WO2020039489A1 - 圧縮機、及び、これを備える冷凍サイクル装置 - Google Patents

圧縮機、及び、これを備える冷凍サイクル装置 Download PDF

Info

Publication number
WO2020039489A1
WO2020039489A1 PCT/JP2018/030722 JP2018030722W WO2020039489A1 WO 2020039489 A1 WO2020039489 A1 WO 2020039489A1 JP 2018030722 W JP2018030722 W JP 2018030722W WO 2020039489 A1 WO2020039489 A1 WO 2020039489A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
tapered portion
compressor
lubricating oil
rotor
Prior art date
Application number
PCT/JP2018/030722
Other languages
English (en)
French (fr)
Inventor
量人 剱持
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/030722 priority Critical patent/WO2020039489A1/ja
Priority to JP2019512019A priority patent/JP6518026B1/ja
Publication of WO2020039489A1 publication Critical patent/WO2020039489A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor and the like.
  • Patent Document 1 As a compressor used in a refrigeration cycle device such as an air conditioner, for example, a technology described in Patent Document 1 is known. That is, Patent Literature 1 discloses “a hermetic compressor including a main bearing and a sub-bearing that closes a compression chamber of a compression mechanism, and a third bearing provided on a side of the electric motor opposite to the compression mechanism”. Is described. Further, Patent Document 1 describes that an oil pump is provided at a lower end portion of a crankshaft.
  • Patent Document 1 The oil pump described in Patent Document 1 is a non-displacement type pump, and it is known that its head is relatively small. In such a non-displacement type oil pump, it is difficult for the lubricating oil to reach the third bearing near the upper end of the crankshaft, which may cause insufficient lubrication of the third bearing.
  • a positive displacement pump for example, a trochoid pump
  • lubricating oil is reliably pumped to the third bearing.
  • a positive displacement pump increases the number of parts and complicates the structure, and requires a certain amount of energy to drive the pump, thereby lowering the efficiency of the compressor.
  • an object of the present invention is to provide a highly reliable compressor or the like with a simple configuration.
  • a compressor according to the present invention includes a hermetically sealed container in which lubricating oil is sealed, an electric motor having a stator and a rotor installed inside the hermetically sealed container, A shaft that extends and rotates integrally with the rotor, and a compression mechanism that compresses gas with the rotation of the shaft, and is installed below the rotor to support the shaft.
  • the peripheral wall surface of the hole functions as the upper bearing, or the upper bearing is installed in the hole, and the support member is inclined such that the closer to the axis, the lower its upper surface is. It is characterized by having a tapered portion.
  • FIG. 3 is a cross-sectional view of the compressor according to the first embodiment of the present invention as viewed from the line III-III in FIG. 1. It is the figure which expanded the vicinity of the upper frame in the longitudinal section of the compressor concerning a 2nd embodiment of the present invention. It is the figure which expanded the vicinity of the upper frame in the longitudinal section of the compressor concerning a 3rd embodiment of the present invention. It is the figure which expanded the vicinity of the upper frame in the longitudinal section of the compressor concerning a 4th embodiment of the present invention. It is the figure which expanded the vicinity of the upper frame in the longitudinal section of the compressor concerning a 5th embodiment of the present invention. It is explanatory drawing including the refrigerant circuit of the air conditioner which concerns on 6th Embodiment of this invention.
  • FIG. 1 is a longitudinal sectional view of a compressor 10 according to the first embodiment.
  • the compressor 10 is a rotary type compressor that compresses a gaseous refrigerant.
  • the compressor 10 includes a closed casing 1, an electric motor 2, a crankshaft 3 (shaft), an oil pump 4, a compression mechanism 5, a sound deadening cover 6, frames 7, 8, 9 is provided.
  • the closed container 1 is a shell-shaped container that accommodates the electric motor 2, the compression mechanism 5, and the like, and is substantially sealed.
  • the closed container 1 includes a cylindrical case 1a, a lid chamber 1b welded near an upper end of the case 1a, and a bottom chamber 1c welded near a lower end of the case 1a.
  • the sealed container 1 is filled with a lubricating oil for improving the lubricating property and sealing property of the compressor 10.
  • a liquid lubricating oil is stored at the bottom (region J indicated by a dot) of the sealed container 1.
  • part of the lubricating oil is turned into mist, and the inside of the sealed container 1 is filled with the mist-shaped lubricating oil.
  • the suction pipe Pi shown in FIG. 1 is a pipe that guides a gaseous refrigerant to the compression chamber G, and is connected to the case 1 a of the sealed container 1.
  • an accumulator for gas-liquid separation of the refrigerant is connected to the upstream side of the suction pipe Pi.
  • the other discharge pipe Po is a pipe for discharging the gaseous refrigerant compressed in the compression chamber G, and is connected to the lid chamber 1b of the closed casing 1.
  • the electric motor 2 is a drive source for rotating the crankshaft 3 and is installed inside the closed casing 1 (near the center in the vertical direction).
  • the electric motor 2 includes a stator 2a, a rotor 2b, and a coil 2c.
  • the stator 2 a is formed by laminating electromagnetic steel sheets, and is fixed to the inner peripheral wall of the closed casing 1.
  • the rotor 2b is formed by laminating electromagnetic steel sheets, and is disposed radially inside the stator 2a.
  • the coil 2c is a wiring for passing a current, is wound in a predetermined manner, and is disposed near the stator 2a.
  • the crankshaft 3 is a shaft that rotates integrally with the rotor 2b as the electric motor 2 is driven.
  • the crankshaft 3 extends in the vertical direction, and is rotatably supported by the frames 7, 8, and 9. As shown in FIG. 1, the crankshaft 3 includes a main shaft 3a and an eccentric portion 3b.
  • the main shaft 3a is coaxially fixed to the rotor 2b of the electric motor 2.
  • the eccentric portion 3b is a shaft that rotates while being eccentric with respect to the main shaft 3a, and is formed integrally with the main shaft 3a.
  • the eccentric portion 3b is provided below the crankshaft 3, and is fixed to an inner peripheral surface of an annular roller 5b described later.
  • a vertically long opening h1 that opens downward is provided near the lower end of the crankshaft 3, and an oil pump 4 is installed in this opening h1.
  • the oil pump 4 is a non-positive displacement pump that pumps lubricating oil.
  • the oil pump 4 includes a plurality of thin metal pieces 4a, and the metal pieces 4a rotate integrally with the crankshaft 3 so that lubricating oil is pumped.
  • crankshaft 3 has a lubricating oil flow path h2 provided along the center axis thereof.
  • the lubricating oil passage h2 communicates with a vertically long opening h1 in which the oil pump 4 is provided.
  • the oil pump 4 causes the liquid or mist-like lubricating oil to rise through the lubricating oil flow path h2.
  • the compression mechanism 5 is a mechanism that compresses a gaseous refrigerant (gas) as the crankshaft 3 rotates. That is, the compression mechanism unit 5 has a function of compressing the gaseous refrigerant sucked through the suction pipe Pi in the compression chamber G and discharging the compressed refrigerant. As shown in FIG. 1, the compression mechanism unit 5 includes a cylinder 5a and a roller 5b, and is disposed below the electric motor 2.
  • the cylinder 5a is a member that forms the compression chamber G together with the roller 5b and the frames 7, 8, and has an annular (cylindrical) shape.
  • the roller 5b is an annular (cylindrical) member whose inner peripheral surface is fixed to the eccentric portion 3b of the crankshaft 3.
  • the roller 5b revolves in the cylinder 5a with the driving of the electric motor 2. That is, the roller 5b revolves inside the cylinder 5a while contacting the inner peripheral surface of the cylinder 5a.
  • the space between the cylinder 5a and the roller 5b functions as a compression chamber G for compressing a gaseous refrigerant (gas).
  • a plate-like vane (not shown) whose end is pressed against the outer peripheral surface of the roller 5b is provided by a pressure difference between the inside and outside of the compression mechanism 5 and the urging force of a spring (not shown).
  • the vane partitions the compression chamber G between the cylinder 5a and the roller 5b into a high-pressure side and a low-pressure side.
  • the gaseous refrigerant compressed on the high pressure side of the compression chamber G travels to the sound deadening cover 6 via a hole (not shown) provided in the frame 7 and a discharge valve (not shown).
  • the muffling cover 6 is a cover for suppressing noise caused by the compression of the refrigerant, and is fixed to the upper surface of the frame 7.
  • the frames 7, 8 have a function of forming the compression chamber G together with the cylinder 5a and the rollers 5b, and a function of rotatably supporting the crankshaft 3.
  • the frame 7 has a disk shape in plan view, and is fixed to the inner wall surface of the closed casing 1 and is fixed above the cylinder 5a.
  • the frame 8 has a disk shape in plan view, and is fixed to the lower side of the cylinder 5a. In other words, the cylinders 5 a are fixed by the frames 7 and 8 in a state of being sandwiched vertically.
