121a connected to the optical distributor 102b, but is attenuated by the filter 140a and returns to the optical distributor 102b. Even so, the power is weak and is not received by the transceiver 112 of the optical communication device 110b.
  • the optical communication device 110a and the optical communication device 110b can transmit and receive optical signals based on CAN, and the optical distribution is achieved by including the filter 140a and the filter 140b.
  • the loop phenomenon of the optical signal between the optical device 102a and the optical distributor 102b can be avoided.
  • the optical communication harnesses 105a and 105b are configured, and the optical communication devices 110a, 110a,..., 110b, 110b,.
  • an optical communication system that realizes optical communication based on CAN without a GW can be easily constructed.
  • the filter 140a is included in the connector 104a connected to the optical output unit 121a not connected to the optical communication device 110a in the optical output unit 121a of the optical distributor 102a.
  • the filter corresponding to the filter 140a is integrated with the light distributor 102a.
  • the configuration of the in-vehicle optical communication system in the fifth embodiment is the same as the configuration in the fourth embodiment. However, instead of the optical distributor 102a and the connector 104a, the optical distributor 6 and a connector that does not include the filter 140a are included.
  • FIG. 14 is a block diagram illustrating a configuration of the in-vehicle optical communication system according to the fifth embodiment.
  • the in-vehicle optical communication system according to the fifth embodiment is installed in a vehicle 100, and includes a plurality of optical communication devices 110a, 110a,..., 110b, 110b, ..., optical distribution devices 106a and 106b, and optical communication lines 103, 103,. ... And.
  • the optical distributor 106a and the optical communication line 103 constitute an optical communication harness 107a.
  • the optical distributor 106b and the optical communication line 103 constitute an optical communication harness 107b.
  • the plurality of optical communication devices 110 a, 110 a,... Are connected to the optical distribution device 106 a in a star shape via the optical communication line 103.
  • the plurality of optical communication devices 110b, 110b,... are connected to the light distribution device 106b in a star shape via the optical communication line 103, respectively.
  • the optical distribution device 106a and the optical distribution device 106b are distinguished from each other by a line from the optical distribution device 106a to the optical distribution device 106b and a line from the optical distribution device 106b to the optical distribution device 106a via the optical communication line 103. Connected.
  • FIG. 15 is a block diagram showing a configuration of the light distribution apparatus 106a according to the fifth embodiment. Since the configurations of the light distribution device 106a and the light distribution device 106b are the same, the details of the light distribution device 106a will be described below, and the detailed description of the light distribution device 106b will be omitted.
  • the light distribution device 106a includes a light distributor 160a and a filter 164a.
  • the optical distributor 160a is configured by using four inexpensive optical couplers with two inputs and two outputs, and has four optical input portions 161a on one side and the other side. Have four light output portions 162a.
  • the light distributor 160a may be formed of a transparent material such as a cylindrical or prismatic transparent resin or glass. Three of the four optical input portions 161a of the optical distributor 160a are connected to the connection terminal and the optical communication line so as to be connected to the optical communication device 110a, and the remaining one is the other It is connected to a terminal 163a via an optical communication line so as to be connected to the optical distribution device 106b.
  • One of the four optical output units 162a is connected to the filter 164a, and the other three optical output units 162a are connected to the optical communication device 110a via a connection terminal and an optical communication line. It is connected.
  • the filter 164a is an optical filter, and is connected to the terminal 165a via an optical communication line so as to be connected to the optical distribution device 106b.
  • the filter 164a is the same as the filter 140a in the fourth embodiment, transmits 100% of the light of the wavelength (650 nm) of the optical signal transmitted by the optical communication device 110a connected to the optical distribution device 106a, and transmits the light to the optical distribution device 106b.
  • the HPF attenuates light having a wavelength (550 nm) of an optical signal transmitted by the connected optical communication device 110b.
  • the filter 64b built in the optical distribution device 106b to which the optical communication device 110b is connected is the same as the filter 140b in the fourth embodiment, and the optical communication device 110b connected to the optical distribution device 106b transmits.
  • This is an LPF that transmits 100% of the wavelength (550 nm) of the optical signal transmitted and attenuates the light of the wavelength (650 nm) of the optical signal transmitted by the optical communication device 110a connected to the optical distribution device 106a.
  • the optical distribution device 106a and the optical distribution device 106b configured as described above are connected by the optical communication line 103 between the terminal 163a and the terminal 65b, the terminal 165a and the terminal 63b, and the optical communication device 110a is connected to the connection terminal of the optical distribution device 106a. , 110a,... Are connected to optical communication devices 110b, 110b,.
  • the configuration similar to the configuration shown in FIG. 12 in the fourth embodiment is achieved, and the optical communication device 110a and the optical communication device 110b can transmit and receive optical signals based on CAN, and include the filter 164a and the filter 64b.
  • the optical signal loop phenomenon between the optical distributor 106a and the optical distributor 106b can be avoided.
  • the optical communication harnesses 107a and 107b are configured, and the optical communication devices 110a, 110a,..., 110b, 110b,.
  • an optical communication system that realizes optical communication based on CAN without a GW can be easily constructed.
  • Embodiments 1 to 5 have described systems capable of optical communication based on CAN.
  • the present invention is not limited to CAN, and communication based on a protocol that constantly monitors and detects a collision including a signal transmitted to a communication line, particularly a signal transmitted by itself, is realized by an optical signal. Applicable to all systems.
  • Embodiments 1 to 5 the example applied to the in-vehicle network has been described.
  • the present invention is not limited to in-vehicle use, and can be applied to CAN communication such as FA (Factory Automation).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

車輌に搭載された電子機器間の通信を光通信化してリンギング及び外乱ノイズ等の影響を排除することができると共に、従来のCANプロトコルと同様の調停処理を行うことができる車載通信システムを提供する。 入力された光を分配する光カプラ3を中心に、光通信線4、5を介して複数の光通信装置1a、1bをスター型に接続し、各光通信装置1a、1bが光送信部15にて光カプラ3の光入力部31へ光信号を入力すると共に、光カプラ3の光出力部32から出力された光信号を光受信部14にて受信し、受信信号に応じて衝突検知を行う構成とする。各光通信装置1a、1bは、光送信部15にて光信号を送信した後、光受信部14にて光信号を受信し、送信信号と受信信号が一致するか否かに応じて衝突検知を行い、衝突を検知した場合には自らの光信号の送信処理を停止して受信処理を行う。

