WO2011024939A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2011024939A1
WO2011024939A1 PCT/JP2010/064562 JP2010064562W WO2011024939A1 WO 2011024939 A1 WO2011024939 A1 WO 2011024939A1 JP 2010064562 W JP2010064562 W JP 2010064562W WO 2011024939 A1 WO2011024939 A1 WO 2011024939A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
insulating layer
semiconductor device
external terminal
semiconductor
Prior art date
Application number
PCT/JP2010/064562
Other languages
English (en)
French (fr)
Inventor
秀哉 村井
森 健太郎
山道 新太郎
小室 雅宏
連也 川野
Original Assignee
日本電気株式会社
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, ルネサスエレクトロニクス株式会社 filed Critical 日本電気株式会社
Priority to US13/392,714 priority Critical patent/US20120153501A1/en
Priority to JP2011528862A priority patent/JPWO2011024939A1/ja
Publication of WO2011024939A1 publication Critical patent/WO2011024939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/5448Located on chip prior to dicing and remaining on chip after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02379Fan-out arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/211Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the present invention relates to a semiconductor device in which a semiconductor chip is embedded in an insulating layer and a wiring conductor is formed on the insulating layer, and a manufacturing method thereof, and more particularly, a semiconductor chip having a large number of external terminals and a small pitch of external terminals.
  • the present invention relates to a semiconductor device using the semiconductor device and a manufacturing method thereof.
  • semiconductor devices called “chip-embedded substrates” in which individual semiconductor chips or the like are embedded in an insulating layer such as a resin substrate, and semiconductor devices in which an insulating resin layer and a wiring layer are formed on a semiconductor chip have attracted attention. Yes.
  • an individualized chip produced by dividing a group of chips formed on a wafer at once by dicing or the like is mounted on a support substrate, and a support including the individualized chips is provided.
  • An insulating layer and a metal wiring layer are formed on the substrate to form an external lead pad.
  • the base surface of the IC chip 103 is bonded to the metal heat radiating plate 101 with the metal paste 102, and the IC chip 103 bonded to the metal heat radiating plate 101 is disposed around and on the upper side.
  • a plurality of insulating resin layers 104a, 104b, and 104c are formed, and the mounting pad 131 of the IC chip 103 is joined to the wiring conductor 107 formed by plating in the through hole of the lowermost insulating resin layer 104a to provide insulation.
  • the BGA mounting pad is connected to the BGA mounting pad 108 formed on the surface of the uppermost insulating resin layer 104c via the wiring conductor 107 formed by plating on the surface of the layer resin layer 104b and the inside of the through hole.
  • a ball grid array package having a BGA solder bump 109 formed thereon is disclosed (108). Come Example 1; see FIG. 5).
  • interlayer resin insulating layers 250 and 251 and conductor circuits 258 and 259 are repeatedly formed on the core substrate 230, via holes 260 and 261 are formed in the interlayer resin insulating layers 250 and 251;
  • substrate 230 is disclosed. (Conventional example 2; see FIG. 6).
  • JP 2001-332863 A (FIGS. 1 to 5 and 7)
  • Patent Documents 1 and 2 are incorporated herein by reference. The following analysis is given by the present invention.
  • Patent Documents 1 and 2 have the following problems.
  • a plurality of chips are mounted on a support plate and are simultaneously applied to the plurality of semiconductor chips. It is desirable to form an insulating layer (in a lump) to form vias and wiring.
  • an insulating layer in a lump
  • vias are formed with a laser or the like, and a plating resist connected to the vias is formed on the insulating layer. Then, exposure is performed in a lump using a mask extending to the semiconductor chip region, and then development and plating wiring are formed.
  • the positioning mark is formed on the core substrate with reference to the alignment mark of each IC chip.
  • the shrinkage of the IC chip is not taken into consideration, the same as described above due to the chip shrinkage. Problems arise. Further, the technique described in Patent Document 2 has a problem that the pad position and the via position are shifted after the chip contraction because the pad position shift is not considered due to the chip contraction in mounting a plurality of chips.
  • the main object of the present invention is to provide a semiconductor device that can be applied to a semiconductor chip having a large number of terminals and a narrow pitch, and has a high yield and excellent reliability, and a manufacturing method thereof.
  • the semiconductor chip in a semiconductor device in which a semiconductor chip having an external terminal is embedded in an insulating layer and a wiring conductor is formed on the insulating layer, the semiconductor chip is formed on the insulating layer.
  • a pilot hole is formed at a position corresponding to the external terminal in a state where the semiconductor chip is contracted after being embedded, and the wiring conductor is electrically connected to the external terminal through the pilot hole.
  • the wiring conductor is formed so as to correspond to the external terminal after the semiconductor chip is embedded and the semiconductor chip is contracted, and is embedded in the pilot hole. It is preferable that the external terminal is electrically connected through a via wiring.
  • the wiring conductor is formed so as to correspond to the external terminal after the semiconductor chip is embedded and the semiconductor chip is contracted, and the external conductor is formed through the pilot hole. It is preferable that the terminal is directly connected.
  • the semiconductor chip preferably has a thickness of 50 ⁇ m or less.
  • the semiconductor chip is mounted on a support plate, and the insulating layer is formed on the support plate including the semiconductor chip to embed the semiconductor chip.
  • the support plate is preferably a metal plate.
  • the thickness of the semiconductor chip is thinner than the thickness of the support plate.
  • the insulating layer is preferably made of a resin.
  • the resin is preferably a thermosetting resin.
  • the semiconductor chip is preferably a plurality of semiconductor chips.
  • a thermal expansion coefficient of the support plate is larger than a thermal expansion coefficient of the semiconductor chip.
  • the thermal expansion coefficient of the insulating layer is preferably larger than the thermal expansion coefficient of the semiconductor chip.
  • the semiconductor in a method of manufacturing a semiconductor device in which a semiconductor chip having an external terminal is embedded in an insulating layer and a wiring conductor is formed on the insulating layer, the semiconductor is included in the insulating layer.
  • the method includes a step of forming the wiring conductor corrected to correspond to the terminal.
  • the semiconductor chip after forming the pilot hole, may correspond to the contracted external terminal on the insulating layer including the pilot hole and the external terminal. It is preferable to include a step of forming the corrected wiring conductor.
  • a step of mounting the semiconductor chip on a support plate, and after mounting the semiconductor chip, on the support plate including the semiconductor chip it is preferable to include the step of embedding the semiconductor chip in the insulating layer by forming the insulating layer.
  • the support plate is removed after the wiring conductor is formed.
  • the semiconductor chip contracts by forming a pilot hole that communicates with the external terminal at a position corresponding to the external terminal in a contracted state of the semiconductor chip.
  • the problem that the position of the external terminal and the pilot hole is shifted can be eliminated, the connection pitch with the semiconductor chip can be narrowed, and a semiconductor chip with a large number of external terminals and a narrow pitch can be built in with high productivity.
  • a semiconductor device with a built-in semiconductor chip with high yield and excellent reliability can be obtained.
  • the thickness of the semiconductor chip when the insulating layer filling the semiconductor chip is opaque, or in the case of a semiconductor chip thinned to 50 ⁇ m or less, when the semiconductor chip is mounted on the support plate, the thickness of the semiconductor chip is When the thickness of the support plate is thinner, when the insulating layer is a thermosetting resin, when mounting a plurality of semiconductor chips on the support plate, the thermal expansion coefficient of the support plate is larger than the thermal expansion coefficient of the semiconductor chip. In this case, since the semiconductor chip is greatly contracted, the effect of the present invention is particularly great.
  • FIG. 10 is a cross-sectional view schematically showing a configuration of a semiconductor device according to Conventional Example 3.
  • FIG. 10 is a cross-sectional view schematically showing a configuration of a semiconductor device according to Conventional Example 3.
  • a semiconductor chip (1 in FIG. 1) having an external terminal (1a in FIG. 1) is embedded in an insulating layer (4 in FIG. 1), and a wiring is formed on the insulating layer.
  • the insulating layer is provided with a pilot hole (in a position corresponding to the external terminal after the semiconductor chip is embedded and the semiconductor chip is contracted). 4a) is formed, and the wiring conductor is electrically connected to the external terminal through the pilot hole.
  • a semiconductor chip (1 in FIG. 3C) having an external terminal (1a in FIG. 3C) is an insulating layer (4 in FIG. 3C).
  • the semiconductor chip is embedded in the insulating layer (FIG. 3A).
  • a pilot hole (4a in FIG. 3B) communicating with the external terminal is formed in the insulating layer at a position corrected to correspond to the external terminal in a contracted state of the semiconductor chip. Step (FIG. 3B) is included.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a semiconductor device according to Example 1 of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of a modification of the semiconductor device according to the first embodiment of the present invention.
  • the semiconductor device is a semiconductor device in which a semiconductor chip 1 having an external terminal 1 a (pad) is embedded in an insulating layer 4 and a wiring conductor 6 is formed on the insulating layer 4. is there.
