WO2011033351A1 - 機器への電力制御システム - Google Patents

機器への電力制御システム Download PDF

Info

Publication number
WO2011033351A1
WO2011033351A1 PCT/IB2010/002123 IB2010002123W WO2011033351A1 WO 2011033351 A1 WO2011033351 A1 WO 2011033351A1 IB 2010002123 W IB2010002123 W IB 2010002123W WO 2011033351 A1 WO2011033351 A1 WO 2011033351A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
mode
power supply
control means
distribution control
Prior art date
Application number
PCT/IB2010/002123
Other languages
English (en)
French (fr)
Inventor
清隆 竹原
柳 康裕
晶子 高宮
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to EP10816757.8A priority Critical patent/EP2479863B1/en
Priority to CN201080040937.1A priority patent/CN102498631B/zh
Priority to US13/496,045 priority patent/US9360903B2/en
Publication of WO2011033351A1 publication Critical patent/WO2011033351A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to a system for controlling power supplied to a load device.
  • AC devices such as air conditioners, refrigerators, and washing machines are driven by commercial power (AC power), and DC devices such as personal computers, LCD TVs, telephones, and facsimiles operate with DC power.
  • AC power AC power
  • DC devices such as personal computers, LCD TVs, telephones, and facsimiles operate with DC power.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 0 9-1 7 8 0 2 5
  • the power supply source for supplying power to the equipment is switched according to the power supply amount and the power demand amount. For example, if there is sufficient charging power for the secondary battery or power generated by the solar battery, not only the charging power for the secondary battery or the power generated by the solar battery is supplied to the DC equipment, but also the DC power is supplied to the AC power. It is also supplied to AC equipment using an inverter that converts to.
  • the present invention has been made in view of the above reasons, and provides a system capable of efficiently controlling the operation of a device in conjunction with switching of a power supply source used to supply power to the device.
  • a plurality of power supply sources, a device that operates using power, a power supply source that supplies power to the device are determined, and the device is determined by the determined power supply source.
  • a control device for controlling the amount of power supplied to the device, and a power control system for equipment comprising:
  • the plurality of power supply sources include a commercial power source, a distributed power source, and a secondary battery charged by the commercial power source or the distributed power source.
  • the device operates using power supplied from the plurality of power supply sources, and the control device is based on at least one of the power supply amount of the power supply source and the power demand amount on the device side.
  • the power saving control means for changing the power consumption so as to reduce power consumption according to the power supply source for supplying power to the device, determined by the power distribution control means.
  • the power distribution control means performs any power distribution control mode among a plurality of modes of power distribution control in which power supply sources for supplying power to the devices are different from each other, and the power saving control means includes the power distribution control means of the power distribution control means. Depending on the power distribution control mode, any one of the plurality of power saving control patterns with different power consumptions to be reduced may be performed.
  • the power distribution control means performs any power distribution control mode among a mode using a power supply source including the commercial power source and a mode using a power supply source other than the commercial power source,
  • the power saving control means is a mode in which the power distribution control means uses only a power supply source other than the commercial power supply. Compared to the operation, the power consumption to be reduced can be increased.
  • the distributed power source includes a solar cell, and the power distribution control unit uses a mode that uses only the solar cell, a mode that uses the solar cell and the secondary battery, and a power supply source that includes the commercial power source.
  • the power distribution control modes, and the power saving control means when the power distribution control means operates in a mode using a power supply source including the commercial power source, the power distribution control means Compared to when operating in a mode using the solar battery and the secondary battery, the power consumption to be reduced is increased, and the power distribution control means operates in a mode using the solar battery and the secondary battery. If the power distribution control means is operating in a mode that uses only the solar battery, the power consumption to be reduced may be increased.
  • the power supply of solar cells and secondary batteries is low, and as the usage rate of commercial power increases, the operation of the equipment is controlled to save power, and the power consumption of commercial power is reduced. Electricity charges can be reduced.
  • the power distribution control means includes: a first mode using only the solar battery; a second mode using the solar battery and the secondary battery; the solar battery, the secondary battery, and the commercial power source.
  • the power saving control mode is performed in any one of a third mode using the solar cell, a fourth mode using the commercial power supply, and a fifth mode using only the commercial power supply.
  • the power control means does not perform power saving control when the power distribution control means operates in the first mode, and reduces power consumption when the power distribution control means operates in the fifth mode.
  • the power consumption to be reduced is larger than 0 and smaller than the maximum value. May be.
  • the usage status of commercial power supply, solar battery, and secondary battery is further subdivided, and the power supply amount of solar battery and secondary battery becomes lower, and the usage rate of commercial power supply increases.
  • the power consumption of the power supply is controlled so that the power consumption of the commercial power supply can be reduced and the electricity bill can be reduced.
  • the control device further includes an operation unit that allows a user to set the intensity of power saving control by the power saving control unit, and the power saving control unit includes a power saving control associated with each of the modes of the power distribution control unit. These patterns may be set according to the intensity of power saving control.
  • the device control pattern is changed according to the power saving intensity set by the user, and it is possible to achieve both power saving and user comfort while respecting the user's intention. It becomes.
  • the commercial power supply has a unit price for each time zone, and the power saving control means has a power saving control pattern to be executed when the power distribution control means operates in a mode using the commercial power supply. It may be different depending on the unit price of commercial power at the current time.
  • the power saving control means may change the power consumption to be reduced by the power saving control before the power supply source for supplying power to the device is switched.
  • FIG. 1 is a diagram showing a general configuration of a power control system for a device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing more specifically the configuration of the control device in the power control system for a device according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a control device in a second embodiment of the present invention.
  • the power control system for the device according to the present embodiment is mainly used in a house, and an AC power supply path W a for supplying power to an AC device La driven by AC power is connected.
  • a power distribution system including an AC distribution board 1 and a DC distribution board 2 connected to a DC power supply line W d for supplying power to d.
  • a commercial power source AC is used as the AC power supply source, and at least one of the solar battery 3 and the secondary battery 5 is used as the DC power supply source.
  • the AC distribution board 1 to which the AC power supply path Wa is connected is supplied with AC power from a commercial power supply AC and a solar battery 3 that is a distributed power supply via a power conditioner 4 (first power conversion means).
  • the main circuit breaker (not shown), multiple branch breakers, switches, etc. are built in the panel, and AC power is supplied to the AC power supply path W a and AC connection path W 1 branched into multiple systems on the load side of the branch breaker. Supply.
  • the power conditioner 4 has a function of converting the DC power generated by the solar cell 3 into AC power, and further adjusting the output frequency and output voltage so that it can be connected to the commercial power supply AC. ing.
  • the DC distribution board 2 to which the DC power supply path W d is connected is supplied with AC power from the AC distribution board 1 via the AC connection path W 1 and converts the AC power into DC power of a desired voltage.
  • a converter 2 a (second power conversion means) is provided.
  • the converter 2a is an AC-DC converter, and the output of the converter 2a is supplied to a plurality of DC power supply paths Wd via a plurality of circuit protectors, switches, etc. (not shown) built in the panel. Is done.
  • the DC distribution board 2 has a built-in charger / discharger 2 b that is connected between the output of the converter 2 a and the secondary battery 5 to charge and discharge the secondary battery 5.
  • the secondary battery 5 is charged with surplus power from the DC power supplied from the converter 2a to the DC power supply path Wd. Then, the output voltage of the secondary battery 5 is adjusted by the charger / discharger 2 b and supplied to the DC power supply path W d together with the output of the converter 2 a.
  • the DC power output from the converter 2a and the secondary battery 5 is also supplied to the inverter 6 (second power conversion means) via the DC connection path W2.
  • the Imperator 6 is a DC-AC converter that has the function of adjusting the output frequency and output voltage so that the grid connection with the commercial power supply AC is possible. It converts DC power to AC power, AC power is supplied to the AC power supply path W a via the branch breaker in panel 1.
  • AC power can be supplied from the AC distribution board 1 to the DC distribution board 2, and this AC power is converted into DC power by the converter 2a and then DC power is supplied. It is possible to supply DC power to the feed line Wd. Conversely, it is possible to supply DC power from the DC distribution board 2 to the AC distribution board 1, and this DC power is It is also possible to supply AC power to the AC power supply path Wa after being converted into AC power by the data generator 6.
  • the power control system for such devices has commercial power supply AC as the AC power supply source, solar cell 3 and secondary battery 5 as the DC power supply source, and control device 7 supplies power to each power supply source.
  • control device 7 supplies power to each power supply source.
  • 7 b distributed control means for changing the output ratio from each power supply source
  • 7c power saving control means 7c for controlling the operation of the device L in accordance with a power supply source used for power supply
  • a CPU 7 for controlling the operations of the power distribution control means 7b and the power saving means 7c. Consists of a.
  • power distribution control and power saving control by the control device 7 will be described.
  • Control device 7 consists of commercial power supply power AC, solar battery 3 power generation, secondary battery 5 charge rate, AC power distribution panel 1 to AC power supply path Wa, AC power supply, DC power distribution The DC power supplied from panel 2 to the DC power supply line W d is monitored. Based on the monitoring results, the converter 2a, the charger / discharger 2b, the inverter 6, the switches housed in the AC distribution board 1 and the DC distribution board 2 are controlled, and the AC distribution is controlled. Distribution control is performed by controlling power transfer between switchboard 1 and DC switchboard 2.
  • the secondary battery 5 is charged via the converter 2 a and the charger / discharger 2 b with the generated power of the solar battery 3 or the power supplied from the commercial power source AC. Then, when the charging rate of the secondary battery 5 is 100% (full charge) and the power generation amount of the solar battery 3 is 10% or more of the rating, the control device 7 controls the first power surplus mode ( First mode). In addition, when the charging rate of the secondary battery 5 is 80% or more, or when the charging rate of the secondary battery 5 is 30% or more and the power generation amount of the solar battery 3 is 30% or more of the rated value, This is the power surplus mode (second mode).
