WO2011013774A1 - 誘導加熱焼入装置、誘導加熱焼入方法、誘導加熱コイル、熱処理装置及び熱処理方法 - Google Patents

誘導加熱焼入装置、誘導加熱焼入方法、誘導加熱コイル、熱処理装置及び熱処理方法 Download PDF

Info

Publication number
WO2011013774A1
WO2011013774A1 PCT/JP2010/062847 JP2010062847W WO2011013774A1 WO 2011013774 A1 WO2011013774 A1 WO 2011013774A1 JP 2010062847 W JP2010062847 W JP 2010062847W WO 2011013774 A1 WO2011013774 A1 WO 2011013774A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
induction heating
circumferential direction
heat treatment
heating coil
Prior art date
Application number
PCT/JP2010/062847
Other languages
English (en)
French (fr)
Inventor
田中 嘉昌
佳孝 三阪
浅野 裕次
Original Assignee
高周波熱錬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010121901A external-priority patent/JP5902379B2/ja
Priority claimed from JP2010150411A external-priority patent/JP2012012667A/ja
Priority claimed from JP2010157556A external-priority patent/JP5985141B2/ja
Priority to EP10804520.4A priority Critical patent/EP2461646B1/en
Priority to KR1020137012302A priority patent/KR101367271B1/ko
Priority to IN835DEN2012 priority patent/IN2012DN00835A/en
Application filed by 高周波熱錬株式会社 filed Critical 高周波熱錬株式会社
Priority to RU2012107329/07A priority patent/RU2520569C2/ru
Priority to KR1020127002580A priority patent/KR101370568B1/ko
Priority to CN201080033937.9A priority patent/CN102626001B/zh
Publication of WO2011013774A1 publication Critical patent/WO2011013774A1/ja
Priority to US13/360,274 priority patent/US9534267B2/en
Priority to US15/354,885 priority patent/US10648052B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/102Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces the metal pieces being rotated while induction heated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/40Establishing desired heat distribution, e.g. to heat particular parts of workpieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an induction heating and quenching apparatus, an induction heating and quenching method, an induction heating coil, a heat treatment apparatus, and a heat treatment method, and more particularly to a technique for improving heat treatment efficiency and performing uniform treatment.
  • a one-shot heating type heat treatment apparatus that performs batch processing using an induction heating coil facing the entire area to be processed is known (for example, JP, 2005-120415, JP, 2002-174251, JP, 2004-44802).
  • the induction heating coil is configured in a shape corresponding to the entire area to be processed. For example, when the processing target has a circumferential shape, the annular induction heating coil faces the processing target, and when the processing target is flat, the flat induction heating coil faces the processing target. Yes.
  • an induction heating coil corresponding to the shape and size of the object to be processed and the part to be processed is used. Therefore, when the object to be processed and the part to be processed are large, a large induction is used. A heating coil is required and high power is required.
  • a mobile heat treatment apparatus that sequentially performs a heat treatment and a cooling treatment while moving an induction heating coil facing only a part of the treatment portion relative to the treatment portion (for example, JP-A-2005-89803, JP-A-60-116724).
  • the induction heating coil is configured in a shape corresponding to a part of the processing target.
  • the above-described induction heating technique has the following problems. That is, in the induction heating and quenching apparatus of the above-described one-shot heating method, it is necessary to use an induction heating coil corresponding to the size and shape of the processing target. For example, when the shape of the processing target is complicated, induction is performed. The shape and condition setting of the heating coil become complicated, and realization is difficult or impossible. Moreover, when a to-be-processed part is large, a large sized induction heating coil is needed and there exists a problem of requiring high output electric power. Furthermore, when deformation occurs due to thermal expansion or the like during induction heating, it is difficult to properly maintain the dimension between the induction heating coil and the processing object. For this reason, since it is necessary to set the induction heating coil larger in advance, there arises a problem that the heating efficiency is deteriorated.
  • the induction heating coil when configured in a shape corresponding to a part of the processing target, the processing area per unit time is small, the processing time is long, ineffective.
  • the necessary hardness cannot be obtained at the boundary between the start portion and the end portion of the treatment. There is a problem that a soft zone occurs.
  • the present invention does not require high power, can easily realize heat treatment in a desired heating region, technology that can perform uniform treatment, and heat treatment efficiency when induction heating is performed even for a large object.
  • An object is to provide a technique capable of improving the above.
  • An induction heating and quenching apparatus includes the processing object and the heating coil along the circumferential direction of the processing target part of the processing object by rotating at least one of the processing object and the heating coil.
  • a plurality of heating coils each having a heating conductor portion that induction-heats a portion in the axial direction that intersects the circumferential direction of the processing target portion, and at least one of the plurality of heating coils. Is a zigzag in which a curved portion opened on one side in the axial direction and a curved portion opened on the other side in the axial direction are alternately arranged along the circumferential direction in opposite directions.
  • the heating conductor portion having a shape is included.
  • the induction heating and quenching method includes a plurality of heating coils each having a heating conductor portion that induction-heats different portions in the axial direction that intersect the circumferential direction of the processing target portion of the processing target.
  • the processing section and the heating coil are relatively disposed along the circumferential direction of the processing section while facing at least a part of the processing section and subjecting the processing section to heat treatment by the plurality of heating coils.
  • Each of the regions to be treated that are heated by the heating conductor portions of the plurality of heating coils forms one continuous heating region, and at least one of the plurality of heating coils.
  • the curved portion that opens on one side in the axial direction and the curved portion that opens on the other side in the axial direction are alternately arranged along the circumferential direction in opposite directions. Zigzag shape It was to have to heat conductor unit.
  • An induction heating coil includes a heating conductor that opposes at least a part of a processing target and heat-treats the processing target while rotating relative to the processing target.
  • the heating conductor portion extends so as to intersect the circumferential direction of the rotation, and the length in the circumferential direction at a portion far from the center of the rotational movement is the length in the circumferential direction at a portion near the center. It is characterized by having a conductor portion that is longer than that.
  • the induction heating coil is opposed to the processing target portion and the processing target portion is heated with respect to the induction heating coil while the processing target portion is heated by induction heating.
  • a moving heating step of relatively moving along the circumferential direction.
  • An induction heating coil according to an aspect of the present invention is formed of a conductor member, and a curved portion opened on one side in the first direction and a curved portion opened on the other side in the first direction are alternately opposed. And a heating conductor portion having a zigzag shape continuously arranged along a second direction intersecting the first direction.
  • the induction heating coil, a high-frequency power source connected to the induction heating coil, and the portion to be processed are relative to the induction heating coil along the second direction.
  • a moving means for moving to are provided.
  • the induction heating coil may be opposed to a part of the processing target having an endless loop shape continuous along the second direction by induction heating.
  • FIG. 1 is a cross-sectional view of the induction heating and quenching apparatus according to the first embodiment of the present invention taken along line F2-F2 in FIG. 2 and viewed in the direction of the arrow.
  • FIG. 2 is a plan view showing the induction heating and quenching apparatus according to the embodiment.
  • FIG. 3 is a plan view showing the first induction heating and quenching apparatus according to the embodiment.
  • FIG. 4 is a front view showing the first heating coil according to the embodiment.
  • FIG. 5 is a plan view showing a second induction heating and quenching apparatus according to the embodiment.
  • FIG. 6 is a front view showing a second heating coil according to the embodiment.
  • FIG. 7 is an explanatory diagram showing a cross-sectional structure of the heating coil according to the embodiment.
  • FIG. 8 is an explanatory diagram of the first and second heating regions according to the embodiment.
  • FIG. 9 is an explanatory diagram of a third heating region according to the embodiment.
  • FIG. 10 is an explanatory diagram showing the configuration of the heating conductor portion of the induction heating and quenching apparatus according to the second embodiment of the present invention.
  • FIG. 11 is an explanatory diagram showing a configuration of a heating conductor portion of the induction heating and quenching apparatus.
  • FIG. 12 is an explanatory view showing an induction heating and quenching apparatus according to the third embodiment of the present invention.
  • FIG. 13 is an explanatory view showing a main part of an induction heating and quenching apparatus according to the fourth embodiment of the present invention.
  • FIG. 14 is an explanatory view showing an induction heating and quenching apparatus according to the fifth embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of a heating coil incorporated in the induction heating and quenching apparatus according to the sixth embodiment of the present invention.
  • FIG. 16 is a front view of a heating coil incorporated in an induction heating and quenching apparatus according to the seventh embodiment of the present invention.
  • FIG. 17 is an explanatory view showing an induction heating and quenching apparatus according to the eighth embodiment of the present invention.
  • FIG. 18 is an explanatory view showing an induction heating and quenching apparatus according to the ninth embodiment of the present invention.
  • FIG. 19 is an explanatory view showing an induction heating and quenching apparatus according to the tenth embodiment of the present invention.
  • FIG. 20 is an explanatory view showing an induction heating and quenching apparatus according to the eleventh embodiment of the present invention.
  • FIG. 21 is an explanatory view showing an induction heating and quenching apparatus according to the twelfth embodiment of the present invention.
  • FIG. 22 is an explanatory view showing an induction heating and quenching apparatus according to the thirteenth embodiment of the present invention.
  • FIG. 23 is a plan view showing the induction heating apparatus according to the embodiment.
  • FIG. 24 is a perspective view showing a heating coil according to the embodiment.
  • FIG. 25 is an explanatory diagram of a conductor portion of the heating coil according to the embodiment.
  • FIG. 26 is an explanatory diagram showing a cross-sectional structure of the heating coil according to the embodiment.
  • FIG. 27 is a perspective view showing a heating coil of the induction heating apparatus according to the fourteenth embodiment of the present invention.
  • FIG. 28 is a plan view showing the heating coil.
  • FIG. 29 is a side view showing the heating coil.
  • FIG. 30 is an explanatory diagram showing a configuration of a conductor portion of the heating coil.
  • FIG. 31 is an explanatory view showing an induction heating and quenching apparatus according to the fifteenth embodiment of the present invention.
  • FIG. 32 is an explanatory view showing the structure of the conductor portion according to the sixteenth embodiment of the present invention.
  • FIG. 33 is an explanatory view showing the structure of the conductor portion according to the seventeenth embodiment of the present invention.
  • FIG. 34 is an explanatory view showing a heat treatment apparatus according to the eighteenth embodiment of the present invention.
  • FIG. 35 is a plan view showing the heat treatment apparatus according to the embodiment.
  • FIG. 36 is a side view showing the heat treatment apparatus according to the embodiment.
  • FIG. 37 is a front view showing the heat treatment apparatus according to the embodiment.
  • FIG. 38 is an explanatory diagram showing a cross-sectional structure of the heating coil according to the embodiment.
  • FIG. 39 is an explanatory diagram of a heat treatment apparatus according to the nineteenth embodiment of the present invention.
  • FIG. 40 is an explanatory diagram of a heat treatment apparatus according to the twentieth embodiment of the present invention.
  • FIG. 41 is an explanatory diagram of a heat treatment apparatus according to the twenty-first embodiment of the present invention.
  • FIG. 42 is an explanatory diagram of a heat treatment apparatus according to the twenty-second embodiment of the present invention.
  • FIG. 43 is an explanatory diagram of a heat treatment apparatus according to the twenty-third embodiment of the present invention.
  • arrows X, Y, and Z indicate three directions orthogonal to each other.
  • the configuration is appropriately enlarged, reduced, or omitted for explanation.
  • FIG. 1 is a cross-sectional view showing a configuration of an induction heating and quenching apparatus 1 according to the present embodiment
  • FIG. 2 is a plan view.
  • the induction heating and quenching apparatus 1 is arranged in plural on the outer periphery of the work Q1 and the movement support part (moving means) that movably supports the work Q1 that is the object to be processed.
  • Each of the heating devices 10A and 10B and a cooling unit 13 (cooling means) that cools the workpiece Q1 after the heat treatment step of the workpiece Q1 are configured.
  • the cooling unit 13 provided below is formed in a cylindrical shape so as to surround the outside of the work Q1 moved downward after the heat treatment, and cools the work Q1 disposed in the inner space 13a.
  • a cylindrical workpiece Q1 having a step is used, and the stepped outer peripheral surface of the workpiece is defined as a processing target A.
  • the workpiece Q1 as an example of the processing object is a stepped cylindrical member with the axis C1 as the center, a concave portion Q1a that is recessed inward at the center in the axial direction, and a convex portion that protrudes outward at both ends in the axial direction.
  • Q1b is formed.
  • a plurality of first heating devices 10A and a plurality of second heating devices 10B arranged along a predetermined path around the workpiece Q1 are formed in an endless loop shape.
  • a processing target A that is continuous in a certain circular shape is heated over the entire circumferential direction, which is the continuous direction of the loop.
  • an outer peripheral surface area of the concave portion Q1a at the center in the axial direction is defined as a first area A1
  • an outer peripheral surface area of the pair of convex portions Q1b at both ends in the axial direction is defined as a second area A2.
  • the first region A1 and the second region A2 are separated from each other in the axial direction of the processing object and are also separated from each other in the radial direction.
  • the plurality of first heating devices 10 ⁇ / b> A are respectively arranged at four locations separated from each other at a central angle of 90 degrees in the path along the circumferential direction.
  • 2nd heating apparatus 10B is arrange
  • the first heating device 10 ⁇ / b> A and the second heating device 10 ⁇ / b> B are alternately arranged so as to be separated from each other in the circumferential direction and the axial direction.
  • the first heating conductor portion 31A of the first heating device 10A is arranged facing the first region A1 while ensuring a predetermined gap dimension G1.
  • 10 A of 1st heating apparatuses concentrate on the 1st area
  • the heating conductor portion 31B of the second heating device 10B is arranged facing the second region A2 while ensuring a predetermined gap dimension G2.
  • the second heating device 10B performs induction heating mainly on the second region A2.
  • the circumferential direction R along the outer peripheral surface of the workpiece Q1 with the axis C1 as the center is defined as the first direction
  • the Z direction that is the axial direction of the workpiece Q1 is defined as the second direction. Since the work Q1 has a stepped shape, the first heating conductor portion and the second heating conductor portion have different radial dimensions in the circumferential direction R. However, by rotating the work Q1 about the axis C1, both It moves along the circumferential direction.
  • a path including the circumferential directions R1 and R2 is defined as a movement path, and a rotation direction centered on C1 including R1 and R2 is defined as a first direction R.
  • the radius in the circumferential direction R1 is a value obtained by adding the gap dimension G1 to the radius dimension r2 of the outer diameter of the recess Q1a, and is r2 + G1.
  • the radius in the circumferential direction R2 is a value obtained by adding the gap dimension G2 to the radius dimension r1 of the outer diameter dimension of the convex portion Q1b, and becomes r1 + G2.
  • the plurality of first heating devices 10 ⁇ / b> A and second heating devices 10 ⁇ / b> B include a high-frequency power source 21 as power supply means, lead wires 22 and 23 connected to the high-frequency power source 21, and A spacer 28 having a pair of conductive plates 24 and 25 connected to the lead wires 22 and 23, an induction heating coil 26 having both ends connected to the pair of conductive plates 24 and 25, and a heating conductor portion of the induction heating coil 26 31A and 31B and a core 27 disposed on the back side.
  • the induction heating coil 26 of the heating device 10A includes a zigzag heating conductor portion 31A facing the first region A1 of the workpiece Q1, a first connection conductor portion 32 continuous to one end side 31a of the heating conductor portion 31A, and heating.
  • a second connecting conductor portion 33 continuous to the other end side 31b of the conductor portion 31A is provided continuously and integrally.
  • the heating conductor portion 31A of the first heating device 10A has a plurality of U-shaped bent portions 34, 35 that open toward the center in the Z direction, A plurality of zigzag shapes arranged continuously along the direction R are formed.
  • the bent portion 34 has a U-shape opened downward, and the bent portion 35 has a U-shape opened upward.
  • the interval R5 between adjacent coils is set to be not less than 1 and not more than 2 times the dimension of R4, which is the coil width.
  • the sum of the dimensions L1 in the first direction of the four heating conductor portions 31A is set to about 1/3 of the entire circumference in the first direction of the first region A1. That is, the cover ratio, which is the ratio of the dimension in the first direction of one heating conductor portion 31A to the first region A1, is set to 1/12, and the center angle ⁇ 1 is set to 30 degrees.
  • the induction heating coil 26 of the second heating device 10B is provided on the hairpin-shaped heating conductor portion 31B facing the second region A2 of the workpiece Q1 and one end side 31a of the heating conductor portion 31B.
  • the continuous 1st connection conductor part 32 and the 2nd connection conductor part 33 continued to the other end side 31b of the heating conductor part 31B are provided continuously and integrally.
  • the heating conductor portion 31B is configured to be bent in a rectangular frame shape from one end side 31a on the left side in FIG. 6 in a front view, and the other end side 31b returns to the lower side in the drawing on the one end side 31a.
  • 31b is continuous to the connecting conductor portions 32, 33. Note that the coverage of the second heating device 10B is not necessarily the same as that of the first heating device 10A, but varies depending on the shape of the workpiece.
  • the first connection conductor portion 32 and the second connection conductor portion 33 are arranged with the spacer 28 interposed therebetween.
  • the spacer 28 includes a pair of conductive plates 24 and 25 each having a rectangular flat plate shape, and a rectangular flat plate-like insulating plate 38 sandwiched between the pair of conductive plates 24 and 25.
  • the conductive plates 24 and 25 and the insulating plate 38 are fixed by bolts 41 and nuts 42 through an insulating bush 39.
  • Each of the conductive plates 24 and 25 is connected to the high frequency power source 21 via the lead wires 22 and 23.
  • Couplers 36 and 36 (only one is shown) for connecting components such as a coolant hose are provided at the ends of the first connection conductor 32 and the second connection conductor 33, respectively.
  • the induction heating coil 26 is formed in a rectangular hollow shape from a material such as copper.
  • the hollow portion 26a becomes a passage through which the coolant flows.
  • the core 27 is made of a material having a high magnetic permeability such as a silicon steel plate, a polyiron core, or ferroton, and is disposed on the back side of the heating conductor portions 31A and 31B.
  • the core 27 is formed in a U-shaped cross section integrally including both side portions of the heating conductor portions 31A and 31B and a rear wall portion.
  • the movement support part 11 maintains the gap dimension G1 between the heating conductor part 31A and the first area A1 at a predetermined value and also sets the gap dimension G2 between the heating conductor part 31B and the second area A2. Control is performed to maintain a predetermined value.
  • the first heating conductor portion 31A and the second heating conductor portion 31B have different shapes and are separated from each other in the axial direction, and the sizes, shapes, and positions of the regions A1, A2 are also different. They are different from each other. Therefore, as shown in FIG. 8, the first heating region P1 formed around the center in the Z direction of the recess Q1a and the second center formed around the center in the Z direction of the pair of upper and lower projections Q1b.
  • the heating area P2 is a heating area that is different in the axial direction.
  • the induction heating and quenching method according to the present embodiment will be described.
  • the heated part A and the heated conductor parts 31A and 31B are relatively moved while heating the treated part A, and the treated part A is cooled after the moving heating process. And a cooling process.
  • the first region A1 which is a part of the processing target A is opposed to the first heating conductor portion 31A, and the second heating region P1 is different from the first heating region P1 by the first heating conductor portion 31A.
  • the second heating conductor portion 31B having the heating region P2 is opposed to the second region A2 that is at least a part of the processing target A, and the first heating conductor portion 31A and the second heating conductor portion 31B are opposed to the processing target A.
  • the regions A1 and A2 are relatively moved along the predetermined first direction R with respect to the first heating conductor portion 31A and the second heating conductor portion 31B while being heated at.
