WO2011013759A1 - 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法 - Google Patents

正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法 Download PDF

Info

Publication number
WO2011013759A1
WO2011013759A1 PCT/JP2010/062822 JP2010062822W WO2011013759A1 WO 2011013759 A1 WO2011013759 A1 WO 2011013759A1 JP 2010062822 W JP2010062822 W JP 2010062822W WO 2011013759 A1 WO2011013759 A1 WO 2011013759A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hole injection
transport layer
hole
substrate
Prior art date
Application number
PCT/JP2010/062822
Other languages
English (en)
French (fr)
Inventor
滋弘 上野
政人 岡田
洋介 田口
誠司 武
匡哉 下河原
奈苗 多ヶ谷
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201080029869.9A priority Critical patent/CN102473850B/zh
Priority to EP10804505.5A priority patent/EP2461388A4/en
Priority to US13/387,227 priority patent/US9102872B2/en
Publication of WO2011013759A1 publication Critical patent/WO2011013759A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a device material for a hole injecting and transporting layer having wettability changed by energy irradiation and having a hole injecting and transporting property, an ink for forming a hole injecting and transporting layer using the device material, and a hole injecting and transporting
  • the present invention relates to a device having a layer and a manufacturing method thereof.
  • Organic electroluminescence elements hereinafter referred to as organic EL elements
  • organic transistors organic solar cells
  • organic semiconductors organic semiconductors
  • quantum dot light emitting elements oxidation Development to a wide range of basic elements and applications such as physical compound solar cells is expected.
  • the organic EL element is a charge injection type self-luminous device that utilizes light emission generated when electrons and holes that have reached the light emitting layer recombine.
  • the element structure of the organic EL element is currently a five-layer structure comprising an electron injection layer / electron transport layer / light emitting layer / hole transport layer / hole injection layer in order to obtain high light emission efficiency and a long driving life.
  • Various multilayer structures have been proposed. These layers other than the light-emitting layer, such as the electron injection layer, the electron transport layer, the hole transport layer, and the hole injection layer, have an effect of facilitating the injection and transport of charges to the light-emitting layer, or are blocked by blocking the electron current. It is said that there are effects such as maintaining the balance of the hole current and suppressing diffusion of light energy excitons.
  • Patent Documents 1 to 4 For the purpose of improving the charge transport ability and the charge injection ability, an attempt has been made to increase the electrical conductivity by mixing an oxidizing compound with a hole transport material.
  • a metal oxide that is a compound semiconductor is used as an oxidizing compound, that is, an electron-accepting compound.
  • a thin film is formed by vapor deposition using a metal oxide such as vanadium pentoxide or molybdenum trioxide, or a mixed film is formed by co-evaporation of molybdenum oxide and an amine-based low molecular compound.
  • Non-Patent Document 1 as an attempt to form a coating film of vanadium pentoxide, a solution in which oxovanadium (V) tri-i-propoxide oxide was dissolved as an oxidizing compound, that is, an electron accepting compound, was used. There is a production method in which a charge transfer complex is formed as vanadium oxide by hydrolysis in water vapor after formation of a mixed coating film with a pore-transporting polymer.
  • Patent Document 5 as an attempt to form a coating film of molybdenum trioxide, fine particles produced by physically pulverizing molybdenum trioxide are dispersed in a solution to prepare a slurry, which is then applied to inject holes. It is described to form a layer.
  • Patent Documents 1 to 5 and Non-Patent Document 1 are used as the hole transporting material, it is difficult to realize a long-life element or it is necessary to further improve the lifetime. there were.
  • the metal oxides disclosed in Patent Documents 1 to 4 although the hole injection characteristics are improved to some extent, the adhesion at the interface with the adjacent organic compound layer is insufficient, which adversely affects the life characteristics. it is conceivable that.
  • Patent Document 5 describes that a charge injection layer was produced by screen printing using a slurry in which molybdenum oxide fine particles having an average particle diameter of 20 nm were dispersed in a solvent.
  • the method of pulverizing the MoO 3 powder as in Patent Document 5 for example, to produce fine particles having a uniform particle size on a scale of 10 nm or less in response to a request to form a hole injection layer of about 10 nm, Actually it is very difficult. Further, it is very difficult to stably disperse molybdenum oxide fine particles produced by pulverization in a solution without agglomeration.
  • the solution of the fine particles is unstable, only a film with large irregularities and poor smoothness can be formed during the production of the coating film, which causes a short circuit of the device.
  • the thin film can be formed only by the vapor deposition method, there is a problem that the advantages of the solution coating method cannot be utilized even if the light emitting layer is separately formed by a solution coating method such as an ink jet method. That is, in order not to impair the liquid repellency of the partition walls (banks) between the light emitting layers by the lyophilic molybdenum oxide, a hole injection layer or a hole transport layer containing molybdenum oxide of an inorganic compound is provided.
  • molybdenum oxide being the inorganic compound is an oxide semiconductor of oxygen-deficient, unstable in electric conductivity but is Mo 2 O 5 having an oxidation number of +5 than MoO 3 having an oxidation number of +6 is a good conductor at room temperature in air
  • the compounds that can be easily thermally deposited are limited to oxide compounds having a stable valence such as MoO 3 or MoO 2 .
  • the film formability and the thin film stability are greatly related to the lifetime characteristics of the device. In general, the lifetime of an organic EL element is the luminance half-life when continuously driven by a constant current drive or the like, and an element having a longer luminance half-time has a longer driving lifetime.
  • a light emitting layer or the like is patterned.
  • Various patterning methods such as a method of evaporating a material through a shadow mask, a method of coating with an ink jet, a method of transferring a luminescent dye, a flexographic printing method, and a gravure printing method have been proposed as a patterning method for the light emitting layer and the like.
  • a partition in order to obtain a high-definition fine pattern, a partition (bank) is formed, and the partition surface is subjected to ink repellent treatment by plasma treatment such as fluorine gas (for example, see Patent Document 6).
  • the heat resistance of the ink repellent treatment is low, and problems occur in subsequent processes.
  • the relatively high temperature (for example, 200 ° C.) heating applied when forming a layer in the opening of the partition wall after the ink repellent treatment causes fluorine introduced into the partition wall to desorb, and the partition wall portion becomes ink-philic.
  • the characteristics of the device were lowered because the layers could not be laminated.
  • many liquid repellent materials have the same problems as described above because fluorine is easily detached by heating at a relatively high temperature and is not resistant. .
  • the top of the partition wall is ink repellent, but the side surface cannot be made ink-philic.
  • the contact angle of the liquid is lowered at the portion where the photocatalyst action due to energy irradiation is applied or the portion irradiated with vacuum ultraviolet light. It utilizes the change in wettability. That is, the part that has been subjected to the action of the photocatalyst associated with energy irradiation or the part that has been irradiated with the vacuum ultraviolet light becomes a lyophilic region, and the part that does not have the action of the photocatalyst associated with energy irradiation or the part that is not irradiated with the vacuum ultraviolet light. It is used to be a liquid repellent region.
  • a light emitting layer or the like is formed on a portion that has been subjected to the action of a photocatalyst accompanying energy irradiation or a portion that has been irradiated with vacuum ultraviolet light.
  • the layer whose wettability changes has hole transporting properties, the material deteriorates in the part where the action of the photocatalyst due to the energy irradiation or the part irradiated with the vacuum ultraviolet light is deteriorated. There was a problem that transportability and the like were impaired.
  • the method using the above photocatalyst and the method using vacuum ultraviolet light can form a pattern due to the difference in wettability only by energy irradiation, the labor required for patterning of the light emitting layer and the like can be largely omitted.
  • This is a useful method in terms.
  • the material has high resistance to energy irradiation such as ultraviolet light and does not impair hole injecting and transporting properties, and heating There was no material in which the lyophilic and lyophobic patterning properties were not impaired during the process.
  • the present invention has been made in view of the above problems, wettability is changed by energy irradiation, process resistance is high, and has excellent hole injecting and transporting properties. Hole injection is performed by a solution coating method. It is an object of the present invention to provide a device material for a hole injection transport layer capable of forming a transport layer, and an ink for a hole injection transport layer using the device material. Another object of the present invention is to form a pattern composed of a lyophilic region and a liquid repellent region by using the above-described device material for a hole injection / transport layer, thereby being laminated on the hole injection / transport layer. It is an object of the present invention to provide a device capable of patterning a layer and achieving a long lifetime and a manufacturing method thereof.
  • a transition metal-containing nanoparticle or a transition metal-containing nanocluster containing a transition metal oxide having a fluorine-containing organic compound attached to its surface has a photocatalytic action or The wettability can be changed by irradiation with vacuum ultraviolet light, the process resistance is high, and the layer can be formed by the solution coating method, while the manufacturing process is easy, and the hole injection characteristics are improved and the adjacent electrode
  • the present invention has been completed by finding that the film has high stability and excellent adhesion to the organic layer.
  • the device material for a hole injecting and transporting layer of the present invention is characterized in that a fluorine-containing organic compound is attached to the surface of a transition metal-containing nanoparticle or transition metal-containing nanocluster containing at least a transition metal oxide. To do.
  • the transition metal contained in the transition metal-containing nanoparticle or transition metal-containing nanocluster is selected from the group consisting of molybdenum, tungsten, and vanadium as the transition metal in the transition metal oxide.
  • the inclusion of at least one selected metal is preferable from the viewpoint of lowering the driving voltage and improving the element life.
  • the fluorine-containing organic compound contains a fluorinated alkyl group from the viewpoint of good change in wettability by energy irradiation and excellent patterning. preferable.
  • the hole injection / transport layer forming ink of the present invention is characterized by containing the hole injection / transport layer device material according to the present invention and an organic solvent.
  • a first embodiment of a device manufacturing method is a device manufacturing method having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between the two electrodes.
  • a hole injection transport layer forming step for forming a hole injection transport layer containing the device material for hole injection transport layer according to the present invention on the substrate on which the first electrode layer is formed in a pattern, After disposing a photocatalyst-containing layer substrate on which a photocatalyst-containing layer containing at least a photocatalyst is formed on the substrate, with a gap that can act as a photocatalyst associated with energy irradiation with respect to the hole injecting and transporting layer, And a wettability change pattern forming step of forming a wettability change pattern having changed wettability on the surface of the hole injecting and transporting layer by irradiating energy in a pattern.
  • the second embodiment of the device manufacturing method according to the present invention is a device manufacturing method including two or more electrodes facing each other on a substrate and a hole injecting and transporting layer disposed between the two electrodes.
  • a method A hole injection transport layer forming step of forming a hole injection transport layer containing the device material for hole injection transport layer according to the present invention on the substrate on which the electrode layer is formed in a pattern, And a wettability changing pattern forming step of forming a wettability changing pattern having changed wettability on the surface of the hole injecting and transporting layer by irradiating the pattern with vacuum ultraviolet rays.
  • the hole injecting and transporting layer contains a material to which the lyophobic fluorine-containing organic compound is attached.
  • a great difference in wettability can be produced between the irradiated portion and the non-irradiated portion.
  • a wettability change pattern is formed, and the wettability difference of this wettability change pattern is determined.
  • a patterned layer can be easily laminated on the hole injecting and transporting layer.
  • the transition metal-containing nanoparticle comprising a transition metal oxide contained in the device material for hole injection / transport layer according to the present invention contained in the hole injection / transport layer or Because transition metal-containing nanoclusters are resistant to ultraviolet light used in the wettability change pattern formation process, excellent hole injecting and transporting properties are not deteriorated or impaired even after the wettability change pattern formation process. Has merit.
  • the device material for a hole injecting and transporting layer according to the present invention is resistant to heating at a relatively high temperature (for example, 200 ° C.), the wettability change pattern is not impaired during the heating process, and the hole injecting and transporting layer is not damaged.
  • a process of laminating many layers in a pattern is possible. Furthermore, since the device material for a hole injection transport layer according to the present invention has high heat resistance and light resistance and is hardly deteriorated, the lifetime of the device manufactured by the manufacturing method of the present invention is also improved.
  • the hole injecting and transporting layer forming ink containing the hole injecting and transporting layer device material according to the present invention and an organic solvent is used. It is preferable to have a step of preparing and a step of heating the hole injection / transport layer forming ink in the presence of oxygen from the viewpoint of easy manufacturing process and good hole injection / transport layer properties.
  • the partition part formation process which forms partition parts, such as an insulating layer and a partition.
  • the substrate on which the first electrode layer is formed is a translucent substrate, and the partition portion is irradiated in the wettability change pattern forming step.
  • a partition that reflects or absorbs energy rays, and in the wettability change pattern forming step, the wettability change is performed on the surface of the hole injecting and transporting layer by irradiating the energy from the translucent substrate side. It is preferable to form a wettability change pattern.
  • the partition that reflects or absorbs the irradiated energy rays performs the same function as the mask, and irradiates the hole injection / transport layer with energy in a pattern without using a separate mask. It is possible.
  • the device material for the hole injection / transport layer used in the hole injection / transport layer of the present invention has high transmittance, and the device characteristics are not easily deteriorated even by UV irradiation. It becomes possible.
  • the method of irradiating energy in a pattern may be a method of irradiating energy using a mask, or ultraviolet.
  • a method of irradiating energy by scanning a laser in a pattern may be used.