  • the solar battery 3 In the first power surplus mode, only the solar battery 3 is used as a power supply source, and the DC equipment L d on the DC power supply path W d is supplied by the power conditioner 4 and the converter 2 a. Further, the AC device L a on the AC power supply path W a is driven by the generated power of the solar cell 3 supplied via the power conditioner 4. In this case, the solar cell 3 serves as a power supply source, and the amount of power supplied from the commercial power source AC is zero.
  • the solar battery 3 and the secondary battery 5 are used as power supply sources, and the DC device L d on the DC power supply path W d is the charge power of the secondary battery 5 and the power conditioner. 4.
  • the DC power supply source of the solar cell 3 and the secondary battery 5 is the power supply source, and the power supply amount from the commercial power source AC is zero.
  • control device 7 controls the first commercial power supply combination mode (the first commercial power mode) when the charging rate of the secondary battery 5 is 300/0 or more and the power generation amount of the solar battery 3 is less than the rated value of 30 ⁇ 1 ⁇ 2. (Mode 3). Two When the charging rate of the secondary battery 5 is less than 30% and the power generation amount of the solar battery 3 is 30% or more of the rated value, the second commercial power supply combined mode (fourth mode) is set.
  • solar cell 3 and secondary battery 5 and commercial power source AC are used as power supply sources, and DC device L d on DC power supply path W d is charged for secondary battery 5 Power and power conditioner 4, driven by the power generated by the solar cell 3 supplied via the converter 2a and commercial power supplied via the converter 2a, and supplied by the AC power.
  • AC equipment La on the road W a is the supply power of commercial power AC, the power generated by the solar cell 3 supplied via the power conditioner 4, and the secondary battery 5 supplied via the inverter 6. Driven by charging power.
  • the commercial power source AC, the solar cell 3, and the secondary battery 5 are the power supply sources.
  • the solar battery 3 and the commercial power supply AC are used as the power supply source, and the DC device L d on the DC power supply line W d is supplied via the power conditioner 4 and the converter 2 a. Power generated by the solar cell 3 and commercial power supplied via the converter 2a, and driven by AC supplied power.
  • the AC equipment La on the AC power supply path W a is the commercial power AC supplied power.
  • the commercial power source AC and the solar cell 3 are the power supply sources.
  • the control device 7 This is the commercial power consumption mode (fifth mode) in which AC power supplied from AC is used alone to drive AC equipment La and DC equipment Ld.
  • This commercial power consumption mode has the lowest unit price 2
  • Commercial power consumption mode which has the highest unit price, is further subdivided into three modes of the third commercial power consumption mode in the time zone from 10:00 to 22:00, and the mode corresponding to the current time is selected. In this case, only the commercial power source AC is the power supply source.
  • the control device 7 can control the seven power distribution control modes [first power surplus mode, second power surplus mode, first commercial power source according to the power supply amount of each power supply source.
  • One of the combination mode, the second commercial power combination mode, the first commercial power consumption mode, the second commercial power consumption mode, and the third commercial power consumption mode] is selected.
  • the distribution control mode is not limited to the above seven. For example, a mode that includes the prediction of the power generation amount of the solar cell 3 based on the weather, weather forecast, etc. as a condition may be added.
  • the power saving control pattern corresponding to each mode of power distribution control is
  • Second power surplus mode Energy-saving operation Temperature setting 25 ° C
  • Second commercial power mode Energy-saving operation Temperature setting 2 7 ° C
  • Second commercial power consumption mode Energy-saving operation Temperature setting 28 ° C and intermittent operation (for example, 50 minutes operation, 10 minutes stop)
  • the power-saving control pattern corresponding to each mode of power distribution control is
  • Second power surplus mode Energy saving operation 80% light
  • Second commercial power combined use mode : Energy saving operation 60% lighting
  • Second commercial power consumption mode K : Energy-saving operation 20% lit
  • distribution control is performed to switch the power supply source according to the power supply amount of each power supply source, and the operation of equipment L increases as the usage rate of commercial power supply AC increases according to the power supply source used for power supply.
  • the power consumption of the commercial power supply AC is reduced and the electricity charges are reduced.
  • the power that can be supplied to the AC equipment L a and the DC equipment L d is changed according to the level of electricity charges in the time zone to save power and reduce electricity charges. .
  • the first unit of commercial power consumption mode, the second unit of commercial power consumption mode, and the third unit of commercial power consumption mode are the time periods when the unit price of power is low, and in the mode with high unit price, AC equipment The power that can be supplied to L a and DC equipment L d is reduced to save power and reduce electricity charges.
  • the power control system for this device enables efficient power-saving control of each operation of AC device La and DC device Ld in conjunction with switching of the power supply source used for power supply. It has become.
  • the control device 7 may switch the operation content before switching the power supply source. For example, when switching from the first power surplus mode to the second power surplus mode, first, after switching the operation of the equipment from normal operation to energy-saving operation (80% ON) (for example, after 10 minutes) , 'Switch from the power supply source [solar cell 3 only] to the power supply source [solar cell 3 and secondary battery 5]. Therefore, by switching the operation contents of device L, the power consumption in device L is changed, and then the power supply source used for power supply is switched, preventing usage exceeding the power supply amount of the power supply source. Furthermore, chattering of mode switching operation can be prevented.
  • the first power surplus mode, the second Power surplus mode, 1st commercial power combined mode, 2nd commercial power combined mode, and commercial power consumption mode may be switched to 5 modes, and commercial power consumption mode is based on unit price
  • the above seven modes are further subdivided.
  • the first commercial power combined mode and the second commercial power combined mode can be further subdivided based on the unit price as in the first to third commercial power consumption modes.
  • switch to 3 modes including power surplus mode with only DC power supply source, commercial power source combined mode using both commercial power source AC and DC power source, and commercial power source consumption mode using only commercial power source AC
  • Each of the three modes can be subdivided into the above seven modes.
  • a mode using only solar cells 3 there are three modes: a mode using solar cells 3 and secondary batteries 5, and a mode using a power supply source including commercial power supply AC. It may be possible to switch between two modes: a mode that uses a power supply source including power supply AC and a mode that uses a power supply source other than commercial power supply AC.
  • the power control system for a device has the configuration shown in FIG. 1 as in the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • control device 7 is further provided with operating means 7d operated by the user, and the power saving intensity can be set by the operating means 7d.
  • the power saving intensity (saving) Select power intensity) from one of three levels (strong, medium, or weak).
  • the strength of power saving is not limited to three levels, and may be two or four levels, for example.
  • control device 7 controls the power saving of the operations of the AC device La and the DC device Ld in the above five power distribution control modes in different patterns for each power saving intensity.
  • Power saving intensity The equipment [air conditioner] power saving control pattern in the case of strong is the first power surplus mode: energy saving operation temperature setting 2 6 ° C
  • Second power surplus mode Energy-saving operation Temperature setting 2 8 ° C
  • Second commercial power mode Energy-saving operation Temperature setting 2 8 ° C
  • Power saving intensity The power saving control pattern of the equipment [air conditioner] in the middle is the first power surplus mode: normal operation Temperature setting 2 4 ° C
  • Second power surplus mode Energy-saving operation Temperature setting 25 ° C
  • Second commercial power mode Energy-saving operation Temperature setting 2 7 ° C
  • First commercial power consumption mode Energy saving operation Temperature setting 2 8 ° C
  • Second commercial power consumption mode Energy-saving operation Temperature setting 2 8 ° C and intermittent operation
  • the second is to save power.
  • the equipment [air conditioner] power saving control pattern in the weak case is the first power surplus mode Normal ⁇ Early E Temperature setting 2 4 ° C
  • each device is controlled in the direction in which the power saving effect is minimized.
  • the power-saving control pattern corresponding to each power distribution control mode is changed according to the power-saving intensity set by the user, and power-saving and user comfort are respected while respecting the user's intention. It is possible to achieve both.
  • control device 7 constitutes the power distribution control means 7b that switches the power supply source according to the power supply amount of each power supply source, but according to the power demand amount on the device side.
  • the power distribution control means 7b for switching the power supply source may be used.
  • the control device 7 monitors the AC power supplied from the AC distribution board 1 to the AC power supply path W a, the DC power supplied from the DC distribution board 2 to the DC power supply path W d, or AC Necessary power demand is derived by acquiring power consumption information from the equipment La and the DC equipment Ld.
  • the solar battery 3 or the secondary battery 5 is used as a power supply source.
  • the commercial power supply AC is used together.
  • the power supply source As a commercial power supply, AC is used alone.
  • changes in the power capacities of the solar cell 3 and the secondary battery 5 (maximum and minimum values of the power capacity that can be supplied) due to changes in sunlight during the day and night are known in advance.
  • distribution control is performed to switch the power supply source according to the amount of power demand on the device side. Further, the control device 7 performs the power saving control operation in the same manner as in the first embodiment according to the distribution control result.
  • control device 7 may be power distribution control means 7b that switches the power supply source according to both the power supply amount of each power supply source and the power demand amount on the device side.
  • the control device 7 sequentially monitors the generated power of the solar battery 3 and the charged power of the secondary battery 5, and also sequentially monitors the power demand, and balances the power demand with the power supply amount.
  • distribution control is performed so that solar cells 3 and secondary batteries 5 are used as much as possible, and commercial power source AC is not used as much as possible.
  • the control device 7 switches the power supply source used for power supply to the devices (AC device La and DC device Ld) according to the power supply amount of each power supply source.
  • Distribution control means 7 b distributed control means for varying the output ratio from each power supply source
  • power saving control means 7 c for controlling the power consumption of the device according to the power supply source used for power supply Both are configured.
  • the device L includes the power saving control means 7c, acquires the power supply source switching status by the power distribution control means 7b from the control device 7, and based on the acquired power supply source switching status, The power saving control means 7c may perform power saving control.
  • power saving control linked to switching of the power supply source is performed as described above. I can.
  • the present invention can also be applied to the case where any one of the solar battery 3 and the secondary battery 5 and the commercial power source AC are provided, and can also be applied to the case where only the solar battery 3 and the secondary battery 5 are provided. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Sources (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 複数の電力供給源と、電力を利用して動作する機器と、前記機器に電力を供給する電力供給源を決め、前記決められた電力供給源によって前記機器に供給される電力量を制御する制御装置と、を備える機器への電力制御システムが提供される。

