WO2011019022A1 - 集じん機用ろ過布 - Google Patents
集じん機用ろ過布 Download PDFInfo
- Publication number
- WO2011019022A1 WO2011019022A1 PCT/JP2010/063500 JP2010063500W WO2011019022A1 WO 2011019022 A1 WO2011019022 A1 WO 2011019022A1 JP 2010063500 W JP2010063500 W JP 2010063500W WO 2011019022 A1 WO2011019022 A1 WO 2011019022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter cloth
- layer
- filtration
- dust
- fiber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/08—Filter cloth, i.e. woven, knitted or interlaced material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/08—Filter cloth, i.e. woven, knitted or interlaced material
- B01D39/083—Filter cloth, i.e. woven, knitted or interlaced material of organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/10—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/52—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
- B01D2239/0654—Support layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/069—Special geometry of layers
Definitions
- the present invention relates to a filter cloth for a dust collector. More specifically, the present invention relates to a filter cloth for a dust collector that exhibits excellent filtration performance even under severe use conditions of high dust content and high speed filtration.
- dust collectors form a powder layer by first depositing the powder to be collected on the surface layer of the filter cloth on a flat filter cloth sewn into a cylindrical or envelope shape. After the powder is collected on the primary layer powder, the filter cloth body is pulsated by, for example, reversing the pressure inside and outside the filter cloth, and the collected powder is wiped off. The operation is repeated. Therefore, the performance of the dust collector is governed by how to properly maintain the balance between collection and removal.
- these filter cloths are desired to have low pressure loss (hereinafter referred to as low pressure loss), high collection efficiency, and excellent crushability without clogging, and various filter cloths have been proposed so far.
- low pressure loss a fine structure of the fiber layer on the surface of the filter cloth, a laminated structure of fine fibers on the surface of the filter cloth (see Patent Documents 1 to 3 below), and a film such as a PTFE resin or a porous film mainly on the surface layer
- a method see Patent Document 4 below
- the adhesion layer of the powder forms an overly dense structure and the airflow resistance is increased, so that it is not necessarily superior in terms of function.
- a means to increase the filtration area of the filter cloth is adopted for high speed filtration and low pressure loss of the dust collection equipment.
- a method such as pleating is known (see Patent Documents 5 and 6 below)
- accumulation of dust is remarkable in the valley portion of the pleat, and the entire filter cloth does not have a function as an effective filtration area.
- the filtration area is increased in a shape that can withstand continuous use in bag filter applications.
- Patent Document 7 described below describes that excellent air permeability can be obtained by a concavo-convex sheet made of nonwoven fabric having a concavo-convex shape, but the development to a bag filter is insufficient in terms of strength. Met.
- the problem to be solved by the present invention is that it can withstand continuous use with high pressure filtration and high dust concentration, without impairing the collection performance, with low pressure loss and without clogging, and excellent repellency. It is to provide a filter cloth for a dust collector. Further, the problem to be solved by the present invention is that the size of the dust collector in which the bag filter is used is not limited, the filter is free from dust clogging and has good powder wiping off property, low pressure loss and long life filter. It is also providing the filter cloth for dust collectors which has performance.
- the inventors of the present invention have developed a laminated body in which a filtration layer of a nonwoven fabric layer made of thermoplastic fibers and a support layer of a woven fabric layer are laminated and integrated.
- the inventors have found that the above-mentioned problems can be solved by depositing at least a filter cloth having an uneven shape on the filtration surface layer, and have completed the present invention.
- the filtration layer of the nonwoven fabric layer is composed of any one of a short fiber nonwoven fabric, a long fiber nonwoven fabric or a fiber web having a fiber diameter of 0.1 to 100 ⁇ m and a basis weight of 100 to 900 g / m 2 .
- a filter cloth for a dust collector according to any one of to [6].
- thermoplastic fiber of the filtration layer is a laminated or mixed cotton of polyester fibers having a birefringence of 0.06 or less. Filter cloth.
- thermoplastic fiber of the filtration layer is a laminated or mixed cotton of polyphenylene sulfide fibers having a birefringence of 0.08 or less. Filter cloth.
- the filter cloth for a dust collector according to the present invention is not easily clogged with dust and has good powder wiping-off property without impairing the collection performance even under dust collection conditions of high speed filtration and high dust content.
- the size of the dust collector in which the bag filter is used is not limited, and it can be widely used in various dust collectors. Dust collectors that use bag filters have excellent microparticle collection efficiency, but have the disadvantage of large pressure loss and high power consumption compared to other methods (electric dust collectors, cyclones, etc.) By using the filter cloth for a dust collector of the present invention, low pressure loss and energy saving of the filter can be expected.
- FIG. 2 is a schematic cross-sectional view of a filter cloth (between ab and cd in FIG. 1). It is the electron micrograph which replaces drawing which shows the state of the dense part of the filter cloth surface. It is the electron micrograph which replaces drawing which shows the state of the rough part of the filter cloth surface.
- 6 is a graph showing a payout interval and the number of payouts in Examples 1 to 7 and Comparative Examples 1 to 4. 6 is a graph showing the residual pressure loss of the filter cloth after dust removal and the number of removals in Examples 1 to 7 and Comparative Examples 1 to 4.
- the present invention is a filter cloth for a dust collector in which a filtration layer of a nonwoven fabric layer made of thermoplastic fibers and a support layer of a woven fabric layer are laminated and integrated, and at least the filtration surface of the laminate integrated and laminated
- the filter cloth is characterized in that the layer has a concavo-convex shape with a height from the peak portion to the valley portion (height of the concavo-convex portion) of 1.6 mm to 20.0 mm. It functions as a filter cloth for dust collectors with good filterability, low pressure loss and long life.
- the role of the uneven shape having a height difference of 1.6 mm or more of the filter cloth surface layer is to make the filter cloth surface uneven by making use of the shapeability of the thermoplastic fiber, thereby reducing the filtration area.
- the increase in the filtration area that is, the surface area ratio before and after the unevenness processing (area after unevenness processing / before unevenness processing) is preferably 1.1 to 4.0, more preferably 1.1 to 3.2.
- the filtration surface layer of the laminated body that has been laminated and integrated has uneven shapes with different roughness. Due to this uneven shape, the dust entry angle varies, and the dust layer is loosely tightened. Further, the powder collected by dust collection by providing a difference in density between the shaped concave surface and the convex surface forms a deposited layer that is thick at the concave portion and thin at the convex portion. For this reason, especially when the powder is wiped off by the pulse jet method, the deposited layer easily breaks down and the effect of the removal is enhanced.
- the difference in ventilation resistance caused by the difference in fiber density between the bottom surface of the concave portion, the convex portion apex and the convex portion side surface connecting them increases the effect of forming a deposited layer without compacting the powder collected on the filter cloth.
- the clogging is less clogged than the filter cloth having a smooth surface, the ventilation resistance is reduced, and the pressure loss of the entire filter cloth can be kept low.
- the filtration surface layer is made into a form in which a fused portion and a non-fused portion melted by indirect heating with a hair burner, a heating roll, an infrared heater, etc. are mixed. Controls clogging and improves wiping-out performance.
- the range of the melted fused portion in the filtration area layer is 3% to 80%, preferably 10% to 60%. If the fused portion is less than 3%, the dust wiping-out property is lowered. On the other hand, if the fused portion exceeds 80%, the effect of wiping off is excellent, but the pressure loss is increased.