  • the high frequency power supply 21 when the high frequency power supply 21 is turned on with the heating conductor portions 31A and 31B facing the first regions A1 and A2, respectively, the high frequency current is supplied to the lead wire 22, the first conductive plate 24, The first connection conductor 32, the heating conductor 31, the second connection conductor 33, the second conductive plate 25, and the lead wire 23 are sequentially passed back to the high-frequency power source 21.
  • a high-frequency current flows from the one end 31a side to the other end 31b side in the heating conductor portions 31A and 31B, an induced current is generated on the surface of the heating conductor portions 31A and 31B, and the regions A1 and A2 disposed to face each other Each is heavily heated.
  • heating is simultaneously performed at a plurality of locations separated by a certain distance in the axial direction and the radial direction. That is, heat treatment is performed on the surface of the workpiece Q1 that is opposed to each other at each location separated from each other.
  • the workpiece Q1 is rotated about the axis C1 while the gap dimensions G1 and G2 are maintained at the predetermined values by the moving support portion 11, so that the heating conductor portions 31A and 31B are covered.
  • the processing unit A is relatively moved along the first direction R at a predetermined speed.
  • the first heat treatment by the first heating conductor portion and the second heating by the second heating conductor portion are sequentially performed in each part of the processing target A.
  • first and second heating are performed on the entire periphery of the processing target A, respectively.
  • Each heating region P1, P2 of the processing target A heated by the plurality of heating conductor portions 31A, 31B forms one continuous heating region P3.
  • the first and second heating regions P1 and P2 are combined, and heat treatment is performed in the desired third heating region P3.
  • the moving support unit 11 moves the workpiece Q1 to the lower cooling unit 13 along the axial direction.
  • the cooling part 13 cools the workpiece
  • the following effects can be obtained.
  • the first heating conductor portion 31A that heats the first region A1 that is a wide region in the axial direction has a zigzag shape having a plurality of curved portions continuously, thereby ensuring a strong magnetic field and good A temperature pattern is obtained. For this reason, high-speed and uniform heat treatment can be performed with less power.
  • the induction heating coil 26 having the zigzag-shaped heating conductor portion 31 it is possible to realize heat treatment of a large workpiece by moving partial heating that cannot be realized by the hairpin-shaped induction heating coil corresponding to the first region A1, for example. It becomes.
  • the coil efficiency is 30 to 40% in plane (end face) heating with a hairpin-shaped induction heating coil, but the coil efficiency exceeds 70% in the zigzag induction heating coil.
  • each of the heating devices 10A and 10B can be reduced in size. For this reason, it is possible to reduce the required power and the manufacturing cost.
  • FIG. 10 is a plan view showing the arrangement of the induction heating and quenching apparatus 2 according to the present embodiment
  • FIG. 11 is an explanatory diagram showing the shape of the heating conductor portion 31 of the induction heating and quenching apparatus 2.
  • the workpiece Q ⁇ b> 2 has a cylindrical shape whose upper and lower end surfaces are planar, and this end surface is used as the processing target A.
  • the heating conductor portion 31 of the first heating device 10 ⁇ / b> A is continuously arranged along the circumferential direction R in a direction in which a plurality of bent portions 134 and 135 alternately face each other, and the bent portions 134 that face each other. , 135 each have a zigzag shape in which the bent conductor portions 136 are arranged.
  • the plurality of bent portions 134 have a bent shape that opens outwardly, which is one side in the direction intersecting the moving direction, and the bent portion 135 has a bent shape that opens radially inward, which is the other side.
  • the plurality of conductor portions 136 extend so as to intersect the circumferential direction R, and the length in the circumferential direction at a portion far from the axis C1 that is the center of rotation is near the axis C1.
  • the length in the circumferential direction is longer than the length in the circumferential direction, and the length in the circumferential direction corresponds to the speed in the circumferential direction.
  • the conductor portion 136 maintains a constant cross-sectional area and a cross-sectional shape orthogonal to the extending direction, and the extending angle at the part far from the axis C1 is larger than the extending angle at the part close to the axis C1.
  • the dimensions are set based on two points, the innermost point P1 and the outermost point P3 of the workpiece.
  • the rotation radius (distance from the axis C1) of a certain reference point P1 on the processing target A1 facing the first portion 136a is r4, and the rotation of a certain reference point P3 on the processing target A1 facing the third portion 136c.
  • the conductor portion 136 is L1: L3 ⁇ r4: r5 is set, and the distance from the axis C1, which is the center of rotation, corresponds to the circumferential dimension.
  • the circumferential dimension (distance) is inversely proportional to the circumferential speed proportional to the rotation diameter, and the time for passing, that is, the heating time is kept constant.
  • the dimension L2 of the intermediate second portion 136b is set to L1 ⁇ L2 ⁇ L3 so as to be a dimension between L1 and L3.
  • the induction heating and quenching apparatus 2 of the present embodiment has a slow speed on the outer peripheral side where the speed at which the work Q2 passes through the heating conductor portion 31 becomes fast when the work Q2 rotates around the axis C1. Since the dimension in the moving direction of the heating conductor portion 31 is set to be larger than the inner side, the time required for passage can be made uniform, and the heat treatment time is made uniform.
  • the plan view of the induction heating and quenching apparatus 2 is the same as FIG. 10, and the plan view of the heating conductor 31 is the same as FIG.
  • the work Q3 has a drum shape in which the upper and lower outer peripheral surfaces are inclined, and this outer peripheral surface is used as the processing portion A.
  • the upper outer peripheral surface on which the workpiece Q3 is inclined is defined as a first region A1
  • the lower outer peripheral surface on which the workpiece Q3 is inclined is defined as a second region A2.
  • the induction heating and quenching apparatus 3 includes a first heating apparatus 10A for induction heating the first area A1 on the upper surface and a second heating apparatus 10A for induction heating the second area A2 on the lower surface. .
  • the heating conductor portion 31A of this embodiment is inclined with respect to the axial direction and the circumferential direction, and is configured along the upper and lower outer circumferential surfaces of the workpiece Q3.
  • the heating conductor portion 31A of the first heating device 10A is continuously arranged along the circumferential direction R in a direction in which the plurality of bent portions 134 and 135 alternately face each other, A zigzag shape is formed in which the bent conductor portions 136 are arranged between the opposing bent portions 134 and 135.
  • the plurality of bent portions 134 have a bent shape that opens outwardly, which is one side in the direction intersecting the moving direction, and the bent portion 135 has a bent shape that opens radially inward, which is the other side.
  • the plurality of conductor portions 136 extend so as to intersect the circumferential direction R, and the length in the circumferential direction at a portion far from the axis C1 that is the center of rotation is longer than the length in the circumferential direction at a portion near the axis C1. It is configured to be long, and the length in the circumferential direction corresponds to the speed in the circumferential direction.
  • the conductor portion 136 maintains a constant cross-sectional area and a cross-sectional shape orthogonal to the extending direction, and the extending angle at the part far from the axis C1 is larger than the extending angle at the part close to the axis C1. By being bent so that the angle with respect to the direction R becomes smaller, the circumferential speed and length correspond to each other.
  • FIG. 13 is an explanatory view showing the arrangement of the induction heating and quenching apparatus according to this embodiment.
  • the work Q4 has a hollow body shape and has an inner peripheral surface inclined with respect to the axial direction and the circumferential direction.
  • the heating conductor portion 31A of this embodiment is inclined with respect to the axial direction and the circumferential direction, and is configured along the upper and lower inner circumferential surfaces of the workpiece Q4.
  • the heating conductor portion 31A of the first heating device 10A is continuously arranged along the circumferential direction R in a direction in which the plurality of bent portions 134 and 135 alternately face each other, A zigzag shape is formed in which the bent conductor portions 136 are arranged between the opposing bent portions 134 and 135.
  • the plurality of bent portions 134 have a bent shape that opens outwardly, which is one side in the direction intersecting the moving direction, and the bent portion 135 has a bent shape that opens radially inward, which is the other side.
  • the plurality of conductor portions 136 extend so as to intersect the circumferential direction R, and the length in the circumferential direction at a portion far from the axis C1 that is the center of rotation is longer than the length in the circumferential direction at a portion near the axis C1. It is configured to be long, and the length in the circumferential direction corresponds to the speed in the circumferential direction.
  • the conductor portion 136 maintains a constant cross-sectional area and a cross-sectional shape orthogonal to the extending direction, and the extending angle at the part far from the axis C1 is larger than the extending angle at the part close to the axis C1. By being bent so that the angle with respect to the direction R becomes smaller, the circumferential speed and length correspond to each other.
  • FIG. 14 is a side view showing the arrangement of the induction heating and quenching apparatus 4 according to this embodiment.
  • the peripheral surface of the stepped cross-sectional trapezoidal work Q ⁇ b> 5 is used as the processing target A.
  • the outer peripheral surface of the central portion in the axial direction is defined as a first region A1
  • the outer peripheral surface of a step portion protruding outward at both ends in the axial direction is defined as a second region A2.
  • the induction heating and quenching apparatus 4 includes a first heating apparatus 10A that induction-heats the first processed part A1 in the central portion in the axial direction and a second heating that induction-heats the second processed parts A2 at the two axial ends.
  • a device 10B is provided.
  • the areas A1 and A2 are surfaces inclined with respect to the axis, and the distance from the center of rotation changes.
  • the heating conductor portions 31A and 31B of the present embodiment are both inclined with respect to the axial direction and the circumferential direction, and are configured along the upper and lower outer circumferential surfaces of the workpiece Q5. As the shape of the heating conductor portion 31A, for example, the heating conductor portion 31A similar to that of the third embodiment is used.
  • the zigzag shape is inclined in the axial direction and has the bent portions 134 and 135 facing each other, and the conductor portion 136 has a constant cross-sectional area and a cross-sectional shape perpendicular to the extending direction while maintaining a constant shape.
  • the extending angle at the part far from C1 is bent so that the angle with respect to the circumferential direction R is smaller than the extending angle at the part close to the axis C1.
  • bent portions 34 and 35 bent in a rectangular shape with a U-shaped cross section are illustrated as the bent portion, but the present invention is not limited to this.
  • FIG. 15 may apply the first heating conductor portion 31 ⁇ / b> C having a structure having curved portions (curved portions) 34 and 35 that are curved in a semicircular shape as a sixth embodiment of the present invention.
  • the same effects as those of the first to fifth embodiments can be obtained.
  • a first heating conductor portion 31D having a structure having curved portions 34 and 35 bent in a trapezoidal shape may be applied.
  • the same effects as those of the first to fifth embodiments can be obtained.
  • the zigzag shape shown in the first embodiment may be used instead of the bent shape as described above.
  • an example of relative movement by rotating the workpiece Q1 has been described.
  • the present invention is not limited to this, and the relative movement may be performed by moving the heating conductor portions 31A and 31B.
  • FIG. 17 schematically shows the positional relationship when two first heating devices 10A and two second heating devices 10B are arranged as an eighth embodiment of the present invention.
  • the same effects as those of the first to fifth embodiments can be obtained.
  • FIG. 18 schematically shows the positional relationship when three first heating devices 10A and three second heating devices 10B are arranged as a ninth embodiment of the present invention. In this embodiment, the same effects as those of the first to fifth embodiments can be obtained.
  • FIG. 19 schematically shows a positional relationship when five first heating devices 10A and five second heating devices 10B are arranged as the tenth embodiment of the present invention. In this embodiment, the same effects as those of the first to fifth embodiments can be obtained.
  • FIG. 20 schematically shows a positional relationship when six first heating devices 10A and six second heating devices 10B are arranged as an eleventh embodiment of the present invention. In this embodiment, the same effect as in the first to fifth embodiments can be obtained.
  • the coil arrangement is alternately arranged or opposed, the arrangement is not limited to this, and can be arbitrarily arranged such as 1: 3.
  • the workpiece Q1 having one step is illustrated, but the present invention is not limited to this, and the present invention can also be applied to a workpiece having two or more steps.
  • FIG. 21 shows, as a twelfth embodiment of the present invention, when a workpiece Q5 having two steps is targeted, in the processing target A that is the outer peripheral surface of the workpiece, there are three types according to the position of the step.
  • the first to third areas A1, A2, A3 are set.
  • the workpiece Q5 is symmetrical in the vertical direction and has steps in the vertical direction
  • the second area A2 and the third area A3 are respectively arranged at two locations in the axial direction.
  • three induction heating and quenching apparatuses 10A, 10B, and 10C are used, and the heating conductor portions 31A, 31B, and 31C are arranged so as to face the regions A1, A2, and A3, respectively.
  • the first heating region P4 heated by the heating conductor portion 31A, the second heating region P5 heated by the heating conductor portion 31B, and the third heating heated by the heating conductor portion 31C By synthesizing the heating region P6, one continuous desired heating region P7 can be easily processed.
  • the workpiece is not limited to a hollow shape, and may be a solid one.
  • FIG. 22 is an explanatory diagram schematically showing the overall configuration of the induction heating and quenching apparatus 201 according to the present embodiment.
  • the induction heating and quenching apparatus 201 is an apparatus that performs induction hardening, and includes a movement support unit (work movement rotation support base) 211 that movably supports a work W1 that is a processing target, An induction heating device 10 (heat treatment device) that induction-heats the processing target N1 of W1 and a cooling unit 213 (cooling means) that cools the workpiece W1 after the heat treatment process of the processing target N1 are configured.
  • the induction heating device 210 includes a matching panel connected to the high frequency power source 221.
  • the movement support unit 211 rotates the workpiece W1 in the rotational direction (circumferential direction) about the axis C1 with the workpiece W1 set at a predetermined position. At this time, the movement support part 211 controls the gap dimension J1 between the heating conductor part 231 and the workpiece W1 to be maintained at a predetermined value. Furthermore, the movement support unit 211 moves the workpiece W1 to the cooling unit 213 after the heat treatment is completed over the entire circumference (the entire stroke) of the processing target N1. The cooling unit 213 cools the workpiece W1 after the heat treatment is finished.
  • the induction heating apparatus 210 includes a high-frequency power source 221 as power supply means, lead wires 222 and 223 connected to the high-frequency power source 221, and a pair connected to the lead wires 222 and 223.
  • Spacers 228 having conductive plates 224 and 225, induction heating coils 226 having both ends connected to a pair of conductive plates 224 and 225, and a core 227 disposed on the back side of the heating conductor portion 231 of the induction heating coil 226 ( 26).
  • the workpiece W1 as an example of the processing object is a thick part having a thickness of 25 mm or more.
  • the outer diameter d1 500 mm
  • the inner diameter d2 250 mm around the axis C1
  • a cylindrical member having an axial length h1 100 mm is used.
  • an annular plane region perpendicular to the axis C1 that is one end surface in the axial direction of the workpiece W1 is set as the processing target N1.
  • the to-be-processed part N1 has an endless loop shape that is continuous along the circumferential direction of the workpiece W1.
  • the workpiece W1 is rotated around the axis C1 by the movement support portion 211 in a state where the heating conductor portion 231 is disposed so as to face a part of the portion to be processed N1, so that the portion N1 to be processed is the heating conductor portion.
  • a case is shown in which the part N1 is relatively moved along the circumferential direction R (rotational direction) about the axis C1 with respect to 31 to heat-treat the treated part N1 over the entire circumference.
  • the induction heating coil 226 includes a zigzag-shaped heating conductor portion 231 that faces a part of the processing target N1 of the workpiece W1, and a first end 231b that is continuous with the one end side 231b of the heating conductor portion 231.
  • a second connecting conductor 233 that is continuous with the other end 231a of the heating conductor 231.
  • the first connection conductor portion 232 extends continuously to the end portion 231b on one end side of the heating conductor portion 231, and a coupler 237 for connecting parts such as a hose for cooling liquid is provided at the end portion.
  • the second connection conductor portion 233 extends continuously to the end portion 231a on the other end side of the heating conductor portion 231, and a coupler 237 for connecting components such as a hose for coolant is provided at the end portion. ing.
  • the first connection conductor portion 232 and the second connection conductor portion 233 are disposed with the spacer 228 interposed therebetween.
  • the spacer 228 includes a pair of conductive plates 224 and 225 each having a rectangular flat plate shape, and a rectangular flat plate-like insulating plate 238 sandwiched between the pair of conductive plates 224 and 225, and the spacer 228 is overlapped.
  • the conductive plates 224 and 225 and the insulating plate 238 are configured to be fixed by bolts 241 and nuts 242 via an insulating bush 239.
  • Each of the conductive plates 224 and 225 is connected to the high-frequency power source 221 through lead wires 222 and 223.
  • the heating conductor portion 231 is continuously arranged along the circumferential direction R in a direction in which a plurality of bent portions 234 and 235 alternately face each other, and the bent portions 234 facing each other.
  • a zigzag shape is formed in which conductor portions 236 that are respectively bent between 235 are arranged.
  • the plurality of bent portions 234 have a bent shape that opens outwardly, which is one side in the direction intersecting the moving direction, and the bent portion 35 has a bent shape that opens radially inward, which is the other side.
  • the dimension in the circumferential direction R of the heating conductor portion 231 in which the plurality of bent portions 234 and 235 and the plurality of conductor portions 236 connecting them are continuously formed is, for example, the heating conductor portion 231 with respect to the entire circumference of the processing target N1.
  • the plurality of conductor portions 236 extend so as to intersect the circumferential direction R, and the circumferential length in a portion far from the axis C1, which is the center of rotation, is larger than the circumferential length in a portion near the axis C1. It is configured to be long, and the length in the circumferential direction corresponds to the speed in the circumferential direction.
  • the conductor portion 236 maintains a constant cross-sectional area and a cross-sectional shape orthogonal to the extending direction, and the extending angle at the portion far from the axis C1 is larger than the extending angle at the portion close to the axis C1. By being bent so that the angle with respect to the direction R becomes smaller, the circumferential speed and length correspond to each other.
  • This center line is along the extending direction of each part.
  • the dimensions are set based on two points, the innermost point P1 and the outermost point P3 of the workpiece.
  • the rotation radius (distance from the axis C1) r1 250 mm of a reference point P1 on the processing target N1 facing the first portion 236a, and a reference point P3 on the processing target N1 facing the third portion 236c.
  • the circumferential dimension M1 of the first portion 236a facing P1 is 15 mm
  • the circumferential dimension M3 of the third portion 236c facing P3 is 30 mm.
  • the conductor portion 236 has M1: M3 ⁇ r1: r3, and the distance from the axis C1 that is the center of rotation corresponds to the circumferential dimension. For this reason, when P1 and P3 are taken as a reference, the circumferential dimension (distance) is inversely proportional to the circumferential speed proportional to the radius of rotation, and the time required for passing, that is, the heating time is kept constant.
  • the dimension M2 of the intermediate second portion 236b is set to M1 ⁇ M2 ⁇ M3 so as to be a dimension between M1 and M3.
  • the heating conductor portion 231 has a higher speed at the outer peripheral side where the processing portion N1 passes through the heating conductor portion 231 at a higher speed than the inner side at which the speed decreases. Since the dimension in the moving direction is set to be large, the heating time can be made equal.
  • the induction heating coil 226 is formed from a material such as copper into a rectangular hollow shape, for example.
  • the hollow portion 226a serves as a passage through which the coolant flows.
  • the core 227 is made of a material having a high magnetic permeability such as a silicon steel plate, a polyiron core, or ferroton, and is disposed on the back side of the heating conductor portion 231.
  • the core 227 is formed in a U-shaped cross section integrally including both side portions of the heating conductor portion 231 and a rear wall portion.