  • a hole h3 through which the crankshaft 3 is inserted is provided at the center of the frame 7.
  • a hole h ⁇ b> 4 through which the crankshaft 3 is inserted is provided in the center of the frame 8.
  • the peripheral wall surfaces of these holes h3 and h4 are polished and function as sliding bearings that support the crankshaft 3.
  • the peripheral wall surface of the hole h3 functioning as a sliding bearing is referred to as a lower bearing 7a.
  • the peripheral wall surface of the hole h4 functioning as a sliding bearing is referred to as a lower bearing 8a.
  • the remaining third frame 9 is a “support member” provided with a hole h5 through which the crankshaft 3 is inserted, and is installed above the rotor 2b.
  • the frame 9 has a disk shape in plan view, and is fixed to the inner wall surface of the closed casing 1.
  • the above-described hole h5 is provided.
  • the peripheral wall surface of the hole h5 is polished and functions as a sliding bearing that supports the crankshaft 3.
  • the peripheral wall surface of the hole h5 functioning as a sliding bearing in this manner is referred to as an upper bearing 91.
  • the upper bearing 91 has a function of supporting the crankshaft 3 and is installed above the rotor 2 b integrally with the frame 9.
  • the frame 9 has a tapered portion 92 near the center. Details of the tapered portion 92 will be described later.
  • FIG. 2 is an enlarged view of the vicinity of the upper frame 9 in a vertical cross section of the compressor.
  • the frame 9 includes a tapered portion 92 in addition to the upper bearing 91 described above.
  • the tapered portion 92 is provided around the upper bearing 91 in the frame 9.
  • the tapered portion 92 is a tapered portion that converts the mist-like lubricating oil into oil droplets, and further guides the lubricating oil that has become oil droplets to the upper bearing 91.
  • the tapered portion 92 is inclined such that the closer to the crankshaft 3, the lower the height of the upper surface. That is, the upper surface of the tapered portion 92 has the predetermined angle ⁇ 1 with respect to the radial direction of the crankshaft 3.
  • FIG. 2 illustrates a configuration in which the predetermined angle ⁇ 1 is an acute angle of less than 45 °, the configuration is not limited to this.
  • the mist-like lubricating oil present around the upper end of the crankshaft 3 diffuses radially outward together with the gas refrigerant by centrifugal force, and further adheres to the tapered portion 92 to form oil droplets. I do.
  • the lubricating oil formed into oil droplets as described above is collected on the center side along the inclined surface of the tapered portion 92 by its own weight, and is guided to the upper bearing 91.
  • the lubricating oil adhering to the ceiling surface of the lid chamber 1b of the closed container 1 (see FIG. 1) and becoming oil droplets may fall on the tapered portion 92.
  • the lubricating oil that has dropped onto the tapered portion 92 as described above is also collected on the center side along the inclined surface of the tapered portion 92 and guided to the upper bearing 91.
  • the upper bearing 91 near the upper end of the crankshaft 3 can be appropriately lubricated even with a configuration using the non-volume type oil pump 4 (see FIG. 1) whose head is relatively small.
  • the lower end of the tapered portion 92 is connected to the upper bearing 91. Thereby, the lubricating oil flowing along the inclined surface of the tapered portion 92 is guided to the upper bearing 91 as it is.
  • the upper end of the crankshaft 3 protrudes above the tapered portion 92.
  • the mist-like lubricating oil is diffused around the crankshaft 3 with the rotation of the crankshaft 3, so that the lubricating oil adheres to the tapered portion 92 and easily becomes oil droplets.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • four circular lightening holes h ⁇ b> 6 are provided in the frame 9.
  • a tapered portion 92 is provided radially inward of the lightening hole h6 with respect to the crankshaft 3.
  • the lightening hole h6 also has a function of guiding the compressed high-pressure gas refrigerant or lubricating oil to the upper side of the frame 9 through itself. Further, by providing the tapered portion 92 radially inward of the lightening hole h6, the punching of the lightening hole h6 is facilitated.
  • no other member a shield such as a cover or a pipe through which lubricating oil flows
  • the tapered portion 92 is open to the ceiling surface of the closed container 1.
  • the mist-like lubricating oil existing in the space between the ceiling surface of the closed casing 1 and the frame 9 adheres to the surface of the tapered portion 92 without adhering to other members (not shown). Therefore, the lubricating oil easily becomes oil droplets in the tapered portion 92.
  • the lower portion of the crankshaft 3 is supported by the lower bearings 7 a and 8 a (see FIG. 1), and the upper portion of the crankshaft 3 is supported by the upper bearing 91.
  • the vicinity of both ends of the crankshaft 3 extending in the up-down direction is supported, vibration and noise accompanying the driving of the compressor 10 can be suppressed.
  • the tapered portion 92 (see FIG. 2) of the frame 9 is inclined such that the closer to the crankshaft 3, the lower the height of the upper surface thereof. Therefore, due to the centrifugal force caused by the rotation of the crankshaft 3, the mist-like lubricating oil that has moved outward in the radial direction adheres to the tapered portion 92 and becomes oil droplets. It is guided to the bearing 91. In addition, the lubricating oil in the form of oil droplets dropped from the lid chamber 1b to the tapered portion 92 is also guided to the upper bearing 91 along the tapered portion 92. Thereby, the upper bearing 91 is appropriately lubricated, and thus the reliability of the compressor 10 can be improved.
  • the second embodiment differs from the first embodiment in the angle ⁇ 2 (see FIG. 4) of the upper surface of the tapered portion 92.
  • Other configurations are the same as those of the first embodiment (see FIG. 1). Therefore, only the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 4 is an enlarged view of the vicinity of the upper frame 9A in a vertical section of the compressor according to the second embodiment.
  • the frame 9A (supporting member) includes a tapered portion 92A around the crankshaft 3.
  • the upper surface of the tapered portion 92A has an angle ⁇ 2 of 45 ° or more and less than 85 ° with respect to the radial direction of the crankshaft 3.
  • the lubricating oil adheres to the tapered portion 92A and easily becomes oil droplets.
  • the angle ⁇ 2 is relatively large, the lubricating oil adhering to the tapered portion 92A and forming oil droplets easily flows down the tapered portion 92A to the upper bearing 91 by its own weight.
  • the angle ⁇ 2 of the upper surface of the tapered portion 92A with respect to the radial direction of the crankshaft 3 is 45 ° or more and 85 ° or less. Accordingly, as described above, the lubricating oil easily adheres to the tapered portion 92A and becomes oil droplets, and the lubricated oil that has been oil droplets easily flows down the upper bearing 91 along the tapered portion 92A. Thereby, the upper bearing 91 is appropriately lubricated.
  • ⁇ 3rd Embodiment >> In the third embodiment, the radial range of the tapered portion 92B (see FIG. 5) is wider than in the first embodiment (see FIG. 1). Other configurations are the same as in the first embodiment. Therefore, only the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 5 is an enlarged view of the vicinity of the upper frame 9B in a vertical cross section of the compressor according to the third embodiment.
  • the frame 9B (support member) includes a tapered portion 92B.
  • a tapered portion 92B is provided near the case 1a (side wall) of the sealed container 1. That is, in the third embodiment, the range of the tapered portion 92B in the radial direction is wider than in the first embodiment (see FIG. 2).
  • the lubricating oil drips from the ceiling surface of the lid chamber 1b (see FIG. 1), most of the lubricating oil falls to the tapered portion 92B. This lubricating oil is guided to the upper bearing 91 along the tapered portion 92B.
  • the fourth embodiment is different from the first embodiment in that the upper surface of the tapered portion 92C (see FIG. 6) has a folded line shape in a longitudinal sectional view.
  • Other configurations are the same as those of the first embodiment (see FIG. 1). Therefore, only the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 6 is an enlarged view of the vicinity of the upper frame 9C in a vertical cross section of the compressor according to the fourth embodiment.
  • the frame 9C (support member) includes a tapered portion 92C around the crankshaft 3.
  • the upper surface of the tapered portion 92C has a folded line shape in a longitudinal sectional view.
  • the upper surface of the tapered portion 92C has a first tapered region 92Ca having an annular shape in plan view, and a second tapered region 92Cb extending radially inward of the first tapered region 92Ca. ing.
  • the angle ⁇ 3 of the first tapered region 92Ca with respect to the radial direction of the crankshaft 3 is, for example, not less than 5 ° and less than 45 °.
  • the first tapered region 92Ca is provided in a wider area than the second tapered region 92Cb in plan view.
  • the lubricating oil attached to the first tapered region 92Ca is sequentially guided on the upper surfaces of the first tapered region 92Ca and the second tapered region 92Cb, and is guided to the upper bearing 91.
  • the angle ⁇ 4 of the second tapered region 92Cb with respect to the radial direction of the crankshaft 3 is, for example, 45 ° or more and less than 85 °.