- the height from the peak part of the convex part of the filter cloth surface layer of the present invention to the valley part of the concave part (hereinafter also referred to as the height of the concave and convex part) was formed by the concave and convex roll.
- it is necessary that the height from the peak portion to the valley portion of the concavo-convex portion satisfies 1.6 mm to 20.0 mm.
- the filter function of the powder is the same as that of the smooth filter cloth on the surface, and the effect of wiping off is low. If the height from the peak to the valley exceeds 20.0 mm, when mounted on a dust collector, problems such as poor wear resistance due to contact with the retainer and rapid deterioration such as perforation may occur. Since the workability when sewing into a cylindrical shape is deteriorated, the height from the peak portion to the valley portion of the uneven portion is preferably 2.0 mm to 16.0 mm, more preferably 2.0 mm to 12. 0 mm.
- the uneven shape developed in the filtration surface layer caused by the needle needle arrangement pattern is not the uneven shape of the present invention. Further, it is preferable that a filter having a so-called pleated shape is not included.
- the uneven shape of the surface layer of the filter cloth of the present invention is an unevenness imparting device using a pair of uneven rollers (see Japanese Patent No. 3939985), a pair of metal engraving rolls, embossing such as a combination of a metal engraving roll and a paper roll on one side It refers to a cross-sectional shape obtained by forming irregularities using a flat plate press using an apparatus, a metal engraving plate, or a cylindrical press having an irregular shape.
- FIG. 2 shows a typical waveform.
- the uneven shape is not particularly limited, and it is preferable to increase the surface area of the filter cloth with respect to the plane.
- examples of the shape formed on the surface of the filter cloth surface include, but are not limited to, a square, a circle, an ellipse, and a diamond shape in addition to the rectangle shown in FIG.
- the number per unit area of any one of the concave portion, the convex portion, and the concave and convex portion is 10 to 5000/100 cm 2 , and more preferably 50 to 1500/100 cm 2 .
- FIG. 3 is a state diagram obtained by observing and photographing the portion 1 in the schematic plan and sectional views of the filter cloth surface shown in FIGS. 1 and 2 with an electron microscope, and FIG. It is the state figure which image
- reference numeral 5 is a fusion part in which the filtration surface layer is melted by a heating roll in the previous step for uneven processing
- reference numeral 6 in the figure is a fiber in which the fibers of the surface layer of the laminate are directly crushed by the uneven roll.
- 7 is a rough portion where the fibers of the surface layer of the laminate are pushed up by the uneven roll, the fibers are stretched, and the fiber gap is widened.
- the melted fused portion, the pressed dense portion, and the extended rough portion are mixed in the filter cloth surface layer. It can be confirmed by observation with these electron microscopes that the filtration surface layer has at least unevenness shapes with different density, and that a fused portion and a non-fused portion are mixed. In addition, it is preferable that a large number of fused portions exist in the concave portion because clogging of dust into the concave portion is suppressed.
- thermoplastic fiber used in the present invention is preferably a synthetic fiber or a recycled fiber, and most preferably a thermoplastic synthetic long fiber.
- synthetic resins that can be made into fibers are used.
- polyolefins such as polyolefins such as polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene terephthalate, phthalic acid, isophthalic acid, sebacic acid, Aromatic polyester copolymer, polylactic acid polymer, poly D-lactic acid, poly L-lactic acid, D-lactic acid obtained by copolymerization of one or more compounds of adipic acid, diethylene glycol, and 1,4-butanediol And L-lactic acid copolymer, D-lactic acid and hydroxycarboxylic acid copolymer, L
- thermoplastic resins may be used alone or in combination of two or more as a polymer alloy. Moreover, you may use bicomponent fibers, such as a core-sheath structure and a side-by-side structure which combined 2 or more types of different resin.
- a polyester polymer having excellent dimensional stability is preferably used, and for heat-resistant bag filter cloth, polyphenylene sulfide having excellent heat resistance and rigidity due to its high melting point, Meta-aramid, polyimide, and polytetrafluoroethylene are preferably used.
- the synthetic fiber may contain a crystal nucleating agent, a matting agent, a pigment, a fungicide, an antibacterial agent, a flame retardant, a water repellent, and the like as long as the effects of the present invention are not impaired.
- the cross-sectional shape of the thermoplastic fiber is not particularly limited, but is preferably a circular shape, a hollow round shape, an elliptical shape, a flat shape, an irregular shape such as an X shape, a Y shape, a polygonal shape, a multileaf shape, or the like.
- the nonwoven fabric layer of the filtration layer used in the filter cloth of the present invention is a short fiber obtained by the known carding method, spunbond method, airlay method, thermal bond method, melt blown method, etc. It refers to long fiber nonwoven fabric and fiber web.
- the structure of the filtration layer includes single and mixed fiber combinations.
- the basic structure of the filter cloth of the present invention is to laminate the nonwoven fabric layer and the support layer. Specifically, it has a three-layer structure composed of the nonwoven fabric layer in the upper and lower sides and a support layer in the middle, or a two-layer structure composed of the nonwoven fabric layer in the upper portion and a support layer in the lower portion.
- the fiber diameter of the fiber used for the nonwoven fabric layer is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and is selected according to the type of dust to be collected.
- the basis weight of the nonwoven fabric layer of the filtration layer is preferably 100 g / m 2 to 900 g / m 2 , more preferably 200 g / m 2 to 700 g / m 2 .
- a nonwoven fabric layer made of polyester fibers having a birefringence of 0.06 or less, more preferably 0.003 to 0.05, and still more preferably. 0.03 to 0.05.
- the fiber has a high elongation, and a filter cloth having excellent shapeability and excellent shape-retaining properties.
- the nonwoven fabric may be used in combination by blending or laminating other materials, and the combination and type are not particularly limited.
- the fiber has a high elongation, a good shapeability and excellent shape-retaining property, and a filter cloth that is excellent in shape retention, and even when exposed to high-temperature gas for a long time in actual use. Uneven shape can be maintained and good collection performance and dust removal performance can be maintained for a long time.
- a combination of lamination, composite, etc. in which the surface layer is composed of heat resistant fibers and the subsequent layers are composed of heat resistant fibers lower than the surface layer, etc. It can be carried out.
- the support layer of the woven fabric layer used for the filter cloth of the present invention is used for the purpose of improving the dimensional stability such as reinforcing the strength of the filter cloth and preventing the stretch. Therefore, as a raw material, a woven fabric made of multifilament, monofilament, and spun yarn of thermoplastic resin used for the nonwoven fabric may be used.
- the basis weight does not impair the air permeability of the filter cloth and does not cause insufficient strength as a filter cloth, and is preferably 50 to 250 g / m 2 , more preferably 60 to 200 g / m 2 .
- the method for laminating and integrating the filtration layer and the support layer of the present invention is not particularly limited, but for example, the needle punch method or the water punch method is preferable.
- a composite with a laminate or an adhesive binder may be performed.
- the temperature of the concavo-convex roll which is a condition of the method for forming the concavo-convex shape of the present invention, is preferably in the range of 5 to 60 ° C. lower than the glass transition point (Tg) to the melting point of the fibers of the nonwoven fabric layer of the filter cloth surface layer.
