WO2011042788A1 - 給電管理装置 - Google Patents

給電管理装置 Download PDF

Info

Publication number
WO2011042788A1
WO2011042788A1 PCT/IB2010/002495 IB2010002495W WO2011042788A1 WO 2011042788 A1 WO2011042788 A1 WO 2011042788A1 IB 2010002495 W IB2010002495 W IB 2010002495W WO 2011042788 A1 WO2011042788 A1 WO 2011042788A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
level
storage battery
amount
power supply
Prior art date
Application number
PCT/IB2010/002495
Other languages
English (en)
French (fr)
Inventor
清隆 竹原
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to CN201080055204.5A priority Critical patent/CN102640385B/zh
Priority to EP10821645.8A priority patent/EP2475069A4/en
Priority to US13/500,120 priority patent/US9620990B2/en
Publication of WO2011042788A1 publication Critical patent/WO2011042788A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention includes a solar battery, a commercial AC power supply, and a storage battery, and charges the storage battery with the power of the solar battery, and supplies at least one of the solar battery, the commercial AC power supply, and the storage battery to the load device. Relates to the device. Background art
  • a power supply management device that combines a solar battery and a storage battery is known.
  • solar cells generate power in the daytime, a part of the power is supplied to electrical equipment, and surplus power is supplied to the storage battery for charging. At night, electric power is supplied to electrical equipment by discharging from the storage battery (for example, Patent Document 1).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 0 4-0 2 3 8 7 9
  • the present invention has been made in view of the above points, and is a power supply management device capable of automatically and optimally controlling the power consumption of a load device based on the power generation amount of a solar cell and the charge level of a storage battery. I will provide a.
  • a solar battery, a commercial AC power source, and a storage battery are provided, the storage battery is charged with power of the solar battery, and at least one power of the solar battery, the commercial AC power source, and the storage battery is supplied.
  • the power supply management device supplied to the load device based on a comparison result of the power generation amount of the solar cell and the power consumption amount and size of the load device, and a charge level indicating a charge ratio with respect to the capacity of the storage battery, A power supply management device is provided in which the power consumption level of the load device is controlled.
  • the surplus power amount that compares the power generation amount of the solar cell that generates power with the power consumption amount of the load device that consumes the power and the storage that is stored based on the power generation of the solar cell.
  • the power consumption level of the load device is controlled based on the charge level of the battery. In other words, because the amount of power consumed by the load device is limited according to the solar energy creation status and stockpiling status, The power consumption can be automatically and optimally controlled.
  • the power of the solar cell is supplied to the load device and the storage battery in preference to the power of the commercial AC power supply, and the power generation amount of the solar cell is larger than the power consumption of the load device, and When the charge level of the storage battery is equal to or lower than the reference charge level, the power consumption of the load device may be limited so as not to exceed a preset power level.
  • the solar cell when the power generation amount of the solar cell is equal to or less than the power consumption amount of the load device, the solar cell is supplied to the load device.
  • the amount of power generated by the solar cell is greater than the amount of power consumed by the load device, it is supplied to the load device and the storage battery.
  • the charge level of the storage battery is equal to or lower than the reference charge level, the power consumption of the load device is limited so as not to exceed a preset power level.
  • the power consumption of the load device can be automatically and optimally reduced. As a result, the use of power from the commercial AC power supply can be suppressed.
  • the power consumption of the load device is not limited. Also good.
  • the power generation amount of the solar cell is larger than the power consumption of the load device and the charge level of the storage battery is larger than the reference charge level, that is, the power consumption of the load device by the power of the solar cell and the storage battery. Limiting the power consumption of the load device is prohibited. Therefore, the performance of the load device can be maintained without using the power of the commercial AC power supply.
  • the power consumption of the load device is the preset power. It may be limited not to exceed a reference power level that is smaller than the level. According to such a configuration, when the power generation amount of the solar battery is equal to or less than the power consumption amount of the load device and the charge level of the storage battery is higher than the reference charge level, that is, the power consumption of the storage battery increases. When predicted, the power consumption of the load equipment is limited so that it does not exceed the reference power level. Therefore, it can suppress that the charge level of a storage battery falls excessively. In addition, since the reference power level smaller than the preset power level is used as the limit level, it is possible to more reliably suppress the decrease in the charge level.
  • the power generation amount of the solar cell is less than or equal to the power consumption amount of the load device and the charge level of the storage battery is less than or equal to a reference charge level, the power consumption of the load device is smaller than the reference power level.
  • the backup power level may not be exceeded.
  • the power generation amount of the solar cell is less than or equal to the power consumption amount of the load device and the charge level of the storage battery is less than or equal to the reference charge level, that is, it is predicted that the power consumption of the storage battery will increase.
  • the power consumption of the load device is limited so that it does not exceed the backup power level. Therefore, it can suppress that the charge level of a storage battery falls excessively. Also, use a backup power level that is lower than the reference power level as the limit level. Therefore, it is possible to more reliably suppress the decrease in the charge level.
  • a level corresponding to a nighttime electric energy consumed by the load device at night may be set.
  • the power consumption of the load device is limited so as not to exceed a preset power level. Therefore, it is possible to prevent the charge level from being excessively lower than the level corresponding to the nighttime electric energy.
  • a normal time zone in which the power rate is a normal rate and a low time zone in which the power rate is lower than the normal rate are set.
  • the reference charging level may be set to a level corresponding to an amount of power obtained by subtracting a low amount of power used in the low time period from a night amount of power consumed by the load device at night.
  • a level corresponding to the amount of power obtained by subtracting the amount of low-power used in the low-cost hours from the amount of power consumed at night by the load device is set as the reference charging level.
  • the reference charge level is lower than when the level corresponding to the amount of power consumed at night by the load device is set as the reference charge level.
  • the frequency at which the charge level of the storage battery becomes smaller than the reference charge level is reduced, and therefore the frequency at which the power consumption of the load device is restricted so as not to exceed a preset power level can be reduced.
  • the restriction level of the power consumption of the load device is the consumption of the load device performed in a time zone other than the low-cost time zone. It may be more relaxed than the power limit level.
  • the restriction on power consumption is relaxed in the low-cost time zone, so that the power consumption of the load device increases in the same time zone as compared to the case where this restriction is not relaxed.
  • the power supply to the load device is provided by the commercial AC power supply and the storage battery, and the frequency of power supply from the commercial AC power supply can be increased. This makes it possible to relax restrictions on the use of load devices at night at a relatively low cost.
  • the electric power feeding management apparatus which can suppress use of the electric power of commercial AC power supply can be provided.
  • FIG. 1 shows a power supply management apparatus according to an embodiment of the present invention.
  • the block diagram which shows the structure of a supply system.
  • FIG. 2 is a schematic diagram showing the structure of the power control apparatus of the power supply management apparatus according to the embodiment.
  • FIG. 3 is a flowchart showing a processing procedure for “power control processing” executed by the power control apparatus of the embodiment.
  • FIG. 4 is a flowchart showing a processing procedure for “power consumption limiting processing” executed by the power control apparatus of the embodiment.
  • FIG. 5 is a timing chart showing an example of a control mode of the power supply management apparatus according to the embodiment.
  • FIG. 6 is a flowchart showing a variation of “power consumption limiting process” executed by the power control apparatus of the embodiment.
  • FIGS. An embodiment of the present invention will be described with reference to FIGS.
  • the case where the power supply management device of the present invention is implemented as a part of the power supply system is illustrated.
  • the house is equipped with a power supply system 1 that supplies power to various devices (lighting equipment, air conditioners, home appliances, audiovisual equipment, etc.) installed in the house.
  • the power supply system 1 supplies various devices with the power of the solar cell 3 that generates power from sunlight, in addition to the power of the commercial AC power supply (AC power supply) 2 for home use.
  • the power supply system 1 supplies power not only to the DC device 5 that operates by inputting DC power (DC power source) but also to the AC device 6 that operates by inputting commercial AC power 2.
  • a house is described as an example of a place where the power supply system 1 is installed, but the present invention is not limited to this, and is not limited to this, such as an integrated house, a condominium, an office, a factory, etc. It can be installed and applied.
  • the power supply system 1 is provided with a control unit and a DC distribution board (built-in DC breaker) 8 as the distribution board of the system 1.
  • the power supply system 1 is provided with a control unit 9 and a release unit 10 as devices for controlling the operation of the DC device 5 in the house.
  • the control unit 7 is connected to an AC distribution board 11 1 for branching AC power via an AC power line 12.
  • the control unit 7 is connected to the commercial AC power supply 2 via the AC distribution board 11 and connected to the solar cell 3 via the DC power line 13.
  • the control unit 7 takes in AC power from the AC distribution board 11 and DC power from the solar cell 3 and converts these powers into predetermined DC power as a device power source. Then, the control unit 7 outputs the converted DC power to the DC distribution board 8 via the DC system power line 14, and outputs it to the storage battery 16 via the DC system power line 15.
  • control The unit 7 not only captures AC power, but also converts the DC power of the solar cell 3 and the storage battery 16 into AC power and supplies it to the AC distribution board 11.
  • the control unit 7 exchanges data with the DC distribution board 8 via the signal line 1 7.
  • the DC distribution board 8 is a type of breaker that supports DC power.
  • the DC distribution board 8 branches the DC power input from the control unit 7, and outputs the branched DC power to the control unit 9 via the DC power line 18 or via the DC power line 19. Output to the relay unit 10.
  • the DC distribution board 8 exchanges data with the control unit 9 via the signal line 20 and exchanges data with the relay unit 10 via the signal line 21.
  • a plurality of DC devices 5 are connected to the control unit 9. These DC devices 5 are connected to a control unit 9 via a DC supply line 22 that carries both DC power and data.
  • the DC supply line 22 is a so-called power line carrier communication that superimposes a communication signal that transmits data with a high-frequency carrier wave on the DC voltage that serves as the power source for the DC device 5. Transport to 5.
  • the control unit 9 acquires the DC power of the DC device 5 via the DC power line 1 8 and the operation control mode of the DC device 5 based on the operation command obtained from the DC distribution board 8 via the signal line 20. To grasp. Then, the control unit 9 outputs a DC voltage and an operation command to the instructed DC device 5 via the DC supply line 22, and controls the operation of the DC device 5.