  • a first embodiment of the device of the present invention is a device having two or more electrodes opposed to each other on a substrate and a hole injecting and transporting layer disposed between the two electrodes,
  • the hole injecting and transporting layer contains the device material for hole injecting and transporting layer according to the present invention, and the fluorine-containing organic compound of the device material for hole injecting and transporting layer in the surface layer part of the hole injecting and transporting layer is It is characterized by being decomposed and removed.
  • a second embodiment of the device of the present invention is a device having two or more electrodes facing each other on a substrate and a hole injecting and transporting layer disposed between the two electrodes, There is a partition between the patterns of the first electrode layer on the substrate on which the first electrode layer is formed in a pattern, and it is continuous on the first electrode layer and the partition in the opening of the partition A hole injection transport layer, In the hole injecting and transporting layer on the first electrode layer in the opening of the partition part and on the side part of the partition part, at least part of the device material for hole injecting and transporting layer according to the present invention contains fluorine. The organic compound is decomposed and removed, and the hole injection / transport layer on the top of the insulating layer contains the device material for a hole injection / transport layer according to the present invention.
  • the hole injecting and transporting layer contains the device material for hole injecting and transporting layer according to the present invention from which at least a part of the fluorine-containing organic compound is decomposed and removed, and thus the manufacturing process is easy.
  • the device of the present invention can be obtained by the device manufacturing method according to the present invention.
  • the device of the present invention is suitably used as an organic EL element containing an organic layer including at least a light emitting layer.
  • hole injection changes in wettability due to energy irradiation has high process resistance, has excellent hole injection / transport properties, and can form a hole injection / transport layer by a solution coating method. It is possible to provide a transport layer device material and a hole injection transport layer ink using the device material. According to the method for manufacturing a device according to the present invention, a good wettability change pattern of the hole injection transport layer can be used while the manufacturing process is easy, and an excellent hole injection transport layer can be obtained. It is possible to provide a device that can achieve a long lifetime.
  • the device according to the present invention has an excellent hole injecting and transporting property and can achieve a long life while having a simple manufacturing process.
  • FIGS. 2A to 2C are process diagrams showing another example of the device manufacturing method of the present invention.
  • FIGS. 2A to 2C are process diagrams showing another example of the device manufacturing method of the present invention.
  • FIG. 3A to FIG. 3C are process diagrams showing another example of the device manufacturing method of the present invention.
  • 4A to 4C are process diagrams showing another example of the device manufacturing method of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of a part of a device substrate of the device according to the present invention.
  • 6 (A) to 6 (B) are schematic sectional views showing examples of the photocatalyst-containing layer substrate used in the present invention.
  • FIG. 7B are schematic cross-sectional views showing examples of part of a device substrate of the device according to the present invention.
  • FIG. 8 is a schematic sectional view showing an example of the device of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing another example of the device of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing an example of the organic EL element of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing an experiment of wettability change in the organic EL element of the present invention.
  • 12 (A) to 12 (B) are examples of an ITO substrate on which an insulating layer and a partition wall used in the present invention are formed.
  • FIG. 12 (A) is a partially enlarged schematic sectional view
  • FIG. 13 is a 1H NMR spectrum of fluorine-containing organic compound F-1 obtained in Synthesis Example 5.
  • FIG. 14 is a 1H NMR spectrum of fluorine-containing organic compound F-2 obtained in Synthesis Example 6.
  • FIG. 15 is a 1H NMR spectrum of fluorine-containing organic compound F-3 obtained in Synthesis Example 7.
  • FIG. 16 is a 1H NMR spectrum of fluorine-containing organic compound F-4 obtained in Synthesis Example 8.
  • the device material for hole injection / transport layer of the present invention has a fluorine-containing organic compound attached to the surface of transition metal-containing nanoparticles or transition metal-containing nanoclusters containing at least a transition metal oxide. It is characterized by.
  • the device material for hole injection transport layer of the present invention is a transition metal-containing nanoparticle or transition metal-containing nanocluster containing a transition metal oxide having a fluorine-containing organic compound attached to the surface, it is a photocatalyst accompanying energy irradiation. It is a material whose wettability changes from lyophobic to lyophilic by allowing the fluorine-containing organic compound adhering to the surface to be decomposed and removed by the action of, or by irradiation with vacuum ultraviolet light.
  • the part that has been subjected to the action of the photocatalyst associated with the energy irradiation or the part that has been irradiated with the vacuum ultraviolet light becomes a lyophilic region, and the action of the photocatalyst associated with the energy irradiation.
  • the portion that does not reach or the portion that is not irradiated with vacuum ultraviolet light is the liquid repellent region.
  • the device material for hole injecting and transporting layer of the present invention is a transition metal oxide, although the fluorine-containing organic compound attached to the surface is decomposed and removed by the action of a photocatalyst accompanying energy irradiation or irradiation with vacuum ultraviolet light.
  • Transition metal-containing nanoparticles or transition metal-containing nanoclusters themselves are resistant to ultraviolet light and relatively high-temperature heating, so transition metal-containing nanoparticles or transition metal-containing nanoclusters containing transition metal oxides have The excellent hole injecting and transporting property is advantageous in that it is not impaired during processes such as energy irradiation, photocatalytic action and heating.
  • the device material for a hole injection / transport layer of the present invention has a merit that it undergoes a treatment such as a photocatalytic treatment for decomposing fluorine to be oxidized to increase the ionization potential and improve the hole injection property.
  • the device material for a hole injection transport layer according to the present invention includes at least a fluorine-containing organic compound as a protective agent on the surface of a transition metal-containing nanoparticle or transition metal-containing nanocluster, unlike the case of using molybdenum oxide as an inorganic compound. Since the organic portion is contained, the adhesion at the interface with the adjacent organic layer is also improved.
  • a fluorine-containing organic compound in at least the surface layer part of the hole injecting and transporting layer using the device material for hole injecting and transporting layer of the present invention is decomposed into a lyophilic region, and another organic layer is laminated.
  • the hole injection / transport layer device material of the present invention can form a hole injection / transport layer that can realize a low voltage drive, high power efficiency, and long-life device.
  • the transition metal-containing nanoparticles or transition metal-containing nanoclusters containing a transition metal oxide used in the device material for a hole injection / transport layer of the present invention are different from the case of using an inorganic compound such as molybdenum oxide on the surface. Since it contains an organic part containing at least a fluorine-containing organic compound as a protective agent, it has dispersibility in the solvent. Therefore, since a thin film can be formed by a solution coating method, the substrate from the hole injecting and transporting layer to the organic layer to be laminated such as the light emitting layer can be sequentially formed only by the coating process, and the merit in the manufacturing process is great.
  • the hole injection layer is deposited by high-definition mask vapor deposition or the like as in the case of molybdenum oxide which is an inorganic compound
  • the hole transport layer or the light-emitting layer is formed by vapor deposition or solution coating.
  • the structure of the device material for hole injection transport layer of the present invention will be described in order.
  • the transition metal-containing nanoparticles contained in the hole injection / transport layer device material of the present invention contain at least a transition metal oxide.
  • the nanoparticle means a particle having a diameter of the order of nm (nanometer), that is, less than 1 ⁇ m.
  • the transition metal-containing nanoparticles containing at least a transition metal oxide may have a single structure or a composite structure, and may have a core / shell structure, an alloy, an island structure, or the like.
  • the transition metal-containing nanoparticles may contain transition metal atoms and compounds of various valences, such as transition metal carbides, sulfides, borides, selenides, halides, complexes, etc., depending on the processing conditions.
  • transition metal-containing nanoclusters including transition metal oxides included in the device material for hole injection transport layer of the present invention form a specific structural unit by gathering at least a plurality of transition metal atoms and oxygen atoms.
  • a nanocluster has a shape whose longest part is on the order of nm (nanometer), that is, less than 1 ⁇ m.
  • the transition metal-containing nanocluster of the present invention is preferably a macromolecule containing a chemically synthesized polyoxometalate (POM).
  • POM has a polyacid structure composed of an oxo acid.
  • This chemically synthesized POM-containing transition metal-containing nanocluster is a large molecule, so its size and weight are defined by molecular weight, and each cluster shape and size has isomers. However, it is basically the same feature.
  • a chemically synthesized transition metal-containing nanocluster containing POM has an anionic electrical property and the same characteristics of each cluster. There is a feature.
  • the molecule has a donut shape and a diameter of about 4 nm.
  • this molybdenum oxide nanocluster is a mixed valence polyoxometalate in which hexavalent (Mo VI ) and pentavalent molybdenum (Mo V ) coexist in each molecule, and it becomes an anion cluster.
  • Mo VI hexavalent
  • Mo V pentavalent molybdenum
  • transition metal oxides are always included in transition metal-containing nanoparticles and transition metal-containing nanoclusters.
  • transition metal oxides By always including transition metal oxides, the value of ionization potential is optimized, and changes due to oxidation from unstable oxidation number +0 metal are suppressed in advance, so that the drive voltage is reduced and the device lifetime is reduced. It becomes possible to improve.
  • transition metal-containing nanoparticles and transition metal-containing nanoclusters preferably contain coexisting transition metal oxides having different oxidation numbers. By including transition metal oxides with different oxidation numbers together, the hole transport and hole injection properties are appropriately controlled by the balance of the oxidation numbers, thereby reducing drive voltage and improving device lifetime. It becomes possible.
  • transition metal contained in the transition metal-containing nanoparticles and transition metal-containing nanoclusters used in the present invention, or the transition metal contained in the transition metal compound, exists between Group 3 to Group 11 in the periodic table.
  • Specific examples of the transition metal include molybdenum, tungsten, vanadium, rhenium, nickel, copper, titanium, platinum, and silver.
  • the transition metal in the transition metal oxide included in the transition metal-containing nanoparticle and the transition metal-containing nanocluster may include at least one metal selected from the group consisting of molybdenum, tungsten, and vanadium. Since the reactivity is high, it is preferable from the viewpoint of easily forming a charge transfer complex and reducing the driving voltage and improving the device life.
  • a single metal may be sufficient as the metal contained in the said transition metal containing nanoparticle and a transition metal containing nanocluster, and 2 or more types may be contained.
  • two or more kinds of metals are contained in the nanoparticles, two or more kinds of metal fine particles or metal oxide fine particles may be contained in combination, or two or more kinds of metals are contained as an alloy. Also good.
  • the non-transition metal may be contained.
  • hole injection has other functions such as complementing each other with hole transportability and hole injection property, providing photocatalytic properties, and controlling the refractive index and transmittance of thin films.
  • a transport layer can be formed.
  • the transition metal oxide contained in the transition metal-containing nanoparticles used in the present invention is preferably contained in the transition metal and the transition metal compound in an amount of 30 mol% or more, and more preferably 50 mol% or more. This is preferable from the viewpoint of reducing the device life and improving the device life.
  • a polyoxometalate represented by the following formula can be used.
  • X is at least one element selected from Group 13-18, cobalt, or at least one element selected from rare earths
  • M is at least one transition metal selected from Group 4-11. Element or aluminum, and at least one of X and M contains a transition metal element. O represents an oxygen atom.
  • M include Mo, W, Cr, V, Nb, Fe, Ta, and Al.
  • X include P, As, Si, B, and Co.
  • x is an integer of 0 or more
  • y is an integer of 1 or more
  • said X and M may be independent, respectively, and may be included individually by 2 types or more.
  • isopolyacid examples include [Mo 6 O 19 ] 2 ⁇ , [Mo 10 O 32 ] 4 ⁇ and the like.
  • the structure of the metal oxide cluster of the transition metal-containing nanocluster used in the present invention for example, Keggin type, Dawson type, Anderson type and the like can be used.
  • POM can coordinate 4 to 6 oxide ions to transition metal ions, and is composed of polyhedrons such as tetrahedrons, quadrangular pyramids, and octahedrons, which are stacked. From the combination of atoms and structures, a large number of molecular structures can be considered, and there are also structural isomers such as ⁇ , ⁇ , ⁇ , and ⁇ isomers.
  • a reduced mixed-valence polyoxometalate can also be used.
  • Any POM can easily have a mixed valence state by a reduction reaction.
  • [PMo VI 12 O 40 ] 3- can be reduced to [PMo VI 11 Mo V O 40 ] 3- or [PMo VI 10 Mo V 2 O 40 ] 4- and has a different valence in the molecule.
  • POM can be reduced by, for example, a donor guest molecule.
  • the reduced anion is characterized by being stably reduced for each electron, and is different from ordinary molybdenum oxides such as MoO 3 .
  • transition metal-containing nanocluster used in the present invention a huge mixed-valence POM combining the above structures can be used.
  • a cluster used in this example Na 15 [Mo VI 126 Mo V 28 O 462 H 14 (H 2 O) 70 ] 0.5 [Mo VI 124 Mo V 28 O 457 H 14 (H 2 O) 68 ] 0.5 400H 2 O is mentioned. Since these have a complicated molecular structure, as a simple notation method, a method of representing this structure as ⁇ Mo 154 ⁇ , typically represented by a transition metal contained in the molecule, is generally used.
  • transition metal-containing nanoclusters that can be applied to the present invention include ⁇ Mo 132 ⁇ having a spherical shape, ⁇ Mo 142 ⁇ , ⁇ Mo 154 ⁇ , and ⁇ Mo 176 ⁇ having a ring shape, and ⁇ Mo 248 ⁇ having a wheel shape.
  • Lemon-shaped ⁇ Mo 368 ⁇ is preferably used.