Description

明細書 機器への電力制御システム 技術分野
本発明は、 負荷機器へ供給される電力を制御するシステムに関するものである。 背景技術
エアコン、 冷蔵庫、 洗濯機等の交流機器は商用電源 (交流電源) で駆動し、 パーソナ ルコンピュータ、 液晶テレビ、 電話、 ファクシミリ等の直流機器は直流電源で動作してお リ、 住宅、 店舗において、 交流電力を供給する交流配電システムと直流電力を供給する直 流配電システムとの共存を図る技術が提案されている (例えば、 特許文献 1参照)。
【特許文献 1】 日本特開 2 0 0 9— 1 7 8 0 2 5号公報
宅内の配電システムにおいて一般に、 機器への電力供給源は、 商用電源、 太陽電池、 余剰電力を充電された二次電池等が用いられている。 そして、 電力供給量、 電力需要量に 応じて、 機器へ電力を供給する電力供給源を切り替えている。 例えば、 二次電池の充電電 力や太陽電池の発電電力が十分にある場合は、 二次電池の充電電力や太陽電池の発電電力 を、 直流機器に供給するだけでなく、 直流電力を交流電力に変換するインバータを用いて 交流機器にも供給する。また、二次電池の充電電力や太陽電池の発電電力が少ない場合は、 商用電源の供給電力を併用して、 交流機器に供給するだけでなく、 交流電力を直流電力に 変換するコンバータを用いて直流機器にも供給する。
しかしながら、 このように機器への電力供給源は、 電力供給源の電力供給量、 機器側 での電力需要量に応じて切り替えられるが、 機器の動作は、 電力供給源の切替に関わらず 一定であり、 電力供給源と機器の動作を連動させて効率的に省電力制御を行うことができ なかった。 発明の開始
本発明は、 上記事由に鑑みてなされたものであり、 機器への電力供給に用いる電力供 給源の切替に連動して機器の動作を効率的に省電力制御できるシステムを提供する。
本発明の一実施形態によれば、複数の電力供給源と、電力を利用して動作する機器と、 前記機器に電力を供給する電力供給源を決め、 前記決められた電力供給源によって前記機 器に供給される電力量を制御する制御装置と、 を備える機器への電力制御システムが提供 される。
前記の機器への電力制御システムにおいて、 前記複数の電力供給源は、 商用電源と、 分散電源と、 前記商用電源またはノ及び前記分散電源によって充電される二次電池とを含 み、前記機器は前記複数の電力供給源が供給する電力を利用して動作し、前記制御装置は、 前記電力供給源の電力供給量と前記機器側での電力需要量との少なくとも一方に基づいて、 前記機器へ電力を供給する電力供給源を決め、 これに応じて電力供給源を切り替えること で電力配電制御を行う配電制御手段と、 前記機器の消費電力を低減させる省電力制御を行 うように、 前記配電制御手段によって決められた、 前記機器へ電力を供給する前記電力供 給源に応じて、 消費電力を低減させるように変化させる省電力制御手段とを備える。
このような構成によれば、 機器への電力供給に用いる電力供給源の切替に連動して効 率的に機器の動作を省電力制御できる。
前記配電制御手段は、 前記機器へ電力を供給する電力供給源が互いに異なる複数モー ドの配電制御のうち、 いずれかの配電制御モードを行い、 前記省電力制御手段は、 前記配 電制御手段の配電制御モードに応じて、 低減させる消費電力が互いに異なる複数の省電力 制御パターンのうち、 いずれかの省電力制御パターンを行っても良い。
このような構成によれば、 電力供給源の電力供給量や電力需要量に応じたモ一ドに切 リ替えることによって、 配電制御を適切に行うことができ、 さらに配電制御手段のモード に対応して、 機器の動作を適切に省電力制御できる。
また、 前記配電制御手段は、 前記商用電源を含む電力供給源を用いるモードと、 前記 商用電源以外の電力供給源を用いるモ一ドとのうち、 いずれかの配電制御モ一ドを行い、 前記省電力制御手段は、 前記配電制御手段が前記商用電源を含む電力供給源を用いるモー ドで動作している場合、 前記配電制御手段が前記商用電源以外の電力供給源のみを用いる モ一ドで動作している場合に比べて、 低減させる消費電力を大きくすることもできる。
これによつて、 商用電源を電力供給源として用いるか否かによってモ一ドを切り替え ることによって、 配電制御を適切に行うことができ、 さらに配電制御手段のモードに対応 して、 機器の動作を適切に省電力制御できる。
前記分散電源は太陽電池を含み、、前記配電制御手段は、前記太陽電池のみを用いるモ ードと、 前記太陽電池と前記二次電池を用いるモードと、 前記商用電源を含む電力供給源 を用いるモードとのうち、 いずれかの配電制御モードを行い、 前記省電力制御手段は、 前 記配電制御手段が前記商用電源を含む電力供給源を用いるモードで動作している場合、 前 記配電制御手段が前記太陽電池と前記二次電池を用いるモードで動作している場合に比べ て、 低減させる消費電力を大きくし、 前記配電制御手段が前記太陽電池と前記二次電池を 用いるモードで動作している場合、 前記配電制御手段が前記太陽電池のみを用いるモード で動作している場合に比べて、 低減させる消費電力を大きくしても良い。
このような構成によれば、 太陽電池や二次電池の電力供給量が低くなつて、 商用電源 の使用割合が増えるほど機器の動作を省電力制御しており、 商用電源の電力消費を抑える とともに、 電気料金の低減を図ることができる。
また、 前記配電制御手段は、 前記太陽電池のみを用いる第 1のモードと、 前記太陽電 池と前記二次電池を用いる第 2のモードと、 前記太陽電池と前記二次電池と前記商用電源 を用いる第 3のモードと、 前記太陽電池と前記商用電源を用いる第 4のモードと、 前記商 用電源のみを用いる第 5のモードとのうち、 いずれかの配電制御モードを行い、 前記省電 力制御手段は、 前記配電制御手段が前記第 1のモードで動作している場合、 省電力制御を 行わず、 前記配電制御手段が前記第 5のモードで動作している場合、 低減させる消費電力 を最大値とし、 前記配電制御手段が前記第 2のモードまたは第 3のモードまたは第 4のモ -ドで動作している場合、 低減させる消費電力を 0より大きく且つ前記最大値よリ小さく しても良い。
このような構成によれば、 商用電源、 太陽電池、 二次電池の使用状況をさらに細分化 し、 太陽電池や二次電池の電力供給量が低くなつて、 商用電源の使用割合が増えるほど機 器の動作を省電力制御しており、 商用電源の電力消費を抑えるとともに、 電気料金の低減 を図ることができる。
また前記制御装置は、 ユーザが前記省電力制御手段による省電力制御の強度を設定す る操作手段を更に備え、 前記省電力制御手段は、 前記配電制御手段の前記モードの各々に 対応付ける省電力制御のパターンを省電力制御の強度に応じて設定しても良い。
これによつて、 ユーザが設定した省電力強度に応じて機器の制御パターンを変更して おり、 ユーザの意思を尊重しながら、 省電力化とユーザの快適性との両立を図ることが可 能となる。
前記商用電源は、 時間帯毎に料金単価が異なり、 前記省電力制御手段は、 前記配電制 御手段が前記商用電源を用いたモードで動作している場合、 実行する省電力制御のパター ンが現在時刻における商用電源の料金単価によって異なることも可能である。