  • the control unit 9 is connected to a switch 2 3 that is operated when switching the operation of the DC device 5 in the home via the DC supply line 2 2. Further, for example, a sensor 24 that detects a radio wave transmitted from an infrared remote controller is connected to the control unit 9 via a DC supply line 22. Therefore, the DC device 5 is controlled not only by the operation instruction from the DC distribution board 8 but also by the operation of the switch 23 3 and the detection of the sensor 24 4 by the communication signal transmitted through the DC supply line 22.
  • a plurality of DC devices 5 are connected to the relay unit 10 via individual DC power lines 25, respectively.
  • the relay unit 10 obtains the DC power supply of the DC device 5 through the DC system power line 19 and, based on the operation command obtained from the DC distribution board 8 through the signal line 21, either DC device 5 is Know what to do. Then, the relay unit 10 controls the operation of the DC device 5 by turning on and off the power supply to the DC power line 25 with the built-in relay for the instructed DC device 5.
  • the relay unit 10 is connected to a plurality of switches 26 for manually operating the DC device 5, and the power supply to the DC power line 25 can be switched to the relay by the operation of the switch 26.
  • the DC device 5 is controlled by turning it on and off.
  • a wall outlet or a floor outlet is connected to the DC distribution board 8 through a DC power line 2 8. If you plug the DC device 5 plug (not shown) into this DC outlet 27, you can supply DC power directly to the device. Is possible.
  • the AC distribution board 11 is connected to a power meter 29 that can remotely measure the amount of commercial AC power 2 used, for example.
  • the power meter 29 is equipped not only with the function of remote meter reading of commercial AC power consumption, but also with the function of power line carrier communication and wireless communication, for example.
  • the power meter 29 sends the meter reading result to an electric power company or the like via power line carrier communication or wireless communication.
  • the power supply system 1 is provided with a network system 30 that enables various devices in the home to be controlled by network communication.
  • the network system 30 is provided with a home server 31 as a control unit of the system 30.
  • the home server 3 1 is connected to a management server 3 2 outside the home via a network N such as the Internet, and is connected to a home device 3 4 via a signal line 3 3.
  • the in-home server 31 operates using DC power acquired from the DC distribution board 8 via the DC power line 35 as a power source.
  • a control box 36 that manages operation control of various devices in the home through network communication is connected to the home server 31 via a signal line 37.
  • the control box 36 is connected to the control unit and the DC distribution board 8 via the signal line 17 and directly controls the DC device 5 via the DC supply line 38.
  • a gas / water meter 39 that can remotely measure the amount of gas and water used is connected to the control box 36, and an operation panel 40 of the network system 30 is connected to the control box 36.
  • the operation panel 40 is connected to a monitoring device 41 including, for example, a door phone slave, a sensor, and a camera.
  • the home server 3 1 can provide various information acquired from the gas and water meter 39 to the management server 32 via the network N, and operate the monitoring device 41 to detect that an abnormality has been detected. When accepted from panel 40, this is also provided to management server 32 via network N.
  • the power supply management device 100 includes a solar cell 3, a storage battery 16, a control unit, and a power control device 70.
  • the power supply management device 100 limits the power consumption of the DC device 5 according to the amount of power generated by the solar cell 3 and the charge level C L of the storage battery 16.
  • the solar cell 3 periodically measures the photovoltaic power generation amount PWS and outputs the photovoltaic power generation amount PWS to the power control device 70 via the signal line 51.
  • the photovoltaic power generation amount P WS varies depending on the intensity of sunlight, and also varies depending on the load applied to the solar cell 3. For example, if the total amount of DC power used by the DC device 5 connected to the solar cell 3 is less than the amount of power generated by the solar cell 3 even when the solar cell 3 has sufficient power generation capacity, Can also generate electricity according to the total power consumption of DC equipment 5.
  • the storage battery 16 is charged and discharged in response to a request from the power control device 70.
  • the storage battery 16 is managed at two levels: a backup level CLB and a preliminary charge level CLA (reference charge level).
  • the backup level CLB is used in emergency situations such as power outages and fires at night. In order to cover power for a predetermined period when the power supply is stopped.
  • the backup level C LB is set to the charge level CL corresponding to the amount of power used in an emergency.
  • the storage battery 16 is normally controlled so that the charge amount of the storage battery 16 does not fall below the backup level C LB.
  • the reserve charge level C L A is set to a charge level higher than the backup level C L ⁇ , and is set to cover the power consumption of the DC device 5 at night.
  • the preliminary charge level C L A is set to the charge level C L corresponding to the amount of power per liter used by the DC device 5 at night.
  • the storage battery 16 periodically measures the charge level C L and outputs the charge level C L to the power control device 70 via the signal line 52.
  • the control unit is provided with a DC / DC converter that converts the power of the solar cell 3 into low-voltage DC power.
  • the DCZDC converter converts the electric power from the solar cell 3 into a predetermined voltage value.
  • the control unit 7 converts the alternating current from the commercial AC power source 2 into direct current, and also converts the direct current from the solar battery 3 and the storage battery 16 into alternating current in response to a request from the power control device 70. For example, if the DC power consumption (ie, power consumption) of the DC device 5 is greater than the solar power generation PWS from the solar cell 3 and the DC power is insufficient, the control unit 7 It is converted to direct current to cover the insufficient direct current power.
  • the power control device 70 includes an arithmetic device 7 1, a communication unit 72 that communicates information with external devices such as the solar cell 3, the control unit unit, and the storage battery 16, and the amount of photovoltaic power generation stored.
  • the communication unit 72 outputs the photovoltaic power generation amount PWS, the charging level C, and the ACDC power amount output from the solar battery 3, the storage battery 16 and the control unit 7 via the signal lines 51 to 53. Receive information such as DCAC power. Further, the communication unit 72 outputs these pieces of information to the arithmetic device 71. Further, the communication unit 72 transmits an operation command from the arithmetic device 71 to the solar battery 3, the storage battery 16 and the control unit.
  • the computing device 7 1 forms the photovoltaic power generation amount PWS into the power generation amount transition data DTA.
  • Power generation amount trend data DT A is data that summarizes the time when the solar power generation amount PWS is sent and the solar power generation amount PWS at that time.
  • the arithmetic device 71 performs power control processing and power consumption restriction processing.
  • the power control process the power supply source to the DC device 5 is selected according to the photovoltaic power generation amount PWS of the solar battery and the charge level CL of the storage battery.
  • the power consumption restriction process the power consumption of the DC device 5 is restricted according to the amount of power generated by the solar battery and the charge level CL of the storage battery.
  • the photovoltaic power generation storage 73 stores the power generation transition data DT A and the total power generation DT B per day. Store as PV data DT. Photovoltaic data DT is retained for several years.
  • the AC DC power amount storage unit 74 stores the A CD C power amount and the DC AC power amount.
  • the storage battery charge level storage unit 75 stores the charge level CL of the storage battery 16.
  • the DC usage amount storage unit 76 stores the usage amount of DC power.
  • the storage battery reference value storage unit 77 stores a backup level CLB and a preliminary charge level CLA.
  • step S 1 1 the power of the solar cell 3 is preferentially allocated to the power supply to the DC device 5. That is, the DC device 5 receives power supply from the commercial AC power source 2 and the solar cell 3, but the device 5 preferentially consumes the power from the solar cell 3.
  • step S 120 the photovoltaic power generation amount PWS and the DC usage amount PWD of the DC device 5 are compared. If it is determined in step S 1 20 that the photovoltaic power generation amount PWS is larger than the DC usage amount PWD, that is, if the solar power generation amount PWS is surplus, charging the storage battery 16 in step S 1 30 It is determined whether level CL has reached full charge level CLC. If the charge level CL of the storage battery 1 6 does not reach the full charge level CLC, the power of the solar battery 3 is allocated to the power supply to the DC device 5 and the surplus power is stored in the storage battery in step S 1 40. Assigned to 1 6 charging.
  • the solar power generation amount PWS is the sum of the DC usage amount PWD of the DC device 5 and the charging amount PWE of the storage battery 16.
  • the charge level CL of the storage battery 16 has reached the full charge level CLC
  • the power from the solar battery 3 is allocated to the power supply to the DC device 5 in step S 150, and the surplus The power is discarded.
  • the photovoltaic power generation amount PWS is equal to the DC usage amount PWD of the DC device 5.
  • step S 120 If it is determined in step S 120 that the photovoltaic power generation amount PWS is equal to or less than the DC usage amount PWD, it is determined in step S 1 60 whether the charge level CL of the storage battery 16 is greater than the backup level C LB. Is determined.
  • step S 1 70 the amount of power corresponding to the insufficient power of the DC usage amount PWD is discharged from the storage battery 16. At this time, the sum of the photovoltaic power generation amount PWS and the discharge amount PWF from the storage battery 16 becomes equal to the DC usage amount PWD of the DC device 5.
  • step S 1 80 when it is determined that the charge level CL of the storage battery 16 is less than or equal to the backup level CLB, in step S 1 80, the AC amount corresponding to the shortage of the DC usage PWD is converted to DC. Supply power to DC equipment 5. At this time, the sum of the solar power generation amount PWS and the AC DC power amount converted from AC to DC is equal to the DC usage amount PWD of the DC device 5.
  • the “power consumption limiting process” executed by the power control device 70 The processing procedure will be described. This process is repeatedly executed by the power control device 70 every predetermined calculation cycle.
  • step S 2 10 the solar power generation amount PWS by the solar cell 3 is compared with the direct current usage amount PWD of the DC device 5. If it is determined in step S 2 1 0 that the amount of photovoltaic power generation PWS is greater than the DC usage amount PWD, in step S 220, whether or not the charge level C of storage battery 16 is greater than the preliminary charge level CLA Is determined.
  • step S220 power limitation of the power consumption of the DC device 5 is not performed in step S230.
  • the storage battery 16 stores sufficient power to cover the nighttime power consumption, so there is no power limitation.
  • the power consumption of the DC device 5 is limited so as not to exceed the first power level in step S240.
  • the first power level power corresponding to 10% of the total power consumption of all DC devices 5 at the time of determination in step S220 is limited.
  • the power consumption corresponding to 10% of the total power consumption will decrease. Specify one or more in advance. Then, when the power consumption limiting process is executed, the power supply to the DC device 5 specified by the operation command from the power control device 70 to the relay unit 10 or the control unit 9 is cut off.
  • step S 250 When it is determined in step S 2 1 0 that the photovoltaic power generation amount PWS is equal to or less than the DC usage amount PWD, it is determined in step S 250 whether or not the charge level CL of the storage battery 1.6 is greater than the preliminary charge level CLA.
  • the power consumption of the DC device 5 is limited so as not to exceed the second power level in step S260.