  • [PMo 6 O 19 ] 2 ⁇ , [PMo 12 O 40 ] 3 ⁇ and the like can be used.
  • transition metal-containing nanoclusters containing tungsten and vanadium examples include [KAs 4 W 40 (VO) 2 O 140 ] 23- , Mo 8 V 2 O 28 ⁇ 7H 2 O, [alpha-P 2 W 18 O 62 ] 6- , [alpha-P 2 W 17 V (V) O 62 ] 7- , [alpha-1,2,3-P 2 W 15 V (V) 3 O 62 ] 9- , [[alpha -PW 12 O 40] 3- W - ), [alpha-P W 11 V (V) O 40] 4-, [alpha-1,2-PW 10 V (V) 2 O 40] 5-, [alpha -1,2,3-PW 9 V (V) 3 O 40 ] 6- , [alpha-1,4,9-PW 9 V (V) 3 O 40 ] 6- , [V 10 O 28 ] 6- Etc.
  • V (V) represents pentavalent vanadium.
  • ⁇ W 72 Mo 60 ⁇ containing two or more transition metal elements in which ⁇ Mo 132 ⁇ is partially substituted with tungsten can be used.
  • ⁇ Mo 57 V 6 ⁇ , ⁇ Mo 57 Fe 6 ⁇ , ⁇ Mo 72 Cr 30 ⁇ , ⁇ W 72 Mo 60 ⁇ , ⁇ Ag 2 Mo 8 ⁇ , and the like can also be used.
  • Mo n O 3n-m due to oxygen vacancies at the time of vapor deposition or oxygen defects present on the particle surface caused by physical pulverization at the time of slurry formation, and there may be some Mo V.
  • Mo V introduced by MoO 3 is caused by oxygen defects, and therefore is non-uniform and unstable.
  • the transition metal-containing nanoclusters used in the present invention can contain counter cations as many clusters as metal oxide clusters containing chemically synthesized POM.
  • As the counter cation H + , Na + and K + can be preferably used.
  • Cationic organic substances or ionic liquids can also be used.
  • transition metal-containing nanoclusters transition metal atoms and transition metal compounds with various oxidation numbers, such as transition metal sulfides, borides, selenides, halides, ligands, non-transition metal atoms, etc., depending on the synthesis conditions May be included.
  • a fluorine-containing organic compound is attached to the surface of the transition metal-containing nanoparticle or transition metal-containing nanocluster containing at least the transition metal oxide.
  • “attachment” means that the fluorine-containing organic compound is transferred to the surface of the transition metal-containing nanoparticle or the transition metal-containing nanocluster to such an extent that it does not peel even when dispersed in an organic solvent. It is fixed. “Adhesion” includes adsorption and coordination, but is preferably a chemical bond such as an ionic bond or a covalent bond.
  • the aspect of “attachment” may be an aspect in which the entire surface of the transition metal-containing nanoparticle or transition metal-containing nanocluster is attached so that the fluorine-containing organic compound is coated, or fluorine is partially applied to the surface.
  • the aspect to which the containing organic compound has adhered may be sufficient.
  • the device material for a hole injecting and transporting layer of the present invention since an organic compound containing at least a fluorine-containing organic compound is attached to the surface of the transition metal-containing nanoparticle or transition metal-containing nanocluster, in particular, as in Patent Document 5 Unlike particles formed by simply pulverizing transition metal oxides, the dispersion stability of nanoparticles or nanoclusters is extremely high, and a highly uniform nm order thin film can be formed. Therefore, the thin film formed with the device material for a hole injecting and transporting layer according to the present invention is not easily short-circuited because of high stability and uniformity over time. Furthermore, it becomes excellent in adhesiveness with an adjacent electrode or an organic layer.
  • the type of the fluorine-containing organic compound adhering to the surface is appropriately selected and is not particularly limited.
  • the fluorine-containing organic compound include organic compounds in which a part or all of hydrogen contained in a linear, branched, or cyclic saturated or unsaturated hydrocarbon, which may contain a hetero atom other than fluorine, is substituted with fluorine. Can be mentioned. It may be an organic compound in which part or all of hydrogen contained in an organic compound that may contain a heteroatom conventionally used as a hole injecting and transporting material is substituted with fluorine. Or the compound which introduce
  • the fluorine-containing organic compound include a linear, branched, or cyclic alkyl group, a fluorinated alkyl group or a fluorinated aryl group in which part or all of the hydrogen of the aryl group is fluorinated, and combinations thereof. Is mentioned.
  • the number of carbon atoms in the fluorinated alkyl group is not particularly limited, but is preferably 2 to 10, and more preferably 4 to 6. Further, the number of carbon atoms of the fluorinated aryl group or the combination of the fluorinated alkyl group such as the fluorinated arylated alkyl group and the fluorinated aryl group is not particularly limited, but is preferably 6 to 12, more preferably 6 to 9.
  • the fluorine-containing organic compound preferably contains a fluorinated alkyl group from the viewpoint of good change in wettability due to energy irradiation and excellent patterning.
  • the fluorine-containing organic compound include —NH—, —N ⁇ , —S—, —O—, —NH (C ⁇ O) —, —O— (C ⁇ O) —, —O— (SO 2 )-, —O— (C ⁇ O) —O—, —S— (C ⁇ O) —O—, —SiR 2 — (C ⁇ O) —O—, —SiR 2 — It is preferable to include a hetero atom that does not form, since the fluorine organic compound is easily decomposed by energy irradiation, and the sensitivity is improved in the wettability change pattern forming step.
  • C n F 2n + 1 C m H 2m ⁇ [m is an integer of 0 to 20, n is an integer of 1 to 20, and m + n is 1 to 30.
  • the fluorinated alkyl group represented by the above formula maintains a high oil repellency, and when m is 1 or more, it binds to other elements such as an ether bond rather than directly bonding to C n F 2n + 1.
  • the direction through m H 2m is preferred from the viewpoint of increasing the stability of the compound.
  • n is preferably an integer of 2 to 10, more preferably an integer of 4 to 6.
  • m is preferably an integer of 0 to 10, more preferably an integer of 2 to 8.
  • the fluorination rate of the fluorinated alkyl group (ratio of fluorine atoms in the alkyl group) is preferably 50 to 100%, more preferably 80 to 100%, and particularly perfluoro having all the hydrogen atoms replaced with fluorine atoms.
  • An alkyl group is preferable from the viewpoint of expressing high oil repellency.
  • the fluorine-containing organic compound containing an aromatic hydrocarbon and / or a heterocyclic ring is preferable from the viewpoint that the boiling point of the fluorine-containing organic compound can be increased.
  • the restriction on the synthesis temperature of the device material for the hole injection transport layer to which the fluorine-containing organic compound of the present invention is attached can be widened, or that the high temperature process temperature can be set high when manufacturing the device. is there.
  • aromatic hydrocarbons and / or heterocycles often have charge transport properties, charge mobility in a hole injecting and transporting layer prepared from a fluorine-containing organic compound containing aromatic hydrocarbons and / or heterocycles.
  • each layer of an organic device such as an organic EL element usually contains an aromatic hydrocarbon and / or a heterocyclic charge transporting material, so the improvement of the adhesion between the adjacent organic layer and the hole injection transport layer is considered. Then, inclusion of an aromatic hydrocarbon and / or heterocyclic structure is preferable from the viewpoint of contributing to a long driving life.
  • fluorinated alkyl group examples include the following structures. CF 3 -, CF 3 CF 2 -, CHF 2 CF 2 -, CF 3 (CF 2) 2 -, CF 3 (CF 2) 3 -, CF 3 (CF 2) 4 -, CF 3 (CF 2) 5 -, CF 3 (CF 2) 6 -, CF 3 (CF 2) 7 -, CF 3 (CF 2) 8 -, CF 3 (CF 2) 9 -, CF 3 (CF 2) 11 -, CF 3 ( CF 2 ) 15 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CHF 2 CF 2 CH 2 CH 2 —, CF 3 (CF 2 ) 2 CH 2 CH 2 —, CF 3 (CF 2 ) 3 CH 2 CH 2 —, CF 3 (CF 2 ) 4 CH 2 CH 2 —, CF 3 (CF 2 ) 5 CH 2 CH 2 —, CF 3 (CF 2 ) 6 CH 2 —
  • fluorine-containing organic compounds containing aromatic hydrocarbons and / or heterocycles include pentafluorophenyl group, 2,3,5,6-tetrafluorophenyl group, 3,4,5-trifluorophenyl group, 2 , 4-difluorophenyl group, 3,4-difluorophenyl group, 3,5-difluorophenyl group, nonafluorobiphenyl group, ⁇ , ⁇ , ⁇ , 2,3,5,6-heptafluoro-p-tolyl group, Heptafluoronaphthyl group, (trifluoromethyl) phenyl group, 3,5-bis (trifluoromethyl) phenyl group, pentafluorophenylmethyl group, 2,3,5,6-tetrafluorophenylmethyl group, 3,4, 5-trifluorophenylmethyl group, 2,4-
  • the transition metal and / or the transition metal-containing nanoparticle or the transition metal-containing nanocluster on the surface of the transition metal-containing nanoparticle or the transition metal-containing nanocluster in terms of surface protection and dispersion stability of the transition metal-containing nanoparticle or the transition metal-containing nanocluster. It is preferable to attach using the connecting group which produces
  • the linking group is not particularly limited as long as it has an effect of linking with a transition metal and / or a transition metal compound.
  • the connection includes adsorption and coordination, but is preferably a chemical bond such as an ionic bond or a covalent bond.
  • the number of linking groups in the protective agent may be any number as long as it is one or more in the molecule. However, in consideration of solubility in a solution, dispersion stability, and oil repellency, it is preferable that there is one linking group in one molecule of the protective agent. When the number of linking groups is one in one molecule, the protective agent binds to the particle or forms a dimer by a bimolecular reaction and stops the reaction.
  • the dimer Since the dimer has poor adhesion to transition metal-containing nanoparticles or transition metal-containing nanoclusters, it can be easily removed by adding a washing step to the preparation process of transition metal-containing nanoparticles or transition metal-containing nanoclusters. Can do.
  • the nanoparticles when two or more linking groups exist in one molecule, the nanoparticles are connected to each other, and the particles may easily aggregate in the ink.
  • linking group examples include a hydrophilic group such as a carboxyl group, an amino group, a hydroxyl group, a thiol group, an aldehyde group, a sulfonic acid group, an amide group, a sulfonamide group, a phosphoric acid group, a phosphinic acid group, and a P ⁇ O group.
  • an ionic liquid such as an ammonium salt, an imidazolium salt, a pyridium salt, a sulfonium salt, a phosphonium salt, a morpholinium salt, or a piperidinium salt can be given.
  • the linking group is preferably at least one selected from functional groups represented by the following formulas (1a) to (1n).
  • Z 1 , Z 2 and Z 3 each independently represent a halogen atom or an alkoxy group.
  • Examples of the protective agent suitably used for the device material for a hole injection transport layer according to the present invention and containing a linking group at the terminal of the fluorine-containing organic compound include a protective agent represented by the following general formula (I). It is done.
  • Formula (I) YQ- (A′-FQ ′) n- (A-FQ) (In the general formula (I), Y represents the linking group.
  • Q represents a linear, branched or cyclic aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, aromatic heterocyclic group, or A combination of these or a direct bond
  • a and A ′ are each independently —NH—, —N ⁇ , —S—, —O—, —NH (C ⁇ O) —, —O— (C ⁇ O) —, —O— (SO 2 ) —, —O— (C ⁇ O) —O—, —S— (C ⁇ O) —O—, —SiR 2 — (C ⁇ O) —O—, —SiR 2 — or a direct bond
  • R represents hydrogen or a linear, branched or cyclic aliphatic hydrocarbon group
  • FQ and FQ ′ each independently represents the fluorine-containing organic compound.
  • N is 0 or an integer of 1 or more.
  • a and / or A ′ is —NH—, —N ⁇ , —S—, —O—, —NH (C ⁇ O) —, —O— (C ⁇ O) —, —O— (SO 2 ) —, —O— (C ⁇ O) —O—, —S— (C ⁇ O) —O—, —SiR 2 — (C ⁇ O) —O—, —SiR 2 — Since it is easy to cut
  • Q contains an aromatic hydrocarbon group or an aromatic heterocyclic group
  • it can contribute to increasing the charge mobility in the hole injecting and transporting layer.
  • a and / or A ′ is cleaved by a treatment that decomposes the fluorine-containing organic compound described later, the fluorine-containing organic compound FQ is decomposed and removed, but the aromatic hydrocarbon and / or the heterocyclic ring is removed.
  • the Q part contained remains on the surface of the transition metal-containing nanoparticle or transition metal-containing nanocluster. Therefore, when Q has a high charge transporting property, it can contribute to higher device efficiency.
  • FQ is a monovalent fluorine-containing organic compound group
  • FQ ′ is a divalent fluorine-containing organic compound group.
  • n is 1 or more, it is easily cleaved at the portion A ′ by energy irradiation, and the fluorine organic compound represented by FQ is easily decomposed.
  • n is 1 or more, for example, -O- (CH 2) p -O- (CH 2) 2 - (CF 2) q - , etc. CF 3 and the like.
  • n is preferably 5 or less, and more preferably 4 or less from the viewpoint of increasing the decomposition rate.