- At least the surface layer fiber of the laminate before and after the concavo-convex processing for example, acrylic resin, polyurethane resin, vinyl acetate resin, ethylene vinyl acetate resin, Thermoplastic and thermosetting resin binders typified by polyvinyl alcohol, various rubber latex, phenol resin, and epoxy resin can be sprayed by resin impregnation and spraying.
- the adhesion amount of the resin may be a level that does not hinder the filter performance, and is preferably 0.5 to 10% of the basis weight of the filter cloth.
- pigments, antifungal agents, antibacterial agents, flame retardants, water repellents, oil proofing agents, resins and the like are added for the purpose of improving chemical resistance, Alternatively, it may be added by processing in a separate step to impart the functions of those agents.
- the air permeability of the filter cloth of the present invention is preferably 1 to 100 cc / cm 2 / sec, more preferably 5 to 80 cc / cm 2 / sec, still more preferably 10 to 50 cc / cm 2 / sec. If it is less than 1 cc / cm 2 / sec, it is not preferable because the initial pressure loss of the filter cloth becomes high. On the other hand, if it exceeds 100 cc / cm 2 / sec, there is a large decrease in trapping property and penetration of powder into the filter cloth. This is not preferable because the increase in pressure loss becomes severe and clogging occurs.
- the thickness of the filter cloth having a concavo-convex shape after the concavo-convex processing of the present invention is preferably 0.5 to 8.0 mm, more preferably 1.5 to 6.0 mm. . Further, the thickness of the filter cloth before the uneven processing is preferably 1.0 to 9.0 mm, and more preferably 1.0 to 8.0 mm.
- thermoplastic fibers are made of a short fiber web obtained by a known carding method (usually commonly used carding conditions), and the back layer and the intermediate layer are made of the same thermoplastic fibers.
- a woven fabric made of any one of filament, monofilament, and spun yarn on a support layer, and a long-fiber nonwoven fabric obtained by a known spunbond method, which is excellent in uneven shape-forming property made of the same thermoplastic fiber, on the surface layer After laminating a woven fabric made of any one of filament, monofilament, and spun yarn on a support layer, and a long-fiber nonwoven fabric obtained by a known spunbond method, which is excellent in uneven shape-forming property made of the same thermoplastic fiber, on the surface layer Then, by a known needle punching method (usually general needle punching conditions), a three-layer laminate is obtained by pre-punching from the surface layer to the back layer, and from the back layer to the surface layer, and from the surface layer to the back layer. In the second and third steps, the surface layer side is baked and calendered with a pair of smooth metal rolls (having heating and a gap).
- the uneven shape is formed by performing uneven shape forming at a temperature in which the upper and lower roll temperature is 5 to 60 ° C. lower than the melting point of the thermoplastic fiber by an unevenness imparting device using a pair of corrugated rollers.
- a three-layer laminated filter cloth having Moreover, after performing the uneven
- Air permeability (cc / cm 2 / sec) According to the method prescribed in JIS-L1906, three test pieces measuring 15 cm in length and 15 cm in length were sampled per 1 m width of the sample, the amount of air passing through the test piece was measured by the Frazier method, and the average value was obtained. .
- Thickness mm
- the cross section was observed with a microscope, the thickness of the convex portion was measured, and the average value of the ten locations was obtained.
- Fiber diameter ( ⁇ m) A 1 cm square test piece was cut from each 20 cm wide area of the filter cloth to prepare a sample. For each test piece, the fiber diameter was measured at 30 points with a microscope, and the average value of the measured values was calculated as the fiber diameter.
- Birefringence index The birefringence of the fiber was measured from the retardation and the fiber diameter with a polarizing microscope (Olympus) equipped with a Belek compensator.
- a polarizing microscope Olympus
- Belek compensator For the immersion liquid, olive oil was used in the case of polyester fiber, and tricresyl phosphate was used in the case of polyphenylene sulfide fiber. Measurement was performed on 10 fibers of the sample, and the average value of 10 points is shown.
- the initial pressure loss (Pa) (hereinafter, also referred to as pressure loss) of the sample felt is measured in a dust-free state at the stage of mounting the sample.
- First stage Dust is removed when the pressure loss reaches 1000 Pa. This operation is repeated 30 times. At that time, the residual pressure loss (Pa) and the exhaust gas concentration (mg / m 3 ) immediately after the removal are measured.
- Second stage The aging process is repeated 5000 times at intervals of 5 s.
- Third stage As a stabilizing operation, a dust removing operation with a pressure loss of 1000 Pa is performed 10 times.
- Fourth stage Dust removal at a pressure loss of 1000 Pa is performed 30 times. At that time, the residual pressure loss (Pa) and the exhaust gas concentration (mg / m 3 ) are measured.
- Example 1 A long-fiber non-woven fabric with a basis weight of 230 g / m 2 composed of polyethylene terephthalate fibers having a birefringence of 0.04 and an average fiber diameter of 17.6 ⁇ m is applied to the filter layer of the filter cloth by a known spunbond method.
- 10 ⁇ 1 twist is plain woven
- a polyethylene terephthalate short fiber web weight of 200 g / m 2 having a cut length of 51 mm, 5 crimps / inch was laminated and a laminated body integrated by needle punching was obtained.
- the laminate was heat-set (temperature ⁇ time; 180 ° C. ⁇ 30 seconds), and aeration control was performed with hair roasting and a pair of smooth metal rolls (temperature 80 ° C.).
- a pair of this laminated body having a thickness of 3 mm of an uneven circular plate used for a roller, a height of 4 mm from the peak to the valley of the uneven part, a pitch (vertical direction) of 15 mm between the peaks, and a spacer thickness of 3 mm.
- Example 2 The upper and lower filtration layers of the filter cloth are supported by a polyethylene terephthalate short fiber web having a birefringence of 0.13, an average fiber diameter of 14.3 ⁇ m, a cut length of 51 mm, a crimp of 5 times, and a basis weight of 210 g / m 2 by a known card method.
- Single-layer yarn count 20 ⁇ 2 twisted, warp 18 / inch Weft 16 / inch polyethylene terephthalate fiber spun yarn with a plain weave weight of 80 g / m 2 is laminated on the layer and laminated by needle punching An integrated laminate was obtained. Next, the laminated body was subjected to air flow control by heat setting (temperature ⁇ time 200 ° C.
- Example 3 Using a pair of concavo-convex rolls having a configuration similar to that of Example 1 and a processed laminate having a height from the roll crest to a trough of 16 mm and a pitch between the crests (vertical direction) of 24 mm, the roll gap is Processing was performed under the conditions of 0.5 mm and a temperature of 150 ° C. to obtain a filter cloth having a convex / concave portion height of 16 mm and a filtration surface having 72 convex portions / 100 cm 2 per unit area. Table 1 below shows the characteristics of the filter cloth obtained and the results of measuring the filtration performance.
- Example 4 200 g / m 2 long fiber nonwoven fabric composed of polyphenylene sulfide fibers having a birefringence of 0.04 and an average fiber diameter of 14.5 ⁇ m and a support layer of 225 denier by a known spunbond method for the filtration layer of the filter cloth. It was composed of a woven fabric with a basis weight of 100 g / m 2 , made of 60 filament polyphenylene sulfide multifilament fibers, and a polyphenylene sulfide short fiber web having an average fiber diameter of 14.5 ⁇ m and a cut length of 51 mm by a known card method.
- a laminate having a basis weight of 200 g / m 2 was laminated and laminated and integrated by needle punching to obtain a laminate.