Description

車載通信システム、光通信ハーネス及び光分配装置
 本発明は、車輌に搭載された複数の電子機器(通信装置)間で通信を行う車載通信システムに関し、詳しくは光通信を行う車載通信システム、光通信ハーネス及び光分配装置に関する。
 従来、車輌には多数の電子機器が搭載されており、各電子機器が通信線を介して接続され、相互に情報交換を行いながら協調動作することによって、車輌の走行に係る制御及び車室内などの快適性に係る制御等を実現している。車輌に搭載された電子機器が通信を行う場合、通信規格としてCAN(Controller Area Network)が広く採用されている(非特許文献1、2参照)。
 また近年では、車輌に搭載する電子機器は増加する傾向にあるため、一の通信線(CANバス)により多くの電子機器を接続し、多くの電子機器間で相互に通信を行う必要が生じている。しかし、CANバスに多くの電子機器を接続するとリンギングなどが発生しやすくなり、通信障害の発生頻度が増加するという問題があるため、CANバスに接続可能な電子機器の数には限りがある。また車輌のエンジンルームなど、多数の電子機器及び通信線等が集中して配設される箇所においては、特に高電圧の信号を扱う電子機器及び通信線の近傍にて、CANバスに外乱のノイズが重畳されて通信障害が発生するという問題があった。
 そこで、電磁ノイズの影響を受けない光ケーブルを介した光通信を採用することが考えられる。車両の分野でも一部を光通信によって実現する構成が提案されている(特許文献1)。
 また、一部のみならず、車載の電子機器間の通信を全て光通信に代替することも考え得る。この場合、従来の電子機器を全て作り変えることなく通信システムを構築できることが望ましい。そのためには各電子機器が有する従来の通信プロトコルの通信機能を利用できるように通信システムを実現することが求められる。
 CANのプロトコルでは、差動信号を伝送するツイストペアケーブルにて構成されたCANバスに複数の電子機器が接続され、各電子機器は差動信号によって表されるデジタル信号を送受信する。また、CANはシリアル通信のプロトコルであり、CANバスに接続された複数の電子機器のうち、一の電子機器のみが送信処理を行うことができ、他の電子機器は一の電子機器の送信処理が終了するまで待機する必要がある。また、複数の電子機器が同時的に送信処理を行った場合(即ち、通信の衝突が発生した場合)には、各電子機器にて通信の調停処理(アービトレーション)が行われ、優先度の高い通信が実行される。
 通信の衝突に対する調停処理を行うために、各電子機器は、CANバスに送信信号の出力を行うと同時に、CANバスの信号レベルの検出を行う。各電子機器は、自らが出力した送信信号に対して、検出した信号の信号レベルが変化した場合(レセシブからドミナントに変化した場合)、通信の衝突が発生したと判断し、送信処理を停止する。CANバス上の信号はレセシブよりドミナントが優位であるため、通信の衝突が発生してもドミナントを出力した電子機器は送信処理を継続して行うことができる。
特開2008-219353号公報
ISO 11898-1:2003 Road vehicles--Controller area network(CAN)--Part1:Data link layer and physical signaling ISO 11519-1:1994 Road vehicles--Low-speed serial data communication--Part1:General and definitions
 リンギング及び外乱ノイズ等による通信障害を防止するために、車輌に搭載された電子機器間の通信を光通信化した場合、光通信では送信と受信とが異なる光通信線にて行われるため、各電子機器は送信信号の出力と同時に、自らが出力した送信信号の検出を行うことができない。よって、従来のCANのプロトコルに従った通信を行うことができないという問題がある。よって光通信を導入する場合には、各電子機器がCANとは異なる光通信に適したプロトコルに従って通信を行う必要があり、新たなプロトコルに対応した電子機器の開発を行う必要があるため、多大な開発コストを要するという問題がある。
 また、パッシブスター光カプラ(以下、単に光カプラという)を用いて光通信システムを構成することができる。光カプラを用いてノード数(電子機器の数)の多い光通信システムを構築する場合、一つの光カプラで一度に多数のノードに光信号を分配することは、光通信線(光ファイバ)の配策上不経済であり、一つの光カプラに電子機器を接続してサブノードを構成し、複数のサブノードを光カプラで接続して光通信システムを構成することが合理的である。例えば車輌であれば、エンジンルーム、車室内及びトランクルーム等の各部にてサブノードをそれぞれ構成し、各サブノードの光カプラを接続して全体の光通信システムを構成することが合理的である。
 しかし、複数のサブノードの光カプラを接続して全体の光通信システムを構成する場合、光カプラの性質から、光カプラ間を光信号が多重に往復するという問題がある。このため上記の構成でCANプロトコルを利用するためには、光信号が各光カプラを介して授受された場合であってもCANプロトコルに適した通信が行われるような構成が必要となる。
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、電気信号で行われていた所定の通信プロトコルに基づく通信を光通信でも実現することができる車載通信システム、光通信ハーネス及び光分配装置を提供することにある。
 また本発明の他の目的とするところは、車輌に搭載された電子機器(通信装置)間の通信を光通信化してリンギング及び外乱ノイズ等の影響を排除することができると共に、従来のCANプロトコルと同様の調停処理を行うことができる車載通信システム、光通信ハーネス及び光分配装置を提供することにある。また複数の光カプラを用いる大規模なネットワークを構成することができる車載通信システム、光通信ハーネス及び光分配装置を提供することにある。
 本発明に係る車載通信システムは、複数の光入力部及び複数の光出力部を有し、一の光入力部から入力された光を、複数の光出力部へ分配して出力する光分配器と、該光分配器を中心に光通信線を介してスター型に接続された複数の光通信装置とを備え、各光通信装置は、前記光分配器の一の光入力部へ光を入力することで光信号の送信を行う光送信部と、前記光分配器の一の光出力部から出力された光を受光することで光信号の受信を行う光受信部と、該光受信部が受信した光信号に応じて、他の通信装置との間で光信号の送信の衝突を検知する検知手段とを有することを特徴とする。
 また、本発明に係る車載通信システムは、前記検知手段が、前記光送信部が送信した光信号に対して、前記光受信部が受信した光信号が変化した場合に衝突を検知するようにしてあり、前記光通信装置は、前記検知手段が光信号の送信の衝突を検知した場合に、光信号の送信を停止し、他の光通信装置が送信した光信号の受信を行うようにしてあることを特徴とする。
 また、本発明に係る車載通信システムは、前記光通信装置が、電気信号の送受信を行う一又は複数の電気送信部及び電気受信部と、前記光受信部が受信した光信号を電気信号に変換すると共に、前記電気受信部が受信した電気信号を光信号に変換する光電変換部とを有し、他の光通信装置と電気信号の送受信を行う一又は複数の電気通信装置との間の通信を仲介するようにしてあることを特徴とする。
 また、本発明に係る車載通信システムは、前記光送信部、前記光受信部及び前記検知手段と、電気信号の送受信を行う一又は複数の電気送信部及び電気受信部と、前記光受信部が受信した光信号を電気信号に変換すると共に、前記電気受信部が受信した電気信号を光信号に変換する光電変換部とを有し、一又は複数の前記光通信装置と、電気信号の送受信を行う一又は複数の装置との間の通信を仲介する光電変換装置を更に備えることを特徴とする。
 また、本発明に係る車載通信システムは、前記光分配器を中心にスター型に接続された前記光通信装置及び前記光電変換装置を有する光通信網を複数備え、複数の前記光通信網の光電変換装置が、電気通信線を介して接続してあることを特徴とする。
 また、本発明に係る車載通信システムは、一の光分配器の光入力部と前記光通信装置又は前記光電変換装置とを接続する複数の光通信線は、略同じ長さにしてあることを特徴とする。
 また、本発明に係る車載通信システムは、相互に光入力部及び光出力部で接続された複数の前記光分配器を備え、前記複数の光通信装置は、前記複数の光分配器夫々の前記光入力部及び光出力部の内の一部に、スター型に光通信線を介して接続されていることを特徴とする。
 また、本発明に係る車載通信システムは、前記複数の光分配器夫々の前記複数の光出力部の内、他の光分配器と接続される光出力部に接続され、前記複数の光通信装置が送信する光信号の波長と異なる波長の光を減衰させる1又は複数のフィルタを更に備えることを特徴とする。
 また、本発明に係る車載通信システムは、相互に光入力部及び光出力部で接続された第1光分配器及び第2光分配器と、第1及び第2光分配器の前記光入力部及び光出力部の内の一部に夫々、スター型に光通信線を介して接続され、第1又は第2波長の光信号を送信し、第1又は第2波長を含む異なる複数の波長の光信号を受信する複数の第1及び第2光通信装置と、第1光分配器の1つの光出力部と、第2光分配器の1つの光入力部の間に接続され、第2波長の光を減衰させる第1フィルタと、第2光分配器の1つの光出力部と、第1光分配器の1つの光入力部の間に接続され、第1波長の光を減衰させる第2フィルタとを備えることを特徴とする。
 また、本発明に係る車載通信システムは、前記光通信装置が、CANプロトコルに基づき光信号を送受信するようにしてあることを特徴とする。
 また、本発明に係る車載通信システムは、前記光分配器が、2つの前記光入力部及び2つの前記光出力部を有する光カプラを一又は複数個用いて構成してあることを特徴とする。
 また、本発明に係る光通信ハーネスは、複数の光入力部及び複数の光出力部を有し、1つの光入力部から入力された光を、複数の光出力部へ分配して出力する光分配器と、前記複数の光入力部及び光出力部の内の任意の光入力部及び光出力部に夫々接続される光通信線と、前記複数の光出力部の内の特定の光出力部に接続される光通信線に接続され、所定の波長の光を減衰させる1又は複数のフィルタとを備えることを特徴とする。
 また、本発明に係る光通信ハーネスは、前記フィルタが、光通信線の他の光分配器への接続コネクタ内部に設けられていることを特徴とする。
 また、本発明に係る光分配装置は、複数の光入力部及び複数の光出力部を有し、1つの光入力部から入力された光を、複数の光出力部へ分配して出力する光分配器と、前記複数の光出力部の内の特定の光出力部に接続され、所定の波長の光を減衰させる1又は複数のフィルタとを備えることを特徴とする。
 本発明においては、複数の光入力部及び光出力部を有して、一の光入力部から入力された光を複数の光出力部へ分配して出力する光分配器を用い、この光分配器にそれぞれ光通信線を介して複数の光通信装置をスター型に接続することによって、車載通信システムを構成する。この光分配器では、複数の入力部から光信号が入力された場合、複数の光信号が合成されて全ての光出力部から出力されることとなる。
 各光通信装置は、光分配器の一の光入力部及び一の光出力部にそれぞれ光通信線を介して接続される。光通信装置は、光分配器の一の光入力部へ光信号の送信を行うと共に、光分配器により分配されて出力された光信号の受信を行うことができ、送信した光信号と受信した光信号とを比較することによって、光信号の送信の衝突を検出することができる。
 これにより、光通信装置は、光の有/無をCANプロトコルのドミナント/レセシブに対応させて、CANプロトコルと同様の通信の調停を行うことが可能となり、CANプロトコルに従った通信処理を行うことが可能となる。よって、従来の通信装置に対して、光通信線に接続するためのインタフェース回路などを搭載するのみで、本発明の光通信装置を構成することが可能であり、低コストで光通信装置を開発することができる。
 また本発明においては、光通信装置は、自らが送信した光信号に対して、光分配器を介して受信した光信号に変化が生じていた場合、他の光通信装置との光信号の送信衝突を検知する。衝突を検知した場合、光通信装置は光信号の送信を停止して、他の光通信装置が送信した光信号の受信を行う。これらの衝突検知及び送信停止等の処理は、CANプロトコルの調停と略同じ方法を光通信に適用したものである。よって本発明の光通信装置は、従来のCANプロトコルに応じた通信を行う通信装置に対して、比較的少ない回路の修正又は追加等を行うことで実現できる。
 また本発明においては、車載通信システムに含まれる一又は複数の光通信装置に、光信号の送受信を行う機能と共に電気信号の送受信を行う機能を搭載する。この光通信装置に、送受信する電気信号及び光信号の相互変換を行わせ、他の光通信装置と電気通信装置との間の通信を仲介させることによって、車載通信システムに電気通信及び光通信を混在させることが可能となる。
 又は、車載通信システムが、光通信機能及び電気通信機能を搭載して電気信号及び光信号の相互変換を行う光電変換装置を備え、この光電変換装置が一又は複数の光通信装置と一又は複数の電気通信装置との間の通信を仲介する構成とする。同様に、車載通信システムに電気通信及び光通信を混在させることが可能となる。