このような構成によれば、 機器に供給する電力を、 時間帯における電気料金の高低に 応じて変化させることで、 省電力化、 電気料金の低減を図ることができる。
また、 前記省電力制御手段は、 前記機器へ電力を供給する電力供給源が切り替わる前 に、 省電力制御によって低減させる消費電力を変化させても良い。
これによつて、 電力供給源の電力供給量を超えた使い方を防止でき、 さらにはモード 切替動作のチヤタリングを防止できる。
図面の簡単な説明
本発明の目的及び特徴は以下のような添付図面を参照する以後の好ましい実施例の説 明により明確になる。
【図 1】 本発明の一実施形態の機器への電力制御システムの全般的な構成を示す図で ある。
【図 2】 本発明の第 1実施形態の機器への電力制御システムにおいて、 制御装置の構 成をより具体的に示すブロック図である。
【図 3】 本発明の第 2実施形態においての制御装置の構成を示すブロック図である。 発明を実施するための形態 以下、 本発明の実施形態が本明細書の一部を成す添付図面を参照してより詳細に説明 する。 図面全体において同一又は類似する部分については同一参照符号を付して説明を省 略する。
(実施形態 1 )
本実施形態に係る機器への電力制御システムは、 図 1に示すように、 主として住宅に おいて用いるものであり、 交流電力により駆動される交流機器 L aに給電する交流給電路 W aが接続される交流分電盤 1と、 直流電力により駆動される直流機器し dに給電する直 流給電路 W dが接続される直流分電盤 2とを備えた給電システムに適用される。 また、 本 システムの電力供給源としては、 交流電力供給源として商用電源 A Cが、 直流電力供給源 として太陽電池 3及び二次電池 5の少なくとも 1つが用いられる。
交流給電路 W aが接続される交流分電盤 1は、 商用電源 A C、 および分散電源である 太陽電池 3からパワーコンディショナ 4 (第 1の電力変換手段) を介して交流電力を供給 されており、 図示しない主幹ブレーカおよび複数の分岐ブレーカ、 開閉器等を盤内に内蔵 して、 分岐ブレーカの負荷側にて複数系統に分岐した交流給電路 W aおよび交流接続路 W 1に交流電力を供給している。 なお、 パワーコンディショナ 4は、 太陽電池 3が発電した 直流電力を交流電力に変換し、 さらに商用電源 A Cと系統連系が可能となるように出力周 波数および出力電圧を調節する機能を有している。
一方、 直流給電路 W dが接続される直流分電盤 2は、 交流分電盤 1から交流接続路 W 1を介して交流電力を供給され、 交流電力を所望の電圧の直流電力に変換するコンバータ 2 a (第 2の電力変換手段) を備える。 コンバータ 2 aは A C— D C変換装置であって、 コンバータ 2 aの出力が、 盤内に内蔵した図示しない複数のサーキットプロ亍クタ、 開閉 器等を介して複数系統の直流給電路 W dに供給される。
さらに直流分電盤 2内には、コンバータ 2 aの出力と二次電池 5との間に接続されて、 二次電池 5の充放電を行う充放電器 2 bが内蔵されている。 この充放電器 2 bによる充電 制御は、 コンバータ 2 aが直流給電路 W dに供給する直流電力から余剰電力分が二次電池 5に充電される。 そして、 二次電池 5の出力電圧は充放電器 2 bにより調節され、 コンパ ータ 2 aの出力とともに直流給電路 W dに供給される。
上記のようにコンバータ 2 aおよび二次電池 5から出力される直流電力は、 直流接続 路 W 2を介してインバ一タ 6 (第 2の電力変換手段) にも供給される。 インパ一タ 6は、 商用電源 A Cと系統連系が可能となるように出力周波数および出力電圧を調節する機能を 有する D C— A C変換装置であり、 直流電力を交流電力に変換し、 交流分電盤 1内の分岐 ブレーカを介して交流給電路 W aに交流電力を供給する。
上述の構成から明らかなように、 交流分電盤 1からは直流分電盤 2に対して交流電力 を供給することが可能であり、 この交流電力をコンバータ 2 aによって直流電力に変換し て直流給電路 W dに直流電力を供給することが可能になっている。 逆に、 直流分電盤 2か ら交流分電盤 1に対しては直流電力を供給することが可能であり、 この直流電力をインバ ータ 6によって交流電力に変換して交流給電路 W aに交流電力を供給することも可能であ る。
このような機器への電力制御システムは、 商用電源 A Cが交流電力供給源、 太陽電池 3、 二次電池 5が直流電力供給源となっており、 制御装置 7が、 各電力供給源の電力供給 量に応じて、 機器し (交流機器 L a、 直流機器 L d ) への電力供給に用いる電力供給源を 切り替える配電制御手段 7 b (各電力供給源からの出力比率を変動させる配電制御手段) と、 さらには電力供給に用いる電力供給源に応じて機器 Lの動作を省電力制御する省電力 制御手段 7 cと、 前記配電制御手段 7 b及び省電力手段 7 cの動作を制御する C P U 7 a から構成されている。 以下、 制御装置 7による配電制御および省電力制御について説明す る。
制御装置 7は、 商用電源 A Cからの供給電力、 太陽電池 3の発電量、 二次電池 5の充 電率、 交流分電盤 1から交流給電路 W aへ供給される交流電力、 直流分電盤 2から直流給 電路 W dへ供給される直流電力を監視している。 そして、 この監視結果に基づいて、 コン バータ 2 a、 充放電器 2 b、 インバータ 6や、 交流分電盤 1および直流分電盤 2に収納さ れた開閉器等の制御を行い、 交流分電盤 1と直流分電盤 2との間での電力授受を制御する ことで配電制御を実行している。
まず、 二次電池 5は、 太陽電池 3の発電電力または商用電源 A Cからの供給電力によ つて、 コンバータ 2 a、 充放電器 2 bを介して充電される。 そして、 制御装置 7は、 二次 電池 5の充電率が 1 0 0 % (フル充電)、且つ太陽電池 3の発電量が定格の 1 0 %以上の場 合に、第 1の電力余剰モード(第 1のモード) となる。また、二次電池 5の充電率が 8 0 % 以上の場合、 あるいは二次電池 5の充電率が 3 0 %以上且つ太陽電池 3の発電量が定格の 3 0 %以上の場合に、 第 2の電力余剰モード (第 2のモード) となる。
第 1の電力余剰モードでは、 電力供給源として太陽電池 3のみを用いており、 直流給 電路 W d上の直流機器 L dは、 パワーコンディショナ 4、 コンバータ 2 aを介して供給さ れる太陽電池 3の発電電力で駆動され、 さらに交流給電路 W a上の交流機器 L aは、 パヮ ーコンディショナ 4を介して供給される太陽電池 3の発電電力によって駆動される。 この 場合、 太陽電池 3が電力供給源となり、 商用電源 A Cからの電力供給量はゼロとなる。