  • Such a second tapered region 92Cb is provided radially inside the first tapered region 92Ca. That is, based on the radial direction of the crankshaft 3, the angle of the upper surface of the bent line-shaped tapered portion 92 ⁇ / b> C increases as the position is closer to the crankshaft 3 ( ⁇ 3 ⁇ 4).
  • the angle ⁇ 4 of the second tapered region 92Cb is relatively large, the mist-like lubricating oil existing around the upper end of the crankshaft 3 generates the second tapered region 92Cb due to centrifugal force caused by the rotation of the crankshaft 3. Almost adheres to the surface.
  • the lubricating oil attached to the second tapered region 92Cb and formed into oil droplets is guided to the upper bearing 91 along the second tapered region 92Cb.
  • lubricating oil can be collected in a relatively wide range in the first tapered region 92Ca of the frame 9C. Further, since the angle ⁇ 4 of the second tapered region 92Cb is relatively large, the lubricating oil tends to adhere due to the centrifugal force generated by the rotation of the crankshaft 3. Therefore, the upper bearing 91 is appropriately lubricated.
  • the fifth embodiment differs from the first embodiment (see FIG. 1) in that a radial communication hole h7 communicating with a lubricating oil flow path h2 (see FIG. 7) is provided near the upper end of the crankshaft 3.
  • a radial communication hole h7 communicating with a lubricating oil flow path h2 is provided near the upper end of the crankshaft 3.
  • Other configurations are the same as in the first embodiment. Therefore, only the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 7 is an enlarged view of the vicinity of the upper frame 9 in a longitudinal section of the compressor according to the fifth embodiment.
  • the crankshaft 3D has a lubricating oil flow path h2 provided along the center axis thereof.
  • a radial communication hole h7 communicating with the lubricating oil flow path h2 is provided in the vicinity of the upper end of the crankshaft 3D.
  • the outlet of the communication hole h7 faces the tapered portion 92.
  • the lubricating oil flowing upward in the lubricating oil flow path h2 flows radially outward through the communication hole h7 due to the centrifugal force generated by the rotation of the crankshaft 3, and flows toward the tapered portion 92. ing.
  • the head of the non-displacement type oil pump 4 (see FIG. 1) is relatively small, when the liquid lubricating oil flows through the lubricating oil flow path h2, it may not reach the upper end of the crankshaft 3. There is also. However, even in such a case, the mist-like lubricating oil rises through the lubricating oil flow path h2, and further, the mist-like lubricating oil reaches the upper end of the crankshaft 3 (that is, the communication hole h7). Often reach. The mist-shaped lubricating oil flowing through the communication hole h7 adheres to the tapered portion 92 and becomes oil droplets. Further, the lubricated oil that has been converted to oil is guided to the upper bearing 91 along the inclined surface of the tapered portion 92. I will
  • the radial communication hole h7 communicating with the lubricating oil flow path h2 is provided near the upper end of the crankshaft 3, so that the centrifugal force generated by the rotation of the crankshaft 3 allows the lubricating oil to flow. It becomes easy to adhere to the tapered portion 92 through the communication hole h7. Thereby, the upper bearing 91 is appropriately lubricated.
  • FIG. 8 is an explanatory diagram including the refrigerant circuit Q of the air conditioner W. Note that the solid line arrows in FIG. 8 indicate the flow of the refrigerant during the heating operation. Further, the broken arrows in FIG. 8 indicate the flow of the refrigerant during the cooling operation. In FIG. 8, the accumulator provided on the suction side of the compressor 10 is not shown.
  • the air conditioner W is a “refrigeration cycle device” that circulates refrigerant in a refrigeration cycle (heat pump cycle) to perform air conditioning. As shown in FIG. 8, the air conditioner W includes a compressor 10, an outdoor heat exchanger 20, an outdoor fan 30, an expansion valve 40, a four-way valve 50, an indoor heat exchanger 60, and an indoor fan 70. And
  • the compressor 10 the outdoor heat exchanger 20, the outdoor fan 30, the expansion valve 40, and the four-way valve 50 are provided in the outdoor unit Wo.
  • the indoor heat exchanger 60 and the indoor fan 70 are provided in the indoor unit Wi.
  • the compressor 10 is a device that compresses a gaseous refrigerant, and has a configuration similar to that of the first embodiment (see FIG. 1).
  • the outdoor heat exchanger 20 is a heat exchanger that exchanges heat between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 30.
  • the outdoor fan 30 is a fan that sends outside air to the outdoor heat exchanger 20.
  • the outdoor fan 30 includes an outdoor fan motor 30 a as a driving source, and is installed near the outdoor heat exchanger 20.
  • the indoor heat exchanger 60 is a heat exchanger in which heat exchange is performed between a refrigerant flowing through a heat transfer tube (not shown) and indoor air (air in a space to be air-conditioned) sent from an indoor fan 70. It is.
  • the indoor fan 70 is a fan that sends indoor air to the indoor heat exchanger 60.
  • the indoor fan 70 includes an indoor fan motor 71 as a driving source, and is installed near the indoor heat exchanger 60.
  • the expansion valve 40 has a function of reducing the pressure of the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 20 and the indoor heat exchanger 60).
  • the refrigerant decompressed by the expansion valve 40 is guided to an “evaporator” (the other of the outdoor heat exchanger 20 and the indoor heat exchanger 60).
  • the four-way valve 50 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W. For example, during the cooling operation (see the dashed arrow in FIG. 8), the compressor 10, the outdoor heat exchanger 20 (condenser), the expansion valve 40, and the indoor heat exchanger 60 (evaporator) are connected to the four-way valve 50.
  • the refrigerant circulates in the refrigeration cycle in the refrigerant circuit Q that is sequentially connected through the refrigerant circuit.
  • the compressor 10 the indoor heat exchanger 60 (condenser), the expansion valve 40, and the outdoor heat exchanger 20 (evaporator) are connected to the four-way valve 50.
  • the refrigerant circulates in the refrigeration cycle in the refrigerant circuit Q that is sequentially connected through the refrigerant circuit.
  • the refrigerant circulates sequentially through the compressor 10, the “condenser”, the expansion valve 40, and the “evaporator”.
  • Devices such as the compressor 10, the outdoor fan 30, the expansion valve 40, and the indoor fan 70 are driven based on a command from a control device (not shown).
  • the configuration in which the frame 9 is provided with four lightening holes h6 (see FIG. 3) is described, but the number of lightening holes h6 can be changed as appropriate. That is, it is only necessary that the frame 9 be provided with at least one lightening hole h6.
  • the configuration is described in which the angles ⁇ 3, ⁇ 4 of the upper surface of the tapered portion 92C that exhibits a folded line shape in a longitudinal sectional view increase as the position approaches the crankshaft 3, but is not limited thereto.
  • the configuration may be such that the angle of the upper surface of the tapered portion (not shown) having a folded line shape is smaller as it is closer to the crankshaft 3. Even with such a configuration, the lubricating oil attached to the tapered portion (not shown) can be appropriately guided to the upper bearing 91.
  • the configuration in which the lubricating oil flow path h2 provided along the central axis of the crankshaft 3 (see FIG. 1) communicates with the lower opening h1 has been described. Not exclusively.
  • the radial communication hole h7 (see FIG. 7) described in the fifth embodiment may be provided.
  • the mist-like lubricating oil existing inside the lubricating oil flow path h2 is guided radially outward through the communication hole h7 by the centrifugal force accompanying the rotation of the crankshaft 3, and Adhere to.
  • the lubricating oil is guided to the upper bearing 91 along the tapered portion 92, so that the upper bearing 91 is appropriately lubricated.
  • the configuration in which the compressor 10 includes the oil pump 4 has been described, but the oil pump 4 may be omitted as appropriate. Further, the compressor 10 described in each embodiment is also applicable to compression of “gas” other than refrigerant.
  • each embodiment can be applied to other types of compressors such as a scroll type.
  • the “refrigeration cycle device” including the compressor 10 is the air conditioner W (see FIG. 8) has been described, but the present invention is not limited to this. That is, the “refrigeration cycle device” including the compressor 10 may be a chiller, a water heater, or the like, in addition to the refrigerator and the refrigerator.
  • the embodiments can be combined as appropriate.
  • the second embodiment and the fifth embodiment may be combined. That is, in a configuration in which the upper surface of the tapered portion 92A has the predetermined angle ⁇ 2 (second embodiment: see FIG. 4), a radial communication hole h7 that communicates with the lubricating oil flow path h2 (fifth embodiment: see FIG. 7). May be provided.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations. Further, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration. In addition, the above-described mechanisms and configurations are shown to be necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