  • the induction heating and quenching method according to the present embodiment includes a moving heating process in which the processing target N1 is relatively moved while heating, and a cooling process in which the processing target N1 is cooled after the moving heating process.
  • the high-frequency current flows from the one end 231 b side to the other end 231 a side through the bent portion 234, the conductor portion 236, and the bent portion 235 as indicated by an arrow in the drawing, and the surface of the heating conductor portion 231.
  • Inductive current is generated in the portion, and the processing target portion N1 disposed opposite to the portion is induction-heated.
  • the workpiece N1 is rotated by rotating the workpiece W1 while the gap dimension J1 between the surface of the workpiece N1 of the workpiece W1 and the surface of the heating conductor 231 is maintained at a predetermined value by the moving support unit 211. Is moved relative to the heating conductor portion 231 in the circumferential direction at a predetermined speed.
  • the entire area to be processed N1 which is an annular region on the end face of the workpiece W1 disposed to face the heating conductor portion 231, is uniformly heated.
  • the time taken to pass through the opposite processing target N1 is as follows. It will be kept constant. For this reason, the degree of heating applied to the portion to be processed N1 becomes uniform.
  • the moving support unit 211 moves the workpiece 212 to the lower cooling unit 213 along the axial direction.
  • the cooling unit 213 cools the work 212 disposed in the space 213a, which is a cooling region surrounded by the cooling jacket, with a coolant (cooling process).
  • the coolant flows through the hollow portion 226 a inside the induction heating coil 226 and through the hollow portion 226 a of the first connecting conductor portion 232, the heating conductor portion 231, and the second connecting conductor portion 233.
  • the induction heating coil 226 and the conductive plates 224 and 225 are cooled.
  • the induction heating coil, the induction heating device, and the induction heating method according to this embodiment the following effects can be obtained. That is, since the conductor portion 236 of the heating conductor portion 231 is changed so that the circumferential dimension thereof corresponds to the distance from the axis C1, the time for passing is kept constant, so that the heating time is made uniform. Is done. For this reason, uniform processing can be realized even when the moving speed of each part differs due to rotation. In addition, it is possible to easily achieve uniform heating temperature without complicating the heat treatment conditions with a simple configuration in which the cross-sectional area is constant and is bent at an angle corresponding to the peripheral speed.
  • the heating conductor portion 231 When the heating conductor portion 231 is formed in a zigzag shape having a plurality of curved portions arranged opposite to each other, a strong magnetic field can be secured and a good temperature pattern can be obtained. For this reason, high-speed and uniform heat treatment can be performed with less power.
  • the power is 100 kW
  • the speed is 200 to 300 mm / sec when the surface temperature of the processing target N1 is 850 degrees
  • the heating time It can be realized in 300 seconds. For this reason, even when the workpiece has a large diameter of about 3.5 m, heating exceeding the A3 transformation point can be realized by setting the cover ratio to about 1/3.
  • the induction heating coil 226 having the zigzag-shaped heating conductor portion 231 By using the induction heating coil 226 having the zigzag-shaped heating conductor portion 231, for example, heat treatment of a large workpiece by moving partial heating that cannot be realized by a flat induction heating coil can be realized.
  • the processing speed can be increased in this way, it is possible to perform the processing in the procedure of cooling after first performing the heat treatment while moving the entire processing target N1. For this reason, even in the case of partial heating, even when the part to be processed N1 has a loop shape, uniform heat treatment without a soft zone at the processing start end and end end is possible.
  • the size of the heating conductor portion 231 is kept small even when the portion to be processed N1 and the workpiece W1 are large. Therefore, the entire induction heating device 210 can be reduced in size. For this reason, it is possible to reduce the required power and the manufacturing cost.
  • FIG. 27 is a perspective view showing the configuration of the heating conductor 331 and the workpiece W2 of the induction heating apparatus 210 according to the present embodiment
  • FIG. 28 is a plan view
  • FIG. 29 is a side view
  • FIG. 30 is a partial explanation.
  • the workpiece W2 has a solid frustum shape, and the processing target portion N2, which is a surface on one end side in the axial direction, is inclined with respect to the axial direction and the radial direction. That is, in the first embodiment, the processing target N1 is a planar surface orthogonal to the axis, but in the fourteenth embodiment, the processing target N2 forms an inclined surface that is tilted about the axis.
  • the basic configuration of the heating conductor portion 331 is the same as that of the heating conductor portion 231 of the first embodiment, and a plurality of bent portions 334 and 335 and a plurality of conductor portions 336 connecting them are continuously formed.
  • the plurality of conductor portions 336 extend while intersecting with the circumferential direction R, and the circumferential length in a portion far from the axis C1 that is the center of rotation is longer than the circumferential length in a portion near the axis C1. It is configured to be long, and the length in the circumferential direction corresponds to the speed in the circumferential direction.
  • the conductor portion 336 is bent so that the extension angle at the portion far from the axis C1 is smaller than the extension angle at the portion near the axis C1 with the cross-sectional area being constant. As a result, the circumferential speed and length correspond to each other.
  • the relationship between the rotation radius r1 of the point P4, the rotation radius r3 of the reference point P6 facing the third portion 336c, the circumferential dimension M4 of the first portion 336a, and the circumferential dimension M6 of the third portion 336c is r1: r3 ⁇ .
  • M4 Set to be M6. That is, the distance from the axis C1 is changed so as to correspond to the circumferential dimension, and the moving speed and the dimension in the moving direction are made to correspond.
  • an example of relative movement by rotating the workpiece W1 is given as an example of relative movement.
  • the present invention is not limited to this, and the heating conductor portion 231 side is aligned along the circumferential direction R.
  • the relative movement may be performed by moving along a predetermined locus.
  • FIG. 31 shows a fifteenth embodiment of the present invention. That is, when two induction heating devices 210 are installed, the two induction heating devices 210 are arranged at a central angle of 180 degrees so as to face each other like the induction heating and quenching device 202. In the case of three, it is installed at a position with a central angle of 120 degrees. When a plurality of induction heating devices 210 are used in this way, the coverage of one heating conductor can be reduced, and the heat treatment can be completed quickly by shortening the treatment time. Is preferred.
  • the processing target portions N1 and N2 are illustrated as planar or inclined annular surfaces, but are not limited thereto, and may be circular shapes or shapes having other recesses or steps. Applicable. Moreover, although the solid frustum shape was illustrated in the said 2nd Embodiment, it may be hollow.
  • the bent portion where the end portion of the bent portion is bent in a rectangular shape is exemplified, but the present invention is not limited to this.
  • a structure having a curved portion having a semicircular shape may be used.
  • both axial end surfaces form a circular plane or an inclined surface, it is also possible to apply to the both end surfaces.
  • FIG. 32 shows a sixteenth embodiment of the present invention.
  • four or more portions 346a, 346b, 346c, and 346d may be set and divided finely as in the conductor portion 346 shown in FIG. 32 to correspond to the circumferential speed and the circumferential dimension.
  • FIG. 33 shows a seventeenth embodiment of the present invention.
  • the conductor part 356 shown in FIG. 33 it may be smoothly curved so that the angle gradually increases toward the outer side in the radial direction, and the circumferential speed and the circumferential dimension may correspond to each other.
  • Both the conductor portion 346 and the conductor portion 356 have the same dimensions (broken arrows) perpendicular to the extending directions C3 and C4 indicated by the dotted lines in the figure, and the dimensions in the moving direction R (solid line) are kept uniform. The arrow) is changed to correspond to the speed in the moving direction R.
  • the division in the radial direction may be equally divided.
  • the present invention is not limited to this and is not necessarily strictly proportional. Even if it is not, the present invention can be applied.
  • FIG. 34 is an explanatory diagram schematically showing the overall configuration of the heat treatment apparatus according to the present embodiment.
  • 35 to 37 show a plan view, a side view, and a front view of the heat treatment apparatus, respectively.
  • the heat treatment apparatus 410 includes a moving support unit 411 that movably supports a workpiece E1 that is a processing target, and a processing target portion while moving relative to the processing target U1 of the workpiece E1.
  • An induction heating unit 412 that induction-heats U1 and a cooling unit 413 (cooling unit) that cools the workpiece E1 after the heat treatment process of the processing target U1 are configured.
  • the induction heating unit 412 includes a high-frequency power source 421 as a power supply unit, lead wires 422 and 423 connected to the high-frequency power source 421, and a pair connected to the lead wires 422 and 423.
  • Spacers 428 having conductive plates 424 and 425, induction heating coils 426 whose both ends are connected to a pair of conductive plates 424 and 425, and a core 427 (on the back side of the heating conductor portion 431 of the induction heating coil 426) And only shown in FIGS. 35 and 38).
  • the workpiece E1 as an example of the processing object shown in FIG. 34 is a thick part (thick part) having a thickness of 25 mm or more.
  • the heating conductor portion 431 is disposed so as to face a part of the workpiece U1 of the workpiece E1 and secure a predetermined gap dimension K1.
  • the Z direction that is the axial direction of the workpiece E1 is the first direction
  • the circumferential direction R along the outer circumferential surface of the workpiece E1 with the axis C1 as the center is the second direction.
  • the radial dimension in the circumferential direction R is a value obtained by adding the gap dimension K1 to the radial dimension r1 of the outer peripheral surface of the workpiece, and is r1 + K1.
  • the to-be-processed part U1 comprises the endless loop shape which continues along the circumferential direction in the outer peripheral surface of the workpiece
  • the workpiece E1 rotates about the axis C1 by the movement support portion 411, so that the processing target portion U1 and the heating conductor portion 431 move relative to each other along the circumferential direction R.
  • the induction heating coil 426 includes a zigzag-shaped heating conductor portion 431 facing the processing target portion U1 of the workpiece E1 and a first connection continuous to one end side 431a of the heating conductor portion 431.
  • a conductor portion 432 and a second connection conductor portion 433 that is continuous with the other end side 431b of the heating conductor portion 431 are provided continuously and integrally.
  • the heating conductor portion 431 is formed of a conductor member 431w, and a plurality of U-shaped bent portions 434 and 435 open toward the center C2 in the Z direction and are alternately opposed to each other.
  • a zigzag shape in which a plurality of pieces are continuously arranged along the circumferential direction R is formed.
  • the bent portion 434 has a U-shape that opens downward
  • the bent portion 435 has a U-shape that opens upward.
  • the total dimension R2 in the second direction of the heating conductor part 431 is 1/10 or more and 1/2 or less of the dimension of the entire circumference in the second direction of the part to be processed U1 facing the heating conductor part 431.
  • the coverage which is the ratio of the dimension in the second direction of the heating conductor portion 431 to the processing target portion U1, is set to be about 1/10 here.
  • R5 which is the interval between the adjacent conductor members 431w
  • R4 15 mm
  • R5 20 mm in FIG.
  • the first connecting conductor portion 432 includes a conductor portion 432a extending in the Y direction from the end portion of the one end side 431a of the heating conductor portion 431, and a width of the conductive plate 424 along the X direction by bending from the end portion of the conductor portion 432a.
  • a conductor portion 432b extending toward the center in the direction, a conductor portion 432c bent toward the Y direction by bending at the center of the conductive plate 424, and a conductor portion 432d extending further in the Z direction are integrated integrally. It is configured to prepare for.
  • a coupler 436 for connecting components such as a coolant hose is provided at the end of the first connection conductor portion 432.
  • the second connection conductor portion 433 includes a conductor portion 433a extending in the Y direction from the end portion of the other end side 431b of the heating conductor portion 431, and a bent portion of the conductive plate 425 along the X direction by bending from the end portion of the conductor portion 433a.
  • a conductor portion 433b extending toward the center in the width direction, a conductor portion 433c bent at the center of the conductive plate 425 and extending in the Y direction, and a conductor portion 433d further bent and extended in the Z direction are continuously provided. It is configured to be integrated.
  • a coupler 437 for connecting components such as a coolant hose is provided at the end of the second connection conductor portion 433.
  • the first connection conductor portion 432 and the second connection conductor portion 433 are arranged apart from each other in the thickness (Z-axis) direction with the spacer 428 interposed therebetween.
  • the spacer 428 includes a pair of conductive plates 424 and 425 each having a rectangular flat plate shape, and a rectangular flat plate-like insulating plate 438 sandwiched between the pair of conductive plates 424 and 425 so as to overlap each other in the Z direction.
  • the conductive plates 424 and 425 and the insulating plate 438 are configured to be fixed by bolts 441 and nuts 442 through an insulating bush 439.
  • Each of the conductive plates 424 and 425 is connected to a high frequency power source 421 through lead wires 422 and 423.
  • the induction heating coil 426 is formed of a material such as copper into a rectangular hollow shape, for example. This hollow portion 426a becomes a passage through which the coolant flows.
  • the width dimension W1 of the induction heating coil 426 was set to 15 mm, and the thickness dimension T1 in the Y direction was set to 10 mm.
  • the core 427 is made of a material having a high magnetic permeability such as a silicon steel plate, a polyiron core, or ferroton, and is disposed on the back side of the heating conductor portion 431.
  • the moving support unit 411 shown in FIG. 34 rotates the workpiece E1 around the axis C1 with the workpiece E1 set at a predetermined position. At this time, the movement support part 411 controls the gap dimension K1 between the heating conductor part 431 and the workpiece E1 to be maintained at a predetermined value. Furthermore, the movement support unit 411 moves the workpiece E1 to the lower cooling unit 413 along the axial direction after the heat treatment is completed over the entire circumference (entire stroke) of the processing target unit U1.
  • the cooling unit 413 provided below the heating coil 426 is configured in a cylindrical shape so as to surround the outside of the work E1 moved downward after the heat treatment, and cools the work E1 arranged in the inner space 413a.
  • the heat treatment method of the present embodiment includes a moving heating process in which the processing target portion U1 is relatively moved while heating, and a cooling process in which the processing target portion U1 is cooled after the moving heating process.
  • the high frequency power supply 421 when the high frequency power supply 421 is turned on with the heating conductor 431 facing a part of the processing target U1, the high frequency current is supplied to the lead wire 422.
  • the first conductive plate 424, the first connection conductor 432, the heating conductor 431, the second connection conductor 433, the second conductive plate 425, and the lead wire 423 are sequentially returned to the high-frequency power source 421. .
  • the high-frequency current flows in the heating conductor portion 431 from the one end 431a side to the other end 431b side as shown by the arrows in FIGS.
  • positioned is heated.
  • the workpiece E1 is rotated by rotating the workpiece E1 while the gap K1 between the surface of the workpiece U1 of the workpiece E1 and the surface of the heating conductor 431 is maintained at a predetermined value by the moving support portion 411.
  • the heating conductor 431 moves relative to the processing unit U1 in the second direction at a predetermined speed.
  • the to-be-processed part U1 whole region which is a strip
  • positioned facing the heating conductor part 31 is heated uniformly.
  • the movement support unit 411 moves the workpiece E1 to the lower cooling unit 413 along the Z direction.
  • the cooling part 413 cools the workpiece
  • the coolant flows through the hollow portion 426a inside the induction heating coil 426 and through the hollow portion 426a of the first connecting conductor portion 432, the heating conductor portion 431, and the second connecting conductor portion 433.
  • the induction heating coil 426 and the conductive plates 424 and 425 are cooled.
  • the following effects can be obtained. That is, by making the heating conductor portion 431 into a zigzag shape having a plurality of curved portions continuously, a strong magnetic field can be secured and a good temperature pattern can be obtained. For this reason, high-speed and uniform heat treatment can be performed with less power.
  • the coil efficiency is about 30%, whereas when the zigzag shape is used as in this embodiment, a coil efficiency of about 70% can be ensured.
  • the interval between the adjacent conductor members 431w is not less than 1 and not more than 2 times the width dimension of the conductor member 431w of the heating conductor portion 431, magnetic flux cancellation can be prevented and coil self-loss can be reduced. It is possible.
  • the size of the heating conductor portion 431 is determined by arranging a plurality of portions.
  • the heat treatment apparatus 410 can be reduced in size. For this reason, it is possible to reduce the required power and the manufacturing cost.
  • a part having a thickness of 25 mm or more as a workpiece is a thick part (thick part).
  • the present invention is not limited to this, and the induction heating unit 412 side is moved along a predetermined locus along the second direction. May be moved relative to each other.
  • the two bent portions 434 and 435 are arranged two by two, the present invention is not limited to this, and the number of the bent portions 434 and the number of the bent portions 435 may be different. .
  • the one induction heating part 12 was arrange
  • An induction heating unit 12 may be disposed.
  • the heating conductor portion 431 is configured to be curved so that the center protrudes from both ends in plan view, but is not limited to this, and can be appropriately changed according to the shape of the workpiece.
  • FIG. 40 shows a twentieth embodiment of the present invention.
  • the heating conductor portion 431 is configured to be bent in the opposite direction so that both end portions protrude from the center side.
  • FIG. 41 shows a twenty-first embodiment of the present invention.
  • the heating conductor portion 431 is configured to be linear in a plan view.
  • the linear X direction is the first direction. In these cases, the same effect as the above embodiment can be obtained.
  • FIG. 42 shows a twenty-second embodiment of the present invention.
  • the bent portions 434 and 435 that are bent in a rectangular shape in a U shape are illustrated as the bent portion, but the present invention is not limited to this.
  • heating is performed with a temperature pattern concentrated at the center C2 in the first direction. For this reason, for example, it is suitable when it is desired to increase the heating temperature on the center C2 side.
  • the surface of a to-be-processed part may incline, a recessed part etc. It may have a step portion.
  • the radius of the workpiece is about 250 mm and the coverage is about 1/10 is exemplified, but the present invention is not limited to this.
  • the range of the coverage can be appropriately changed according to conditions such as the diameter of the workpiece. For example, a coverage of 1/10 or more and 1/2 or less and 1/10 to 1/3 is preferable. If it is less than 1/10, sufficient heating cannot be performed. If it exceeds 1/2, it is difficult for the coil to follow the workpiece expansion during heating. In addition, the equipment cost increases.
  • the heating conductor part 431 was installed, the total circumferential dimension of the two heating conductor parts 431 was 600 mm, and the cover ratio was about 1/5.
  • the heating conductor part 431 was installed in this, the total circumferential dimension of the four heating conductor parts 431 was 2400 mm, and the cover ratio was about 1/4.
  • the heat treatment conditions were such that the power was 185 kW, the heating time was 280 s, and the temperature reached at the surface of the portion U1 to be treated was 920 degrees.
  • FIG. 43 shows a plan view in which four induction heating coils 426 are arranged with the central angle shifted by 90 degrees as a twenty-third embodiment of the present invention.
  • the case where the cover rate is 1/3 times and four heating conductor portions 431 are arranged along the second direction is shown.
  • the total coverage of the four heating conductor portions 431 arranged at equal intervals is set to 1/3.
  • the present invention is not limited to the above embodiment.
  • the processing conditions and the specific shapes, materials, materials, dimensions, and the like of each component are not limited to those exemplified in the above embodiment, and can be changed as appropriate.
  • the constituent elements over different embodiments may be combined.
  • various modifications can be made without departing from the scope of the present invention.
  • a technology capable of easily realizing a heat treatment in a desired heating region without requiring high electric power, a technology capable of uniform treatment, and a heat treatment efficiency when induction heating is performed even for a large processing object It is possible to provide a technique capable of improving the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 ワーク(12)と加熱コイルの少なくとも一方の回動により、ワーク(12)の被処理部(A)の周方向に沿ってワーク(12)と加熱コイル(26)を相対的に移動させるとともに、被処理部(A)の周方向(R)と交差する軸方向の異なる部分を誘導加熱する加熱導体部(31A)を有する加熱コイル(26)を備え、加熱コイル(26)は、軸方向の一方側に開口する屈曲部(34)と、軸方向の他方側に開口する屈曲部(35)とが、交互に、対向する向きで、周方向(R)に沿って連続して配置されるジグザグ形状を成すことで、高い処理効率で、所望の加熱領域の熱処理を容易に実現する。

