WO2011024982A1 - アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法 - Google Patents

アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法 Download PDF

Info

Publication number
WO2011024982A1
WO2011024982A1 PCT/JP2010/064659 JP2010064659W WO2011024982A1 WO 2011024982 A1 WO2011024982 A1 WO 2011024982A1 JP 2010064659 W JP2010064659 W JP 2010064659W WO 2011024982 A1 WO2011024982 A1 WO 2011024982A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron source
melting
arc
chamber
state change
Prior art date
Application number
PCT/JP2010/064659
Other languages
English (en)
French (fr)
Inventor
三上安己
松尾貴人
Original Assignee
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチールプランテック株式会社 filed Critical スチールプランテック株式会社
Priority to EP20100812031 priority Critical patent/EP2471959A1/en
Priority to US13/392,403 priority patent/US20120152057A1/en
Publication of WO2011024982A1 publication Critical patent/WO2011024982A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • F27D13/002Preheating scrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/144Power supplies specially adapted for heating by electric discharge; Automatic control of power, e.g. by positioning of electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/144Power supplies specially adapted for heating by electric discharge; Automatic control of power, e.g. by positioning of electrodes
    • H05B7/148Automatic control of power
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an arc melting facility for continuously supplying an iron source such as iron scrap or directly reduced iron and melting it by an arc to manufacture a molten metal, and a molten metal manufacturing method using the arc melting facility.
  • FIG. 8 is a schematic view showing a configuration of a scrap continuous supply type electric furnace (arc melting equipment 22) proposed in Patent Document 1. As shown in FIG.
  • FIG. 9 is a schematic view showing a configuration of a scrap continuous supply type electric furnace (arc melting equipment 22) proposed in Patent Document 2.
  • a preheating chamber 16 is directly connected to the side surface of the electric furnace 1, and a pusher (extrusion device) 17 is moved in and out of the preheating chamber 16 to supply scrap 15 into the electric furnace 1.
  • the molten metal is held in the furnace and the supplied scrap is melted by the energy of the molten metal.
  • Supply energy is directed to maintaining the temperature of the molten metal, and the molten metal temperature is adjusted to be kept above the melting point of the scrap. Therefore, in an electric furnace that continuously supplies scrap, it is important to balance the supply rate of the scrap with the molten metal temperature, that is, the supply energy for melting. Therefore, as an operation method of an electric furnace of such a system that continuously supplies scrap, in the scrap continuous arc furnace, using the total molten metal amount calculated from the cumulative input amount of scrap and the measured temperature value of the molten metal.
  • a method is known in which the molten metal temperature after scrap is accurately estimated and the scrap supply rate is controlled so as to be within an appropriate molten metal temperature range (see, for example, Patent Document 3).
  • the amount of molten metal in the furnace can be accurately estimated to some extent, and the speed control of the scrap conveying device can be performed accordingly, but the state in the arc furnace is actually observed.
  • the problem is that the supply amount of the iron source and the energy supplied to the electric furnace are not optimally adjusted.
  • there are various types of scrap supplied to the electric furnace which contain components other than iron and are charged with different amounts when melted. Therefore, a large error occurs between the amount of molten metal in the furnace calculated from the amount of scrap input and the actual amount of smelted molten metal.
  • the estimation of the molten metal temperature also causes an error with the actual temperature.
  • the amount supplied can be estimated for a long period, but when viewed in a short time, the amount of scrap actually supplied into the furnace Is fluctuating.
  • the balance with the supply energy for melting is lost and the scrap is piled up in the furnace, and a large amount of energy is required to melt it, and the melting time is also long. Need to be long. It is important to smoothly control the charging speed of the scrap in accordance with the melting speed of the scrap in the arc furnace in order to smoothly perform the melting.
  • the object of the present invention is to solve such a problem of the prior art, particularly when an arc furnace is used as a melting chamber among electric furnaces, and when an iron source is continuously supplied to an arc furnace for melting.
  • An object of the present invention is to provide an arc melting facility and an arc melting facility operating method capable of detecting a change in the state of an iron source supplied into the furnace and maintaining the molten metal in the arc furnace in a stable state.
  • One aspect of the present invention is an arc melting facility including a melting chamber that melts an iron source by arc discharge generated from an electrode, and an iron source supply device that continuously supplies the iron source to the melting chamber.
  • a state change detecting unit for detecting a state change of the melting chamber when the arc discharge is generated from the electrode, and the iron source supply device to the melting chamber based on a detection result of the state change detecting unit.
  • a control device for adjusting a supply speed when supplying the iron source.
  • the state change detection unit may detect a change in at least one of a current and a voltage supplied to the electrode as a state change of the melting chamber. In this way, as a change in the state of the melting chamber, the change in the state of the iron source in the furnace is detected quickly and indirectly based on a change in at least one of the current and voltage supplied to the electrodes. The supply speed of the iron source can be adjusted according to the result.
  • the state change detection unit may detect at least any one of the harmonic amounts included in the current and the voltage as a variation of at least one of the current and the voltage supplied to the electrode. It is also possible to detect one variation.
  • the state change detection unit may detect at least one value or unit of the current and the voltage as a variation of at least one of the current and the voltage supplied to the electrode.
  • the amount of change per time may be detected.
  • the state change detection unit may detect a change in the furnace vibration transmitted to the melting chamber when the arc discharge occurs as the state change of the melting chamber. In this way, as the state change of the melting chamber, based on the change in the furnace body vibration transmitted to the melting chamber at the time of occurrence of arc discharge, the state change of the iron source in the furnace is detected quickly, thereby detecting the change. The supply speed of the iron source can be adjusted according to the result.
  • the state change detection unit may detect a change in the position of the electrode as the state change of the dissolution chamber.
  • Another aspect of the present invention is a method for producing a molten metal by melting the iron source using the arc melting equipment, and detecting a change in the state of the melting chamber when the arc discharge is generated.
  • An arc melting comprising: a state change detecting step for adjusting, and a supply speed adjusting step for adjusting a supply speed for supplying the iron source to the melting chamber based on a detection result of the state change detecting step. It relates to the manufacturing method of molten metal using equipment.
  • the molten metal manufacturing method may adjust the power supplied to the electrodes in accordance with the supply speed based on the detection result of the state change detection unit. As described above, the state of the molten metal can be controlled more stably by adjusting the electric power supplied to the electrode of the arc furnace in accordance with the supply speed of the iron source.
  • the present invention when producing a molten metal by continuously supplying an iron source such as iron scrap to an arc furnace, it is possible to indirectly detect a change in the state of the iron source in the furnace quickly, The molten metal in the furnace can be maintained in a stable state by adjusting the operation conditions accordingly. Thereby, the energy efficient operation can be performed without extending the melting time of the iron source.
  • FIG. 1 is a flowchart showing an operation outline of an embodiment of a method for producing a molten metal using the arc melting equipment of the present invention.
  • An iron source is continuously supplied to the melting chamber (iron source supplying step S11), and the iron source is melted by arc discharge generated from the electrodes (iron source melting step S12). And the state change of the melting chamber at the time of generating arc discharge is detected (state change detection process S13).
  • state change detection process S13 detects the state change of the melting chamber as described above, the occurrence of arc discharge to the iron source remaining on the molten metal surface is detected indirectly.
  • state change detection process S13 When generation
  • the state change detection step S13 the detection of the occurrence of arc discharge from the electrode of the arc furnace to the iron source remaining on the surface of the molten metal in the furnace is detected as a change in the state of the arc furnace (melting chamber). At least one of a position variation, a current variation, a voltage variation, a harmonic amount included in the current, and a harmonic amount included in the voltage is measured, and the change is detected.