  • a pilot hole 4 a communicating with the external terminal 1 a is formed at a position corresponding to the external terminal 1 a in a state where the semiconductor chip 1 is contracted after the semiconductor chip 1 is embedded.
  • the wiring conductor 6 is electrically connected to the external terminal 1a through the pilot hole 4a.
  • the semiconductor chip 1 is obtained by dividing a semiconductor on a wafer having semiconductor elements collectively formed on the wafer or the like by dicing or the like. In general, semiconductor elements such as LSI are collectively formed on a wafer. In the semiconductor chip 1, semiconductor elements are formed on a semiconductor substrate, insulating layers and wiring layers are alternately formed on the semiconductor substrate including the semiconductor elements, and the lowermost wiring layer and the semiconductor elements are electrically connected via plugs. The wiring layers are electrically connected via via wiring, and an insulator such as a solder resist is formed on the insulating layer including the uppermost wiring layer. A pilot hole leading to the portion is formed, and the external terminal 1a is formed on the uppermost wiring layer exposed from the pilot hole.
  • the external terminal 1a is a terminal for electrically connecting a semiconductor element built around the chip surface and the outside, and is also called an LSI pad or the like.
  • the external terminal 1a is connected to any one of a power source, a ground, a signal, and the like.
  • a material mainly containing Al, a material mainly containing Cu, or the like is often used, but the external terminal 1a is not limited thereto.
  • the external terminals 1a are generally formed in a lump in a wafer state, but can also be formed after dicing.
  • the semiconductor chip 1 is mounted on the support plate 3.
  • the semiconductor chip 1 is embedded in the insulating layer 4.
  • the semiconductor chip 1 does not receive much compressive stress immediately after being embedded in the insulating layer 4 unlike the dotted line semiconductor chip (the semiconductor chip 2 before shrinkage), but when cooled, like the solid line semiconductor chip 1 Shrinks under compressive stress.
  • embedded means that the semiconductor chip 1 is embedded in the insulating layer 4, but when the semiconductor chip 1 is partially embedded in addition to the case where it is completely embedded. For example, a part of the back surface or top surface of the semiconductor chip 1 may be exposed.
  • the shrinkage of the semiconductor chip 1 due to compressive stress becomes particularly noticeable when the semiconductor chip 1 is thinned.
  • the effect of the present invention (external terminal 1 a and pilot hole 4 a (Effect of eliminating the positional deviation) is particularly large. That is, when the semiconductor chip 1 is thin, the stress per unit cross-sectional area increases, so that the shrinkage of the semiconductor chip 1 increases, and the shrinkage of the semiconductor chip 1 is accompanied by the pilot hole 4a (via wiring 5 or wiring conductor 6). ) Is increased, and according to the first embodiment, the pilot hole 4a is formed at a position corresponding to the external terminal 1a in a state in which the semiconductor chip 1 is contracted.
  • the thickness of the thinned semiconductor chip 1 can be 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the wafer is generally thinned by polishing the back surface (substrate side surface) of the wafer before dicing the wafer, but may be thinned after dicing. .
  • the effect of the present invention is particularly great.
  • the shrinkage of the semiconductor chip 1 causes a problem that the semiconductor chip 1 is shrunk due to the stress from the surrounding material including the support plate 3.
  • the compressive stress applied per chip cross-sectional area is mainly caused by the support plate 3 made of metal or the like.
  • the thickness of the support plate 3 increases as the thickness of the support plate 3 increases, and the thickness of the semiconductor chip 1 increases as the thickness of the semiconductor chip 1 decreases, and the shrinkage of the semiconductor chip 1 increases.
  • the effect of the present invention is further great.
  • the effect of the present invention is great when the thickness of the semiconductor chip 1 is smaller than one fifth, and even one tenth of the thickness of the support plate 3.
  • FIG. 1 shows an example in which one semiconductor chip 1 is mounted on the semiconductor chip 1, but two or more semiconductor chips 1 may be mounted.
  • a semiconductor device in which two or more semiconductor chips 1 are mounted, it becomes difficult to correct the deviation of all the external terminals 1a due to the contraction of the semiconductor chip 1, and therefore the effect of the present invention (the external terminals 1a and the bottom)
  • the effect of eliminating the positional deviation of the hole 4a) is particularly large.
  • “Mounting two or more” includes a case where two or more semiconductor chips 1 are included in one semiconductor device, but one semiconductor chip 1 is included in each semiconductor device.
  • the case where a plurality of semiconductor devices are included as a plate-like body, such as a plate-like body in a manufacturing process before the semiconductor device (semiconductor package) is separated, is included.
  • the semiconductor chip 1 is fixed to the support plate 3 using, for example, an adhesive film such as a die attachment film or a chip bonding film, or a silver paste. Further, the wafer (silicon) and the support plate 3 (metal) can be directly brought into contact with each other, and a bond can be generated between the silicon and the metal.
  • an adhesive film such as a die attachment film or a chip bonding film, or a silver paste.
  • the wafer (silicon) and the support plate 3 (metal) can be directly brought into contact with each other, and a bond can be generated between the silicon and the metal.
  • the effect of the present invention is maximized when the wafer is directly brought into contact with the support plate to cause bonding between silicon and metal.
  • the semiconductor chip 1 is arranged in advance on the support plate 3.
  • the insulating layer 4 prepared in advance is arranged.
  • semiconductor chips are arranged with the active surface facing downward is also included.
  • the case where a plurality of semiconductor chips 1 are arranged on the support plate 3 is particularly effective, and is particularly effective in the manufacture of a semiconductor device including a large support plate 3 in the middle of manufacture on which a large number of semiconductor chips 1 are mounted.
  • the support plate 3 for example, a metal plate, a ceramic plate, a resin plate or the like can be used.
  • the support plate 3 may be a wiring board made of an insulating material including a wiring layer. As a result, a conductive line can be formed on both sides of the support plate 3.
  • the support plate 1 is made of metal or the like, the effect of the present invention (an effect of eliminating the positional deviation between the external terminal 1a and the prepared hole 4a) is great.
  • metal plates include copper plates, aluminum plates, SUS plates, and alloy plates such as 42 alloy.
  • the thickness of the support plate 3 is often thicker than the thickness of the insulating layer 4 that embeds the semiconductor chip 1, the degree to which the semiconductor chip 1 is compressed on the insulating layer 4 (for example, a resin material) is also increased from this point.
  • the effect of the present invention (the effect of eliminating the positional deviation between the external terminal 1a and the prepared hole 4a) is great.
  • the support plate 3 is illustrated in FIG. 1, this is not an essential requirement of the present invention.
  • a metal such as copper or aluminum, or a glass-reinforced resin material used as a material constituting the support plate 3 has a larger elastic modulus than that of an insulating layer (for example, a resin material).
  • an insulating layer for example, a resin material.
  • the insulating layer 4 is formed on the support plate 3 including the semiconductor chip 1, and a pilot hole 4 a is formed at a position corresponding to the external terminal 1 a after the semiconductor chip 1 is embedded and the semiconductor chip 1 is contracted. ing.
  • the insulating layer 4 functions to embed the semiconductor chip 1 and can use either an organic material or an inorganic material. As the elastic modulus of these materials is larger and the thermal expansion coefficient is larger, the compressive stress applied to the semiconductor chip 1 becomes larger, and the effect of the present invention becomes important.
  • a resin material is suitable, and either a non-photosensitive resin or a photosensitive resin can be used.
  • the resin material includes both a thermosetting resin and a thermoplastic resin, but the effect of the present invention is particularly great when a thermoplastic resin that undergoes curing shrinkage is used.
  • the resin material may contain an inorganic filler such as a silica filler or an organic filler.
  • thermosetting resin When a thermosetting resin is used for the insulating layer 4, the semiconductor chip 1 can be easily embedded.
  • examples of such a thermosetting resin include an epoxy resin and a polyimide resin.
  • thermosetting resin When a thermosetting resin is used as the insulating layer 4, the semiconductor chip 1 is embedded in an uncured or semi-cured state of the thermosetting resin, and then the heat-cured resin subjected to heat treatment or the like is completely cured. A method is mentioned.
  • thermoplastic resin when a thermoplastic resin is used for the insulating layer 4, the semiconductor chip 1 can be embedded by softening the thermoplastic resin in a heated state. In the formation of the insulating layer 4, a heating process is performed.
  • the thermal expansion coefficient is different between the metal support plate 3 and the insulating layer 4 made of resin, and a thermosetting resin is used as the insulating layer 4.
  • a thermosetting resin is used as the insulating layer 4.
  • curing shrinkage occurs in the insulating layer 4, so that even if manufactured through a heating process or the like without applying stress, the thermal expansion coefficient between the semiconductor chip 1 and the support plate 3 or the insulating layer 4 after thermal curing Due to the difference, a compressive stress acts on the semiconductor chip 1 and the semiconductor chip 1 is compressed.
  • the position of the external terminal 1a of the semiconductor chip 1 changes, so that the effect of the present invention (the positions of the external terminal 1a and the pilot hole 4a). The effect of eliminating the deviation) is particularly large.