第 2の電力余剰モードでは、電力供給源として太陽電池 3と二次電池 5を用いており、 直流給電路 W d上の直流機器 L dは、 二次電池 5の充電電力、 およびパワーコンディショ ナ 4、 コンバータ 2 aを介して供給される太陽電池 3の発電電力で駆動され、 さらに交流 給電路 W a上の交流機器 L aは、 パワーコンディショナ 4を介して供給される太陽電池 3 の発電電力、 およびインバータ 6を介して供給される二次電池 5の充電電力によって駆動 される。 この場合、 太陽電池 3、 二次電池 5の直流電力供給源が電力供給源となり、 商用 電源 A Cからの電力供給量はゼロとなる。
また、 制御装置 7は、 二次電池 5の充電率が 3 0 0/0以上且つ太陽電池 3の発電量が定 格の 3 0 <½未満の場合に、 第 1の商用電源併用モード (第 3のモード) となる。 また、 二 次電池 5の充電率が 3 0 %未満且つ太陽電池 3の発電量が定格の 3 0 %以上の場合に、 第 2の商用電源併用モード (第 4のモード) となる。
第 1の商用電源併用モードでは、 電力供給源として太陽電池 3と二次電池 5と商用電 源 A Cを用いており、 直流給電路 W d上の直流機器 L dは、 二次電池 5の充電電力、 およ びパワーコンディショナ 4、 コンバータ 2 aを介して供給される太陽電池 3の発電電力、 およびコンバータ 2 aを介して供給される商用電源 A Cの供給電力で駆動され、 さらに交 流給電路 W a上の交流機器 L aは、 商用電源 A Cの供給電力、 およびパワーコンディショ ナ 4を介して供給される太陽電池 3の発電電力、 およびインバータ 6を介して供給される 二次電池 5の充電電力によって駆動される。 この場合、 商用電源 A C、 太陽電池 3、 二次 電池 5が電力供給源となる。
第 2の商用電源併用モードでは、 電力供給源として太陽電池 3と商用電源 A Cを用い ており、 直流給電路 W d上の直流機器 L dは、 パワーコンディショナ 4、 コンバータ 2 a を介して供給される太陽電池 3の発電電力、 およびコンバータ 2 aを介して供給される商 用電源 A Cの供給電力で駆動され、 さらに交流給電路 W a上の交流機器 L aは、 商用電源 A Cの供給電力、 およびパワーコンディショナ 4を介して供給される太陽電池 3の発電電 力によって駆動される。 この場合、 商用電源 A C、 太陽電池 3が電力供給源となる。
また、 太陽電池 3の発電電力および二次電池 5の充電率が上記第 1 , 第 2の電力余剰 モードおよび上記第 1, 第 2の商用電源併用モード以外の場合、 制御装置 7は、 商用電源 A Cからの供給電力を単独で使用して交流機器 L aおよび直流機器 L dを駆動する商用電 源消費モード (第 5のモード) となる。 この商用電源消費モードは、 料金単価が最も安い 2 2時〜 7時の時間帯における第 1の商用電源消費モード、 料金単価が 2番目に安い 7時 〜 1 0時の時間帯における第 2の商用電源消費モード、 料金単価が最も高い 1 0時~ 2 2 時の時間帯における第 3の商用電源消費モードの 3モ一ドにさらに細分化され、 現在時刻 に応じたモードが選択される。 この場合、 商用電源 A Cのみが電力供給源となる。
このように、 制御装置 7は、 各電力供給源の電力供給量に応じて上記 7つの配電制御 モ一ド [第 1の電力余剰モ一ド、 第 2の電力余剰モード、 第 1の商用電源併用モード、 第 2の商用電源併用モード、 第 1の商用電源消費モード、 第 2の商用電源消費モード、 第 3 の商用電源消費モード] からいずれか 1つを選択しており、 さらに制御装置 7は、 選択さ れた配電制御モードに応じて交流機器 L aおよび直流機器 L dの各省電力制御パターンを 設定している。なお;配電制御モードは上記 7つに限定されることはない。例えば、天気、 天気予報などに基づく太陽電池 3の発電量の予測を条件に含むモードを付加しても良い。
例えば、 機器 [エアコン] の場合、 配電制御の各モードに対応する省電力制御パター ンは、
第 1の電力余剰モ一ド :通常運転 温度設定 2 4 °C
第 2の電力余剰モード :省エネ運転 温度設定 2 5 °C
第 1の商用電源併用モ一ド:省エネ運転 温度設定 2 6 °C 第 2の商用電源併用モード:省エネ運転 温度設定 2 7 °C
第 1の商用電源消費モード:省エネ運転 温度設定 2 8 °C
第 2の商用電源消費モード:省エネ運転 温度設定 2 8 °C、 且つ間欠運転 (例えば、 5 0 分運転、 1 0分停止)
第 3の商用電源消費モード:電源オフ
となる。
また、 機器 [照明器具] の場合、 配電制御の各モードに対応する省電力制御パターン は、
第 1の電力余剰モ一ド :通常 早 E 1 0 0 %点灯
第 2の電力余剰モード :省エネ運転 8 0 %点灯
第 1の商用電源併用モー : :省エネ運転 7 0 %点灯
第 2の商用電源併用モ一 : :省エネ運転 6 0 %点灯
第 1の商用電源消費モ一 : :省エネ運転 5 0 %点灯
第 2の商用電源消費モー K: :省エネ運転 2 0 %点灯
第 3の商用電源消費モー :消灯
となる。
すなわち、 各電力供給源の電力供給量に応じて電力供給源を切り替える配電制御を行 し、、 さらに電力供給に用いる電力供給源に応じて、 商用電源 A Cの使用割合が増えるほど 機器 Lの動作を省電力制御しており、 商用電源 A Cの電力消費を抑えるとともに、 電気料 金の低減を図っている。 さらに、 商用電源消費モードでは、 交流機器 L aおよび直流機器 L dに供給可能な電力を、時間帯における電気料金の高低に応じて変化させて、省電力化、 電気料金の低減を図っている。 ここでは、 第 1の商用電源消費モード、 第 2の商用電源消 費モード、 第 3の商用電源消費モードの順で電力の料金単価が安い時間帯であり、 料金単 価が高いモードでは交流機器 L aおよび直流機器 L dに供給可能な電力を低減させて、 省 電力化、 電気料金の低減を図っている。 このように、 本機器への電力制御システムでは、 電力供給に用いる電力供給源の切替に連動して、 交流機器 L a、 直流機器 L dの各動作を 効率的に省電力制御することが可能となっている。
また、 制御装置 7は、 モードを切り替える際、 電力供給源の切替の前に運転内容の切 替を行ってもよい。 例えば、 第 1の電力余剰モードから第 2の電力余剰モードに切り替え る場合、 まず機器の動作を通常運転から省エネ運転 (8 0 %点灯) に切り替えた後 (例え ば、 1 0分後) に、 '電力供給源 [太陽電池 3のみ] から電力供給源 [太陽電池 3と二次電 池 5 ] に切り替える。 したがって、 機器 Lの運転内容を切り替えることで、 機器 Lにおけ る消費電力を変化させてから、 電力供給に用いる電力供給源を切り替えるので、 電力供給 源の電力供給量を超えた使い方を防止でき、 さらにはモード切替動作のチヤタリングを防 止できる。
