WO2011037062A1 - 密閉型圧縮機及びこれを用いた冷凍サイクル装置 - Google Patents

密閉型圧縮機及びこれを用いた冷凍サイクル装置 Download PDF

Info

Publication number
WO2011037062A1
WO2011037062A1 PCT/JP2010/066039 JP2010066039W WO2011037062A1 WO 2011037062 A1 WO2011037062 A1 WO 2011037062A1 JP 2010066039 W JP2010066039 W JP 2010066039W WO 2011037062 A1 WO2011037062 A1 WO 2011037062A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
hermetic compressor
bearing frame
rigidity
compressor according
Prior art date
Application number
PCT/JP2010/066039
Other languages
English (en)
French (fr)
Inventor
和 高島
一彦 三浦
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2011532977A priority Critical patent/JP5357971B2/ja
Priority to CN201080043260.7A priority patent/CN102549267B/zh
Priority to US13/497,812 priority patent/US9080570B2/en
Publication of WO2011037062A1 publication Critical patent/WO2011037062A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/042Housings for rolling element bearings for rotary movement
    • F16C35/045Housings for rolling element bearings for rotary movement with a radial flange to mount the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to a hermetic compressor and a refrigeration cycle apparatus using the same, and more particularly to a hermetic compressor having an improved bearing support structure and a refrigeration cycle apparatus using the same.
  • a hermetic compressor accommodates a compression mechanism unit driven by a motor unit through a rotation shaft in a hermetic container, and a main shaft provided at the upper part of the compression mechanism unit and a sub-bearing provided at the lower part. Is supported.
  • a hermetic compressor in which the rotating shaft is supported by an end plate located on the motor part side of the cylinder and a sub-bearing part arranged on the anti-compression mechanism side of the motor part.
  • the auxiliary bearing portion is fixed using a fixing member (bearing frame portion) provided with a refrigerant passage portion.
  • the gas load acting on the roller fitted in the eccentric part of the rotating shaft during refrigerant compression fluctuates greatly during one rotation of the rotating shaft, and a predetermined angle with respect to the position of the vane groove is used as a reference. In the range, the load applied to the auxiliary bearing portion increases.
  • the hermetic compressor described in Patent Document 1 does not consider the relationship between the angular position of the refrigerant passage portion of the fixing member that fixes the auxiliary bearing portion and the angular position at which the load applied to the auxiliary bearing portion increases. If the refrigerant passage is provided at an angular position where the load increases, the fixing member is deformed, and the effect of suppressing the swing of the tip of the rotating shaft by the auxiliary bearing cannot be sufficiently exhibited, and the reliability of the compressor May decrease.
  • the present invention has been made in consideration of the above-described circumstances, and prevents deformation of the bearing frame portion due to gas load, thereby sufficiently exerting the effect of suppressing the swing around the rotating shaft tip by the bearing frame portion.
  • An object of the present invention is to provide a hermetic compressor with improved reliability.
  • the above-mentioned sealed type is designed to improve the reliability by preventing the deformation of the bearing frame due to the gas load of the hermetic compressor and sufficiently exerting the effect of suppressing the swinging of the rotating shaft tip by the bearing frame.
  • An object is to provide a refrigeration cycle apparatus using a compressor.
  • the hermetic compressor according to the present invention provided to achieve the above-described object is A cylindrical sealed container; An electric motor unit comprising a stator and a rotor housed in one axial end side in the sealed container; A compression mechanism portion that is housed in the other axial end of the sealed container and is driven by the electric motor portion via a rotating shaft; A hermetic compressor provided with a bearing part that supports the rotating shaft and a bearing member that holds the bearing part, provided between one axial end of the hermetic container and the electric motor part.
  • the bearing frame portion has a portion having a large rigidity and a portion having a small rigidity in the circumferential direction, and the bearing frame portion has a direction in which a load acting on the bearing portion is maximum and a direction in which the rigidity of the bearing frame portion is large. Is arranged in the sealed container.
  • the portion having high rigidity is 270 ° to 270 ° in the rotation direction of the rotary shaft with reference to the position of the vane groove of the cylinder of the compression mechanism section as viewed from the axial direction of the rotary shaft. It is preferable to be located within the range of 320 °.
  • the bearing frame portion is provided with a plurality of legs extending radially from the center of the bearing portion, and the direction of one of the plurality of legs is 270 ° to about the vane groove. It is desirable to be within the range of 320 °.
  • the plurality of leg portions may be formed in a cross shape.
  • the plurality of leg portions may be formed in a trifurcated shape.
  • a reinforcing rib may be provided in a portion where the rigidity of the bearing member located in the range of 270 ° to 320 ° in the rotational direction of the rotary shaft is large.
  • the bearing portion is preferably a rolling bearing.
  • a refrigeration cycle apparatus provided by another embodiment of the present invention includes the above-described hermetic compressor, a condenser, an expander, an evaporator, and the hermetic compressor. And a four-way valve for adjusting the flow direction of the refrigerant between the expander and the evaporator to form a refrigerant circulation cycle.
  • FIG. 1 is a longitudinal sectional view of an embodiment of a hermetic compressor according to the present invention. It is a top view of the bearing member used for one Embodiment of the hermetic compressor concerning the present invention. It is a longitudinal cross-sectional view of the bearing member used for one Embodiment of the hermetic compressor which concerns on this invention. It is operation
  • the hermetic compressor 1 includes a cylindrical hermetic container 2, and the hermetic container 2 closes a cylindrical lower container 21 whose upper end is open and an upper end opening of the lower container 21. And a cup-shaped upper container 22.
  • a discharge pipe 24 protrudes into the sealed container 2 at the center of the upper container 22 and a power supply terminal 25 to which a lead wire 25a is connected is provided at the peripheral side.
  • the motor part 3 is provided in the upper part of the lower container 21 of the sealed container 2 and the compression mechanism part 4 is provided in the lower part.
  • the electric motor unit 3 and the compression mechanism unit 4 are connected via a rotation shaft 5.
  • a brushless DC synchronous motor (which may be an AC motor or a commercial motor) is used as the motor unit 3, and a stator 31 that is press-fitted and fixed to the inner surface of the hermetic container 2, and a rotor 31 that is rotatably disposed inside the stator 31. And a rotor 32 fitted to the rotary shaft 5.
  • a predetermined rotation gap (air gap) 33 forming a first gas flow path is provided between the stator 31 and the rotor 32 in order to rotatably arrange the rotor 32.
  • a rotor through hole (not shown) that forms a second gas flow path along the rotation shaft 5 is provided inside the rotor 32.
  • the compression mechanism unit 4 includes a first compression mechanism unit 4A and a second compression mechanism unit 4B.