  • the pilot hole 4a can be formed by laser beam irradiation or the like, or can be formed by a drill.
  • the pilot hole 4a can be formed by an exposure / development process.
  • the semiconductor chip is caused by stress generated by contraction of the support plate 303 made of a resin material, metal, or the like that supports the semiconductor chip 301 having a large thermal expansion coefficient. Since 301 contracts, a displacement occurs between the position of the external terminal 301a and the position of the pilot hole 304a (via wiring 305 or wiring conductor 306), resulting in poor connection and poor reliability.
  • the semiconductor device according to the first embodiment corrects the formation position of the pilot hole 4a (via wiring 5 or wiring conductor 6) in consideration of chip shrinkage and the like.
  • the positions of 1a and prepared holes 4a (via wiring 5 or wiring conductor 6) can be aligned with high accuracy.
  • the via wiring 5 is a wiring made of a conductive material embedded in the prepared hole 4 a on the external terminal 1 a of the semiconductor chip 1.
  • the via wiring 5 can be formed by a method of printing a conductive paste (for example, a metal paste) or a metal powder.
  • the via wiring 5 may be integrated with the wiring conductor 6.
  • the via wiring 5 may be filled in the prepared hole 4a, but may not be formed and filled with a predetermined thickness on the side wall of the prepared hole 4a or the surface of the external terminal 1a.
  • the wiring conductor 6 is formed in a predetermined shape on the insulating layer 4 including the via wiring 5.
  • the wiring conductor 6 is electrically connected to the corresponding external terminal 1a through the pilot hole 4a.
  • the wiring conductor 6 is electrically connected to the external terminal 1a via a via wiring 5 (conductor) embedded in the prepared hole 4a.
  • the wiring conductor 6 and the via wiring 5 may be integrated, and the wiring conductor 6 may be directly connected to the external terminal 1a. Further, the wiring conductor 6 may be a single layer or a plurality of layers.
  • the wiring conductor 6 is shown as one layer in order to make this easy to understand.
  • the wiring conductor 6 is not limited to one layer, and may have a multilayer wiring structure as shown in FIG. When the wiring conductors 6 and 9 extend over a plurality of layers as shown in FIG. 2, the wiring conductors 6 and 9 are connected to each other by via wirings 8.
  • the wiring conductor 6 forms plating (metal) on the via wiring 5 and the insulating layer 4 exposed from the voids of the predetermined pattern of the plating resist, Then, it can form by peeling a plating resist.
  • the plating resist either a varnish resist layer or a film-like resist can be used.
  • a negative photoresist whose solubility in a developer is lowered by exposure can be used.
  • a positive type photoresist whose solubility is increased may be used.
  • the light source used in the exposure can be a light source such as a halogen lamp, but may be a laser light source or the like.
  • the seed layer is formed before the plating resist is formed, and the seed layer is removed after the plating resist is removed.
  • the seed layer may be formed by sputtering or the like, or may be formed by electroless plating or the like.
  • the wiring conductor 6 can also be formed by a method of printing a metal paste or metal powder.
  • the insulating layer 7 can have the same form as the insulating layer 4.
  • the pilot hole 7a formed in the insulating layer 7 so as to communicate with the wiring conductor 6 can have the same form as the pilot hole 4a.
  • the via wiring 8 embedded in the pilot hole 7 a on the wiring conductor 6 can have the same form as the via wiring 5.
  • the wiring conductor 9 formed on the insulating layer 7 including the via wiring 5 can have the same form as the wiring conductor 6.
  • the wiring conductor 9 can be formed integrally with the via wiring 8.
  • An insulating layer 10 made of a solder resist or the like may be formed on the insulating layer 7 including the uppermost wiring conductor 9.
  • the prepared hole 10a formed in the insulating layer 10 so as to communicate with the wiring conductor 9 can have the same form as the prepared hole 4a.
  • the electrode pad 11 embedded in the prepared hole 10 a on the wiring conductor 9 can be formed in the same form as the via wiring 5. Solder is used for the solder bumps 12 formed on the electrode pads 11.
  • FIG. 2 is a manufacturing method of a modified example (see FIG. 2) of the semiconductor device according to the first embodiment of the present invention.
  • 3 and 4 are process cross-sectional views schematically showing a manufacturing method of a modification of the semiconductor device according to the first embodiment of the present invention.
  • a thinned and separated semiconductor chip (corresponding to the semiconductor chip 2 before shrinkage) is mounted on the support plate 3 with the external terminals 1a facing upward (opposite side of the support plate 3 side), An insulating layer 4 is formed on the support plate 3 including the semiconductor chip 2, and the semiconductor chip 2 is embedded in the insulating layer 4 (step A1; see FIG. 3A).
  • a 100 mm square copper plate (thickness 0.5 mm) can be used.
  • the semiconductor chip 2 an LSI chip having a chip size of 8 mm, a chip thickness of 50 ⁇ m, a pad pitch of 80 ⁇ m, and a pad size of 30 ⁇ m ⁇ can be used, and a plurality of semiconductor chips 2 can be mounted at a pitch of 30 mm.
  • a die bonding tape double-sided tape
  • thermosetting epoxy resin film (thickness: 90 ⁇ m, opaque) is laminated, the semiconductor chip 2 is embedded in the insulating layer 4, and a laser position around the semiconductor chip 2. It can be formed by removing the resin of the alignment marker part and curing the thermosetting epoxy resin film.
  • a pilot hole 4a communicating with the external terminal 1a is formed in the insulating layer 4 at a position corrected so as to correspond to the external terminal 1a in a contracted state of the semiconductor chip 1 (step A2; see FIG. 3B). .
  • the pilot hole 4a can be formed using a laser or the like.
  • the deviation value of the position of the external terminal 1a due to the contraction of the semiconductor chip 1 is incorporated into the laser processing data as a correction value to form the pilot hole 4a.
  • the size of the pilot hole 4a can be 20 ⁇ m ⁇ .
  • the via wiring 5 (conductor) is embedded in the pilot hole 4a, and the wiring conductor 6 is formed on the insulating layer 4 including the via wiring 5 (step A3; see FIG. 3C).
  • the via wiring 5 and the wiring conductor 6 can be formed by forming plating or the like using a plating resist.
  • the plating resist can be formed by exposing and developing using an exposure mask designed by taking the position shift of the external terminal 1a accompanying the contraction of the semiconductor chip 1 as a correction value.
  • the via wiring 5 and the wiring conductor 6 can be produced.
  • the via wiring 5 and the wiring conductor 6 can be formed by a semi-additive method by forming a pattern on a plating resist applied using this exposure mask using electroless plating after desmearing as a seed layer. Observing at the stage after step A3, the via wiring 5 and the wiring conductor 6 produced were also formed corresponding to the prepared holes 4a.
  • an insulating layer 7 is formed on the insulating layer 4 including the wiring conductor 6 (step A4; see FIG. 3D).
  • a pilot hole 7 a communicating with the wiring conductor 6 is formed in the insulating layer 7, a via wiring 8 (conductor) is embedded in the pilot hole 7 a, and a wiring conductor 9 is formed on the insulating layer 7 including the via wiring 8 ( Step A5; see FIG. 4 (A)).
  • an insulating layer 10 is formed on the insulating layer 7 including the wiring conductor 9, a pilot hole 10a communicating with the wiring conductor 9 is formed in the insulating layer 10, and an electrode pad 11 (conductor) is embedded in the pilot hole 10a (see FIG. Step A6; see FIG. 4B).
  • solder bumps 12 for external connection are formed on the electrode pads 11 (step A7; see FIG. 4C).
  • the support plate 3 and 4 show the method for manufacturing the semiconductor device having the support plate 3, the support plate 3 is removed after the steps after step A3 (see FIG. 3C). May be.
  • the support plate 3 is removed after step A3, only the insulating layer 4, the via wiring 5, and the wiring conductor 6 incorporating the semiconductor chip 1 are provided.
  • the removal of the support plate 3 means that the support plate 3 is removed.
  • a semiconductor device is manufactured without taking the position shift of the external terminal 301a due to the shrinkage of the semiconductor chip 301 as a correction value for laser processing data and mask design.
  • the bottom of the pilot hole 304a after laser processing was observed, there was a place where only a part of the external terminal 301a was visible at the bottom of the pilot hole 304a and a part where the external terminal 301a was not visible at the bottom of the pilot hole 304a.
  • the via wiring 305 and the wiring conductor 306 after forming the via wiring 305 and the wiring conductor 306, the positional relationship among the external terminal 301a, the pilot hole 304a, the via wiring 305, and the wiring conductor 306 was observed by an X-ray transmission device. Although the wiring conductors 306 are in good agreement, a deviation between the external terminals 301a and the prepared holes 304a, which may be caused by the shrinkage of the semiconductor chip 301, was observed.