簡素な構成で信頼性の高い圧縮機等を提供する。圧縮機(10)は、密閉容器(1)と、電動機(2)と、クランク軸(3)と、圧縮機構部(5)と、を備えている。さらに、圧縮機(10)は、下側軸受(7a,8a)と、上側軸受(91)と、フレーム(9)と、を備えている。そして、フレーム(9)の孔(h5)の周壁面は、上側軸受(91)として機能する。フレーム(9)は、クランク軸(3)に近いほど、その上面の高さが低くなるように傾斜しているテーパ部(92)を有する。

Description

圧縮機、及び、これを備える冷凍サイクル装置
 本発明は、圧縮機等に関する。
 空気調和機等の冷凍サイクル装置に用いられる圧縮機として、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、「圧縮機構部の圧縮室を塞ぐ主軸受及び副軸受と、電動機部の反圧縮機構部側に設けられた第3の軸受と、を備えた密閉型圧縮機」について記載されている。さらに、特許文献1には、クランク軸の下端部にオイルポンプを設けることが記載されている。
特開2009-287473号公報
 特許文献1に記載のオイルポンプは、非容積式のものであり、その揚程が比較的小さいことが知られている。このような非容積式のオイルポンプでは、クランク軸の上端付近の第3の軸受まで潤滑油が達しにくいため、第3の軸受の潤滑不足を招く可能性がある。
 一方、特許文献1に記載の非容積式のオイルポンプに代えて、容積式のポンプ(例えば、トロコイドポンプ)を用いると、第3の軸受まで潤滑油が確実に汲み上げられる。しかしながら、容積式のポンプを用いると、部品点数の増加や構造の複雑化を招き、また、ポンプの駆動に所定のエネルギを要するため、圧縮機の効率の低下を招く。
 そこで、本発明は、簡素な構成で信頼性の高い圧縮機等を提供することを課題とする。
 前記した課題を解決するために、本発明に係る圧縮機は、潤滑油が封入されている密閉容器と、前記密閉容器の内部に設置され、固定子及び回転子を有する電動機と、上下方向に延びており、前記回転子と一体で回転する軸と、前記軸の回転に伴ってガスを圧縮する圧縮機構部と、を備えるとともに、前記回転子の下側に設置され、前記軸を軸支する下側軸受と、前記回転子の上側に設置され、前記軸を軸支する上側軸受と、前記回転子の上側に設置され、前記軸が貫挿される孔が設けられた支持部材と、を備え、前記孔の周壁面が前記上側軸受として機能するか、又は、前記孔に前記上側軸受が設置され、前記支持部材は、前記軸に近いほど、その上面の高さが低くなるように傾斜しているテーパ部を有することを特徴とする。
 本発明によれば、簡素な構成で信頼性の高い圧縮機等を提供できる。
本発明の第1実施形態に係る圧縮機の縦断面図である。 本発明の第1実施形態に係る圧縮機の縦断面において、上側のフレームの付近を拡大した図である。 本発明の第1実施形態に係る圧縮機において、図1のIII-III線から見た断面図である。 本発明の第2実施形態に係る圧縮機の縦断面において、上側のフレームの付近を拡大した図である。 本発明の第3実施形態に係る圧縮機の縦断面において、上側のフレームの付近を拡大した図である。 本発明の第4実施形態に係る圧縮機の縦断面において、上側のフレームの付近を拡大した図である。 本発明の第5実施形態に係る圧縮機の縦断面において、上側のフレームの付近を拡大した図である。 本発明の第6実施形態に係る空気調和機の冷媒回路を含む説明図である。
≪第1実施形態≫
<圧縮機の構成>
 図1は、第1実施形態に係る圧縮機10の縦断面図である。
 圧縮機10は、ガス状の冷媒を圧縮するロータリ式の圧縮機である。図1に示すように、圧縮機10は、密閉容器1と、電動機2と、クランク軸3(軸)と、オイルポンプ4と、圧縮機構部5と、消音カバー6と、フレーム7,8,9と、を備えている。
 密閉容器1は、電動機2や圧縮機構部5等を収容する殻状の容器であり、略密閉されている。密閉容器1は、円筒状のケース1aと、このケース1aの上端付近に溶接される蓋チャンバ1bと、ケース1aの下端付近に溶接される底チャンバ1cと、を備えている。
 密閉容器1には、圧縮機10の潤滑性やシール性を高めるための潤滑油が封入されている。図1に示すように、密閉容器1の底部(ドットで示した領域J)には、液状の潤滑油が貯留されている。なお、圧縮機10の駆動中は潤滑油の一部がミスト化し、密閉容器1の内部にミスト状の潤滑油が充満する。
 図1に示す吸込パイプPiは、ガス状の冷媒を圧縮室Gに導く管であり、密閉容器1のケース1aに接続されている。なお、図1では図示を省略しているが、冷媒を気液分離するアキュムレータが、吸込パイプPiの上流側に接続されている。他方の吐出パイプPoは、圧縮室Gで圧縮されたガス状の冷媒を吐出する管であり、密閉容器1の蓋チャンバ1bに接続されている。
 電動機2は、クランク軸3を回転させる駆動源であり、密閉容器1の内部(上下方向の中央付近)に設置されている。図1に示すように、電動機2は、固定子2aと、回転子2bと、コイル2cと、を備えている。固定子2aは、電磁鋼板が積層されたものであり、密閉容器1の内周壁に固定されている。回転子2bは、電磁鋼板が積層されたものであり、固定子2aの径方向内側に配置されている。コイル2cは、電流を流すための配線であり、所定に巻回されて固定子2aの付近に配置されている。
 クランク軸3は、電動機2の駆動に伴って回転子2bと一体で回転する軸である。クランク軸3は、上下方向に延びており、フレーム7,8,9によって回転自在に軸支されている。図1に示すように、クランク軸3は、主軸3aと、偏心部3bと、を備えている。
 主軸3aは、電動機2の回転子2bに同軸で固定されている。偏心部3bは、主軸3aに対して偏心しながら回転する軸であり、主軸3aと一体形成されている。偏心部3bは、クランク軸3の下部に設けられ、後記する環状のローラ5bの内周面に固定されている。
 図1に示すように、クランク軸3の下端付近には、下側に開口している縦長の開口部h1が設けられ、この開口部h1にオイルポンプ4が設置されている。オイルポンプ4は、潤滑油を汲み上げる非容積式のポンプである。オイルポンプ4は、薄板状の金属片4aを複数備え、これらの金属片4aがクランク軸3と一体で回転することによって、潤滑油が汲み上げられるようになっている。
 また、クランク軸3は、その中心軸線に沿って設けられた潤滑油流路h2を有している。潤滑油流路h2は、オイルポンプ4が設けられた縦長の開口部h1に連通している。そして、オイルポンプ4によって、液状又はミスト状の潤滑油が、潤滑油流路h2を介して上昇するようになっている。
 圧縮機構部5は、クランク軸3の回転に伴ってガス状の冷媒(ガス)を圧縮する機構である。すなわち、圧縮機構部5は、吸込パイプPiを介して吸い込まれるガス状の冷媒を圧縮室Gで圧縮し、圧縮した冷媒を吐出する機能を有している。図1に示すように、圧縮機構部5は、シリンダ5aやローラ5bを備え、電動機2の下側に配置されている。
 シリンダ5aは、ローラ5bやフレーム7,8とともに圧縮室Gを形成する部材であり、環状(円筒状)を呈している。