Description

誘導加熱焼入装置、誘導加熱焼入方法、誘導加熱コイル、熱処理装置及び熱処理方法
 本発明は、誘導加熱焼入装置、誘導加熱焼入方法、誘導加熱コイル、熱処理装置及び熱処理方法に関し、特に熱処理効率を向上させるとともに、均一処理を行う技術に関する。
 金属部材に高周波焼入れ等の熱処理を行う誘導加熱焼入方法において、被処理部全域に対向する誘導加熱コイルを用いて一括して処理を行う一発加熱方式の熱処理装置が知られている(例えば、特開2005-120415号公報、特開2002-174251、特開2004-44802)。このような一発加熱方式の熱処理装置では、誘導加熱コイルは、被処理部全域に対応する形状に構成されている。例えば被処理部が円周形状の場合には円環状の誘導加熱コイルを被処理部に対面させ、被処理部が平面状の場合には平板状の誘導加熱コイルを被処理部に対面させている。このような一発加熱方式の加熱装置では、処理対象物及び被処理部の形状及び大きさに対応する誘導加熱コイルを用いるため、処理対象物及び被処理部が大きい場合には、大型の誘導加熱コイルが必要となり、また高出力の電力を要する。
 一方、被処理部の一部のみに対向する誘導加熱コイルを、被処理部に対して相対的に移動させながら加熱処理及び冷却処理を順次行う移動式の熱処理装置が知られている(例えば、特開2005-89803号公報、特開昭60-116724号公報)。このような移動式の熱処理装置において、誘導加熱コイルは、被処理部の一部に対応する形状に構成されている。
 上述した誘導加熱の技術においては、次のような問題があった。すなわち、上述の一発加熱方式の誘導加熱焼入装置では、被処理部の大きさや形状に対応する誘導加熱コイルを用いる必要があるため、例えば被処理部の形状が複雑な場合には、誘導加熱コイルの形状や条件設定が複雑なものとなり、実現が困難あるいは不可能となる。また、被処理部が大きい場合には大型の誘導加熱コイルが必要となり、高出力の電力を要するという問題がある。さらに、処理対象物に誘導加熱時の熱膨張などによる変形が生じる場合には、誘導加熱コイルと処理対象物との間の寸法を適正に維持することが困難となる。このため、誘導加熱コイルを予め大きめに設定する必要があるので、加熱効率が悪くなるという問題を生じる。
 一方、上述の移動式の熱処理方法において、誘導加熱コイルが被処理部の一部に対応する形状に構成されている場合には、単位時間当たりの処理面積が小さく、処理時間が長くなり、処理効率が悪い。また、加熱処理及び冷却処理を連続的に行いながら移動する場合には、例えば環状の被処理部を対象とする際に、処理の開始部と終端部の境目において必要な硬さが得られないソフトゾーンが発生するという問題がある。
 そこで、本発明は、高い電力を必要とせず、所望の加熱領域の熱処理を容易に実現できる技術、均一な処理が可能な技術、大型の処理対象物であっても誘導加熱する際の熱処理効率を向上することが可能な技術を提供することを目的とする。
 本発明の一形態に係る誘導加熱焼入装置は、処理対象物と加熱コイルの少なくとも一方の回動により、前記処理対象物の被処理部の周方向に沿って前記処理対象物と前記加熱コイルを相対的に移動させるとともに、前記被処理部の前記周方向と交差する軸方向の異なる部分を誘導加熱する加熱導体部を有する複数の加熱コイルを備え、前記複数の加熱コイルのうち少なくとも1つは、前記軸方向の一方側に開口する曲部と、前記軸方向の他方側に開口する曲部とが、交互に、対向する向きで、前記周方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有することとした。
 本発明の一形態に係る誘導加熱焼入方法は、処理対象物の被処理部の周方向と交差する軸方向の異なる部分をそれぞれ誘導加熱する加熱導体部を有する複数の加熱コイルを、前記被処理部の少なくとも一部にそれぞれ対向させ、前記被処理部に対して前記複数の加熱コイルによる熱処理を施しながら、前記被処理部の周方向に沿って相対的に前記被処理部と前記加熱コイルを移動させる移動加熱工程を備え、前記複数の加熱コイルの加熱導体部により加熱される前記被処理部の各々の領域が、1つの連続した加熱領域をなし、前記複数の加熱コイルのうち少なくとも1つは、前記軸方向の一方側に開口する曲部と、前記軸方向の他方側に開口する曲部とが、交互に、対向する向きで、前記周方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有することとした。
 本発明の一形態に係る誘導加熱コイルは、被処理部の少なくとも一部に対向し、前記被処理部に対して相対的に回転移動しながら前記被処理部の熱処理を行う加熱導体部を備え、前記加熱導体部は、前記回転の周方向に対して交差して延びるとともに、前記回転移動の中心から遠い部位における前記周方向の長さが前記中心から近い部位における前記周方向の長さに比べて長く構成された導体部分を有することを特徴とする。
 本発明の他の一形態に係る熱処理方法は、前記誘導加熱コイルを、前記被処理部に対向させて誘導加熱により前記被処理部を加熱しながら、前記被処理部を前記誘導加熱コイルに対して前記周方向に沿って相対的に移動させる移動加熱工程を備えることを特徴とする。
 本発明の一形態に係る誘導加熱コイルは、導体部材で形成され、第1方向の一方側に開口する曲部と、前記第1方向の他方側に開口する曲部とが、交互に、対向する向きで、前記第1方向に交差する第2方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有することを特徴とする。
 本発明の一形態に係る熱処理装置は、前記誘導加熱コイルと、前記誘導加熱コイルに接続される高周波電源と、前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる移動手段とを備えたことを特徴とする。
 本発明の一形態に係る熱処理方法は、前記誘導加熱コイルを、前記第2方向に沿って連続する無端のループ状を成す被処理部のうち一部に対向させて誘導加熱により前記被処理部を加熱しながら、前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる、移動加熱工程と、前記被処理部の前記第2方向における全行程に対する加熱処理の後に、前記被処理部を冷却する冷却工程とを備えたことを特徴とする。
図1は、本発明の第1実施形態に係る誘導加熱焼入装置を図2におけるF2-F2線で切断し矢印方向に見た断面図である。 図2は、同実施形態に係る誘導加熱焼入装置を示す平面図である。 図3は、同実施形態に係る第1誘導加熱焼入装置を示す平面図である。 図4は、同実施形態に係る第1加熱コイルを示す正面図である。 図5は、同実施形態に係る第2誘導加熱焼入装置を示す平面図である。 図6は、同実施形態に係る第2加熱コイルを示す正面図である。 図7は、同実施形態に係る加熱コイルの断面構造を示す説明図である。 図8は、同実施形態に係る第1及び第2の加熱領域の説明図である。 図9は、同実施形態に係る第3の加熱領域の説明図である。 図10は、本発明の第2実施形態に係る誘導加熱焼入装置の加熱導体部の構成を示す説明図である。 図11は、同誘導加熱焼入装置の加熱導体部分の構成を示す説明図である。 図12は、本発明の第3実施形態に係る誘導加熱焼入装置を示す説明図である。 図13は、本発明の第4実施形態に係る誘導加熱焼入装置の要部を示す説明図である。 図14は、本発明の第5実施形態に係る誘導加熱焼入装置を示す説明図である。 図15は、本発明の第6実施形態に係る誘導加熱焼入装置に組み込まれた加熱コイルの説明図である。 図16は、本発明の第7実施形態に係る誘導加熱焼入装置に組み込まれた加熱コイルの正面図である。 図17は、本発明の第8実施形態に係る誘導加熱焼入装置を示す説明図である。 図18は、本発明の第9実施形態に係る誘導加熱焼入装置を示す説明図である。 図19は、本発明の第10実施形態に係る誘導加熱焼入装置を示す説明図である。 図20は、本発明の第11実施形態に係る誘導加熱焼入装置を示す説明図である。 図21は、本発明の第12実施形態に係る誘導加熱焼入装置を示す説明図である。 図22は、本発明の第13実施形態に係る誘導加熱焼入装置を示す説明図である。 図23は、同実施形態に係る誘導加熱装置を示す平面図である。 図24は、同実施形態に係る加熱コイルを示す斜視図である。 図25は、同実施形態に係る加熱コイルの導体部分の説明図である。 図26は、同実施形態に係る加熱コイルの断面構造を示す説明図である。 図27は、本発明の第14実施形態に係る誘導加熱装置の加熱コイルを示す斜視図である。 図28は、同加熱コイルを示す平面図である。 図29は、同加熱コイルを示す側面図である。 図30は、同加熱コイルの導体部分の構成を示す説明図である。 図31は、本発明の第15実施形態に係る誘導加熱焼入装置を示す説明図である。 図32は、本発明の第16実施形態に係る導体部分の構成を示す説明図である。 図33は、本発明の第17実施形態に係る導体部分の構成を示す説明図である。 図34は、本発明の第18実施形態に係る熱処理装置を示す説明図である。 図35は、同実施形態に係る熱処理装置を示す平面図である。 図36は、同実施形態に係る熱処理装置を示す側面図である。 図37は、同実施形態に係る熱処理装置を示す正面図である。 図38は、同実施形態に係る加熱コイルの断面構造を示す説明図である。 図39は、本発明の第19実施形態に係る熱処理装置の説明図である。 図40は、本発明の第20実施形態に係る熱処理装置の説明図である。 図41は、本発明の第21実施形態に係る熱処理装置の説明図である。 図42は、本発明の第22実施形態に係る熱処理装置の説明図である。 図43は、本発明の第23実施形態に係る熱処理装置の説明図である。
 以下、本発明の各実施形態を説明する。なお、図中矢印X,Y,Zはそれぞれ互いに直交する3方向を示す。また、各図において説明のため、適宜構成を拡大、縮小または省略して示している。
[第1実施形態]
 以下、本発明の第1実施形態にかかる誘導加熱焼入装置、及び誘導加熱焼入方法について、図1乃至図9を参照して説明する。図1は本実施形態に係る誘導加熱焼入装置1の構成を示す断面図、図2は平面図である。図1及び図2に示すように、誘導加熱焼入装置1は、処理対象物であるワークQ1を移動可能に支持する移動支持部(移動手段)と、ワークQ1の外周にそれぞれ複数配置された各加熱装置10A、10Bと、ワークQ1の加熱処理工程の後にワークQ1を冷却する冷却部13(冷却手段)と、を備えて構成される。下方に設けられた冷却部13は、加熱処理後に下方に移動したワークQ1の外側を囲むように筒状に構成され、内側の空間13aに配されたワークQ1を冷却する。
 本実施形態においては、例えば段差を有する円筒形状のワークQ1を用い、このワークの段付きの外周面を被処理部Aとする。
 処理対象物の一例としてのワークQ1は、軸C1を中心とした段付きの円筒状部材であり、軸方向中央に内側に凹んだ凹部Q1aが形成され、軸方向両端に外側に突出した凸部Q1bが形成されている。例えばここでは凸部外側半径r1=1800mm、凹部外側半径r2=1780mm、内径半径r3=1700mm、軸方向(第2方向)長さh1=250mmのワークQ1を用いる。なお、外側肉厚δ1=100mm、内側肉厚δ2=80mmである。
 ワークQ1を軸C1を中心に回転移動させながら、ワークQ1の周りの所定の経路に沿って配された複数の第1加熱装置10Aと複数の第2加熱装置10Bとにより、無端のループ状である円形状に連続する被処理部Aをループの連続方向である周方向全域にわたって加熱する。
 被処理部Aのうち、軸方向中央の凹部Q1aの外周面領域を第1領域A1とし、軸方向両端の一対の凸部Q1bの外周面領域を第2領域A2とする。第1領域A1と第2領域A2とは、処理対象物の軸方向において互いに離間しているとともに径方向においても互いに離間している。第1領域A1は、軸方向長さh2=150mmの円形の帯状領域であり、一対の第2領域A2はそれぞれ軸方向長さh3=50mmの円形の帯状領域である。
 図2に示すように、複数の第1加熱装置10Aは、周方向に沿う経路において、中心角90度で互いに離間する4箇所に、それぞれ配置されている。第2加熱装置10Bは、周方向に沿う経路において、中心角90度で互いに離間する4箇所に配置され、それぞれの箇所において上下一対の凸部Q1bに対応するように軸方向に2つずつ並列配置されている。
 第1加熱装置10Aと第2加熱装置10Bとは互いに周方向及び軸方向に離間して交互に配置されている。
 第1領域A1に対向して、所定のギャップ寸法G1を確保して、第1加熱装置10Aの第1の加熱導体部31Aが配置される。第1加熱装置10Aは、ワークQ1の外周の被処理部Aのうち第1領域A1を重点的に誘導加熱する。第2領域A2に対向して、所定のギャップ寸法G2を確保して、第2加熱装置10Bの加熱導体部31Bが配置される。第2加熱装置10Bは、第2領域A2を重点的に誘導加熱する。
 この実施形態では、軸C1を中心としてワークQ1の外周面に沿う周方向Rを第1方向とし、ワークQ1の軸方向であるZ方向を第2方向とする。なお、ワークQ1は段付き形状であるので、第1加熱導体部と第2加熱導体部とでは周方向Rの半径寸法が異なるが、ワークQ1を軸C1を中心に回転させることで、両方の周方向に沿って移動することとなる。周方向R1及びR2を含む経路を移動経路として規定するとともに、R1及びR2を含めC1を中心とした回転方向を第1方向Rとする。周方向R1の半径は凹部Q1aの外径寸法の半径寸法r2にギャップ寸法G1を足した値であって、r2+G1となる。周方向R2の半径は凸部Q1bの外径寸法の半径寸法r1に、ギャップ寸法G2を足した値であって、r1+G2となる。
 図1乃至図4に示すように、複数の第1加熱装置10A及び第2加熱装置10Bは、それぞれ電源供給手段としての高周波電源21と、高周波電源21に接続されるリード線22、23と、リード線22,23に接続される一対の導電板24,25を備えるスペーサ28と、両端が一対の導電板24,25にそれぞれ接続された誘導加熱コイル26と、誘導加熱コイル26の加熱導体部31A,31Bの裏側に配置されるコア27とを備えて構成されている。
 加熱装置10Aの誘導加熱コイル26は、ワークQ1の第1領域A1に対向するジグザグ形状の加熱導体部31Aと、加熱導体部31Aの一端側31aに連続する第1の接続導体部32と、加熱導体部31Aの他端側31bに連続する第2の接続導体部33と、をそれぞれ連続して一体に備えている。
 図4に示すように、第1加熱装置10Aの加熱導体部31Aは、複数のコ字状の屈曲部34、35がZ方向における中央に向かって開口して、交互に対向する向きで、周方向Rに沿って複数連続して配置されるジグザグ形状を成す。屈曲部34は下向きに開口したコ字形状を成し、屈曲部35は上向きに開口したコ字形状を成す。隣り合うコイルの間隔R5は、コイル幅であるR4の寸法の1倍以上、かつ、2倍以下に設定する。ここでは、一例として、4つの加熱導体部31Aの第1方向の寸法L1の合計が、第1領域A1の第1方向の全周の寸法の1/3程度に設定されている。すなわち、第1領域A1に対する1つの加熱導体部31Aの第1方向の寸法の割合であるカバー率は1/12、中心角α1は30度に設定されている。
 図5及び図6に示すように、第2加熱装置10Bの誘導加熱コイル26は、ワークQ1の第2領域A2に対向するヘアピン形状の加熱導体部31Bと、加熱導体部31Bの一端側31aに連続する第1の接続導体部32と、加熱導体部31Bの他端側31bに連続する第2の接続導体部33と、を連続して一体に備えている。加熱導体部31Bは正面視において図6中左側の一端側31aから矩形の枠形状に屈曲して他端側31bが一端側31aの図中下方に戻るように構成され、図中左側の両端31a,31bにおいて接続導体部32、33に連続している。なお、第2加熱装置10Bのカバー率は、第1加熱装置10Aと同じにするとは限らず、ワークの形状に対応して変わる。
 各加熱装置10A,10Bにおいて、第1の接続導体部32と第2の接続導体部33とは、スペーサ28を挟んで配置されている。スペーサ28は、それぞれ矩形の平板状を成す一対の導電板24,25と、これら一対の導電板24,25の間に挟まれる矩形の平板状の絶縁板38とが重ねて配置されるとともに、これら導電板24,25及び絶縁板38が絶縁ブッシュ39を介してボルト41及びナット42により固定されて構成されている。各導電板24,25は、リード線22,23を介して高周波電源21に接続されている。第1の接続導体部32及び第2の接続導体部33の端部には冷却液用のホースなどの部品を接続するためのカップラ36、36(一方のみ図示)がそれぞれ設けられている。
 図7にその断面を示すように、誘導加熱コイル26は銅などの材質から例えば矩形の中空形状に形成されている。この中空部分26aは冷却液が流通する通路となる。コア27は、ケイ素鋼板、ポリアイアンコア、フェロトン等の高透磁率を有する材料からなり、加熱導体部31A,31Bの裏側に配置されている。コア27は、加熱導体部31A、31Bの両側部及び後方の壁部を一体に備える断面コ字形状に形成されている。
 図1に示す移動支持部11は、ワークQ1を、所定位置にセットした状態で、軸C1を中心に回転移動させる機能を有する。このとき、移動支持部11は、加熱導体部31Aと第1領域A1との間のギャップ寸法G1を所定値に維持するとともに、加熱導体部31Bと第2領域A2との間のギャップ寸法G2を所定値に維持するように制御する。
 以上のように、第1加熱導体部31Aと第2加熱導体部31Bとは互いに異なる形状を有するとともに軸方向に沿って離間しており、各領域A1,A2の大きさ、形状、及び位置も互いに異なっている。このため、図8に示すように、凹部Q1aのZ方向中央部を中心として形成される第1の加熱領域P1と、上下一対の凸部Q1bのZ方向中央を中心として形成される第2の加熱領域P2とは軸方向において異なる加熱領域を対象としている。
 以下、本実施形態にかかる誘導加熱焼入方法について説明する。本実施形態の誘導加熱焼入方法は、被処理部Aを加熱しながら被処理部Aと加熱導体部31A,31Bを相対移動させる移動加熱工程と、移動加熱工程後に被処理部Aを冷却する冷却工程とで構成される。
 移動加熱工程においては、第1加熱導体部31Aに被処理部Aの一部である第1領域A1を対向させるとともに、第1加熱導体部31Aによる第1の加熱領域P1とは異なる第2の加熱領域P2を有する第2加熱導体部31Bに被処理部Aの少なくとも一部である第2領域A2を対向させ、被処理部Aに対して第1加熱導体部31A及び第2加熱導体部31Bで加熱しながら、第1加熱導体部31A及び第2加熱導体部31Bに対して所定の第1方向Rに沿って領域A1、A2を相対的に移動させる。
 具体的には、加熱導体部31A、31Bをそれぞれ第1領域A1,A2に対向させた状態で、高周波電源21をON状態とすると、高周波電流が、リード線22、第1の導電板24、第1の接続導体部32、加熱導体部31、第2の接続導体部33、第2の導電板25、及びリード線23、を順に経て、高周波電源21に戻る。このとき、加熱導体部31A,31Bにおいて高周波電流が一端31a側から他端31b側へ向かって流れ、加熱導体部31A,31Bの表面に誘導電流が発生し、対向配置される領域A1、A2がそれぞれ重点的に加熱される。すると、軸方向及び径方向において一定距離離間した複数箇所において、同時に加熱がなされる。すなわち、互いに離間した各箇所においてそれぞれ対向するワークQ1の表面に加熱処理を施す。
 この加熱処理を行いながら、移動支持部11により、ギャップ寸法G1、G2を所定値に維持した状態で、ワークQ1を軸C1を中心として回転することで、加熱導体部31A、31Bに対して被処理部Aを、第1方向Rに沿って、所定の速度で相対移動させる。例えばここでは、電力を100~150kW、ギャップ寸法G1,G2=2.5mmを維持しながら、200~300mm/secの速度で相対移動させる。
 この移動加熱工程によって、被処理部Aの各部位において前記第1加熱導体部による第1熱処理と前記第2加熱導体部による第2加熱とが順番に施される。ここではワークQ1を90度回転させることにより被処理部Aの全周にそれぞれ第1及び第2の加熱がなされる。複数の加熱導体部31A,31Bにより加熱される被処理部Aの各々の加熱領域P1,P2は1つの連続した加熱領域P3を形成する。このため、図8及び図9に示すように、第1及び第2の加熱領域P1,P2が合成され、所望の第3の加熱領域P3で熱処理が行われることとなる。
 ついで、被処理部の前記第1方向における全行程に対する移動加熱工程の後に、移動支持部11は、ワークQ1を軸方向に沿って下方の冷却部13に移動させる。冷却部13は冷却ジャケットに囲まれた冷却領域である空間13aに配置されたワークQ1を冷却液で冷却する(冷却工程)。
 本実施形態にかかる誘導加熱コイル、誘導加熱焼入装置及び誘導加熱焼入方法によれば、以下のような効果が得られる。
 上記実施形態によれば、複数の加熱導体部31A,31Bを組み合わせて熱処理を行うことにより、位置が異なる複数の加熱領域を合成し、1つの連続した加熱領域を得ることができるため、単純な構成で所望の加熱領域の熱処理を実現することが可能となる。被処理部の形状が複雑な場合にも、単純な構成で均一な所望の熱処理が実現できる。
 また、軸方向に広い領域である第1領域A1を加熱する第1の加熱導体部31Aを、複数の曲部を連続して有するジグザグ形状としたことにより、強磁界を確保できるとともに、良好な温度パターンが得られる。このため、少ない電力で、高速かつ均一な熱処理が可能となる。本実施形態にかかるジグザグ形状の加熱導体部31を用いた場合には、電力100kWとして第1領域A1の表面の到達温度850度にする場合には200~300mm/secの速度とし、加熱時間=300sで実現できる。すなわち、ジグザグ形状の加熱導体部31を有する誘導加熱コイル26を用いることで、例えば第1領域A1に対応するヘアピン状の誘導加熱コイルでは実現できない移動式の部分加熱による大型ワークの熱処理が実現可能となる。例えばヘアピン状の誘導加熱コイルでの平面(端面)加熱ではコイル効率が30~40%とされているが、上記ジグザグ形状の誘導加熱コイルではコイル効率が70%を超える。
 また、このように高効率の加熱コイルを使用することにより、被処理部Aがループ状の場合に処理開始端及び終了端においてソフトゾーンのない均一な熱処理が可能となる。このため、例えば転がり軸受をワークとし、転動体が通過する軌道面を被処理部Aとした場合に、ソフトゾーンのない均一な硬化層を形成できるので、特に良好な特性を得ることができる。
 被処理部Aの一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、被処理部A及びワークQ1が大型となる場合であっても加熱導体部31のサイズを小さく抑えることができ、各加熱装置10A,10Bを小型にすることができる。このため、必要な電力を低くするとともに製造コストを低く抑えることが可能となる。
 また、被処理部Aの一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、円形などの曲部を有する部材をワークとした場合に、熱膨張等の要因によりワークが変形しても、容易に、適正なギャップ寸法を維持することができる。例えば円形の被処理部に対応する円環状の誘導加熱コイルを用いて一発加熱方式で熱処理を行う場合には、熱膨張によりワークが変形するため、誘導加熱コイルを予め大きめに設定する必要があるので、加熱効率が悪くなるという問題があるが、本実施形態のようにカバー率が小さい場合には、ワークとの配置を調整するだけで適正なギャップを維持することが出来る。