 車載通信システムの通信線は、車輌中の限られたスペースに配設されるため、通信線を折り曲げて配設する必要が生じる虞があるが、光通信線として光ファイバを用いた場合、光ファイバは折り曲げて配設することが難しい、即ち光ファイバは配設の自由度が低いという問題がある。そこで、折り曲げに強い電気通信線との混在を可能とすることにより、車載通信システムの車輌中における配設の自由度を高めることができる。
 また本発明においては、光分配器を中心にスター型に光通信装置及び光電変換装置を接続して一つの光通信網を構成すると共に、電気通信線を介して複数の光通信網の光電変換装置を接続することにより車載通信システムを構成する。これにより、スター型の光通信網内においては光通信を行い、各光通信網の間では電気通信を行う車載通信システムが実現される。
 例えば、車輌前部のエンジンルーム内など多数の機器が集中して配される箇所については光通信を行い、車輌前部及び車輌後部の間など比較的距離が長く通信線が折り曲げられる可能性の高い箇所については電気信号を行うなど、光通信及び電気通信の長所・短所に適した構成を実現できる。特に車輌においては、いくつかの特定箇所にそれぞれ多数の機器が配される場合が多いため、本発明の構成が好適である。
 また本発明においては、車載通信システムに含まれる一の光分配器について、光分配器の光入力部と光通信装置及び光電変換装置とをそれぞれ接続する光通信線の長さを略同じとする。これにより、光通信装置及び光電変換装置から光分配器へ入力される光信号のタイミングにズレが生じ難くなるため、通信の衝突検知及び調停等の処理を確実に行うことができる。
 また本発明においては、複数の光入力部及び光出力部を有し、1つの光入力部から入力された光を複数の光出力部へ分配して出力する複数の光分配器が備えられ、各光分配器に夫々、光分配器が有する光入力部へ光信号を送信し、光出力部から出力される光信号を受信する光通信装置がスター型に光通信線を介して接続される。
 光分配器間も光入力部及び光出力部で接続されるので、全面的に光通信化される。
 また、光分配器に接続される光通信装置が光信号を送信した場合、送信された光信号は1つの光分配器の光入力部に入力されるので、該1つの光分配器の複数の光出力部から出力される。複数の光出力部の内の1つは、光信号を送信した光通信装置に接続されている。したがって当該光通信装置は、自身が送信した光信号を監視することが可能となる。光分配器の光出力部から、スター型に接続されている他の光通信装置へも出力されて各光通信装置が受信できると共に、他の光分配器の光入力部にも入力される。当該他の光分配器でも同様に、複数の光出力部から分配されて出力されるから、スター型に接続されている光通信装置でも同様に同一の光信号を受信する。
 これにより、光通信であっても衝突検知、アービトレーションなどを必須とするCAN等のプロトコルによる通信が可能である。
 また本発明においては、各光分配器が備える光出力部の内、光通信装置が接続されていない光出力部即ち他の光分配器と接続される光出力部には、前記光通信装置が送信する光信号の波長とは異なる波長の光を減衰させる1又は複数のフィルタが接続される。
 これにより、1の光分配器に接続されている光通信装置が送信した光信号は、前記1の光分配器に入力され、該光分配器に接続されている他の光通信装置へ出力されると共に、減衰されずに他の光分配器の入力部へ出力される。当該他の光分配器では、光入力部から入力された光を各光出力部から出力するので、1の光分配器から出力されて入力された光も区別なく出力する。他の分配器に接続されるフィルタは、当該他の分配器に接続される光通信装置が送信する光信号の波長とは異なる波長の光を減衰させる。したがって、1の光分配器から出力されて他の光分配器に入力された光は、当該他の光分配器から再度出力されるものの、フィルタによって減衰されるので1の光分配器へ戻らない。
 また本発明においては、光通信装置は、送信中の光信号と、受信中の光信号とを比較して送信の成否を判断する所定のプロトコルに基づき通信を行なう。本発明では、光分配器へ送信した光信号を入力するようにしてあるので、送信中であっても自身の送信した光信号が帰還され、所定のプロトコルによる通信が可能となる。所定のプロトコルは、例えばCANである。
 また本発明においては、安価な2入力2出力の光カプラを一又は複数個用いて、光分配器を構成することにより、車載通信システムのコストを低減することができる。例えば、2つの光通信機器間で光通信を行う場合には1つの光カプラを用いればよく、4つの光通信機器間で光通信を行う場合には4つの光カプラを用いればよく、8つの光通信機器間で光通信を行う場合には12個の光カプラを用いればよい。
 また本発明においては、複数の光分配器と、各光分配器に接続される光通信線と、各光分配器に接続される光通信装置が送信する光信号の波長と異なる波長の光を減衰させるフィルタとが予め接続されてハーネスが構成されてある。当該ハーネスに、光通信装置を接続することにより容易に、所定のプロトコル通信が可能な光通信システムを構成することができる。
 本発明では、ハーネス同士の接続コネクタ内部にフィルタが設けられてもよく、これにより、ハーネス同士を接続することで容易に、所定のプロトコル通信が可能な光通信システムを構成することができる。
 本発明では、フィルタは光分配器と共に光分配装置を構成してもよい。フィルタが減衰させる光の波長が異なる複数の光分配装置を接続し、各光分配装置にフィルタの波長に対応する光通信装置を接続することにより、容易に、所定のプロトコル通信が可能な光通信システムを構成することができる。
 本発明による場合は、光分配器を中心に複数の光通信装置をスター型に接続し、各光通信装置が光分配器の一の光入力部へ光信号の送信を行うと共に、光分配器により出力された光信号の受信を行って、受信した光信号に基づいて衝突の検知を行う構成とすることにより、車載通信システムの通信を光通信化してリンギング及び外乱ノイズ等の影響を排除することができると共に、従来のCANプロトコルと同様の通信処理を行うことができるため、低コストで車載通信システムの光通信化を実現することができる。
 また本発明による場合、光分配器に複数の光通信装置が接続され、更に光分配器間が接続されて通信システムが構成される。これにより、光通信としても各光通信装置は、自身が送信した信号をも含めて通信線に送信された信号を常に監視することが可能になる。光通信であっても衝突検知、アービトレーションなどを必須とするCAN等のプロトコルによる通信を実現させることができる。
本発明の実施の形態1に係る車載通信システムの構成を示すブロック図である。 本発明に係る車載通信システムの光通信装置が行う送信処理の手順を示すフローチャートである。 本発明の実施の形態2に係る車載通信システムの構成を示すブロック図である。 本発明の実施の形態2に係る車載通信システムの構成を示すブロック図である。 車載通信システムに用いられる光分配器の構成例を示す模式図である。 車載通信システムに用いられる光分配器の構成例を示す模式図である。 車載通信システムに用いられる光分配器の構成例を示す模式図である。 本発明の実施の形態3に係る車載通信システムの構成を示すブロック図である。 実施の形態3に係る車載通信システムを車輌に搭載した例を示す模式図である。 実施の形態4における車載光通信システムの構成を示すブロック図である。 実施の形態4における光通信装置の構成を示すブロック図である。 実施の形態4における光分配器及びコネクタの構成及び光分配器及びコネクタを介した光信号の送受信を模式的に示す模式図である。 実施の形態4におけるフィルタの特性を示すグラフである。 実施の形態5における車載光通信システムの構成を示すブロック図である。 実施の形態5における光分配装置の構成を示すブロック図である。
(実施の形態1)
 以下、本発明をその実施の形態を示す図面に基づき具体的に説明する。図1は、本発明の実施の形態1に係る車載通信システムの構成を示すブロック図である。実施の形態1に係る車載通信システムは、複数(2つ)の光通信装置1a、1bを、光カプラ3にそれぞれ光通信線4、5を介して接続した構成であり、光カプラ3を中心としたスター型のネットワークシステムである。
 車載通信システムの光通信装置1a、1bは、車輌(図示は省略する)に搭載されたECU(Electronic Control Unit)などの電子機器に光通信の機能を搭載したものである。なお図1においては、一方の光通信装置1aのみ詳細な構成を図示し、他方の光通信装置1bについては同様の構成であるため詳細な構成の図示を省略してある。光通信装置1a、1bは、CPU(Central Processing Unit)11、CAN制御部12及び光通信部13をそれぞれ有している。
 光通信装置1a、1bのCPU11は、予めROM(Read Only Memory)などに記憶されたプログラムを実行することによって、装置内の各部の動作制御及び制御に必要な各種の演算等の処理を行うものである。またCPU11は、これらの処理過程において他の光通信装置1a、1bとの情報交換が必要となった場合には、CAN制御部12へ通信指示を与えることによって、他の光通信装置1a、1bとの通信を行うことができる。CPU11は、他の光通信装置1a、1bへデータを送信する場合、このデータをCAN制御部12へ与える。またCAN制御部12は、他の光通信装置1a、1bからのデータを受信した場合、このデータをCPU11へ与える。
 CAN制御部12は、CPU11から送信するデータが与えられた場合、このデータをCANプロトコルのデータ形式に従った送信用データに変換し、光通信部13の光送信部15へ与える。CANプロトコルにて送受信されるデータは、アービトレーションフィールド、コントロールフィールド、データフィールド、CRC(Cyclic Redundancy Check)フィールド及びACK(ACKnowledgement)フィールド等の複数のフィールドで構成されており、CPU11から与えられたデータはデータフィールドに格納される。またアービトレーションフィールドは通信の衝突を調停するためのデータであり、送信データの優先度に応じた値が格納され、データ”0(ドミナント)”の方がデータ”1(レセシブ)”より優先度が高い。
 またCAN制御部12は、光通信部13の光受信部14にて受信されたデータが与えられている。この受信データはCANプロトコルのデータ形式であるため、CAN制御部12は受信データのデータフィールドから必要なデータを抽出してCPU11へ与える。これによりCPU11は、他の光通信装置1a、1bからの受信データに応じた処理を行うことができる。
 光通信部13は、光受信部14及び光送信部15を有しており、CAN制御部12との間で授受する電気信号と、他の光通信装置1a、1bとの間で授受する光信号との相互変換を行うものである。光通信部13の光送信部15は、例えば発光ダイオードなどの光源及びこの光源の点灯/消灯を行う駆動回路等を有して構成され、CAN制御部12から電気信号として与えられた送信データを光信号に変換し、この光信号を送信用の光通信線4へ出力する。
 光通信部13の光受信部14は、例えばフォトダイオードなどの受光素子を有して構成され、受信用の光通信線5から出射される光を検出する。光受信部14は、受光素子にて検出した光に応じた電気信号を出力することができ、これにより他の光通信装置1a、1bが送信した光信号を受信して電気信号に変換し、CAN制御部12へ与えることができる。
 また、車載通信システムの光カプラ3は、一側に2つの光入力部31が設けられ、他側に2つの光出力部32が設けられた構成であり、光入力部31から入力された光を2分配して2つの光出力部32へ出力する光分配器である。光カプラ3の第1の光入力部31は光通信装置1aの光送信部15に光通信線4を介して接続され、第2の光入力部31は光通信装置1bの光送信部15に光通信線4を介して接続されている。また光カプラ3の第1の光出力部32は光通信装置1aの光受信部14に光通信線5を介して接続され、第2の光出力部32は光通信装置1bの光受信部14に光通信線5を介して接続されている。
 これにより、光通信装置1aの光送信部15が光通信線4を介して送信した光信号は、光カプラ3の入力部31へ入力され、光カプラ3にて分配されて2つの光出力部32から出力され、光通信装置1a、1bの両方にて受信される。同様に光通信装置1bが送信した光信号は、光カプラ3にて分配されて、光通信装置1a、1bの両方にて受信される。また、光通信装置1a、1bが共に光信号を送信した場合には、2つの光信号は光カプラ3にて合成されて分配され、合成された光信号が2つの光出力部32からそれぞれ出力されて、光通信装置1a、1bの両方にて受信される。
 光通信装置1a、1bが送信する光信号は、デジタルデータを光の有/無に対応付けたものである。光カプラ3は、2つの光入力部31のいずれか一方に光が入力された場合に2つの光出力部32の両方へ光を出力するものであるため、光信号における光の有/無をCANプロトコルのデータ形式におけるドミナント/レセシブに対応付けることによって、CANプロトコルと同様の調停を行うことができる。
 なお、光通信装置1aの光送信部15及び光カプラ3の光入力部31を接続する光通信線4と、光通信装置1bの光送信部15及び光カプラ3の光入力部31を接続する光通信線4とは、略同じ長さであることが好ましい。これは、光通信装置1aから送信された光信号と、光通信装置1bから送信された光信号とが光カプラ3へ入力されるタイミングに差異が生じることを抑制するためである。ただし、光通信の通信速度などに応じて、両光通信線4の長さにはある程度の差異が生じていてもよい。