 ローラ5bは、前記したように、その内周面がクランク軸3の偏心部3bに固定されていた環状(円筒状)の部材である。そして、電動機2の駆動に伴ってシリンダ5a内でローラ5bが公転するようになっている。つまり、ローラ5bは、シリンダ5aの内周面に接触しつつ、シリンダ5aの内側を公転する。なお、シリンダ5aとローラ5bとの間の空間が、ガス状の冷媒(ガス)を圧縮する圧縮室Gとして機能する。
 また、圧縮機構部5の内外の圧力差及びバネ(図示せず)の付勢力によって、ローラ5bの外周面に端部が押し付けられる板状のベーン(図示せず)が設けられている。このベーンによって、シリンダ5aとローラ5bとの間の圧縮室Gが高圧側・低圧側に区画されるようになっている。圧縮室Gの高圧側で圧縮されたガス状の冷媒は、フレーム7に設けられた孔(図示せず)や吐出弁(図示せず)を介して、消音カバー6に向かう。
 消音カバー6は、冷媒の圧縮に伴う騒音を抑制するためのカバーであり、フレーム7の上面に固定されている。
 フレーム7,8は、シリンダ5aやローラ5bとともに圧縮室Gを形成する機能の他、クランク軸3を回転自在に軸支する機能を有している。フレーム7は、平面視で円板状を呈し、密閉容器1の内壁面に固定されるとともに、シリンダ5aの上側に固定されている。一方、フレーム8は、平面視で円板状を呈し、シリンダ5aの下側に固定されている。言い換えると、フレーム7,8によって、シリンダ5aが上下で挟み込まれた状態で固定されている。
 フレーム7の中心部には、クランク軸3が貫挿される孔h3が設けられている。同様に、フレーム8の中心部には、クランク軸3が貫挿される孔h4が設けられている。これらの孔h3,h4の周壁面は、研磨加工が施され、クランク軸3を軸支する滑り軸受として機能する。なお、滑り軸受として機能する孔h3の周壁面を下側軸受7aという。また、滑り軸受として機能する孔h4の周壁面を下側軸受8aという。
 残りの3つ目のフレーム9は、クランク軸3が貫挿される孔h5が設けられた「支持部材」であり、回転子2bの上側に設置されている。フレーム9は、平面視で円板状を呈し、密閉容器1の内壁面に固定されている。
 フレーム9の中心部には、前記した孔h5が設けられている。この孔h5の周壁面は、研磨加工が施され、クランク軸3を軸支する滑り軸受として機能する。このように滑り軸受として機能する孔h5の周壁面を上側軸受91という。上側軸受91は、クランク軸3を軸支する機能を有し、フレーム9と一体で回転子2bの上側に設置されている。また、フレーム9は、中心付近にテーパ部92を備えている。このテーパ部92の詳細については後記する。
 電動機2の駆動によって、ローラ5bがシリンダ5aに内接しつつ公転すると、圧縮室Gの容積が縮小して、ガス冷媒が圧縮される。圧縮されたガス冷媒は、フレーム7の孔(図示せず)や吐出弁(図示せず)を介して消音カバー6に向かい、さらに、消音カバー6の孔(図示せず)を介して流出する。このようにして、消音カバー6とフレーム9との間の空間に流出した高圧のガス冷媒は、フレーム9の肉抜き孔h6(図3参照)を介して、フレーム9の上側に導かれ、さらに、吐出パイプPoを介して吐出される。
 図2は、圧縮機の縦断面において、上側のフレーム9の付近を拡大した図である。
 図2に示すように、フレーム9は、前記した上側軸受91の他に、テーパ部92を備えている。テーパ部92は、フレーム9において上側軸受91の周囲に設けられている。このテーパ部92は、ミスト状の潤滑油を油滴化させ、さらに、油滴化した潤滑油を上側軸受91に導くテーパ状の部分である。
 図2に示すように、テーパ部92は、クランク軸3に近いほど、その上面の高さが低くなるように傾斜している。すなわち、テーパ部92の上面は、クランク軸3の径方向を基準として、所定角度θ1を有している。なお、図2では、所定角度θ1が45°未満の鋭角である構成を図示しているが、これに限定されるものではない。
 クランク軸3が回転すると、このクランク軸3の上端部の周囲に存在するミスト状の潤滑油が、ガス冷媒とともに遠心力で径方向外側に拡散し、さらにテーパ部92に付着して油滴化する。このように油滴化した潤滑油は、自重でテーパ部92の傾斜面を伝って中心側に集められ、上側軸受91に導かれる。
 また、密閉容器1(図1参照)の蓋チャンバ1bの天井面に付着して油滴化した潤滑油が、テーパ部92に落下することもある。このようにテーパ部92に落下した潤滑油も、テーパ部92の傾斜面を伝って中心側に集められ、上側軸受91に導かれる。これによって、その揚程が比較的小さい非容積型のオイルポンプ4(図1参照)を用いる構成でも、クランク軸3の上端付近の上側軸受91を適切に潤滑させることができる。
 なお、テーパ部92の下端は、上側軸受91に連なっていることが好ましい。これによって、テーパ部92の傾斜面を伝って流れる潤滑油が、そのまま上側軸受91に導かれるからである。
 また、図2に示すように、クランク軸3の上端は、テーパ部92よりも上側に突出していることが好ましい。これによって、クランク軸3の回転に伴い、このクランク軸3の周囲でミスト状の潤滑油が拡散されるため、テーパ部92に潤滑油が付着して油滴化しやすくなる。
 図3は、図1のIII-III線から見た断面図である。
 図3に示す例では、4つの円形の肉抜孔h6がフレーム9に設けられている。また、クランク軸3を基準として、肉抜孔h6よりも径方向内側にテーパ部92が設けられている。このような肉抜孔h6を設けることで、フレーム9の軽量化を図ることができる。その他、肉抜孔h6は、圧縮された高圧のガス冷媒や潤滑油を、自身を介してフレーム9の上側に導く機能も有している。また、肉抜孔h6よりも径方向内側にテーパ部92を設けることで、肉抜孔h6の打抜き加工が行いやすくなる。
 また、図1に示すように、密閉容器1の天井面とフレーム9との間に、他の部材(不図示のカバーや潤滑油を通流させるパイプといった遮蔽物)が配置されていないことが好ましい。つまり、テーパ部92が、密閉容器1の天井面に開放されていることが好ましい。これによって、密閉容器1の天井面とフレーム9との間の空間に存在するミスト状の潤滑油が、他の部材(図示せず)に付着することなく、テーパ部92の表面に付着する。したがって、テーパ部92において潤滑油が油滴化しやすくなる。
 また、図1に示すように、電動機2とフレーム9との間にも、他の部材(不図示の所定の遮蔽物)が配置されていないことが好ましい。これによって、テーパ部92を伝って上側軸受91を潤滑した液状の潤滑油が、他の部材(図示せず)に付着することなく、再びミスト化しやすくなる。なお、再びミスト化した潤滑油は、肉抜孔h6(図3参照)を介してフレーム9の上側に導かれる。
<効果>
 第1実施形態によれば、下側軸受7a,8a(図1参照)によってクランク軸3の下部が軸支されるとともに、上側軸受91によってクランク軸3の上部が軸支される。このように、上下方向に延びるクランク軸3の両端付近が軸支されるため、圧縮機10の駆動に伴う振動や騒音を抑制できる。
 また、フレーム9のテーパ部92(図2参照)は、クランク軸3に近いほど、その上面の高さが低くなるように傾斜している。したがって、クランク軸3の回転に伴う遠心力によって、径方向外向きに移動したミスト状の潤滑油がテーパ部92に付着して油滴化し、さらに、この潤滑油がテーパ部92を伝って上側軸受91に導かれる。また、蓋チャンバ1bからテーパ部92に落下した油滴状の潤滑油も、テーパ部92を伝って上側軸受91に導かれる。これによって、上側軸受91が適切に潤滑され、ひいては、圧縮機10の信頼性を高めることができる。