  • the first compression mechanism 4A is formed on the upper side and includes a first cylinder 41A.
  • the second compression mechanism 4B is formed below the first cylinder 41A via the intermediate partition plate 43, and includes a second cylinder 41B.
  • first and second cylinders 41A and 41B have the same inner diameter.
  • a discharge muffler 7a in which a first bearing (main bearing) 6 is superimposed on an upper surface portion of the first cylinder 41A and provided with a vent hole 7c (in FIG. 1, an outer peripheral portion of the first bearing 6 and an inner peripheral portion of the discharge muffler 7a). And is fixed to the first cylinder 41A via a mounting bolt 8a.
  • a second bearing (sub bearing) 9 is superimposed on the lower surface of the second cylinder 41B, and is fixed to the second cylinder 41B via a mounting bolt (not shown) together with the discharge muffler 7b.
  • the integrated second cylinder 41B, second bearing 9 and discharge muffler 7b are fixedly attached to the first cylinder 41A by the mounting bolt 8b, and the compression mechanism 4 is assembled.
  • the first cylinder 41A is fixed to the sealed container 2 by, for example, arc spot welding.
  • the lower end of the rotary shaft 5 is pivotally supported by the second bearing 9 and the upper portion thereof is pivotally supported by the first bearing 6. Further, the rotating shaft 5 penetrates through the cylinders 41A and 41B, and integrally includes two eccentric portions 5a and 5b formed with a phase difference of 180 °.
  • the eccentric parts 5a and 5b have the same diameter as each other, and are assembled so as to be positioned at the inner diameter parts of the cylinders 41A and 41B.
  • the rollers 45a and 45b having the same diameter are fitted on the peripheral surfaces of the eccentric portions 5a and 5b.
  • the lengths in the axial direction of the rollers 45a and 45b are substantially the same as the plate thicknesses (axial lengths) of the first cylinder 41A and the second cylinder 41B.
  • the first cylinder 41A and the second cylinder 41B have upper and lower surfaces defined by the first bearing 6, the intermediate partition plate 43, and the second bearing 9, and the rollers 45a and 45b can be rotated eccentrically in the respective interiors.
  • a first cylinder chamber 42a and a second cylinder chamber 42b to be accommodated are formed.
  • Each roller 45a, 45b can rotate eccentrically in the first and second cylinder chambers 42a, 42b.
  • the first and second cylinders 41A and 41B are provided with vane grooves 46a and 46b, and the vane grooves 46a and 46b are open to the cylinder chambers 42a and 42b.
  • the vane grooves 46a and 46b accommodate vanes 47a and 47b and spring members 48a and 48b.
  • Each vane 47a, 47b is formed in a substantially semicircular shape in a plan view at the tip portion on the side of each cylinder chamber 42a, 42b.
  • the spring members 48a and 48b are interposed between the rear ends of the vanes 47a and 47b and the end portions of the vane grooves 46a and 46b, and apply elastic force (back pressure) to the vanes 47a and 47b so that the tips of the vanes 47a and 47b are moved. It protrudes to each cylinder chamber 42a, 42b, and is elastically brought into contact with each roller 45a, 45b.
  • the eccentric portions 5a and 5b rotate eccentrically, and the rollers 45a and 45b rotate eccentrically (turn) along the inner peripheral walls of the cylinder chambers 42a and 42b, the vanes 47a and 47b
  • the reciprocating motion is made along the vane grooves 46a and 46b, and the cylinder chambers 42a and 42b are both partitioned into a suction chamber and a compression chamber (not shown) by line contact regardless of the rotation angle of the rollers 45a and 45b.
  • the suction chamber is connected to the accumulator 105 through suction pipes 26a and 26b.
  • the vanes 47a and 47b are formed in such a length dimension that the rear ends are located in the vane grooves 46a and 46b when the front ends are at the most protruding portions into the cylinder chambers 42a and 42b.
  • the distance between the rear ends of the vanes 47a and 47b and the end surfaces of the vane grooves 46a and 46b is formed to be slightly larger than the maximum compression length of the spring members 48a and 48b.
  • the first bearing 6 and the second bearing 9 are provided with a discharge valve mechanism (not shown), which respectively communicates with the cylinder chambers 42a and 42b and is covered with discharge mufflers 7a and 7b.
  • the discharge valve mechanism is opened in a state where the refrigerant gas compressed in each cylinder chamber 42a, 42b rises to a predetermined pressure, and the discharge mufflers 7a, 7b are discharged from each cylinder chamber 42a, 42b. It is designed to be discharged into the inside.
  • the refrigerant gas discharged to the discharge mufflers 7a and 7b is silenced and rectified here, and blown out in the direction of the rotation gap 33 and the rotor through-hole through the vent hole 7c provided in the discharge muffler 7a. 2 is led in.
  • the high-pressure refrigerant gas introduced into the sealed container 2 from the discharge muffler 7 b flows through the rotation gap 33, the rotor through hole, the notch groove, and the stator through hole 31 c, and flows out to the upper side of the electric motor unit 3. .
  • a bearing member 10 is provided between one end of the sealed container 2 and the electric motor unit 3, and the bearing member 10 includes a third bearing 11 that is a bearing unit that supports the rotating shaft 5, and the third bearing 11.
  • the bearing frame portion 12 holds the bearing 11.
  • the third bearing 11 is a self-aligning bearing, for example, a ball bearing, and supports the vicinity of one end of the rotating shaft 5, for example, the vicinity of the upper end.
  • the bearing frame portion 12 has a disk-shaped main portion 12a, and a flange portion 12b for press-fitting is provided on the outer periphery of the main portion 12a. Is attached to a bearing attachment hole 12d provided in a boss portion 12c provided continuously to the inner peripheral portion of the main portion 12a.
  • a wide leg portion 12x and a narrow leg portion 12y extending radially outward from the center of the bearing frame portion 12 are formed in a cross shape on the main portion 12a.
  • Four gas holes 12z are provided between the leg portion 12x and the narrow leg portion 12y.
  • the positions of the leg portions 12x and 12y form a portion having high rigidity in the circumferential direction in the present invention
  • the position of the gas hole 12z forms a portion having low rigidity
  • the third bearing 11 is in the range of 270 ° to 320 ° in the rotation direction of the rotary shaft with respect to the vane grooves 46a and 46b for reasons described later.
  • the load acting on is maximized.
  • one portion of the rigid portion shown in FIG. 2, that is, one of the wide leg portions 12x, is in the range of 270 ° to 320 ° (indicated by hatching in the drawing) in the rotation direction of the rotary shaft with reference to the vane grooves 46a and 46b. Position.
  • an oil separating member 14 is screwed onto the upper end of the rotating shaft 5 above the bearing frame portion 12.
  • the oil separation member 14 has a disk shape, and includes a reverse truncated cone-shaped boss portion 14a and a disc-shaped flange portion 14b.
  • the sealed container of the discharge pipe 24 is formed at the center of the boss portion 14a. 2
  • the refrigerant gas that has flowed out to the upper side of the electric motor unit 3 passes through the four gas holes 12z, and the oil contained in the refrigerant gas is separated by the oil separation member 14 and is discharged via the discharge pipe 24. It is discharged out of the sealed container 2.
  • the first compression mechanism unit 4A Since the compression operation in the first compression mechanism unit 4A and the second compression mechanism unit 4B is the same, the first compression mechanism unit 4A will be described as an example.