  • Examples of the protecting agent represented by the general formula (I) include, but are not limited to, the following structures.
  • N and n ′ are integers of 1 to 5, m and m ′ are 0 or an integer of 1 to 5, and l is an integer of 0 or 1 to 5.
  • Y is the formula (1a) to (1n). Any of the functional groups shown.)
  • N is an integer of 1 to 5
  • m is an integer of 0 or 1 to 5
  • l is an integer of 0 or 1 to 5.
  • Y is any of the functional groups represented by the formulas (1a) to (1n).
  • N is an integer of 1 to 5
  • l is 0 or an integer of 1 to 5.
  • Y is any of the functional groups represented by the above formulas (1a) to (1n).
  • the fluorine-containing organic compound adhering to the surface can be used even if it is a high molecular compound, it is preferable that molecular weight is 1000 or less. As the molecular weight increases, the ratio of the linking group to the organic component in one molecule of the fluorine-containing organic compound decreases, so the probability of binding to nanoparticles decreases, dispersibility deteriorates, and control of particle size uniformity is difficult. Or the particle size may increase. Further, when the molecular weight of the fluorine-containing organic compound attached to the surface is increased, the ratio of the remaining organic component is increased when the device is formed, and there is a risk of adversely affecting characteristics such as higher voltage.
  • the molecular weight of the fluorine-containing organic compound adhering to the surface means the molecular weight of the compound itself when it does not have a molecular weight distribution, and in terms of polystyrene measured by gel permeation chromatography (GPC) when it has a molecular weight distribution.
  • the value means the weight average molecular weight.
  • At least a fluorine-containing organic compound is attached to the surface of the transition metal-containing nanoparticle or transition metal-containing nanocluster, but the organic compound is not a fluorine-containing organic compound. It may be attached.
  • Such an organic compound that is not a fluorine-containing organic compound includes a protective agent present on the surface of the transition metal-containing nanoparticle or transition metal-containing nanocluster before replacing the protective agent containing the fluorine-containing organic compound.
  • the content ratio of the transition metal compound and the transition metal to the organic compound including the fluorine-containing organic compound attached to the surface thereof is appropriately selected.
  • an organic compound containing a fluorine-containing organic compound adhering to the surface is charged in an amount of 10 to 200 parts by weight, and further 10 to 20 parts by weight with respect to 100 parts by weight of the transition metal compound and the transition metal atom. It is preferable.
  • the content ratio of the transition metal atom and the fluorine-containing organic compound is preferably selected as appropriate because the surface area varies depending on the size of the particle or cluster.
  • the molar ratio of the transition metal atom to the fluorine-containing organic compound molecule is preferably selected in the range of 10: 1 to 1: 5, more preferably 5: 1 to 1: 2. These ratios can be determined by, for example, NMR or X-ray photoelectron spectroscopy.
  • the amount of the fluorine-containing organic compound adhering to the surface is the liquid repellency of the layer formed using the hole injection / transport layer device material.
  • the average particle diameter of the hole injection / transport layer device material used in the present invention is not particularly limited, and is, for example, in the range of 0.5 nm to 999 nm, but in the range of 0.5 nm to 50 nm, especially 0. It is preferably in the range of 5 nm to 20 nm.
  • the average particle size of the hole injection / transport layer device material used in the present invention is preferably 15 nm or less, and more preferably in the range of 1 nm to 10 nm. This is because, when the particle diameter is 1 nm or less, it exceeds the resolution of the dynamic light scattering method or the like, so it is difficult to prove the existence of the particles or to stably manufacture them.
  • the average particle diameter is a number average particle diameter measured by a dynamic light scattering method.
  • the average particle diameter is a scanning electron microscope (SEM) or From an image obtained using a transmission electron microscope (TEM), a region in which 20 or more transition metal-containing nanoparticles are confirmed to be present is selected, and all transition metal-containing nanoparticles in this region are selected. The particle diameter is measured and the average value is obtained.
  • the particle diameter is the longest diameter, for example, the diameter of the outer circle in the case of a donut shape, and the length of the major axis in the case of a lemon shape.
  • the method for producing the device material for the hole injection transport layer used in the present invention is a method capable of obtaining the above-mentioned transition metal-containing nanoparticles or transition metal-containing nanoclusters having a fluorine-containing organic compound attached thereto.
  • the method for producing transition metal-containing nanoparticles having a fluorine-containing organic compound attached to the surface include, for example, a liquid phase in which a transition metal complex and a protective agent having a linking group at the terminal of the fluorine-containing organic compound are reacted in an organic solvent. Law.
  • the reaction temperature in the organic solvent when producing the nanoparticles is preferably 150 to 300 ° C., more preferably 220 to 280 ° C.
  • a protective agent having a linking group is attached to the end of the fluorine-containing organic compound by cation exchange or the like.
  • an ionic liquid such as the aforementioned ammonium salt is preferably used. In this case, both an inorganic anion and an organic anion can be used as the counter anion.
  • the hole injecting and transporting layer forming ink according to the present invention includes the hole injecting and transporting layer device material according to the present invention and an organic solvent.
  • the hole injection transport layer forming ink according to the present invention may further contain other compounds as required.
  • a hole transport compound as described later for example, a hole transport compound as described later, and additives such as a binder resin and a coating property improver that do not trap holes.
  • the ink for forming a hole injecting and transporting layer may be prepared by adding, dissolving or dispersing.
  • the organic solvent used in the ink is not particularly limited as long as the transition metal-containing nanoparticles or transition metal-containing nanoclusters and other components contained as required are dissolved or dispersed well.
  • toluene, xylene examples include dodecylbenzene, cyclohexanone, cyclohexanol, tetralin, mesitylene, anisole, methylene chloride, tetrahydrofuran, dichloroethane, chloroform, ethyl benzoate, butyl benzoate, diphenyl ether, cyclohexylbenzene, 1-methylnaphthalene and the like.
  • a fluorine-type solvent is used suitably.
  • the above solvents can be used alone or as a co-solvent in which a plurality of solvents are mixed.
  • the ink for forming a hole injecting and transporting layer according to the present invention is prepared by mixing transition metal-containing nanoparticles or transition metal-containing nanoclusters containing at least a transition metal oxide having a fluorine-containing organic compound attached to the surface and an organic solvent. May be. Further, transition metal-containing nanoparticles or transition metal-containing nanoclusters having a fluorine-containing organic compound attached to the surface are mixed with an organic solvent, and the transition metal contained in the transition metal-containing nanoparticles or transition metal-containing nanoclusters and / or The transition metal compound may be oxidized to a transition metal oxide to obtain the hole injection transport layer forming ink according to the present invention. Examples of the oxidation method include heating in the presence of oxygen or light irradiation.
  • examples of the heating means include a method of heating on a hot plate and a method of heating in an oven.
  • the heating temperature is preferably 50 to 250 ° C.
  • examples of the light irradiation means include a method of exposing to ultraviolet rays. Since the interaction between transition metal-containing nanoparticles or transition metal-containing nanoclusters varies depending on the heating temperature and the amount of light irradiation, it is preferable to adjust appropriately.
  • the content of the hole injection / transport layer device material according to the present invention in the hole injection / transport layer forming ink according to the present invention can be appropriately adjusted according to the purpose and is not particularly limited.
  • the content is preferably about 0.1 to 10.0% by weight.
  • a first aspect of a device manufacturing method according to the present invention is a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between the two electrodes.
  • a manufacturing method comprising: A hole injection transport layer forming step for forming a hole injection transport layer containing the device material for hole injection transport layer according to the present invention on the substrate on which the first electrode layer is formed in a pattern, After disposing a photocatalyst-containing layer substrate on which a photocatalyst-containing layer containing at least a photocatalyst is formed on the substrate, with a gap that can act as a photocatalyst associated with energy irradiation with respect to the hole injecting and transporting layer, And a wettability change pattern forming step of forming a wettability change pattern having changed wettability on the surface of the hole injecting and transporting layer by irradiating energy in a pattern.
  • a second aspect of the device manufacturing method according to the present invention is a device manufacturing method having two or more electrodes facing each other on a substrate and a hole injecting and transporting layer disposed between the two electrodes. Because A hole injection transport layer forming step of forming a hole injection transport layer containing the device material for hole injection transport layer according to the present invention on a substrate on which an electrode layer is formed in a pattern, And a wettability changing pattern forming step of forming a wettability changing pattern having changed wettability on the surface of the hole injecting and transporting layer by irradiating the pattern with vacuum ultraviolet rays.
  • the hole injecting and transporting layer contains a material to which a liquid repellent fluorine-containing organic compound is attached
  • the fluorine-containing organic compound is decomposed by the action of a photocatalyst or irradiation with vacuum ultraviolet rays.
  • a photocatalyst or irradiation with vacuum ultraviolet rays By removing fluorine, a large difference in wettability can be produced between the irradiated portion and the non-irradiated portion.
  • a wettability change pattern is formed, and the wettability difference of this wettability change pattern is determined.
  • a patterned device layer can be easily laminated on the hole injecting and transporting layer by a coating method.
  • transition metal-containing nanoparticles or transition metal-containing nanoclusters comprising a transition metal oxide contained in the hole injection / transport layer device material according to the present invention contained in a hole injection / transport layer. Since it has resistance to ultraviolet light used in the wettability changing pattern forming step, it has an advantage that excellent hole injecting and transporting properties are not deteriorated and not impaired even after the wettability changing pattern forming step. Furthermore, through the wettability change pattern forming process such as photocatalyst treatment, the hole injection / transport layer device material according to the present invention has a high ionization potential and the hole injection property is improved.
  • the device material for a hole injection transport layer according to the present invention has high heat resistance and light resistance and is not easily deteriorated, and the hole injection property is improved through a wettability change pattern forming step.
  • the manufactured device also has an increased lifetime.
  • the device material for a hole injecting and transporting layer according to the present invention is resistant to heating at a relatively high temperature (for example, 200 ° C.), the wettability change pattern is not impaired during the heating process.
  • the step of laminating a number of layers in a pattern can be performed.
  • the device according to the present invention is a device having two or more electrodes facing each other on a substrate and a hole injecting and transporting layer disposed between the two electrodes.
  • the device according to the present invention includes an organic EL device, an organic transistor, a dye-sensitized solar cell, an organic thin film solar cell, an organic device including an organic semiconductor, a quantum dot light emitting device having a hole injection transport layer, and an oxide. System compound solar cells and the like are also included.
  • FIG. 1A to 1C are process diagrams showing an example of a device manufacturing method of the present invention.
  • a first electrode layer 3 is formed in a pattern on a substrate 2, and the hole injection transport layer device material according to the present invention is formed on the first electrode layer 3.
  • the hole injection transport layer 4 to be contained is formed (hole injection transport layer forming step).
  • FIG. 1 (B) the substrate 22, the light shielding portion 23 formed in a pattern on the substrate 22, and the photocatalyst is formed on the substrate 22 so as to cover the light shielding portion 23.
  • a photocatalyst containing layer substrate 21 having a photocatalyst containing layer 24 to be prepared is prepared.
  • the photocatalyst-containing layer substrate 21 is arranged with a gap that can act as a photocatalyst accompanying energy irradiation with respect to the hole injection / transport layer 4, and then the hole injection / transport layer through the photocatalyst-containing layer substrate 21. 4 is irradiated with energy rays 27 in a pattern. As shown in FIG.
  • the surface layer of the hole injecting and transporting layer 4 is exposed in the exposed portion of the hole injecting and transporting layer 4 due to the action of the photocatalyst contained in the photocatalyst containing layer 24 by irradiation with the energy beam 27.
  • the hole-injecting / transporting layer 4 is decomposed and removed from the fluorine-containing organic compound present on the surface of the hole-injecting / transporting layer device material. A lyophilic region 11 is formed.
  • the fluorine-containing organic compound present on the surface of the hole injecting and transporting layer device material in the surface layer portion of the hole injecting and transporting layer 24 remains as it is, and the liquid repellent region 12 and (Wetting change pattern forming step) In this way, the device substrate 1 is obtained. Thereafter, on the lyophilic region 11 on the device substrate 1, at least a pattern layer necessary for the device is laminated, and the second electrode layer is laminated, whereby the device can be manufactured.
  • FIGS. 2A to 2C are process diagrams showing another example of the device manufacturing method of the present invention.
  • the first electrode layer 3 is formed in a pattern on the substrate 2, and a partition (partition 6a) is formed in the opening of the pattern.
  • the hole injecting and transporting layer 4 containing the device material for hole injecting and transporting layer according to the present invention is formed on the part (partition wall 6a) (hole injecting and transporting layer forming step).
  • substrate 2 is a translucent board
  • a photocatalyst containing layer substrate 21 having a base 22 and a photocatalyst containing layer 24 containing a photocatalyst formed on the base 22 is prepared.
  • the energy beam 27 is transmitted from the substrate 2 side which is a translucent substrate. Irradiate.
  • the partition part (partition wall 6a) since the partition part (partition wall 6a) reflects or absorbs the energy rays, the energy beam 27 is irradiated to the part where the partition part (partition wall 6a) is not formed, and the partition part (partition wall 6a) is formed.
  • the energy rays 27 are not irradiated in the places where 2C, at least the surface layer of the hole injection / transport layer 4 is exposed in the exposed portion of the hole injection / transport layer 4 due to the action of the photocatalyst contained in the photocatalyst-containing layer 24.