 また、揚程が比較的小さい非容積式のオイルポンプ4が用いられても、前記したように、テーパ部92を伝って、上側軸受91に十分な量の潤滑油が供給される。このように、容積式のポンプ(例えば、トロコイドポンプ)を用いなくても、上側軸受91が十分に潤滑されるため、簡素な構成で信頼性の高い圧縮機10を提供できる。
≪第2実施形態≫
 第2実施形態は、テーパ部92の上面の角度θ2(図4参照)が、第1実施形態とは異なっている。なお、その他の構成については、第1実施形態(図1参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図4は、第2実施形態に係る圧縮機の縦断面において、上側のフレーム9Aの付近を拡大した図である。
 図4に示すように、フレーム9A(支持部材)は、クランク軸3の周囲にテーパ部92Aを備えている。テーパ部92Aの上面は、クランク軸3の径方向を基準として、45°以上かつ85°未満の角度θ2を有している。これによって、クランク軸3の回転に伴い、ミスト状の潤滑油が径方向外向きに拡散したとき、この潤滑油がテーパ部92Aに付着して油滴化しやすくなる。また、角度θ2が比較的大きいため、テーパ部92Aに付着して油滴化した潤滑油が、その自重でテーパ部92Aを伝って上側軸受91に流れ落ちやすくなる。
<効果>
 第2実施形態によれば、クランク軸3の径方向を基準とするテーパ部92Aの上面の角度θ2が45°以上かつ85°以下になっている。したがって、前記したように、潤滑油がテーパ部92Aに付着して油滴化しやすくなり、また、油滴化した潤滑油がテーパ部92Aを伝って上側軸受91に流れ落ちやすくなる。これによって、上側軸受91が適切に潤滑される。
≪第3実施形態≫
 第3実施形態は、テーパ部92B(図5参照)の径方向での範囲が、第1実施形態(図1参照)よりも広くなっている。なお、その他の構成については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図5は、第3実施形態に係る圧縮機の縦断面において、上側のフレーム9Bの付近を拡大した図である。
 図5に示すように、フレーム9B(支持部材)は、テーパ部92Bを備えている。また、フレーム9Bにおいて、密閉容器1のケース1a(側壁)の付近までテーパ部92Bが設けられている。つまり、第3実施形態では、径方向におけるテーパ部92Bの範囲が、第1実施形態(図2参照)よりも広くなっている。これによって、蓋チャンバ1b(図1参照)の天井面から潤滑油が滴り落ちると、その潤滑油のほとんどがテーパ部92Bに落下する。この潤滑油は、テーパ部92Bを伝って上側軸受91に導かれる。
<効果>
 第3実施形態によれば、密閉容器1のケース1aの付近までテーパ部92Bが設けられているため、蓋チャンバ1b(図1参照)の天井面から落下した潤滑油のほとんどが、テーパ部92Bを伝って上側軸受91に導かれる。これによって、上側軸受91が適切に潤滑される。
≪第4実施形態≫
 第4実施形態は、テーパ部92C(図6参照)の上面が、縦断面視で折線状を呈している点が、第1実施形態とは異なっている。なお、その他の構成については、第1実施形態(図1参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図6は、第4実施形態に係る圧縮機の縦断面において、上側のフレーム9Cの付近を拡大した図である。
 図6に示すように、フレーム9C(支持部材)は、クランク軸3の周囲にテーパ部92Cを備えている。テーパ部92Cの上面は、縦断面視において折線状を呈している。別の観点から説明すると、テーパ部92Cの上面は、平面視で円環状を呈する第1テーパ領域92Caと、この第1テーパ領域92Caの径方向内側に連なる第2テーパ領域92Cbと、を有している。
 クランク軸3の径方向に対する第1テーパ領域92Caの角度θ3は、例えば、5°以上かつ45°未満である。第1テーパ領域92Caは、平面視において第2テーパ領域92Cbよりも広範囲に設けられている。これによって、蓋チャンバ1b(図1参照)の天井面から潤滑油が落下したとき、この潤滑油が第1テーパ領域92Caに付着しやすくなる。第1テーパ領域92Caに付着した潤滑油は、第1テーパ領域92Ca及び第2テーパ領域92Cbの上面を順次に伝って、上側軸受91に導かれる。
 一方、クランク軸3の径方向に対する第2テーパ領域92Cbの角度θ4は、例えば、45°以上かつ85°未満である。このような第2テーパ領域92Cbが、第1テーパ領域92Caの径方向内側に設けられている。すなわち、クランク軸3の径方向を基準として、折線状のテーパ部92Cの上面の角度は、クランク軸3に近いほど大きくなっている(θ3<θ4)。
 このように第2テーパ領域92Cbの角度θ4が比較的大きいため、クランク軸3の上端部の周囲に存在するミスト状の潤滑油が、クランク軸3の回転に伴う遠心力で第2テーパ領域92Cbに付着しやすくなる。第2テーパ領域92Cbに付着して油滴化した潤滑油は、この第2テーパ領域92Cbを伝って上側軸受91に導かれる。
<効果>
 第4実施形態によれば、フレーム9Cの第1テーパ領域92Caにおいて、比較的広範囲で潤滑油を集めることができる。また、第2テーパ領域92Cbは、その角度θ4が比較的大きいため、クランク軸3の回転に伴う遠心力で潤滑油が付着しやすくなる。したがって、上側軸受91が適切に潤滑される。
≪第5実施形態≫
 第5実施形態は、潤滑油流路h2(図7参照)に連通する径方向の連通孔h7がクランク軸3の上端付近に設けられている点が、第1実施形態(図1参照)とは異なっている。なお、その他の構成については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図7は、第5実施形態に係る圧縮機の縦断面において、上側のフレーム9の付近を拡大した図である。
 図7に示すように、クランク軸3Dは、その中心軸線に沿って設けられた潤滑油流路h2を有している。また、クランク軸3Dの上端付近には、潤滑油流路h2に連通する径方向の連通孔h7が設けられている。この連通孔h7の出口は、テーパ部92に臨んでいる。そして、潤滑油流路h2を上向きに通流する潤滑油が、クランク軸3の回転に伴う遠心力で、連通孔h7を介して径方向外向きに通流し、テーパ部92に向かうようになっている。
 なお、非容積式のオイルポンプ4(図1参照)は、その揚程が比較的小さいため、潤滑油流路h2を液状の潤滑油が通流する際、クランク軸3の上端まで達しない可能性もある。しかしながら、そのような場合であっても、潤滑油流路h2を介して、ミスト状の潤滑油が上昇し、さらに、ミスト状の潤滑油がクランク軸3の上端(つまり、連通孔h7)まで達することが多い。そして、連通孔h7を通流するミスト状の潤滑油は、テーパ部92に付着して油滴化し、さらに、油滴化した潤滑油がテーパ部92の傾斜面を伝って上側軸受91に導かれる。
<効果>
 第5実施形態によれば、潤滑油流路h2に連通する径方向の連通孔h7がクランク軸3の上端付近に設けられているため、クランク軸3の回転に伴う遠心力で、潤滑油が連通孔h7を介してテーパ部92に付着しやすくなる。これによって、上側軸受91が適切に潤滑される。
≪第6実施形態≫