  • the gas refrigerant sucked from the suction port to the low pressure side of the first cylinder chamber 42a is compressed along with the eccentric rotation of the roller 45a, and the high temperature and high pressure And discharged from the discharge port.
  • the magnitude of the gas load applied to the roller 45a and the direction of the gas load change as the roller 45a rotates, that is, the rotation shaft 5 rotates.
  • Figure 5 is a state of compression step P 1 shown in FIG. 7,
  • FIG. 6 shows a state of the compression step P 2 shown in FIG.
  • This gas load varies greatly during one rotation of the rotating shaft as shown in FIG.
  • FIG. 7 shows calculated values indicating “gas load acting on the roller and its direction” using the hermetic compressor of the present embodiment. Since the gas load increases as the discharge pressure increases, the discharge pressure is assumed to be constant at the maximum value, and the suction pressure is changed.
  • Curve A is when the discharge pressure is maximum and constant and the suction pressure is large.
  • Curve B is when the discharge pressure is maximum and constant and the suction pressure is medium.
  • Curve C is when the discharge pressure is maximum and constant, and the suction pressure. Is small.
  • the suction pressure and discharge pressure described here are values that vary depending on operating conditions when the hermetic compressor is mounted and used in a refrigeration cycle apparatus.
  • curve B when the gas load direction (( ⁇ ) / 2) is about 110 °, the gas load becomes the maximum value (100%). It can be seen that curves A and C also show a large value of about 70% or more with respect to the maximum value at 90 to 140 °.
  • FIG. 8 shows the position of the eccentric portion 5a rotated by 180 ° from the vane groove in the first cylinder chamber 42a (the state shown in FIG. 4).
  • the eccentric portion 5b is positioned at the position of the vane groove ( 0 °), the right side of the first cylinder chamber 42a is at high pressure, and the others are at low pressure.
  • FIG. 9 shows a state in which the rotary shaft 5 has rotated 180 ° from the state of FIG. 8.
  • the eccentric portion 5a In the first cylinder chamber 42a, the eccentric portion 5a is at the vane groove position (0 °), and in the second cylinder chamber 42b, Shows a state in which the eccentric portion 5b is at a position rotated 180 ° from the vane groove (the state shown in FIG. 4).
  • the right side of the second cylinder chamber 42b is in a high pressure state and the others are in a low pressure state.
  • the rotating shaft 5 is deformed in the opposite direction on the right side in the drawing (having a 180 ° phase difference), and a load in the same direction is applied to the bearing frame portion 12.
  • the direction of the gas load (( ⁇ ) / 2) at which the gas load becomes about 70% or more of the maximum. )
  • the range of 270 to 320 ° which is obtained by adding the phase difference of 180 ° to the range of 90 to 140 °
  • one of the leg portions 12x and 12y which is a portion having high rigidity in the circumferential direction in the present invention, is positioned. It can be seen that it is only necessary to avoid the position of the gas hole 12z forming a portion having a small rigidity.
  • reinforcing ribs are provided on the leg portions of the bearing member used in the embodiment shown in FIG.
  • the reinforcing rib 12x1 is provided on the wide leg 12x of the bearing member 10A located in the range of 270 ° to 320 ° in the rotation direction of the rotary shaft with respect to the vane groove. .
  • leg portions of the bearing member used in the above-described embodiment shown in FIG. 2 are provided in a linear shape, whereas they are provided in a cross shape.
  • the bearing member 10 ⁇ / b> B includes a third bearing 11 that is a bearing portion that supports the rotating shaft 5, and a bearing frame portion 12 that holds the third bearing 11.
  • the bearing frame portion 12 has a ring-shaped main portion 12a in which a press-fitting flange portion 12b is continuously provided on the outer peripheral portion, and a boss portion 12c that forms a bearing mounting hole 12d in the center portion. It consists of two leg portions 12x extending radially outward from the center of a third bearing 11), and the outer end portions of the two leg portions 12x are respectively screwed to the ring-shaped main portion 12a by screws S. ing.
  • the bearing member 10B is arranged so that one of the two leg portions 12x is located in a range of 270 ° to 320 ° in the rotation direction of the rotary shaft with respect to the vane groove.
  • the bearing member 10 ⁇ / b> C includes a third bearing 11 that is a bearing portion that supports the rotating shaft 5 and a bearing frame portion 12 that holds the third bearing 11.
  • the bearing frame portion 12 has a ring-shaped main portion 12a in which a press-fitting flange portion 12b is continuously provided on the outer peripheral portion, and a boss portion 12c that forms a bearing mounting hole 12d in the center portion. It consists of three leg portions 12x extending radially outward from the center of a certain third bearing 11), and the outer end portions of the three leg portions 12x are respectively screwed to the ring-shaped main portion 12a by screws S. ing.
  • the bearing member 10C is arranged so that one of the three leg portions 12x is positioned in a range of 270 ° to 320 ° in the rotation direction of the rotary shaft with respect to the vane groove.
  • the bearing frame portion is prevented from being deformed by a gas load, and the effect of suppressing the forward swing of the rotating shaft by the bearing frame portion is sufficiently exerted.
  • a hermetic compressor with improved performance is realized.
  • the refrigeration cycle apparatus 100 shown in FIG. 16 includes a hermetic compressor 1, a four-way valve 101, an outdoor heat exchanger 102, an expansion device 103, an indoor heat exchanger 104, and an accumulator 105 according to this embodiment. It is configured to communicate in a cycle.
  • the refrigerant discharged from the hermetic compressor 1 is supplied to the outdoor heat exchanger 102 through the four-way valve 101 as indicated by a solid arrow during cooling, where it exchanges heat with the outside air. Condensed.
  • the condensed refrigerant flows out of the outdoor heat exchanger 102 and flows to the indoor heat exchanger 104 via the expansion device 103, where it evaporates by exchanging heat with the indoor air and cools the indoor air.
  • the refrigerant that has flowed out of the indoor heat exchanger 104 is sucked into the hermetic compressor 1 through the four-way valve 101 and the accumulator 105.
  • the refrigerant discharged from the hermetic compressor 1 is supplied to the indoor heat exchanger 104 through the four-way valve 101 as indicated by the broken arrow, where it is condensed by exchanging heat with indoor air. Heat the room air.
  • the condensed refrigerant flows out of the indoor heat exchanger 104 and flows to the outdoor heat exchanger 102 via the expansion device 103, where it evaporates by exchanging heat with outdoor air.
  • the evaporated refrigerant flows out of the outdoor heat exchanger 102 and is sucked into the hermetic compressor 1 through the four-way valve 101 and the accumulator 105. Thereafter, the refrigerant is sequentially flown in the same manner, and the operation of the refrigeration cycle is continued.
  • the deformation of the bearing frame portion due to the gas load of the hermetic compressor is prevented, and the effect of suppressing the swinging of the rotating shaft tip by the bearing frame portion is sufficiently exhibited.
  • a refrigeration cycle apparatus capable of improving reliability is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