  • the supply rate of the iron source is adjusted using at least one or a combination of the state changes of the melting chamber detected in the state change detection step S13. Specifically, since the supply of the iron source is excessive in the state change detection step S13, detecting that the arc discharge to the iron source remaining on the molten metal surface has occurred based on the fluctuation of the harmonic amount, Stop supplying the iron source to the melting chamber. In order to eliminate the state in which the iron source remains excessively in the melting chamber, control may be performed so as to reduce the supply rate of the iron source. Moreover, in order to detect the state change of the dissolution chamber with high accuracy, it is preferable to detect the state change of the dissolution chamber based on a plurality of detection results.
  • the amount of harmonics included in the current or voltage because it is easy to detect and excellent in detecting changes.
  • the amount of harmonics is obtained from harmonics obtained by measuring the current or voltage supplied to the arc furnace and analyzing the frequency, and for example, harmonic distortion can be used.
  • the arc melting equipment used in the present invention includes an arc furnace, an iron source supply device for continuously supplying an iron source to the arc furnace, a state change detection unit for the melting chamber, and an output from the detection unit. What has a control apparatus which adjusts the supply speed of a source supply apparatus can be used.
  • the state change detection unit of the melting chamber is a device that can detect the occurrence of arc discharge from the electrode of the arc furnace to the iron source supplied into the arc furnace.
  • a melting chamber for melting an iron source as described in Patent Document 2 and a direct connection to the melting chamber for preheating the iron source supplied to the melting chamber The shaft-type preheating chamber provided, the electrode provided in the melting chamber for melting the iron source supplied in the melting chamber, and the iron source supplied from the preheating chamber in the direction of the electrode
  • the exhaust gas generated in the melting chamber is introduced into the preheating chamber to preheat the iron source in the preheating chamber, and the iron source exists in the preheating chamber and the melting chamber
  • the present invention is used when performing the operation of melting the iron source by arc heating in the melting chamber, the energy efficiency is further reduced without lowering the productivity.
  • a control mechanism is provided in the drive device of the extrusion device to control the supply speed of the iron source.
  • the supply of iron source is performed using an extrusion device. Therefore, it is necessary to return the extrusion device to the start position of extrusion after the end of one extrusion.
  • the supply of the iron source to the arc furnace is assumed to be continuous even when continuously supplying at such a predetermined interval.
  • the non-continuous supply is a supply in which the iron sources are dropped together using a basket or the like as in a batch type. When the supply of one iron source to the arc furnace is started, it is stopped halfway.
  • the iron source is an object to be melted and processed in arc melting equipment such as iron scrap and direct reduced iron.
  • the iron scrap is, for example, stainless steel scrap, pig iron, mill scale, iron-stretched material, etc. This occurs when a processing process, a processing process when using a steel product in a factory, or when a building, car, home appliance, bridge, or the like is dismantled.
  • FIG. 2 is an explanatory diagram of a schematic configuration of the first embodiment of the arc melting equipment of the present invention, and is a diagram in the case of detecting the scrap state in the furnace using harmonics of current or voltage used for arc melting.
  • the electrical sensor 12 (12a, 12b, 12c) is attached to the power supply line 11 (11a, 11b, 11c) to the arc furnace 1 as a state change detection unit that detects the state change of the melting chamber 1.
  • the current or voltage waveform of the feeder line 11 is measured.
  • the measured waveform is Fourier-transformed by the signal processing device 13 to calculate the included harmonics and input to the control device 6 as signal-processed state signals 14 (14a, 14b, 14c).
  • the control signal 6 is sent from the control device 6 to the scrap supply device 8 serving as the iron source supply device, and the scrap supply speed is reduced. Or stop it. Thereafter, when the measured value falls to another predetermined value, a control signal 7 is sent from the control device 6 to the scrap supply device 8 to increase the scrap supply speed to a predetermined speed.
  • harmonic distortion When the scrap state in the furnace is detected using harmonics of current or voltage used for arc melting, it is preferable to use harmonic distortion as the post-signal processing state signal 14. Specifically, the harmonic distortion rate is continuously measured, two threshold values (harmonic determination values) are provided, a high threshold value is set as a harmonic determination value H, and a low threshold value is set as a harmonic determination value L.
  • the harmonic judgment value H When an abnormality occurs during melting of the iron source in the arc furnace and the iron source is in the vicinity of the electrode, the harmonic judgment value H is set so that the harmonic distortion rate exceeds the harmonic judgment value H.
  • the harmonic determination value L is set so that the harmonic distortion rate becomes less than the harmonic determination value L when the melting of the iron source progresses and the inside of the furnace approaches a flat bath state.
  • FIG. 3 is an explanatory view of a schematic configuration of the second embodiment of the arc melting equipment of the present invention, and is a diagram in the case of detecting the scrap state in the furnace by the current or voltage used for arc melting.
  • an electrical sensor 12 (12a, 12b, 12c) is attached to the power supply line 11 (11a, 11b, 11c) to the arc furnace 1 as a state change detection unit that detects a state change of the melting chamber 1.
  • the current or voltage of the feeder line 11 is measured.
  • FIG. 4 is an explanatory diagram of a schematic configuration of the third embodiment of the arc melting equipment of the present invention, and shows a case where the state of the iron source in the furnace is detected by the furnace vibration.
  • an acceleration sensor 4 (state change detection unit) is attached to the arc furnace furnace (melting chamber) 1 as a state change detection unit for detecting a state change of the melting chamber 1 to continuously measure the furnace vibration.
  • the state signal 5 is input to the control device 6. If the iron source in the furnace is oversupplied and a state exists in the vicinity of the electrode, an arc will fly from the electrode to the iron source, and the furnace body vibration will change, so the measured value of the acceleration sensor 4 will be a predetermined value or more.
  • the control signal 7 is sent to the scrap supply device 8 serving as the iron source supply device, and the scrap supply speed is reduced or stopped.
  • FIG. 5 is an explanatory diagram of a schematic configuration of the fourth embodiment of the arc melting equipment of the present invention, and shows a case where a scrap state in the furnace is detected by a change in electrode position.
  • an electrode position detector 9 is attached to the movable part of the electrode lifting device 3 to continuously measure the electrode position, and the signal is Input to the control device 6.
  • the control signal 7 is sent to the scrap supply device 8 serving as the iron source supply device, and the scrap supply speed is reduced or stopped. Let Thereafter, when the measured value falls to another predetermined value, a control signal 7 is sent from the control device 6 to the scrap supply device 8 to increase the scrap supply speed to a predetermined speed.
  • the melting state of the iron source is controlled by controlling the supply speed of the iron source.
  • the molten metal state can be controlled more stably by adjusting the electric power supplied to the arc furnace. can do.
  • the amount of harmonics contained in the current, the amount of harmonics contained in the voltage, current fluctuations, voltage fluctuations, furnace vibration, and electrode position fluctuations individually change the state of the iron source.
  • the state of the scrap can be grasped more accurately and the state in the furnace can be further stabilized.
  • the scrap state is detected using the arc current fluctuation and the harmonic amount included in the arc current.
  • FIG. 6 shows an example in which the scrap supply rate is changed by measuring the harmonics of the current supplied to the electrodes as a method for producing a molten metal using the arc melting equipment of the first embodiment described above.
  • Scrap was supplied to the arc furnace at a constant speed, and a harmonic analyzer was installed at the arc current measurement point to determine the harmonic distortion.
  • the harmonic distortion factor represents what percentage the sum of the execution values of all the generated harmonics is relative to the execution value of the fundamental frequency.
  • the harmonic distortion rate exceeds a predetermined value (harmonic determination value H)
  • FIG. 7 shows a comparative example of the present invention, in which the scrap supply rate is not changed even when the harmonic distortion factor of the arc current increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Discharge Heating (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 鉄源を連続的にアーク炉に供給して溶解する際に、炉内に供給された鉄源の状態の変化を検知して、アーク炉内の溶湯を安定状態で維持する。電極2から発生させたアーク放電により鉄源20を溶解する溶解室1と、この溶解室に鉄源を連続して供給する鉄源供給装置8とを具備するアーク溶解設備22であって、電極からアーク放電を発生させた際の溶解室の状態変化を検出する状態変化検出部12a、12b、12cと、当該状態変化検出部の検出結果に基づいて鉄源供給装置で溶解室に鉄源を供給する際の供給速度を調整する制御装置6と、を含むことを特徴とする。