  • the semiconductor chip 1 with a narrow pitch can be embedded, and the external terminal The connection between 1a and via wiring 5 (or wiring conductor 6) becomes strong, and a semiconductor device having excellent reliability can be obtained. Even if the semiconductor chip 1 has the external terminals 1a with a narrow pitch, it can be reliably connected to the via wiring 5 (or the wiring conductor 6). In addition, since the deviation between the external terminal 1a and the prepared hole 4a (via wiring 5 or wiring conductor 6) can be reduced, a semiconductor device can be manufactured with a high yield. Since the connection between 1a and the via wiring 5 (or the wiring conductor 6) is good, a highly reliable semiconductor device in which no defect occurs in a temperature cycle test or the like can be obtained.
  • a semiconductor device in which a semiconductor chip having a plurality of external terminals used in a mobile phone, an electric device or the like is incorporated in a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 本発明は、端子数が多く狭ピッチな半導体チップにも適用可能で、高歩留まりで信頼性に優れる半導体装置を提供する。外部端子を有する半導体チップが絶縁層中に埋め込まれるとともに、前記絶縁層上に配線導体が形成された半導体装置において、前記絶縁層には、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応する位置に下穴が形成され、前記配線導体は、前記下穴を通じて前記外部端子と電気的に接続されている(図1)。

Description

半導体装置およびその製造方法
[関連出願の記載]
 本発明は、日本国特許出願:特願2009-198268号(2009年8月28日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、絶縁層中に半導体チップが埋め込まれるとともに、前記絶縁層上に配線導体が形成された半導体装置およびその製造方法に関し、特に、外部端子数が多くかつ外部端子のピッチが狭い半導体チップを用いた半導体装置およびその製造方法に関する。
 近年、個片化された半導体チップ等を樹脂基板等の絶縁層に埋め込んだ「チップ内蔵基板」等と呼ばれる半導体装置や半導体チップ上に絶縁樹脂層および配線層を形成した半導体装置が注目されている。これらの半導体装置においては、例えば、ウエハ上に一括で形成したチップ群をダイシング等により個片化して作製した個片化チップを、支持基板の上に搭載して、個片化チップを含む支持基板上に絶縁層、金属配線層を形成して、外部引き出し用のパッドを形成する。
 このような半導体装置として、例えば、特許文献1では、金属放熱板101にICチップ103のベース面が金属ペースト102で接合され、金属放熱板101に接合されたICチップ103の周囲ならびに上部には複数層の絶縁層樹脂層104a、104b、104cが形成され、ICチップ103の実装用パッド131は最下層の絶縁層樹脂層104aの貫通孔にめっきによって形成された配線導体107と接合され、絶縁層樹脂層104bの表面と貫通孔の内部とにめっきによって形成された配線導体107を経由して最上層の絶縁層樹脂層104cの表面に形成されたBGA実装パッド108に接続され、BGA実装パッド108上にはBGAはんだバンプ109が形成されたボールグリッドアレイパッケージが開示されている(従来例1;図5参照)。
 また、特許文献2では、コア基板230上に層間樹脂絶縁層250、251と導体回路258、259とを繰り返し形成し、該層間樹脂絶縁層250、251にバイアホール260、261を形成し、該バイアホール260、261を介して電気的接続させる多層プリント配線板の製造方法であって、(a)前記コア基板230にICチップ220を収容する工程と、(b)前記ICチップ220の位置決めマーク223に基づき、前記コア基板230に位置決めマーク231を形成する工程と、(c)前記コア基板230の位置決めマーク231に基づき加工若しくは形成を行う工程と、を備える多層プリント配線板の製造方法が開示されている(従来例2;図6参照)。
特開2001-15650号公報(図4) 特開2001-332863号公報(図1~図5、図7)
 なお、上記特許文献1、2の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は、本発明によって与えられたものである。
 しかしながら、上記特許文献1、2に記載の技術においては、以下のような課題がある。
 特許文献1に記載の技術では、金属支持板上にICチップを搭載し、絶縁層樹脂層で埋めた後で配線導体を形成しているが、金属支持板と絶縁層樹脂層の熱膨張係数が異なり、また、絶縁層樹脂層に係る樹脂が硬化時に収縮するため、樹脂硬化(キュア)後にはICチップが収縮し、ICチップ上のIC側実装用パッドの位置が変化する。そのため、ICチップを金属支持板上の正確な位置に搭載した場合であっても、ICチップのIC側実装用パッドの位置とヴィアや上層の配線導体が位置ずれを生じるという問題がある。すなわち、搭載精度をいくら高めても、ICチップの収縮によりIC側実装用パッドの位置がずれてしまうので、搭載精度の向上のみではIC側実装用パッドとヴィアの位置を合わせるのには限界がある。この位置ずれは、絶縁層樹脂層に係る樹脂が不透明な場合に、ヴィアの位置を上部から観察しても特定できないため、特に問題となる。埋込に伴う半導体チップの収縮は、個々の半導体装置においても問題となるが、さらに製造工程において大きな支持基板を用い、その上に多数の半導体チップを搭載して多数の半導体装置を同時に作製する場合において特に問題となる。
 ここで、半導体チップ等を樹脂基板等の絶縁層に埋め込んだ半導体装置の生産においては、生産性向上のために、支持板上に複数のチップを搭載して、複数の半導体チップに対して同時に(一括で)絶縁層を形成し、ヴィアおよび配線を形成することが望ましい。複数の半導体チップに対して同時に配線を形成する方法としては、例えば、半導体チップを絶縁層で埋め込んだ後、レーザ等でヴィアを形成し、絶縁層上にヴィアに繋がるめっきレジストを形成し、複数の半導体チップ領域に及ぶマスクを用いて一括で露光し、その後、現像、めっき配線を形成する。すなわち、このような大きな支持基板を含む半導体装置では、半導体チップごとにヴィア位置を定めることをせず、基板全体についての基準点を元に半導体チップを搭載し、ヴィアや配線を形成する。そのため、半導体チップの収縮によるパッドの位置ずれが特に問題となる。言い換えると、複数個の半導体チップに対して同時に配線を形成する工程において、半導体チップの収縮に伴う外部端子(パッド)の位置ずれに比べて半導体チップの外部端子サイズが十分に大きい場合は問題とならないが、LSI(Large Scale Integration)のように半導体チップの外部端子が小さい場合には、形成した配線が半導体チップの外部端子から外れることとなり、導通不良や信頼性不良の原因となる。チップ搭載ずれを吸収するために配線端等に大きなパッドを設けることも考えられるが、この場合は微細ピッチでの接続やパッド間に多くの配線を通すことが難しくなるという問題がある。特に、近年、半導体チップは益々高性能化してきており、半導体チップの外部端子数は増加し、外部端子のピッチは益々狭くなってきており、チップ内蔵型の半導体装置における一括露光等による配線形成は益々困難となってきている。
 特許文献2に記載の技術では、各ICチップの位置合わせマークを基準としてコア基板に位置決めマークを形成しているが、ICチップの収縮については考慮されていないため、チップ収縮により上記と同様の問題が生じる。また、特許文献2に記載の技術では、複数のチップ搭載におけるチップ収縮によりパッド位置ずれについては考慮されていないため、チップ収縮後にパッド位置とヴィア位置等がずれるという問題もある。
 本発明の主な課題は、端子数が多く狭ピッチな半導体チップにも適用可能で、高歩留まりで信頼性に優れる半導体装置およびその製造方法を提供することである。
 本発明の第1の視点においては、外部端子を有する半導体チップが絶縁層中に埋め込まれるとともに、前記絶縁層上に配線導体が形成された半導体装置において、前記絶縁層には、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応する位置に下穴が形成され、前記配線導体は、前記下穴を通じて前記外部端子と電気的に接続されていることを特徴とする。
 本発明の前記半導体装置において、前記配線導体は、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応するように形成されるとともに、前記下穴に埋め込まれたヴィア配線を介して前記外部端子と電気的に接続されていることが好ましい。
 本発明の前記半導体装置において、前記配線導体は、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応するように形成されるとともに、前記下穴を通じて前記外部端子と直接接続されていることが好ましい。
 本発明の前記半導体装置において、前記半導体チップの厚さは、50μm以下であることが好ましい。