  • the hole-injecting / transporting layer 4 is decomposed and removed from the fluorine-containing organic compound present on the surface of the hole-injecting / transporting layer device material.
  • a lyophilic region 11 is formed.
  • the fluorine-containing organic compound present on the surface of the hole injecting and transporting layer device material in the surface layer portion of the hole injecting and transporting layer 24 remains as it is, and the liquid repellent region 12 and (Wetting change pattern forming step) In this way, the device substrate 1 is obtained. Thereafter, a pattern-like device layer necessary for the device can be laminated on the lyophilic region 11 on the device substrate 1 by a coating method, and then a second electrode layer is laminated to manufacture the device. Can do.
  • the partition that reflects or absorbs the irradiated energy rays functions as a mask. Therefore, a light shielding portion in the photocatalyst-containing substrate or a separate photomask is used. Even if it does not bother to prepare, it is possible to irradiate the hole injecting and transporting layer with energy in a pattern, and the merit in the manufacturing process is great.
  • the device material for a hole injection / transport layer used in the hole injection / transport layer of the present invention has a higher transmittance in the ultraviolet wavelength region than a conventional organic compound-based hole injection / transport material. Energy irradiation from the back surface of the hole injection transport layer is also possible.
  • FIG. 3A to FIG. 3C are process diagrams showing another example of the device manufacturing method of the present invention.
  • the first electrode layer 3 is formed in a pattern on the substrate 2, and a partition (partition 6a) is formed in the opening of the pattern.
  • the first electrode layer 3 and the partition The hole injection / transport layer 4 containing the device material for hole injection / transport layer according to the present invention is formed on the (partition wall 6a) (hole injection / transport layer forming step).
  • FIG. 3B a photocatalyst containing layer substrate 21 having a base 22 and a photocatalyst containing layer 24 containing a photocatalyst formed on the base 22 is prepared.
  • the photocatalyst-containing layer substrate 21 is arranged with a gap that can act as a photocatalyst accompanying energy irradiation with respect to the hole injecting and transporting layer 4, and then the hole injecting and transporting layer through the photocatalyst containing layer substrate 21. 4 is irradiated with an ultraviolet laser beam 28 scanned in a pattern. As shown in FIG. 3C, by irradiation of the ultraviolet laser light 28, at least the hole injection transport layer 4 is exposed in the exposed portion of the hole injection transport layer 4 due to the action of the photocatalyst contained in the photocatalyst containing layer 24.
  • the surface of the exposed portion of the hole injection / transport layer 4 is formed with the fluorine decomposition portion 5 of the hole injection / transport layer, in which the fluorine-containing organic compound present on the surface of the hole injection / transport layer device material of the surface layer is decomposed and removed.
  • the lyophilic region 11 is formed.
  • the fluorine-containing organic compound present on the surface of the hole injecting and transporting layer device material in the surface layer portion of the hole injecting and transporting layer 24 remains as it is, and the liquid repellent region 12 and (Wetting change pattern forming step) In this way, the device substrate 1 is obtained. Thereafter, a pattern-like device layer necessary for the device can be laminated on the lyophilic region 11 on the device substrate 1 by a coating method, and then a second electrode layer is laminated to manufacture the device. Can do.
  • FIG. 4A to 4C are process diagrams showing another example of the device manufacturing method of the present invention.
  • the first electrode layer 3 is formed in a pattern on the substrate 2, and a partition (partition 6a) is formed in the opening of the pattern.
  • the hole injecting and transporting layer 4 containing the device material for hole injecting and transporting layer according to the present invention is formed on the part (partition wall 6a) (hole injecting and transporting layer forming step).
  • FIG. 4B a metal mask 30 is disposed on the surface of the hole injecting and transporting layer 4, and the hole injecting and transporting layer 4 is irradiated with vacuum ultraviolet light 29 through the metal mask 30. To do.
  • FIG. 4 (A) the first electrode layer 3 is formed in a pattern on the substrate 2, and a partition (partition 6a) is formed in the opening of the pattern.
  • the hole injecting and transporting layer 4 containing the device material for hole injecting and transporting layer according to the present invention is formed on the part (partition wall 6a) (
  • the surface of the hole injecting and transporting layer device material of at least the surface layer of the hole injecting and transporting layer 4 is exposed by the irradiation of the vacuum ultraviolet light 29 as shown in FIG.
  • the fluorine decomposition part 5 of the hole injection transport layer is formed by decomposing and removing the existing fluorine-containing organic compound, and the lyophilic region 11 is formed on the surface of the exposed part of the hole injection transport layer 4.
  • the fluorine-containing organic compound present on the surface of the hole injecting and transporting layer device material in the surface layer portion of the hole injecting and transporting layer 24 remains as it is, and the liquid repellent region 12 and (Wetting change pattern forming step) In this way, the device substrate 1 is obtained. Thereafter, a pattern-like device layer necessary for the device can be laminated on the lyophilic region 11 on the device substrate 1 by a coating method, and then a second electrode layer is laminated to manufacture the device. Can do.
  • the lyophilic region 11 is formed in at least the surface layer portion of the hole injecting and transporting layer 4 in the portion where the action of the photocatalyst due to the energy irradiation or the portion irradiated with the vacuum ultraviolet light is irradiated.
  • the fluorine-containing organic compound present on the surface of the hole injection / transport layer device material in at least the surface layer of the hole injection / transport layer 4 is decomposed and removed by the action of a photocatalyst associated with energy irradiation or vacuum ultraviolet light irradiation.
  • the “lyophilic region” means a region where the liquid contact angle is smaller than that of the liquid repellent region, and has good wettability with respect to the layer forming ink formed adjacent to the hole injection transport layer. This is an important area.
  • the “liquid repellency region” refers to a region having a liquid contact angle larger than that of the lyophilic region, and is a region having poor wettability with respect to the layer forming ink or the like.
  • the contact angle of the liquid in the lyophobic region is preferably 10 ° or more higher than the contact angle of the liquid in the lyophilic region when a liquid having a surface tension of 28.5 mN / m is used, and more preferably 20 ° or more. It is preferably high, and particularly preferably 40 ° or higher.
  • the contact angle of a liquid having a surface tension of 28.5 mN / m is preferably 25 ° or more, more preferably 45 ° or more, and further preferably 55 ° or more. Since the liquid repellency region is a portion where liquid repellency is required, if the contact angle of the liquid is too small, the liquid repellency is not sufficient and the layer forming ink or the like adheres to the liquid repellency region. Because there is a possibility.
  • the contact angle of a liquid having a surface tension of 28.5 mN / m is preferably 20 ° or less, more preferably 10 ° or less, and further preferably 5 ° or less. This is because if the contact angle of the liquid is too high, the layer forming ink or the like may be difficult to spread and the layer formed adjacently may be lost.
  • the contact angle of the liquid is measured using a contact angle measuring device (CA-Z type manufactured by Kyowa Interface Science Co., Ltd.) (dropping droplets from a microsyringe). 5 seconds later) and can be obtained from the result or in the form of a graph.
  • a wetting index standard solution manufactured by Junsei Co., Ltd. is used as the liquid having various surface tensions.
  • the hole injection / transport layer forming step in the present invention contains the device material for hole injection / transport layer according to the present invention on a substrate on which the first electrode layer is formed in a pattern. This is a step of forming a hole injecting and transporting layer.
  • the device material for the hole injecting and transporting layer according to the present invention can be formed on the entire surface of the substrate on which the first electrode layer is formed in a pattern. If it is, it will not specifically limit.
  • a wet process for preparing a hole injection transport layer forming ink containing the device material for a hole injection transport layer according to the present invention and an organic solvent and applying the ink to form a layer by applying the ink It is preferable from the point of process advantage.
  • a transfer method for transferring a layer formed by applying the ink can also be used. If the first electrode layer is formed in a pattern on the substrate, for example, a hole injection layer is formed on the first electrode layer, and then the hole injection transport layer of the present invention is formed. May be.
  • the hole injection / transport layer forming ink containing the hole injection / transport layer device material according to the present invention and an organic solvent is the same as described in the section of “II. Hole injection / transport layer forming ink”. It can be prepared similarly. By appropriately adding the other components as described above to the ink for forming the hole injecting and transporting layer, a hole injecting and transporting layer further containing the other components can be formed. Moreover, you may have the process of heating the said ink for hole injection transport layer formation in oxygen presence before apply
  • any method can be used as long as the above-described material can be uniformly formed on the entire surface of the substrate, for example, a die coating method, a spin coating method, a dip coating method, a roll coating method.
  • a drying treatment may be performed.
  • a drying method a general drying method can be used, and for example, a heating method can be mentioned.
  • a heating method for example, a method of passing or standing in a device that heats a whole specific space such as an oven, a method of applying hot air, a method of heating directly by far infrared rays, or heating with a hot plate Or the like can be used.
  • the content of the transition metal oxide in the hole injection / transport layer device material according to the present invention contained in the layer may increase, and the hole injection / transport property may be improved.
  • the thickness of the hole injecting and transporting layer can be appropriately determined depending on the purpose and the adjacent layer, but is usually 0.1 to 1000 nm, preferably 1 to 500 nm.
  • the work function of the hole injection transport layer is preferably 5.0 to 6.0 eV, more preferably 5.0 to 5.8 eV, from the viewpoint of hole injection efficiency.
  • the substrate may be translucent to transmit light or may not be translucent.
  • the substrate when light is extracted from the substrate side or in the process of manufacturing the device of the present invention, energy is irradiated from the substrate side when forming a pattern composed of a lyophilic region and a liquid repellent region.
  • the substrate is preferably translucent.
  • the light transmissive substrate include quartz and glass.
  • metals such as aluminum and its alloys, plastics, woven fabrics, nonwoven fabrics and the like can be used.
  • the first electrode layer used in the present invention is formed on the substrate in a pattern.
  • the material for forming the first electrode layer is not particularly limited as long as it is a conductive material. Moreover, as a material which forms a 1st electrode layer, it may have transparency and does not need to have it.
  • the first electrode layer when light is extracted from the substrate side or in the process of manufacturing the device of the present invention, energy is irradiated from the substrate side when forming a pattern composed of a lyophilic region and a liquid repellent region. In that case, the first electrode layer preferably has transparency.
  • the material having conductivity and transparency include In—Zn—O (IZO), In—Sn—O (ITO), ZnO—Al, Zn—Sn—O, and the like.
  • IZO In—Zn—O
  • ITO In—Sn—O
  • ZnO—Al Zn—Sn—O
  • the first electrode layer when light is extracted from the opposite side of the substrate, the first electrode layer is not required to be transparent.
  • a metal can be used as the conductive material, and specifically, Au, Ta, W, Pt, Ni, Pd, Cr, Al alloy, Ni alloy, Cr alloy, etc. Can do.
  • the first electrode layer is formed in a pattern.
  • a method for forming the first electrode layer a general electrode forming method can be used, and examples thereof include a sputtering method, an ion plating method, and a vacuum deposition method.
  • An example of the patterning method for the first electrode layer is a photolithography method.
  • the wettability change pattern forming step in the present invention is a step of forming a wettability change pattern having changed wettability on the surface of the hole injecting and transporting layer.
  • the method of irradiating energy in a pattern to form a wettability change pattern on the surface of the hole injection / transport layer is not particularly limited as long as the material contained in the hole injection / transport layer can be decomposed into a pattern.
  • a method that can generate active oxygen species such as oxygen radicals by energy irradiation is usually used. This is because the fluorine-containing organic compound adhering to the surface of the material contained in the hole injecting and transporting layer can be decomposed by the strong oxidizing / reducing power of the active oxygen species.
  • a photocatalyst-containing layer substrate having a photocatalyst-containing layer containing a photocatalyst is used to form a hole injection transport layer by the action of the photocatalyst accompanying energy irradiation in a pattern.
  • a step of forming a pattern comprising a lyophilic region from which fluorine is decomposed and removed, and a liquid repellent region from which fluorine is not decomposed and removed by decomposing and removing fluorine of the contained material; and (2) vacuum By irradiating ultraviolet light in a pattern, the fluorine contained in the hole injecting and transporting layer is decomposed and removed, so that the lyophilic region where fluorine is decomposed and removed, and the repellent where fluorine is not decomposed and removed.
  • region is mentioned.
  • a method of irradiating an electron beam or plasma through a mask having a patterned opening, a method of blowing oxygen radicals in a vacuum through a mask, or the like can be used.
  • the lyophilic region is formed on the surface of the hole injection / transport layer device material contained in the hole injection / transport layer in the portion where the photocatalyst action accompanying energy irradiation is applied or the portion irradiated with vacuum ultraviolet light.
  • This is a fluorine decomposition part of the hole injecting and transporting layer in which the attached fluorine-containing organic compound is decomposed and fluorine is removed.
  • the lyophilic region does not contain the fluorine-containing organic compound attached to the surface of the device material for the hole injection transport layer, or is attached to the surface of the material originally contained in the hole injection transport layer. Compared with the amount of the fluorine-containing organic compound, the lyophilic region contains a small amount of the fluorine-containing organic compound.
  • the lyophilic region is the one in which the fluorine-containing organic compound attached to the surface of the device material for hole injection transport layer contained in the hole injection transport layer is decomposed and fluorine is removed,
  • the fluorine-containing organic compound attached to the surface of the device material for hole injection transport layer contained in the hole injection transport layer is decomposed and fluorine is removed,
  • the formation position of the lyophilic region and the liquid repellent region is not particularly limited as long as the functional layer of the device such as the light emitting layer can be patterned into a desired pattern.