 ガス荷重による軸受けフレーム部の変形を防止して、軸受けフレーム部による回転軸の先振れ回りの抑制効果を十分に発揮させて、信頼性の向上を図るために提供される密閉型圧縮機は、筒状密閉容器の軸方向一端と、圧縮機構部を駆動する電動機部との間に回転軸を軸支する軸受部と軸受部を保持する軸受フレーム部からなる軸受部材を備えており、この軸受フレーム部は周方向に剛性が大きい部分と剛性が小さい部分を有し、軸受部に作用する荷重が最大となる方向と軸受フレーム部の剛性が大きい方向が一致するように軸受フレーム部を配置する。

Description

密閉型圧縮機及びこれを用いた冷凍サイクル装置
 本発明は密閉型圧縮機およびこれを用いた冷凍サイクル装置に係り、特に軸受の支持構造を改良した密閉型圧縮機およびこれを用いた冷凍サイクル装置に関する。
 一般に密閉型圧縮機は、密閉容器内に電動機部により回転軸を介して駆動される圧縮機構部を収容し、圧縮機構部の上部に設けた主軸受と、下部に設けた副軸受で回転軸を軸支している。
 しかし、従来の密閉型圧縮機は、回転軸の偏心部による偏心荷重のバラツキや、バランスウエイトの取付け誤差などにより、回転を完全にバランスよく行うことは困難であり、回転のアンバランスにより回転軸先端が振れ回り、振動や騒音が生じ、低騒音、小型化、高性能化の要求に十分対応できていなかった。
 そこで、上記要求に対応するために、回転軸を、シリンダの電動機部側に位置する端板と、電動機部の反圧縮機構側に配した副軸受部と、によって軸受する密閉型圧縮機が提案されている(例えば、特開2001-323886号公報:特許文献1、参照)。
 そして、この密閉型圧縮機においては、冷媒通路部が設けられた固定部材(軸受けフレーム部)を用いて副軸受部を固定している。一方、この密閉型圧縮機では、冷媒圧縮時に回転軸の偏心部に嵌め込まれたローラに作用するガス荷重が回転軸の1回転中に大きく変動し、ベーン溝の位置を基準にして所定角度の範囲で、副軸受部にかかる荷重が増大する。
 しかしながら、特許文献1に記載の密閉型圧縮機は、副軸受部を固定する上記固定部材の冷媒通路部の角度位置と、副軸受部にかかる荷重が増大する角度位置の関係が考慮されておらず、荷重が増大する角度位置に冷媒通路部が設けられた場合、固定部材が変形して、副軸受部による回転軸先端の振れ回りの抑制効果を十分に発揮できず、圧縮機の信頼性が低下する恐れがある。
発明の開示
 本発明は上述した事情を考慮してなされたもので、ガス荷重による軸受けフレーム部の変形を防止して、軸受けフレーム部による回転軸先端の振れ回りの抑制効果を十分に発揮させて、信頼性の向上を図った密閉型圧縮機を提供することを目的とする。
 また、密閉型圧縮機のガス荷重による軸受けフレーム部の変形を防止して、軸受けフレーム部による回転軸先端の振れ回りの抑制効果を十分に発揮させて、信頼性の向上を図った上記密閉型圧縮機を用いた冷凍サイクル装置を提供することを目的とする。
 上述した目的を達成するために提供される本発明に係る密閉型圧縮機は、
 筒状の密閉容器と、
 前記密閉容器内の軸方向一端側収納した固定子と回転子とからなる電動機部と、
 前記密閉容器の軸方向他端側収納され、回転軸を介して前記電動機部により駆動される圧縮機構部と、
 前記密閉容器の軸方向一端と前記電動機部との間に設けた、前記回転軸を軸支する軸受部と前記軸受部を保持する軸受フレーム部からなる軸受部材と、を設けた密閉型圧縮機であって、
 前記軸受フレーム部は周方向に剛性が大きい部分と剛性が小さい部分を有し、前記軸受部に作用する荷重が最大となる方向と軸受フレーム部の剛性が大きい方向が一致するように軸受フレーム部を前記密閉容器内に配置したことを特徴とする。
 この密閉型圧縮機において、前記剛性が大きい部分は、前記回転軸の軸方向から見て前記圧縮機構部のシリンダのベーン溝の位置を基準(0度)として回転軸の回転方向に270°~320°の範囲内に位置するようにすることが好ましい。
 また、前記軸受フレーム部に前記軸受部の中心から放射状に延びる複数本の脚部を設け、この複数本の脚部の内1本の脚部の方向は、前記ベーン溝を基準として270°~320°の範囲内に位置することが望ましい。
前記複数本の脚部は十字状に形成しても良い。また、前記複数本の脚部は三叉状に形成しても良い。
 更に、前記回転軸の回転方向に270°~320°の範囲に位置する軸受部材の剛性が大きい部分に補強用リブを設けても良い。
 前記軸受部は転がり軸受であることが好適である。
 また、本発明の別実施例により提供される冷凍サイクル装置は、上記の密閉型圧縮機と、凝縮器と、膨張器と、蒸発器と、前記密閉型圧縮機と連通し、前記凝縮器と、前記膨張器、蒸発器との間の冷媒の流れ方向を調節する四方弁と、を備えて冷媒循環サイクルを形成したことを特徴とする。
本発明の更なる特徴及び作用効果は添付の図面と参照して以下に説明される実施例の記載によりより明白になる。
本発明に係る密閉型圧縮機の一実施形態の縦断面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の平面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の縦断面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる圧縮機構部の動作説明図である。 本発明に係る密閉型圧縮機の一実施形態に用いる圧縮機構部のガス荷重の説明図である。 本発明に係る密閉型圧縮機の一実施形態に用いる圧縮機構部のガス荷重の説明図である。 本発明に係る密閉型圧縮機の一実施形態に用いる圧縮機構部の動作時のガス荷重とその方向を示す相関図である。 本発明に係る密閉型圧縮機の一実施形態に用いる回転軸の変形状態の説明図である。 本発明に係る密閉型圧縮機の一実施形態に用いる回転軸の変形状態の説明図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の第1変形例の平面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の第1変形例の縦断面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の第2変形例の平面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の第2変形例の縦断面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の第3変形例の平面図である。 本発明に係る密閉型圧縮機の一実施形態に用いる軸受部材の第3変形例の縦断面図である。 本発明の一実施形態に係る密閉型圧縮機を搭載した冷凍サイクル装置の概念図である。
 本発明に係る密閉型圧縮機の一実施形態及びこれを用いた本発明に係る冷凍サイクル装置について添付図面を参照して説明する。尚、以下の記載において、上下、左右、等の方向を示す言葉は添付図面の状態、もしくは実際の使用状態に基づき記載されている。
 図1に示すように、密閉型圧縮機1は、筒状の密閉容器2を備え、この密閉容器2は上端が開口する筒状の下部容器21と、この下部容器21の上端開口部を閉塞するカップ状の上部容器22とからなる。
 上部容器22の中心部には吐出管24が密閉容器2内に突出して設けられ、周辺側にはリード線25aが接続される電源端子25が設けられる。
 この密閉容器2の下部容器21内の上部には電動機部3が設けられ、下部には圧縮機構部4が設けられる。これら電動機部3と圧縮機構部4とは、回転軸5を介して連結されている。
 電動機部3は、たとえばブラシレスDC同期モータ(ACモータもしくは商用モータでもよい)が用いられ、密閉容器2の内面に圧入固定される固定子31と、この固定子31の内側に回転自在に配置され、回転軸5に嵌着される回転子32と、から構成される。