Description

アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法
 本発明は、鉄スクラップ、直接還元鉄等の鉄源を連続的に供給してアークにより溶解して溶湯を製造する、アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法に関する。
 スクラップ等の鉄源の溶解・精錬を行うバッチ式の電気炉では、処理するスクラップは上方に配置した炉蓋を開きバスケットにより炉に投入する方法がとられているが、炉蓋を開く際に溶解作業を一時停止させる必要があり、また炉蓋を開くことによる熱損失が大きく、さらに発塵が環境を悪化させるという問題があった。これに対して、スクラップを投入する際に炉蓋を開くことなく連続的に炉内にスクラップを供給する電気炉が提案されている(例えば、特許文献1、特許文献2参照。)。
 図8は、特許文献1で提案されているスクラップ連続供給式電気炉(アーク溶解設備22)の構成を示す概略図である。電気炉(溶解室)1の側面にスクラップの投入口を設け、これにスクラップ供給装置(鉄源供給装置)8を連接し連続的に炉内にスクラップ(鉄源)15を供給する構造としている。
 図9は、特許文献2で提案されているスクラップ連続供給式電気炉(アーク溶解設備22)の構成を示す概略図である。電気炉1の側面に予熱室16を直結し、予熱室16内にプッシャー(押し出し装置)17を出入りさせて電気炉1内にスクラップ15を供給する構造を有している。
 このようなスクラップを連続供給する方式の電気炉では、炉内に溶湯を保持してその溶湯の持つエネルギーにより、供給されるスクラップを溶解する。供給エネルギーは溶湯の温度の維持に向けられ、溶湯温度はスクラップの融点以上に保つように調整されている。従って、スクラップを連続供給する方式の電気炉では、スクラップの供給量速度と、溶湯温度すなわち溶解のための供給エネルギーとのバランスが重要となる。
 そのため、このようなスクラップを連続供給する方式の電気炉の操業方法として、スクラップ連続投入式アーク炉において、スクラップ累積投入量から算出した炉内全溶湯量と、溶湯の測定温度値とを用いて、スクラップ投入後の溶湯温度を精度よく推定し、これにより適切な溶湯温度範囲内になるよう、スクラップ供給速度を制御する方法が知られている(例えば、特許文献3参照。)。
特表昭61−502899号公報 特開平11−257859号公報 特開平7−286208号公報
 特許文献3に記載の方法を用いれば、ある程度までは正確に炉内溶湯量を推定して、それに合わせてスクラップ搬送装置の速度制御を行うことができるが、実際にアーク炉内の状態を観察しているわけではないので、鉄源の供給量や、電気炉に供給するエネルギーを最適に調整できているわけではない点が問題である。
 すなわち、電気炉に供給されるスクラップにはさまざまな種類があり、鉄以外の成分が含まれ、溶湯になった時の量が異なるものが投入される。そのため、スクラップの投入量から算出して推定された炉内溶湯量と実際の精錬溶湯量に大きなが誤差が生じることとなる。そして、溶湯温度の推定も実際の温度と誤差が生じることとなる。
 また、形状やかさ比重等の異なるスクラップが供給される場合、ある長期の期間では供給された量を推定することができるが、短時間で見た場合は、実際に炉内に供給されるスクラップ量が変動している。短時間に大量のスクラップが供給された場合は、溶解のための供給エネルギーとのバランスがくずれて炉内にスクラップが山積状態となり、それを溶解するために多量のエネルギーが必要となり、溶解時間も長時間とする必要がある。アーク炉内でのスクラップの溶解速度に合わせてスクラップの投入速度をバランスよく制御することが溶解を円滑に行う上で重要である。
 したがって、その時々に電気炉に供給されてまだ溶解していない状態の鉄源の量と溶湯の量とを連続的に測定して、それらの量に応じて鉄源の供給量や、電気炉に供給するエネルギーを調整することが望ましい。しかし、上記のように鉄源の状態が時々刻々と変化するような場合に、電気炉内の鉄源の量や溶湯量を実際に連続して測定することは困難である。
 本発明の目的は、このような従来技術の課題を解決し、電気炉の中でも特に溶解室としてアーク炉を用いる場合であって、鉄源を連続的にアーク炉に供給して溶解する際に、炉内に供給された鉄源の状態の変化を検知して、アーク炉内の溶湯を安定状態で維持できる、アーク溶解設備およびアーク溶解設備の操業方法を提供することにある。
 本発明の一態様は、電極から発生させたアーク放電により鉄源を溶解する溶解室と、該溶解室に前記鉄源を連続して供給する鉄源供給装置とを具備するアーク溶解設備であって、前記電極から前記アーク放電を発生させた際の前記溶解室の状態変化を検出する状態変化検出部と、該状態変化検出部の検出結果に基づいて前記鉄源供給装置で前記溶解室に前記鉄源を供給する際の供給速度を調整する制御装置と、を含むことを特徴とするアーク溶解設備に関係する。
 本発明の一態様によれば、鉄源を連続的に溶解室となるアーク炉に供給して溶湯を製造する際に、炉内の鉄源の状態変化を間接的に素早く検出して、当該検出結果に応じて鉄源の供給速度を調整することができる。このため、アーク炉内の溶湯を安定した状態で維持できるようになる。
 また、本発明の一態様では、前記状態変化検出部は、前記溶解室の状態変化として、前記電極に供給される電流および電圧の少なくとも何れか1つの変動を検出することとしてもよい。
 このように、溶解室の状態変化として、電極に供給される電流および電圧の少なくとも何れか1つの変動に基づいて、炉内の鉄源の状態変化を間接的に素早く検出することによって、当該検出結果に応じて鉄源の供給速度を調整することができるようになる。
 また、本発明の一態様では、前記状態変化検出部は、前記電極に供給される前記電流および前記電圧の少なくとも何れか1つの変動として、前記電流および前記電圧に含まれる高調波量の少なくとも何れか1つの変動を検出することとしてもよい。
 このように、溶解室の状態変化として、電極に供給される電流および電圧の少なくとも何れか1つの変動として、電流および電圧に含まれる高調波量の少なくとも何れか1つの変動に基づいて、炉内の鉄源の状態変化を間接的に素早く検出することによって、当該検出結果に応じて鉄源の供給速度を調整することができるようになる。