  • the second power level is set so that the power limit is greater than the first power level. Since the amount of direct current used PWD cannot be covered by the power of the solar cell 3, it is estimated that the charging level C L will become the pre-charging level C L A or less after a while. For this reason, the power consumption of the DC device 5 is limited at the second power level, which is more limited than the first power level, to mitigate the reduction in the charge level CL. At the second power level, for example, power corresponding to 20% of the total power consumption of the DC device 5 at the time of determination in step S250 is limited.
  • the power consumption of the DC device 5 is larger than the second power level in step S270. It is limited not to exceed. In other words, the DC usage amount PWD cannot be covered by the power from the solar cell 3 and the charge level CL is lower than the precharge level CLA. Therefore, after a while, the charge level CL is lower than the backup level CLB. It is estimated that For this reason, the power consumption of the DC device 5 is further limited at the third power level where the power limit is larger than the second power level. At the third power level, for example, The power corresponding to 3 Oo / o of the total power consumption of the DC device 5 at the time of determination in step S250 is limited.
  • the power consumption of the DC device 5 is Limited to power level.
  • the power generation by the solar cell 3 is not performed, but the standby power of the DC device 5 is used, so the DC usage amount PWD is larger than the solar power generation amount PWS.
  • the charge level C L of the storage battery 16 is the backup level C L B.
  • Commercial AC power is used to maintain the charge level CL of the storage battery 16 at the backup level CLB.
  • the power consumption of the DC device 5 is limited to the third power level. In the middle of the night, there are few DC devices 5 to be used, so the drive of the DC device 5 is practically not limited.
  • the solar power generation PWS increases with the rising sun.
  • the photovoltaic power generation amount PWS remains below the DC usage amount PWD of the DC device 5 for a while after the start of power generation of the solar cell 3.
  • the solar power generation amount PWS Therefore, charging to the storage battery 16 is started. At this time, the power consumption of the DC device 5 is limited to the first power level.
  • the solar power generation amount PWS matches the total power consumption of the DC device 5.
  • the total power consumption of the DC device 5 connected to the solar cell 3 is less than the solar power generation amount PWS that can be generated, the actual solar power generation amount PWS is a value that corresponds to the load of the DC device 5. ing.
  • the electric power obtained by subtracting the actual solar power generation amount PWS from the solar power generation amount PWS that can be generated is eventually discharged.
  • the solar power generation PWS gradually decreases as the sun goes down. While the photovoltaic power generation amount PWS is greater than the DC usage amount PWD, the power used by the DC device 5 is covered by the power of the solar cell 3, so the storage battery 16 is not discharged. Therefore, during this time, the charge level C L of the storage battery 16 is maintained at the full charge level C L C.
  • the supply power to the DC device 5 is insufficient, so discharge starts from the storage battery 16 Is done.
  • the power consumption of the DC device 5 is limited to the second power level. Since the discharge from the storage battery 16 is suppressed as compared with the case without this limitation, the decrease in the charge level CL of the storage battery 16 is suppressed.
  • the photovoltaic power generation amount PWS decreases and the charge level C L of the storage battery 16 decreases. And at night, since the solar cell 3 does not generate electricity, the discharge of the storage battery 16 further proceeds.
  • the power consumption of the DC device 5 Is limited to the third power level.
  • the power generated by the solar cell 3 is smaller than the DC usage amount PWD of the DC device 5 and the charge level CL of the storage battery 16 is equal to or lower than the precharge level CLA.
  • the limit on power consumption of 5 is raised from the second power level to the third power level.
  • the amount of power generated by the solar cell 3 that generates power and the amount of power consumed by the DC device 5 that consumes power are compared.
  • the power consumption level of the DC device 5 is controlled based on the charge level CL of the storage battery 16 to be used.
  • the amount of power consumption of the DC device 5 is limited according to the solar energy creation status and stockpiling status, so that the power consumption amount can be automatically and optimally controlled.
  • the power generation amount of the solar cell 3 when the power generation amount of the solar cell 3 is equal to or less than the DC usage amount PWD of the DC device 5, it is supplied to the DC device 5.
  • the power generation amount of the solar cell 3 is larger than the DC usage amount PWD of the DC device 5, it is supplied to the DC device 5 and the storage battery 16.
  • the amount of power generated by solar cell 3 is greater than the amount of DC used by DC device 5 and PWD, the storage battery 1 6
  • the charge level CL is below the precharge level C LA
  • the power consumption of DC device 5 should not exceed the first power level. Limited to Thereby, the power consumption of the DC device 5 can be automatically and optimally reduced. As a result, the use of electric power from the commercial AC power source 2 can be suppressed.
  • the power generation amount of the solar cell 3 when the power generation amount of the solar cell 3 is larger than the DC usage amount PWD of the DC device 5 and the charge level CL of the storage battery 16 is larger than the preliminary charge level CLA, the DC device 5 The power consumption is not limited
  • the DC device 5 when the power generation amount of the solar cell 3 is equal to or less than the DC usage amount PWD of the DC device 5 and the charge level CL of the storage battery 16 is greater than the precharge level CLA, the DC device 5 The power consumption is limited so that it does not exceed the second power level, which is lower than the first power level.
  • the power generation amount of the solar cell 3 is equal to or less than the DC usage amount PWD of the DC device 5 and the charge level CL of the storage battery 16 is higher than the precharge level CLA, that is, the power of the storage battery 16
  • the power consumption of DC equipment 5 is limited so that it does not exceed the second power level. Accordingly, it is possible to suppress the charge level CL of the storage battery 16 from being excessively lowered.
  • the second power level that is lower than the first power level is used as the limit level, it is possible to more reliably suppress the decrease in the charge level CL.
  • the power consumption of the DC device 5 is It is limited not to exceed a third power level that is less than the second power level.
  • the power generation amount of the solar battery 3 is equal to or less than the DC usage amount PWD of the DC device 5 and the charge level CL of the storage battery 16 is equal to or less than the precharge level CLA, that is, the power consumption of the storage battery 16
  • the power consumption of the DC device 5 is limited so as not to exceed the third power level. Accordingly, it is possible to suppress the charge level CL of the storage battery 16 from being excessively lowered.
  • the third power level smaller than the second power level is used as the limit level, it is possible to more reliably suppress the decrease in the charge level CL.
  • the power corresponding to 3006 of the total power consumption of the DC device 5 is restricted as the third power level, but instead of this restriction, the use of the DC device 5 may be stopped. Good.
  • the precharge level C a level corresponding to the nighttime electric energy consumed by the DC device 5 at night is set.
  • the power generation amount of the solar battery 3 is larger than the DC usage amount PWD of the DC device 5 and the charge level CL of the storage battery 16 is below the level corresponding to the nighttime energy consumed by the DC device 5 at night. Since the power consumption of the DC device 5 is limited so as not to exceed the first power level, the charge level CL corresponds to the nighttime energy. It can be suppressed from becoming excessively lower than the level.
  • the embodiment of the power supply management device of the present invention is not limited to the contents exemplified in the above embodiment, and can be implemented with the following modifications, for example. Further, the following modifications are not applied only to the above-described embodiment, and different modifications can be combined with each other.
  • the limitation is performed based on the ratio to the total power consumption of the DC device 5, but instead of such limitation, the DC device 5
  • the total power consumption may be limited quantitatively. For example, the total DC usage of DC equipment 5 is reduced from its maximum DC usage by 20 OW at the 1st power level, 4 0 0 W at the 2nd power level, and 6 0 OW at the 3rd power level. Therefore, the power consumption may be limited.
  • the preliminary charge level is set as the charge level CL corresponding to the amount of power used per night at night.
  • the setting is changed for each season. May be. For example, in the spring and autumn, the precharge level C L A is set lower than in the summer and winter. This setting value can be changed via an interface such as a touch panel.
  • the precharge level C L A may be set taking into consideration the maximum capacity of the storage battery 16 instead of using only the amount of power per night used at night. For example, if the capacity of the storage battery 16 is sufficiently larger than the nighttime usage of the DC device 5, the preliminary charge level CLA is set to a level higher than the amount of electricity used at night. Determined. According to such a setting, it is possible to suppress the frequency of receiving power supply from the commercial AC power source 2 at night when power is insufficient.
  • the pre-charge level C L A may be set at a level lower than the amount of electricity used at night- According to such a setting, even when the capacity of the storage battery 16 is small, the power consumption of the DC device 5 can be limited as appropriate.
  • Preliminary charge level C L A is used at night – not only based on the amount of electricity per liter, but may be set as follows if it is a low-cost time zone.
  • the preliminary charge level C L A is set to a level equivalent to the amount of power obtained by subtracting the amount of power used in the low-cost time zone from the amount of power consumed at night by the DC device 5.
  • the charge level CL of the storage battery 16 is based on a level corresponding to the amount of power obtained by subtracting the amount of power used in the low-cost hours from the amount of power consumed by the DC device 5 at night.
  • the power consumption of the DC device 5 is limited. Therefore, by effectively utilizing the power in the low-cost time zone, the power allocated to charging the storage battery 16 among the amount of power generated by the solar battery 3 can be reduced. Increase supply be able to.
  • FIG. 6 shows a modification of the portion surrounded by the two-dot chain line in FIG. 4, and the same reference numerals are given to the same processing.
  • the following processing is executed. That is, when the charge level CL of the storage battery 16 is equal to or lower than the precharge level CLA at step S 2 5 0, whether or not the processing time is a low time zone at step S 2 5 1. Determined.
  • the processing time is not the low power charge time zone, that is, the normal charge time zone, the power consumption of the DC device 5 is limited to the third power level in step S 2 61. In other words, since the electricity charge is a normal charge, the power consumption of the DC device 5 is limited at a relatively high level.
  • the processing time is the low time zone of the power charge, in step S 26 2, the power restriction amount of the DC device 5 is larger than the second power level and the third power level. It is limited to a smaller value.
  • the photovoltaic power generation amount PWS by the solar cell 3 is larger than the DC usage amount PWD of the DC device 5 and the storage battery 16 is at the full charge level CLC.
  • the surplus power of the solar cell 3 can be discarded.
  • the surplus power may be converted from direct current to alternating current by the control unit 7 and supplied to the AC device 6.
  • the control unit 7 is regarded as a kind of DC equipment 5. At this time, the amount of power conversion from direct current to AC by the control unit 7 is handled as the DC usage amount PWD.
  • the power control process restricts the power consumption of a specific DC device 5, but instead of such a restriction, the amount of power consumption is uniformly restricted for all DC devices 5. You may do it.
  • the priority of use for each DC device 5 instead of setting a specific DC device 5, set the priority of use for each DC device 5 and change its power consumption from the lowest priority order. You may make it add a restriction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Photovoltaic Devices (AREA)