 車載通信システムの各光通信装置1a、1bは、他の光通信装置1a、1bへデータを送信する場合、CAN制御部12にて所定のデータ形式に変換した送信データを光通信部13の光送信部15にて光信号に変換して送信する。光通信装置1a、1bは、光信号の送信後(直後)に光通信部13の光受信部14にて受信された光信号を電気信号の受信データに変換し、この受信データが送信したデータと一致するか否かをCAN制御部12にて判定することによって、他の光通信装置1a、1bとの光信号の送信の衝突発生を検知する。
 送信データ及び受信データが一致し、送信に衝突が発生していない場合、光通信装置1a、1bは送信処理を継続して行うことができる。送信データ及び受信データが一致せず、送信に衝突が発生している場合、衝突を検知した光通信装置1a、1bは送信処理を停止して、他の光通信装置1a、1bが送信したデータの受信処理を行う。なお、実際には光信号の衝突が発生している場合であっても、優先度の高いデータを送信している光通信装置1a、1bでは衝突が検知されず、送信処理を継続することができる。
 図2は、本発明に係る車載通信システムの光通信装置1a、1bが行う送信処理の手順を示すフローチャートである。光通信装置1a、1bのCPU11は、他の光通信装置1a、1bへのデータ送信を行う場合、まず送信するデータをCAN制御部12へ与え、CAN制御部12にてデータ形式を変換し、光送信部15にて送信データを光信号に変換して出力することにより、光信号の送信を行う(ステップS1)。光信号の送信後、光通信装置1a、1bは、光受信部14にて光信号の受信を行い(ステップS2)、受信した光信号を電気信号の受信データに変換してCAN制御部12へ与える。
 次いで、光通信装置1a、1bは、ステップS1にて送信した光信号(送信信号)とステップS2にて受信した光信号(受信信号)が一致するか否かをCAN制御部12にて判定する(ステップS3)。送信信号と受信信号とが一致しない場合(S3:NO)、他の光通信装置1a、1bとの光信号の送信の衝突が検知され、光通信装置1a、1bは送信処理を停止して、他の光通信装置1a、1bから送信された光信号の受信処理をCAN制御部12にて行い(ステップS4)、受信処理が終了したか否かを判定する(ステップS5)。受信処理が終了していない場合(S5:NO)、光通信装置1a、1bは、ステップS4へ処理を戻して受信処理を継続する。受信処理が終了した場合(S5:YES)、光通信装置1a、1bは、ステップS1へ処理を戻し、送信処理を再度行う。
 送信信号と受信信号が一致した場合(S3:YES)、光通信装置1a、1bは、光信号の衝突が検知されないため、送信処理を継続することができる。そこで光通信装置1a、1bは、送信データに係る光信号の送信を終了したか否かを判定し(ステップS6)、送信を終了していない場合には(S6:NO)、ステップS1へ処理を戻し、送信処理を継続して行う。また、送信データに係る光信号の送信を終了した場合(S6:YES)、光通信装置1a、1bは送信処理を終了する。
 以上の構成の実施の形態1に係る車載通信システムにおいては、入力された光を分配する光カプラ3を中心に、光通信線4、5を介して複数の光通信装置1a、1bをスター型に接続し、各光通信装置1a、1bが光送信部15にて光カプラ3の光入力部31へ光信号を入力すると共に、光カプラ3の光出力部32から出力された光信号を光受信部14にて受信し、受信信号に応じて衝突検知を行う構成とすることにより、リンギング及び外乱ノイズ等の影響がない光通信を実現することができる。また電気通信におけるCANプロトコルと同様の方式で光通信を行うことができるため、各光通信装置1a、1bに備えられるCAN制御部12は、電気通信を行う通信装置に設けられるものと同様のものであってよく、電気通信を行う従来の通信装置に光通信部13を設けることで光通信装置1a、1bを実現できるため、低コストで光通信装置1a、1bの開発を行うことができる。
 また、各光通信装置1a、1bは、光送信部15にて光信号を送信した後、光受信部14にて光信号を受信し、送信信号と受信信号が一致するか否かに応じて衝突検知を行い、衝突を検知した場合には自らの光信号の送信処理を停止して受信処理を行う構成とすることにより、CANプロトコルと同じ方法で光通信の調停を行うことができる。また、光通信装置1aの光送信部15及び光カプラ3の光入力部31を接続する光通信線4と、光通信装置1bの光送信部15及び光カプラ3の光入力部31を接続する光通信線4とを、略同じ長さとすることにより、光通信装置1aから送信された光信号と、光通信装置1bから送信された光信号とが光カプラ3へ入力されるタイミングに差異が生じることを抑制することができ、光通信の衝突検知及び調停等の処理を確実に行うことができる。
 なお、本実施の形態においては、車載通信システムが2入力2出力の光カプラ3を用いて2つの光通信装置1a、1bが光通信を行う構成としたが、これに限るものではなく、より多くの入出力を有する光カプラを用いて3つ以上の光通信装置が光通信を行う構成としてもよい。3つ以上の光通信装置が光通信を行う構成であっても、各光通信装置は光カプラを中心としたスター型に光通信線を介して接続し、上述の光通信の衝突検知及び調停等の処理を各光通信装置が行えばよい。
(実施の形態2)
 図3及び図4は、本発明の実施の形態2に係る車載通信システムの構成を示すブロック図であり、図3には車載通信システム全体の構成を示し、図4には車載通信システムの各装置の詳細構成を示してある。上述の実施の形態1に係る車載通信システムは2つの光通信装置1a、1bが光通信のみを行う構成である。これに対して実施の形態2に係る車載通信システムは、光通信と電気通信とを混在させたシステムである。実施の形態2に係る車載通信システムは、実施の形態1と同様に2つの光通信装置7a、7bと1つの光カプラ3とを備えると共に、4つの電気通信装置9a~9dを備えている。ただし、実施の形態2に係る車載通信システムの光通信装置7a、7bは、光通信線4、5を介して光通信を行う光通信機能と、CANバス6を介して電気通信を行う電気通信機能を有する構成である。
 実施の形態2に係る車載通信システムの光通信装置7aは、光送信部15が光通信線4を介して光カプラ3の第1の光入力部31に接続され、光受信部14が光通信線5を介して光カプラ3の第1の光出力部31に接続されている。同様に、光通信装置7bは、光送信部15が光通信線4を介して光カプラ3の第2の光入力部31に接続され、光受信部14が光通信線5を介して光カプラ3の第2の光出力部31に接続されている。即ち、2つの光通信装置7a、7bは、光カプラ3を中心に光通信線4、5を介してスター型に接続されている。
 光通信装置7a、7bは、実施の形態1の光通信装置1a、1bと同様のCPU11、CAN制御部12及び光通信部13を有していると共に、CAN制御部71及び電気通信部72を更に有している。CAN制御部71は、CAN制御部12と同様の処理を行うものであり、CPU11から与えられたデータをCANプロトコルのデータ形式に従った送信データに変換して電気通信部72へ与えることによりデータ送信を行うと共に、電気通信部72にて受信した受信データから必要なデータを抽出してCPU11へ与える。よって、CPU11は、光通信を行う場合にはCAN制御部12を利用し、電気通信を行う場合にはCAN制御部71を利用することができる。またCAN制御部71は、CANプロトコルによる通信の衝突検知及び調停等の処理を行う。
 光通信装置7a、7bの電気通信部72は、CANバス6に接続されており、CAN制御部71から与えられた送信データを電気信号としてCANバス6へ出力することにより、電気通信装置9a~9dへの電気信号の送信を行う。また電気通信部72は、CANバス6の電位を検出することによって電気信号の受信を行い、これにより得られた受信データをCAN制御部71へ与える。CAN制御部71は、送信したデータと受信したデータとが一致するか否かに応じて通信の衝突を検知できる。
 実施の形態2に係る車載通信システムでは、光通信装置7aと電気通信装置9a、9bとが共通のCANバス6に接続され、CANプロトコルに従った電気通信を相互に行うことができ、光通信装置7bと電気通信装置9c、9dとが共通のCANバス6に接続され、CANプロトコルに従った電気通信を相互に行うことができる。
 電気通信装置9a~9dは、CPU91、CAN制御部92及び電気通信部93等を備えて構成されている。なお、電気通信装置9a~9dが備えるCPU91、CAN制御部92及び電気通信部93は、光通信装置7a、7bが備えるCPU11、CAN制御部71及び電気通信部72と略同じ構成である。よって、電気通信装置9a~9dは、CANバス6を介した電気信号の送受信を行うことができ、CANプロトコルによる通信の衝突検知及び調停等の処理を行うことができる。
 以上の構成の実施の形態2に係る車載通信システムにおいては、光通信装置7a、7bが光通信機能のみでなく電気通信機能をも備える構成とすることによって、車載通信システムに光通信及び電気通信を混在させることができ、車載通信システムの汎用性を向上することができる。また光通信装置7a、7bは、光通信及び電気通信を共にCANプロトコルによる通信方式で行うことができるため、光通信装置7a、7bの開発コスト増大を抑制できる。また、例えば一方のCANバス6に接続された電気通信装置9a、9bが、光通信装置7a、7b及び光カプラ3を介して、他方のCANバス6に接続された電気通信装置9c、9dと通信を行う構成とすることもでき、これにより車載通信システムの汎用性をより向上することができる。
 なお、本実施の形態においては、各光通信装置7a、7bにCANバス6を介して2つの電気通信装置9a~9dを接続する構成としたが、これに限るものではなく、各CANバス6に接続する電気通信装置9a~9dの数は任意である。
 なお、実施の形態2に係る車載通信システムのその他の構成は、実施の形態1に係る車載通信システムの構成と同様であるため、同様の箇所には同じ符号を付して詳細な説明を省略する。
(実施の形態3)
 上述の実施の形態1、2に係る車載通信システムは、2入力2出力の光カプラ3を1つ用いて、2つの光通信装置1a、1b又は7a、7bが光通信を行う構成である。これに対して実施の形態3に係る車載通信システムは、より多くの光通信装置が光通信を行うことを可能としたものである。
 図5~図7は、車載通信システムに用いられる光分配器の構成例を示す模式図である。図5には、実施の形態1、2に係る車載通信システムにて用いた2入力2出力の光カプラ3が示してある(ただし、本図においては光入力部31及び光出力部32の図示を省略し、光信号の入出力を矢印で示してある)。この光カプラ3を1つ用いることによって、実施の形態1、2にて示したように、2つの光通信装置が光通信を行うことができる。
 また図6には、4つの光カプラ3a~3dを用いて、4入力4出力の光分配器を構成する例が示してある。この光分配器は、2つの2入力2出力の光カプラ3a、3bを前段(入力側)とし、4つの光通信器が出力する4つの光信号を光カプラ3a、3bの光入力部31へそれぞれ入力することができる。また、2つの光カプラ3c、3dを後段(出力側)とし、前段の光カプラ3aの2つの光出力部32が後段の2つの光カプラ3c、3dそれぞれの光入力部31に接続され、前段の光カプラ3bの2つの光出力部32が後段の2つの光カプラ3c、3dそれぞれの光入力部31に接続されている。これにより、前段の光カプラ3a、3bの光入力部31のいずれかに入力された光信号は、後段の光カプラ3c、3dの全ての光出力部32から出力される。また前段の光カプラ3a、3bに複数の光信号が入力された場合には、これらの光信号が合成されて、後段の光カプラ3c、3dの全ての光出力部32から出力される。
 また図7には、12個の光カプラ3a~3lを用いて、8入力8出力の光分配器30を構成する例が示してある。この光分配器30は、前段に4つの光カプラ3a~3dを配し、中段に4つの光カプラ3e~3hを配し、後段に4つの光カプラ3i~3lを配したものである。前段の2つの光カプラ3a、3bのから出力される光信号は、それぞれ中段の2つの光カプラ3e、3fに入力され、また、前段の2つの光カプラ3c、3dから出力される光信号は、それぞれ中段の2つの光カプラ3g、3hに入力されている。換言すれば、光カプラ3a、3b、3e、3fにて図6と同様の4入力4出力の光分配器が構成され、光カプラ3c、3d、3g、3hにて図6と同様の4入力4出力の光分配器が構成されている。
 また光分配器30の中段の2つの光カプラ3e、3gから出力される光信号は、それぞれ後段の2つの光カプラ3i、3jに入力され、中段の2つの光カプラ3f、3hから出力される光信号は、それぞれ後段の2つの光カプラ3k、3lに入力されている。これにより、前段の4つの光カプラ3a~3dの光入力部31のいずれかに入力された光信号は、後段の4つの光カプラ3i~3lの全ての光出力部32から出力される。また、前段の光カプラ3a~3dに複数の光信号が入力された場合には、これらの光信号が合成されて、後段の光カプラ3i~3lの全ての光出力部32から出力される。
 図8は、本発明の実施の形態3に係る車載通信システムの構成を示すブロック図である。実施の形態3に係る車載通信システムは、図7に示した8入力8出力の光分配器30を3つ備えている。各光分配器30には、7つの光通信装置1と、1つの光電変換装置7とが光通信線4、5を介してスター型に接続されており、それぞれスター型ネットワーク8a~8cを構成している。なお、図8においては、8入力8出力の光分配器30を八角形のシンボルで示し、光通信装置1を円形のシンボルで示し、光電変換装置7を正方形のシンボルで示してある。また、スター型ネットワーク8b、8cには光通信装置1の図示を省略してあるが、それぞれ7つの光通信装置1が光分配器30に接続されている。