[第2実施形態]
 以下、本発明の第2実施形態にかかる誘導加熱焼入装置2について図10及び図11を参照して説明する。なお、ワークQ2及び加熱導体部31の形状以外は上記第1実施形態と同様であるため、共通する説明を省略する。なお、ワークQ2は円環状の平面部を有する円筒状の形状となっている。
 図10は、本実施形態に係る誘導加熱焼入装置2の配置を示す平面図であり、図11は同誘導加熱焼入装置2の加熱導体部31の形状を示す説明図である。
 本実施形態において、図10に示すように、ワークQ2は、上下の端面が平面状の円筒形状をなし、この端面を被処理部Aとした。また、第1加熱装置10Aの加熱導体部31は、いずれも複数の屈曲部134、135が交互に対向する向きで周方向Rに沿って複数連続して配置されるとともに、対向する屈曲部134、135の間にそれぞれ曲成された導体部分136が配されるジグザグ形状を成す。複数の屈曲部134は移動方向に交差する方向の一方側である外側向きに開口した屈曲形状を成し、屈曲部135は他方側である径方向内側向きに開口した屈曲形状を成す。
 図10及び11に示すように、複数の導体部分136は、周方向Rに対して交差して延びるとともに、回転の中心である軸C1から遠い部位における周方向の長さが軸C1から近い部位における周方向の長さに比べて長く構成され、周方向における長さが前記周方向における速度に対応するように形成されている。導体部分136は、その延設方向に直交する断面積及び断面の形状を一定に保ったまま、軸C1から遠い部位における延設角度が、軸C1から近い部位における延設角度に比べて、周方向Rに対する角度が小さくなるように曲成されることで、周方向の速度と長さが対応するようになっている。
 本実施形態では、複数の導体部分136は径方向において3つの部分に区分けされ、その中心線C2が隣り合う部分の境界においてそれぞれα1=α2=150度で、屈曲している。この中心線は各部分の延設方向に沿っている。径方向内側の第1部分136aは周方向Rに対してθ1=90度の角度を成し、中間の第2部分136bは周方向Rに対してθ2=60度の角度を成すように傾斜し、最も外側の第3部分136cは周方向Rに対してθ3=30度の角度を成すように傾斜している。すなわちθ1>θ2>θ3となっている。
 例えばここでは、ワークの最も内側の点P1と最も外側の点P3の2箇所を基準として寸法設定をする。第1部分136aに対向する被処理部A1上のある基準点P1の回転半径(軸心C1からの距離)をr4、第3部分136cに対向する被処理部A1上のある基準点P3の回転半径(軸心C1からの距離)をr5とし、P1に対向する第1部分136aの周方向寸法をL1、P3に対向する第3部分136cの周方向寸法をL3とすると、導体部分136は、L1:L3≒r4:r5に設定され、回転中心である軸C1からの距離と周方向寸法とが対応している。この場合、P1とP3を基準としてみれば、回転径に比例する周方向速度に対して、周方向寸法(距離)が反比例することとなり、通過に係る時間すなわち加熱時間が一定に保たれる。また中間の第2部分136bの寸法L2は、L1とL3の間の寸法となるように、L1<L2<L3に設定した。
 本実施形態においても上記第1実施形態と同様の効果が得られる。また、本実施形態の誘導加熱焼入装置2は、軸C1を中心としてワークQ2が回転移動した場合にワークQ2が加熱導体部31を横切って通過する速度が速くなる外周側において、速度が遅くなる内側よりも、加熱導体部31の移動方向の寸法が大きくなるように設定されているため、通過にかかる時間を均一化することができ、熱処理時間が均一化される。
[第3実施形態]
 次に、本発明の第3実施形態にかかる誘導加熱焼入装置2について図12を参照して説明する。なお、ワークQ3の形状と、加熱導体部31がワークQ3の傾斜面に沿っている点以外は上記実施形態と同様であるため、共通する説明を省略する。
 誘導加熱焼入装置2の平面図は図10と同様であり、加熱導体部31の平面図は図11と同様であるため省略する。
 本実施形態において、図12に示すように、ワークQ3は、上下の外周面が傾斜する鼓形状をなし、この外周面を被処理部Aとした。ワークQ3の傾斜する上外周面を第1領域A1、傾斜する下外周面を第2領域A2とした。本実施形態に係る誘導加熱焼入装置3は上面の第1領域A1を誘導加熱する第1加熱装置10Aと、下面の第2領域A2を誘導加熱する第2加熱装置10Aを備えて構成される。
 本実施形態の加熱導体部31Aはいずれも軸方向及び周方向に対して傾斜しており、ワークQ3の上下の外周面にそれぞれ沿って構成されている。
 図10に示すように、第1加熱装置10Aの加熱導体部31Aは、いずれも複数の屈曲部134、135が交互に対向する向きで周方向Rに沿って複数連続して配置されるとともに、対向する屈曲部134、135の間にそれぞれ曲成された導体部分136が配されるジグザグ形状を成す。複数の屈曲部134は移動方向に交差する方向の一方側である外側向きに開口した屈曲形状を成し、屈曲部135は他方側である径方向内側向きに開口した屈曲形状を成す。複数の導体部分136は、周方向Rに対して交差して延びるとともに、回転の中心である軸C1から遠い部位における周方向の長さが軸C1から近い部位における周方向の長さに比べて長く構成され、周方向における長さが前記周方向における速度に対応するように形成されている。導体部分136は、その延設方向に直交する断面積及び断面の形状を一定に保ったまま、軸C1から遠い部位における延設角度が、軸C1から近い部位における延設角度に比べて、周方向Rに対する角度が小さくなるように曲成されることで、周方向の速度と長さが対応するようになっている。
 本実施形態においても、上記第1実施形態と同様の効果が得られる。
[第4実施形態]
 以下、本発明の第4実施形態にかかる誘導加熱焼入装置3について図13を参照して説明する。図13は本実施形態に係る誘導加熱焼入装置の配置を示す説明図である。なお、ワークQ4の形状以外は上記第2実施形態と同様であるため、共通する説明を省略する。ワークQ4は中空体状であり、軸方向及び周方向に対して傾斜した内周面を有している。
 本実施形態の加熱導体部31Aはいずれも軸方向及び周方向に対して傾斜しており、ワークQ4の上下の内周面にそれぞれ沿って構成されている。
 図10に示すように、第1加熱装置10Aの加熱導体部31Aは、いずれも複数の屈曲部134、135が交互に対向する向きで周方向Rに沿って複数連続して配置されるとともに、対向する屈曲部134、135の間にそれぞれ曲成された導体部分136が配されるジグザグ形状を成す。複数の屈曲部134は移動方向に交差する方向の一方側である外側向きに開口した屈曲形状を成し、屈曲部135は他方側である径方向内側向きに開口した屈曲形状を成す。複数の導体部分136は、周方向Rに対して交差して延びるとともに、回転の中心である軸C1から遠い部位における周方向の長さが軸C1から近い部位における周方向の長さに比べて長く構成され、周方向における長さが前記周方向における速度に対応するように形成されている。導体部分136は、その延設方向に直交する断面積及び断面の形状を一定に保ったまま、軸C1から遠い部位における延設角度が、軸C1から近い部位における延設角度に比べて、周方向Rに対する角度が小さくなるように曲成されることで、周方向の速度と長さが対応するようになっている。
 本実施形態においても、上記第1~3実施形態と同様の効果が得られる。
[第5実施形態]
 以下、本発明の第5実施形態にかかる誘導加熱焼入装置4について図14を参照して説明する。なお、ワークQ5の形状及び被処理部Aが傾斜している点以外は上記第1実施形態と同様であるため、共通する説明を省略する。
 図14は、本実施形態に係る誘導加熱焼入装置4の配置を示す側面図である。
 本実施形態においては、図14に示すように、段付きの断面台形状のワークQ5の周面を被処理部Aとした。軸方向中央部分の外周面を第1領域A1とし,軸方向両端において外側に突出する段差部分の外周面を第2領域A2とした。
 誘導加熱焼入装置4は、軸方向中央部分の第1被処理部A1を誘導加熱する第1加熱装置10Aと、軸方向両端の2箇所の第2被処理部A2を誘導加熱する第2加熱装置10Bを備えている。領域A1,A2は軸に対して傾斜した面をなし、回動の中心からの距離が変化している。本実施形態の加熱導体部31A、31Bはいずれも軸方向及び周方向に対して傾斜しており、ワークQ5の上下の外周面に沿って構成されている。加熱導体部31Aの形状は、例えば第3実施形態と同様の加熱導体部31Aを用いる。すなわち、軸方向に傾斜するとともに、対向する屈曲部134,135を有するジグザグ形状であって、導体部分136は、その延設方向に直交する断面積及び断面の形状を一定に保ったまま、軸C1から遠い部位における延設角度が、軸C1から近い部位における延設角度に比べて、周方向Rに対する角度が小さくなるように曲成されている。
 本実施形態においても、上記第1~4実施形態と同様の効果が得られる。
 上記実施形態では、曲部として、断面コ字状に矩形に屈曲した屈曲部34,35を例示したがこれに限られるものではない。
[第6実施形態]
 図15は、本発明の第6実施形態として、半円周状に湾曲した形状の湾曲部(曲部)34,35を有する構造の第1加熱導体部31Cを適用してもよい。本実施形態においても上記第1~5実施形態と同様の効果を得ることができる。
[第7実施形態]
 図16は、本発明の第7実施形態として、に示すように台形状に屈曲した曲部34,35を有する構造の第1加熱導体部31Dを適用しても良い。本実施形態においても上記第1~5実施形態と同様の効果を得ることができる。
 さらに、これらのような屈曲形状ではなく、第1実施形態に示すようなジグザグ形状としてもよい。上記実施形態においてはワークQ1を回転させることにより相対移動をする例を挙げたが、これに限られるものではなく、加熱導体部31A,31B側を移動させることにより相対移動させてもよい。
[第8実施形態]
 上記第1~5実施形態では、第1加熱装置10A及び第2加熱装置10Bをそれぞれ4箇所に配置した場合を例示したが、これに限られるものではない。
 図17は、本発明の第8実施形態として、第1加熱装置10A及び第2加熱装置10Bをそれぞれ2つ配置した場合の位置関係を概略的に示したものである。本実施形態においても上記第1~5実施形態と同様の効果を得ることができる。
[第9実施形態]
 図18は、本発明の第9実施形態として、第1加熱装置10A及び第2加熱装置10Bをそれぞれ3つ配置した場合の位置関係を概略的に示したものである。本実施形態においても上記第1~5実施形態と同様の効果を得ることができる。
[第10実施形態]
 図19は、本発明の第10実施形態として、第1加熱装置10A及び第2加熱装置10Bをそれぞれ5つ配置した場合の位置関係を概略的に示したものである。本実施形態においても上記第1~5実施形態と同様の効果を得ることができる。
[第11実施形態]
 図20は、本発明の第11実施形態として、第1加熱装置10A及び第2加熱装置10Bをそれぞれ6つ配置した場合の位置関係を概略的に示したものである。本実施形態においても上記第1~5実施形態と同様の効果を得ることができる。
[第12実施形態]
 コイル配置は交互に配置したり、対向配置を例示したが、これに限るものではなく、1:3等、任意に配置できる。上記実施形態においては段差が1つであるワークQ1を例示したが、これに限られるものではなく、2以上の段差を有するワークを対象とした場合にも本発明を適用可能である。
 図21は、本発明の第12実施形態として、2段の段差を有するワークQ5を対象とした場合には、ワークの外周面である被処理部Aにおいて、段差の位置に応じて、3つの第1乃至第3領域A1,A2,A3を設定したものである。なお、ここではワークQ5は上下方向に対称であり上下にそれぞれ段差を有しているため、第2領域A2,第3領域A3は軸方向において2箇所にそれぞれ配される。ここでは、3つの誘導加熱焼入装置10A,10B,10Cを用い、領域A1,A2,A3にそれぞれ対向させるように加熱導体部31A,31B,31Cを配置する。この場合にも、上記実施形態と同様に、加熱導体部31Aにより加熱される第1加熱領域P4、加熱導体部31Bにより加熱される第2加熱領域P5、加熱導体部31Cにより加熱される第3加熱領域P6が合成されることで、1つの連続した所望の加熱領域P7を容易に処理することができる。
 この他、ワークは中空に限らず、中実のものでもよい。
[第13実施形態]
 以下、本発明の第13実施形態にかかる誘導加熱焼入装置201(熱処理装置)について、図22乃至図26を参照して説明する。
 図22は本実施形態に係る誘導加熱焼入装置201の全体構成を概略的に示す説明図である。図22に示すように、誘導加熱焼入装置201は、高周波焼入れを行う装置であり、処理対象物であるワークW1を移動可能に支持する移動支持部(ワーク移動回転支持台)211と、ワークW1の被処理部N1を誘導加熱する誘導加熱装置10(熱処理装置)と、被処理部N1の加熱処理工程の後にワークW1を冷却する冷却部213(冷却手段)と、を備えて構成される。誘導加熱装置210には、高周波電源221に接続される整合盤が内蔵されている。移動支持部211は、ワークW1を、所定位置にセットした状態で、軸C1を中心に回転方向(周方向)に回転移動させる。このとき、移動支持部211は、加熱導体部231とワークW1との間のギャップ寸法J1を所定値に維持するよう制御する。さらに、移動支持部211は、被処理部N1の全周(全行程)にわたって加熱処理が終了した後、ワークW1を冷却部213に移動させる。冷却部213は、加熱処理終了後にワークW1を冷却する。
 図23乃至図26に示すように、誘導加熱装置210は、電力供給手段としての高周波電源221と、高周波電源221に接続されるリード線222、223と、リード線222,223に接続される一対の導電板224,225を備えるスペーサ228と、両端が一対の導電板224,225にそれぞれ接続された誘導加熱コイル226と、誘導加熱コイル226の加熱導体部231の裏側に配置されるコア227(図26のみに図示)と、を備えて構成されている。
 図22に示すように、処理対象物の一例としてのワークW1は厚さ25mm以上の肉厚部品であり、例えばここでは、軸C1を中心として、外側直径d1=500mm、内側直径d2=250mm、軸方向長さh1=100mmの円筒状部材を用いる。
 本実施形態においては、例えば、ワークW1の軸方向一端面である軸C1に直交する円環形状の平面領域を被処理部N1とする。被処理部N1は、ワークW1の周方向に沿って連続する無端のループ状を成す。ここでは、被処理部N1の一部分に対向して加熱導体部231が配置された状態で、移動支持部211によってワークW1が軸C1を中心に回転することにより、被処理部N1が加熱導体部31に対して軸C1を中心とした周方向R(回転方向)に沿って相対移動し、被処理部N1を全周にわたって熱処理する場合を示す。
 図22及び図23に示すように、誘導加熱コイル226は、ワークW1の被処理部N1の一部分に対向するジグザグ形状の加熱導体部231と、加熱導体部231の一端側231bに連続する第1の接続導体部232と、加熱導体部231の他端側231aに連続する第2の接続導体部233と、を連続して一体に備えている。第1の接続導体部232は、加熱導体部231の一端側の端部231bに連続して延び、その端部には冷却液用のホースなどの部品を接続するためのカップラ237が設けられている。第2の接続導体部233は、加熱導体部231の他端側の端部231aに連続して延び、その端部には冷却液用のホースなどの部品を接続するためのカップラ237が設けられている。
 第1の接続導体部232と第2の接続導体部233とは、スペーサ228を挟んで配置されている。スペーサ228は、それぞれ矩形の平板状を成す一対の導電板224,225と、これら一対の導電板224,225の間に挟まれる矩形の平板状の絶縁板238とが重ねて配置されるとともに、これら導電板224,225及び絶縁板238が絶縁ブッシュ239を介してボルト241及びナット242により固定されて構成されている。各導電板224,225は、リード線222、223を介して高周波電源221に接続されている。
 図23乃至図25に示すように、加熱導体部231は複数の屈曲部234、235が交互に対向する向きで周方向Rに沿って複数連続して配置されるとともに、対向する屈曲部234、235の間にそれぞれ曲成された導体部分236が配されるジグザグ形状を成す。複数の屈曲部234は移動方向に交差する方向の一方側である外側向きに開口した屈曲形状を成し、屈曲部35は他方側である径方向内側向きに開口した屈曲形状を成す。
 複数の屈曲部234,235及び、これらを連結する複数の導体部分236が連続して構成される加熱導体部231の周方向Rの寸法は、例えば被処理部N1の全周に対する加熱導体部231の周方向Rの寸法の割合であるカバー率が1/3であり、中心角β1=120度に設定されている。
 複数の導体部分236は、周方向Rに対して交差して延びるとともに、回転の中心である軸C1から遠い部位における周方向の長さが軸C1から近い部位における周方向の長さに比べて長く構成され、周方向における長さが前記周方向における速度に対応するように形成されている。導体部分236は、その延設方向に直交する断面積及び断面の形状を一定に保ったまま、軸C1から遠い部位における延設角度が、軸C1から近い部位における延設角度に比べて、周方向Rに対する角度が小さくなるように曲成されることで、周方向の速度と長さが対応するようになっている。
 本実施形態では、図25に示すように、複数の導体部分236は径方向において3つの部分に区分けされ、その中心線C2が隣り合う部分の境界においてそれぞれα1=α2=150度で、屈曲している。この中心線は各部分の延設方向に沿っている。径方向内側の第1部分236aは周方向Rに対してθ1=90度の角度を成し、中間の第2部分236bは周方向Rに対してθ2=60度の角度を成すように傾斜し、最も外側の第3部分236cは周方向Rに対してθ3=30度の角度を成すように傾斜している。すなわちθ1>θ2>θ3となっている。
 例えばここでは、ワークの最も内側の点P1と最も外側の点P3の2箇所を基準として寸法設定をする。第1部分236aに対向する被処理部N1上のある基準点P1の回転半径(軸心C1からの距離)r1=250mm、第3部分236cに対向する被処理部N1上のある基準点P3の回転半径(軸心C1からの距離)r3=500mmであり、P1に対向する第1部分236aの周方向寸法M1=15mm、P3に対向する第3部分236cの周方向寸法M3=30mmとする。すなわち、導体部分236は、M1:M3≒r1:r3となり回転中心である軸C1からの距離と周方向寸法とが対応している。このため、P1とP3を基準としてみれば、回転半径に比例する周方向速度に対して、周方向寸法(距離)が反比例することとなり、通過に係る時間すなわち加熱時間が一定に保たれる。また中間の第2部分236bの寸法M2は、M1とM3の間の寸法となるように、M1<M2<M3に設定した。
 すなわち、軸C1を中心としてワークW1が回転移動した場合に被処理部N1が加熱導体部231を横切って通過する速度が速くなる外周側において、速度が遅くなる内側よりも、加熱導体部231の移動方向の寸法が大きくなるように設定されているため、加熱時間を等しくすることができる。
 図26に断面を示すように、誘導加熱コイル226は銅などの材質から例えば矩形の中空形状に形成されている。この中空部分226aは冷却液が流通する通路となる。コア227は、ケイ素鋼板、ポリアイアンコア、フェロトン等の高透磁率を有する材料からなり、加熱導体部231の裏側に配置されている。コア227は、加熱導体部231の両側部及び後方の壁部を一体に備える断面コ字形状に形成されている。
 以下、本実施形態にかかる誘導加熱焼入方法(熱処理方法)について説明する。本実施形態の誘導加熱焼入方法は、被処理部N1を加熱しながら相対移動させる移動加熱工程と、移動加熱工程後に被処理部N1を冷却する冷却工程とで構成される。
 移動加熱工程において、図22乃至図25に示すように被処理部N1のうち一部に加熱導体部231を対向させた状態で、高周波電源221をON状態とすると、高周波電流が、リード線222、第1の導電板224、第1の接続導体部232、加熱導体部231、第2の接続導体部233、第2の導電板225、及びリード線223、を順に経て、高周波電源221に戻る。
 加熱導体部231において高周波電流は図中に矢印で示すように一端231b側から他端231a側へ向かって、屈曲部234、導体部分236及び屈曲部235、を経て流れ、加熱導体部231の表面に誘導電流が発生し、対向配置される被処理部N1が誘導加熱される。
 移動支持部211により、ワークW1の被処理部N1の表面と加熱導体部231の表面との間のギャップ寸法J1を所定値に維持した状態で、ワークW1を回転することにより、被処理部N1を加熱導体部231に対して周方向に所定の速度で相対移動させる。
 例えばここでは、電力を100~150kW、ギャップ寸法J1=2.5mmを維持しながら、200~300mm/secの速度で相対移動させる。ワークW1が回転することにより、加熱導体部231に対向配置されるワークW1の端面の円環状の領域である被処理部N1全域が均一に加熱される。
 ここで、導体部分236の基準点P1,P2,P3における熱処理の度合いを考えると、基準点P1,P2,P3は周速度が異なっても、対向する被処理部N1を通るのにかかる時間は一定に保たれることとなる。このため、被処理部N1に施される加熱の度合いが均一になる。
 ついで、被処理部の周方向Rにおける全行程に対する移動加熱工程の後に、移動支持部211は、ワーク212を軸方向に沿って下方の冷却部213に移動させる。冷却部213は冷却ジャケットに囲まれた冷却領域である空間213aに配置されたワーク212を冷却液で冷却する(冷却工程)。
 さらに、誘導加熱コイル226の内側の中空部分226aを通って、第1の接続導体部232、加熱導体部231、第2の接続導体部233、の中空部分226aを経由して冷却液が流れることにより、誘導加熱コイル226及び導電板224,225が冷却される。
 本実施形態にかかる誘導加熱コイル、誘導加熱装置及び誘導加熱方法によれば、以下のような効果が得られる。すなわち、加熱導体部231の導体部分236を、周方向の寸法を軸C1からの距離と対応するように変化させたことにより、通過に係る時間が一定に保たれるため、加熱時間が均一化される。このため、回転により部位ごとの移動速度が異なる場合にも均一な処理を実現できる。また、断面積は一定として周速度に対応する角度に曲成するだけの簡単な構成で、熱処理条件を複雑化することなく、加熱温度の均一化を容易に実現することが可能となる。