Abstract

給電管理装置は、太陽電池と商用交流電源と蓄電池とを備え、太陽電池の電力により蓄電池を充電し、太陽電池と商用交流電源と蓄電池とのうち少なくとも1つの電力を負荷装置に供給する給電管理装置として、太陽電池の発電量と負荷装置の消費電力量と大きさの比較結果及び蓄電池の容量に対する充電割合を示す充電レベルの大きさに基づいて、負荷装置の消費電カレベルを制御する。

Description

明細書 給電管理装置 技術分野
本発明は、 太陽電池と商用交流電源と蓄電池とを備え、 太陽電池の電力により蓄電池を 充電し、 太陽電池と商用交流電源と蓄電池とのうち少なくとも 1つの電力を負荷装置に供 給する給電管理装置に関する。 背景技術
太陽電池と蓄電池とを組み合わせた給電管理装置が知られている。
給電管理装置では、 昼間に太陽電池により発電を行い、 その電力の一部を電気機器に供 給し、 余剰電力を蓄電池に供給して充電する。 夜間には、 蓄電池から放電して電気機器に 電力を供給している (例えば、 特許文献 1 )。
【特許文献 1】 日本特開 2 0 0 4— 0 2 3 8 7 9号公報
ところで、 太陽エネルギを有効利用して、 負荷装置の消費電力量が自動的且つ最適に省 エネすることが望まれている。 一方、 従来の給電管理装置によれば、 家庭内の負荷装置の 消費電力量が太陽光発電量を上回る場合には、 電力の不足分を商用交流電源により賄うよ うにしている。 このため、 上記の要望を満たすという点においては改善の余地が残されて いる。 発明の概要
本発明は上記点に鑑みてなされたものであり、 太陽電池の発電量及び蓄電池の充電レべ ルに基づいて、 負荷装置の消費電力量を自動的且つ最適に制御することのできる給電管理 装置を提供する。
本発明によれば、 太陽電池と商用交流電源と蓄電池とを備え、 前記太陽電池の電力によ リ前記蓄電池を充電し、 前記太陽電池と前記商用交流電源と前記蓄電池との少なくとも 1 つの電力を負荷装置に供給する給電管理装置において、 前記太陽電池の発電量と前記負荷 装置の消費電力量と大きさの比較結果及び前記蓄電池の容量に対する充電割合を示す充電 レベルの大きさに基づいて、 前記負荷装置の消費電力レベルが制御される給電管理装置が 提供される。
このような構成によれば、 電力を創出する太陽電池の発電量と電力を消費する負荷装置 の消費電力量とを比較結果すなわ余剰電力量と、 太陽電池の発電に基づいて蓄電される蓄 電池の充電レベルとに基づいて、負荷装置の消費電力レベルが制御されている。すなわち、 太陽エネルギの創出状況及び備蓄状況に応じて負荷装置の消費電力量が制限されるため、 消費電力量を自動的且つ最適に制御することができる。
また、 前記太陽電池の電力が前記商用交流電源の電力よリも優先して前記負荷装置及び 前記蓄電池に供給され、 前記太陽電池の発電量が前記負荷装置の消費電力量よリも大きく、 且つ前記蓄電池の充電レベルが基準充電レベル以下のときには、 前記負荷装置の消費電力 が予め設定された電力レベルを超えないように制限されてもよい。
このような構成によれば、 太陽電池の発電量が負荷装置の消費電力量以下のときには、 負荷装置に供給される。 太陽電池の発電量が負荷装置の消費電力量よリも大きいときには、 負荷装置及び蓄電池に供給される。 蓄電池の充電レベルが基準充電レベル以下のときには、 負荷装置の消費電力が予め設定された電力レベルを超えないように制限される。 これによ リ、 負荷装置の消費電力量を自動的且つ最適に低減することができる。 この結果、 商用交 流電源の電力の使用を抑制することができる。
また、 前記太陽電池の発電量が前記負荷装置の消費電力量よりも大きく、 且つ前記蓄電 池の充電レベルが前記基準充電レベルよりも大きいときには、 前記負荷装置の消費電力の 制限が行われなくてもよい。
このような構成によれば、 太陽電池の発電量が負荷装置の消費電力よりも大きく、 且つ 蓄電池の充電レベルが基準充電レベルよりも大きいとき、 すなわち太陽電池及び蓄電池の 電力により負荷装置の消費電力を賄うことができるとき、 負荷装置の消費電力の制限が禁 止される。 従って、 商用交流電源の電力を使用しなくとも負荷装置の性能を維持すること ができる。
また、 前記太陽電池の発電量が前記負荷装置の消費電力量以下で、 且つ前記蓄電池の充 電レベルが前記基準充電レベルよりも大きいときには、 前記負荷装置の消費電力が前記予 め設定された電力レベルよリも小さい基準電力レベルを超えないように制限されてもよし、。 このような構成によれば、 太陽電池の発電量が負荷装置の消費電力量以下で、 且つ蓄電 池の充電レベルが基準充電レベルよりも大きいとき、 すなわち蓄電池の電力の消費量が多 くなる旨予測されるとき、 負荷装置の消費電力が基準電力レベルを超えないように制限さ れる。従って、蓄電池の充電レベルが過度に低下することを抑制することができる。また、 制限のレベルとして予め設定された電力レベルよリも小さい基準電力レベルを用いている ため、 充電レベルの低下の抑制をより確実なものとすることができる。
また、 前記太陽電池の発電量が前記負荷装置の消費電力量以下で、 且つ前記蓄電池の充 電レベルが基準充電レベル以下のときには、 前記負荷装置の消費電力が前記基準電カレべ ルよりも小さいバックアップ電力レベルを超えないように制限されてもよい。
このような構成によれば、 太陽電池の発電量が負荷装置の消費電力量以下で、 且つ蓄電 池の充電レベルが基準充電レベル以下のとき、 すなわち蓄電池の電力の消費量がより多く なる旨予測されるとき、 負荷装置の消費電力がバックアップ電力レベルを超えないように 制限される。従って、蓄電池の充電レベルが過度に低下することを抑制することができる。 また、 制限のレベルとして基準電力レベルよりも小さいバックアップ電力レベルを用いて いるため、 充電レベルの低下の抑制をより確実なものとすることができる。
また、 前記基準充電レベルとして、 前記負荷装置により夜間に消費される夜間電力量に 相当するレベルが設定されてもよい。
このような構成によれば、 蓄電池の充電レベルが負荷装置により夜間に消費される夜間 電力量に相当するレベル以下のとき、 負荷装置の消費電力が予め設定された電力レベルを 超えないように制限されるため、 充電レベルが夜間電力量に相当するレベルよリも過度に 低いものとなることを抑制することができる。
また、 前記商用交流電源の電力料金を定める時間帯として、 前記電力料金が通常料金と なる通常時間帯と、 前記電力料金が前記通常料金よリも低額となる低額時間帯とが設定さ れているとき、 前記基準充電レベルとして、 前記負荷装置により夜間に消費される夜間電 力量から前記低額時間帯に使用される低額電力量が差し引かれた電力量に相当するレベル が設定されてもよい。
このような構成によれば、 負荷装置により夜間に消費される夜間電力量から低額時間帯 に使用される低額電力量が差し引かれた電力量に相当するレベルが基準充電レベルとして 設定されていることにより、 負荷装置により夜間に消費される夜間電力量に相当するレべ ルが基準充電レベルとして設定される場合と比較して、 基準充電レベルは低くなる。 これ により、 蓄電池の充電レベルが基準充電レベルよりも小さくなる頻度が低くなるため、 負 荷装置の消費電力が予め設定された電力レベルを超えないように制限される頻度を低減す ることができる。
また、 前記負荷装置の消費電力を制御する時刻が前記低額時間帯にあるときには、 前記 負荷装置の消費電力の制限レベルは、 同低額時間帯以外の時間帯にて行われる前記負荷装 置の消費電力の制限レベルよりも緩和されてもよい。
このような構成によれば、 低額時間帯において消費電力の制限が緩和されることにより、 同時間帯においてはこの制限緩和がない場合に比較して、 負荷装置の消費電力量が増大す る。 この場合、 その負荷装置への電力供給は商用交流電源と蓄電池から賄われることにな リ、 商用交流電源からの電力供給頻度を増やすことができる。 これにより、 比較的低コス トで、 夜間時における負荷装置の使用制限を緩和することができる。 発明の効果
本発明によれば、 商用交流電源の電力の使用を抑制することのできる給電管理装置を提 供することができる。
図面の簡単な説明
本発明の目的及び特徴は以下のような添付図面とともに与えられた後述する好ましい実 施形態の説明から明白になる。
【図 1】 本発明の給電管理装置を具体化した一実施形態について、 同装置を含む電力供 給システムの構成を示すブロック図。
【図 2】 同実施形態の給電管理装置の電力制御装置について、 その構造を示す模式図。
【図 3】 同実施形態の電力制御装置により実行される 「電力制御処理」 について、 その 処理手順を示すフローチヤ一ト。
【図 4】 同実施形態の電力制御装置により実行される 「消費電力制限処理」 について、 その処理手順を示すフローチヤ一ト。
【図 5】 同実施形態の給電管理装置について、 その制御態様の一例を示すタイミングチ ャ一ト。
【図 6】 同実施形態の電力制御装置により実行される 「消費電力制限処理」 について、 その変形例を示すフローチヤ一ト。 発明を実施するため最良の形態
以下、 本発明の実施形態が本明細書の一部をなす添付図面を参照にしてより詳細に説明 する。 図面全体において、 同一または類似した部分には同じ部材符号を付してそれについ ての重複する説明を省略する。
図 1〜図 6を参照して、本発明の一実施形態について説明する。なお、本実施形態では、 本発明の給電管理装置を電力供給システムの一部として実施した場合を例示している。 図 1に示すように、住宅には、 宅内に設置された各種機器 (照明機器、 エアコン、 家電、 オーディオビジュアル機器等) に電力を供給する電力供給システム 1が設けられている。 電力供給システム 1は、 家庭用の商用交流電源 (A C電源) 2の電力の他に、 太陽光によ リ発電する太陽電池 3の電力も各種機器に供給する。電力供給システム 1は、直流電源(D C電源) を入力して動作する D C機器 5の他に、 商用交流電源 2を入力して動作する A C 機器 6にも電力を供給する。 以下、 実施形態の説明において、 電力供給システム 1が設置 される場所として住宅を例にあげて説明しているが、 これに限定されるものではなく、 集 合住宅やマンション、 事務室、 工場などに設置して適用することができる。
電力供給システム 1には、 同システム 1の分電盤としてコントロールュニットフ及び D C分電盤 (直流ブレーカ内蔵) 8が設けられている。 また、 電力供給システム 1には、 住 宅の D C機器 5の動作を制御する機器として制御ュニット 9及びリレ一ュニット 1 0が設 けられている。
コントロールユニット 7には、 交流電力を分岐させる A C分電盤 1 1が交流系電力線 1 2を介して接続されている。 コントロールユニット 7は、 A C分電盤 1 1を介して商用交 流電源 2に接続されるとともに、 直流系電力線 1 3を介して太陽電池 3に接続されている。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を取り込むとともに太陽電池 3 から直流電力を取り込み、 これら電力を機器電源として所定の直流電力に変換する。 そし て、 コントロールユニット 7は、 この変換後の直流電力を、 直流系電力線 1 4を介して D C分電盤 8に出力し、 また直流系電力線 1 5を介して蓄電池 1 6に出力する。 コントロー ルユニット 7は、 交流電力を取り込むのみならず、 太陽電池 3や蓄電池 1 6の直流電力を 交流電力に変換して A C分電盤 1 1に供給する。 コントロールユニット 7は、 信号線 1 7 を介して D C分電盤 8とデータやり取りを実行する。