 光通信装置1は、実施の形態1に示した光通信装置1a、1bと同様の構成であり、光送信部15が光分配器30を構成する光カプラ3a~3dの光入力部31のいずれかに光通信線4を介して接続されると共に、光受信部14が光分配器30を構成する光カプラ3i~3lの光出力部32のいずれかに光通信線5を介して接続されている。これにより光通信装置1は、同じスター型ネットワーク8a~8c内の(即ち、同じ光分配器30に接続された)他の光通信装置1及び光電変換装置7との間でCANプロトコルによる光通信を行うことができる。
 光電変換装置7は、実施の形態2に示した光通信装置7a、7bと同様の構成であり、光通信機能と電気通信機能とを備えている。光電変換装置7は、光送信部15が光分配器30の光入力部31のいずれかに光通信線4を介して接続され、光受信部14が光分配器30の光出力部32のいずれかに光通信線5を介して接続されると共に、CANバス6を介して他のスター型ネットワーク8a~8cの光電変換装置7に接続されている。これにより光電変換装置7は、同じスター型ネットワーク8a~8c内の光通信装置1との間で光通信を行うことができ、CANバス6を介して他の光電変換装置7との間で電気通信を行うことができる。
 更に、光電変換装置7は、光通信により同じスター型ネットワーク8a~8c内の光通信装置1から光信号を受信した場合、受信した光信号を光通信部13にて電気信号に変換し、変換した電気信号を電気通信部72からCANバス6へ出力することによって、他のスター型ネットワーク8a~8cの光電変換装置7へ送信することができる。また光電変換装置7は、他の光電変換装置7から電気信号を受信した場合、受信した電気信号を光通信部13にて光信号に変換して光通信線4へ出力することにより、同じスター型ネットワーク8a~8c内の光通信装置1へ送信することができる。即ち光電変換装置7は、電気通信と光通信とを仲介している。
 これにより、例えばスター型ネットワーク8aの一の光通信装置1が送信した光信号は、同じスター型ネットワーク8a内の他の光通信装置1及び光電変換装置7にて受信されると共に、光電変換装置7にて電気信号に変換されて他のスター型ネットワーク8b、8cの光電変換装置7へ送信され、この電気信号を受信した他のスター型ネットワーク8b、8cの光電変換装置7にて光信号に変換されてスター型ネットワーク8b、8c内の光通信装置1へ送信される。即ち、各光通信装置1は、車載通信システムに含まれる他の全ての光通信装置1に対してデータの送受信を行うことができる。
 図9は、実施の形態3に係る車載通信システムを車輌100に搭載した例を示す模式図である。図示の例では、車輌100の前部にスター型ネットワーク8aを配し、車輌100の中央にスター型ネットワーク8bを配し、車輌100の後部にスター型ネットワーク8cを配してある。また、3つのスター型ネットワーク8a~8cは車輌100の車体などに沿って配設されたCANバス6を介して光電変換装置7がそれぞれ接続されており、相互に電気信号の送受信を行うことができる。
 例えば車輌100の前部のエンジンルーム内には、狭いスペースに多数の電子機器を集中して搭載する必要があるため、これらの電子機器に光通信機能を設けて光通信装置1とし、光分配器30を中心に光通信線4、5を介して複数の光通信装置1を接続してスター型ネットワーク8aを構成することができる。これにより、スター型ネットワーク8a内で行われる光通信装置1間の光通信は、リンギング及び外乱ノイズ等の影響を受けることがなく、精度のよい通信を行うことができる。車輌100の中央及び後部に配されたスター型ネットワーク8b、8c内の光通信についても同様である。
 また、車輌100内においても比較的に離れた箇所に配される電子機器間の通信は、電子機器間を接続する通信線が折り曲げられて配される可能性が高いため電気通信線を用いて行うことが好ましい。よって、車輌100の前部、中央及び後部のそれぞれ離れた箇所に配されたスター型ネットワーク8a~8cはCANバス6を用いて接続し、光電変換装置7による電気通信を行うことにより、車輌100における通信線の配設を容易化できる。
 このように、実施の形態3に係る車載通信システムは、車輌100内における電子機器間の距離が短い箇所については光分配器30を中心とした光通信を行うスター型ネットワーク8a~8cを構成し、電子機器間の距離が長い箇所についてはCANバス6を介した電気通信を行う構成とすることが好ましい。
 以上の構成の実施の形態3に係る車載通信システムは、光分配器30を中心に光通信装置1及び光電変換装置7を接続してスター型ネットワーク8a~8cを構成すると共に、各スター型ネットワーク8a~8cの光電変換装置7をCANバス6にて接続する構成とすることにより、光通信及び電気通信が混在した車載通信システムを実現できるため、車載通信システムの汎用性を向上することができる。また、装置間の距離が短く密集した箇所にて光通信を行い、装置間の距離が長い箇所にて電気通信を行う構成とすることができるため、車輌100における通信線の配設容易性を向上することができると共に、装置が密集した個所でのリンギング及び外乱ノイズ等の影響を抑制することができる。また、2入力2出力の光カプラ3a~3lを複数用いて8入力8出力の光分配器30を構成することにより、より多くの入出力を有する光分配器30を安価に実現でき、車載通信システムのコストの増加を抑制できる。
 なお、本実施の形態においては、車載通信システムが3つのスター型ネットワーク8a~8cを備える構成としたが、これに限るものではなく、2つ以下又は4つ以上のスター型ネットワークを備える構成であってもよい。また、各スター型ネットワーク8a~8cがそれぞれ7つの光通信装置1を備える構成としたが、これに限るものではなく、6つ以下の光通信装置1を備える構成であってもよく、更に多くの入出力を有する光分配器を用いて8つ以上の光通信装置1を備える構成であってもよい。
 なお、実施の形態3に係る車載通信システムのその他の構成は、実施の形態1、2に係る車載通信システムの構成と同様であるため、同様の箇所には同じ符号を付して詳細な説明を省略する。
 (実施の形態4)
 図10は、実施の形態4における車載光通信システムの構成を示すブロック図である。車載光通信システムは、車両100に設置され、複数の光通信装置110a,110a,…、110b,110b,…と、光分配器102a,102bと、光通信線103,103,…と、コネクタ104a,104bとを備える。光分配器102a、光通信線103及びコネクタ104aで光通信ハーネス105aを構成する。同様に光分配器102b、光通信線103及びコネクタ104bで光通信ハーネス105bを構成する。
 複数の光通信装置110a,110a,…は夫々光通信線103を介して、スター型に光分配器102aに接続されている。複数の光通信装置110b,110b,…も同様に夫々光通信線103を介してスター型に光分配器102bに接続されている。
 光分配器102aには光通信線103を介してコネクタ104aが接続されている。光分配器102bには光通信線103を介してコネクタ104bが接続されている。コネクタ104aとコネクタ104bとを接続することにより、光分配器102aと光分配器102bとが接続されている。
 光通信線103は光ファイバである。光通信装置110aから光分配器102aへの上り線と、光分配器102aから光通信装置110aへの下り線とは夫々区別されている。同様に光通信装置110bから光分配器102bへの上り線と、光分配器102bから光通信装置110bへの下り線とが夫々区別されている。同様にして光分配器102aと光分配器102bとの間の光通信線103も光分配器102aから光分配器102bへの線と、光分配器102bから光分配器102aへの線とで区別される。
 図11は、実施の形態4における光通信装置110a(110b)の構成を示すブロック図である。光通信装置110aは、マイクロコンピュータ(図11中、μCと記載)111と、光トランシーバ112とを備える。光通信装置110aは、車両に搭載される各機器の制御を行なうECUである。なお、光通信装置110aと光通信装置110bとは、光トランシーバから送信される光信号の波長が異なるのみで、他は同様の構成であるので、光通信装置110bの内部構成の詳細な説明は省略する。
 マイクロコンピュータ111は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサがROM(Read Only Memory)に記憶されてあるプログラムを読み出して車載機器を制御する処理を実行する(いずれも図示せず)。マイクロコンピュータ111は、CANコントローラ113の機能を有する。これによりマイクロコンピュータ111は、CANプロトコルに基づきデータを送受信し、受信したデータに基づき制御処理を実行する。
 CANコントローラ113は、マイクロコンピュータ111内のプロセッサからの指示に基づき、CANプロトコルのデータ形式に従った送信用データに変換した送信信号Txを、光トランシーバ112へ出力する。またCANコントローラ113は、光トランシーバ112から受信信号Rxを入力し、CANプロトコルに基づいて信号を解釈し、内容をプロセッサへ通知する。CANコントローラ113は、送信信号Txを1ビットずつ順次出力しつつ、受信信号Rxを入力し、受信信号Rxの後述のアービトレーションフィールドを自身の送信信号Txのアービトレーションフィールドと比較する。CANコントローラ113は、送信信号Txと受信信号Rxのアービトレーションフィールドが一致する場合は送信信号Txの出力を継続し、不一致の場合は受信モードとなって送信信号Txの出力を停止する。これにより、複数の光通信装置110a(又は光通信装置110b)から同時に信号が送信されたときの調停処理が実現される。
 CANプロトコルにて送受信される信号は、アービトレーションフィールド、コントロールフィールド、データフィールド、CRC(Cyclic Redundancy Check)フィールド、及びACK(ACKnowledgement)フィールド等の複数のフィールドで構成されるデジタル信号である。マイクロコンピュータ111のプロセッサから与えられるデータは、データフィールドに格納される。アービトレーションフィールドは、通信で衝突が発生した場合に前述の調停処理を行なうためのフィールドであり、信号の優先度に応じた値が格納される。送信側のCANコントローラ113は、送信した信号のACKフィールドのACKビットの有無により、受信されたか否かを判断し、再送の要否を判断する。CANプロトコルではデジタル信号の「0(ドミナント)」の方が「1(レセッシブ)」よりも優先される。
 光トランシーバ112は、CANコントローラ113にてCANプロトコルに従って生成された送信信号Txを光信号に変換して光通信線103へ送出する。光トランシーバ112は、CANプロトコルにおける「0(ドミナント)」/「1(レセッシブ)」を夫々、光の「有」/「無」に対応させて変換する。逆に光トランシーバ112は、光通信線103を介して受信された信号即ち光の「有」/「無」を、「0(ドミナント)」/「1(レセッシブ)」へ変換したデジタル信号を受信信号RxとしてCANコントローラ113へ出力する。
 光通信装置110aの光トランシーバ112と光通信装置110bの光トランシーバ112とは、送信する光信号の波長が異なる。光通信装置110aの光トランシーバ112は、例えば650nmの波長の光信号を用いてCANプロトコルに従う信号を送信する。なお、光通信装置110aの光トランシーバ112は、550nmの光信号も650nmの光信号も両方を良好に受信し、光信号をデジタル信号に変換してCANコントローラ113へ通知する。ただし、光通信装置110aの光トランシーバ112は、650nmの光信号の内、所定のパワーよりも弱い光信号については無視する。
 光通信装置110bの光トランシーバ112は、例えば550nmの波長の光信号を用いる。光通信装置110aの光トランシーバ112と光通信装置110bの光トランシーバ112とが用いる波長同士は、50~100nm以上離れていることが好ましい。送信する光信号の波長以外は通信装置110aと同様であり、550nmの光信号も650nmの光信号も両方を良好に受信するが、550nmの光信号の内、所定のパワーよりも弱い光信号については無視する。
 図12は、実施の形態4における光分配器102a,102b及びコネクタ104a,104bの構成及び光分配器102a,102b及びコネクタ104a,104bを介した光信号の送受信を模式的に示す模式図である。光分配器102a及び光分配器102bの構成は同様であるので、以下では光分配器102aについて詳細を説明し、光分配器102bの詳細な説明は省略する。
 なお、以下図12の説明では、図示及び説明を簡略化するため、光分配器102aは4つの光入力部120a及び4つの光出力部121aを備え、3つの光通信装置110aが接続されている構成とする。勿論、光通信装置110aは、光入力部120a及び光出力部121aを5つ以上有し、図10に示すように4つ以上の光通信装置110aと接続されてよい。
 光分配器102aは、一側に4つの光入力部120aを有し、他側に4つの光出力部121aを有する。光入力部120aは、光通信線103からの光信号を導入するガイドであり、光出力部121aは、光分配器102a内に伝播された光を接続される光通信線103へ導入するガイドである。光出力部121aは受光素子を備えて改めて光を受光して光通信線103へ出力するようにしてもよい。これにより、1つの光入力部120aに入力された光は、4つの光出力部121a全てから出力される。