 加熱導体部231を、対向配置される複数の曲部を連続して有するジグザグ形状としたことにより、強磁界を確保できるとともに、良好な温度パターンが得られる。このため、少ない電力で、高速かつ均一な熱処理が可能となる。本実施形態にかかるジグザグ形状の加熱導体部231を用いた場合には、電力100kWとして、被処理部N1の表面の到達温度850度にする場合に200~300mm/secの速度とし、加熱時間=300sで実現できる。このため、ワークの直径が3.5m程度の大型な場合にも、カバー率を1/3程度としてA3変態点を超える加熱が実現可能となる。
 ジグザグ形状の加熱導体部231を有する誘導加熱コイル226を用いることで、例えば平板状の誘導加熱コイルでは実現できない移動式の部分加熱による大型ワークの熱処理が実現可能となる。また、このように処理速度を早くすることができるため、最初に被処理部N1全体を移動しながら加熱処理した後に、冷却するという手順で処理することが可能となる。このため、部分加熱であっても、被処理部N1がループ状の場合にも処理開始端及び終了端においてソフトゾーンのない均一な熱処理が可能となる。
 被処理部N1の一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、被処理部N1及びワークW1が大型となる場合であっても加熱導体部231のサイズを小さく抑えることができ、誘導加熱装置210全体を小型にすることができる。このため、必要な電力を低くするとともに製造コストを低く抑えることが可能となる。
 また、被処理部N1の一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、熱膨張等の要因によりワークが変形しても、容易に、適正なギャップ寸法を維持することができる。例えば円形の被処理部に対応する円環状の誘導加熱コイルを用いて一発加熱方式で熱処理を行う場合には、熱膨張によりワークが変形するため、誘導加熱コイルを予め大きめに設定する必要があるので加熱効率が悪くなるという問題があるが、本実施形態のようにカバー率が小さい場合には、ワークとの配置を調整するだけで適正なギャップを維持することが出来る。
[第14実施形態]
 以下、本発明の第14実施形態にかかる誘導加熱装置210について図27乃至30を参照して説明する。なお、被処理部N2及び加熱導体部331が軸C1に対して傾斜している点以外は上記第13実施形態と同様であるため、共通する説明を省略する。
 図27は、本実施形態に係る誘導加熱装置210の加熱導体部331及びワークW2の構成を示す斜視図であり、図28は平面図、図29は側面図、図30は一部を示す説明図である。
 この実施形態において、ワークW2は、中実の錐台状をなし、その軸方向一端側の面である被処理部N2は軸方向及び径方向に対して傾斜している。すなわち、第1実施形態では被処理部N1は、軸に直交する平面状の面であったが、この第14実施形態においては被処理部N2が軸に傾斜する傾斜面を成している。
 加熱導体部331は、基本的な構成は第1実施形態の加熱導体部231と同様であり、複数の屈曲部334,335及びこれらを繋ぐ複数の導体部分336が連続して構成されている。複数の導体部分336は、周方向Rに対して交差して延びるとともに、回転の中心である軸C1から遠い部位における周方向の長さが軸C1から近い部位における周方向の長さに比べて長く構成され、周方向における長さが前記周方向における速度に対応するように形成されている。導体部分336は、その断面積を一定としたまま、軸C1から遠い部位における延設角度が、軸C1から近い部位における延設角度に比べて、周方向Rに対する角度が小さくなるように曲成されることで、周方向の速度と長さが対応するようになっている。
 例えばここでは、図30に示すように、屈曲角α3=α4=150度、θ4=90度、θ5=60度、θ6=30度とし、第1部分336aに対向する被処理部N2上の基準点P4の回転半径r1、第3部分336cに対向する基準点P6の回転半径r3、第1部分336aの周方向寸法M4、及び第3部分336cの周方向寸法M6の関係は、r1:r3≒M4:M6となるように設定した。すなわち、軸C1からの距離と周方向寸法とが対応するように変化させ、移動速度と移動方向の寸法を対応させている。
 本実施形態においても、上記第13実施形態と同様の効果が得られる。
 例えば、上記実施形態においては相対的に移動する例としてワークW1を回転させることにより相対移動をする例を挙げたが、これに限られるものではなく、加熱導体部231側を周方向Rに沿う所定の軌跡で移動させることにより相対移動させてもよい。
[第15実施形態]
 上記実施形態においては、1つの被処理部N1,N2に対して加熱導体部231、331一箇所のみに配置した場合を例示したが、これに限られるものではなく、周方向Rに沿って等間隔で複数の誘導加熱装置210を配置してもよい。
 図31は、本発明の第15実施形態を示している。すなわち、2つの誘導加熱装置210を設置する場合には、誘導加熱焼入装置202のように互いに対向するように中心角180度の位置に2つの誘導加熱装置210を配置する。また、3つの場合には中心角120度の位置に設置する。このように複数の誘導加熱装置210を用いると1つの加熱導体部のカバー率を小さくできるとともに、処理時間を短縮して加熱処理を早く完了することができるため、特にワークのサイズが大きい場合に好適である。
 上述の実施形態では、被処理部N1、N2は平面状あるいは傾斜した円環状の面を例示したが、これに限られるものではなく、円形状や、この他の凹部や段差を有する形状にも適用可能である。また、上記第2実施形態では中実の錐台形状を例示したが、中空であってもよい。
 上記実施形態では、曲部の端部が矩形に屈曲した屈曲部を例示したがこれに限られるものではなく、例えば半円周状に湾曲した形状の湾曲部を有する構造としてもよい。
 さらに、軸方向における一端面のみに適用する場合を例示したが、軸方向両端面が円形の平面または傾斜面を成す場合に、その両端面に適用することも可能である。
[第16実施形態]
 上記実施形態においては、径方向において3つの部位に区分けして設定したが、これに限られるものではない。2つまたは4つ以上に区分けしてもよい。
 図32は、本発明の第16実施形態を示している。例えば図32に示す導体部分346のように4つ以上の部位346a,346b,346c,346dを設定して細かく区切って周方向速度と周方向寸法を対応させてもよい。
[第17実施形態]
 図33は、本発明の第17実施形態を示している。図33に示す導体部分356のように、径方向外側になるにつれて次第に角度が大きくなるように滑らかに湾曲させ、周方向速度と周方向寸法を対応させてもよい。導体部分346及び導体部分356は、いずれも、図中点線で示す延設方向C3,C4に直交する寸法(破線矢印)は一定として断面積を一様としたまま、移動方向Rの寸法(実線矢印)を、移動方向Rの速度に対応するように変化させている。また、径方向における区分けは等分としてもよい。
 さらに、回転中心からの距離と周方向寸法とが対応する例として、回転中心からの距離と周方向寸法とが比例する場合を例示したが、これに限られるものではなく、必ずしも厳密に比例していない場合であっても、本発明を適用可能である。
[第18実施形態]
 図34は本実施形態に係る熱処理装置の全体構成を概略的に示す説明図である。図35乃至図37は、それぞれ、熱処理装置の平面図、側面図、正面図を示す。
 図34に示すように、熱処理装置410は、処理対象物であるワークE1を移動可能に支持する移動支持部411と、ワークE1の被処理部U1に対して相対的に移動しながら被処理部U1を誘導加熱する誘導加熱部412と、被処理部U1の加熱処理工程の後にワークE1を冷却する冷却部413(冷却手段)と、を備えて構成される。
 図35乃至図38に示すように、誘導加熱部412は、電源供給手段としての高周波電源421と、高周波電源421に接続されるリード線422、423と、リード線422,423に接続される一対の導電板424,425を備えるスペーサ428と、両端が一対の導電板424,425にそれぞれ接続された誘導加熱コイル426と、誘導加熱コイル426の加熱導体部431の裏側に配置されるコア427(図35及び図38のみに図示)と、を備えて構成されている。
 図34に示す処理対象物の一例としてのワークE1は厚さ25mm以上の肉厚部品(厚肉部)であり、例えばここでは、軸心C1を中心として、外側半径r1=250mm、内側半径r2=200mm、肉厚寸法t1=50mm、軸方向(第1方向)長さS1=100mmの円筒状部材を用いる。ワークE1の被処理部U1における一部分に対向して、所定のギャップ寸法K1を確保して、加熱導体部431が配置される。
 本実施形態においては、例えば、ワークE1の外周面の軸方向中央部分の円形の帯状の領域を被処理部U1とし、肉厚部であるこの被処理部U1を全周にわたって熱処理する場合を示す。この実施形態においては、ワークE1の軸方向であるZ方向が第1方向となり、軸心C1を中心としてワークE1の外周面に沿う周方向Rが第2方向となる。ここでは周方向Rの半径寸法はワーク外周面の半径寸法r1に、ギャップ寸法K1を足した値であって、r1+K1となる。
 被処理部U1は、ワークE1の外周面において周方向に沿って連続する無端のループ状を成す。移動支持部411によって、ワークE1が軸心C1を中心に回転することにより、被処理部U1と加熱導体部431とが周方向Rに沿って相対移動することとなる。
 図35乃至図37に示すように、誘導加熱コイル426は、ワークE1の被処理部U1に対向するジグザグ形状の加熱導体部431と、加熱導体部431の一端側431aに連続する第1の接続導体部432と、加熱導体部431の他端側431bに連続する第2の接続導体部433と、を連続して一体に備えている。
 図37に示すように、加熱導体部431は、導体部材431wにより形成され、複数のコ字状の屈曲部434、435がZ方向における中央C2に向かって開口して、交互に対向する向きで、周方向Rに沿って複数連続して配置されるジグザグ形状を成す。屈曲部434は下向きに開口したコ字形状を成し、屈曲部435は上向きに開口したコ字形状を成す。
 加熱導体部431の第2方向の全寸法R2は、加熱導体部431に対向する被処理部U1の第2方向の全周の寸法の1/10以上1/2以下である。被処理部U1に対する加熱導体部431の第2方向の寸法の割合であるカバー率は、ここでは1/10程度となるように設定している。
 なお、隣り合う導体部材431wの間隔であるR5は導体部材431wの幅であるR4の寸法の1倍以上、かつ、2倍以下に設定する。隣り合う導体部材431wの間隔が導体部材431wの幅寸法の1倍以下だと隣同士の電流が逆方向のため磁束を打ち消し合ってしまい、2倍より大きいと離れすぎて加熱効率が悪くなるためである。本実施形態においては、図37中のR4=15mm、R5=20mmに寸法設定されている。
 第1の接続導体部432は、加熱導体部431の一端側431aの端部からY方向に延びる導体部432aと、導体部432aの端部から屈曲してX方向に沿って導電板424の幅方向中央側に向かって延びる導体部432bと、導電板424の中央で屈曲してY方向に向かって延びる導体部432cと、さらに屈曲してZ方向に延びる導体部432dと、を連続して一体に備えて構成されている。第1の接続導体部432の端部には冷却液用のホースなどの部品を接続するためのカップラ436が設けられている。
 第2の接続導体部433は、加熱導体部431の他端側431bの端部からY方向に延びる導体部433aと、導体部433aの端部から屈曲してX方向に沿って導電板425の幅方向中央側に向かって延びる導体部433bと、導電板425の中央で屈曲してY方向に向かって延びる導体部433cと、さらに屈曲してZ方向に延びる導体部433dと、を連続して一体に備えて構成されている。第2の接続導体部433の端部には冷却液用のホースなどの部品を接続するためのカップラ437が設けられている。
 第1の接続導体部432と第2の接続導体部433とは、スペーサ428を挟んで厚さ(Z軸)方向に離間して配置されている。スペーサ428は、それぞれ矩形の平板状を成す一対の導電板424,425と、これら一対の導電板424,425の間に挟まれる矩形の平板状の絶縁板438とがZ方向に重ねて配置されるとともに、これら導電板424,425及び絶縁板438が絶縁ブッシュ439を介してボルト441及びナット442により固定されて構成されている。各導電板424,425は、リード線422,423を介して高周波電源421に接続されている。
 図38に断面を示すように、誘導加熱コイル426は銅などの材質から例えば矩形の中空形状に形成されている。この中空部分426aは冷却液が流通する通路となる。誘導加熱コイル426の幅寸法W1=15mmとし、Y方向の厚み寸法T1=10mmとした。
 コア427は、ケイ素鋼板、ポリアイアンコア、フェロトン等の高透磁率を有する材料からなり、加熱導体部431の裏側に配置されている。コア427は、厚さT2=5mm程度を有し、加熱導体部431の両側部及び後方の壁部を一体に備える断面コ字形状に形成されている。
 図34に示す移動支持部411は、ワークE1を、所定位置にセットした状態で、軸心C1を中心に回転移動させる。このとき、移動支持部411は、加熱導体部431とワークE1との間のギャップ寸法K1を所定値に維持するよう制御する。さらに、移動支持部411は、被処理部U1の全周(全行程)にわたって加熱処理が終了した後、ワークE1を軸方向に沿って下方の冷却部413に移動させる。
 加熱コイル426の下方に設けられた冷却部413は、加熱処理後に下方に移動したワークE1の外側を囲むように筒状に構成され、内側の空間413aに配されたワークE1を冷却する。
 以下、本実施形態にかかる熱処理方法について説明する。本実施形態の熱処理方法は、被処理部U1を加熱しながら相対移動させる移動加熱工程と、移動加熱工程後に被処理部U1を冷却する冷却工程とで構成される。
 移動加熱工程において、図34乃至図37に示すように被処理部U1のうち一部に加熱導体部431を対向させた状態で、高周波電源421をON状態とすると、高周波電流が、リード線422、第1の導電板424、第1の接続導体部432、加熱導体部431、第2の接続導体部433、第2の導電板425、及びリード線423、を順に経て、高周波電源421に戻る。
 このとき、加熱導体部431において高周波電流は図35乃至図37中に矢印で示すように一端431a側から他端431b側へ向かって流れ、加熱導体部431の表面に誘導電流が発生し、対向配置される被処理部U1が加熱される。
 このとき、移動支持部411により、ワークE1の被処理部U1の表面と加熱導体部431の表面との間のギャップ寸法K1を所定値に維持した状態で、ワークE1を回転することにより、被処理部U1に対して加熱導体部431が第2方向に所定の速度で相対移動する。
 例えばここでは、電力を100~150kW、ギャップ寸法K1=2.5mmを維持しながら、200~300mm/secの速度で相対移動させる。
 以上により、加熱導体部31に対向配置されるワークE1の外周面の帯状の領域である被処理部U1全域が均一に加熱される。
 被処理部U1の全周にわたって加熱処理が終了した後、移動支持部411は、ワークE1を、Z方向に沿って下方の冷却部413に移動させる。冷却部413は冷却ジャケットに囲まれた冷却領域である空間413aに配置されたワークE1を冷却液で冷却する。
 さらに、誘導加熱コイル426の内側の中空部分426aを通って、第1の接続導体部432、加熱導体部431、第2の接続導体部433、の中空部分426aを経由して冷却液が流れることにより、誘導加熱コイル426及び導電板424,425が冷却される。
 本実施形態にかかる誘導加熱コイル、熱処理装置及び熱処理方法によれば、以下のような効果が得られる。すなわち、加熱導体部431を、複数の曲部を連続して有するジグザグ形状としたことにより、強磁界を確保できるとともに、良好な温度パターンが得られる。このため、少ない電力で、高速かつ均一な熱処理が可能となる。
 例えばヘアピン状のコイルを用いた場合はコイル効率が30%程度であるのに対し、本実施形態のようなジグザグ形状とした場合には70%程度のコイル効率を確保することが出来る。
 さらに、隣り合う導体部材431wの間隔は、加熱導体部431の導体部材431wの幅寸法の1倍以上2倍以下に設定することで、磁束の打ち消しあいを防止でき、コイルの自己損失を低減することが可能である。
 本実施形態にかかるジグザグ形状の加熱導体部431を用いた場合には、電力100kWとして被処理部U1の表面の到達温度850度にする場合には200~300mm/secの速度とし、加熱時間=300sで実現できる。すなわち、ジグザグ形状の加熱導体部431を有する誘導加熱コイル426を用いることで、例えば平板状の誘導加熱コイルでは実現できない移動式の部分加熱による大型ワークの熱処理が実現可能となる。
 また、部分加熱であっても、被処理部U1がループ状の場合に処理開始端及び終了端においてソフトゾーンのない均一な熱処理が可能となる。
 このため、例えば転がり軸受をワークとし、転動体が通過する軌道面を被処理部U1とした場合に、ソフトゾーンのない均一な硬化層を形成できるので、特に良好な特性を得ることができる。
 被処理部U1の一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、被処理部U1及びワークE1が大型となる場合には複数配置することにより加熱導体部431のサイズを小さく抑えることができ、熱処理装置410を小型にすることができる。このため、必要な電力を低くするとともに製造コストを低く抑えることが可能となる。
 また、被処理部U1の一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、円形などの曲部を有する部材をワークとした場合に、誘導加熱時の熱膨張等の要因によりワークが変形しても、容易に、適正なギャップ寸法を維持することができる。例えば円形の被処理部に対応する円環状の誘導加熱コイルを用いて一発加熱方式で熱処理を行う場合には、熱膨張によりワークが変形するため、誘導加熱コイルを予め大きめに設定する必要があるので、加熱効率が悪くなるという問題があるが、本実施形態のようにカバー率が小さい場合には、ワークとの配置を調整するだけで適正なギャップを維持することが出来る。
 なお、ワークの厚さ25mm以上の部位を肉厚部品(厚肉部)とする。
 例えば、上記実施形態においてはワークE1を回転させることにより相対移動をする例を挙げたが、これに限られるものではなく、誘導加熱部412側を第2方向に沿う所定の軌跡で移動させることにより相対移動させてもよい。屈曲部434,435をそれぞれ2つずつ配置したが、これに限られるものではなく、1つあるいは3つ以上であってもよいし、屈曲部434と屈曲部435の数が異なっていてもよい。
 上記実施形態においては、1つの被処理部U1に対して1つの誘導加熱部12を一箇所のみに配置した場合を例示したが、これに限られるものではなく、第2方向に沿って複数の誘導加熱部12を配置してもよい。
[第19実施形態]
 例えば2つの誘導加熱部412を設置する場合には、図39に示すように互いに対向するように中心角が180度ずれた位置に2つの誘導加熱コイル26を配置し、3つの場合には中心角を120度とする。
[第20実施形態]
 上述の実施形態では、加熱導体部431は平面視において中央が両端よりも突出するように湾曲した構成としたが、これに限られるものではなく、ワークの形状に応じて適宜変更可能である。図40は、本発明の第20実施形態を示している。円形のワークE2の内周面を被処理部U2とする場合には、加熱導体部431は両端部分が中央側よりも突出するように上記とは逆方向に湾曲した構成とする。
[第21実施形態]
 図41は、本発明の第21実施形態を示している。ワークE3の平面を被処理部U3とする場合には、加熱導体部431は平面視直線状となるように構成する。なお、この場合には直線状のX方向が第1方向となる。これらの場合にも上記実施形態と同様の効果が得られる。
[第22実施形態]
 図42は、本発明の第22実施形態を示している。上記実施形態では、曲部として、コ字状に矩形に屈曲した屈曲部434,435を例示したがこれに限られるものではない。例えば図9に示すように、半円周状に湾曲した形状の湾曲部534,535を有する構造としてもよい。この場合には、第1方向の中央C2に集中する温度パターンで加熱される。このため、例えば中央C2側の加熱温度を上げたい場合に好適となる。
 上記実施形態では、厚みが均一な円弧状の面を被処理部U1とした場合を例示したが、これに限られるものではなく、被処理部の表面が傾斜していてもよいし、凹部などの段差部分を有するものであってもよい。
 上記実施形態では、ワークの半径が250mm程度でカバー率が1/10程度である場合について例示したが、これに限られるものではない。例えばカバー率の範囲はワークの径等の条件に応じて適宜変更可能であり、例えば1/10倍以上1/2倍以下、1/10~1/3のカバー率が好ましい。1/10未満では十分な加熱ができない。1/2を超えると、加熱時のワーク膨張にコイルを追従させるのが難しい。また、設備コストも高くなる。
 本発明の他の実施形態として、例えば被処理部U1の寸法を、ワークの外径r1=φ1000mm、高さS1=110mm、と設定した場合には、被処理部U1に対向して2箇所に加熱導体部431を設置し、2箇所の加熱導体部431の合計の周方向の寸法を600mmとし、カバー率を1/5程度とした。この場合には、熱処理条件は、電力140kW、加熱時間=310sで、被処理部U1の表面の到達温度を900度として熱処理が実現できた。
 さらに、本発明の他の実施形態として、例えば被処理部U1の寸法を、ワークの外径r1=φ3000mm、高さS1=135mm、とした場合には、被処理部U1に対向して4箇所に加熱導体部431を設置し、4箇所の加熱導体部431の合計の周方向の寸法を2400mmとし、カバー率を1/4程度とした。この場合には、熱処理条件は、電力185kW、加熱時間=280sで、被処理部U1の表面の到達温度を920度として熱処理が実現できた。
[第23実施形態]
 図43は、本発明の第23実施形態として、4つの誘導加熱コイル426を中心角を90度ずつずらして配置した平面図を示す。カバー率を1/3倍とし、第2方向に沿って4つの加熱導体部431を配置した場合を示す。ここでは等間隔に配置される4つの加熱導体部431の合計のカバー率を1/3に設定した。このようにカバー率を設定することで、所望の処理時間及び処理効率を維持しつつ、誘導加熱装置の小型化が可能となる。また、複数の誘導加熱部412を用いることで、処理時間を短縮して加熱処理を早く完了することができるので、ワークのサイズが大きい場合に好適である。
 なお、本発明は前記実施の形態に限定されるものではない。例えば、処理条件や、ワークやコイルなどの各構成要素の具体的形状、材質、材料、寸法などは上記実施形態で例示したものに限られず、適宜変更可能である。また、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を組合せてもよい。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。
 本発明によれば、高い電力を必要とせず、所望の加熱領域の熱処理を容易に実現できる技術、均一な処理が可能な技術、大型の処理対象物であっても誘導加熱する際の熱処理効率を向上することが可能な技術を提供することができる。