 固定子31と回転子32間には、この回転子32を回転自在に配置するために、第1のガス流路をなす所定の回転用間隙(エアーギャップ)33が設けられる。
 また、回転子32の内部には、回転軸5に沿って第2のガス流路をなす回転子貫通孔(図示せず)が設けられる。
 一方、圧縮機構部4は、第1の圧縮機構部4Aと第2の圧縮機構部4Bとから構成される。
 第1の圧縮機構部4Aは上部側に形成され、第1のシリンダ41Aを備えている。第2の圧縮機構部4Bは中間仕切板43を介して第1のシリンダ41Aの下部に形成され、第2のシリンダ41Bを備えている。
 これら第1、第2のシリンダ41A、41Bは、同一の内径寸法を有する。
 第1のシリンダ41Aの上面部に第1の軸受(主軸受)6が重ね合わされ、通気孔7cを設けた吐出マフラー7a(図1では第1の軸受6外周部と吐出マフラー7a内周部との隙間が通気孔7cとなっている)とともに取付けボルト8aを介して第1のシリンダ41Aに取付け固定される。
 第2のシリンダ41Bの下面部には第2の軸受(副軸受)9が重ね合わされ、吐出マフラー7bとともに図示しない取付けボルトを介して第2のシリンダ41Bに取付け固定される。これら一体化された第2のシリンダ41B、第2の軸受9及び吐出マフラー7bは、取付けボルト8bにより第1のシリンダ41Aに取付け固定されて圧縮機構部4が組立てられる。この組立てられた圧縮機構部4は第1のシリンダ41Aを密閉容器2に、例えばアークスポット溶接等で固着される。
 回転軸5は、最下端部が第2の軸受9に回転自在に枢支され、その上部が第1の軸受6に回転自在に軸支される。さらに、回転軸5は各シリンダ41A、41B内部を貫通するとともに、180°の位相差をもって形成される2つの偏心部5a、5bを一体に備えている。
 各偏心部5a、5bは互いに同一直径をなし、各シリンダ41A、41B内径部に位置するよう組立てられる。これら偏心部5a、5bの周面には、互いに同一直径をなす各ローラ45a、45bが嵌合される。各ローラ45a、45bの軸方向長さは、第1のシリンダ41Aと第2のシリンダ41Bの板厚(軸方向長さ)と略同一に揃えられる。
 第1のシリンダ41Aと第2のシリンダ41Bは、第1の軸受6と中間仕切板43および第2の軸受9で上下面が区画され、それぞれの内部に各ローラ45a、45bが偏心回転自在に収容される第1のシリンダ室42aと第2のシリンダ室42bが形成される。各ローラ45a、45bは第1、第2のシリンダ室42a、42bにおいて偏心回転できる。
 第1、第2のシリンダ41A、41Bには、ベーン溝46a、46bが設けられ、このベーン溝46a、46bは各シリンダ室42a、42bに対して開放されている。各ベーン溝46a、46bにはベーン47a、47bおよびばね部材48a、48bが収容される。
 各ベーン47a、47bは、各シリンダ室42a、42b側である先端部が平面視で略半円状に形成される。ばね部材48a、48bはベーン47a、47bの後端とベーン溝46a、46b端部との間に介在され、ベーン47a、47bに弾性力(背圧)を付与してベーン47a、47bの先端を各シリンダ室42a、42bへ突出させ、各ローラ45a、45b周面に弾性的に接触させる。
 従って、回転軸5が回転し、偏心部5a、5bが偏心回転して各ローラ45a、45bが各シリンダ室42a、42bの内周壁に沿って偏心回転(旋回)したとき、ベーン47a、47bはベーン溝46a、46bに沿って往復運動し、各ローラ45a、45bの回転角度にかかわらず線接触して各シリンダ室42a、42bを共に図示しない吸込室と圧縮室に仕切ることとなる。吸込室は吸込管26a、26bを介してアキュムレータ105に接続される。
 ベーン47a、47bは、先端が各シリンダ室42a、42b内へ最も突出する部位にあるとき、後端がベーン溝46a、46b内に位置する長さ寸法に形成される。ベーン47a、47bが最も後退したとき、ベーン47a、47b後端とベーン溝46a、46b端面との間の距離は、ばね部材48a、48bの最大圧縮長さよりもわずかに大きく形成されている。
 第1の軸受6と第2の軸受9には、図示しない吐出弁機構が設けられていて、それぞれが各シリンダ室42a、42bに連通するとともに、吐出マフラー7a、7bで覆われている。
 後述するように、このような機構により、各シリンダ室42a、42bで圧縮された冷媒ガスが所定圧に上昇した状態で吐出弁機構は開放され、各シリンダ室42a、42bから吐出マフラー7a、7b内へ吐出するようになっている。
 吐出マフラー7a、7bに吐出された冷媒ガスは、ここで消音と整流作用を受け、吐出マフラー7aに設けた通気孔7cを介し回転用間隙33及び回転子貫通孔の方向に吹出されて密閉容器2内に導かれるようになっている。
 また、吐出マフラー7bから密閉容器2内に導かれた高圧の冷媒ガスは、回転用間隙33、回転子貫通孔、切欠溝及び固定子貫通孔31cを流れて、電動機部3の上側に流出する。
 また、密閉容器2の一端と電動機部3との間には、軸受部材10が設けられ、この軸受部材10は回転軸5を軸支する軸受部である第3の軸受11と、この第3の軸受11を保持する軸受フレーム部12からなる。
 この第3の軸受11は、自動調芯軸受で、例えば玉軸受であり、回転軸5の一端近傍、例えば上端近傍を軸支する。
 図2及び図3に示すように、軸受フレーム部12には円板状の主部12aを有し、この主部12aの外周には圧入用のフランジ部12bが設けられ、第3の軸受11は、主部12aの内周部に連設されたボス部12cに設けた軸受取付孔12dに取付けられる。
 さらに、主部12aには軸受フレーム部12(軸受部である第3の軸受11)の中心から外側に放射状に延びる幅広の脚部12xと幅狭の脚部12yが十字状に形成され、幅広の脚部12xと幅狭の脚部12y間には、4個のガス孔12zが設けられる。
 ここで、脚部12x、12yの位置が本発明における周方向に剛性の大きい部分をなし、ガス孔12zの位置が、剛性の小さい部分をなす。
 一方、図4に示すように、圧縮機構部4(図1)において、後述する理由によりベーン溝46a、46bを基準として回転軸の回転方向に270°~320°の範囲で第3の軸受11に作用する荷重が最大となる。
 そこで、図2に示す剛性の大きい部分すなわち幅広の脚部12xの1本を、ベーン溝46a、46bを基準として回転軸の回転方向に270°~320°の範囲(図中斜線で示す)に位置させる。
 また、軸受フレーム部12の上方で、回転軸5の上端には、油分離部材14が螺着されている。この油分離部材14は円盤形状をなし、その断面が下に凹んだ逆截頭円錐状のボス部14aと円板状のフランジ部14bからなり、ボス部14aの中央に吐出管24の密閉容器2内先端部が近接して対向する。
 従って、上記のように、電動機部3の上側に流出した冷媒ガスは、4個のガス孔12zを通過し、油分離部材14により冷媒ガスに含まれる油は分離され、吐出管24を介して密閉容器2外に吐出される。
 次に本実施形態の密閉型圧縮機の動作について説明する。
 なお、第1の圧縮機構部4Aと第2の圧縮機構部4Bにおける圧縮動作は同様であるので、第1の圧縮機構部4Aを例にとり説明する。
 図4に示すように、第1の圧縮機構部4Aにおいて、吸込口から第1のシリンダ室42aの低圧側に吸い込まれたガス冷媒は、ローラ45aの偏心回転に伴って、圧縮され、高温高圧になって、吐出口から吐出される。
 この冷媒の圧縮過程において、ローラ45aには、高圧側のガス圧力と低圧側のガス圧力との圧力差に基づくガス荷重がローラ45aにかかり、第1の軸受6、第2の軸受9および第3の軸受11のラジアル荷重が発生する。
 図5および図6に示すように、ローラ45aにかかるガス荷重の大きさとガス荷重の方向はローラ45aの回転すなわち回転軸5の回転に伴って変わる。