D C分電盤 8は、 直流電力対応の一種のブレーカである。 D C分電盤 8は、 コントロー ルユニット 7から入力した直流電力を分岐させ、 その分岐後の直流電力を、 直流系電力線 1 8を介して制御ュニット 9に出力したり、 直流系電力線 1 9を介してリレ一ュニット 1 0に出力したりする。 また、 D C分電盤 8は、 信号線 2 0を介して制御ユニット 9とデ一 タのやり取りをしたり、 信号線 2 1を介してリレ一ュニット 1 0とデータのやり取りをし たりする。
制御ユニット 9には、 複数の D C機器 5が接続されている。 これら D C機器 5は、 直流 電力及びデータの両方を搬送する直流供給線路 2 2を介して制御ュニット 9と接続されて いる。 直流供給線路 2 2は、 D C機器 5の電源となる直流電圧に、 高周波の搬送波により データを電送する通信信号を重畳する、 いわゆる電力線搬送通信により、 一対の線で電力 及びデータの両方を D C機器 5に搬送する。 制御ユニット 9は、 直流系電力線 1 8を介し て D C機器 5の直流電力を取得し、 D C分電盤 8から信号線 2 0を介して得る動作指令に 基づいて D C機器 5の動作制御態様について把握する。 そして、 制御ユニット 9は、 指示 された D C機器 5に直流供給線路 2 2を介して直流電圧及び動作指令を出力し、 D C機器 5の動作を制御する。
制御ュニット 9には、 宅内の D C機器 5の動作を切り換える際に操作するスィッチ 2 3 が直流供給線路 2 2を介して接続されている。 また、 制御ユニット 9には、 例えば赤外線 リモートコントローラからの発信電波を検出するセンサ 2 4が直流供給線路 2 2を介して 接続されている。 よって、 D C分電盤 8からの動作指示のみならず、 スィッチ 2 3の操作 やセンサ 2 4の検知によっても、 直流供給線路 2 2を通じて送信される通信信号により、 D C機器 5が制御される。
リレ一ュニット 1 0には、 複数の D C機器 5がそれぞれ個別の直流系電力線 2 5を介し て接続されている。 リレーユニット 1 0は、 直流系電力線 1 9を介して D C機器 5の直流 電源を取得し、 D C分電盤 8から信号線 2 1を介して得る動作指令に基づいて、 いずれの D C機器 5を動作させるのかについて把握する。 そして、 リレ一ユニット 1 0は、 指示さ れた D C機器 5に対し、 内蔵のリレ一にて直流系電力線 2 5への電源供給をオンオフする ことにより、 D C機器 5の動作を制御する。 また、 リレーユニット 1 0には、 D C機器 5 を手動操作するための複数のスィッチ 2 6が接続されており、 スィッチ 2 6の操作によつ て直流系電力線 2 5への電源供給をリレーにてオンオフすることにより、 D C機器 5が制 御される。
D C分電盤 8には、 例えば壁コンセントゃ床コンセントの態様で住宅に建て付けられた 直流コンセント 2 7が直流系電力線 2 8を介して接続されている。 この直流コンセント 2 7に D C機器 5のプラグ (図示略) を差し込めば、 同機器に直流電力を直接供給すること が可能である。
また、 A C分電盤 1 1には、 例えば商用交流電源 2の使用量を遠隔検針可能な電力メー タ 2 9が接続されている。 電力メータ 2 9には、 商用交流電源使用量の遠隔検針の機能の みならず、例えば電力線搬送通信や無線通信の機能が搭載されている。電力メータ 2 9は、 電力線搬送通信や無線通信等を介して検針結果を電力会社等に送信する。
電力供給システム 1には、 宅内の各種機器をネットヮ一ク通信によって制御可能とする ネットワークシステム 3 0が設けられている。 ネットワークシステム 3 0には、 同システ ム 3 0のコント口一ルュニッ卜として宅内サーバ 3 1が設けられている。 宅内サーバ 3 1 は、 インタ一ネットなどのネットワーク Nを介して宅外の管理サ一バ 3 2と接続されると ともに、 信号線 3 3を介して宅内機器 3 4に接続されている。 また、 宅内サーバ 3 1は、 D C分電盤 8から直流系電力線 3 5を介して取得する直流電力を電源として動作する。 宅内サーバ 3 1には、 ネットワーク通信による宅内の各種機器の動作制御を管理するコ ントロールボックス 3 6が信号線 3 7を介して接続されている。 コントロールボックス 3 6は、 信号線 1 7を介してコントロールュニットフ及び D C分電盤 8に接続されるととも に、 直流供給線路 3 8を介して D C機器 5を直接制御する。 コントロールボックス 3 6に は、 例えば使用したガス量や水道量を遠隔検針可能なガス/水道メータ 3 9が接続される とともに、 ネットワークシステム 3 0の操作パネル 4 0が接続されている。 操作パネル 4 0には、 例えばドアホン子器やセンサやカメラからなる監視機器 4 1が接続されている。 宅内サ一バ 3 1は、 ネットヮ一ク Nを介して宅内の各種機器の動作指令を入力すると、 コントロールボックス 3 6に指示を通知して、 各種機器が動作指令に準じた動作をとるよ うにコントロールボックス 3 6を動作させる。 また、 宅内サーバ 3 1は、 ガス 水道メ一 タ 3 9から取得した各種情報を、 ネットワーク Nを通じて管理サーバ 3 2に提供可能であ るとともに、 監視機器 4 1で異常検出があったことを操作パネル 4 0から受け付けると、 その旨もネットワーク Nを通じて管理サーバ 3 2に提供する。
給電管理装置 1 0 0は、 太陽電池 3と、 蓄電池 1 6と、 コントロールュニットフと、 電 力制御装置 7 0とにより構成されている。 給電管理装置 1 0 0は、 太陽電池 3の発電量及 び蓄電池 1 6の充電レベル C Lに応じて、 D C機器 5の消費電力を制限する。
太陽電池 3は、 太陽光発電量 P W Sを周期的に計測し、 信号線 5 1を介して太陽光発電 量 P W Sを電力制御装置 7 0に出力する。 なお、 太陽光発電量 P W Sは、 太陽光の強さに より変動するとともに、 太陽電池 3に加わる負荷によっても変動する。 例えば、 太陽電池 3に発電余力が十分にあるときでも、 太陽電池 3に接続されている D C機器 5の直流電力 総使用量がその太陽電池 3の発電量よリも小さいときは、 太陽電池 3は D C機器 5の総消 費電力量に応じた分だけ発電を行うこともできる。
蓄電池 1 6は、電力制御装置 7 0からの要求に応じて充電及び放電する。蓄電池 1 6は、 バックアップレベル C L Bと、 予備充電レベル C L A (基準充電レベル) との 2つのレべ ルにより管理される。 バックアップレベル C L Bは、 夜間時の停電や火災等の非常時にお いて電力供給が停止されたときに所定期間電力を賄うために設定される。 例えば、 バック アップレベル C LBは、 非常時において使用される電力量に相当する充電レベル C Lに設 定される。 蓄電池 1 6は、 通常、 蓄電池 1 6の充電量がバックアップレベル C LB以下と ならないように、 制御されている。
予備充電レベル C L Aは、 バックアップレベル C L巳よりも高い充電レベルに設定され るものであり、 夜間時の DC機器 5の消費電力を賄うために設定される。 例えば、 予備充 電レベル C L Aは、 DC機器 5により夜間に使用される一晚あたりの電力量に相当する充 電レベル C Lに設定される。 蓄電池 1 6は、 周期的に充電レベル C Lを計測し、 信号線 5 2を介してこの充電レベル C Lを電力制御装置 70に出力する。
コントロールュニットフには、 太陽電池 3の電力を低電圧の直流電力に変換する DC/ DCコンバータが設けられている。 DCZDCコンバータにより、 太陽電池 3による電力 が所定の電圧値に変換される。 コントロールユニット 7は、 電力制御装置 70からの要求 に応じて、 商用交流電源 2からの交流を直流に変換し、 また太陽電池 3や蓄電池 1 6から の直流を交流に変換する。 例えば、 DC機器 5の直流使用量 (すなわち消費電力量) が、 太陽電池 3からの太陽光発電量 P W Sよりも大きくなリ、 直流電力が不足しているときは、 コントロールュニット 7により交流が直流に変換されて、 不足している直流電力が賄われ る。 一方、 DC機器 5の直流使用量 PWDが太陽電池 3からの太陽光発電量 PWSよりも 小さく、 太陽電池 3の電力が余っているときは、 直流が交流に変換される。 コントロール ユニット 7は、 交流から直流に変換した ACDC電力量、 及び直流から交流に変換した D CAC電力量を計測し、 信号線 53を介してこれら電力量を電力制御装置 70に出力する。 図 2に示すように、 電力制御装置 70は、 演算装置 7 1と、 太陽電池 3及びコント口一 ルュニットフ及び蓄電池 1 6等の外部装置と情報通信をする通信部 72と、 太陽光発電量 格納部 73と、 AC DC電力量格納部 74と、 蓄電池充電レベル格納部 75と、 直流使用 量格納部 76と、 蓄電池基準値格納部 77と、 により構成されている。
通信部 72は、 信号線 5 1〜53を介して、 太陽電池 3と、 蓄電池 1 6と、 コント口一 ルユニット 7から出力される、 太陽光発電量 PWS、 充電レベル Cし、 ACDC電力量、 DCAC電力量等の情報を受信する。 また同通信部 72は、 これら情報を演算装置 7 1へ 出力する。 さらに通信部 72は、 演算装置 7 1からの動作指令を太陽電池 3、 蓄電池 1 6 及びコントロールュニットフに送信する。
演算装置 7 1は、 太陽光発電量 PWSを発電量推移データ DT Aに形成する。 発電量推 移データ DT Aは、 太陽光発電量 PWSが送られてくる時刻とその時刻における太陽光発 電量 PWSとを纏めたデータである。 また、 演算装置 7 1は、 電力制御処理及び消費電力 制限処理を行う。 電力制御処理では、 太陽電池の太陽光発電量 PWS及び蓄電池の充電レ ベル C Lに応じて、 DC機器 5への電力供給源を選択する。 消費電力制限処理では、 太陽 電池の発電量及び蓄電池の充電レベル C Lに応じて、 D C機器 5の消費電力を制限する。 太陽光発電量格納部 73は、 発電量推移データ DT A及び一日当りの総発電量 DT Bを 太陽光発電データ DTとして記憶する。 太陽光発電データ DTは数年間保持される。 AC DC電力量格納部 74は、 A CD C電力量及び DC AC電力量を記憶する。 蓄電池充電レ ベル格納部 75は、 蓄電池 1 6の充電レベル C Lを記憶する。 直流使用量格納部 76は、 直流電力の使用量を記憶する。蓄電池基準値格納部 77は、バックアップレベル C L Bと、 予備充電レベル C L Aとを記憶する。
図 3を参照して、 電力制御装置 70により実行される 「電力制御処理」 について、 その 処理手順を説明する。 なお同処理は、 電力制御装置 70により所定の演算周期毎に繰り返 し実行される。