- the laminate was subjected to thermal calendering with a pair of smooth metal rolls at 230 ° C., and air flow control was performed with the roasting and a pair of smooth metal rolls.
- a pair of this laminated body having a thickness of 3 mm of an uneven circular plate used for a roller, a height of 4 mm from the peak to the valley of the uneven part, a pitch (vertical direction) of 15 mm between the peaks, and a spacer thickness of 3 mm.
- Example 5 Using a pair of concavo-convex rolls having a configuration similar to that of Example 4 and a laminate subjected to the same processing, the height of the ridges to the valleys is 20 mm and the pitch between the ridges (vertical direction) is 30 mm. Processing was carried out at a gap of 0.5 mm and a temperature of 220 ° C. to obtain a filter cloth having a height of 20 mm from the ridges to valleys of the concavo-convex part and a convex part of 80/100 cm 2 per unit area on the filtration surface.
- Example 6 200 g / m 2 long fiber nonwoven fabric composed of a polyphenylene sulfide fiber having a birefringence of 0.08 and an average fiber diameter of 11.5 ⁇ m and a support layer of 225 denier by a known spunbond method for the filtration layer of the filter cloth.
- a laminate having a unit weight of 200 g / m 2 composed of a 51 mm polyphenylene sulfide short fiber web was laminated and laminated and integrated by needle punching.
- the laminate was subjected to thermal calendering with a pair of smooth metal rolls at 200 ° C., and air flow control was performed with the roasting and a pair of smooth metal rolls (temperature 210 ° C.).
- This laminated body is a pair of concave and convex circular plates used as rollers with a thickness of 3 mm, a height from the peak to valley of the concave and convex portions of 4 mm, a pitch (vertical direction) between the peaks and peaks of 15 mm, and a spacer thickness of 3 mm.
- an unevenness imparting device (“Embostar TM” manufactured by Saito Engineers Co., Ltd.) using an uneven roller, processing is performed under conditions of a roll gap of 0.5 mm, a temperature of 240 ° C, and a processing speed of 1.2 m / min.
- a filter cloth having a height of the concavo-convex portion of 3.2 mm and having a convex portion of 96 pieces / 100 cm 2 per unit area on the filtration surface was obtained.
- the result of having measured the characteristic of the filter cloth obtained in the following Table 1, and the filtration performance in 190 degreeC which assumed normal temperature and an actual use environment is shown.
- Example 7 In Example 6 described above, a long-fiber nonwoven fabric having a basis weight of 200 g / m 2 composed of polyphenylene sulfide fibers having a birefringence of 0.04 and an average fiber diameter of 14.5 ⁇ m was used for the filtration layer of the filter cloth.
- the filter cloth was obtained by the same method as 6. The result of having measured the characteristic of the filter cloth obtained in the following Table 1, and the filtration performance in 190 degreeC which assumed normal temperature and an actual use environment is shown.
- a long-fiber non-woven fabric with a basis weight of 230 g / m 2 composed of polyethylene terephthalate fibers having a birefringence of 0.04 and an average fiber diameter of 17.6 ⁇ m is applied to the filter layer of the filter cloth by a known spunbond method.
- Comparative Example 4 is an example in which PPS felt that does not perform uneven processing is used instead of PET felt in Comparative Example 1.
- the filter cloth (Examples 1 to 7) having an uneven shape on the filter cloth surface is clogged with a low pressure loss compared to the conventional filter cloth (Comparative Examples 1 to 4). It is clear that it exhibits high filter characteristics that are difficult to remove and excellent in removal performance.
- the filter cloth for a dust collector according to the present invention is not easily clogged with dust and has good dust wiping property, even under high speed filtration and dust collection conditions with high dust content, without impairing the collection performance.
- the size of the dust collector in which the bag filter is used is not limited, and it can be widely used in various dust collectors.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Filtering Materials (AREA)