 また、本発明の一態様では、前記状態変化検出部は、前記電極に供給される前記電流および前記電圧の少なくとも何れか1つの変動として、前記電流および前記電圧の少なくとも何れか1つの値または単位時間あたりの変化量を検出することとしてもよい。
 このように、溶解室の状態変化として、電極に供給される電流および電圧の少なくとも何れか1つの値または単位時間あたりの変化量に基づいて、炉内の鉄源の状態変化を間接的に素早く検出することによって、当該検出結果に応じて鉄源の供給速度を調整することができるようになる。
 また、本発明の一態様では、前記状態変化検出部は、前記溶解室の状態変化として、前記アーク放電の発生時に前記溶解室に伝わる前記炉体振動の変化を検出することとしてもよい。
 このように、溶解室の状態変化として、アーク放電の発生時の溶解室に伝わる炉体振動の変化に基づいて、炉内の鉄源の状態変化を間接的に素早く検出することによって、当該検出結果に応じて鉄源の供給速度を調整することができるようになる。
 また、本発明の一態様では、前記状態変化検出部は、前記溶解室の状態変化として、前記電極の位置の変動を検出することとしてもよい。
 このように、溶解室の状態変化として、電極の位置の変動に基づいて、炉内の鉄源の状態変化を間接的に素早く検出することによって、当該検出結果に応じて鉄源の供給速度を調整することができるようになる。
 また、本発明の一態様は、上記のアーク溶解設備を用いて前記鉄源を溶解して溶湯を製造する方法であって、前記アーク放電を発生させた際の前記溶解室の状態変化を検出する状態変化検出工程と、該状態変化検出工程の検出結果に基づいて前記溶解室に前記鉄源を供給する際の供給速度を調整する供給速度調整工程と、を含むことを特徴とするアーク溶解設備を用いた溶湯の製造方法に関係する。
 本発明の一態様によれば、鉄源を連続的に溶解室となるアーク炉に供給して溶湯を製造する際に、炉内の鉄源の状態変化を間接的に素早く検出して、当該検出結果に応じて鉄源の供給速度を調整することができる。このため、アーク炉内の溶湯を安定した状態で維持して溶湯を製造することができるようになる。
 また、本発明の一態様では、前記溶湯の製造方法は、前記状態変化検出部の検出結果に基づいて、前記供給速度に併せて前記電極に供給する電力を調整することとしてもよい。
 このように、鉄源の供給速度に併せて、アーク炉の電極に投入する電力を調整することによって、溶湯の状態をより安定的に制御することができるようになる。
 上記の溶湯の製造方法において、さらに、鉄源を予熱する予熱室の下部に配置される押し出し装置を駆動して鉄源を前記予熱室から溶解室に供給する鉄源供給工程と、
前記溶解室で発生する排ガスを前記予熱室に導入して該予熱室内の前記鉄源を予熱する鉄源予熱工程と、前記鉄源が前記予熱室と前記溶解室に存在する状態を保つように前記鉄源を前記予熱室に供給しながら、前記溶解室でアーク放電による加熱にて前記鉄源を溶解する鉄源溶解工程と、を含むこととしてもよい。
 このようにすれば、さらに生産性が向上し、かつ排ガスの熱回収効率を高めることができ、エネルギー効率を十分に向上させることができる。
 本発明によれば、鉄スクラップ等の鉄源を連続的にアーク炉に供給して溶湯を製造する際に、鉄源の炉内での状態の変化を間接的に素早く検知することができ、これに応じて操業条件を調整することで炉内の溶湯を安定した状態で維持できる。これにより、鉄源の溶解時間が延長されること無く、エネルギー効率のよい操業を行うことができる。
本発明のアーク溶解設備を用いた溶湯の製造方法の一実施形態の動作概要を示すフローチャートである。 本発明の一実施形態であり、電流および電圧の高調波検出とスクラップ供給装置制御回路の説明図である。 本発明の一実施形態であり、電流および電圧検出とスクラップ供給装置制御回路の説明図である。 本発明の一実施形態であり、炉体振動によるスクラップ検知とスクラップ供給装置制御回路の説明図である。 本発明の一実施形態であり、電極位置検出とスクラップ供給装置制御回路の説明図である。 スクラップ供給速度と高調波歪率の時間変化を示すグラフである。(本発明例) スクラップ供給速度と高調波歪率の時間変化を示すグラフである。(比較例) 従来のスクラップ連続供給式電気炉の構成を示す概略図である。 従来のスクラップ連続供給式電気炉の構成を示す概略図である。
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
 上記のように、鉄源を連続的にアーク炉(溶解室)に供給して溶湯を製造する際に、アーク炉内の鉄源や溶湯の状態を直接観察するのは困難である。本発明では、上記課題を解決するため、炉内の鉄源量が増加し、電極近傍の溶湯面上に鉄源が存在する状態となったときに、アークが電極から当該電極近傍の溶湯面上に存在する鉄源に対して飛び、その際に、電流に含まれる高調波量、電圧に含まれる高調波量、電流の変動、電圧の変動、電極の位置の変動、炉体振動等、溶解室の状態に影響を及ぼす状態因子に顕著な変化が現れることに着目した。そして、アーク炉内に鉄源が過剰に供給されて、当該鉄源が溶解し切れずに電極近傍の溶湯面上に残存する場合に、アーク炉の電極から当該溶湯面上に残存する鉄源へのアーク放電の発生を上記の溶解室の状態変化を検出することによって、間接的に検出し、該検出の有無に応じて鉄源をアーク炉に供給する速度を調整することで炉内の状態を安定に維持することが可能であることを見出し、本発明を完成した。なお、本明細書において、電流に含まれる高調波量、電圧に含まれる高調波量、電流の変動、電圧の変動、電極の位置の変動、炉体振動等、溶解室の状態変化に影響を及ぼす状態因子の変化を「溶解室の状態変化」と表記するものとする。
 ここで、本発明のアーク溶解設備を用いた溶湯の製造方法について、図面を使用しながら説明する。図1は、本発明のアーク溶解設備を用いた溶湯の製造方法の一実施形態の動作概要を示すフローチャートである。
 鉄源を連続的に溶解室に供給して(鉄源供給工程S11)、電極から発生させたアーク放電により鉄源を溶解する(鉄源溶解工程S12)。そして、アーク放電を発生させた際の溶解室の状態変化を検出する(状態変化検出工程S13)。前述したように、鉄源の状態が時々刻々と変化するような場合に、電気炉内の鉄源の量や溶湯量を実際に連続して測定することは困難であるので、本実施形態では、上述したような溶解室の状態変化を検出することによって、間接的に溶湯面上に残存する鉄源へのアーク放電の発生を検出する。状態変化検出工程S13で状態変化の発生を検出すると、溶解室に鉄源を供給する際の供給速度を調整する(供給速度調整工程S14)。