 図5は、図7に示す圧縮工程Pの状態、図6は、図7に示す圧縮工程Pの状態を示している。
 ベーン溝46aを基準として回転軸5の回転角度をθとすると、ローラ45aにかかるガス荷重の方向(角度)は、((θ-α)/2)で表される。なお、αは偏心部の偏心によって生じる角度である。
 このガス荷重は、図7に示すように、回転軸が1回転する間に大きく変動する。
 図7は本実施形態の密閉型圧縮機を用いた「ローラに作用するガス荷重とその方向」を示す計算値である。吐出圧力が大きいほどガス荷重は大きくなるため吐出圧力は最大値一定として、吸込圧力を変えて計算した。
 曲線Aは吐出圧力が最大で一定、吸込圧力が大の場合であり、曲線Bは吐出圧力が最大で一定、吸込圧力が中の場合であり、曲線Cは吐出圧力が最大で一定、吸込圧力が小の場合である。尚、ここで述べる吸込圧力、吐出圧力は、本密閉型圧縮機を冷凍サイクル装置に搭載して使用した場合に運転条件によって変わる値である。
 図7に示すように、曲線Bにおいて、ガス荷重の方向((θ-α)/2)が約110°の場合に、ガス荷重は最大値(100%)になり、この曲線Bをはじめ、曲線A及び曲線Cにおいても、90~140°で、最大値に対して約70%以上と大きな値を示すことがわかる。
 図8及び図9はガス荷重による回転軸の変形状態を示し、ベーン溝に対して180°方向から見た図である。
 図8は、第1のシリンダ室42aにおいて偏心部5aがベーン溝から180°回転した位置(図4の状態)にあり、第2のシリンダ室42bにおいては、偏心部5bがベーン溝の位置(0°)にある状態を示しており、第1のシリンダ室42aの右側が高圧、他は全て低圧の状態となっている。
 図9は、図8の状態から回転軸5が180°回転した状態を示し、第1のシリンダ室42aにおいて偏心部5aがベーン溝の位置(0°)にあり、第2のシリンダ室42bにおいては、偏心部5bがベーン溝から180°回転した位置(図4の状態)にある状態を示しており、第2のシリンダ室42bの右側が高圧、他は全て低圧の状態となっている。
 図8及び図9に示す場合共、ガス荷重は図中左側にかかり、回転軸5が左側に変形する。
 これに対して、第3の軸受11側では、回転軸5が図中右側の反対方向(180°位相差を有する)に変形し、同方向の荷重が軸受フレーム部12にかかる。
 従って、軸受フレーム部12が変形して、第3の軸受11の位置がずれるのを防止するには、ガス荷重が最大の約70%以上になるガス荷重の方向((θ-α)/2)の範囲(90~140°)に、位相差の180°を加えた270~320°の範囲に、本発明における周方向に剛性の大きい部分である脚部12x、12yの1本を位置させ、剛性の小さい部分をなすガス孔12zの位置を避ければよいことがわかる。
 これにより、ガス荷重による軸受けフレーム部の変形が防止される。
 従って、軸受けフレーム部による回転軸先端の振れ回りの抑制効果を十分に発揮させて、信頼性の向上を図ることができる。
 次に、本実施形態の密閉型圧縮機に用いる軸受部材の第1変形例について説明する。
 本第1変形例では、図2に示す上記実施形態に用いた軸受部材の脚部に、補強用リブを設けている。
 例えば、図10および図11に示すように、ベーン溝を基準として回転軸の回転方向に270°~320°の範囲に位置する軸受部材10Aの幅広の脚部12xに、補強用リブ12x1を設ける。
 これにより、軸受部材に薄い金属板を用いることが可能になり、安価にガス荷重による軸受けフレーム部の変形を防止できる。
 なお、他の構成は図2に示す軸受部材と異ならないので、同一符号を付して説明は省略する。
 また、本実施形態に用いる軸受部材の第2変形例について説明する。
 本第2変形例では、図2に示す上記実施形態に用いた軸受部材の脚部が十字状に設けられるのに対して、直線状に設けられる。
 例えば、図12および図13に示すように、この軸受部材10Bは、回転軸5を軸支する軸受部である第3の軸受11と、この第3の軸受11を保持する軸受フレーム部12からなる。軸受フレーム部12は、外周部に圧入用のフランジ部12bが連設されたリング状の主部12aと、中央部に軸受取付孔12dを形成するボス部12cを有し、中心(軸受部である第3の軸受11の中心)から外側に放射状に延びる2本の脚部12xからなり、2本の脚部12xの外側端部が、それぞれリング状の主部12aに螺子Sによって螺着されている。
 この軸受部材10Bは、2本の脚部12xの1本が、ベーン溝を基準として回転軸の回転方向に270°~320°の範囲に位置するように配置される。
 これにより、軸受部材の形状が簡単になり、安価で、ガス荷重による軸受フレーム部の変形を防止できる。
 また、本実施形態に用いる軸受部材の第3変形例について説明する。
 本第3変形例では、図2に示す上記実施形態に用いた軸受部材の脚部が十字状に設けられるのに対して、三又状に設けられる。
 例えば、図14および図15に示すように、この軸受部材10Cは、回転軸5を軸支する軸受部である第3の軸受11と、この第3の軸受11を保持する軸受フレーム部12からなる。軸受フレーム部12は、外周部に圧入用のフランジ部12bが連設されたリング状の主部12aと、中央部に軸受取付孔12dを形成するボス部12cを有し、中心(軸受部である第3の軸受11の中心)から外側に放射状に延びる3本の脚部12xからなり、3本の脚部12xの外側端部が、それぞれリング状の主部12aに螺子Sによって螺着されている。
 この軸受部材10Cは、3本の脚部12xの1本が、ベーン溝を基準として回転軸の回転方向に270°~320°の範囲に位置するように配置される。
 これにより、軸受部材の形状が簡単になり、安価で、ガス荷重による軸受フレーム部の変形を防止できる。
 上述のように本実施形態の密閉型圧縮機によれば、ガス荷重による軸受けフレーム部の変形を防止して、軸受けフレーム部による回転軸の先振れ回りの抑制効果を十分に発揮させて、信頼性の向上を図った密閉型圧縮機が実現される。
 以下、本実施形態の密閉型圧縮機を用いた冷凍サイクル装置について図16を参照して説明する。
 図16に示される本冷凍サイクル装置100は、本実施形態の密閉型圧縮機1と、四方弁101と、室外熱交換器102と、膨張装置103と、室内熱交換器104と、アキュムレータ105をサイクル状に連通して構成される。
 冷凍サイクル装置100において、密閉型圧縮機1から吐出される冷媒は、冷房時には、四方弁101を介して実線矢印で示すように室外熱交換器102に供給され、ここで外気と熱交換して凝縮される。
 この凝縮された冷媒は、室外熱交換器102から流出し、膨張装置103を介して室内熱交換器104に流され、ここで室内空気と熱交換して蒸発し、室内空気を冷却する。室内熱交換器104から流出された冷媒は、四方弁101及びアキュムレータ105を介して密閉型圧縮機1内に吸い込まれる。
 また、暖房時には、密閉型圧縮機1から吐出された冷媒は、四方弁101を介して破線矢印で示すように、室内熱交換器104に供給され、ここで室内空気と熱交換して凝縮され、室内空気を加熱する。この凝縮された冷媒は室内熱交換器104から流出し、膨張装置103を介して室外熱交換器102に流され、ここで室外空気と熱交換して蒸発する。この蒸発した冷媒は、室外熱交換器102から流出され、四方弁101及びアキュムレータ105を介して密閉型圧縮機1内に吸い込まれる。以後、順次同様に冷媒が流されて冷凍サイクルの運転が継続される。
 上記のような本実施形態の冷凍サイクル装置によれば、密閉型圧縮機のガス荷重による軸受けフレーム部の変形を防止して、軸受けフレーム部による回転軸先端の振れ回りの抑制効果を十分に発揮させて、信頼性の向上を図ることができる冷凍サイクル装置が実現される。
 更に、本発明は上述の実施例に限ることなく、請求項の記載の範囲を超えない限り、他の変形実施形態も含みうる。