 第6実施形態では、第1実施形態で説明した圧縮機10(図1参照)を備える空気調和機W(冷凍サイクル装置:図8参照)について説明する。
 図8は、空気調和機Wの冷媒回路Qを含む説明図である。
 なお、図8の実線矢印は、暖房運転時における冷媒の流れを示している。
 また、図8の破線矢印は、冷房運転時における冷媒の流れを示している。
 また、図8では、圧縮機10の吸込側に設けられるアキュムレータの図示を省略している。
 空気調和機Wは、冷凍サイクル(ヒートポンプサイクル)で冷媒を循環させて空調を行う「冷凍サイクル装置」である。図8に示すように、空気調和機Wは、圧縮機10と、室外熱交換器20と、室外ファン30と、膨張弁40と、四方弁50と、室内熱交換器60と、室内ファン70と、を備えている。
 図8に示す例では、圧縮機10、室外熱交換器20、室外ファン30、膨張弁40、及び四方弁50が、室外機Woに設けられている。一方、室内熱交換器60及び室内ファン70は、室内機Wiに設けられている。
 圧縮機10は、ガス状の冷媒を圧縮する機器であり、第1実施形態(図1参照)と同様の構成を備えている。
 室外熱交換器20は、その伝熱管(図示せず)を通流する冷媒と、室外ファン30から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
 室外ファン30は、室外熱交換器20に外気を送り込むファンである。室外ファン30は、駆動源である室外ファンモータ30aを備え、室外熱交換器20の付近に設置されている。
 室内熱交換器60は、その伝熱管(図示せず)を通流する冷媒と、室内ファン70から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファン70は、室内熱交換器60に室内空気を送り込むファンである。室内ファン70は、駆動源である室内ファンモータ71を備え、室内熱交換器60の付近に設置されている。
 膨張弁40は、「凝縮器」(室外熱交換器20及び室内熱交換器60の一方)で凝縮した冷媒を減圧する機能を有している。なお、膨張弁40によって減圧された冷媒は、「蒸発器」(室外熱交換器20及び室内熱交換器60の他方)に導かれる。
 四方弁50は、空気調和機Wの運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図8の破線矢印を参照)には、圧縮機10、室外熱交換器20(凝縮器)、膨張弁40、及び室内熱交換器60(蒸発器)が、四方弁50を介して順次に接続された冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。
 また、暖房運転時(図8の実線矢印を参照)には、圧縮機10、室内熱交換器60(凝縮器)、膨張弁40、及び室外熱交換器20(蒸発器)が、四方弁50を介して順次に接続された冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。
 このように、冷媒回路Qにおいて、圧縮機10、「凝縮器」、膨張弁40、及び「蒸発器」を順次に介して、冷媒が循環するようになっている。なお、圧縮機10、室外ファン30、膨張弁40、室内ファン70等の機器は、不図示の制御装置からの指令に基づいて駆動される。
<効果>
 第6実施形態によれば、振動や騒音が小さく、さらに、信頼性の高い圧縮機10を備えた空気調和機Wを提供できる。
≪変形例≫
 以上、本発明に係る圧縮機10等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、フレーム9の中心部に設けられた孔h5(図1参照)の周壁面が上側軸受91として機能する構成について説明したが、これに限らない。すなわち、フレーム9とは別体の「上側軸受」が、フレーム9の孔h5に設置される構成であってもよい。このような「上側軸受」は、玉軸受であってもよいし、他の種類の軸受であってもよい。なお、下側軸受7a,8aについても同様のことがいえる。
 また、第1実施形態では、フレーム9に4つの肉抜孔h6(図3参照)が設けられる構成について説明したが、肉抜孔h6の個数は適宜に変更可能である。すなわち、フレーム9に少なくとも一つの肉抜孔h6が設けられていればよい。
 また、第4実施形態(図6参照)では、縦断面視で折線状を呈するテーパ部92Cの上面の角度θ3,θ4が、クランク軸3に近いほど大きい構成について説明したが、これに限らない。例えば、折線状を呈するテーパ部(図示せず)の上面の角度が、クランク軸3に近いほど小さい構成であってもよい。このような構成でも、テーパ部(図示せず)に付着した潤滑油を上側軸受91に適切に導くことができる。
 また、各実施形態では、クランク軸3(図1参照)の中心軸線に沿って設けられた潤滑油流路h2が、下側の開口部h1に連通している構成について説明したが、これに限らない。例えば、潤滑油流路h2が開口部h1に連通していない構成において、第5実施形態で説明した径方向の連通孔h7(図7参照)が設けられていてもよい。このような構成でも、潤滑油流路h2の内部に存在するミスト状の潤滑油が、クランク軸3の回転に伴う遠心力で連通孔h7を介して径方向外側に導かれ、テーパ部92に付着する。これによって、潤滑油がテーパ部92を伝って上側軸受91に導かれるため、上側軸受91が適切に潤滑される。
 また、各実施形態では、圧縮機10がオイルポンプ4(図1参照)を備える構成について説明したが、このオイルポンプ4が適宜に省略されてもよい。また、各実施形態で説明した圧縮機10は、冷媒以外の「ガス」の圧縮にも適用可能である。
 また、各実施形態では、圧縮機10がロータリ式である場合について説明したが、これに限らない。すなわち、スクロール式といった他の種類の圧縮機にも各実施形態を適用できる。
 また、第6実施形態では、圧縮機10を備える「冷凍サイクル装置」が空気調和機W(図8参照)である場合について説明したが、これに限らない。すなわち、圧縮機10を備える「冷凍サイクル装置」は、冷凍機や冷蔵庫の他、チラーや給湯機等であってもよい。
 また、各実施形態は、適宜に組み合わせることが可能である。例えば、第2実施形態と第5実施形態とを組み合わせてもよい。すなわち、テーパ部92Aの上面が所定角度θ2を有する構成において(第2実施形態:図4参照)、潤滑油流路h2に連通する径方向の連通孔h7(第5実施形態:図7参照)が設けられていてもよい。
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 1   密閉容器
 1a  ケース(側壁)
 2   電動機
 2a  固定子
 2b  回転子
 2c  コイル
 3,3D クランク軸(軸)
 4   オイルポンプ
 5   圧縮機構部
 5a  シリンダ
 5b  ローラ
 6   消音カバー
 7   フレーム
 8   フレーム
 9,9A,9B,9C フレーム(支持部材)
 10  圧縮機
 20  室外熱交換器(凝縮器/蒸発器)
 40  膨張弁
 60  室内熱交換器(蒸発器/凝縮器)
 7a,8a 下側軸受
 91  上側軸受
 92,92A,92B,92C テーパ部
 G   圧縮室
 Q   冷媒回路
 W   空気調和機
 h1  開口部
 h2  潤滑油流路
 h5  孔
 h6  肉抜孔
 h7  連通孔