 本発明の前記半導体装置において、前記半導体チップは、支持板上に搭載され、前記絶縁層は、前記半導体チップを含む前記支持板上に形成されることで前記半導体チップを埋め込んでいることが好ましい。
 本発明の前記半導体装置において、前記支持板は、金属板であることが好ましい。
 本発明の前記半導体装置において、前記半導体チップの厚さは、前記支持板の厚さよりも薄いことが好ましい。
 本発明の前記半導体装置において、前記絶縁層は、樹脂よりなることが好ましい。
 本発明の前記半導体装置において、前記樹脂は、熱硬化性樹脂であることが好ましい。
 本発明の前記半導体装置において、前記半導体チップは、複数個の半導体チップであることが好ましい。
 本発明の前記半導体装置において、前記支持板の熱膨張係数は、前記半導体チップの熱膨張係数よりも大きいことが好ましい。
 本発明の前記半導体装置において、前記絶縁層の熱膨張係数は、前記半導体チップの熱膨張係数よりも大きいことが好ましい。
 本発明の第2の視点においては、外部端子を有する半導体チップが絶縁層中に埋め込まれるとともに、前記絶縁層上に配線導体が形成された半導体装置の製造方法において、前記絶縁層中に前記半導体チップを埋め込んだ後、前記絶縁層における前記半導体チップが収縮した状態の前記外部端子と対応するように補正された位置に、前記外部端子に通ずる下穴を形成する工程を含むことを特徴とする。
 本発明の前記半導体装置の製造方法において、前記下穴を形成した後、前記下穴に導体を埋め込む工程と、前記ヴィア配線を含む前記絶縁層上に、前記半導体チップが収縮した状態の前記外部端子と対応するように補正された前記配線導体を形成する工程を含むことが好ましい。
 本発明の前記半導体装置の製造方法において、前記下穴を形成した後、前記下穴及び前記外部端子を含む前記絶縁層上に、前記半導体チップが収縮した状態の前記外部端子と対応するように補正された前記配線導体を形成する工程を含むことが好ましい。
 本発明の前記半導体装置の製造方法において、前記下穴を形成する前において、支持板上に前記半導体チップを搭載する工程と、前記半導体チップを搭載した後、前記半導体チップを含む前記支持板上に前記絶縁層を形成することで前記絶縁層中に前記半導体チップを埋め込む工程と、を含むことが好ましい。
 本発明の前記半導体装置の製造方法において、前記配線導体を形成した後、前記支持板を除去することが好ましい。
 本発明によれば、絶縁層中に半導体チップを埋め込んだ後、半導体チップが収縮した状態の外部端子と対応する位置に、外部端子に通ずる下穴を形成することで、半導体チップが収縮した場合においても外部端子と下穴の位置がずれるという問題がなくなり、半導体チップとの接続ピッチを狭くすることができるとともに、外部端子数が多くかつ狭ピッチな半導体チップをも高生産性で内蔵でき、高歩留まりで信頼性に優れた半導体チップ内蔵型の半導体装置が得られる。また、本発明によれば、半導体チップを埋める絶縁層が不透明な場合や、50μm以下に薄化された半導体チップの場合、半導体チップが支持板へ搭載されている場合、半導体チップの厚さが支持板の厚さよりも薄い場合、絶縁層が熱硬化性樹脂である場合、支持板上に複数個の半導体チップを搭載する場合、支持板の熱膨張係数が半導体チップの熱膨張係数よりも大きい場合、半導体チップの収縮が大きいので、本発明の効果は特に大きい。
本発明の実施例1に係る半導体装置の構成を模式的に示した断面図である。 本発明の実施例1に係る半導体装置の変形例の構成を模式的に示した断面図である。 本発明の実施例1に係る半導体装置の変形例の製造方法を模式的に示した第1の工程断面図である。 本発明の実施例1に係る半導体装置の変形例の製造方法を模式的に示した第2の工程断面図である。 従来例1に係る半導体装置(ボールグリッドアレイパッケージ)の構成を模式的に示した断面図である。 従来例2に係る半導体装置(多層プリント配線板)の構成を模式的に示した断面図である。 従来例3に係る半導体装置の構成を模式的に示した断面図である。
 本発明の実施形態に係る半導体装置では、外部端子(図1の1a)を有する半導体チップ(図1の1)が絶縁層(図1の4)中に埋め込まれるとともに、前記絶縁層上に配線導体(図1の6)が形成された半導体装置において、前記絶縁層には、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応する位置に下穴(図1の4a)が形成され、前記配線導体は、前記下穴を通じて前記外部端子と電気的に接続されている。
 本発明の実施形態に係る半導体装置の製造方法では、外部端子(図3(C)の1a)を有する半導体チップ(図3(C)の1)が絶縁層(図3(C)の4)中に埋め込まれるとともに、前記絶縁層上に配線導体(図3(C)の6)が形成された半導体装置の製造方法において、前記絶縁層中に前記半導体チップを埋め込んだ後(図3(A)の後)、前記絶縁層における前記半導体チップが収縮した状態の前記外部端子と対応するように補正された位置に、前記外部端子に通ずる下穴(図3(B)の4a)を形成する工程(図3(B))を含む。
 なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。
 本発明の実施例1に係る半導体装置について図面を用いて説明する。図1は、本発明の実施例1に係る半導体装置の構成を模式的に示した断面図である。図2は、本発明の実施例1に係る半導体装置の変形例の構成を模式的に示した断面図である。
 図1を参照すると、実施例1に係る半導体装置は、外部端子1a(パッド)を有する半導体チップ1が絶縁層4中に埋め込まれ、絶縁層4上に配線導体6が形成された半導体装置である。絶縁層4には、半導体チップ1を埋め込んだ後であって半導体チップ1が収縮した状態の外部端子1aと対応する位置に、外部端子1aに通ずる下穴4aが形成されている。配線導体6は、下穴4aを通じて外部端子1aと電気的に接続されている。
 半導体チップ1は、ウエハ等において一括で形成された半導体素子を有するウエハ上の半導体をダイシング等により個片化したものである。LSI等の半導体素子は、一般に、ウエハ上に一括で形成される。半導体チップ1は、半導体基板上に半導体素子が形成され、半導体素子を含む半導体基板上に絶縁層と配線層が交互に形成され、最下層の配線層と半導体素子とがプラグを介して電気的に接続され、配線層間がヴィア配線を介して電気的に接続され、最上層の配線層を含む絶縁層上にソルダーレジスト等の絶縁体が形成され、絶縁体において最上層の配線層の所定の部分に通ずる下穴が形成され、下穴から露出した最上層の配線層上に外部端子1aが形成されている。
 外部端子1aは、チップ表面の周囲に作り込まれた半導体素子と外部を電気的に接続するための端子であり、LSIパッド等とも呼ばれる。外部端子1aは、電源、グランド、信号等のいずれかに接続されている。外部端子1aには、Alを主成分とする材料、Cuを主成分とする材料等を用いることが多いが、これらに限定されるものではない。外部端子1aは、ウエハ状態で一括に形成するのが一般的であるが、ダイシング後に形成することもできる。
 半導体チップ1は、支持板3上に搭載されている。半導体チップ1は、絶縁層4中に埋め込まれている。半導体チップ1は、絶縁層4中に埋め込んだ直後では点線の半導体チップ(収縮前の半導体チップ2)のように圧縮応力をあまり受けていないが、冷却されると実線の半導体チップ1のように圧縮応力を受けて収縮する。
 ここで、「埋め込まれた」とは、半導体チップ1が絶縁層4に埋め込まれていることを言うが、完全に埋め込まれている場合の他、半導体チップ1の一部が埋め込まれている場合、例えば、半導体チップ1の裏面又は上面の一部が露出しているものであってもよい。
 半導体チップ1について、圧縮応力による半導体チップ1の収縮は半導体チップ1を薄化した場合に特に顕著になり、薄化した半導体チップ1を用いる場合に本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)は特に大きくなる。すなわち、半導体チップ1が薄い場合にはチップ単位断面積あたりの応力が大きくなるため、半導体チップ1の収縮が大きくなり、半導体チップ1の収縮、それに伴う下穴4a(ヴィア配線5又は配線導体6)の位置ずれの程度が大きくなるという問題があり、実施例1によれば、半導体チップ1が収縮した状態の外部端子1aと対応する位置に下穴4aを形成しているので、そのような問題を解決できる。薄化した半導体チップ1の厚さは、50μm以下とすることができ、好ましくは30μm以下であり、より好ましくは10μm以下である。薄化した半導体チップ1を得るためには、ウエハのダイシングする前にウエハの裏面(基板側の面)を研磨等によりウエハを薄くするのが一般的であるが、ダイシング後に薄化してもよい。
 半導体チップ1について、半導体チップ1の厚さが支持板3より薄い場合に、本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)が特に大きい。半導体チップ1の収縮は、支持板3を含む周囲材料からの応力によって半導体チップ1が縮むことが問題となるが、チップ断面積当たりにかかる圧縮応力は、主に金属等の支持板3に起因している場合には、支持板3の厚さが厚いときほど大きくなり、また、半導体チップ1の厚さが薄いときほど大きくなり、半導体チップ1の収縮が大きくなるからである。特に、半導体チップ1の厚さが支持板3の厚さの半分より小さい場合、さらに本発明の効果は大きい。半導体チップ1の厚さが、支持板3の厚さの5分の1、さらに10分の1より小さい場合に本発明の効果が大きい。
 半導体チップ1について、図1では半導体チップ1が1個搭載された例を示しているが、半導体チップ1が2個以上搭載されていてもよい。2個以上の半導体チップ1が搭載されている半導体装置の場合、半導体チップ1の収縮によるすべての外部端子1aについてのずれを補正することが難しくなるため、本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)は特に大きい。「2個以上搭載」とは、1つの半導体装置の中に2個以上の半導体チップ1が入っている場合も含まれるが、それぞれの半導体装置の中に含まれる半導体チップ1は1個であるが、半導体装置(半導体パッケージ)を個片化する前の製造工程中の板状体のように複数の半導体装置が板状体として含まれている場合も含まれる。