Abstract
Description
[1]熱可塑性繊維からなる不織布層のろ過層と、織布層の支持層とを、積層一体化したろ過布であって、該積層一体化したろ過布の少なくともろ過表面層が、山部から谷部までの高さが1.6mm~20.0mmの凹凸形状を有することを特徴とする集じん用ろ過布。
[3]前記ろ過表面層が、粗密の異なる凹凸形状を有している、前記[1]又は[2]に記載の集じん機用ろ過布。
本発明は、熱可塑性繊維からなる不織布層のろ過層と、織布層の支持層とを、積層一体化した集じん機用ろ過布であって、該積層一体化した積層体の少なくともろ過表面層が、山部から谷部までの高さ(凹凸部の高さ)が1.6mm~20.0mmの凹凸形状を有することを特徴とする前記ろ過布であり、かかる構成により、ダスト目詰まりがなく粉体払い落とし性が良好な、低圧損で長寿命のフィルター性能を有する集じん機用ろ過布として機能する。
本発明においては、凹凸部の山部から谷部までの高さが1.6mm~20.0mmを満足することが必要である。すなわち、凹凸部の山部から谷部までの高さが、1.6mm未満では、粉体のフィルター機能が表面の平滑なろ過布と変わらず払い落とし性の効果が低く、一方、凹凸部の山部から谷部までの高さが20.0mmを超えると、集じん機へ装着した時、リテーナーとの接触による耐摩耗性が悪く穴あきなどの劣化が早いなどの問題が発生したり、円筒形に縫製する時の作業性が悪くなったりするため、凹凸部の山部から谷部までの高さは、好ましくは2.0mm~16.0mm、より好ましくは、2.0mm~12.0mmである。
但し、ニードルパンチ加工で積層一体化する場合には、ニードル針の配列パターンが原因で発生するろ過表面層に発現した凹凸形状は、本発明の凹凸形状とはいわない。
また、いわゆるプリーツ型の形状を有するフィルターは含まれないことが好ましい。
なお前記合成繊維には、本発明の効果を損なわない範囲で、結晶核剤、艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、撥水剤等を添加してもよい。
本発明のろ過布の構成は、前記不織布層と前記支持層とを積層させることが基本構造である。具体的には、上下に前記不織布層、中間に支持層からなる3層構造、又は、上部に前記不織布層、下部に支持層からなる2層構造である。
さらに、不織布層に用いる繊維の繊維径は、0.1~100μmが好ましく、1~50μmがより好ましく、捕集する粉塵(ダスト)の種類によって選定される。ろ過層の不織布層の目付は、100g/m2~900g/m2が好ましく、より好ましくは200g/m2~700g/m2である。
また、表面層の耐熱性を向上させる目的で、表面層により耐熱性繊維を構成し、それに続いた層が、表面層より、低い耐熱性繊維の構成にするなどの積層、複合などの組み合わせを行うことができる。
第一工程で、熱可塑性繊維から成る短繊維を公知のカーディング法(通常一般に用いられるカーディング条件)にて得られた短繊維ウェブを裏面層、中間層に同一の熱可塑性繊維から成るマルチフィラメント、モノフィラメント、紡績糸のいずれかからなる織布を支持層、同一の熱可塑性繊維から成る凹凸賦形性に優れる公知のスパンボンド法にて得られた長繊維不織布を表面層に積層した後、公知のニードルパンチ加工方法にて(通常一般のニードルパンチ条件)、表面層から裏面層にプレパンチング、裏面層から表面層、表面層から裏面層へ本パンチングにより3層積層体を得る。
第二、三工程は、表面層側に毛焼き加工、一対の平滑な金属ロール(加熱、間隙を有した)にてカレンダー加工を行なう。
その後、第四工程にて、一対の波型賦形ローラーによる凹凸付与装置により上下ロール温度が熱可塑性繊維の融点より5~60℃低い範囲の温度下で凹凸賦形を行い本発明の凹凸形状を有した3層積層一体化したろ過布が得られる。
また、第四工程の凹凸賦形を行った後に、冷却して繊維の剛性を高めることもできる。
なお、測定法、評価法等は下記のとおりであった。
(1)山部から谷部までの高さ(mm)(又は凹凸の高さ(mm))
凹凸形状のろ過布(1m2)から無作為に断面を抜き取り、断面をマイクロスコープにて観察し、凹凸形状の山部から谷部までの高さを測定してその10箇所の平均値を求めた。
経10cm×緯10cmの試験片を試料の幅1m当り3箇所採取して、凹部、凸部、凹凸部のいずれかの個数を測定し、その平均値を求めた。
JIS-L1906に規定の方法に従い、経15cm×緯15cmの試験片を試料の幅1m当り3箇所採取して、フラジール形法により試験片を通過する空気量を測定し、その平均値を求めた。
JIS-L1906に規定の方法に従い、経20cm×緯25cmの試験片を試料の幅1m当り3箇所採取して、質量を測定し、その平均値を単位面積当たりの質量に換算して求めた。
前記(1)の山部から谷部までの高さの測定と同様に、断面をマイクロスコープにて観察し凸部の厚みを測定してその10箇所の平均値を求めた。
ろ過布の幅20cm毎の区域からそれぞれ1cm角の試験片を切り取ってサンプルとした。各試験片についてマイクロスコープで繊維の直径を30点測定し、該測定値の平均値を算出して繊維径とした。
ベレックコンペンセーターを装着した偏光顕微鏡(オリンパス社製)によりレターデーションと繊維径より、繊維の複屈折率を測定した。浸漬液には、ポリエステル繊維の場合はオリーブ油を、ポリフェニレンサルファイド繊維の場合はリン酸トリクレジルを用いた。試料の繊維10点について測定し10点の平均値で示す。
ろ過性能は、JIS-Z8909-1に準じた。以下の測定条件による測定結果から目詰まりのし難さ、払い落とし性を判断した。
ろ過速度:2.0mm/min、
ダスト濃度:5g/m3、
ダスト種類:試験用粉体10種(フライアッシュ)、
ダスト払い落とし:1000Pa、
エージング間隔:5s、
タンク圧:0.5MPa。
JIS-L1906に規定の方法に従い、接圧荷重2kPaにて幅方向に10箇所測定し、その平均値を厚みとした。厚み計として、PEACOCK社製を用いた。
(1)サンプルを装着した段階で、ダストのない状態で、サンプルフェルトの持つ初期の圧力損失(Pa)(以下、圧損ともいう。)を測定する。
(2)第1段階:圧損が1000Paに達したときにダスト払い落としを行う。この操作を30回繰り返す。その時の、払い落とし直後の残留圧損(Pa)と排気濃度(mg/m3)を測定する。
(3)第2段階:エージング処理は、払い落としを5s間隔で5000回繰り返し行う。
(4)第3段階:安定化操作として、圧損1000Paでのダスト払い落とし操作を10回行う。
(5)第4段階:圧損1000Paでのダスト払い落としを30回実施する。その時の、残留圧損(Pa)と排気濃度(mg/m3)を測定する。
第4段階の試験結果を用いて、払い落とし回数と払い落とし間隔の関係から払い落とし間隔時間が長い程、目詰まり性に優れる。
第4段階の試験結果を用いて、払い落とし回数と残留圧損の関係から残留圧損が低い程、払い落とし性に優れる。
ろ過布のろ過層に公知のスパンボンド法により、複屈折率0.04、平均繊維径17.6μmのポリエチレンテレフタレート繊維から構成された目付け230g/m2の長繊維不織布と支持層に単糸番手10番×1本撚のポリエチレンテレフタレート繊維の紡績糸を平織りにした目付け70g/m2の織布と裏面ろ過層に公知のカード法により、複屈折率0.13、平均繊維径14.3μm、カット長51mm、5回クリンプ/インチのポリエチレンテレフタート短繊維ウェブ目付け200g/m2を積層してニードルパンチングにより積層一体した積層体を得た。次いで、積層体を熱セット(温度×時間;180℃×30秒)し、毛焼きと一対の平滑な金属ロールにより(温度80℃)通気コントロールを行なった。この積層体をローラーに使われる凹凸円形板の厚さ3mm、凹凸部の山部から谷部までの高さが4mm、山山間のピッチ(縦方向)15mmで且つ、スペーサの厚さ3mmの一対の凹凸ローラーによる凹凸付与装置(サイトウエンヂニアーズ株式会社製「エンボスターTM」)を用いて、ロール間隙が0.5mm、温度が150℃、加工速度が1.2m/分の条件で加工を行い凹凸部の山部から谷部までの高さ4mm、ろ過表面に単位面積当り117個/100cm2の凸部を有するろ過布を得た。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。
ろ過布の上下ろ過層に公知のカード法により、複屈折率0.13、平均繊維径14.3μm、カット長51mm、5回クリンプ/インチ、目付け210g/m2のポリエチレンテレフタレート短繊維ウェブと支持層に単糸番手20番×2本撚、経18本/インチ 緯16本/インチのポリエチレンテレフタレート繊維の紡績糸を平織りにした目付け80g/m2の織布とを積層してニードルパンチングにより積層一体した積層体を得た。次いで、積層体を熱セット(温度×時間が200℃×30秒)、毛焼きと一対の平滑な金属ロールにより通気コントロールを行なった。この積層体を片面に高さ2.0mm、タテ×ヨコのピッチ6.0mm×5.0mmのダイヤ形の凹凸彫刻柄とペーパーロールとの組み合わせのエンボス装置を用いて、温度が180℃にて凹凸部の山部から谷部までの高さ2.0mm、ろ過表面に単位面積当り1368個/100cm2の凹凸部を有するろ過布を得た。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。
実施例1と同様の構成、同様の加工を施した積層体をロール山部から谷部の高さが16mm、山山間のピッチ(縦方向)24mmの一対の凹凸ロールを用いて、ロール間隙が0.5mm、温度が150℃の条件で加工を行い凹凸部の高さ16mm、ろ過表面に単位面積当り72個/100cm2の凸部を有するろ過布を得た。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。