 光分配器102aは、2入力2出力の安価な光カプラを4つ用いて構成される。4つの光カプラを2つずつ前段(入力側)及び後段(出力側)とし、前段の2つの光カプラが夫々有する2つの出力部を夫々、後段の2つの光カプラへ各別に接続する。これにより、前段の2つの光カプラの1つの入力部に入力された光は、後段の2つの光カプラへ夫々出力され、後段の2つの光カプラが夫々有する2つの出力部全てから出力される。なお光分配器102aは、円柱又は角柱状の透明樹脂又はガラスなどの透明な材料で形成され、1つの光入力部120aに入力された光は内部全体に伝播し、4つの光出力部121a全てから出力されるようにしてもよい。
 光分配器102aが有する光入力部120a及び光出力部121aを8つとした場合、光分配器102aに7つまでの光通信装置110aを接続した上で、1つの光分配器102bと接続する構成が可能である。光分配器102aが8つの光入力部120a及び光出力部121aを備える場合は、2入力2出力の安価な光カプラを12個、即ち前段(入力側)4つ、中段4つ、後段(出力側)4つ夫々の2入力2出力を分岐させて接続して構成すればよい。
 コネクタ104a及びコネクタ104bは、接続されている光通信線103を伝播してくる光信号をガイドし、他の光通信線103へ導入する。コネクタ104aは内部にフィルタ140aを有し、コネクタ104bは内部にフィルタ140bを有する。フィルタ140aは光学フィルタ(HPF:High Path Filter)であり、フィルタ140bは光学フィルタ(LPF:Low Path Filter)である。図13は、実施の形態1におけるフィルタ140a,140bの特性を示すグラフである。フィルタ140aは、光通信線103を伝播してくる光信号の内、例えば650nmの光信号を透過させ、550nmの光信号を減衰させる。フィルタ140bは、例えば550nmの光信号を透過させ、650nmの光信号を減衰させる。
 このような構成により、本実施の形態1のように車載光通信システムを全て光通信化したとしても、光通信装置110a及び光通信装置110bは夫々、CANプロトコルに従った通信が可能である。図12に戻り、以下に詳細を説明する。
 光通信装置110aは、自身の処理により得られたデータを他の光通信装置110a又は光通信装置110bが使用できるよう、データ信号を送信する。データ信号は、650nmの波長の光信号で送信される。この光信号は光通信線103を介して接続されている光分配器102aの1つの光入力部120aに入力される。
 光分配器102aは、1つの光入力部120aに入力された光信号を4つの光出力部121a全てから出力する。4つの光出力部121aの内の3つは、送信元である光通信装置110aを含む3つの光通信装置110aに接続されているから、3つの光通信装置110a全てで送信元からのデータ信号を受信できる。これにより、送信元の光通信装置110aでは、CANコントローラ113が、自身から出力中のデータ信号のアービトレーションフィールドと、入力される受信信号のアービトレーションフィールドとの比較が可能であり、CANプロトコルに従った通信が実現できる。
 光分配器102aの4つの光出力部121aの内の残りの1つは、他の光分配器102bへフィルタ140aを内蔵するコネクタ104aを介して接続されている。フィルタ140aは、光分配器102aに接続されている光通信装置110aが送信する光信号の波長(650nm)の光を100%透過させるから、1つの光通信装置110aから送信された光信号は、分配器102bへも到達する。
 光分配器102bの1つの光入力部120bに入力された光信号は、同様にして光分配器102bの4つの光出力部121b全てから出力される。4つの光出力部121bの内の3つは、3つの光通信装置110bに夫々光通信線103を介して接続されている。光通信装置110bは、これらの3つの光出力部121bから出力された光信号を波長によらず受信するから、光通信装置110aから送信された光信号を受信できる。これにより、光通信装置110aから送信された光は、光通信装置110bでも受信できる。
 光分配器102bの4つの光出力部121bの残りの1つは、フィルタ140bを内蔵するコネクタ104bを介して光分配器102aへ接続されている。したがって、光通信装置110aから送信され、光分配器102aから出力された光信号は、光分配器102bへ入力された後、他の光信号と区別なく光分配器102bの出力部121bから出力され、再度光分配器102aへ戻ろうとする。しかしながら、コネクタ104bのフィルタ140bは、光分配器102bに接続されている光通信装置110bが送信する光信号の波長(550nm)の光を100%透過させるが、異なる波長(650nm)の光を減衰させる。したがって、光通信装置110aから送信され、光分配器102aから出力された光信号は、光分配器102bへ入力された後、光分配器102aへ戻ったとしてもパワーが弱く、光通信装置110aのトランシーバ112で受信されない。
 光通信装置110bが、自身の処理により得られたデータを他の光通信装置110b又は光通信装置110aが使用できるよう、データ信号を送信する場合も同様である。光通信装置110bから送信された550nmの波長の光信号は、光分配器102bの1つの光入力部120bへ入力し、4つの光出力部121bから出力する。これにより、送信元を含む4つの光通信装置110bにて光通信装置110bからの光信号を受信することが可能である。また、当該光信号は、4つの光出力部121bの内の1つの光出力部121bから、フィルタ140bを内蔵するコネクタ104bを介して光分配器102a側へ出力される。フィルタ140bは550nmの波長の光信号を透過し、650nmの波長の光信号を減衰させるから、光通信装置110bからの光信号を透過させる。したがって、光通信装置110bから光信号は光分配器102aへ到達する。当該光信号は、光分配器102aの光入力部120aへ入力されて光分配器102bへ接続されている光出力部121aからも出力されるが、フィルタ140aによって減衰され、光分配器102bへ戻ったとしてもパワーが弱く、光通信装置110bのトランシーバ112で受信されない。
 このように、光分配器102a及び光分配器102bを接続して、光通信装置110a及び光通信装置110bでCANに基づく光信号の送受信ができると共に、フィルタ140a及びフィルタ140bを備えることで光分配器102a及び光分配器102b間での光信号のループ現象を回避することができる。
 実施の形態4の図10に示したように、光通信ハーネス105a,105bを構成しておき、夫々に光通信装置110a,110a,…、110b,110b,…を接続すればよいだけとしておくことで、GWなしにCANに基づく光通信を実現する光通信システムを容易に構築することができる。これにより、電磁ノイズ及びリンギングの影響を抑制しつつ、従来のCANプロトコルに基づく光通信システムを実現することができる。
 (実施の形態5)
 実施の形態4では、フィルタ140aは、光分配器102aの光出力部121aの内の光通信装置110aが接続されていない光出力部121aに接続されているコネクタ104a内に含まれる構成とした。これに対し、実施の形態5では、フィルタ140aに対応するフィルタを光分配器102aと一体化させた構成とする。
 実施の形態5における車載光通信システムの構成は、実施の形態4における構成と同様である。ただし、光分配器102a及びコネクタ104aに代替して、光分配装置6とフィルタ140aを備えないコネクタを含む構成とする。
 図14は、実施の形態5における車載光通信システムの構成を示すブロック図である。実施の形態5における車載光通信システムは、車両100に設置され、複数の光通信装置110a,110a,…、110b,110b,…と、光分配装置106a,106bと、光通信線103,103,…とを備える。光分配器106a及び光通信線103で光通信ハーネス107aを構成する。同様に光分配器106b及び光通信線103で光通信ハーネス107bを構成する。
 複数の光通信装置110a,110a,…は夫々光通信線103を介して、スター型に光分配装置106aに接続されている。複数の光通信装置110b,110b,…も同様に夫々光通信線103を介してスター型に光分配装置106bに接続されている。光分配装置106a及び光分配装置106bは相互に、光通信線103を介し、光分配装置106aから光分配装置106bへの線と、光分配装置106bから光分配装置106aへの線とで区別されて接続されている。
 図15は、実施の形態5における光分配装置106aの構成を示すブロック図である。光分配装置106a及び光分配装置106bの構成は同様であるので、以下では光分配装置106aについて詳細を説明し、光分配装置106bの詳細な説明は省略する。
 光分配装置106aは、光分配器160aとフィルタ164aとを備える。
 光分配器160aは実施の形態1における光分配器102aと同様に、2入力2出力の安価な光カプラを4つ用いて構成され、一側に4つの光入力部161aを有し、他側に4つの光出力部162aを有する。光分配器160aは、円柱又は角柱状の透明樹脂又はガラスなどの透明な材料で形成されてもよい。光分配器160aの4つの光入力部161aの内の3つは、光通信装置110aと接続されるように、接続端子と光通信線を介して接続されており、残りの1つは、他の光分配装置106bと接続されるように端子163aと光通信線を介して接続されている。4つの光出力部162aの内の1つは、フィルタ164aに接続されており、他の3つの光出力部162aは、光通信装置110aと接続されるように接続端子と光通信線を介して接続されている。
 フィルタ164aは光学フィルタであり、光分配装置106bと接続されるように端子165aと光通信線を介して接続されている。フィルタ164aは実施の形態4におけるフィルタ140aと同一であり、光分配装置106aに接続される光通信装置110aが送信する光信号の波長(650nm)の光を100%透過させ、光分配装置106bに接続される光通信装置110bが送信する光信号の波長(550nm)の光を減衰させるHPFである。
 図示しないが、光通信装置110bが接続される光分配装置106bに内蔵されるフィルタ64bは、実施の形態4におけるフィルタ140bと同一であり、光分配装置106bに接続される光通信装置110bが送信する光信号の波長(550nm)の光を100%透過させ、光分配装置106aに接続される光通信装置110aが送信する光信号の波長(650nm)の光を減衰させるLPFである。
 このように構成される光分配装置106a及び光分配装置106bを、光通信線103によって端子163aと端子65b、端子165aと端子63bとで接続し、光分配装置106aの接続端子に光通信装置110a,110a,…を、光分配装置106bの接続端子に光通信装置110b,110b,…を接続する。これにより、実施の形態4における図12に示した構成と同様の構成となり、光通信装置110a及び光通信装置110bでCANに基づく光信号の送受信ができると共に、フィルタ164a及びフィルタ64bを備えることで光分配装置106a及び光分配器106b間での光信号のループ現象を回避することができる。
 実施の形態5の図14に示したように、光通信ハーネス107a,107bを構成しておき、夫々に光通信装置110a,110a,…、110b,110b,…を接続すればよいだけとしておくことで、GWなしにCANに基づく光通信を実現する光通信システムを容易に構築することができる。これにより、電磁ノイズ及びリンギングの影響を抑制しつつ、従来のCANプロトコルに基づく光通信システムを実現することができる。
 実施の形態1~5は、CANに基づく光通信ができるシステムについて説明した。しかしながら本発明はCANに限定するものではなく、通信線へ送信されている信号、特に自分自身が送信する信号をも含めて常時監視し、衝突を検知するプロトコルに基づく通信を光信号にて実現するシステム全般に適用できる。
 また実施の形態1~5では、車載ネットワークに適用した例について説明した。しかしながら本発明は、車載に限定するものではなく、FA(Factory Automation)などのCAN通信への適用も可能である。
 なお、開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1、1a、1b 光通信装置
 3、3a~3l 光カプラ(光分配器)
 4、5 光通信線
 6 CANバス(電気通信線)
 7 光電変換装置
 7a、7b 光通信装置(光電変換装置)
 8a~8c スター型ネットワーク(光通信網)
 9a~9d 電気通信装置
 11 CPU
 12 CAN制御部(検知手段)
 13 光通信部(光電変換部)
 14 光受信部
 15 光送信部
 30 光分配器
 31 光入力部
 32 光出力部
 71 CAN制御部
 72 電気通信部(電気送信部、電気受信部)
 91 CPU
 92 CAN制御部
 93 電気通信部
 100 車輌
 102a 光分配器(第1光分配器)
 102b 光分配器(第2光分配器)
 103 光通信線
 104a,104b コネクタ
 105a,105b 光通信ハーネス
 106a,106b 光分配装置
 110a 光通信装置(第1光通信装置)
 110b 光通信装置(第2光通信装置)
 140a フィルタ(第1フィルタ)
 140b フィルタ(第2フィルタ)
 160a 光分配器
 164a フィルタ(第1フィルタ)