 状態変化検出工程S13では、アーク炉の電極から炉内の溶湯面上に残存する鉄源へのアーク放電の発生の検出は、アーク炉(溶解室)の状態変化として、炉体振動、電極の位置の変動、電流の変動、電圧の変動、電流に含まれる高調波量、電圧に含まれる高調波量の少なくとも1つを計測して、その変化を検出する。そして、供給速度調整工程S14では、状態変化検出工程S13で検出された溶解室の状態変化のうち、少なくとも1つ、または複数の組み合わせを用いて、鉄源の供給速度の調整を行う。具体的には、状態変化検出工程S13で鉄源の供給が過剰であるために、溶湯面上に残存する鉄源へのアーク放電が発生したことを高調波量の変動を元に検出すると、溶解室への鉄源の供給を停止する。なお、鉄源が溶解室内で余分に残存した状態を解消するために、鉄源の供給速度を低減させるように制御してもよい。また、溶解室の状態変化を精度良く検出するために、前述の溶解室の各状態変化のうち、複数の検出結果を元に検出することが好ましい。特に、検出が容易であり、変化の検知に優れている点から、電流や電圧に含まれる高調波量を用いることが好ましい。高調波量は、具体的には、アーク炉に給電される電流または電圧を測定し、その周波数解析により得られる高調波から得られるものであり、例えば高調波歪率を用いることができる。
 本発明で用いるアーク溶解設備としては、アーク炉と、アーク炉に鉄源を連続して供給する鉄源供給装置と、溶解室の状態変化の検出部と、検出部からの出力を用いて鉄源供給装置の供給速度を調整する制御装置とを有するものを用いることができる。溶解室の状態変化の検出部とは、アーク炉の電極からアーク炉内に供給された鉄源へのアーク放電の発生を検出可能な装置である。
 鉄源の供給速度を制御する替わりに、アーク炉に投入する電力を調整することも考えられるが、供給速度を変えずにアーク電力を増大させることは、炉内の鉄源に加えて新たに供給される鉄源をも溶解する必要があるため、大きな電力が必要になり、本発明の目的であるエネルギー効率の良い操業を達成できない。しかし、鉄源の状態を検知し、これを用いて鉄源の供給速度とアーク炉に投入する電力の両方を制御することも可能である。
 例えば、本発明を適用するアーク溶解設備として、特許文献2に記載されているような鉄源を溶解する溶解室と、該溶解室に供給する鉄源を予熱するために溶解室に直結して設けられるシャフト型の予熱室と、溶解室内に供給される鉄源を溶解するために溶解室内に設けられる電極と、予熱室の下部に配置され、予熱室から供給される鉄源を電極の方向に移動させる押し出し装置とを有するタイプのアーク溶解設備を用い、溶解室で発生する排ガスを予熱室に導入して予熱室内の鉄源を予熱し、鉄源が予熱室と溶解室とに存在する状態を保つように鉄源を予熱室へ供給しながら、溶解室でアーク加熱にて鉄源を溶解するような操業を行う際に本発明を用いると、さらに生産性を落とすことなく、エネルギー効率を十分に向上させることができるので非常に好ましい。この場合は押し出し装置の駆動装置に制御機構を設け、鉄源の供給速度を制御する。
 上記のようなアーク溶解設備を用いた場合、鉄源の供給は押し出し装置を用いて行われるため、1回の押し出し終了後に押し出し装置を押し出しの開始位置に復帰させる必要があるため、供給が完全に連続して行われるわけではないが、このような所定の間隔で継続的に供給する場合も、アーク炉への鉄源の供給は連続的であるものとする。連続的でない供給とは、バッチ式のようにバスケット等を用いて鉄源をまとめて落下させるような方式の供給であり、1回分の鉄源のアーク炉への供給を開始すると、途中で止めることができないような供給形態を指す。
 なお、鉄源とは鉄スクラップ、直接還元鉄等のアーク溶解設備における溶解処理対象物であり、鉄スクラップは、例えば、ステンレス屑、銑鉄、ミルスケール、伸鉄材等で、鉄鋼メーカーでの製鋼や加工過程、工場での鉄製品使用時の加工過程、あるいは建物や自動車、家電、橋梁等が解体されたときなどに発生するものである。
 次に、本発明の各実施形態の詳細について、図面を用いて詳しく説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 (第1の実施形態)
 図2は、本発明のアーク溶解設備の第1の実施形態の概略構成の説明図であり、アーク溶解に用いる電流あるいは電圧の高調波を用いて炉内スクラップ状態を検知する場合の図である。本実施形態では、溶解室1の状態変化を検出する状態変化検出部として、アーク炉1への給電線11(11a、11b、11c)に電気的センサ12(12a、12b、12c)を取り付け、給電線11の電流あるいは電圧波形を測定する。測定した波形を信号処理装置13でフーリエ変換することで含まれる高調波を算出し、信号処理後状態信号14(14a、14b、14c)として制御装置6に入力する。炉内の鉄源が供給過剰となり、電極近傍に存在する状態が発生すると、アークが電極から鉄源に対して飛び、電流あるいは電圧の高調波が変化する。信号処理後状態信号14の値あるいは時間単位の変化量が所定の値以上になった場合、制御装置6から制御信号7を鉄源供給装置となるスクラップ供給装置8に送り、スクラップ供給速度を低下もしくは停止させる。その後、測定値が別の所定の値まで下がったら、制御装置6から制御信号7をスクラップ供給装置8に送って、スクラップ供給速度を所定の速度まで増加させる。
 アーク溶解に用いる電流あるいは電圧の高調波を用いて炉内スクラップ状態を検知する場合には、信号処理後状態信号14として、高調波歪率を用いることが好ましい。具体的には、高調波歪率を連続して測定し、2つの閾値(高調波判定値)を設け、高い閾値を高調波判定値H、低い閾値を高調波判定値Lとする。鉄源のアーク炉での溶解中に、異常が発生し、鉄源が電極近傍に存在する状態となると、高調波歪率が高調波判定値Hを超えるように高調波判定値Hを設定し、鉄源の溶解が進んで炉内がフラットバスの状態に近くなると高調波歪率が高調波判定値L未満となるように高調波判定値Lを設定する。これにより、高調波歪率が高調波判定値Hを超えた場合に、鉄源供給速度を低下させ、高調波歪率が高調波判定値L未満となった場合に、鉄源供給速度を増加させる制御を行うことで、炉内に鉄源が過剰供給となる異常が発生しても、すみやかに現状復帰させ、安定状態で溶湯の製造を継続することが可能となる。