 半導体チップ1は、例えば、ダイアタッチメントフィルム、チップボンディングフィルム等の接着フィルムや銀ペーストを用いて支持板3に固定される。また、直接ウエハ(シリコン)と支持板3(金属)とを接触させ、シリコンと金属との間で結合を生じさせることができる。半導体チップ1をダイアタッチメントフィルム等で支持板3に固定する場合には、使用するダイアタッチメントフィルム等が薄いほど、半導体チップ1と支持板3との間の応力の伝達にロスがない、すなわち、応力緩和効果が効かないため、本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)が大きい。さらに、直接ウエハと支持板とを接触させ、シリコンと金属との間で結合を生じさせる場合に最も本発明の効果が大きくなる。半導体チップ1を搭載する際、あらかじめ支持板3上に並べる等するが、半導体チップ1の活性面(外部端子1a側の面)を上にして並べるものの他、予め準備しておいた絶縁層4に活性面を下向きにして半導体チップを並べる場合も含まれる。複数の半導体チップ1を支持板3上に並べた場合が特に有効であり、多数の半導体チップ1が搭載された製造途中の大きな支持板3を含む半導体装置の製造において特に有効である。
 支持板3には、例えば、金属板、セラミックス板、樹脂板等を用いることができる。また、支持板3は、それ自身が配線層を含む絶縁材料からなる配線基板であってもよい。これにより支持板3の両側に導通する配線を形成することができる。
 支持板3の弾性率が大きいほど、半導体チップ1にかかる圧縮応力が大きくなる。従って、支持板1が金属等からなる場合に本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)が大きい。このような金属板として、銅板、アルミ板、SUS板や42アロイ等の合金板等が挙げることができる。
 支持板3の厚さは半導体チップ1を埋め込む絶縁層4の厚さよりも厚いことが多く、その点からも絶縁層4(例えば、樹脂材料)を半導体チップ1が圧縮される度合いが大きくなるので、本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)が大きい。
 なお、図1においては支持板3が図示されているが、これが本発明の必須要件ではない。ただし、支持板3を構成する材料として用いられる、例えば、銅、アルミ等の金属、ガラス補強の樹脂材料は、絶縁層(例えば、樹脂材料)よりも弾性率が大きいものが多く、半導体チップ1を収縮させる効果が大きく、支持板3を有する半導体装置において本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)は大きい。
 絶縁層4は、半導体チップ1を含む支持板3上に形成され、半導体チップ1を埋め込んだ後であって半導体チップ1が収縮した状態の外部端子1aと対応する位置に下穴4aが形成されている。
 絶縁層4は、半導体チップ1を埋め込む働きをするものであり、有機材料、無機材料のいずれも使用することができる。これら材料の弾性率は大きく、熱膨張係数が大きいほど、半導体チップ1にかかる圧縮応力が大きくなり、本発明の効果が重要となる。有機材料としては、樹脂材料が適しており、非感光性樹脂、感光性樹脂のいずれでも使用することができる。また、樹脂材料は熱硬化性樹脂、熱可塑性樹脂のいずれも含まれるが、硬化収縮が生じる熱可塑性樹脂を用いた場合に特に本発明の効果は大きい。また、樹脂材料はシリカフィラー等の無機フィラーや有機フィラーを含んでいてもよい。絶縁層4に熱硬化性樹脂を用いた場合に半導体チップ1の埋め込みが容易であるが、このような熱硬化性樹脂としてエポキシ樹脂、ポリイミド樹脂等が挙げられる。絶縁層4として熱硬化樹脂を用いる場合には、熱硬化性樹脂の未硬化、または半硬化の状態で半導体チップ1を埋め込み、その後、加熱処理等を行った熱硬化性樹脂を完全に硬化させる方法が挙げられる。一方、絶縁層4に熱可塑性樹脂を使用する場合は、熱可塑性樹脂を加熱した状態で軟化させ半導体チップ1を埋め込むことができる。なお、絶縁層4の形成において、加熱工程を経るが、例えば、金属製の支持板3と樹脂からなる絶縁層4では熱膨張係数が異なり、また、絶縁層4として熱硬化性樹脂を用いた場合には絶縁層4にて硬化収縮が起きるため、応力を掛けない状態で加熱工程等を経て製造しても、熱硬化後に半導体チップ1と支持板3または絶縁層4との熱膨張係数の違いによって、半導体チップ1に圧縮応力が作用し、半導体チップ1が圧縮され、それに伴い半導体チップ1の外部端子1aの位置が変化するため、本発明の効果(外部端子1aと下穴4aの位置ずれをなくせるという効果)は特に大きい。
 下穴4aは、絶縁材料が非感光性樹脂等の場合はレーザ光照射等により形成することができ、また、ドリルにより形成することも可能である。一方、絶縁層4の材料が感光性樹脂の場合は、露光・現像工程により下穴4aを形成することができる。
 ここで、従来例3に係る半導体装置(図7参照)は、熱膨張係数が大きい半導体チップ301を支持している樹脂材料、金属等からなる支持板303の収縮により発生する応力により、半導体チップ301は収縮するため、外部端子301aの位置と下穴304a(ヴィア配線305又は配線導体306)の位置の間にずれが生じ、接続不良や信頼性不良が生じていた。
 これに対して、実施例1に係る半導体装置(図1参照)は、チップ収縮等を考慮して、下穴4a(ヴィア配線5又は配線導体6)の形成位置を補正することにより、外部端子1aと下穴4a(ヴィア配線5又は配線導体6)の位置を高精度で合わせることができる。
 ヴィア配線5は、半導体チップ1の外部端子1a上の下穴4aに埋め込まれた導電性材よりなる配線である。ヴィア配線5は、導電ペースト(例えば、金属ペースト)又は金属粉末を印刷する方法で形成することができる。また、ヴィア配線5は、配線導体6と一体化してもよい。ヴィア配線5は、下穴4aに充填されていてもよいが、下穴4aの側壁乃至外部端子1aの表面に所定厚さで形成されて充填されていなくてもよい。
 配線導体6は、ヴィア配線5を含む絶縁層4上にて所定形状に形成されている。配線導体6は、下穴4aを通じて対応する外部端子1aと電気的に接続されている。配線導体6は、図1では、下穴4aに埋め込まれたヴィア配線5(導体)を介して外部端子1aと電気的に接続されている。なお、配線導体6とヴィア配線5とを一体化して、配線導体6を外部端子1aと直接接続してもよい。また、配線導体6は、単層であっても、複数層であってもよい。
 なお、図1においては配線導体6について1層のみの例を示しているが、これは半導体チップ1の収縮による外部端子1aと下穴4a(ヴィア配線5又は配線導体6)の位置ずれ等は外部端子1aが狭ピッチの半導体チップ1の近傍で起こる場合が多いため、これをわかりやすくするために配線導体6を1層として示している。ただし、本発明の半導体装置は、配線導体6が1層に限定されるものではなく、図2のようにさらに多層配線構造としてもよい。図2のように配線導体6、9が複数層に及ぶ場合、それらの配線導体6、9はヴィア配線8により相互に接続される。
 配線導体6は、例えば、絶縁層4上に所定パターンのめっきレジストを形成した後、めっきレジストの所定パターンの空所から露出したヴィア配線5及び絶縁層4上にめっき(金属)を形成し、その後、めっきレジストを剥離することで形成することができる。めっきレジストには、ワニスのレジスト層、フィルム状レジストのいずれも使用することができ、例えば、露光により現像液に対する溶解性が低下するネガ型のフォトレジストを用いることができ、露光により現像液に対する溶解性が増大するポジ型のフォトレジストを用いてもよい。露光で使用する光源は、ハロゲンランプ等の光源を用いることができるが、レーザ光源等であってもよい。めっき工程においてシード層が必要である場合はめっきレジスト形成前にシード層を形成し、めっきレジスト剥離後にシード層の除去を行う。シード層はスパッタ等で形成してもよいし、無電解めっき等で形成してもよい。その他、配線導体6は、金属ペースト又は金属粉末を印刷する方法でも形成することができる。
 なお、図2において、絶縁層7は、絶縁層4と同様な形態とすることができる。また、絶縁層7において配線導体6に通ずるように形成された下穴7aは、下穴4aと同様な形態とすることができる。配線導体6上の下穴7aに埋め込まれたヴィア配線8は、ヴィア配線5と同様な形態とすることができる。ヴィア配線5を含む絶縁層7上に形成された配線導体9は、配線導体6と同様な形態とすることができる。配線導体9は、ヴィア配線8と一体に形成することができる。最上層の配線導体9を含む絶縁層7上には、ソルダーレジスト等よりなる絶縁層10が形成されていてもよい。絶縁層10において配線導体9に通ずるように形成された下穴10aは、下穴4aと同様な形態とすることができる。配線導体9上の下穴10aに埋め込まれた電極パッド11は、ヴィア配線5と同様な形態とすることができる。電極パッド11上に形成されたはんだバンプ12には、はんだが用いられる。
 次に、本発明の実施例1に係る半導体装置の変形例(図2参照)の製造方法について図面を用いて説明する。図3、図4は、本発明の実施例1に係る半導体装置の変形例の製造方法を模式的に示した工程断面図である。
 まず、支持板3上に、薄化され個片化された半導体チップ(収縮前の半導体チップ2に相当)を、外部端子1aを上側(支持板3側の反対側)に向けて搭載し、半導体チップ2を含む支持板3上に絶縁層4を形成して、半導体チップ2を絶縁層4中に埋め込む(ステップA1;図3(A)参照)。
 ここで、支持板3として、100mm角の銅板(厚さ0.5mm)を用いることができる。また、半導体チップ2として、チップサイズ8mm、チップ厚50μm、パッドピッチ80um、パッドサイズ30μmφのLSIチップを用いることができ、各半導体チップ2を30mmピッチで多数個搭載することができる。また、半導体チップ2の搭載にあたって、半導体チップ2の裏面にダイボンディングテープ(両面テープ)を貼り付けて、支持板3に接着することができる。また、絶縁層4の形成では、半硬化の熱硬化性エポキシ樹脂フィルム(厚さ90μm、不透明)をラミネートして絶縁層4中に半導体チップ2を埋め込み、半導体チップ2の周囲のレーザ用の位置合わせマーカー部の樹脂を除去して、熱硬化性エポキシ樹脂フィルムを硬化させることで形成できる。ステップA1後の段階でX線透過装置によって半導体チップ1を観察したところ、半導体チップ1が収縮し、それに伴い半導体チップ1上の外部端子1aの位置が収縮前の状態と比べてずれていることが確認できた。
 次に、半導体チップ1が収縮した状態の外部端子1aと対応するように補正した位置の絶縁層4に、外部端子1aに通ずる下穴4aを形成する(ステップA2;図3(B)参照)。