Claims (14)

  1.  複数の光入力部及び複数の光出力部を有し、一の光入力部から入力された光を、複数の光出力部へ分配して出力する光分配器と、
     該光分配器を中心に光通信線を介してスター型に接続された複数の光通信装置と
     を備え、
     各光通信装置は、
     前記光分配器の一の光入力部へ光を入力することで光信号の送信を行う光送信部と、
     前記光分配器の一の光出力部から出力された光を受光することで光信号の受信を行う光受信部と、
     該光受信部が受信した光信号に応じて、他の通信装置との間で光信号の送信の衝突を検知する検知手段と
     を有すること
     を特徴とする車載通信システム。
  2.  前記検知手段は、前記光送信部が送信した光信号に対して、前記光受信部が受信した光信号が変化した場合に衝突を検知するようにしてあり、
     前記光通信装置は、前記検知手段が光信号の送信の衝突を検知した場合に、光信号の送信を停止し、他の光通信装置が送信した光信号の受信を行うようにしてあること
     を特徴とする請求項1に記載の車載通信システム。
  3.  前記光通信装置は、
     電気信号の送受信を行う一又は複数の電気送信部及び電気受信部と、
     前記光受信部が受信した光信号を電気信号に変換すると共に、前記電気受信部が受信した電気信号を光信号に変換する光電変換部と
     を有し、
     他の光通信装置と電気信号の送受信を行う一又は複数の電気通信装置との間の通信を仲介するようにしてあること
     を特徴とする請求項1又は請求項2に記載の車載通信システム。
  4.  前記光送信部、前記光受信部及び前記検知手段と、電気信号の送受信を行う一又は複数の電気送信部及び電気受信部と、前記光受信部が受信した光信号を電気信号に変換すると共に、前記電気受信部が受信した電気信号を光信号に変換する光電変換部とを有し、一又は複数の前記光通信装置と、電気信号の送受信を行う一又は複数の装置との間の通信を仲介する光電変換装置を更に備えること
     を特徴とする請求項1又は請求項2に記載の車載通信システム。
  5.  前記光分配器を中心にスター型に接続された前記光通信装置及び前記光電変換装置を有する光通信網を複数備え、
     複数の前記光通信網の光電変換装置が、電気通信線を介して接続してあること
     を特徴とする請求項4に記載の車載通信システム。
  6.  一の光分配器の光入力部と前記光通信装置又は前記光電変換装置とを接続する複数の光通信線は、略同じ長さにしてあること
     を特徴とする請求項5に記載の車載通信システム。
  7.  相互に光入力部及び光出力部で接続された複数の前記光分配器を備え、
     前記複数の光通信装置は、前記複数の光分配器夫々の前記光入力部及び光出力部の内の一部に、スター型に光通信線を介して接続されていること
     を特徴とする請求項1又は請求項2に記載の光通信システム。
  8.  前記複数の光分配器夫々の前記複数の光出力部の内、他の光分配器と接続される光出力部に接続され、前記複数の光通信装置が送信する光信号の波長と異なる波長の光を減衰させる1又は複数のフィルタ
     を更に備えることを特徴とする請求項7に記載の光通信システム。
  9.  相互に光入力部及び光出力部で接続された第1光分配器及び第2光分配器と、
     第1及び第2光分配器の前記光入力部及び光出力部の内の一部に夫々、スター型に光通信線を介して接続され、第1又は第2波長の光信号を送信し、第1又は第2波長を含む異なる複数の波長の光信号を受信する複数の第1及び第2光通信装置と、
     第1光分配器の1つの光出力部と、第2光分配器の1つの光入力部の間に接続され、第2波長の光を減衰させる第1フィルタと、
     第2光分配器の1つの光出力部と、第1光分配器の1つの光入力部の間に接続され、第1波長の光を減衰させる第2フィルタと
     を備えることを特徴とする請求項1又は請求項2に記載の光通信システム。
  10.  前記光通信装置は、CANプロトコルに基づき光信号を送受信するようにしてあること
     を特徴とする請求項1乃至請求項9のいずれか1つに記載の光通信システム。
  11.  前記光分配器は、2つの前記光入力部及び2つの前記光出力部を有する光カプラを一又は複数個用いて構成してあること
     を特徴とする請求項1乃至請求項10のいずれか1つに記載の車載通信システム。
  12.  複数の光入力部及び複数の光出力部を有し、1つの光入力部から入力された光を、複数の光出力部へ分配して出力する光分配器と、
     前記複数の光入力部及び光出力部の内の任意の光入力部及び光出力部に夫々接続される光通信線と、
     前記複数の光出力部の内の特定の光出力部に接続される光通信線に接続され、所定の波長の光を減衰させる1又は複数のフィルタと
     を備えることを特徴とする光通信ハーネス。
  13.  前記フィルタは、光通信線の他の光分配器への接続コネクタ内部に設けられていること
     を特徴とする請求項12に記載の光通信ハーネス。
  14.  複数の光入力部及び複数の光出力部を有し、1つの光入力部から入力された光を、複数の光出力部へ分配して出力する光分配器と、
     前記複数の光出力部の内の特定の光出力部に接続され、所定の波長の光を減衰させる1又は複数のフィルタと
     を備えることを特徴とする光分配装置。
PCT/JP2010/066561 2009-09-24 2010-09-24 車載通信システム、光通信ハーネス及び光分配装置 WO2011037187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800428423A CN102577188A (zh) 2009-09-24 2010-09-24 车载通信系统、光通信线束及光分配装置
DE112010003769T DE112010003769T8 (de) 2009-09-24 2010-09-24 Fahrzeugkommunikationssystem, optischer kommunikationskabelbaum und optische teilungsvorrichtung
US13/384,737 US8929732B2 (en) 2009-09-24 2010-09-24 On-vehicle communication system, optical communication harness and optical distribution apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-219418 2009-09-24
JP2009219418A JP2011071638A (ja) 2009-09-24 2009-09-24 車載通信システム
JP2010-099769 2010-04-23
JP2010099769A JP5402815B2 (ja) 2010-04-23 2010-04-23 光通信システム