Claims (31)

  1.  処理対象物と加熱コイルの少なくとも一方の回動により、前記処理対象物の被処理部の周方向に沿って前記処理対象物と前記加熱コイルを相対的に移動させるとともに、
     前記被処理部の前記周方向と交差する軸方向の異なる部分を誘導加熱する加熱導体部を有する複数の加熱コイルを備え、
     前記複数の加熱コイルのうち少なくとも1つは、前記軸方向の一方側に開口する曲部と、前記軸方向の他方側に開口する曲部とが、交互に、対向する向きで、前記周方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有することを特徴とする誘導加熱焼入装置。
  2.  前記加熱コイルは、隣り合う屈曲部の間隔が、前記加熱導体部の幅寸法の1倍以上、かつ、2倍以下であることを特徴とする請求項1記載の誘導加熱焼入装置。
  3.  前記複数の加熱コイルのうち少なくとも1つは、前記回転の周方向に対して交差して延びるとともに、前記回転移動の中心から遠い部位における前記周方向の長さが前記中心から近い部位における前記周方向の長さに比べて長く構成された加熱導体部分を有することを特徴とする請求項1記載の誘導加熱焼入装置。
  4.  前記加熱導体部分は、その断面積が一定であって、前記中心から遠い部位における延設角度が、前記中心から近い部位における延設角度に比べて、前記周方向に対する角度が小さくなるように曲成されたことを特徴とする請求項3記載の誘導加熱焼入装置。
  5.  前記加熱コイルの前記周方向の寸法は、前記被処理部の前記周方向の寸法の1/10以上1/2以下であることを特徴とする請求項1乃至4のいずれか記載の誘導加熱焼入装置。
  6.  前記被処理部は前記周方向に沿う無端のループ状に連続することを特徴とする請求項1乃至5のいずれか記載の誘導加熱焼入装置。
  7.  前記処理対象物の被処理部は1つ以上の段差を有することを特徴とする請求項1乃至6のいずれか記載の誘導加熱焼入装置。
  8.  前記処理対象物は鼓形状を成すことを特徴とする請求項1乃至5のいずれか記載の誘導加熱焼入装置。
  9.  前記処理対象物は中空体であって軸方向及び周方向に対して傾斜した内周面が形成されていることを特徴とする請求項1乃至5のいずれか記載の誘導加熱焼入装置。
  10.  前記複数の加熱コイルの加熱導体部により加熱される前記被処理部の各々の領域が、1つの連続した加熱領域をなすことを特徴とする請求項1乃至請求項9のいずれか記載の誘導加熱焼入装置。
  11.  前記被処理部の前記周方向における全行程において複数の前記加熱コイルによる加熱処理が施された後に前記被処理部の冷却処理を行う冷却部を備えたことを特徴とする請求項1乃至10のいずれか記載の誘導加熱焼入装置。
  12.  処理対象物の被処理部の周方向と交差する軸方向の異なる部分をそれぞれ誘導加熱する加熱導体部を有する複数の加熱コイルを、前記被処理部の少なくとも一部にそれぞれ対向させ、前記被処理部に対して前記複数の加熱コイルによる熱処理を施しながら、前記被処理部の周方向に沿って相対的に前記被処理部と前記加熱コイルを移動させる移動加熱工程を備え、
     前記複数の加熱コイルの加熱導体部により加熱される前記被処理部の各々の領域が、1つの連続した加熱領域をなし、
     前記複数の加熱コイルのうち少なくとも1つは、前記軸方向の一方側に開口する曲部と、前記軸方向の他方側に開口する曲部とが、交互に、対向する向きで、前記周方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有する誘導加熱焼入方法。
  13.  前記被処理部の前記周方向における全行程に対する移動加熱工程の後に、前記被処理部を冷却する冷却工程を備えたことを特徴とする請求項12記載の誘導加熱焼入方法。
  14.  被処理部の少なくとも一部に対向し、前記被処理部に対して相対的に回転移動しながら前記被処理部の熱処理を行う加熱導体部を備え、
     前記加熱導体部は、前記回転の周方向に対して交差して延びるとともに、前記回転移動の中心から遠い部位における前記周方向の長さが前記中心から近い部位における前記周方向の長さに比べて長く構成された導体部分を有することを特徴とする誘導加熱コイル。
  15.  前記導体部分は、その断面積が一定であって、前記中心から遠い部位における延設角度が、前記中心から近い部位における延設角度に比べて、前記周方向に対する角度が小さくなるように曲成されたことを特徴とする請求項14記載の誘導加熱コイル。
  16.  前記加熱導体部は、前記周方向に交差する方向の一方側に開口する曲部と、他方側に開口する曲部とが、交互に、対向する向きで、前記周方向に沿って連続して配置されるジグザグ形状を成し、対向する曲部間に前記導体部分が配されることを特徴とする請求項14または15記載の誘導加熱コイル。
  17.  前記被処理部は、前記回転の軸方向に直交する平面を成し、
     前記導体部分は、前記平面に沿って、前記被処理部に対向して配されることを特徴とする請求項14乃至16のいずれか記載の誘導加熱コイル。
  18.  前記被処理部は、前記回転の軸方向に対して傾斜する傾斜面を成し、
     前記導体部分は、前記傾斜面に沿って、前記傾斜面に対向して配されることを特徴とする請求項14乃至16のいずれか記載の誘導加熱コイル。
  19.  請求項14乃至18のいずれかに記載の誘導加熱コイルと、
     前記誘導加熱コイルに接続される高周波電源と、
     前記被処理部及び前記誘導加熱コイルを相対的に前記周方向に移動させる移動手段と、を備えたことを特徴とする熱処理装置。
  20.  前記誘導加熱コイルが前記周方向に沿って複数配置されたことを特徴とする請求項19記載の熱処理装置。
  21.  前記被処理部の前記周方向における全行程に対する加熱処理の後に前記被処理部を冷却する冷却部を備えたことを特徴とする請求項19または20記載の熱処理装置。
  22.  請求項14乃至18のいずれかに記載の誘導加熱コイルを、前記被処理部に対向させて誘導加熱により前記被処理部を加熱しながら、前記被処理部を前記誘導加熱コイルに対して前記周方向に沿って相対的に移動させる移動加熱工程を備えることを特徴とする熱処理方法。
  23.  前記被処理部の前記周方向における全行程に対する加熱処理の後に、前記被処理部を冷却する冷却工程を備えたことを特徴とする請求項22記載の熱処理方法。
  24.  導体部材で形成され、第1方向の一方側に開口する曲部と、前記第1方向の他方側に開口する曲部とが、交互に、対向する向きで、前記第1方向に交差する第2方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有することを特徴とする誘導加熱コイル。
  25.  前記加熱導体部は、隣り合う曲部を形成する導体部材の間隔が、前記曲部を形成する導体部材の幅寸法の1倍以上、かつ、2倍以下であることを特徴とする請求項24記載の誘導加熱コイル。
  26.  前記加熱導体部の前記第2方向の寸法は、前記加熱導体部に対向する被処理部の前記第2方向の寸法の1/10以上1/2以下であることを特徴とする請求項24記載の誘導加熱コイル。
  27.  前記各曲部はそれぞれコ字形状に屈曲して構成されたことを特徴とする請求項24乃至26のいずれか記載の誘導加熱コイル。
  28.  前記被処理部は厚肉部であることを特徴とする請求項24乃至27のいずれか記載の誘導加熱コイル。
  29.  請求項24乃至28のいずれかに記載の誘導加熱コイルと、
     前記誘導加熱コイルに接続される高周波電源と、
     前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる移動手段と、を備えたことを特徴とする熱処理装置。
  30.  前記被処理部は前記第2方向に沿って連続する無端のループ状を成し、
     前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させながら前記被処理部の前記第2方向における全行程を加熱した後、前記被処理部の冷却処理を行う冷却部を備えたことを特徴とする請求項29記載の熱処理装置。
  31.  請求項24乃至28のいずれかに記載の誘導加熱コイルを、前記第2方向に沿って連続する無端のループ状を成す被処理部のうち一部に対向させて誘導加熱により前記被処理部を加熱しながら、前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる、移動加熱工程と、
     前記被処理部の前記第2方向における全行程に対する加熱処理の後に、前記被処理部を冷却する冷却工程と、を備えたことを特徴とする、熱処理方法。
PCT/JP2010/062847 2009-07-30 2010-07-29 誘導加熱焼入装置、誘導加熱焼入方法、誘導加熱コイル、熱処理装置及び熱処理方法 WO2011013774A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201080033937.9A CN102626001B (zh) 2009-07-30 2010-07-29 感应加热淬火装置、感应加热淬火方法、感应加热线圈、热处理装置及热处理方法
KR1020127002580A KR101370568B1 (ko) 2009-07-30 2010-07-29 유도 가열 담금질 장치, 유도 가열 담금질 방법, 유도 가열 코일, 열처리 장치 및 열처리 방법
RU2012107329/07A RU2520569C2 (ru) 2009-07-30 2010-07-29 Устройство для индукционной закалки, способ индукционной закалки, катушка для индукционного нагрева, устройство для термообработки и способ термообработки
KR1020137012302A KR101367271B1 (ko) 2009-07-30 2010-07-29 유도 가열 코일, 열처리 장치 및 열처리 방법
IN835DEN2012 IN2012DN00835A (ja) 2009-07-30 2010-07-29
EP10804520.4A EP2461646B1 (en) 2009-07-30 2010-07-29 Induction heating and quenching device, and induction heating and quenching method
US13/360,274 US9534267B2 (en) 2009-07-30 2012-01-27 Induction hardening apparatus, induction hardening method, induction heating coil, heat treatment apparatus, and heat treatment method
US15/354,885 US10648052B2 (en) 2009-07-30 2016-11-17 Induction hardening apparatus, induction hardening method, induction heating coil, heat treatment apparatus, and heat treatment method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009178256 2009-07-30
JP2009-178256 2009-07-30
JP2010-121901 2010-05-27
JP2010121901A JP5902379B2 (ja) 2010-05-27 2010-05-27 誘導加熱コイル、熱処理装置及び熱処理方法
JP2010150411A JP2012012667A (ja) 2010-06-30 2010-06-30 誘導加熱焼入装置及び誘導加熱焼入方法
JP2010-150411 2010-06-30
JP2010-157556 2010-07-12
JP2010157556A JP5985141B2 (ja) 2009-07-30 2010-07-12 誘導加熱コイル、熱処理装置、及び熱処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/360,274 Continuation US9534267B2 (en) 2009-07-30 2012-01-27 Induction hardening apparatus, induction hardening method, induction heating coil, heat treatment apparatus, and heat treatment method