Claims (11)

  1.  潤滑油が封入されている密閉容器と、
     前記密閉容器の内部に設置され、固定子及び回転子を有する電動機と、
     上下方向に延びており、前記回転子と一体で回転する軸と、
     前記軸の回転に伴ってガスを圧縮する圧縮機構部と、を備えるとともに、
     前記回転子の下側に設置され、前記軸を軸支する下側軸受と、
     前記回転子の上側に設置され、前記軸を軸支する上側軸受と、
     前記回転子の上側に設置され、前記軸が貫挿される孔が設けられた支持部材と、を備え、
     前記孔の周壁面が前記上側軸受として機能するか、又は、前記孔に前記上側軸受が設置され、
     前記支持部材は、前記軸に近いほど、その上面の高さが低くなるように傾斜しているテーパ部を有する圧縮機。
  2.  前記軸の上端は、前記テーパ部よりも上側に突出していること
     を特徴とする請求項1に記載の圧縮機。
  3.  前記支持部材には、少なくとも一つの肉抜孔が設けられ、
     前記軸を基準として、前記肉抜孔よりも径方向内側に前記テーパ部が設けられていること
     を特徴とする請求項1に記載の圧縮機。
  4.  前記密閉容器の天井面と前記支持部材との間に、他の部材が配置されていないこと
     を特徴とする請求項1に記載の圧縮機。
  5.  前記電動機と前記支持部材との間にも、他の部材が配置されていないこと
     を特徴とする請求項4に記載の圧縮機。
  6.  前記テーパ部の上面は、前記軸の径方向を基準として、45°以上かつ85°未満の角度を有していること
     を特徴とする請求項1に記載の圧縮機。
  7.  前記支持部材において、前記密閉容器の側壁の付近まで前記テーパ部が設けられていること
     を特徴とする請求項1に記載の圧縮機。
  8.  前記テーパ部の上面は、縦断面視において折線状を呈しており、
     前記軸の径方向を基準として、折線状の前記テーパ部の上面の角度は、前記軸に近いほど大きいこと
     を特徴とする請求項1に記載の圧縮機。
  9.  前記軸は、その中心軸線に沿って設けられた潤滑油流路を有し、
     前記軸の上端付近には、前記潤滑油流路に連通する径方向の連通孔が設けられ、
     前記連通孔の出口は、前記テーパ部に臨んでいること
     を特徴とする請求項1に記載の圧縮機。
  10.  前記圧縮機構部は、環状のシリンダを有するとともに、前記電動機の駆動に伴って前記シリンダ内で公転するローラを有し、前記シリンダと前記ローラとの間の空間が、ガスを圧縮する圧縮室として機能すること
     を特徴とする請求項1から請求項9のいずれか一項に記載の圧縮機。
  11.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路を備え、
     前記圧縮機は、
     潤滑油が封入されている密閉容器と、
     前記密閉容器の内部に設置され、固定子及び回転子を有する電動機と、
     上下方向に延びており、前記回転子と一体で回転する軸と、
     前記軸の回転に伴ってガスを圧縮する圧縮機構部と、を有するとともに、
     前記回転子の下側に設置され、前記軸を軸支する下側軸受と、
     前記回転子の上側に設置され、前記軸を軸支する上側軸受と、
     前記回転子の上側に設置され、前記軸が貫挿される孔が設けられた支持部材と、を有し、
     前記孔の周壁面が前記上側軸受として機能するか、又は、前記孔に前記上側軸受が設置され、
     前記支持部材は、前記軸に近いほど、その上面の高さが低くなるように傾斜しているテーパ部を有する冷凍サイクル装置。
PCT/JP2018/030722 2018-08-21 2018-08-21 圧縮機、及び、これを備える冷凍サイクル装置 WO2020039489A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/030722 WO2020039489A1 (ja) 2018-08-21 2018-08-21 圧縮機、及び、これを備える冷凍サイクル装置
JP2019512019A JP6518026B1 (ja) 2018-08-21 2018-08-21 圧縮機、及び、これを備える冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030722 WO2020039489A1 (ja) 2018-08-21 2018-08-21 圧縮機、及び、これを備える冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020039489A1 true WO2020039489A1 (ja) 2020-02-27

Family

ID=66625621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030722 WO2020039489A1 (ja) 2018-08-21 2018-08-21 圧縮機、及び、これを備える冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP6518026B1 (ja)
WO (1) WO2020039489A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197276U (ja) * 1985-05-10 1986-12-09
JPH02163489A (ja) * 1988-12-16 1990-06-22 Matsushita Refrig Co Ltd ロータリー型圧縮機
JPH02196188A (ja) * 1989-01-23 1990-08-02 Hitachi Ltd ロータリ圧縮機
JPH0315692A (ja) * 1989-06-12 1991-01-24 Matsushita Refrig Co Ltd 圧縮機
JPH0361178U (ja) * 1989-10-17 1991-06-14
JP2013217310A (ja) * 2012-04-10 2013-10-24 Mitsubishi Electric Corp 圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197276U (ja) * 1985-05-10 1986-12-09
JPH02163489A (ja) * 1988-12-16 1990-06-22 Matsushita Refrig Co Ltd ロータリー型圧縮機
JPH02196188A (ja) * 1989-01-23 1990-08-02 Hitachi Ltd ロータリ圧縮機
JPH0315692A (ja) * 1989-06-12 1991-01-24 Matsushita Refrig Co Ltd 圧縮機
JPH0361178U (ja) * 1989-10-17 1991-06-14
JP2013217310A (ja) * 2012-04-10 2013-10-24 Mitsubishi Electric Corp 圧縮機

Also Published As

Publication number Publication date
JPWO2020039489A1 (ja) 2020-08-27
JP6518026B1 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
US11592022B2 (en) Scroll compressor and refrigeration cycle device
JP6836007B2 (ja) 圧縮機及び空気調和機
WO2020039489A1 (ja) 圧縮機、及び、これを備える冷凍サイクル装置
JP6704555B1 (ja) 圧縮機及び冷凍サイクル装置
JP2008008165A (ja) 圧縮機
JP6137166B2 (ja) スクロール圧縮機および冷凍装置
JP2017172346A (ja) スクロール圧縮機、及び、空気調和機
JP5358591B2 (ja) ロータリ圧縮機
WO2016016917A1 (ja) スクロール圧縮機
JP2017145795A (ja) スクロール圧縮機及びそれを備えた空気調和装置
JP6987295B1 (ja) スクロール圧縮機及び冷凍サイクル装置
WO2017141309A1 (ja) ロータリ圧縮機
JP7445623B2 (ja) スクロール圧縮機、及び冷凍サイクル装置
JP2013238191A (ja) 圧縮機
JP4992496B2 (ja) 回転圧縮機
JP7157274B2 (ja) スクロール圧縮機、及び冷凍サイクル装置
JP2017101557A (ja) 密閉型圧縮機
WO2020183605A1 (ja) 圧縮機及び冷凍サイクル装置
JP2021067263A (ja) 圧縮機及び冷凍サイクル装置
JP5677196B2 (ja) 回転型圧縮機
JP2012241629A (ja) 密閉型電動圧縮機
JP2006046154A (ja) 密閉型圧縮機及びそれを用いた冷凍サイクル装置
KR20040044026A (ko) 압축기의 균유관 설치구조

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512019

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930928

Country of ref document: EP

Kind code of ref document: A1