ステップ S 1 1 0にて、 太陽電池 3の電力は、 優先的に、 DC機器 5への電力供給に割 リ当てられる。 すなわち、 DC機器 5は、 商用交流電源 2及び太陽電池 3からの電力供給 を受けるが、 同機器 5は優先的に太陽電池 3からの電力を消費する。
ステップ S 1 20にて、 太陽光発電量 PWSと DC機器 5の直流使用量 PWDとが比較 される。 同ステップ S 1 20にて、 太陽光発電量 PWSが直流使用量 PWDよりも大きい 旨判定されたとき、 すなわち太陽光発電量 PWSが余剰するときは、 ステップ S 1 30に て蓄電池 1 6の充電レベル C Lが満充電レベル C L Cに達しているか否か判定される。 蓄電池 1 6の充電レベル C Lが満充電レベル C L Cに達していないときは、 ステップ S 1 40にて、 太陽電池 3の電力は、 DC機器 5への電力供給に割り当てられるとともに、 その余剰電力が蓄電池 1 6の充電に割り当てられる。 このとき、 太陽光発電量 PWSは、 DC機器 5の直流使用量 PWDと、 蓄電池 1 6への充電量 PWEと総和になっている。 一方、 蓄電池 1 6の充電レベル C Lが満充電レベル C L Cに達しているときは、 ステツ プ S 1 50にて、 太陽電池 3による電力は、 DC機器 5への電力供給に割り当てられ、 そ の余剰電力は棄てられる。 このとき、 太陽光発電量 PWSは DC機器 5の直流使用量 PW Dと等しくなつている。
ステップ S 1 20にて、 太陽光発電量 PWSが直流使用量 PWD以下である旨判定され たときは、 ステップ S 1 60にて、 蓄電池 1 6の充電レベル C Lがバックアップレベル C LBより大きいか否かが判定される。
同ステップ S 1 60にて、 肯定判定されるときは、 ステップ S 1 70にて、 直流使用量 PWDの不足電力に相当する電力量を蓄電池 1 6から放電する。 このとき、 太陽光発電量 PWSと蓄電池 1 6からの放電量 PWFとの総和が、 DC機器 5の直流使用量 PWDと等 しくなる。
一方、 蓄電池 1 6の充電レベル C Lがバックアップレベル C L B以下である旨判定され たときは、 ステップ S 1 80にて、 直流使用量 PWDの不足電力に相当する電力量の交流 を直流に変換して、 DC機器 5へ電力を供給する。 このとき、 太陽光発電量 PWSと、 交 流から直流に変換された AC DC電力量との総和が、 DC機器 5の直流使用量 PWDと等 しくなつている。
図 4を参照して、 電力制御装置 70により実行される 「消費電力制限処理」 について、 その処理手順を説明する。 なお同処理は、 電力制御装置 70により所定の演算周期毎に繰 リ返し実行される。
ステップ S 2 1 0にて、 太陽電池 3による太陽光発電量 PWSと DC機器 5の直流使用 量 PWDとが比較さる。 同ステップ S 2 1 0にて太陽光発電量 PWSが直流使用量 PWD よりも大きい旨判定されたとき、 ステップ S 220にて、 蓄電池 1 6の充電レベル Cしが 予備充電レベル C L Aより大きいか否か判定される。
同ステップ S 220にて肯定判定されたときは、 ステップ S 230にて、 DC機器 5の 消費電力の電力制限は行われない。 すなわち、 太陽光発電量 PWSが十分にあり、 且つ蓄 電池 1 6には、 夜間消費電力を賄うために十分な電力が蓄えられているため、 電力制限は 行われない。
—方、 蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下のときは、 ステップ S 240にて、 DC機器 5の消費電力が第 1電力レベルを超えないように制限される。 例え ば、 第 1電力レベルでは、 ステップ S 220の判定時点における全ての DC機器 5の総消 費電力の 1 0%に相当する電力が制限される。 具体的には、 全ての DC機器 5のうちで使 用制限可能なものを選出し、 さらに使用制限したときに、 総消費電力の 1 0%に相当する 電力の消費が減少するようになるものを予め 1個又は複数個特定する。 そして、 消費電力 の制限処理が実行されるときに、 電力制御装置 70からリレ一ユニット 1 0又は制御ュニ ット 9への動作指令によって特定された DC機器 5への電力供給を遮断する。
ステップ S 2 1 0にて、 太陽光発電量 PWSが直流使用量 PWD以下である判定された とき、 ステップ S 250にて、 蓄電池 1.6の充電レベル C Lが予備充電レベル C L Aより 大きいか否か判定される。
蓄電池 1 6の充電レベル C Lが予備充電レベル C LAよりも大きいときは、 ステップ S 260にて、 DC機器 5の消費電力が第 2電力レベルを超えないように制限される。 第 2 電力レベルは、 電力制限度合いが第 1電力レベルよリも大きくなるように設定されている。 直流使用量 P W Dについて太陽電池 3の電力により賄うことができないため、 暫くの時 間経過後に、充電レベル C Lが予備充電レベル C L A以下になると推定される。このため、 第 1電力レベルよリも制限量が大きい第 2電力レベルにて D C機器 5の消費電力を制限し て、 充電レベル C Lの低減を緩和させている。 第 2電力レベルでは、 例えば、 ステップ S 250の判定時点における DC機器 5の総消費電力の 20%に相当する電力が制限される。
—方、 蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下となるときは、 ステツ プ S 270にて、 DC機器 5の消費電力について、 第 2電力レベルよりも制限量が大きい 第 3電力レベルを超えないように制限される。 すなわち、 直流使用量 PWDについて太陽 電池 3による電力により賄うことができず、 且つ、 充電レベル C Lが予備充電レベル C L A以下であることから、 暫くの時間経過後に、 充電レベル C Lがバックアップレベル C L B以下になると推定される。 このため、 第 2電力レベルよりも電力制限量が大きい第 3電 カレベルにて、 DC機器 5の消費電力がさらに制限される。第 3電力レベルでは、例えば、 ステップ S 250の判定時点における DC機器 5の総消費電力の 3 Oo/oに相当する電力が 制限される。
図 5を参照して、 給電管理装置の制御態様の一例について説明する。
時刻 t 1のとき、 すなわち深夜において、 太陽光発電量 PWSが直流使用量 PWD以下 であり且つ蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下のとき、 DC機器 5 の消費電力について、 第 3電力レベルに制限される。
ここで太陽電池 3による発電は行われない一方、 D C機器 5の待機電力が使用されるた め、 直流使用量 PWDが太陽光発電量 PWSよりも大きくなる。 また、 蓄電池 1 6の充電 レベル C Lはバックアップレベル C L Bになっている。 蓄電池 1 6の充電レベル CLをバ ックアップレベル C LBに維持するために商用交流電力が使用される。 このとき、 DC機 器 5の消費電力は第 3電力レベルに制限される。 深夜においては、 使用される DC機器 5 が少ないため、 実質的には、 DC機器 5の駆動が制限されることは殆どない。
その後、 太陽の上昇とともに太陽光発電量 PWSが増大する。 一方、 DC機器 5の消費 電力も増大するため、 太陽電池 3の発電開始から暫くの間は、 太陽光発電量 PWSは DC 機器 5の直流使用量 PWD以下の状態で推移する。
時刻 t 2のとき、 すなわち太陽光発電量 PWSが DC機器 5の直流使用量 PWDょリ大 きくなリ、 且つ蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下のとき、 太陽光 発電量 PWSが余ることになるため、 蓄電池 1 6への充電が開始される。 このとき、 DC 機器 5の消費電力は第 1電力レベルに制限されている。
時刻 t 3のとき、 すなわち太陽光発電量 PWSが DC機器 5の直流使用量 PWDょリ大 きく、 且つ蓄電池 1 6の充電レベル CLが予備充電レベル CLAよりも大きくなつたとき、 DC機器 5の消費電力についての制限は解除される。 このとき、 全ての DC機器 5を駆動 させることができる。
時刻 t 4のとき、 すなわち蓄電池 1 6の充電レベル C Lが満充電レベル C LCに達した とき、 太陽光発電量 PWSは、 DC機器 5の総電力消費量と一致することになる。 すなわ ち、 同図 (A) の示されるように、 太陽電池 3は 2点鎖線に沿って発電することができる と推定される。 ところが、 太陽電池 3に接続されている DC機器 5の総電力消費量が発電 可能な太陽光発電量 PWS以下のため、 実際の太陽光発電量 PWSは DC機器 5の負荷と 応じた値となっている。 このとき、 発電可能な太陽光発電量 PWSから実際の太陽光発電 量 PWSを差し引いた電力が結局のところ放電されていると考えられる。
その後、 太陽の下降とともに太陽光発電量 PWSが徐々に低下する。 太陽光発電量 PW Sが直流使用量 PWDより大きい間は、 太陽電池 3の電力によリ D C機器 5の使用電力が 賄われるため、 蓄電池 1 6の放電は行われない。 そのため、 この間、 蓄電池 1 6の充電レ ベル C Lは満充電レベル C L Cに維持される。
時刻 t 5のとき、 すなわち、 太陽光発電量 PWSが DC機器 5の直流使用量 PWDより 小さくなつたとき、 DC機器 5への供給電力が不足するため、 蓄電池 1 6から放電が開始 される。 一方、 DC機器 5の消費電力については第 2電力レベルに制限される。 この制限 がない場合と比べて蓄電池 1 6からの放電が抑制されるため、 蓄電池 1 6の充電レベル C Lの低下が抑制される。
その後、 太陽光発電量 PWSが減少し、 且つ蓄電池 1 6の充電レベル C Lが低下する。 そして、 夜間では、 太陽電池 3の発電が行われないため、 蓄電池 1 6の放電がさらに進行 する。
時刻 t 6のとき、 すなわち太陽光発電量 PWSが DC機器 5の直流使用量 PWDより小 さく且つ蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下となったとき、 DC機 器 5の消費電力について、 第 3電力レベルに制限される。
すなわち、 この時点においては、 太陽電池 3による発電力が DC機器 5の直流使用量 P WDよりも小さくなリ、 且つ、 蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下 となるため、 DC機器 5の消費電力に対する制限が第 2電力レベルから第 3電力レベルに 引き上げられる。
時刻 t 7のとき、 すなわち蓄電池 1 6の充電レベル C Lがバックアップレベル C L巳と なったときは、 蓄電池 1 6からの放電が禁止される。 一方、 蓄電池 1 6の充電レベル C L を維持するために、 電力の不足分は商用交流電源 2からの電力により賄われる。
本実施形態の給電管理装置 1 00によれば、 以下の効果を奏することができる。
(1 ) 本実施形態では、 電力を創出する太陽電池 3の発電量と電力を消費する DC機器 5の消費電力量とを比較結果すなわ余剰電力量と、 太陽電池 3の発電に基づいて蓄電され る蓄電池 1 6の充電レベル C Lとに基づいて、 DC機器 5の消費電力レベルが制御されて いる。