  • the lyophilic region is disposed on the pattern of the first electrode layer, and the lyophobic region is the first electrode as shown in FIG. It is preferable to arrange on the opening of the pattern of the layer.
  • the partition part (partition 6a) when the partition part (partition 6a) is formed on the board
  • the ink of the adjacent layer does not adhere to the liquid-repellent region disposed on the top of the partition portion, so that no layer is formed.
  • the layer adjacent to the hole injecting and transporting layer can be patterned with high accuracy.
  • the partition wall using a liquid repellent material and the partition wall subjected to lyophobic treatment as in the prior art not only the top part of the partition wall but also the side part has liquid repellency. May be physically peeled off, or a thin portion such as a light emitting layer or a portion where a light emitting layer or the like is not formed may occur.
  • the lyophilic region can be disposed on the side portion of the partition portion, the light emitting layer is physically separated from the side portion of the partition portion, or the thickness of the light emitting layer or the like is thin. Generation
  • production of the location in which a location, a light emitting layer, etc. are not formed can be suppressed.
  • the liquid repellent region may be formed on the top of the partition, and as illustrated in FIG. 5, only the top P1 of the partition (partition 6a) is repelled.
  • the liquid region 12 may be disposed, or although not illustrated, the liquid repellent region 12 may be disposed on a part of the top portion P1 and the side portion P2 of the partition portion (partition wall 6a).
  • the liquid repellent region may be formed on the entire top of the partition, or may be formed on a part of the top of the partition.
  • the liquid repellency is lowered to a position lower than the height assumed when the surface of the layered ink layered on the hole injecting and transporting layer becomes flat.
  • the repellent region 12 may be formed, or the liquid repellent region 12 may be formed up to a position higher than the height.
  • the pattern shape of the lyophilic region and the liquid repellent region is not particularly limited as long as a layer laminated in a desired pattern on the hole injecting and transporting layer can be patterned.
  • the pattern shape of the lyophilic region and the liquid repellent region is appropriately selected according to the pattern shape of the first electrode layer.
  • the lyophilic region is also formed in a stripe shape corresponding to the stripe pattern of the first electrode layer.
  • the lyophilic region may be formed in a stripe shape, or may be formed in a lattice shape or a mosaic shape.
  • the methods (1) and (2) will be described for the wettability change pattern forming step.
  • a method utilizing the action of a photocatalyst accompanying energy irradiation uses a photocatalyst-containing layer substrate in which a photocatalyst-containing layer containing at least a photocatalyst is formed on a substrate, and the photocatalyst-containing layer substrate is used. This is a method of irradiating the hole injection / transport layer with energy in a pattern after disposing the photocatalyst accompanying the irradiation of energy with a gap that can be achieved.
  • the mechanism by which the fluorine-containing organic compound attached to the surface of the device material for the hole injection / transport layer is decomposed by the action of the photocatalyst accompanying energy irradiation is not necessarily clear.
  • the photocatalyst contained in the photocatalyst-containing layer causes an oxidation-reduction reaction by energy irradiation, and the generated active oxygen species such as superoxide radical (• O 2 ⁇ ) and hydroxy radical (• OH)
  • the fluorine-containing organic compound becomes a decomposition product, and this decomposition product is volatilized and removed, so that the surface of the device material for the hole injection transport layer contained in the hole injection transport layer is removed.
  • the attached fluorine-containing organic compound can be decomposed to form a region from which fluorine has been removed.
  • a method for causing the photocatalyst to act on the hole injecting and transporting layer using the photocatalyst-containing layer substrate and the photocatalyst-containing layer substrate will be described.
  • the photocatalyst containing layer substrate used in the present invention has a photocatalyst containing layer containing at least a photocatalyst formed on a substrate.
  • the photocatalyst containing layer 24 may be formed on the entire surface of the substrate 22, and as illustrated in FIG.
  • the photocatalyst containing layer 24 may be formed on the pattern 22.
  • the photocatalyst-containing layer is formed in a pattern
  • the photocatalyst-containing layer is arranged with a predetermined gap with respect to the hole injecting and transporting layer, and when irradiating energy, a pattern is used using a photomask or the like. Irradiation is unnecessary, and by irradiating the entire surface, a liquid repellent region in which the material contained in the hole injecting and transporting layer is decomposed can be formed in a pattern.
  • the energy irradiation direction may be any direction as long as the energy is irradiated to the portion where the photocatalyst containing layer and the hole injection transport layer face.
  • the energy to be irradiated is not limited to parallel light such as parallel light.
  • the light-shielding portion may be formed in a pattern on the photocatalyst-containing layer substrate.
  • a photocatalyst-containing layer substrate having a patterned light-shielding portion it is not necessary to use a photomask or perform drawing irradiation with a laser beam when irradiating energy. Therefore, in this case, since alignment between the photocatalyst-containing layer substrate and the photomask is unnecessary, it can be a simple process, and an expensive apparatus necessary for drawing irradiation is also unnecessary. This is advantageous in terms of cost.
  • the light shielding portion 23 may be formed in a pattern on the substrate 22, and the photocatalyst containing layer 24 may be formed on the light shielding portion 23.
  • a photocatalyst containing layer 24 may be formed on the substrate 22, and the light shielding portion 23 may be formed in a pattern on the photocatalyst containing layer 24.
  • the light-shielding portion may be formed in a pattern on the surface on which the photocatalyst-containing layer is not formed.
  • the photocatalyst-containing layer and the hole injecting and transporting layer are not spaced as compared with the case of using a photomask. Since the light-shielding portion is disposed in the vicinity of the portion disposed, the influence of energy scattering in the substrate or the like can be reduced. For this reason, it becomes possible to perform pattern irradiation of energy very accurately.
  • the photomask can be attached to the surface of the light shielding part to be attachable and detachable. It is suitable for the case where is changed in a small lot.
  • the photocatalyst-containing layer substrate can be the same as the photocatalyst-containing layer side substrate described in JP-A No. 2000-249821.
  • the photocatalyst-containing layer substrate is arranged with a gap where the photocatalyst action accompanying energy irradiation can reach the hole injecting and transporting layer.
  • the gap includes a state where the photocatalyst containing layer and the hole injection transport layer are in contact with each other.
  • the distance between the photocatalyst-containing layer and the hole injecting and transporting layer is preferably 200 ⁇ m or less. This is because by disposing the photocatalyst-containing layer and the hole injecting and transporting layer at a predetermined interval, oxygen, water, and active oxygen species generated by the photocatalytic action are easily desorbed.
  • the distance is more preferably in the range of 0.2 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m, considering that the pattern accuracy is very good, the sensitivity of the photocatalyst is high, and the efficiency of decomposition and removal is good. Within the range of ⁇ 10 ⁇ m.
  • the gap is preferably in the range of 50 ⁇ m to 150 ⁇ m, and more preferably in the range of 80 ⁇ m to 120 ⁇ m.
  • the gap By setting the gap to be in the above range, it is possible to suppress a decrease in pattern accuracy such as blurring or shifting of the pattern, and it is possible to suppress degradation of the efficiency of decomposition and removal due to deterioration of the sensitivity of the photocatalyst. Because it can.
  • the setting of the gap in the positioning device between the photocatalyst-containing layer substrate and the hole injecting and transporting layer in the energy irradiation device is in the range of 10 ⁇ m to 200 ⁇ m. In particular, it is preferable to set within the range of 25 ⁇ m to 75 ⁇ m.
  • the wavelength of light used for energy irradiation is usually set in a range of 450 nm or less, preferably in a range of 380 nm or less. This is because, as described above, the preferred photocatalyst used in the photocatalyst-containing layer is titanium dioxide, and light having the above wavelength is preferred as energy for activating the photocatalytic action by the titanium dioxide.
  • Examples of light sources that can be used for energy irradiation include mercury lamps, metal halide lamps, xenon lamps, excimer lamps, and various other light sources.
  • a method of irradiating energy in a pattern shape in addition to a method of irradiating a pattern through a photomask using these light sources, a method of irradiating a pattern in a pattern shape using a laser such as an excimer or YAG is used. You can also.
  • the energy irradiation amount at the time of energy irradiation is an irradiation amount necessary for changing the wettability of the surface of the charge injecting and transporting layer due to the action of the photocatalyst in the photocatalyst containing layer.
  • the substrate and the mask are preferably heated within a range of 30 ° C. to 80 ° C.
  • the temperature difference between the substrate and the mask is preferably as small as possible from the viewpoint of exposure accuracy, but is preferably within 1 ° C.
  • the energy irradiation direction is determined by whether or not a light shielding portion is formed on the photocatalyst-containing layer substrate, or by the light extraction direction of the device. For example, when the light-shielding part is formed on the photocatalyst-containing layer substrate and the base of the photocatalyst-containing layer substrate is transparent, energy irradiation is performed from the photocatalyst-containing layer substrate side. Also, for example, when the photocatalyst-containing layer is formed in a pattern, the energy irradiation direction, as described above, if energy is irradiated to the part facing the photocatalyst-containing layer and the hole injection transport layer, It can be in any direction. Further, for example, when a photomask is used, energy is irradiated from the side where the photomask is disposed. In this case, the side on which the photomask is arranged needs to be transparent.
  • the photocatalyst containing layer 24 is formed on the entire surface of the substrate 22, and the pattern may be irradiated by drawing with a laser.
  • the photocatalyst containing layer 24 is formed in a pattern on the substrate 22 as illustrated in FIG. 6A, energy is irradiated in a pattern by using a photocatalyst containing layer substrate as a mask.
  • the light-shielding part 23 is formed in a pattern as illustrated in FIG. 1B, energy is irradiated in a pattern by using a photocatalyst-containing layer substrate as a mask.
  • the characteristics change using the photocatalyst-containing layer side substrate described in JP-A-2000-249821 The method can be the same as the method of exerting the action of the photocatalyst on the layer.
  • the method of irradiating vacuum ultraviolet light in a pattern includes a method of using a vacuum ultraviolet light mask as a mask and irradiating vacuum ultraviolet light as energy.
  • the material contained in the hole injection transport layer is not necessarily clear.
  • the hole injection / transport layer is irradiated with vacuum ultraviolet light
  • the molecular bond of the fluorine-containing organic compound contained in the hole injection / transport layer is broken by the action of the vacuum ultraviolet light, or in the presence of oxygen, oxygen Ozone and oxygen atom radicals generated by excitation of fluorine act on the fluorine-containing organic compound, so that the fluorine-containing organic compound becomes a decomposition product, and this decomposition product is volatilized and removed. It is thought that a decomposition part can be formed.
  • the wavelength of the vacuum ultraviolet light is not particularly limited as long as it is within a range in which oxygen radicals can be generated by acting with oxygen, but is usually preferably within a range of 100 nm to 250 nm, and more preferably within a range of 150 nm to 200 nm. It is preferable to be within. This is because if the wavelength is longer than the above range, the generation efficiency of oxygen radicals is lowered, and the decomposition and removal efficiency of the material contained in the hole injecting and transporting layer may be lowered. In addition, if the wavelength is shorter than the above range, stable irradiation with vacuum ultraviolet light may be difficult.
  • Examples of the light source used for irradiation with vacuum ultraviolet light in the above wavelength range include an excimer lamp, a low-pressure mercury lamp, and various other light sources. Further, the irradiation amount of the vacuum ultraviolet light is not particularly limited as long as the lyophilic layer forming layer can be removed. What is necessary is just to adjust suitably with the wavelength etc. of a vacuum ultraviolet light.
  • the vacuum ultraviolet light mask used in the irradiation of vacuum ultraviolet light may be any mask that can transmit vacuum ultraviolet light in a pattern, for example, a metal mask having a patterned opening, a vacuum A mask having a transparent base material that can transmit ultraviolet light and a light shielding part that is formed in a pattern on the transparent base material and that can shield vacuum ultraviolet light can be given.
  • a material for the metal mask any material can be used as long as it can block the vacuum ultraviolet light.
  • the transparent substrate may be any material that can transmit vacuum ultraviolet light, and for example, a quartz substrate or the like can be used.
  • Examples of the light shielding material constituting the light shielding portion include metals such as chromium and chromium oxide.
  • vacuum ultraviolet light is dispersed light with no directivity, when irradiating vacuum ultraviolet light through a vacuum ultraviolet light mask, this vacuum ultraviolet light mask is brought as close as possible to the hole injecting and transporting layer. It is preferable to prevent the ultraviolet light from being diffracted between the hole injecting and transporting layer and the vacuum ultraviolet light mask.
  • the vacuum ultraviolet light mask is brought as close as possible to the hole injecting and transporting layer, and the vacuum ultraviolet light mask is in contact with the hole injecting and transporting layer.
  • the vacuum ultraviolet light mask is brought as close as possible to the hole injection transport layer, and the vacuum ultraviolet light mask is in contact with the hole injection transport layer.
  • a vacuum ultraviolet light mask may be arranged, and the vacuum ultraviolet light mask is made as close as possible to the hole injection transport layer, and the vacuum ultraviolet light mask is not in contact with the hole injection transport layer.
  • a vacuum ultraviolet light mask may be disposed.