 (第2の実施形態)
 図3は、本発明のアーク溶解設備の第2の実施形態の概略構成の説明図であり、アーク溶解に用いる電流あるいは電圧により炉内のスクラップ状態を検知する場合の図である。本実施形態では、溶解室1の状態変化を検出する状態変化検出部として、アーク炉1への給電線11(11a、11b、11c)に電気的センサ12(12a、12b、12c)を取り付けて給電線11の電流あるいは電圧を測定する。炉内の鉄源が供給過剰となり、鉄源が電極近傍に存在する状態が発生すると、アークが電極から鉄源に対して飛び、電流あるいは電圧が変化する。電気的センサ12の状態信号5(5a、5b、5c)を制御装置6に入力し、給電線11の電流あるいは電圧の値あるいは時間単位の変化量が所定の値以上になった場合、制御信号7を鉄源供給装置となるスクラップ供給装置8に送り、スクラップ供給速度を低下もしくは停止させる。その後、測定値が別の所定の値まで下がったら、制御装置6から制御信号7をスクラップ供給装置8に送って、スクラップ供給速度を所定の速度まで増加させる。
 (第3の実施形態)
 図4は、本発明のアーク溶解設備の第3の実施形態の概略構成の説明図であり、炉体振動により炉内の鉄源の状態を検知する場合を示す。本実施形態では、アーク炉炉体(溶解室)1に溶解室1の状態変化を検出する状態変化検出部として、加速度センサ4(状態変化検出部)を取り付けて連続的に炉体振動を測定し、その状態信号5を制御装置6に入力する。炉内の鉄源が供給過剰となり、電極近傍に存在する状態が発生すると、アークが電極から鉄源に対して飛び、炉体振動が変化するので、加速度センサ4の測定値が所定の値以上になった場合、制御信号7を鉄源供給装置となるスクラップ供給装置8に送り、スクラップ供給速度を低下もしくは停止させる。その後、測定値が別の所定の値まで下がったら、制御装置6から制御信号7をスクラップ供給装置8に送って、スクラップ供給速度を所定の速度まで増加させる。これにより炉内の鉄源の供給過剰状態はすみやかに解消されて、安定した操業を継続することができる。
 (第4の実施形態)
 図5は、本発明のアーク溶解設備の第4の実施形態の概略構成の説明図であり、電極位置変化により炉内のスクラップ状態を検知する場合を示す。本実施形態では、溶解室1の状態変化を検出する状態変化検出部として、電極の電極昇降装置3の可動部分に電極位置検出器9を取り付けて連続的に電極位置を測定し、その信号を制御装置6に入力する。炉内の鉄源が供給過剰となり、電極近傍に存在する状態が発生すると、アークが電極から鉄源に対して飛び、電流および電圧の変動が大きくなり電流値を設定値にするべく電極の位置の変動量が増大するので、電極位置の時間単位の変化量が所定の値以上になった場合、制御信号7を鉄源供給装置となるスクラップ供給装置8に送り、スクラップ供給速度を低下もしくは停止させる。その後、測定値が別の所定の値まで下がったら、制御装置6から制御信号7をスクラップ供給装置8に送って、スクラップ供給速度を所定の速度まで増加させる。
 なお、上記の実施形態においては鉄源の供給速度を制御することで鉄源の溶解状態を制御したが、併せてアーク炉に投入する電力を調整することでも溶湯の状態をより安定的に制御することができる。
 また、上記のように、電流に含まれる高調波量、電圧に含まれる高調波量、電流の変動、電圧の変動、炉体振動、電極の位置の変動は、それぞれ単独で鉄源の状態を検知するのに用いることができるが、これらを2つ以上組み合わせることで、よりスクラップの状態を正確に把握して、一層炉内の状態を安定させることができる。例えば、アーク電流変動と、アーク電流に含まれる高調波量とを用いて、スクラップの状態を検知する。
 図2に示すアーク溶解設備を用いて、鉄スクラップの溶解試験を行った。
 図6に、前述した第1の実施形態のアーク溶解設備を用いた溶湯の製造方法として、電極に供給する電流の高調波を測定して、スクラップ供給速度を変更した場合の例を示す。一定の速度でアーク炉にスクラップを供給し、アーク電流の測定点に高調波解析装置を設置し、高調波歪率を求めた。なお、高調波歪率とは、発生した全ての高調波の実行値の和が、基本周波数の実行値に対して何パーセントであるかを表したものである。
 本実施例は、高調波歪率が所定の値(高調波判定値H)を超えた場合に、スクラップが炉内で電極近傍に存在する状態になったと判定して、スクラップ供給を停止するものである。炉内にスクラップが増加してくると、高調波歪率が増加してくる。高調波判定値Hを超えた時(図6における時間a)にスクラップ供給を停止すると、スクラップの溶解が進み、次第に高調波歪率が低下してくる。高調波歪率の低下はアークが溶湯に向かって飛び、スクラップが電極近傍に無くなったことを意味する。
 高調波歪率が所定の値(高調波判定値L)まで低下したことを検出したところで(図6における時間b)、再びスクラップ供給を所定の速度で開始する。これにより炉内状況の変化をすばやく検知して、すみやかに定常状態に戻してスクラップの溶解を継続することができた。
 図7は本発明の比較例であり、アーク電流の高調波歪率が増加しても、スクラップ供給速度を変化させない場合を示す。本発明を用いる場合は、図7における時間aの時点でスクラップの供給を停止または供給量を減少させるが、スクラップの供給を継続したので、炉内にスクラップが増加し、高調波歪率が増大して、その状態が継続している。これはすなわち、スクラップが溶け切らずに残り続けていることを示し、このような状態で操業を継続すると過剰なエネルギー投入が必要となり、溶解時間も増大し、エネルギー効率が低下するとともに、生産性も低下した。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1  アーク炉(溶解室)
 2(2a、2b、2c)  電極
 3  電極昇降装置
 4  加速度センサ(状態変化検出部)
 5(5a、5b、5c)  状態信号
 6  制御装置
 7  制御信号
 8  スクラップ供給装置(鉄源供給装置)
 9  電極位置検出器(状態変化検出部)
 10  電源装置
 11(11a、11b、11c)  給電線
 12(12a、12b、12c)  電気的センサ(状態変化検出部)
 13  信号処理装置
 14(14a、14b、14c)  信号処理後状態信号
 15  スクラップ(鉄源)
 16  予熱室
 17  押し出し装置
 20  溶湯
 21  アーク
 22  アーク溶解設備