ろ過布のろ過層に公知のスパンボンド法により、複屈折率0.04、平均繊維径14.5μmのポリフェニレンサルファイド繊維から構成された目付け200g/m2の長繊維不織布と支持層に225デニール、60フィラメントのポリフェニレンサルファイド・マルチフィラメント繊維を平織りにした目付け100g/m2の織布と裏面に公知のカード法により、平均繊維径14.5μm、カット長51mmのポリフェニレンサルファイド短繊維ウェブから構成された目付け200g/m2を積層してニードルパンチングにより積層一体した積層体を得た。次いで、積層体を230℃一対の平滑な金属ロールにより熱カレンダー処理、毛焼きと一対の平滑な金属ロールにより通気コントロールを行なった。この積層体をローラーに使われる凹凸円形板の厚さ3mm、凹凸部の山部から谷部までの高さが4mm、山山間のピッチ(縦方向)15mmで且つ、スペーサの厚さ3mmの一対の凹凸ローラーによる凹凸付与装置(サイトウエンヂニアーズ株式会社製「エンボスターTM」)を用いて、ロール間隙が0.5mm、温度が220℃、加工速度が1.2m/分の条件で加工を行い凹凸部の山部から谷部までの高さ4mm、ろ過表面に単位面積当り96個/100cm2の凸部を有するろ過布を得た。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。
実施例4と同様の構成、同様の加工を施した積層体を凹凸部の山部から谷部の高さが20mm、山山間のピッチ(縦方向)30mmの一対の凹凸ロールを用いて、ロール間隙が0.5mm、温度が220℃で加工を行い凹凸部の山部から谷部までの高さ20mm、ろ過表面に単位面積当り80/100cm2の凸部を有するろ過布を得た。
次いで、スプレー法により付着量10g/m2のエポキシ樹脂を付与して乾燥・熱セット(180℃×3分)を行い、凹凸の高さ20.0mmのろ過布を得た。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。
ろ過布のろ過層に公知のスパンボンド法により、複屈折率0.08、平均繊維径11.5μmのポリフェニレンサルファイド繊維から構成された目付け200g/m2の長繊維不織布と支持層に225デニール、経20本/インチ、緯18本/インチのポリフェニレンサルファイド・マルチフィラメント繊維を平織りにした目付け78g/m2の織布と裏面ろ過層に公知のカード法により、平均繊維径14.5μm、カット長51mmのポリフェニレンサルファイド短繊維ウェブから構成された目付け200g/m2を積層してニードルパンチングにより積層一体した積層体を得た。次いで、積層体を200℃一対の平滑な金属ロールにより熱カレンダー処理、毛焼きと一対の平滑な金属ロールにより(温度210℃)通気コントロールを行なった。この積層体をローラーに使われる凹凸円形板の厚さ3mm、凹凸部の山部から谷部の高さが4mm、山山間のピッチ(縦方向)15mmで且つ、スペーサの厚さ3mmの一対の凹凸ローラーによる凹凸付与装置(サイトウエンヂニアーズ株式会社製「エンボスターTM」)を用いて、ロール間隙が0.5mm、温度が240℃、加工速度が1.2m/分の条件で加工を行い凹凸部の高さ3.2mm、ろ過表面に単位面積当り96個/100cm2の凸部を有するろ過布を得た。以下の表1に得られたろ過布の特性と、常温及び実使用環境を想定した190℃におけるろ過性能を測定した結果を示す。
上記実施例6において、ろ過布のろ過層に、複屈折率0.04、平均繊維径14.5μmのポリフェニレンサルファイド繊維から構成された目付け200g/m2の長繊維不織布を用いた以外は実施例6と同一の方法でろ過布を得た。以下の表1に得られたろ過布の特性と、常温及び実使用環境を想定した190℃におけるろ過性能を測定した結果を示す。
ろ過布の上下ろ過層に公知のカード法により、複屈折率0.13、平均繊維径14.3μm、カット長51mm、5回クリンプ/インチ、目付け210g/m2のポリエチレンテレフタレート短繊維ウェブと支持層に単糸番手20S×2のポリエチレンテレフタレート繊維の紡績糸を平織りにした目付け80g/m2の織布とを積層してニードルパンチングにより積層一体した積層体を得た。次いで、積層体を毛焼きと一対の平滑な金属ロールにより通気コントロールを行なったが、凹凸加工は行わずろ過布を得た。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。
ろ過布のろ過層に公知のスパンボンド法により、複屈折率0.04、平均繊維径17.6μmのポリエチレンテレフタレート繊維から構成された目付け230g/m2の長繊維不織布と支持層に単糸番手20S×2のポリエチレンテレフタレート繊維の紡績糸を平織りにした目付け70g/m2の織布と裏面に公知のカード法により、複屈折率0.13、平均繊維径14.3μm、カット長51mm、5回クリンプ/インチのポリエチレンテレフタレート短繊維ウェブから構成された目付け200g/m2を積層してニードルパンチングにより積層一体した積層体を得た。次いで、積層体を熱セット(温度×時間が180℃×30秒)、毛焼きと一対の平滑な金属ロールにより通気コントロールを行なった。この積層体を片面にタテ×ヨコのピッチ3.0mm×2.5mm、高さ1.5mmピンポイント形の凹凸彫刻柄とペーパーロールとの組み合わせのエンボスロールによるエンボス装置を用いて、温度が230℃にて加工を行い凹凸の高さ1.5mmのろ過布を得た。以下の表1に、得られたろ過布の特性と、ろ過性能を測定した結果を示す。
公知のスパンボンド法により、複屈折率0.13、平均繊維径14.3μmのポリエチレンテレフタレート繊維から構成したものを、さらに高さ0.6mmの通常のエンボス加工を施した目付け250g/m2の長繊維不織布を得た。これは、織布層を積層せず、また、通常のエンボス加工を施したが、本願発明に係る凹凸加工を行わずに作製したろ過布である。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。ろ過性能が不十分であるとともに、強度が弱かった。
ろ過布の上下ろ過層に公知のカード法により、複屈折率0.11、平均繊維径14.3μm、カット長51mm、5回クリンプ/インチ、目付け210g/m2のポリフェニレンサルファイド短繊維ウェブと支持層に単糸番手20S×2のポリフェニレンサルファイド繊維の紡績糸を平織りにした目付け80g/m2の織布とを積層してニードルパンチングにより積層一体した積層体を得た。次いで、積層体を毛焼きと一対の平滑な金属ロールにより通気コントロールを行なっが、凹凸加工は行わずろ過布を得た。以下の表1に得られたろ過布の特性と、ろ過性能を測定した結果を示す。比較例4は、凹凸加工を行わないPPSフェルトであって比較例1におけるPETフェルトに代えてPPSフェルトを用いた場合の例である。
2 凸部
3 ろ過布表面の不織布層
3’ ろ過布裏面の不織布層
4 ろ過布の支持層
5 ろ過布表面の溶融した融着部分
6 ろ過布表面の密な部分
7 ろ過布表面の粗な部分
A 山部
B 谷部
E 山部から谷部までの高さ(凹凸の高さ)
a-b 横方向
c-d 縦方向
Claims (10)
- 熱可塑性繊維からなる不織布層のろ過層と、織布層の支持層とを、積層一体化したろ過布であって、該積層一体化したろ過布の少なくともろ過表面層が、山部から谷部までの高さが1.6mm~20.0mmの凹凸形状を有することを特徴とする集じん用ろ過布。
- 凹部、凸部、凹凸部のいずれかの単位面積当たりの個数が10~5000個/100cm2である、請求項1に記載の集じん用ろ過布。
- 前記ろ過表面層が、粗密の異なる凹凸形状を有している、請求項1又は2に記載の集じん機用ろ過布。
- 前記ろ過表面層に溶融した融着部分と非融着部分とが混在する、請求項1~3のいずれか1項に記載の集じん機用ろ過布。
- 前記ろ過布に樹脂バインダーが付与されている、請求項1~4のいずれか1項に記載の集じん機用ろ過布。
- 前記ろ過布の通気度が、1~100cc/cm2/secである、請求項1~5のいずれか1項に記載の集じん機用ろ過布。
- 前記不織布層のろ過層が、繊維径が0.1~100μm、目付けが100~900g/m2である短繊維不織布、長繊維不織布又は繊維ウェブのいずれかからなる、請求項1~6のいずれか1項に記載の集じん機用ろ過布。
- 前記織布層の支持層が、マルチフィラメント、モノフィラメント又は紡績糸のいずれかからなる織布である、請求項1~7のいずれか1項に記載の集じん機用ろ過布。
- 前記ろ過層の熱可塑性繊維は、複屈折率0.06以下のポリエステル繊維が積層又は混綿されたものである、請求項1~8のいずれか1項に記載の集じん機用ろ過布。
- 前記ろ過層の熱可塑性繊維は、複屈折率0.08以下のポリフェニレンサルファイド繊維が積層又は混綿されたものである、請求項1~8のいずれか1項に記載の集じん機用ろ過布。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010283240A AU2010283240B2 (en) | 2009-08-10 | 2010-08-09 | Filtration cloth for dust collection machine |
EP10808205.8A EP2476472A4 (en) | 2009-08-10 | 2010-08-09 | FILTERING CLOTH FOR A VACUUM MACHINE |
JP2011526756A JP5600106B2 (ja) | 2009-08-10 | 2010-08-09 | 集じん機用ろ過布 |
US13/389,751 US8795403B2 (en) | 2009-08-10 | 2010-08-09 | Filter cloth for dust collector |