Publications (1)

Publication Number Publication Date
WO2011037187A1 true WO2011037187A1 (ja) 2011-03-31

Family

ID=43795932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066561 WO2011037187A1 (ja) 2009-09-24 2010-09-24 車載通信システム、光通信ハーネス及び光分配装置

Country Status (4)

Country Link
US (1) US8929732B2 (ja)
CN (1) CN102577188A (ja)
DE (1) DE112010003769T8 (ja)
WO (1) WO2011037187A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904786A (zh) * 2011-07-27 2013-01-30 上海联影医疗科技有限公司 一种光纤can总线节点单元及其can总线拓扑
WO2014014676A1 (en) * 2012-07-17 2014-01-23 Teledyne Instruments, Inc. Systems and methods for subsea optical can buses
CN106375010A (zh) * 2016-08-31 2017-02-01 中国船舶重工集团公司第七〇二研究所 一种光纤局域网can总线控制装置及其应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3126897A4 (en) * 2014-04-04 2017-12-06 ADC Telecommunications Inc. Optical splitter
US9780879B2 (en) * 2015-12-09 2017-10-03 GM Global Technology Operations LLC Vehicle communication system having self-configuring optical interfaces
US10727954B2 (en) * 2016-06-14 2020-07-28 Teledyne Instruments, Inc. Long distance subsea can bus distribution system
DE112017003148B4 (de) 2016-06-24 2023-02-02 Yazaki Corporation Fahrzeugstromkreiskörper
CN109311439A (zh) 2016-06-24 2019-02-05 矢崎总业株式会社 车辆电路体
JP6889715B2 (ja) 2016-06-24 2021-06-18 矢崎総業株式会社 車両用回路体
JP6752278B2 (ja) 2016-06-24 2020-09-09 矢崎総業株式会社 車両用回路体
CN116101188A (zh) 2016-06-24 2023-05-12 矢崎总业株式会社 车辆电路体
US10263706B2 (en) * 2017-04-18 2019-04-16 The Boeing Company Single-fiber bidirectional controller area network bus
CN109714237B (zh) * 2019-03-08 2024-04-05 广东博力威科技股份有限公司 一种can总线芯片的通信唤醒电路
JP7043446B2 (ja) * 2019-03-18 2022-03-29 矢崎総業株式会社 車両通信システム
CN113711509B (zh) * 2019-06-14 2023-12-08 住友电气工业株式会社 车载通信系统、光耦合器以及车载装置
US11628734B2 (en) 2020-09-22 2023-04-18 Argo AI, LLC Enhanced vehicle connection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172840A (ja) * 1984-02-10 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> 光信号衝突検出・通報回路付光スターカプラ
JPH05235870A (ja) * 1992-02-19 1993-09-10 Nippondenso Co Ltd 車両用多重通信システム
JPH05252170A (ja) * 1992-03-05 1993-09-28 Fuji Xerox Co Ltd 光通信ネットワーク及び通信方式
JPH05281436A (ja) * 1992-04-01 1993-10-29 Sumitomo Wiring Syst Ltd 光スターカプラ
JPH0690239A (ja) * 1992-09-08 1994-03-29 Sumitomo Electric Ind Ltd 通信制御装置およびこれを用いた光通信システム
JP2005260897A (ja) * 2004-02-09 2005-09-22 Auto Network Gijutsu Kenkyusho:Kk 車両用光通信ネットワークシステム及び光信号増幅装置
JP2008219352A (ja) * 2007-03-02 2008-09-18 Auto Network Gijutsu Kenkyusho:Kk 光通信装置
JP2008219366A (ja) * 2007-03-02 2008-09-18 Auto Network Gijutsu Kenkyusho:Kk 光通信装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH564889A5 (ja) * 1973-11-28 1975-07-31 Patelhold Patentverwertung
DE3123448A1 (de) * 1981-06-12 1982-12-30 Siemens AG, 1000 Berlin und 8000 München Anordnung zur steuerung des buszugriffs einer vielzahl von einen bus benutzenden einrichtungen in einem mit zumindest einem optischen mischer als passives bussystem aufgebauten netzwerk, insbesondere fuer mehrrechnersysteme
JPS58190156A (ja) * 1982-04-30 1983-11-07 Nec Corp 光受信装置
DE3224664A1 (de) * 1982-07-01 1984-01-05 Siemens AG, 1000 Berlin und 8000 München Schaltung zur erkennung von datenkollisionen in einem optischen datenbus und schaltung zur erkennung des datenfreien zustandes des busses
CA1225121A (en) * 1982-11-05 1987-08-04 Motomu Mochizuki Optical network system of bus architecture capable of rapidly detecting collision at each communication station
JPS59202753A (ja) * 1983-05-02 1984-11-16 Toshiba Corp デ−タ通信システム
US4580872A (en) * 1983-08-17 1986-04-08 Fiberlan, Inc. Collision detection apparatus utilizing tap means connected to each transmitting optical fiber for fiber optic Local Area Networks
US4628501A (en) * 1983-12-29 1986-12-09 The United States Of America As Represented By The Secretary Of The Army Optical communications systems
JPS6157145A (ja) 1984-08-28 1986-03-24 Mitsubishi Electric Corp 光デ−タ伝送装置
EP0216214B1 (de) * 1985-09-25 1991-05-08 Siemens Aktiengesellschaft Verfahren zum automatischen Pegelabgleich in einem lokalen Netz, insbesondere für eine Mehrrechneranordnung, mit einem Bussystem mit Lichtwellenleitern, zum Zwecke einer Kollisionserkennung
GB2187367B (en) * 1986-01-09 1990-03-28 Ricoh Kk Control system for local area network
US4701909A (en) * 1986-07-24 1987-10-20 American Telephone And Telegraph Company, At&T Bell Laboratories Collision detection technique for an optical passive star local area network using CSMA/CD
US5189414A (en) * 1986-09-30 1993-02-23 Kabushiki Kaisha Toshiba Network system for simultaneously coupling pairs of nodes
US4797879A (en) * 1987-06-05 1989-01-10 American Telephone And Telegraph Company At&T Bell Laboratories Packet switched interconnection protocols for a star configured optical lan
EP0306900B1 (en) * 1987-09-09 1995-04-05 Kabushiki Kaisha Toshiba Data transmission method in optical star network and optical star network system for realizing the same
US4787693A (en) * 1987-11-02 1988-11-29 American Telephone And Telegraph Company, At&T Bell Laboratories Passive star coupler
US5019301A (en) * 1989-01-12 1991-05-28 Codenoll Technology Corporation Method of injection molding star-couplers
US5077728A (en) * 1989-12-20 1991-12-31 At&T Bell Laboratories Frequency division multiple access network
US5404241A (en) * 1991-09-18 1995-04-04 Fuji Xerox Co., Ltd. Optical communication network
US5915054A (en) 1992-03-05 1999-06-22 Fuji Xerox Co., Ltd. Star coupler for an optical communication network
JPH07321744A (ja) * 1994-05-27 1995-12-08 Nec Corp 光ネットワークおよびアナログ中継ノード
JP2888272B2 (ja) * 1994-12-15 1999-05-10 日本電気株式会社 光ネットワークおよび中継ノード
US7218854B1 (en) * 2000-05-30 2007-05-15 Nortel Networks Ltd. High capacity passive optical network
US6980747B1 (en) * 2000-11-28 2005-12-27 Harris Corporation Optically amplified receiver
US20030215235A1 (en) * 2002-05-17 2003-11-20 Yazaki Corporation Optical communication system for vehicle, signal relay apparatus and optical communication connector
EP1453234A3 (en) * 2003-02-27 2006-05-17 ECI Telecom Ltd. An optical communication system and method
DE602004011332T2 (de) * 2003-05-08 2008-05-21 Nxp B.V. Kommunikationsnetz und verfahren zur steurung des kommunikationsnetzes
US20050196169A1 (en) * 2004-03-03 2005-09-08 Fujitsu Limited System and method for communicating traffic between optical rings
FR2869487B1 (fr) * 2004-04-21 2006-07-21 Alcatel Sa Reseau de transmission optique en arbre
DE602006010123D1 (de) * 2005-02-28 2009-12-17 Delphi Tech Inc Bremssystem mit einer fehlertoleranten Kommunikationsknoten-Architektur
JP4413238B2 (ja) 2007-03-02 2010-02-10 株式会社オートネットワーク技術研究所 車両用ネットワークシステム
WO2010052892A1 (ja) * 2008-11-04 2010-05-14 株式会社オートネットワーク技術研究所 通信装置、中継装置、通信システム及び通信方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172840A (ja) * 1984-02-10 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> 光信号衝突検出・通報回路付光スターカプラ
JPH05235870A (ja) * 1992-02-19 1993-09-10 Nippondenso Co Ltd 車両用多重通信システム
JPH05252170A (ja) * 1992-03-05 1993-09-28 Fuji Xerox Co Ltd 光通信ネットワーク及び通信方式
JPH05281436A (ja) * 1992-04-01 1993-10-29 Sumitomo Wiring Syst Ltd 光スターカプラ
JPH0690239A (ja) * 1992-09-08 1994-03-29 Sumitomo Electric Ind Ltd 通信制御装置およびこれを用いた光通信システム
JP2005260897A (ja) * 2004-02-09 2005-09-22 Auto Network Gijutsu Kenkyusho:Kk 車両用光通信ネットワークシステム及び光信号増幅装置
JP2008219352A (ja) * 2007-03-02 2008-09-18 Auto Network Gijutsu Kenkyusho:Kk 光通信装置
JP2008219366A (ja) * 2007-03-02 2008-09-18 Auto Network Gijutsu Kenkyusho:Kk 光通信装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904786A (zh) * 2011-07-27 2013-01-30 上海联影医疗科技有限公司 一种光纤can总线节点单元及其can总线拓扑
CN102904786B (zh) * 2011-07-27 2016-08-03 上海联影医疗科技有限公司 一种光纤can总线节点单元及其can总线拓扑
WO2014014676A1 (en) * 2012-07-17 2014-01-23 Teledyne Instruments, Inc. Systems and methods for subsea optical can buses
US9057846B2 (en) 2012-07-17 2015-06-16 Teledyne Instruments, Inc. Systems and methods for subsea optical can buses
CN106375010A (zh) * 2016-08-31 2017-02-01 中国船舶重工集团公司第七〇二研究所 一种光纤局域网can总线控制装置及其应用
CN106375010B (zh) * 2016-08-31 2019-01-15 中国船舶重工集团公司第七一二研究所 一种光纤局域网can总线控制装置及组网

Also Published As

Publication number Publication date
DE112010003769T5 (de) 2012-07-26
DE112010003769T8 (de) 2013-04-11
US20120189302A1 (en) 2012-07-26
CN102577188A (zh) 2012-07-11
US8929732B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
WO2011037187A1 (ja) 車載通信システム、光通信ハーネス及び光分配装置
KR102526057B1 (ko) 단일 섬유 양방향 제어기 영역 네트워크 버스
US20120290753A1 (en) Connection method for bus controllers and communication system
JP4413238B2 (ja) 車両用ネットワークシステム
JP2011071638A (ja) 車載通信システム
US9221472B2 (en) Means of transport and method for wired data transmission between two vehicles which are detachably connected to one another
CN105991766A (zh) 车辆通信系统
JP5532910B2 (ja) 光通信装置、通信ハーネス及び通信システム
JP2008219366A (ja) 光通信装置
JP2011166549A (ja) 通信コネクタ、通信ハーネス、光通信装置及び車載通信システム
CN106856408B (zh) 具有自配置光学接口的车辆通信系统
CN109660434A (zh) 车辆网络装置
JP5402815B2 (ja) 光通信システム
JP2008219352A (ja) 光通信装置
WO2020250640A1 (ja) 車載通信システム、光カプラおよび車載装置
JP2013214887A (ja) 双方向光通信網及び双方向光通信システム
JP2011055112A (ja) 通信システムおよび通信装置
JP2013046251A (ja) 光通信システム
WO2011162298A1 (ja) 光通信システム及び光信号中継装置
JP2012010101A (ja) 光通信システム、光通信ハーネス及び光分配装置
JP2005260897A (ja) 車両用光通信ネットワークシステム及び光信号増幅装置
US20230376439A1 (en) Primary communication apparatus, coupling module and communication system
JP2012231409A (ja) 光通信システム及び接続装置
JP2000115214A (ja) 光lan装置
KR20150107472A (ko) 헤드 유닛 장치간 연동을 지원하는 가시광통신기반의 차량 링크 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042842.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384737

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010003769

Country of ref document: DE

Ref document number: 1120100037698

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818859

Country of ref document: EP

Kind code of ref document: A1