Publications (1)

Publication Number Publication Date
WO2011013774A1 true WO2011013774A1 (ja) 2011-02-03

Family

ID=46000494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062847 WO2011013774A1 (ja) 2009-07-30 2010-07-29 誘導加熱焼入装置、誘導加熱焼入方法、誘導加熱コイル、熱処理装置及び熱処理方法

Country Status (7)

Country Link
US (2) US9534267B2 (ja)
EP (1) EP2461646B1 (ja)
KR (2) KR101367271B1 (ja)
CN (2) CN104762447A (ja)
IN (1) IN2012DN00835A (ja)
RU (1) RU2520569C2 (ja)
WO (1) WO2011013774A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159777A1 (ja) * 2014-04-14 2015-10-22 高周波熱錬株式会社 環状ワークの加熱装置及び方法、並びに加熱コイル
CN106011443A (zh) * 2016-07-07 2016-10-12 安庆市庆华精工机械有限责任公司 一种新型耐磨轴承的热处理装置
EP2508628B1 (en) * 2011-03-15 2017-10-04 Neturen Co., Ltd. Heating apparatus, heat treatment apparatus, and heating method
JP2019521500A (ja) * 2016-10-11 2019-07-25 コリア プレシジョン カンパニー リミテッド プログレッシブ金型用高周波加熱装置およびこれを用いた高周波加熱方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733555B2 (ja) * 2010-08-27 2015-06-10 高周波熱錬株式会社 熱処理装置、環状部材及び熱処理方法
EP3145274B1 (en) 2011-04-07 2023-08-16 Neturen Co., Ltd. Induction heating device, induction heating equipment, induction heating method, and heat treatment method
PL397937A1 (pl) * 2012-01-30 2013-08-05 General Electric Company Uklad indukcyjnego wyzarzania odpuszczajacego dla turbiny
ES2784781T3 (es) * 2014-03-11 2020-09-30 Thk Co Ltd Dispositivo de tratamiento térmico y procedimiento de tratamiento térmico
ES2608103B1 (es) * 2015-09-04 2018-01-26 Gh Electrotermia, S.A. Sistema y método para el temple de anillos metálicos por inducción
GB2557667A (en) 2016-12-15 2018-06-27 Ab Skf Publ Induction heating device
CA3082089A1 (en) 2017-11-24 2019-05-31 Grant Prideco, L.P. Apparatus and methods for heating and quenching tubular members
JP2019100777A (ja) * 2017-11-29 2019-06-24 豊田合成株式会社 インフレーター用容器の耐圧試験装置
FR3087591B1 (fr) * 2018-10-23 2021-12-24 Valeo Equip Electr Moteur Inducteur pour chauffer une partie active de machine electrique tournante
CN109971928B (zh) * 2019-04-16 2023-09-15 北京科技大学 一种板坯感应加热装置
EP3975664A4 (en) * 2019-05-23 2022-07-13 Nippon Steel Corporation SECONDARY COIL MODULE, CROSS-HARDENING APPARATUS, AND THROUGH-HARDENING METHOD
JP2022044338A (ja) * 2020-09-07 2022-03-17 トヨタ自動車株式会社 熱処理装置および熱処理方法
KR102529074B1 (ko) * 2021-05-11 2023-05-04 한양대학교 산학협력단 유도 가열 코일을 이용한 열처리 장치 및 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361509A (en) * 1976-11-16 1978-06-02 Toyota Motor Corp Hardening method by high frequency heating
JPS60116724A (ja) 1983-11-28 1985-06-24 High Frequency Heattreat Co Ltd 周回面焼入れ方法
JP2000508109A (ja) * 1996-03-22 2000-06-27 ルノー 機械部品の歯の表面処理用誘導加熱装置
JP2002174251A (ja) 2000-12-04 2002-06-21 Nsk Ltd 転がり軸受
JP2002235111A (ja) * 2001-02-05 2002-08-23 Toyota Motor Corp 低歪焼入装置と焼入方法
JP2004044802A (ja) 2002-06-26 2004-02-12 Rothe Erde Gmbh 大形ころがり軸受用の軸受レースを製造する方法
JP2004247193A (ja) * 2003-02-14 2004-09-02 High Frequency Heattreat Co Ltd 誘導加熱コイル
JP2005089803A (ja) 2003-09-16 2005-04-07 Fuji Electronics Industry Co Ltd 誘導加熱焼入装置及びワークの周面の移動焼入方法
JP2005120415A (ja) 2003-10-16 2005-05-12 Dai Ichi High Frequency Co Ltd 金属旋回輪転動接触面の焼入れ方法及び装置
JP2006179359A (ja) * 2004-12-24 2006-07-06 High Frequency Heattreat Co Ltd 環状部材を内外周から加熱する誘導加熱コイル及び誘導加熱方法
JP2008231496A (ja) * 2007-03-20 2008-10-02 High Frequency Heattreat Co Ltd 高周波熱処理装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1036886B (de) * 1955-03-18 1958-08-21 Deutsche Edelstahlwerke Ag Vorrichtung zum induktiven Haerten langgestreckter Werkstuecke
DE1224345B (de) * 1962-01-11 1966-09-08 Aeg Induktor fuer das Oberflaechenerwaermen von Zahnraedern
DE1440983B1 (de) * 1963-06-07 1969-11-13 Allg Elek Citaets Ges Aeg Tele Induktor zum Erwaermen der Enden von langgestreckten Werkstuecken
FR2162379B1 (ja) * 1971-12-07 1975-09-12 Hasenclever Gmbh Maschf
DE2204343C3 (de) * 1972-01-31 1975-04-17 Ottensener Eisenwerk Gmbh, 2000 Hamburg Vorrichtung zur Randzonenerwärmung einer um die zentrische Normalachse umlaufenden Ronde
DE2310064C3 (de) * 1973-02-28 1981-10-01 Siemens AG, 1000 Berlin und 8000 München Anordnung zum Auswechseln von flüssigkeitsgekühlten, quer zu ihrer Längsachse verschiebbaren Induktoren
SU1147761A1 (ru) * 1978-03-27 1985-03-30 Физико-технический институт АН БССР Способ закалки изделий
JPS648217A (en) * 1987-06-27 1989-01-12 Toyoda Gosei Kk Induction heating method
CN1020238C (zh) * 1989-03-06 1993-04-07 A.E.毕晓普及合伙人有限公司 一种在渐进式感应加热淬火中对弯曲工件矫直的方法
CN1032595C (zh) * 1993-09-15 1996-08-21 冶金工业部重庆钢铁设计研究院 道岔尖轨中频感应加热装置
JP3638968B2 (ja) 1994-04-27 2005-04-13 高周波熱錬株式会社 誘導加熱装置
CN2288184Y (zh) * 1996-12-06 1998-08-19 宝钢集团重庆钢铁设计研究院 变断面钢轨中频感应加热装置
RU2143009C1 (ru) * 1998-03-10 1999-12-20 Ветер Владимир Владимирович Агрегат для термической обработки прокатных валков, водосборник и спрейер для этого агрегата
JP3733089B2 (ja) 2002-07-17 2006-01-11 電気興業株式会社 高周波誘導加熱コイル体
US6677561B1 (en) * 2002-10-21 2004-01-13 Outokumpu Oyj Coil for induction heating of a strip or another elongate metal workpiece
JP2004353035A (ja) * 2003-05-29 2004-12-16 Dai Ichi High Frequency Co Ltd 誘導加熱装置および薄肉部加熱方法
EP1486572B1 (de) * 2003-06-13 2007-10-03 Maschinenfabrik Alfing Kessler GmbH Vorrichtung zum induktiven Härten
JP4170171B2 (ja) * 2003-08-19 2008-10-22 高周波熱錬株式会社 熱処理装置及び熱処理方法
CN101008044A (zh) * 2007-01-16 2007-08-01 戴光祖 一种冷轧辊整体感应加热深层淬火用盾牌形感应装置
JP2008303402A (ja) 2007-06-05 2008-12-18 Nsk Ltd 高周波焼入れ装置、転がり軸受の製造方法、転がり軸受
JP2009287074A (ja) 2008-05-28 2009-12-10 Nsk Ltd 高周波熱処理装置、高周波熱処理方法及び高周波熱処理方法を行った環状部品を備える転がり軸受
JP5329215B2 (ja) * 2008-12-26 2013-10-30 富士電子工業株式会社 歯車と段付き軸の誘導加熱装置、並びに、誘導加熱方法
JP5481100B2 (ja) 2009-06-08 2014-04-23 高周波熱錬株式会社 誘導加熱コイル、誘導加熱装置及び部品製造装置
EP2987873A3 (en) 2009-07-22 2016-04-13 NTN Corporation Method for heat-treating a ring-shaped member, method for producing a ring-shaped member, ring-shaped member, bearing ring, rolling bearing, and method for producing a bearing ring
JP5565635B2 (ja) 2011-06-30 2014-08-06 高周波熱錬株式会社 高周波熱処理装置及び方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361509A (en) * 1976-11-16 1978-06-02 Toyota Motor Corp Hardening method by high frequency heating
JPS60116724A (ja) 1983-11-28 1985-06-24 High Frequency Heattreat Co Ltd 周回面焼入れ方法
JP2000508109A (ja) * 1996-03-22 2000-06-27 ルノー 機械部品の歯の表面処理用誘導加熱装置
JP2002174251A (ja) 2000-12-04 2002-06-21 Nsk Ltd 転がり軸受
JP2002235111A (ja) * 2001-02-05 2002-08-23 Toyota Motor Corp 低歪焼入装置と焼入方法
JP2004044802A (ja) 2002-06-26 2004-02-12 Rothe Erde Gmbh 大形ころがり軸受用の軸受レースを製造する方法
JP2004247193A (ja) * 2003-02-14 2004-09-02 High Frequency Heattreat Co Ltd 誘導加熱コイル
JP2005089803A (ja) 2003-09-16 2005-04-07 Fuji Electronics Industry Co Ltd 誘導加熱焼入装置及びワークの周面の移動焼入方法
JP2005120415A (ja) 2003-10-16 2005-05-12 Dai Ichi High Frequency Co Ltd 金属旋回輪転動接触面の焼入れ方法及び装置
JP2006179359A (ja) * 2004-12-24 2006-07-06 High Frequency Heattreat Co Ltd 環状部材を内外周から加熱する誘導加熱コイル及び誘導加熱方法
JP2008231496A (ja) * 2007-03-20 2008-10-02 High Frequency Heattreat Co Ltd 高周波熱処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461646A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508628B1 (en) * 2011-03-15 2017-10-04 Neturen Co., Ltd. Heating apparatus, heat treatment apparatus, and heating method
WO2015159777A1 (ja) * 2014-04-14 2015-10-22 高周波熱錬株式会社 環状ワークの加熱装置及び方法、並びに加熱コイル
JP2015204210A (ja) * 2014-04-14 2015-11-16 高周波熱錬株式会社 環状ワークの加熱装置及び方法、並びに加熱コイル
US10462854B2 (en) 2014-04-14 2019-10-29 Neturen Co., Ltd. Apparatus and method for heating annular workpiece, and heating coil
CN106011443A (zh) * 2016-07-07 2016-10-12 安庆市庆华精工机械有限责任公司 一种新型耐磨轴承的热处理装置
JP2019521500A (ja) * 2016-10-11 2019-07-25 コリア プレシジョン カンパニー リミテッド プログレッシブ金型用高周波加熱装置およびこれを用いた高周波加熱方法

Also Published As

Publication number Publication date
US20120125919A1 (en) 2012-05-24
EP2461646A4 (en) 2015-10-07
IN2012DN00835A (ja) 2015-06-26
RU2520569C2 (ru) 2014-06-27
KR20120031508A (ko) 2012-04-03
US20170067130A1 (en) 2017-03-09
US9534267B2 (en) 2017-01-03
CN102626001A (zh) 2012-08-01
CN104762448B (zh) 2017-09-01
CN104762447A (zh) 2015-07-08
KR20130057499A (ko) 2013-05-31
KR101367271B1 (ko) 2014-02-27
EP2461646A1 (en) 2012-06-06
EP2461646B1 (en) 2021-03-10
KR101370568B1 (ko) 2014-03-06
CN104762448A (zh) 2015-07-08
RU2012107329A (ru) 2013-09-10
US10648052B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2011013774A1 (ja) 誘導加熱焼入装置、誘導加熱焼入方法、誘導加熱コイル、熱処理装置及び熱処理方法
JP5985141B2 (ja) 誘導加熱コイル、熱処理装置、及び熱処理方法
EP3770285B1 (en) Traverse hardening device and traverse hardening method
JP3061648B2 (ja) 誘導硬化装置
EP3119161B1 (en) Heat-treatment device and heat-treatment method
JP5667786B2 (ja) 誘導加熱装置及び誘導加熱方法
JP5902379B2 (ja) 誘導加熱コイル、熱処理装置及び熱処理方法
JP2008150661A (ja) 焼戻用加熱コイル
JP5886992B2 (ja) 誘導加熱焼入装置及び誘導加熱焼入方法
JP5096065B2 (ja) 高周波誘導加熱コイル及び高周波誘導加熱方法
JP2012012667A (ja) 誘導加熱焼入装置及び誘導加熱焼入方法
CN102626001B (zh) 感应加热淬火装置、感应加热淬火方法、感应加热线圈、热处理装置及热处理方法
JP5331171B2 (ja) 高周波誘導加熱コイル及び高周波誘導加熱方法
JP4076801B2 (ja) リング部材の誘導加熱焼入方法及び装置
JP4367770B2 (ja) 誘導加熱方法及び誘導加熱コイル
JP4658027B2 (ja) 軸状部材加熱用の高周波誘導加熱コイル
JP4209227B2 (ja) クランクシャフトの高周波誘導加熱方法及び装置
JPH0328486B2 (ja)
JP7133361B2 (ja) 加熱コイル
JP4055853B2 (ja) クランクシャフトの高周波焼入焼戻装置及びその装置に用いられる高周波焼戻コイル体
JP4933482B2 (ja) 軸状部材加熱用の高周波誘導加熱装置
JP2016051670A (ja) 誘導加熱コイル
JPH11233251A (ja) ロール加熱装置
JPH09143550A (ja) 穴内表面の加熱方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033937.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127002580

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 835/DELNP/2012

Country of ref document: IN

Ref document number: 2010804520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012107329

Country of ref document: RU