なお、 本実施形態では、 電力供給源の配電制御として、 第 1の電力余剰モード、 第 2 の電力余剰モード、 第 1の商用電源併用モード、 第 2の商用電源併用モード、 商用電源消 費モ一ドの 5モードに切替可能であってもよく、 商用電源消費モードを料金単価に基づい てさらに細分化したものが、 上記 7つのモードである。 また、 前記第 1の商用電源併用モ 一ド及び第 2の商用電源併用モードも前記第 1乃至第 3商用電源消費モ一ドと同様に料金 単価に基づいて更に細分化することができる。 また、 直流電力供給源のみの電力余剰モー ドと、 商用電源 A Cと直流電源供給源の両方を用いる商用電源併用モードと、 商用電源 A Cのみを用いる商用電源消費モ一ドを含む 3モードに切り替え可能にしても良く、 該 3モ -ドのそれぞれを上記 7つのモードに細分化することもできる。
また、 電力供給源の配電制御として、 太陽電池 3のみを用いるモードと、 太陽電池 3 と二次電池 5を用いるモードと、 商用電源 A Cを含む電力供給源を用いるモードの 3モー ドゃ、 商用電源 A Cを含む電力供給源を用いるモードと、 商用電源 A C以外の電力供給源 を用いるモ一ドの 2モ一ドに切替可能でもよい。
(実施形態 2 )
本実施形態の機器への電力制御システムは、 実施形態 1と同様に図 1に示す構成を備 えておリ、 同様の構成には同一の符号を付して説明は省略する。
本実施形態では、 ユーザが操作する操作手段 7 dを制御装置 7に更に設けて、 操作手 段 7 dによって、 省電力化の強度を設定することができ、 例えば、 省電力化の強度 (省電 力強度) を 3段階 (強、 中、 弱) のいずれかから選択する。 ここで、 省電力化の強度は 3 段階に限らず、 例えば、 2段階または 4段階にしても良い。
そして、 制御装置 7は、 上記 5つの配電制御モ一ドにおける交流機器 L aおよび直流 機器 L dの各動作を、 省電力強度毎に異なるパターンで省電力制御している。
省電力強度:強の場合における機器 [エアコン] の省電力制御パターンは、 第 1の電力余剰モード :省エネ運転 温度設定 2 6 °C
第 2の電力余剰モード :省エネ運転 温度設定 2 8 °C
第 1の商用電源併用モード:省エネ運転 温度設定 2 8 °C
第 2の商用電源併用モード:省エネ運転 温度設定 2 8 °C
第 1の商用電源消費モード:省エネ運転 温度設定 2 8 °C、 且つ間欠運転
第 2の商用電源消費モード:電源オフ
第 3の商用電源消費モード:電源オフ
となり、 最も省電力化を図っている。
省電力強度: 中の場合における機器 [エアコン] の省電力制御パターンは、 第 1の電力余剰モ一ド :通常運転 温度設定 2 4 °C
第 2の電力余剰モード :省エネ運転 温度設定 2 5 °C
第 1の商用電源併用モード:省エネ運転 温度設定 2 6 °C
第 2の商用電源併用モード:省エネ運転 温度設定 2 7 °C
第 1の商用電源消費モード:省エネ運転 温度設定 2 8 °C 第 2の商用電源消費モ一ド:省エネ運転 温度設定 2 8 °C、 且つ間欠運転
第 3の商用電源消費モード:電源オフ
となり、 2番目に省電力化を図っている。
省電力強度:弱の場合における機器 [エアコン] の省電力制御パターンは、 第 1の電力余剰モード 通常^早 E 温度設定 2 4 °C
第 2の電力余剰モード 通常埋転 温度設定 2 4 °C
第 1の商用電源併用モード、 省エネ運転 温度設定 2 5 °C
第 2の商用電源併用モー 省エネ運転 温度設定 2 5 °C
第 1の商用電源消費モード' 省エネ運転 温度設定 2 6 °C
第 2の商用電源消費モー 省エネ運転 ; m度 fi5疋 8 °し
第 3の商用電源消費モー 省エネ運転 温度設定 2 8 °C、 且つ間欠運転
となり、 省電力効果が最も低くなる方向 、各機器を制御している。
このように、 ユーザが設定した省電力強度に応じて、 配電制御モードの各々に対応す る省電力制御パターンを変更しており、 ユーザの意思を尊重しながら、 省電力化とユーザ の快適性との両立を図ることが可能となる。
(実施形態 3 )
上記実施形態 1 . 2では、 制御装置 7が、 各電力供給源の電力供給量に応じて電力供 給源を切り替える配電制御手段 7 bを構成しているが、 機器側での電力需要量に応じて電 力供給源を切リ替える配電制御手段 7 bであってもよい。
この場合、 制御装置 7は、 交流分電盤 1から交流給電路 W aへ供給される交流電力、 直流分電盤 2から直流給電路 W dへ供給される直流電力を監視したり、 または交流機器 L aおよび直流機器 L dから消費電力の情報を取得することによって、 必要な電力需要量を 導出する。 そして、 電力需要量が低いときは太陽電池 3や二次電池 5を電力供給源として 用い、 電力需要量が増大するにつれて商用電源 A Cを併用し、 さらに電力需要量が増大す ると電力供給源として商用電源 A Cを単独で用いる。 なお、 本実施形態では、 昼夜におけ る太陽光め変化による太陽電池 3および二次電池 5の電力容量の変化 (供給可能な電力容 量の最大値および最小値) が予め判っており、 この予め判っている太陽電池 3および二次 電池 5の電力容量の変化を考慮した上で、 機器側での電力需要量に応じて電力供給源を切 リ替える配電制御を行う。 また、 制御装置 7は配電制御結果に応じて実施形態 1と同様に 省電力制御動作を行う。
また、 制御装置 7は、 各電力供給源の電力供給量および機器側での電力需要量の両方 に応じて電力供給源を切り替える配電制御手段 7 bであってもよい。 この場合、 制御装置 7は、 太陽電池 3の発電電力および二次電池 5の充電電力を逐次監視し、 さらに電力需要 量も逐次監視して、電力の需要と供給のバランスを、 「電力供給量≥電力需要量」の関係に 維持しながら、 電力供給源として太陽電池 3および二次電池 5をできるだけ用い、 商用電 源 A Cをできるだけ用いないように、 配電制御を行う。 また、 上記各実施形態では、 制御装置 7が、 各電力供給源の電力供給量に応じて、 機 器し (交流機器 L a、 直流機器 L d ) への電力供給に用いる電力供給源を切り替える配電 制御手段 7 b (各電力供給源からの出力比率を変動させる配電制御手段) と、 電力供給に 用いる電力供給源に応じて機器しの動作を省電力制御する省電力制御手段 7 cとの両方を 構成している。 しかし、 機器 Lが省電力制御手段 7 cを備えて、 配電制御手段 7 bによる 電力供給源の切替状況を制御装置 7から取得し、 当該取得した電力供給源の切替状況に基 づいて、 機器しの省電力制御手段 7 cが省電力制御を行ってもよい。
なお、 上記各実施形態では、 交流電力により駆動される交流機器 L aに給電する交流 給電路 W aと、 直流電力により駆動される直流機器 L dに給電する直流給電路 W dとの両 方を備えた給電システムを例示しているが、 交流給電路 W aと直流給電路 W dのいずれか 一方を備えた給電システムでも、 上記同様に電力供給源の切替に連動した省電力制御を行 うことができる。 本発明は太陽電池 3と二次電池 5のうちのいずれかと商用電源 A Cを備 えた場合にも適用可能であり、 また、 太陽電池 3と二次電池 5のみがある場合にも適用可 能である。
以上、 本発明の好ましい実施形態が説明されたが、 本発明はこれらの特定実施形態に限 定されず、 後続する請求範囲の範疇を超えず、 多様な変更及び修正が行われることが可能 であり、 それも本発明の範疇に属すると言える。