この構成によれば、 太陽エネルギの創出状況及び備蓄状況に応じて DC機器 5の消費電 力量が制限されるため、 消費電力量を自動的且つ最適に制御することができる。
(2) 本実施形態では、 太陽電池 3の発電量が DC機器 5の直流使用量 PWDよりも大 きいときには、 DC機器 5及び蓄電池 1 6に供給される。 太陽電池 3の発電量が DC機器 5の直流使用量 PWD以下のときには、 DC機器 5に供給される。 太陽電池 3の発電量が D C機器 5の直流使用量 P W Dより大きく蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下のときには、 DC機器 5の消費電力が第 1電力レベルを超えないように制限さ れる。
この構成によれば、 太陽電池 3の発電量が DC機器 5の直流使用量 PWD以下のときに は D C機器 5に供給される。 太陽電池 3の発電量が D C機器 5の直流使用量 PWDよりも 大きいときには、 DC機器 5及び蓄電池 1 6に供給される。 太陽電池 3の発電量が DC機 器 5の直流使用量 PWDより大きく蓄電池 1 6の充電レベル C Lが予備充電レベル C LA 以下のときには、 D C機器 5の消費電力が第 1電力レベルを超えないように制限される。 これにより、 DC機器 5の消費電力量を自動的且つ最適に低減することができる。 この結 果、 商用交流電源 2の電力の使用を抑制することができる。 (3) 本実施形態では、 太陽電池 3の発電量が DC機器 5の直流使用量 PWDよりも大 きく、 且つ蓄電池 1 6の充電レベル C Lが予備充電レベル C LAよりも大きいときには、 D C機器 5の消費電力の制限が行われない。
この構成によれば、 太陽電池 3の発電量が DC機器 5の消費電力よりも大きく、 且つ蓄 電池 1 6の充電レベル C Lが予備充電レベル C L Aよりも大きいとき、 すなわち太陽電池 3及び蓄電池 1 6の電力により DC機器 5の消費電力を賄うことができるとき、 DC機器 5の消費電力の制限が禁止される。 従って、 商用交流電源 2の電力を使用しなくとも DC 機器 5の性能を維持することができる。
(4) 本実施形態では、 太陽電池 3の発電量が DC機器 5の直流使用量 PWD以下で、 且つ蓄電池 1 6の充電レベル C Lが予備充電レベル C LAよりも大きいときには、 DC機 器 5の消費電力が第 1電力レベルよリも小さい第 2電力レベルを超えないように制限され る。
この構成によれば、 太陽電池 3の発電量が DC機器 5の直流使用量 PWD以下で、 且つ 蓄電池 1 6の充電レベル C Lが予備充電レベル C LAよりも大きいとき、 すなわち蓄電池 1 6の電力の消費量が多くなる旨予測されるとき、 DC機器 5の消費電力が第 2電カレべ ルを超えないように制限される。 従って、 蓄電池 1 6の充電レベル C Lが過度に低下する ことを抑制することができる。 また、 制限のレベルとして第 1電力レベルよりも小さい第 2電力レベルを用いているため、 充電レベル C Lの低下の抑制をより確実なものとするこ とができる。
(5) 本実施形態では、 太陽電池 3の発電量が DC機器 5の直流使用量 PWD以下で、 且つ蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下のときには、 DC機器 5の 消費電力が第 2電力レベルよりも小さい第 3電力レベルを超えないように制限される。
この構成によれば、 太陽電池 3の発電量が DC機器 5の直流使用量 PWD以下で、 且つ 蓄電池 1 6の充電レベル C Lが予備充電レベル C L A以下のとき、 すなわち蓄電池 1 6の 電力の消費量がよリ多くなる旨予測されるとき、 D C機器 5の消費電力が第 3電力レベル を超えないように制限される。 従って、 蓄電池 1 6の充電レベル C Lが過度に低下するこ とを抑制することができる。 また、 制限のレベルとして第 2電力レベルよりも小さい第 3 電力レベルを用いているため、 充電レベル C Lの低下の抑制をより確実なものとすること ができる。 なお、 上記実施形態では、 第 3電力レベルとして DC機器 5の総消費電力の 3 006に相当する電力が制限されるとしているが、 この制限に代えて、 DC機器 5の使用を 停止させてもよい。
(6) 本実施形態では、 予備充電レベル Cし として、 DC機器 5により夜間に消費さ れる夜間電力量に相当するレベルが設定される。 この構成によれば、 太陽電池 3の発電量 が D C機器 5の直流使用量 PWDより大きく蓄電池 1 6の充電レベル C Lが D C機器 5に より夜間に消費される夜間電力量に相当するレベル以下のとき、 DC機器 5の消費電力が 第 1電力レベルを超えないように制限されるため、 充電レベル C Lが夜間電力量に相当す るレベルよりも過度に低いものとなることを抑制することができる。
(その他の実施形態)
本発明の給電管理装置の実施態様は、 上記実施形態に例示した内容に限定されるもので はなく、 例えば以下のように変更して実施することもできる。 また、 以下の各変形例は、 上記実施形態についてのみ適用されるものでなく、 異なる変形例同士を互いに組み合わせ て実施することもできる。
■上記実施形態では、 消費電力制限処理において消費電力を制限する場合に、 D C機器 5の総消費電力に対する割合によつてその制限を行っているが、 このような制限に代えて、 D C機器 5の総消費電力に対して数量的に制限を行ってもよい。 例えば、 D C機器 5の総 直流使用量について、 その最大直流使用量から第 1電力レベルでは 2 0 O W、 第 2電カレ ベルでは 4 0 0 W、 第 3電力レベルでは 6 0 O Wの電力を減ずることにより、 使用電力の 制限を行ってもよい。
■上記実施形態では、 予備充電レベルじし は、 夜間時において使用されるー晚あたり の電力量に相当する充電レベル C Lとして設定されているが、 これに代えて、 季節毎に設 定を変更してもよい。 例えば、 春季や秋季は、 予備充電レベル C L Aが夏季や冬季よりも 低く設定する。 この設定値は、 タツチパネル等のインタ一フェイスを介して設定の変更を 可能とする。
-また、 予備充電レベル C L Aについては、 夜間時において使用される一晩あたりの電 力量だけを基準とするのではなく、 蓄電池 1 6の最大容量を考慮して、 設定してもよい。 例えば、 蓄電池 1 6の容量が D C機器 5の夜間時使用量よりも十分に大きい場合は、 夜間 時において使用される一晚あたリの電力量よリも高いレベルに予備充電レベル C L Aが設 定される。 このような設定によれば、 夜間時に電力不足時に商用交流電源 2から電力供給 を受ける頻度を抑制することができる。
,また、 蓄電池 1 6の容量が夜間時使用量よりも小さい場合は、 夜間時において使用さ れるー晚あたリの電力量よリも低いレベルに予備充電レベル C L Aを設定してもよい。 こ のような設定によれば、 蓄電池 1 6の容量が小さい場合でも、 適宜、 D C機器 5の電力消 費を制限することができる。
•予備充電レベル C L Aについては、 夜間時において使用されるー晚あたりの電力量だ けを基準とするのではなく、 電力料金の低額時間帯である場合は、 次のように設定しても よい。 すなわち、 予備充電レベル C L Aは、 D C機器 5が夜間に消費する夜間電力量から 低額時間帯に使用される電力量を差し引いた電力量と同等レベルに設定する。
この構成によれば、 蓄電池 1 6の充電レベル C Lは、 D C機器 5が夜間に消費する夜間 電力量から低額時間帯に使用される電力量を差し引いた電力量に相当するレベルを基準と して、 D C機器 5の消費電力の制限が行われるようになる。 従って、 低額時間帯の電力を 有効に活用することによって、 太陽電池 3による発電量のうち、 蓄電池 1 6への充電に割 リ当てられる電力を小さくすることができるため、 D C機器 5への電力供給を増大させる ことができる。
-商用交流電源の電力料金を定める時間帯として、 電力料金が通常料金となる通常時間 帯と、 電力料金が通常料金よりも低額となる低額時間帯とが設定されている場合がある。 そこで、 図 6に示すように、 消費電力制限処理のステップ S 2 5 0以降の処理において、 当該処理時刻が、 電力料金の低額時間帯であるか否かの結果に基づいて制限レベルを変更 してもよい。 すなわち、 商用交流電源 2からの電力は時間帯よつて料金が異なっているた め、 低額時間帯において消費電力量の制限度合いを変更することにより、 商用交流電源 2 からの電力を有効に利用する。 なお、 図 6は、 図 4の 2点鎖線で囲った部分の変形例を示 し、 同処理については同符号を付している。
具体的には次の処理が実行される。 すなわち、 ステップ S 2 5 0にて、 蓄電池 1 6の充 電レベル C Lが予備充電レベル C L A以下となるときは、 ステップ S 2 5 1にて、 その処 理時刻が低額時間帯であるか否か判定される。 処理時刻が、 電力料金の低額時間帯ではな いとき、 すなわち通常料金時間帯であるときは、 ステップ S 2 6 1にて、 D C機器 5の消 費電力について第 3電力レベルに制限される。すなわち、電力料金が通常料金であるため、 比較的高いレベルで D C機器 5の消費電力について制限される。 一方、 処理時刻が、 電力 料金の低額時間帯であるときは、ステップ S 2 6 2にて、 D C機器 5の消費電力について、 第 2電力レベルよリも電力制限量が大きく且つ第 3電力レベルよリも小さい値に制限され る。 すなわち、 電力料金が低料金であるため、 比較的高いレベルで D C機器 5の消費電力 制限が緩和され、 商用交流電源からの電力の使用が促進される。 これにより、 比較的低コ ス卜で、 夜間時における D C機器 5の使用制限を緩和することができる。
•上記実施形態では、 電力制御処理において、 太陽電池 3による太陽光発電量 P W Sが D C機器 5の直流使用量 P W Dよりも大きくなつておリ且つ蓄電池 1 6が満充電レベル C L Cになっているときは、 太陽電池 3の余剰電力は棄てられるようになつている。 このよ うな場合、 この余剰電力をコントロールユニット 7により直流から交流に変換して、 A C 機器 6に電力を供給してもよい。 このような直流交流供給制御を行うとき、 コントロール ユニット 7は一種の D C機器 5とみなされる。 このときコントロ一ルュニット 7による直 流から交流への電力変換量が直流使用量 P W Dとして扱われるようになる。
■上記実施形態では、 電力制御処理において、 特定の D C機器 5の消費電力を制限して いるが、 このような制限に代えて、 全ての D C機器 5について一律に消費電力の使用量を 制限するようにしてもよい。 また、 所定の電力レベルに制限する場合において、 特定の D C機器 5を設定するのではなく、 各 D C機器 5について使用の優先順位を設定してその優 先順位の低い順から、 その消費電力の制限を加えるようにしてもよい。
以上、 本発明の好ましい実施形態が説明されているが、 本発明はこれらの特定の実施形 態に限られるものではなく、 請求範囲の範疇から離脱しない多様な変更及び変形が可能で あり、 それも本発明の範疇内に属する。