Claims (8)

  1.  筒状の密閉容器と、
     前記密閉容器内の軸方向一端側収納した固定子と回転子とからなる電動機部と、
     前記密閉容器の軸方向他端側収納され、回転軸を介して前記電動機部により駆動される圧縮機構部と、
     前記密閉容器の軸方向一端と前記電動機部との間に設けた、前記回転軸を軸支する軸受部と前記軸受部を保持する軸受フレーム部からなる軸受部材と、を設けた密閉型圧縮機であって、
     前記軸受フレーム部は周方向に剛性が大きい部分と剛性が小さい部分を有し、前記軸受部に作用する荷重が最大となる方向と軸受フレーム部の剛性が大きい方向が一致するように軸受フレーム部を前記密閉容器内に配置したことを特徴とする密閉型圧縮機。
  2.  前記剛性が大きい部分は、前記回転軸の軸方向から見て前記圧縮機構部のシリンダのベーン溝の位置を基準(0度)として回転軸の回転方向に270°~320°の範囲内に位置することを特徴とする請求項1に記載の密閉型圧縮機。
  3.  前記軸受フレーム部に前記軸受部の中心から放射状に延びる複数本の脚部を設け、この複数本の脚部の内1本の脚部の方向は、前記ベーン溝を基準として270°~320°の範囲内に位置することを特徴とする請求項2に記載の密閉型圧縮機。
  4.  前記複数本の脚部は十字状に形成されていることを特徴とする請求項3に記載の密閉型圧縮機。
  5.  前記複数本の脚部は三叉状に形成されていることを特徴とする請求項3に記載の密閉型圧縮機。
  6.  前記回転軸の回転方向に270°~320°の範囲に位置する軸受部材の剛性が大きい部分に補強用リブを設けた事を特徴とする請求項2に記載の密閉型圧縮機。
  7.  前記軸受部は転がり軸受であることを特徴とする請求項1に記載の密閉型圧縮機。
  8.  前記請求項1に記載の密閉型圧縮機と、
     凝縮器と、
     膨張器と、
     蒸発器と、
     前記密閉型圧縮機と連通し、前記凝縮器と、前記膨張器、蒸発器との間の冷媒の流れ方向を調節する四方弁と、を備えて冷媒循環サイクルを形成したことを特徴とする冷凍サイクル装置。
PCT/JP2010/066039 2009-09-25 2010-09-16 密閉型圧縮機及びこれを用いた冷凍サイクル装置 WO2011037062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011532977A JP5357971B2 (ja) 2009-09-25 2010-09-16 密閉型圧縮機及びこれを用いた冷凍サイクル装置
CN201080043260.7A CN102549267B (zh) 2009-09-25 2010-09-16 密闭型压缩机及使用该压缩机的制冷循环装置
US13/497,812 US9080570B2 (en) 2009-09-25 2010-09-16 Hermetic compressor and refrigeration cycle equipment using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009220755 2009-09-25
JP2009-220755 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011037062A1 true WO2011037062A1 (ja) 2011-03-31