Claims

請求の範囲
【請求項 1】
複数の電力供給源と、
電力を利用して動作する機器と、
前記機器に電力を供給する電力供給源を決め、 前記決められた電力供給源によって前記 機器に供給される電力量を制御する制御装置と、
を備える機器への電力制御システム。
【請求項 2】
前記複数の電力供給源は、 商用電源と、 分散電源と、 前記商用電源または Z及び前記分 散電源によって充電される二次電池とを含み、
前記機器は前記複数の電力供給源が供給する電力を利用して動作し、
前記制御装置は、
前記電力供給源の電力供給量と前記機器側での電力需要量との少なくとも一方に基づい て、 前記機器へ電力を供給する電力供給源を決め、 これに応じて電力供給源を切り替える ことで電力配電制御を行う配電制御手段と、
前記機器の消費電力を低減させる省電力制御を行うように、 前記配電制御手段によって 決められた、 前記機器へ電力を供給する前記電力供給源に応じて、 消費電力を低減させる ように変化させる省電力制御手段と
を備える請求項 1記載の機器への電力制御システム。
【請求項 3】
前記配電制御手段は、 前記機器へ電力を供給する電力供給源が互いに異なる複数モード の配電制御のうち、 いずれかの配電制御モードを行い、
前記省電力制御手段は、 前記配電制御手段の配電制御モードに応じて、 低減させる消費 電力が互いに異なる複数の省電力制御パターンのうち、 いずれかの省電力制御パターンを 行う請求項 2記載の機器への電力制御システム。
【請求項 4】
前記配電制御手段は、 前記商用電源を含む電力供給源を用いるモードと、 前記商用電源 以外の電力供給源を用いるモードとのうち、 いずれかの配電制御モードを行い、
前記省電力制御手段は、 前記配電制御手段が前記商用電源を含む電力供給源を用いるモ -ドで動作している場合、 前記配電制御手段が前記商用電源以外の電力供給源のみを用い るモードで動作している場合に比べて、 低減させる消費電力を大きくする
請求項 3記載の機器への電力制御システム。
【請求項 5】
前記分散電源は太陽電池を含み、
前記配電制御手段は、 前記太陽電池のみを用いるモードと、 前記太陽電池と前記二次電 池を用いるモードと、 前記商用電源を含む電力供給源を用いるモードとのうち、 いずれか の配電制御モードを行い、
前記省電力制御手段は、 前記配電制御手段が前記商用電源を含む電力供給源を用いるモ 一ドで動作している場合、 前記配電制御手段が前記太陽電池と前記二次電池を用いるモー ドで動作している場合に比べて、 低減させる消費電力を大きくし、 前記配電制御手段が前 記太陽電池と前記二次電池を用いるモードで動作している場合、 前記配電制御手段が前記 太陽電池のみを用いるモ一ドで動作している場合に比べて、 低減させる消費電力を大きく する
請求項 4記載の機器への電力制御システム。
【請求項 6】
前記配電制御手段は、 前記太陽電池のみを用いる第 1のモードと、 前記太陽電池と前記 二次電池を用いる第 2のモードと、 前記太陽電池と前記二次電池と前記商用電源を用いる 第 3のモードと、 前記太陽電池と前記商用電源を用いる第 4のモードと、 前記商用電源の みを用いる第 5のモードとのうち、 いずれかの配電制御モ一ドを行い、
前記省電力制御手段は、 前記配電制御手段が前記第 1のモードで動作している場合、 省 電力制御を行わず、 前記配電制御手段が前記第 5のモードで動作している場合、 低減させ る消費電力を最大値とし、 前記配電制御手段が前記第 2のモードまたは第 3のモードまた は第 4のモードで動作している場合、 低減させる消費電力を 0より大きく且つ前記最大値 より小さくする
請求項 5記載の機器への電力制御システム。
【請求項 7】
前記制御装置は、 ユーザが前記省電力制御手段による省電力制御の強度を設定する操作 手段を更に備え、
前記省電力制御手段は、 前記配電制御手段の前記配電制御モードの各々に対応付ける省 電力制御のパターンを前記ユーザが設定した省電力制御の強度に応じて設定する
請求項 3乃至 6のいずれか 1項に記載の機器への電力制御システム。
【請求項 8】
前記商用電源は、 時間帯毎に料金単価が異なリ、
前記省電力制御手段は、 前記配電制御手段が前記商用電源を用いたモードで動作してい る場合、 実行する省電力制御のパターンが現在時刻における前記商用電源の料金単価によ つて異なる
請求項 3乃至 7のいずれか 1項に記載の機器への電力制御システム。
【請求項 9】
前記省電力制御手段は、 前記機器へ電力を供給する電力供給源が切り替わる前に、 省電 力制御によって低減させる消費電力を変化させる請求項 2乃至 8のいずれか一項に記載の 機器への電力制御システム。
PCT/IB2010/002123 2009-09-15 2010-08-30 機器への電力制御システム WO2011033351A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10816757.8A EP2479863B1 (en) 2009-09-15 2010-08-30 System for controlling electric power supply to devices
CN201080040937.1A CN102498631B (zh) 2009-09-15 2010-08-30 对设备的电力控制系统
US13/496,045 US9360903B2 (en) 2009-09-15 2010-08-30 System for controlling electric power supply to devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009213502A JP5330941B2 (ja) 2009-09-15 2009-09-15 機器制御システム
JP2009-213502 2009-09-15