CN2010800355418A CN102481502A (zh) | 2009-08-10 | 2010-08-09 | 集尘机用过滤布 |
KR1020127003508A KR101431346B1 (ko) | 2009-08-10 | 2010-08-09 | 집진기용 여과포 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-185599 | 2009-08-10 | ||
JP2009185599 | 2009-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011019022A1 true WO2011019022A1 (ja) | 2011-02-17 |
Family
ID=43586197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/063500 WO2011019022A1 (ja) | 2009-08-10 | 2010-08-09 | 集じん機用ろ過布 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8795403B2 (ja) |
EP (1) | EP2476472A4 (ja) |
JP (1) | JP5600106B2 (ja) |
KR (1) | KR101431346B1 (ja) |
CN (1) | CN102481502A (ja) |
AU (1) | AU2010283240B2 (ja) |
WO (1) | WO2011019022A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016198722A (ja) * | 2015-04-10 | 2016-12-01 | 旭工業繊維株式会社 | エアフィルタ |
WO2017018317A1 (ja) * | 2015-07-24 | 2017-02-02 | 株式会社クラレ | 繊維積層体 |
EP2692410B1 (en) * | 2012-08-01 | 2020-09-16 | BHA Altair, LLC | Filter media and filter device comprised thereof |
WO2022065307A1 (ja) * | 2020-09-23 | 2022-03-31 | 株式会社不二製作所 | フィルタおよびこのフィルタの製造方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150096444A1 (en) * | 2013-10-04 | 2015-04-09 | Bha Altair, Llc | Nonwoven felt with hollow specialty polymer fibers for air filtration |
US20150096443A1 (en) * | 2013-10-04 | 2015-04-09 | Bha Altair, Llc | Nonwoven felt with hollow commodity polymer fibers for air filtration |
US10300420B2 (en) | 2014-12-19 | 2019-05-28 | The Procter & Gamble Company | Method of filtering particulates from the air using a composite filter substrate comprising a mixture of fibers |
US20180355523A1 (en) * | 2015-01-09 | 2018-12-13 | Mill Direct, Inc. | Renewably Sourced Yarn and Method of Manufacturing Same |
CN106390623B (zh) * | 2015-08-26 | 2018-08-24 | 浙江宇邦滤材科技有限公司 | 一种芳纶超细纤维针刺滤袋的制备方法 |
CN107206299A (zh) | 2015-11-19 | 2017-09-26 | 帝人株式会社 | 袋式过滤器用过滤布及其制造方法和袋式过滤器 |
JP6730677B2 (ja) * | 2016-11-21 | 2020-07-29 | Jnc株式会社 | 積層不織布シート |
CN106638012B (zh) * | 2017-02-15 | 2023-06-27 | 烟台泰和兴材料科技股份有限公司 | 一种烛式过滤器用滤布及其生产方法 |
KR102372578B1 (ko) * | 2017-02-17 | 2022-03-11 | 한국생산기술연구원 | 엠보싱 부직포 정전필터 제조방법 및 이를 이용한 엠보싱 부직포 정전필터 |
CN107224807A (zh) * | 2017-05-31 | 2017-10-03 | 桐乡市富鸿塑料制品有限公司 | 一种高强度过滤片 |
JP7048081B2 (ja) | 2018-02-21 | 2022-04-05 | 株式会社相模商会 | バグフィルタ |
CN108914387A (zh) * | 2018-07-13 | 2018-11-30 | 刘福芳 | 一种可防掉色且具有防霉功能的无纺布加工工艺 |
KR102192514B1 (ko) * | 2019-03-19 | 2020-12-17 | 주식회사 전산텍스 | 고내열성 하이브리드 백필터 구조체 및 그 제조방법 |
CN112680876B (zh) * | 2020-12-11 | 2022-06-14 | 厦门保瑞达环保科技有限公司 | 一种高精度塑化型丙纶毡的制作方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5599315A (en) * | 1979-01-24 | 1980-07-29 | Toray Ind Inc | Filter made of nonwoven fabric |
JPS62144723A (ja) * | 1985-12-20 | 1987-06-27 | Asahi Chem Ind Co Ltd | 容器状フィルターの製造方法 |
JPH04110628A (ja) | 1990-08-30 | 1992-04-13 | Junkosha Co Ltd | 漏液位置検知装置 |
JPH0423042B2 (ja) | 1987-09-28 | 1992-04-21 | Kyokuto Kaihatsu Kogyo Co | |
JPH05220312A (ja) * | 1992-02-10 | 1993-08-31 | Chisso Corp | フィルター及びその製造方法 |
JPH0788312A (ja) * | 1993-05-26 | 1995-04-04 | Chisso Corp | 濾材およびその製造方法 |
JPH0796089B2 (ja) | 1989-07-28 | 1995-10-18 | 市川毛織株式会社 | バグフィルター用▲ろ▼過布 |
JPH09187611A (ja) | 1995-12-28 | 1997-07-22 | Nippon Felt Kogyo Kk | フイルターバグ及びその製造方法 |
JP2001048238A (ja) | 1999-08-02 | 2001-02-20 | Asahi Chem Ind Co Ltd | 凹凸シート状物 |
JP2005171415A (ja) * | 2003-12-11 | 2005-06-30 | Toyobo Co Ltd | ポリフェニレンサルファイド繊維及び高ろ過性バグフィルタ−用ろ布 |
JP3722259B2 (ja) | 1998-11-05 | 2005-11-30 | 東洋紡績株式会社 | 高ろ過性バグフィルター用ろ布及びその製造方法 |
JP3793130B2 (ja) | 2002-09-11 | 2006-07-05 | 日東電工株式会社 | 集塵機用フィルターおよびその製造方法 |
JP3939985B2 (ja) | 2000-04-03 | 2007-07-04 | 孝夫 西藤 | 凹凸付与装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1761522A (zh) | 2003-03-21 | 2006-04-19 | 斯通&维布斯特公司 | 带有催化剂再活化的烷基芳香族化合物的生产 |
US20050045566A1 (en) * | 2003-08-29 | 2005-03-03 | Larry Larkin | Filtration media created by sonic welding |
JP2008161803A (ja) | 2006-12-28 | 2008-07-17 | Toyobo Co Ltd | フィルター |
DE102007027299B4 (de) * | 2007-06-11 | 2009-02-26 | Johns Manville Europe Gmbh | Filter, Verfahren zu dessen Herstellung, dessen Verwendung sowie Filtermodule |
CN201135839Y (zh) * | 2007-11-08 | 2008-10-22 | 周列 | 一种用于除尘器的过滤管 |
-
2010
- 2010-08-09 WO PCT/JP2010/063500 patent/WO2011019022A1/ja active Application Filing
- 2010-08-09 US US13/389,751 patent/US8795403B2/en not_active Expired - Fee Related