  • partitioning parts such as partition walls or insulating layers are formed, and when using a vacuum ultraviolet light mask in which a light shielding part is formed in a pattern on a transparent substrate, the vacuum ultraviolet light mask is properly aligned. It can be fixed so as to be in close contact with the hole injecting and transporting layer.
  • the light-shielding region in which the light-shielding part is provided on the substrate A photocatalyst-containing layer substrate having a region other than the light-shielding region and a transmission region in which only the photocatalyst-containing layer is provided on the substrate can be used.
  • the liquid repellent region 12 is formed so that the contact angle of the liquid on the surface on the hole injecting and transporting layer side becomes higher from the side part side to the top side of the partition part (partition wall 6a). Can do.
  • the hole injection transport layer side is adjusted.
  • the liquid repellent region 12 can be formed so that the contact angle of the liquid on the surface increases from the side of the partition (partition 6a) toward the top.
  • the former is corrected by adjusting the ratio of the area of the transmission region of the mask to the area of the top of the partition and at least one of the distance between the hole injecting and transporting layer and the mask due to the light diffraction phenomenon or the like.
  • a gradient occurs in the amount of energy applied to the hole injecting and transporting layer, and as a result, a gradient occurs in the amount by which the material contained in the hole injecting and transporting layer is decomposed.
  • the top of the partition is perpendicular to the incidence of light, while the side of the partition has an angle, so the solid angle is small and the apparent light dose is reduced, resulting in A gradient occurs in the amount of the material contained in the hole injecting and transporting layer being decomposed.
  • the contact angle of the liquid can be inclined on the surface on the hole injecting and transporting layer side so that the contact angle of the liquid increases from the side portion side to the top side of the partition portion.
  • the distance between the hole injection transport layer and the mask gradually increases from the top side to the side part of the partition part.
  • the liquid contact angle can be inclined.
  • the area of the mask transmission area is equal to the area of the top of the partition. It is preferable to make it larger. This is because it becomes easy to incline the liquid contact angle in the region located near the boundary between the top and the side of the partition.
  • Partition formation step In the present invention, if necessary, before the hole injection transport layer formation step, between the patterns of the first electrode layer on the substrate on which the first electrode layer is formed in the pattern, You may have the partition part formation process which forms a partition part.
  • a partition part a partition and an insulating layer are mentioned, for example.
  • the partition wall 6a in FIGS. 2A, 3A, and 4A As the partition portion, a partition portion that functions as both a partition wall and an insulating layer is integrally formed. Also good.
  • the description will be divided into the partition wall and the insulating layer.
  • the portion where the partition portion is formed is usually a non-light emitting region.
  • the partition wall 6a is patterned on the substrate 2 on which the first electrode layer 3 is formed. It may be formed in a shape. Usually, when the first electrode layer is formed in a pattern, the partition 6 a is formed in the opening of the pattern of the first electrode layer 3.
  • the partition wall is provided to coat the layer formed on the hole injecting and transporting layer in a pattern.
  • the material for forming the partition is not particularly limited, and may be an organic material or an inorganic material, and generally uses a material used for the partition in a device such as an organic EL element. Can do.
  • the organic material include ethylene-vinyl acetate copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl copolymer, polystyrene, acrylonitrile-styrene copolymer, ABS resin, polymethacrylic acid resin, ethylene-methacrylic acid.
  • Acid resin polyvinyl chloride resin, chlorinated vinyl chloride, polyvinyl alcohol, cellulose acetate propionate, cellulose acetate butyrate, nylon 6, nylon 66, nylon 12, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyvinyl acetal, polyether Ether ketone, polyether sulfone, polyphenylene sulfide, polyarylate, polyvinyl butyral, epoxy resin, phenoxy resin, polyimide resin, polyamide Resin, polyamic acid resin, polyether imide resin, phenol resin, urea resin and the like.
  • the inorganic material include SiO 2 .
  • the height of the partition wall can be about 0.01 ⁇ m to 50 ⁇ m.
  • the partition wall width is set such that the width of the partition wall 6a is larger than the width between the patterns of the first electrode layer 3 as illustrated in FIG.
  • the width of the partition wall 6a may be wider than the width between the patterns of the first electrode layer 3 as illustrated in FIG.
  • a method for forming the partition wall a general method such as a photolithography method or a printing method can be used as a photolithography method or a printing method can be used as a photolithography method or a printing method.
  • the insulating layer 6b is formed in a pattern on the substrate 2 on which the first electrode layer 3 is formed. It may be. Usually, when the first electrode layer is formed in a pattern, the insulating layer 6b is formed in the opening of the pattern of the first electrode layer 3, and covers the end of the pattern of the first electrode layer. Formed. 7A and 7B, the partition wall 6a is also formed on the insulating layer 6b. However, only the insulating layer 6b may be formed and the partition wall 6a may not be formed. The insulating layer is provided to prevent conduction between the patterns of the adjacent first electrode layers and conduction between the first electrode layer and the second electrode layer.
  • the insulating layer forming material is not particularly limited as long as it has insulating properties, and may be an organic material or an inorganic material. Generally, in a device such as an organic EL element. The material used for the insulating layer can be used.
  • the insulating layer As a method for forming the insulating layer, a general method such as a photolithography method or a printing method can be used.
  • the thickness of the insulating layer can be about 10 nm to 50 ⁇ m.
  • the second electrode layer which is an essential component of the present invention, may be appropriately formed by a conventionally known process by appropriately adopting a conventionally known material according to each device.
  • the second electrode layer is preferably formed of a metal or a metal oxide, usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or an oxide of indium and / or tin. It can form with metal oxides, such as.
  • the electrode is usually formed on the substrate by a method such as sputtering or vacuum deposition, but can also be formed by a wet method such as a coating method or a dipping method.
  • the thickness of the electrode varies depending on the transparency required for each electrode. When transparency is required, it is desirable that the light transmittance in the visible wavelength region of the electrode is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 10 to 1000 nm, The thickness is preferably about 20 to 500 nm.
  • a first aspect of a device according to the present invention is a device having two or more electrodes opposed to each other on a substrate and a hole injecting and transporting layer disposed between the two electrodes,
  • the hole injecting and transporting layer contains the device material for hole injecting and transporting layer according to the present invention, and the fluorine-containing organic compound of the device material for hole injecting and transporting layer in the surface layer part of the hole injecting and transporting layer is It is characterized by being decomposed and removed.
  • a second aspect of the device according to the present invention is a device having two or more electrodes facing on a substrate and a hole injecting and transporting layer disposed between the two electrodes, A partition is provided between the patterns of the first electrode layer on the substrate on which the first electrode layer is formed in a pattern, and is continuous on the first electrode layer and the partition in the opening of the partition.
  • a hole injection transport layer In the hole injecting and transporting layer on the first electrode layer in the opening of the partition part and on the side part of the partition part, at least part of the device material for hole injecting and transporting layer according to the present invention containing fluorine The organic compound is decomposed and removed, and the hole injecting and transporting layer on the top of the insulating layer contains the hole injecting and transporting layer device material according to the present invention. Any of the above-described devices of the present invention can be obtained by the device manufacturing method according to the present invention.
  • FIG. 8 is a conceptual cross-sectional view showing the basic layer structure of the first aspect of the device according to the present invention.
  • the basic layer structure of the device 10 of the present invention includes two electrodes (3 and 9) facing each other on a substrate 2, and a hole injection / transport layer 4 disposed between the two electrodes (3 and 9).
  • the hole injecting and transporting layer 4 contains the hole injecting and transporting layer device material according to the present invention, and the hole injecting and transporting layer device material in the surface layer of the hole injecting and transporting layer contains fluorine. It includes a fluorine decomposition part 5 of the hole injection transport layer from which the organic compound has been decomposed and removed.
  • a lyophilic region 11 is formed on the surface layer portion of the hole injection transport layer 4 existing on the first electrode layer 3 and on the side portion of the partition portion 6a, and a liquid repellent region 12 is formed on the top portion of the partition portion 6a.
  • a pattern is formed.
  • a layer serving as the center of the function of the device hereinafter referred to as a functional layer
  • an auxiliary layer of the functional layer hereinafter referred to as an auxiliary layer
  • Device layer 7 is formed on the lyophilic region 11 of the hole injecting and transporting layer 4.
  • a layer serving as the center of the function of the device hereinafter referred to as a functional layer
  • an auxiliary layer of the functional layer hereinafter referred to as an auxiliary layer
  • Device layer 7 is formed on the lyophilic region 11 of the hole injecting and transporting layer 4.
  • substrate 7 is a support body for forming each layer which comprises a device, and does not necessarily need to be provided in the surface of the electrode 1, and should just
  • the hole injecting and transporting layer 4 contains at least the hole injecting and transporting layer device material according to the present invention, and is a layer responsible for injecting and / or transporting holes from the electrode 3 to the device layer 7.
  • the device layer 7 is a layer that exhibits various functions depending on the type of device by being hole-injected and transported, and may be composed of a single layer or a multilayer. When the device layer 7 is composed of multiple layers, it includes a functional layer and an auxiliary layer. For example, in the case of an organic EL element, a hole transport layer further stacked on the surface of the hole injection transport layer corresponds to the auxiliary layer, and a light emitting layer stacked on the surface of the hole transport layer corresponds to the functional layer. .
  • the second electrode layer 9 is provided at least where the hole injection / transport layer 4 and the device layer 7 exist between the opposing electrodes 1. Moreover, you may have the 3rd electrode which is not shown in figure as needed. By applying an electric field between these electrodes, the function of the device can be expressed.
  • FIG. 9 is a conceptual cross-sectional view showing the basic layer structure of the second aspect of the device according to the present invention.
  • the basic layer structure of the device of the present invention has a partition 6a between the patterns of the first electrode layer 3 on the substrate 2 on which the first electrode layer 3 is formed in a pattern, and the partition 6a A continuous hole injecting and transporting layer (4 and 5) on the first electrode layer 3 and the partition 6a in the opening of the first electrode layer 3 on the first electrode layer 3 in the opening of the partition 6a
  • the hole injecting and transporting layer 4 on the side part of the partition part 6a at least a part of the fluorine-containing organic compound of the device material for hole injecting and transporting layer according to the present invention is decomposed and removed, and hole injecting and transporting is performed.
  • the hole injecting and transporting layer 4 on the top of the partition part contains the device material for the hole injecting and transporting layer according to the present invention, in which fluorine is not decomposed. is doing.
  • 9 shows the hole injecting and transporting layer according to the present invention in the hole injecting and transporting layer 4 on the first electrode layer 3 in the opening of the partitioning part 6a and on the side part of the partitioning part 6a. The figure shows that all the fluorine-containing organic compounds of the device material for use are decomposed and removed to form the fluorine decomposition part 5 of the hole injection transport layer.
  • the fluorine decomposition part 5 of the hole injecting and transporting layer existing on the first electrode layer 3 and on the side part of the partition part 6a is formed from the lyophilic area 11 and the liquid repellent area 12 on the top part of the partition part 6a.
  • a pattern is formed.
  • a device layer 7 is formed on the lyophilic region 11 of the hole injection transport layer 4.
  • the second electrode layer 9 has the hole injection transport layer 4 disposed between the two electrodes (3 and 9) on the substrate 2 so that the two electrodes (3 and 9) face each other. Is formed.
  • the hole injection / transport layer (4 and 5) continuous on the first electrode layer 3 and the partition 6a in the opening of the partition 6a was provided as a separate layer on the hole injection / transport layer. There is no interface.
  • the fluorine decomposition part 5 of the hole injection transport layer is a hole injection as a part in which at least a part of the fluorine-containing organic compound of the device material for hole injection transport layer is decomposed and removed from the same material as the hole injection transport layer 4 It is included in a pattern in the transport layer.
  • the device layer 7 is formed on the fluorine decomposition portion 5 (lyophilic region 11) of the hole injecting and transporting layer.
  • the hole injection / transport layer device material contained in the fluorine decomposition part 5 of the hole injection / transport layer according to the present invention is oxidized and has a large ionization potential through a process such as a photocatalytic process for decomposing fluorine. Therefore, the hole injection property is high.
  • the device layer since the device layer is formed on the hole injecting and transporting with improved hole injecting property as described above, the manufacturing process is easy, but the hole injecting and transporting property is excellent, and the long life is achieved. Achievable.
  • the layer structure of the device of the present invention is not limited to the above-described examples, and has substantially the same structure as the technical idea described in the claims of the present invention, and has the same functions and effects. Anything that achieves the above is included in the technical scope of the present invention.
  • the first electrode layer, the second electrode layer, the hole injecting and transporting layer, and the device material for the hole injecting and transporting layer used for the hole injecting and transporting layer are described in “I. It may be the same as described in “Device material for hole injecting and transporting layer”, “II. Ink for hole injecting and transporting layer”, and “III. Device manufacturing method”.
  • device layers (functional layers and auxiliary layers) included in the device will be described in detail in specific examples of devices to be described later. Here, it supplements further about a positive hole injection transport layer.
  • the hole injecting and transporting layer in the device of the present invention contains at least the device material for hole injecting and transporting layer according to the present invention.
  • the hole injecting and transporting layer may be composed of only the device material for hole injecting and transporting layer, but may further contain other components.
  • a compound having a hole transporting property is appropriately used Can be used as a hole transporting compound other than the above-described device material for a hole injecting and transporting layer according to the present invention.
  • the hole transportability means that an overcurrent due to hole transport is observed by a known photocurrent method.