 ここで、下穴4aは、レーザ等を用いて形成することができる。下穴4aの形成にあたって、半導体チップ1の収縮による外部端子1aの位置のずれ値をレーザ加工データに補正値として取り入れて、下穴4aを形成する。下穴4aのサイズは、20μmφとすることができる。ステップA2後の段階でX線透過装置を用いて外部端子1aの位置と下穴4aの位置を観察したところ、ほとんどすべての下穴4aは外部端子1aの中央に形成されていた。
 次に、下穴4aにヴィア配線5(導体)を埋め込み、ヴィア配線5を含む絶縁層4上に配線導体6を形成する(ステップA3;図3(C)参照)。
 ここで、ヴィア配線5及び配線導体6は、めっきレジストを用いてめっき等を形成することで形成できる。めっきレジストの形成では、半導体チップ1の収縮に伴う外部端子1aの位置ずれを補正値として取り入れて設計した露光マスクを用いて露光し、現像することで形成できる。めっきレジストをマスクとしてめっきを形成することで、ヴィア配線5及び配線導体6を作製することができる。ヴィア配線5及び配線導体6は、デスミア後の無電界めっきをシード層としてこの露光マスクを用いて塗布しためっきレジストにパターンを形成し、セミアディティブ法で形成することができる。ステップA3後の段階で観察すると、作製したヴィア配線5及び配線導体6も下穴4aとよく対応して形成されていた。
 次に、配線導体6を含む絶縁層4上に絶縁層7を形成する(ステップA4;図3(D)参照)。
 次に、絶縁層7に、配線導体6に通ずる下穴7aを形成し、下穴7aにヴィア配線8(導体)を埋め込み、ヴィア配線8を含む絶縁層7上に配線導体9を形成する(ステップA5;図4(A)参照)。
 次に、配線導体9を含む絶縁層7上に絶縁層10を形成し、絶縁層10に、配線導体9に通ずる下穴10aを形成し、下穴10aに電極パッド11(導体)を埋め込む(ステップA6;図4(B)参照)。
 最後に、電極パッド11上に、外部接続するためのはんだバンプ12を形成する(ステップA7;図4(C)参照)。
 なお、図3、図4では支持板3を有する状態の半導体装置の製造方法を示しているが、ステップA3(図3(C)参照)以降の工程の後で支持板3を除去するようにしてもよい。例えば、ステップA3の後に支持板3を除去した場合、半導体チップ1を内蔵した絶縁層4、ヴィア配線5、及び配線導体6のみとなる。これにより、支持板3のあった側からの電気的接続等が可能となり、板状体の半導体装置の上下面から接続が可能な半導体装置等が得られる。ここで、支持板3が除去するとは、支持板3が取り除かれることをいい、この方法としては支持体3を金属エッチング等で除去する場合、支持体3を溶剤等で除去する場合、剥離等により剥がして除去する場合等が挙げられる。
 比較例として、従来例3(図7参照)のように、半導体チップ301の収縮に伴う外部端子301aの位置ずれをレーザ加工データおよびマスク設計の補正値として取り入れないで半導体装置を作製して、レーザ加工後の下穴304aの底を観察したところ、外部端子301aの一部のみが下穴304aの底に見える箇所や、下穴304aの底に外部端子301aが見えない箇所があった。また、ヴィア配線305及び配線導体306を形成した後、X線透過装置によって外部端子301a、下穴304a、ヴィア配線305、配線導体306の位置関係を観察したところ、下穴304aとヴィア配線305、配線導体306はよくあっているものの、半導体チップ301の収縮に起因すると思われる外部端子301aと下穴304aのずれが認められた。
 実施例1によれば、半導体装置の外部端子1a(パッド)の位置とヴィア配線5(又は配線導体6)の位置がよく合うため、狭ピッチの半導体チップ1を埋め込むことができるとともに、外部端子1aとヴィア配線5(又は配線導体6)との接続が強固になり信頼性に優れた半導体装置が得られる。また、外部端子1aが狭ピッチの半導体チップ1でも、ヴィア配線5(又は配線導体6)と確実に接続することができる。また、外部端子1aと下穴4a(ヴィア配線5又は配線導体6)とのずれを小さくすることができるため、高歩留まりで半導体装置を製造することができ、製造後の半導体装置においては外部端子1aとヴィア配線5(又は配線導体6)との接続が良好であるため、温度サイクル試験等で不良が発生しない信頼性に優れる半導体装置が得られる。
 本発明の全開示(特許請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の特許請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 本発明の活用例として、携帯電話、電気機器等に使用される複数の外部端子を有する半導体チップを基板に内蔵した半導体装置が挙げられる。
 1、301 半導体チップ
 1a、301a 外部端子(パッド)
 2、302 収縮前の半導体チップ
 3、303 支持板
 4、7、10、304 絶縁層
 4a、7a、10a、304a 下穴(ヴィア)
 5、8、305 ヴィア配線
 6、9、306 配線導体
 11 電極パッド
 12 はんだバンプ
 101 金属放熱板
 102 金属ペースト
 103 ICチップ
 104a、104b、104c 絶縁層樹脂層
 107 配線導体(めっき)
 108 BGA実装パッド
 109 BGAはんだバンプ
 131 IC側実装用パッド
 220 ICチップ
 222 ソルダーレジスト
 223 位置決めマーク
 224 パッド
 230 コア基板
 231 位置決めマーク
 232 凹部
 234 接着材料
 236 無電解めっき膜
 237 電解めっき膜
 238 トランジション層
 250、251 層間樹脂絶縁層
 258、259 導体回路
 260、261 バイアホール
 270 ソルダーレジスト層
 271 開口
 272 ニッケルめっき層
 274 金めっき層
 276 はんだバンプ

Claims (17)

  1.  外部端子を有する半導体チップが絶縁層中に埋め込まれるとともに、前記絶縁層上に配線導体が形成された半導体装置において、
     前記絶縁層には、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応する位置に下穴が形成され、
     前記配線導体は、前記下穴を通じて前記外部端子と電気的に接続されていることを特徴とする半導体装置。
  2.  前記配線導体は、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応するように形成されるとともに、前記下穴に埋め込まれたヴィア配線を介して前記外部端子と電気的に接続されていることを特徴とする請求項1記載の半導体装置。
  3.  前記配線導体は、前記半導体チップを埋め込んだ後であって前記半導体チップが収縮した状態の前記外部端子と対応するように形成されるとともに、前記下穴を通じて前記外部端子と直接接続されていることを特徴とする請求項1記載の半導体装置。
  4.  前記半導体チップの厚さは、50μm以下であることを特徴とする請求項1乃至3のいずれか一に記載の半導体装置。
  5.  前記半導体チップは、支持板上に搭載され、
     前記絶縁層は、前記半導体チップを含む前記支持板上に形成されることで前記半導体チップを埋め込んでいることを特徴とする請求項1乃至4のいずれか一に記載の半導体装置。
  6.  前記支持板は、金属板であることを特徴とする請求項5記載の半導体装置。
  7.  前記半導体チップの厚さは、前記支持板の厚さよりも薄いことを特徴とする請求項5又は6記載の半導体装置。
  8.  前記絶縁層は、樹脂よりなることを特徴とする請求項1乃至7のいずれか一に記載の半導体装置。
  9.  前記樹脂は、熱硬化性樹脂であることを特徴とする請求項8記載の半導体装置。
  10.  前記半導体チップは、複数個の半導体チップであることを特徴とする請求項1乃至9のいずれか一に記載の半導体装置。
  11.  前記支持板の熱膨張係数は、前記半導体チップの熱膨張係数よりも大きいことを特徴とする請求項5乃至10のいずれか一に記載の半導体装置。
  12.  前記絶縁層の熱膨張係数は、前記半導体チップの熱膨張係数よりも大きいことを特徴とする請求項1乃至11のいずれか一に記載の半導体装置。
  13.  外部端子を有する半導体チップが絶縁層中に埋め込まれるとともに、前記絶縁層上に配線導体が形成された半導体装置の製造方法において、
     前記絶縁層中に前記半導体チップを埋め込んだ後、前記絶縁層における前記半導体チップが収縮した状態の前記外部端子と対応するように補正された位置に、前記外部端子に通ずる下穴を形成する工程を含むことを特徴とする半導体装置の製造方法。
  14.  前記下穴を形成した後、前記下穴にヴィア配線を埋め込む工程と、
     前記ヴィア配線を含む前記絶縁層上に、前記半導体チップが収縮した状態の前記外部端子と対応するように補正された前記配線導体を形成する工程を含むことを特徴とする請求項13記載の半導体装置の製造方法。
  15.  前記下穴を形成した後、前記下穴及び前記外部端子を含む前記絶縁層上に、前記半導体チップが収縮した状態の前記外部端子と対応するように補正された前記配線導体を形成する工程を含むことを特徴とする請求項13記載の半導体装置の製造方法。
  16.  前記下穴を形成する前において、
     支持板上に前記半導体チップを搭載する工程と、
     前記半導体チップを搭載した後、前記半導体チップを含む前記支持板上に前記絶縁層を形成することで前記絶縁層中に前記半導体チップを埋め込む工程と、
    を含むことを特徴とする請求項13乃至15のいずれか一に記載の半導体装置の製造方法。
  17.  前記配線導体を形成した後、前記支持板を除去することを特徴とする請求項14乃至16のいずれか一に記載の半導体装置の製造方法。
PCT/JP2010/064562 2009-08-28 2010-08-27 半導体装置およびその製造方法 WO2011024939A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/392,714 US20120153501A1 (en) 2009-08-28 2010-08-27 Semiconductor device and manufacturing method thereof
JP2011528862A JPWO2011024939A1 (ja) 2009-08-28 2010-08-27 半導体装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009198268 2009-08-28