Claims (10)

  1.  電極から発生させたアーク放電により鉄源を溶解する溶解室と、該溶解室に前記鉄源を連続して供給する鉄源供給装置とを具備するアーク溶解設備であって、
     前記電極から前記アーク放電を発生させた際の前記溶解室の状態変化を検出する状態変化検出部と、
     該状態変化検出部の検出結果に基づいて前記鉄源供給装置で前記溶解室に前記鉄源を供給する際の供給速度を調整する制御装置と、を含むことを特徴とするアーク溶解設備。
  2.  前記状態変化検出部は、前記溶解室の状態変化として、前記電極に供給される電流および電圧の少なくとも何れか1つの変動を検出することを特徴とする請求項1に記載のアーク溶解設備。
  3.  前記状態変化検出部は、前記電極に供給される前記電流および前記電圧の少なくとも何れか1つの変動として、前記電流および前記電圧に含まれる高調波量の少なくとも何れか1つの変動を検出することを特徴とする請求項2に記載のアーク溶解設備。
  4.  前記状態変化検出部は、前記電極に供給される前記電流および前記電圧の少なくとも何れか1つの変動として、前記電流および前記電圧の少なくとも何れか1つの値または単位時間あたりの変化量を検出することを特徴とする請求項2に記載のアーク溶解設備。
  5.  前記状態変化検出部は、前記溶解室の状態変化として、前記アーク放電の発生時に前記溶解室に伝わる前記炉体振動の変化を検出することを特徴とする請求項1に記載のアーク溶解設備。
  6.  前記状態変化検出部は、前記溶解室の状態変化として、前記電極の位置の変動を検出することを特徴とする請求項1に記載のアーク溶解設備。
  7.  請求項1から請求項6の何れかに記載のアーク溶解設備を用いて前記鉄源を溶解して溶湯を製造する方法であって、
    前記アーク放電を発生させた際の前記溶解室の状態変化を検出する状態変化検出工程と、
    該状態変化検出工程の検出結果に基づいて前記溶解室に前記鉄源を供給する際の供給速度を調整する供給速度調整工程と、
    を含むことを特徴とするアーク溶解設備を用いた溶湯の製造方法。
  8.  前記状態変化検出工程の検出結果に基づいて、前記供給速度を調整する前記供給速度調整工程に併せて、前記電極に供給する電力を調整する供給電力調整工程を更に含むことを特徴とする請求項7に記載のアーク溶解設備を用いた溶湯の製造方法。
  9.  さらに、鉄源を予熱する予熱室の下部に配置される押し出し装置を駆動して鉄源を前記予熱室から溶解室に供給する鉄源供給工程と、
    前記溶解室で発生する排ガスを前記予熱室に導入して該予熱室内の前記鉄源を予熱する鉄源予熱工程と、
    前記鉄源が前記予熱室と前記溶解室に存在する状態を保つように前記鉄源を前記予熱室に供給しながら、前記溶解室でアーク放電による加熱にて前記鉄源を溶解する鉄源溶解工程と、
    を含むことを特徴とする請求項7に記載のアーク溶解設備を用いた溶湯の製造方法。
  10.  さらに、鉄源を予熱する予熱室の下部に配置される押し出し装置を駆動して鉄源を前記予熱室から溶解室に供給する鉄源供給工程と、
    前記溶解室で発生する排ガスを前記予熱室に導入して該予熱室内の前記鉄源を予熱する鉄源予熱工程と、
    前記鉄源が前記予熱室と前記溶解室に存在する状態を保つように前記鉄源を前記予熱室に供給しながら、前記溶解室でアーク放電による加熱にて前記鉄源を溶解する鉄源溶解工程と、
    を含むことを特徴とする請求項8に記載のアーク溶解設備を用いた溶湯の製造方法。
PCT/JP2010/064659 2009-08-27 2010-08-23 アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法 WO2011024982A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20100812031 EP2471959A1 (en) 2009-08-27 2010-08-23 Arc melting facility, and method for manufacturing molten metal using the arc melting facility
US13/392,403 US20120152057A1 (en) 2009-08-27 2010-08-23 Electric arc melting facility and method for producing molten metal by using the electric arc melting facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009196451 2009-08-27
JP2009-196451 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024982A1 true WO2011024982A1 (ja) 2011-03-03

Family

ID=43628077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064659 WO2011024982A1 (ja) 2009-08-27 2010-08-23 アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法

Country Status (7)