Publications (1)

Publication Number Publication Date
WO2011033351A1 true WO2011033351A1 (ja) 2011-03-24

Family

ID=43758156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002123 WO2011033351A1 (ja) 2009-09-15 2010-08-30 機器への電力制御システム

Country Status (5)

Country Link
US (1) US9360903B2 (ja)
EP (1) EP2479863B1 (ja)
JP (1) JP5330941B2 (ja)
CN (1) CN102498631B (ja)
WO (1) WO2011033351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160065002A1 (en) * 2010-12-14 2016-03-03 Diebold, Incorporated Controlling power provided to an automated banking system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811704B2 (ja) * 2011-09-05 2015-11-11 株式会社リコー 画像形成装置、給電方法、およびプログラム
JP6060392B2 (ja) * 2011-10-27 2017-01-18 パナソニックIpマネジメント株式会社 電気機器および電気機器制御方法
US9680334B2 (en) * 2012-10-31 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Distribution board and battery pack
JP2014233934A (ja) * 2013-06-04 2014-12-15 キヤノン株式会社 電子機器及びその制御方法、並びにプログラム
CN103346834A (zh) * 2013-06-26 2013-10-09 上海无线通信研究中心 可见光携能通信系统及方法
JP6199640B2 (ja) 2013-07-17 2017-09-20 京セラ株式会社 制御装置、制御システム、分電盤及び制御方法
GB2519753A (en) * 2013-10-29 2015-05-06 Bae Systems Plc Controlling power distribution within a microgrid
CN105794071A (zh) * 2013-12-02 2016-07-20 京瓷株式会社 电力控制系统、电力控制装置以及控制电力控制系统的方法
US9865903B1 (en) 2014-02-24 2018-01-09 Unlimited Power, LTD. Portable renewable energy power system
US10910681B2 (en) * 2014-02-24 2021-02-02 Ravensafe, LLC Portable renewable energy power system
JP6390514B2 (ja) * 2015-05-22 2018-09-19 株式会社デンソー 電力制御システム
US11716050B2 (en) 2018-11-07 2023-08-01 Ravensafe, LLC Modular power array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109767U (ja) * 1983-01-10 1984-07-24 株式会社明電舎 保熱炉の運転制御装置
JPH08186935A (ja) * 1994-12-31 1996-07-16 Tokyo Gas Co Ltd 電力供給システム
JP2007020260A (ja) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd 電力供給システムならびに電力供給サービス方法
JP2009178025A (ja) 2007-12-25 2009-08-06 Panasonic Electric Works Co Ltd 直流配電システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109767A (ja) 1982-12-15 1984-06-25 井関農機株式会社 穀粒乾燥機の乾燥制御装置
US4551980A (en) * 1983-03-25 1985-11-12 Ormat Turbines, Ltd. Hybrid system for generating power
TW336271B (en) * 1995-06-13 1998-07-11 Sanyo Electric Co Solar generator and an air conditioner with such a solar generator
JPH10198465A (ja) * 1996-12-26 1998-07-31 Kano Densan Hongkong Yugenkoshi 省電力モード機能搭載装置および省電力モード切換方法
DE19850565B4 (de) 1998-11-03 2013-04-04 Fuhrländer Aktiengesellschaft Elektrischer Selbsversorgungsverbraucher und Lastregelungsverfahren für einen derartigen Verbraucher
JP2003189477A (ja) * 2001-12-14 2003-07-04 Daikin Ind Ltd 電力制御装置
JP2004015883A (ja) 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd 安定化電力供給システムおよびその運用方法、並びに電力安定供給の運用プログラム
RU2005128512A (ru) * 2003-02-13 2006-02-10 Впек, Инк. (Jp) Система электроснабжения
JP2007097310A (ja) 2005-09-29 2007-04-12 Sanyo Electric Co Ltd 系統連係システム
US20080046387A1 (en) * 2006-07-23 2008-02-21 Rajeev Gopal System and method for policy based control of local electrical energy generation and use
US20080052145A1 (en) * 2006-08-10 2008-02-28 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US7830038B2 (en) * 2007-12-17 2010-11-09 Shay-Ping Thomas Wang Single chip solution for solar-based systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109767U (ja) * 1983-01-10 1984-07-24 株式会社明電舎 保熱炉の運転制御装置
JPH08186935A (ja) * 1994-12-31 1996-07-16 Tokyo Gas Co Ltd 電力供給システム
JP2007020260A (ja) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd 電力供給システムならびに電力供給サービス方法
JP2009178025A (ja) 2007-12-25 2009-08-06 Panasonic Electric Works Co Ltd 直流配電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2479863A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160065002A1 (en) * 2010-12-14 2016-03-03 Diebold, Incorporated Controlling power provided to an automated banking system
US9595848B2 (en) * 2010-12-14 2017-03-14 Diebold, Incorporated Controlling power provided to an automated banking system

Also Published As

Publication number Publication date
EP2479863A4 (en) 2014-01-01
CN102498631A (zh) 2012-06-13
US9360903B2 (en) 2016-06-07
US20120205975A1 (en) 2012-08-16
EP2479863A1 (en) 2012-07-25
JP2011065259A (ja) 2011-03-31
JP5330941B2 (ja) 2013-10-30
CN102498631B (zh) 2015-12-16
EP2479863B1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP5330941B2 (ja) 機器制御システム
KR100947038B1 (ko) 최대수요전력 제한 기능을 갖는 하이브리드 유피에스시스템
WO2012144357A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
JP5290349B2 (ja) 直流給電システムおよびその制御方法
TW201006089A (en) DC power system for household appliances
US20140239724A1 (en) Power conditioner and power conditioning method
WO2011033352A1 (en) Power distribution system
WO2011042781A1 (ja) 電力供給システム
WO2011042788A1 (ja) 給電管理装置
EP1872460B1 (en) Uninterruptible power supply with additional feeding
CN110970928A (zh) 一种光伏与市电同时互补供电的储能离网逆变器及控制方法
JP2024051003A (ja) 電力変換システム
JP2002218654A (ja) 太陽光発電システム
CN201177349Y (zh) 空调控制器及空调系统
JP6025443B2 (ja) 電力供給システム
KR20110130210A (ko) 복합형 태양발전 컨트롤러
JP2016158496A (ja) 分散型電源システム
JPH09243136A (ja) ソーラエアコン
KR101215396B1 (ko) 방전전류제어를 이용한 하이브리드 스마트그리드 무정전전원장치
EP4152550A1 (en) Non-current-sharing ups apparatus, shunting method, and ups parallel connection system
JP4423807B2 (ja) 無停電電源装置
JP3242499U (ja) 電力制御装置
CN116231833B (zh) 一种多能耦合无扰动不间断交直流供电系统
CN211790788U (zh) 能源互联网系统
CN219372085U (zh) 一种农村家用太阳能电力系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040937.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 600/KOLNP/2012

Country of ref document: IN

Ref document number: 2010816757

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13496045

Country of ref document: US