JP2009-198268 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011024939A1 true WO2011024939A1 (ja) 2011-03-03

Family

ID=43628038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064562 WO2011024939A1 (ja) 2009-08-28 2010-08-27 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US20120153501A1 (ja)
JP (1) JPWO2011024939A1 (ja)
WO (1) WO2011024939A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224787A (ja) * 2016-06-17 2017-12-21 株式会社ジェイデバイス 半導体パッケージの製造方法
KR20180016602A (ko) * 2015-08-31 2018-02-14 아이신에이더블류 가부시키가이샤 반도체 장치, 칩 모듈 및 반도체 모듈
KR20190052150A (ko) * 2016-09-30 2019-05-15 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 반도체를 위한 재배선 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929722B2 (ja) * 2011-11-30 2016-06-08 Tdk株式会社 端子構造、プリント配線板、モジュール基板、電子デバイス及び端子構造の製造方法
US20140353019A1 (en) * 2013-05-30 2014-12-04 Deepak ARORA Formation of dielectric with smooth surface
US9474162B2 (en) * 2014-01-10 2016-10-18 Freescale Semiocnductor, Inc. Circuit substrate and method of manufacturing same
US9609751B2 (en) * 2014-04-11 2017-03-28 Qualcomm Incorporated Package substrate comprising surface interconnect and cavity comprising electroless fill
EP3709777A1 (en) 2019-03-11 2020-09-16 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Solder-free component carrier connection using an elastic element, and method
US11296030B2 (en) * 2019-04-29 2022-04-05 Advanced Semiconductor Engineering, Inc. Embedded component package structure and manufacturing method thereof
DE102019133955B4 (de) * 2019-12-11 2021-08-19 Lpkf Laser & Electronics Aktiengesellschaft Verfahren zur Herstellung einer Verbundstruktur aus mindestens einer leitfähigen Struktur
TWI777741B (zh) * 2021-08-23 2022-09-11 欣興電子股份有限公司 內埋元件基板及其製作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148479A (ja) * 1995-11-21 1997-06-06 Sharp Corp 樹脂封止型半導体装置及びその製造方法
JP2001015650A (ja) * 1999-06-29 2001-01-19 Nec Corp ボールグリッドアレイパッケージとその製造方法
JP2008288388A (ja) * 2007-05-17 2008-11-27 Tdk Corp 電子部品の実装方法および電子部品内蔵基板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938921B2 (ja) * 2003-07-30 2007-06-27 Tdk株式会社 半導体ic内蔵モジュールの製造方法
WO2009101904A1 (ja) * 2008-02-14 2009-08-20 Nec Corporation 半導体装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148479A (ja) * 1995-11-21 1997-06-06 Sharp Corp 樹脂封止型半導体装置及びその製造方法
JP2001015650A (ja) * 1999-06-29 2001-01-19 Nec Corp ボールグリッドアレイパッケージとその製造方法
JP2008288388A (ja) * 2007-05-17 2008-11-27 Tdk Corp 電子部品の実装方法および電子部品内蔵基板の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016602A (ko) * 2015-08-31 2018-02-14 아이신에이더블류 가부시키가이샤 반도체 장치, 칩 모듈 및 반도체 모듈
KR102035947B1 (ko) 2015-08-31 2019-10-23 아이신에이더블류 가부시키가이샤 반도체 장치, 칩 모듈 및 반도체 모듈
JP2017224787A (ja) * 2016-06-17 2017-12-21 株式会社ジェイデバイス 半導体パッケージの製造方法
KR20190052150A (ko) * 2016-09-30 2019-05-15 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 반도체를 위한 재배선 방법
JP2019530241A (ja) * 2016-09-30 2019-10-17 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 半導体再配線方法
KR102224436B1 (ko) * 2016-09-30 2021-03-05 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 반도체를 위한 재배선 방법

Also Published As

Publication number Publication date
JPWO2011024939A1 (ja) 2013-01-31
US20120153501A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2011024939A1 (ja) 半導体装置およびその製造方法
KR100987688B1 (ko) 프린트 배선 기판 및 프린트 배선 기판의 제조 방법
US20150003020A1 (en) Electronic component-embedded printed circuit board having cooling member
US8294253B2 (en) Semiconductor device, electronic device and method of manufacturing semiconductor device, having electronic component, sealing resin and multilayer wiring structure
JP6268990B2 (ja) 半導体装置、半導体装置の製造方法、基板及び基板の製造方法
JP5263918B2 (ja) 半導体装置及びその製造方法
KR20060047178A (ko) 반도체 장치
JP2006049819A (ja) 半導体搭載用配線基板、その製造方法、及び半導体パッケージ
JP2005217225A (ja) 半導体装置及びその製造方法
JP2005033141A (ja) 半導体装置及びその製造方法、疑似ウェーハ及びその製造方法、並びに半導体装置の実装構造
KR20100038232A (ko) 반도체 구성요소를 구비한 반도체 장치 및 그 제조 방법
JP2004235523A (ja) 半導体装置および半導体装置の製造方法
JP2008112995A (ja) 回路基板及びその製造方法
US8450825B2 (en) Semiconductor package
JP2010232333A (ja) 半導体装置及びその製造方法、並びに電子装置
JP5532744B2 (ja) マルチチップモジュール及びマルチチップモジュールの製造方法
JP4950743B2 (ja) 積層配線基板及びその製造方法
JP5296636B2 (ja) 半導体パッケージの製造方法
KR100557516B1 (ko) 반도체용 칩 사이즈 패키지형 패키지의 제조 방법
JP2008210912A (ja) 半導体装置及びその製造方法
JP5238182B2 (ja) 積層配線基板の製造方法
US20040256715A1 (en) Wiring board, semiconductor device and process of fabricating wiring board
JP4369728B2 (ja) 電子装置の製造方法
JP2009146940A (ja) 積層配線基板及びその製造方法
KR100923542B1 (ko) 이형재를 이용한 임베디드 반도체 패키지 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528862

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13392714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811988

Country of ref document: EP

Kind code of ref document: A1