Country Link
US (1) US20120152057A1 (ja)
EP (1) EP2471959A1 (ja)
JP (1) JP2011069606A (ja)
KR (1) KR20120064684A (ja)
CN (2) CN102003875A (ja)
TW (1) TWI401405B (ja)
WO (1) WO2011024982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676736A (zh) * 2011-03-17 2012-09-19 大同特殊钢株式会社 电弧炉的熔解状态判定装置
US20140326424A1 (en) * 2011-11-02 2014-11-06 Tohoku Techno Arch Co., Ltd. Arc melting furnace apparatus and method of arc melting melt material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120064684A (ko) * 2009-08-27 2012-06-19 스틸플랜테크가부시키가이샤 아크 용해 설비 및 그 아크 용해 설비를 이용한 용탕의 제조 방법
JP5726103B2 (ja) * 2011-03-17 2015-05-27 大同特殊鋼株式会社 アーク炉の溶解状態判定装置
TWI530650B (zh) * 2011-03-17 2016-04-21 Daido Steel Co Ltd And the melting state determining device of the electric arc furnace
CN102798294B (zh) * 2012-06-19 2014-03-12 合肥瑞石测控工程技术有限公司 一种管式工业炉炉管温度实时监测及安全预警装置
EP3052948B1 (en) * 2013-09-30 2018-07-18 Mintek Measurement of electrical variables on a dc furnace
CN103900375B (zh) * 2014-04-18 2016-01-20 大连理工大学 电弧炉冶炼电熔镁预防喷炉系统及方法
WO2018176119A1 (en) * 2017-03-31 2018-10-04 Hatch Ltd. Open arc condition mitigation based on measurement
KR20220030285A (ko) * 2019-09-10 2022-03-10 제이에프이 스틸 가부시키가이샤 전기로에 의한 용철의 제조 방법
CN112280932A (zh) * 2020-11-23 2021-01-29 中冶赛迪工程技术股份有限公司 电弧炉冶炼废钢熔化状态的过程检测系统
JP7126081B1 (ja) 2021-02-10 2022-08-26 Jfeスチール株式会社 映像装置を備える電気炉を用いた溶鉄の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502899A (ja) 1984-08-02 1986-12-11 インタ−ステイ−ル テクノロジイ,インコ−ポレイテイド 連続製鋼法および装置
JPH03127486A (ja) * 1989-10-12 1991-05-30 Ebara Infilco Co Ltd プラズマ溶融装置
JPH07286208A (ja) 1994-04-15 1995-10-31 Nippon Steel Corp スクラップ連続投入式アーク炉の操業方法
JPH1183330A (ja) * 1997-09-04 1999-03-26 Nkk Corp アーク溶解炉の溶解進捗評価方法
JPH11257859A (ja) 1998-03-11 1999-09-24 Nkk Corp 冷鉄源の溶解方法及び溶解設備

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925727B2 (ja) * 1990-11-30 1999-07-28 新日本製鐵株式会社 アーク炉における装入原料の溶解状況検知方法及びその装置並びにアーク炉用水冷パネル
JP2978027B2 (ja) * 1993-04-06 1999-11-15 新日本製鐵株式会社 電気炉炉況検出方法
JPH07145420A (ja) * 1993-09-30 1995-06-06 Ishikawajima Harima Heavy Ind Co Ltd 電気アーク溶解炉
JP4264467B2 (ja) * 1999-06-04 2009-05-20 Dowaメタルマイン株式会社 電気炉用電極の制御装置および方法
DE102007041632A1 (de) * 2006-09-18 2008-04-03 Sms Demag Ag Verfahren zum Betreiben eines schmelzmetallurgischen Ofens und Ofen
JP2008116066A (ja) * 2006-10-31 2008-05-22 Nisshin Steel Co Ltd 電気炉の操業方法
ITUD20070075A1 (it) * 2007-04-26 2008-10-27 Danieli Automation Spa Procedimento di controllo dell'alimentazione della carica metallica per forni elettrici ad arco
KR20120064684A (ko) * 2009-08-27 2012-06-19 스틸플랜테크가부시키가이샤 아크 용해 설비 및 그 아크 용해 설비를 이용한 용탕의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502899A (ja) 1984-08-02 1986-12-11 インタ−ステイ−ル テクノロジイ,インコ−ポレイテイド 連続製鋼法および装置
JPH03127486A (ja) * 1989-10-12 1991-05-30 Ebara Infilco Co Ltd プラズマ溶融装置
JPH07286208A (ja) 1994-04-15 1995-10-31 Nippon Steel Corp スクラップ連続投入式アーク炉の操業方法
JPH1183330A (ja) * 1997-09-04 1999-03-26 Nkk Corp アーク溶解炉の溶解進捗評価方法
JPH11257859A (ja) 1998-03-11 1999-09-24 Nkk Corp 冷鉄源の溶解方法及び溶解設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEEL PLANTECH CO., KANKYO TAIOGATA KO KORITSU ARC-RO, YUSHU KANKYO SOCHI, vol. 32, June 2006 (2006-06-01), pages 87 - 95, XP008158424 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676736A (zh) * 2011-03-17 2012-09-19 大同特殊钢株式会社 电弧炉的熔解状态判定装置
KR20120106651A (ko) * 2011-03-17 2012-09-26 다이도 스틸 코오퍼레이션 리미티드 아크로의 용해 상태 판정 장치
KR101877060B1 (ko) * 2011-03-17 2018-07-10 다이도 스틸 코오퍼레이션 리미티드 아크로의 용해 상태 판정 장치
US20140326424A1 (en) * 2011-11-02 2014-11-06 Tohoku Techno Arch Co., Ltd. Arc melting furnace apparatus and method of arc melting melt material

Also Published As

Publication number Publication date
US20120152057A1 (en) 2012-06-21
TWI401405B (zh) 2013-07-11
JP2011069606A (ja) 2011-04-07
CN201828130U (zh) 2011-05-11
EP2471959A1 (en) 2012-07-04
CN102003875A (zh) 2011-04-06
TW201115092A (en) 2011-05-01
KR20120064684A (ko) 2012-06-19

Similar Documents

Publication Publication Date Title
WO2011024982A1 (ja) アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法
US9370053B2 (en) Method for controlling a melt process in an arc furnace and signal processing component, program code and data medium for performing said method
JPWO2010116695A1 (ja) アーク溶接方法およびアーク溶接装置
US20120199560A1 (en) Welding device and carbon dioxide gas shielded arc welding method
US20160346864A1 (en) Arc welding method
JP6460910B2 (ja) エレクトロスラグ溶接方法及びエレクトロスラグ溶接装置
WO2017029783A1 (ja) アーク溶接制御方法
US20140301423A1 (en) Method for operating arc furnace
JP4188218B2 (ja) プラズマ溶融炉の電源の制御方法及び同装置
JP2004237342A (ja) パルス出力制御方法及び消耗電極式パルスアーク溶接装置
US5539768A (en) Electric arc furnace electrode consumption analyzer
CN102189314B (zh) 非熔化电极电弧焊接控制方法
JP2009183988A (ja) アーク溶接制御方法およびアーク溶接装置
JP5555921B2 (ja) 電気炉の操業方法
JP2018034180A (ja) タンディッシュ内溶鋼の加熱方法及びタンディッシュプラズマ加熱装置
JP3645306B2 (ja) 電気炉設備
RU2567425C1 (ru) Способ управления выплавкой стали в дуговой сталеплавильной печи
JP2014052144A (ja) 電極昇降装置
CN103092095B (zh) 矿热炉出炉时间间隔的控制方法
JP2013094850A (ja) アーク溶接制御方法およびアーク溶接装置
RU2576213C1 (ru) Устройство для загрузки металлизованных окатышей в дуговую печь
RU2567426C1 (ru) Дуговая печь для электроплавки стали
JP2011240359A (ja) アーク溶接機のワイヤ送給速度制御方法
JP4663309B2 (ja) パルスアーク溶接のアーク長制御方法
JP2007217754A (ja) 溶融亜鉛ポットの浴温制御方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812031

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13392403

Country of ref document: US

Ref document number: 424/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010812031

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007317

Country of ref document: KR

Kind code of ref document: A