Family

ID=43795812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066039 WO2011037062A1 (ja) 2009-09-25 2010-09-16 密閉型圧縮機及びこれを用いた冷凍サイクル装置

Country Status (4)

Country Link
US (1) US9080570B2 (ja)
JP (1) JP5357971B2 (ja)
CN (1) CN102549267B (ja)
WO (1) WO2011037062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020526707A (ja) * 2017-08-08 2020-08-31 日立ジョンソンコントロールズ空調株式会社 回転圧縮機およびその組立方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493008B2 (ja) * 2010-10-13 2014-05-14 東芝キヤリア株式会社 密閉型回転式圧縮機及び冷凍サイクル装置
JP5561421B1 (ja) * 2013-09-06 2014-07-30 株式会社富士通ゼネラル ロータリ圧縮機
KR101727801B1 (ko) * 2015-05-22 2017-04-17 엘지전자 주식회사 로터리 압축기 및 그 제조방법
JP2017089427A (ja) * 2015-11-05 2017-05-25 三菱重工業株式会社 スクロール圧縮機、スクロール圧縮機の製造方法
JP6777167B2 (ja) * 2017-02-09 2020-10-28 ダイキン工業株式会社 圧縮機
KR102303545B1 (ko) * 2017-05-12 2021-09-17 엘지전자 주식회사 스크롤 압축기
JP6987591B2 (ja) * 2017-10-05 2022-01-05 三菱重工サーマルシステムズ株式会社 密閉型圧縮機
CN111120312B (zh) * 2019-12-13 2023-06-20 珠海格力电器股份有限公司 螺杆压缩机的设计方法及螺杆压缩机
CN114320916B (zh) * 2021-12-23 2023-03-24 珠海格力电器股份有限公司 一种泵体结构、压缩机及空调器
GB2624879A (en) * 2022-11-29 2024-06-05 Dyson Technology Ltd A rotor assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200363A (ja) * 2005-01-18 2006-08-03 Fujitsu General Ltd 密閉型圧縮機
JP3964371B2 (ja) * 2002-09-23 2007-08-22 テカムセ プロダクツ カンパニー ベアリング・サポートを有するコンプレッサ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668108A (en) * 1985-03-22 1987-05-26 General Electric Company Bearing having anisotropic stiffness
JPH0518360A (ja) * 1991-07-11 1993-01-26 Sanyo Electric Co Ltd 密閉型圧縮機の軸受装置
BR9805787C1 (pt) * 1998-12-21 2004-07-13 Svedala Ltda Rolo para correia transportadora
JP2001323886A (ja) 2000-05-16 2001-11-22 Matsushita Electric Ind Co Ltd ロータリ圧縮機
US6439772B1 (en) * 2000-12-01 2002-08-27 General Electric Company Method and apparatus for supporting rotor assembly bearings
US6698930B2 (en) * 2000-12-01 2004-03-02 Mitsubishi Heavy Industries, Ltd. Foil gas bearing
JP3671849B2 (ja) * 2001-03-14 2005-07-13 松下電器産業株式会社 モータ内蔵の圧縮機とそれを用いた移動車
JP2003097577A (ja) * 2001-09-27 2003-04-03 Ntn Corp 車輪用軸受装置
AU2002354491A1 (en) * 2002-02-20 2003-09-09 Nsk Ltd. Rotation support device for compressor pulley
US6890159B2 (en) * 2002-03-19 2005-05-10 Denso Corporation Air blower with fan unable to contact motor housing
US20030231968A1 (en) * 2002-06-18 2003-12-18 Hsieh Hsin Yuan Fan structure
US6887050B2 (en) 2002-09-23 2005-05-03 Tecumseh Products Company Compressor having bearing support
JP2005265109A (ja) * 2004-03-19 2005-09-29 Tokai Rubber Ind Ltd ストラットマウント
JP2008039035A (ja) * 2006-08-04 2008-02-21 Nsk Ltd ころ軸受

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964371B2 (ja) * 2002-09-23 2007-08-22 テカムセ プロダクツ カンパニー ベアリング・サポートを有するコンプレッサ
JP2006200363A (ja) * 2005-01-18 2006-08-03 Fujitsu General Ltd 密閉型圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020526707A (ja) * 2017-08-08 2020-08-31 日立ジョンソンコントロールズ空調株式会社 回転圧縮機およびその組立方法

Also Published As

Publication number Publication date
US20120174620A1 (en) 2012-07-12
JP5357971B2 (ja) 2013-12-04
US9080570B2 (en) 2015-07-14
CN102549267A (zh) 2012-07-04
JPWO2011037062A1 (ja) 2013-02-21
CN102549267B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5357971B2 (ja) 密閉型圧縮機及びこれを用いた冷凍サイクル装置
JP5358018B2 (ja) ロータリ圧縮機及び冷凍サイクル装置
JP5117503B2 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
JPWO2009028632A1 (ja) ロータリ式圧縮機及び冷凍サイクル装置
JP2010265849A (ja) 密閉型圧縮機、冷凍サイクル装置
JP2007255332A (ja) 圧縮機
JP2008524515A (ja) 容量可変型ロータリ圧縮機
JP2008180178A (ja) 回転式圧縮機および冷凍サイクル装置
JPWO2009031626A1 (ja) 2気筒回転式圧縮機及び冷凍サイクル装置
JP2008240666A (ja) ロータリ圧縮機およびヒートポンプシステム
JP4065654B2 (ja) 複数シリンダロータリ圧縮機
JP2006177228A (ja) ロータリ2段圧縮機及びそれを用いた空気調和機
CN111954761B (zh) 旋转式压缩机以及冷冻循环装置
JP6710348B1 (ja) 圧縮機及びこの圧縮機を備えた空気調和機
US12000395B2 (en) Scroll compressor and refrigeration cycle device
JP2014118954A (ja) スクロール圧縮機
CN218816980U (zh) 一种转子式压缩机及空调器
JP3893852B2 (ja) 密閉型圧縮機
JP6429943B2 (ja) スクロール圧縮機
JP2006200527A (ja) 圧縮機
WO2013179677A1 (ja) ロータリ圧縮機
JP2011064175A (ja) 密閉型圧縮機、冷凍サイクル装置
WO2021106198A1 (ja) 圧縮機および冷凍サイクル装置
WO2020039489A1 (ja) 圧縮機、及び、これを備える冷凍サイクル装置
JP2006046154A (ja) 密閉型圧縮機及びそれを用いた冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043260.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13497812

Country of ref document: US

Ref document number: 2689/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011532977

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10818737

Country of ref document: EP

Kind code of ref document: A1