Claims

請求の範囲
【請求項 1】
太陽電池と商用交流電源と蓄電池とを備え、 前記太陽電池の電力によリ前記蓄電池を充 電し、 前記太陽電池と前記商用交流電源と前記蓄電池とのうち少なくとも 1つの電力を負 荷装置に供給する給電管理装置において、
前記太陽電池の発電量と前記負荷装置の消費電力量と大きさの比較結果及び前記蓄電池 の容量に対する充電割合を示す充電レベルの大きさに基づいて、 前記負荷装置の消費電力 レベルが制御される
給電管理装置。
【請求項 2】
請求項 1に記載の給電管理装置において、
前記太陽電池の電力が前記商用交流電源の電力よリも優先して前記負荷装置及び前記蓄 電池に供給され、
前記太陽電池の発電量が前記負荷装置の消費電力量よリも大きく、 且つ前記蓄電池の充 電レベルが基準充電レベル以下のときには、 前記負荷装置の消費電力が予め設定された電 カレベルを超えないように制限される
給電管理装置。
【請求項 3】
請求項 2に記載の給電管理装置において、
前記太陽電池の発電量が前記負荷装置の消費電力量よリも大きく、 且つ前記蓄電池の充 電レベルが前記基準充電レベルよりも大きいときには、 前記負荷装置の消費電力の制限が 行われない
給電管理装置。
【請求項 4】
請求項 2または 3に記載の給電管理装置において、
前記太陽電池の発電量が前記負荷装置の消費電力量以下で、 且つ前記蓄電池の充電レべ ルが前記基準充電レベルよりも大きいときには、 前記負荷装置の消費電力が前記予め設定 された電力レベルよリも小さい基準電力レベルを超えないように制限される
給電管理装置。
【請求項 5】
請求項 4に記載の給電管理装置において、
前記太陽電池の発電量が前記負荷装置の消費電力量以下で、 且つ前記蓄電池の充電レべ ルが基準充電レベル以下のときには、 前記負荷装置の消費電力が前記基準電力レベルより も小さいバックアップ電力レベルを超えないように制限される
給電管理装置。
【請求項 6】
請求項 2〜 5のいずれか一項に記載の給電管理装置において、
前記基準充電レベルとして、 前記負荷装置によリ夜間に消費される夜間電力量に相当す るレベルが設定される
給電管理装置。
【請求項 7】
請求項 2 - 6のいずれか一項に記載の給電管理装置において、
前記商用交流電源の電力料金を定める時間帯として、 前記電力料金が通常料金となる通 常時間帯と、 前記電力料金が前記通常料金よリも低額となる低額時間帯とが設定されてい るとき、 前記基準充電レベルとして、 前記負荷装置により夜間に消費される夜間電力量か ら前記低額時間帯に使用される低額電力量が差し引かれた電力量に相当するレベルが設定 される
給電管理装置。
【請求項 8】
請求項 7に記載の給電管理装置において、
前記負荷装置の消費電力を制御する時刻が前記低額時間帯にあるときには、 前記負荷装 置の消費電力の制限レベルは、 同低額時間帯以外の時間帯にて行われる前記負荷装置の消 費電力の制限レベルよりも緩和される
給電管理装置。
PCT/IB2010/002495 2009-10-05 2010-10-01 給電管理装置 WO2011042788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080055204.5A CN102640385B (zh) 2009-10-05 2010-10-01 供电管理装置
EP10821645.8A EP2475069A4 (en) 2009-10-05 2010-10-01 DEVICE FOR MANAGING ELECTRICITY SUPPLY
US13/500,120 US9620990B2 (en) 2009-10-05 2010-10-01 Electricity supply management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009232008A JP5518419B2 (ja) 2009-10-05 2009-10-05 給電管理装置
JP2009-232008 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011042788A1 true WO2011042788A1 (ja) 2011-04-14

Family

ID=43856413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002495 WO2011042788A1 (ja) 2009-10-05 2010-10-01 給電管理装置

Country Status (5)

Country Link
US (1) US9620990B2 (ja)
EP (1) EP2475069A4 (ja)
JP (1) JP5518419B2 (ja)
CN (1) CN102640385B (ja)
WO (1) WO2011042788A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033200A (zh) * 2015-03-17 2016-10-19 联想(北京)有限公司 一种控制方法及供电设备
CN113266896A (zh) * 2021-04-22 2021-08-17 深圳市豫知科技有限公司 套箱式洁净手术室的清洁能源供电系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172013A1 (ja) * 2012-05-18 2013-11-21 日本電気株式会社 電力制御装置、充電システム、電力制御方法、および、コンピュータ・プログラム
DE102012212321A1 (de) * 2012-07-13 2014-01-16 Robert Bosch Gmbh Vorrichtung zum Ermitteln und/oder Steuern einer Betriebszeit eines mit einem Kraftwerk, insbesondere Photovoltaikkraftwerk, und einem Energiespeicher gekoppelten Verbrauchers, und Verfahren zum Betreiben eines mit einem Kraftwerk gekoppelten Energiespeichers
JP6081125B2 (ja) * 2012-10-09 2017-02-15 株式会社日立製作所 太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置
JP2014100034A (ja) 2012-11-15 2014-05-29 Ricoh Co Ltd 情報処理装置、電源切替方法
US10074984B2 (en) * 2013-04-09 2018-09-11 Nec Corporation Electric power control system
JP6200728B2 (ja) * 2013-08-26 2017-09-20 株式会社Nttファシリティーズ 電源システム、給電管理装置、給電管理方法、及びプログラム
JP2015089320A (ja) * 2013-11-01 2015-05-07 ソニー株式会社 蓄電システムおよびその制御方法
CN104699015A (zh) 2013-12-06 2015-06-10 珠海格力电器股份有限公司 一种基于分布式发电的空调监控系统及应用其的空调系统
JP6271244B2 (ja) * 2013-12-24 2018-01-31 シャープ株式会社 電力管理システム
JP2018007466A (ja) * 2016-07-05 2018-01-11 富士通株式会社 電力管理装置、電力管理システムおよび電力管理方法
WO2019154649A1 (en) 2018-02-07 2019-08-15 Philips Lighting Holding B.V. Lighting system and method
EP3680125A1 (de) 2019-01-10 2020-07-15 FRONIUS INTERNATIONAL GmbH Verfahren und vorrichtung zum laden eines elektrofahrzeuges

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285825A (ja) * 1997-03-31 1998-10-23 Sumitomo Electric Ind Ltd 電源電力供給システム
JP2003032890A (ja) * 2001-07-19 2003-01-31 Senaa Kk 負荷電力制御装置
JP2004023879A (ja) 2002-06-14 2004-01-22 Mitsubishi Heavy Ind Ltd 給電システム及びその制御方法
JP2007295680A (ja) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd 負荷制御装置
JP2008086109A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd 電源システム、ネットワークシステム、ネットワークシステムの制御方法、及びネットワークシステムの電源システム制御プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742291A (en) * 1985-11-21 1988-05-03 Bobier Electronics, Inc. Interface control for storage battery based alternate energy systems
US6914411B2 (en) * 2003-05-19 2005-07-05 Ihs Imonitoring Inc. Power supply and method for controlling it
JP4969229B2 (ja) * 2006-12-18 2012-07-04 三菱重工業株式会社 電力貯蔵装置及びハイブリッド型分散電源システム
IES20080290A2 (en) * 2007-04-17 2008-10-29 Timothy Patrick Cooper A load management controller for a household electrical installation
CN201075729Y (zh) * 2007-08-03 2008-06-18 浙江省能源研究所 一种太阳能光伏发电与市电互补装置
CN201113502Y (zh) * 2007-08-07 2008-09-10 丰详实业股份有限公司 太阳能电力控制装置
US20090072779A1 (en) * 2007-09-14 2009-03-19 Kurt Kuhlmann Low Voltage Energy System
GB2457506A (en) * 2008-02-18 2009-08-19 Zeta Controls Ltd Solar power system with storage element and mains electricity supply
JP5350942B2 (ja) * 2009-08-25 2013-11-27 株式会社東芝 電力系統の需給制御装置、需給制御プログラム及びその記録媒体
US8684150B2 (en) * 2010-06-15 2014-04-01 General Electric Company Control assembly and control method for supplying power to electrified rail vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285825A (ja) * 1997-03-31 1998-10-23 Sumitomo Electric Ind Ltd 電源電力供給システム
JP2003032890A (ja) * 2001-07-19 2003-01-31 Senaa Kk 負荷電力制御装置
JP2004023879A (ja) 2002-06-14 2004-01-22 Mitsubishi Heavy Ind Ltd 給電システム及びその制御方法
JP2007295680A (ja) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd 負荷制御装置
JP2008086109A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd 電源システム、ネットワークシステム、ネットワークシステムの制御方法、及びネットワークシステムの電源システム制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2475069A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033200A (zh) * 2015-03-17 2016-10-19 联想(北京)有限公司 一种控制方法及供电设备
CN113266896A (zh) * 2021-04-22 2021-08-17 深圳市豫知科技有限公司 套箱式洁净手术室的清洁能源供电系统
CN113266896B (zh) * 2021-04-22 2023-06-23 深圳市豫知科技有限公司 套箱式洁净手术室的清洁能源供电系统

Also Published As

Publication number Publication date
CN102640385A (zh) 2012-08-15
US9620990B2 (en) 2017-04-11
EP2475069A1 (en) 2012-07-11
US20120212050A1 (en) 2012-08-23
CN102640385B (zh) 2015-01-07
JP5518419B2 (ja) 2014-06-11
JP2011082277A (ja) 2011-04-21
EP2475069A4 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2011042788A1 (ja) 給電管理装置
WO2011042786A1 (ja) 蓄電システム
JP5663645B2 (ja) 制御装置及び制御方法
CN102948032B (zh) 住宅用电力系统
US9906025B2 (en) Electric power supply apparatus and system
JP5466911B2 (ja) 電力供給システム及び電力供給システムの制御装置
JP5342598B2 (ja) 電力変換器
JP5655167B2 (ja) 電力管理装置およびプログラム
CN110112783B (zh) 光伏蓄电池微电网调度控制方法
WO2011162025A1 (ja) 直流配電システム
EP2701261A1 (en) Control device, power control system, and power control method
EP2983265B1 (en) Electric power conversion device, control system, and control method
JP2011250673A (ja) エネルギーコントローラおよび制御方法
WO2011055196A1 (ja) 配電システム
JP2007166818A (ja) 電源システムおよびその制御方法
US20200366101A1 (en) Energy storage system
WO2015001767A1 (ja) 制御装置、電力管理システム
US20130271078A1 (en) Charging device, control method of charging device, electric-powered vehicle, energy storage device and power system
TW201123668A (en) Hybrid power supply system
JP6753469B2 (ja) 蓄電装置及び電源システム
WO2015015528A1 (ja) 給電制御装置
JP6713101B2 (ja) 蓄電池システム及び蓄電池の制御方法
US20190103756A1 (en) Power storage system, apparatus and method for controlling charge and discharge, and program
JP2011083091A (ja) バッテリ制御ユニット
US20180233910A1 (en) Energy management device, energy management method, and energy management program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055204.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 815/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010821645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010821645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13500120

Country of ref document: US