- 2010-08-09 EP EP10808205.8A patent/EP2476472A4/en not_active Withdrawn
- 2010-08-09 CN CN2010800355418A patent/CN102481502A/zh active Pending
- 2010-08-09 JP JP2011526756A patent/JP5600106B2/ja active Active
- 2010-08-09 KR KR1020127003508A patent/KR101431346B1/ko active IP Right Grant
- 2010-08-09 AU AU2010283240A patent/AU2010283240B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5599315A (en) * | 1979-01-24 | 1980-07-29 | Toray Ind Inc | Filter made of nonwoven fabric |
JPS62144723A (ja) * | 1985-12-20 | 1987-06-27 | Asahi Chem Ind Co Ltd | 容器状フィルターの製造方法 |
JPH0423042B2 (ja) | 1987-09-28 | 1992-04-21 | Kyokuto Kaihatsu Kogyo Co | |
JPH0796089B2 (ja) | 1989-07-28 | 1995-10-18 | 市川毛織株式会社 | バグフィルター用▲ろ▼過布 |
JPH04110628A (ja) | 1990-08-30 | 1992-04-13 | Junkosha Co Ltd | 漏液位置検知装置 |
JPH05220312A (ja) * | 1992-02-10 | 1993-08-31 | Chisso Corp | フィルター及びその製造方法 |
JPH0788312A (ja) * | 1993-05-26 | 1995-04-04 | Chisso Corp | 濾材およびその製造方法 |
JPH09187611A (ja) | 1995-12-28 | 1997-07-22 | Nippon Felt Kogyo Kk | フイルターバグ及びその製造方法 |
JP3722259B2 (ja) | 1998-11-05 | 2005-11-30 | 東洋紡績株式会社 | 高ろ過性バグフィルター用ろ布及びその製造方法 |
JP2001048238A (ja) | 1999-08-02 | 2001-02-20 | Asahi Chem Ind Co Ltd | 凹凸シート状物 |
JP3939985B2 (ja) | 2000-04-03 | 2007-07-04 | 孝夫 西藤 | 凹凸付与装置 |
JP3793130B2 (ja) | 2002-09-11 | 2006-07-05 | 日東電工株式会社 | 集塵機用フィルターおよびその製造方法 |
JP2005171415A (ja) * | 2003-12-11 | 2005-06-30 | Toyobo Co Ltd | ポリフェニレンサルファイド繊維及び高ろ過性バグフィルタ−用ろ布 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2692410B1 (en) * | 2012-08-01 | 2020-09-16 | BHA Altair, LLC | Filter media and filter device comprised thereof |
JP2016198722A (ja) * | 2015-04-10 | 2016-12-01 | 旭工業繊維株式会社 | エアフィルタ |
WO2017018317A1 (ja) * | 2015-07-24 | 2017-02-02 | 株式会社クラレ | 繊維積層体 |
JPWO2017018317A1 (ja) * | 2015-07-24 | 2018-05-10 | 株式会社クラレ | 繊維積層体 |
JP7220984B2 (ja) | 2015-07-24 | 2023-02-13 | 株式会社クラレ | 繊維積層体 |
WO2022065307A1 (ja) * | 2020-09-23 | 2022-03-31 | 株式会社不二製作所 | フィルタおよびこのフィルタの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2010283240B2 (en) | 2014-01-16 |
CN102481502A (zh) | 2012-05-30 |
JP5600106B2 (ja) | 2014-10-01 |
US20120216496A1 (en) | 2012-08-30 |
KR20120042952A (ko) | 2012-05-03 |
AU2010283240A1 (en) | 2012-03-08 |
US8795403B2 (en) | 2014-08-05 |
EP2476472A4 (en) | 2013-06-05 |
KR101431346B1 (ko) | 2014-08-19 |
JPWO2011019022A1 (ja) | 2013-01-17 |
EP2476472A1 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5600106B2 (ja) | 集じん機用ろ過布 | |
JP6638722B2 (ja) | フィルター用スパンボンド不織布およびその製造方法 | |
KR102340662B1 (ko) | 필터용 다층 여과재 및 그의 제조 방법 및 에어 필터 | |
KR101441593B1 (ko) | 필터용 부직포 및 그 제조 방법 | |
TWI778946B (zh) | 袋濾器用過濾布及其製造方法及袋濾器 | |
JPWO2004087293A1 (ja) | フィルター材 | |
KR20220034116A (ko) | 섬유 구조체 및 그 제조 방법 | |
JPWO2018221122A1 (ja) | フィルター用スパンボンド不織布およびその製造方法 | |
JP2007152216A (ja) | フィルター用不織布 | |
WO2020004007A1 (ja) | フィルター用スパンボンド不織布およびその製造方法 | |
JP4737039B2 (ja) | 吸気用フィルター不織布 | |
JP6658113B2 (ja) | エアクリーナー用不織布 | |
JP5267809B2 (ja) | フィルター基材およびそれを用いたフィルター | |
KR20220112773A (ko) | 스펀본드 부직포, 집진기 플리츠 필터용 여과재, 집진기 플리츠 필터 및 대풍량 펄스제트 타입 집진기 | |
KR20220110210A (ko) | 스펀본드 부직포, 집진기 플리츠 필터용 여과재, 집진기 플리츠 필터 및 대풍량 펄스제트 타입 집진기 | |
KR19990021922A (ko) | 플리트 필터용 부직포 및 그 제조방법 | |
JP7552345B2 (ja) | フィルター用スパンボンド不織布、自動車オイルフィルター用濾材および自動車オイルフィルター | |
JP7552346B2 (ja) | 自動車オイルフィルター用スパンボンド不織布、自動車オイルフィルター用濾材および自動車オイルフィルター | |
WO2021132411A1 (ja) | スパンボンド不織布、フィルター積層濾材、プリーツフィルター用濾材およびプリーツフィルター | |
JP7044526B2 (ja) | 液体フィルター用ろ材 | |
KR102718702B1 (ko) | 필터용 스펀본드 부직포 및 그 제조방법 | |
JP2007098259A (ja) | フィルター基材およびフィルターユニット | |
JP5765054B2 (ja) | プリーツ状エアフィルター | |
JP2020172729A (ja) | 不織布および積層不織布構造体およびフィルター用ろ過布 | |
JP2023132659A (ja) | 液体フィルタ用濾材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080035541.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10808205 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011526756 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 221/KOLNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010808205 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127003508 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010283240 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2010283240 Country of ref document: AU Date of ref document: 20100809 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13389751 Country of ref document: US |