  • a high molecular compound is also preferably used.
  • the hole transporting polymer compound refers to a polymer compound having a hole transporting property and having a weight average molecular weight of 2000 or more according to polystyrene conversion value of gel permeation chromatography.
  • the hole transporting material is a stable coating film that is easily dissolved in an organic solvent and is difficult to aggregate. It is preferable to use a polymer compound that can be formed.
  • the hole transporting compound is not particularly limited, and examples thereof include arylamine derivatives, anthracene derivatives, carbazole derivatives, thiophene derivatives, fluorene derivatives, distyrylbenzene derivatives, and spiro compounds.
  • arylamine derivatives include N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD), bis (N- (1-naphthyl-N— Phenyl) benzidine) ( ⁇ -NPD), 4,4 ′, 4 ′′ -tris (3-methylphenylphenylamino) triphenylamine (MTDATA), 4,4 ′, 4 ′′ -tris (N- (2-naphthyl) ) -N-phenylamino) triphenylamine (2-TNATA) and the like, 4,4-N, N′-dicarbazole-biphenyl (CBP) and the like as the carbazole derivative, and N, N′-bis as the fluorene derivative Distyrylbenzene derivatives such as (3-methylphenyl) -N, N′-bis (phenyl) -9,9-dimethylfluorene (DMFL-TP
  • hole transporting polymer compound for example, polyaniline, polythiophene, polyphenylene vinylene derivative, or the like can be used.
  • Conductive polymers such as polyaniline, polythiophene, and polyphenylene vinylene derivatives may be doped with an acid.
  • a polymer containing an arylamine derivative, anthracene derivative, carbazole derivative, thiophene derivative, fluorene derivative, distyrylbenzene derivative, spiro compound and the like in a repeating unit can be given.
  • the content of the hole transporting compound is as described above. It is 10 to 10000 parts by weight with respect to 100 parts by weight of the device material for hole injection / transport layer according to the invention, so that the hole injection / transport property is high and the stability of the film is high to achieve a long life. It is preferable from the point.
  • the hole injecting and transporting layer of the present invention may contain additives such as a binder resin, a curable resin, and a coating property improving agent as long as the effects of the present invention are not impaired.
  • the binder resin include polycarbonate, polystyrene, polyarylate, and polyester.
  • a material that is cured by heat or light such as light a material in which a curable functional group is introduced into the molecule in the hole transporting compound, a curable resin, or the like can be used.
  • examples of the curable functional group include acrylic functional groups such as acryloyl group and methacryloyl group, vinylene group, epoxy group, and isocyanate group.
  • the curable resin may be a thermosetting resin or a photocurable resin, and examples thereof include an epoxy resin, a phenol resin, a melamine resin, a polyester resin, a polyurethane resin, a silicon resin, and a silane coupling agent. be able to.
  • FIG. 10 is a schematic cross-sectional view showing an example of the organic EL element of the present invention.
  • the first electrode layer 3 is formed in a pattern on the substrate 2, the partition 6 a is formed in the opening of the pattern of the first electrode layer 3, and the first electrode layer 3 and A hole injecting and transporting layer 4 is formed on the partition wall 6a, and the fluorine-containing organic compound in the device material for the hole injecting and transporting layer in the surface layer portion of the hole injecting and transporting layer 4 is decomposed and removed to form the fluorine removing layer 5
  • a light-emitting pattern formed on the surface of the fluorine removal layer 5 is formed, which includes the lyophilic region 11 and the liquid repellent region 12 on the top of the partition wall 6a. It has a layer 32, an electron injecting and transporting layer 33 formed on the light emitting layer 32, and a second electrode layer 34 formed on the electron injecting and transporting layer 33.
  • a hole transport layer may be further formed between the lyophilic region 11 of the hole injection transport layer and the light emitting layer 32.
  • the first electrode layer 3 functions as an anode
  • the second electrode layer 34 functions as a cathode.
  • holes are injected from the anode through the hole injection transport layer 4 into the light emitting layer 32, and electrons are injected from the cathode into the light emitting layer.
  • holes and electrons injected inside the light emitting layer 5 are recombined to have a function of emitting light to the outside of the device.
  • an electron injecting and transporting layer 33 is provided between the light emitting layer and the electrode 6 (cathode) as necessary.
  • each layer of the organic EL element according to the present invention will be described in detail.
  • the substrate and the electrode layer those described in the description of the device can be used.
  • a hole injection transport layer In addition to the hole injection transport layer containing the device material for hole injection transport layer according to the present invention or a decomposition product thereof, which is an essential component in the device of the present invention, a hole injection transport layer, a hole transport layer, and the like. And a hole injection layer may be appropriately formed between the light emitting layer and the first electrode layer.
  • a hole transporting layer may be further laminated on the hole injecting and transporting layer containing the hole injecting and transporting device device according to the present invention or a decomposition product thereof, and a light emitting layer may be laminated thereon,
  • a hole injection / transport layer containing the above-described device material for a hole injection / transport layer according to the present invention or a decomposition product thereof may be further laminated on the hole injection layer, and a light emitting layer may be laminated thereon.
  • the hole transport compound used in the hole transport layer is not particularly limited, and the above-described hole injection transport is described above.
  • a hole injecting and transporting compound as described in the supplement of the layer can be appropriately selected and used.
  • the hole injecting and transporting layer as an essential component of the present invention further contains a hole injecting and transporting compound different from the device material for hole injecting and transporting layer according to the present invention or a decomposition product thereof, adjacent holes For the transport layer, it is possible to use the same compound as the hole transporting compound contained in the hole injecting and transporting layer as an essential component of the present invention.
  • the hole transport layer can be formed in the same manner as the light emitting layer described later, using a hole injecting / transporting compound.
  • the thickness of the hole transport layer is usually from 0.1 to 1 ⁇ m, preferably from 1 to 500 nm.
  • the hole injection material used for the hole injection layer is not particularly limited, and a conventionally known compound is used. be able to. Examples thereof include phenylamine, starburst amine, phthalocyanine, vanadium oxide, molybdenum oxide, ruthenium oxide, oxides such as aluminum oxide, amorphous carbon, polyaniline, and polythiophene derivatives.
  • the hole injection layer can be formed using a hole injection material in the same manner as the light emitting layer described later.
  • the thickness of the hole injection layer is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • HOMO work function
  • the light emitting layer 32 is formed on the lyophilic region 11 on the hole injecting and transporting layer between the substrate 2 on which the first electrode layer 3 is formed and the second electrode layer 34. Is done.
  • the material used for the light emitting layer of the present invention is not particularly limited as long as it is a material usually used as a light emitting material, and either a fluorescent material or a phosphorescent material can be used. Specific examples include materials such as dye-based light-emitting materials and metal complex-based light-emitting materials, and both low molecular compounds and high molecular compounds can be used.
  • dye-based luminescent materials include arylamine derivatives, anthracene derivatives, (phenylanthracene derivatives), oxadiazole derivatives, oxazole derivatives, oligothiophene derivatives, carbazole derivatives, cyclopentadiene derivatives, silole derivatives, distyrylbenzene derivatives, Distyrylpyrazine derivatives, distyrylarylene derivatives, silole derivatives, stilbene derivatives, spiro compounds, thiophene ring compounds, tetraphenylbutadiene derivatives, triazole derivatives, triphenylamine derivatives, trifumanylamine derivatives, pyrazoloquinoline derivatives, hydrazone derivatives, pyras Examples include zoline dimer, pyridine ring compound, fluorene derivative, phenanthroline, perinone derivative, perylene derivative. These dime dimer, pyridine ring compound, fluorene derivative
  • metal complex-based luminescent materials include aluminum quinolinol complex, benzoquinolinol beryllium complex, benzoxazole zinc complex, benzothiazole zinc complex, azomethylzinc complex, porphyrin zinc complex, europium complex, etc., or central metal such as Al, Zn, Be, etc.
  • a metal complex having a rare earth metal such as Tb, Eu, or Dy and having a oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structure, or the like as a ligand can be given. These materials may be used alone or in combination of two or more.
  • polymer light-emitting materials As the high molecular weight light emitting material, a material obtained by introducing the above low molecular weight material into the molecule as a straight chain, a side chain, or a functional group, a polymer, a dendrimer, or the like can be used. Examples thereof include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyvinyl carbazole, polyfluorenone derivatives, polyfluorene derivatives, polyquinoxaline derivatives, and copolymers thereof.
  • a doping material may be added to the light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength.
  • these may be included as a light emitting group in the molecular structure.
  • doping materials include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacdrine derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazoline derivatives, decacyclene, phenoxazone, quinoxaline derivatives, carbazole derivatives, and fluorene derivatives.
  • transduced the spiro group into these can also be used. These materials may be used alone or in combination of two or more.
  • the material of the light emitting layer any of a low molecular compound or a high molecular compound that emits fluorescence, or a low molecular compound or a high molecular compound that emits phosphorescence can be used.
  • the hole injection / transport layer forms a charge transfer complex and is a non-aqueous solvent such as xylene used in the solution coating method.
  • a polymer type material that is easily dissolved in a non-aqueous solvent such as xylene and forms a layer by a solution coating method can be used.
  • a high molecular compound containing a fluorescent compound or a low molecular compound that emits fluorescence, or a high molecular compound containing a phosphor compound or a low molecular compound that emits phosphor can be preferably used.
  • the light emitting layer can be formed by a solution coating method using a light emitting material using a wettability change pattern on the surface of the hole injection transport layer.
  • a solution coating method a method similar to that described in the item of the device manufacturing method can be used.
  • the hole transport layer may be formed by a vapor deposition method or a transfer method.
  • the vacuum evaporation method the material of the light emitting layer is put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 ⁇ 4 Pa by an appropriate vacuum pump, and then the crucible.
  • a light emitting layer is formed on the laminate of the substrate, the first electrode layer, the hole injection transport layer, and the hole transport layer placed facing the crucible.
  • a light emitting layer formed in advance on a film by a solution coating method or a vapor deposition method is bonded to a hole injecting and transporting layer provided on the first electrode layer, and the light emitting layer is heated to form a hole injecting and transporting layer. It is formed by transferring it upward.
  • the thickness of the light emitting layer is usually about 1 to 500 nm, preferably about 20 to 1000 nm.
  • the hole injection transport layer is preferably formed by a solution coating method, and the light emitting layer can also be formed by a solution coating method using the wettability change pattern on the surface of the hole injection transport layer. Therefore, in this case, there is an advantage that the process cost can be reduced.
  • hole injection is also applied to dye-sensitized solar cells, organic thin film solar cells, organic semiconductors, other organic devices such as organic transistors, quantum dot light emitting devices having a hole injection transport layer, and oxide-based compound solar cells.
  • the transport layer is the hole injecting and transporting layer according to the present invention, other configurations are not particularly limited, and may be the same as known configurations as appropriate.
  • n-octyl ether manufactured by Tokyo Chemical Industry Co., Ltd.
  • n-octyl ether manufactured by Tokyo Chemical Industry Co., Ltd.
  • room temperature 24 ° C
  • Change from vacuum to air atmosphere molybdenum hexacarbonyl 0.2 g (manufactured by Kanto Chemical Co., Inc.), 4,4,5,5,6,6,7,7,8,8,9,9,10,10, 11,11,11-Heptadecafluoroundecylamine 0.4 g (Fluka) was added.
  • the mixture was placed in an argon gas atmosphere and heated to 250 ° C.
  • Mo cluster dark blue solid water-soluble molybdenum oxide cluster
  • FT-IR method Fourier transform infrared spectroscopy
  • Raman spectroscopy a FT-IR apparatus manufactured by VARIAN was used, and measurement was performed by the KBr method.
  • Mo cluster 1 (Mo 154) was dissolved in distilled water by 0.4 wt%, dissolved in ultrasonic for 1 hour, then in an 80 degree water bath for 10 minutes, and further ultrasonicated. The solution was dissolved for 1 hour and filtered through a 0.2 ⁇ m filter. When the measurement intensity was LI 0.045, the number average particle diameter MN (Mean Number Diameter) was 4 nm. Mo154 has a donut shape and is said to have a diameter of about 4 nm, which is almost in agreement with the measurement result of the number average particle diameter of 4 nm.
  • Triethyl (1H, 1H, 2H, 2H-tridecafluoro-n-octyl) ammonium iodide salt was adsorbed on the Mo154 cluster synthesized above by a cation exchange method.
  • Mo154 cluster aqueous solution 0.5wt% (dark blue) and triethyl (1H, 1H, 2H, 2H-tridecafluoro-n-octyl) ammonium iodide salt cyclohexanone solution 0.5wt% (light yellow) are mixed and 60 ° C When heated for 1 hour, a slight amount of amber component was extracted in the cyclohexanone solution. Only this cyclohexanone solution component was taken out to obtain the hole injection transport layer forming ink of Synthesis Example 4.
  • the vacuum atmosphere was changed to an atmospheric atmosphere, and 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Inc.) was added.
  • the mixture was placed in an argon gas atmosphere and heated to 280 ° C. with stirring, and the temperature was maintained for 1 h. Then, after cooling this liquid mixture to room temperature (24 degreeC) and changing from argon gas atmosphere to air
  • the precipitate was mixed with 3 g of chloroform to obtain a dispersion, and 6 g of ethanol was added dropwise to the dispersion to obtain a purified precipitate.
  • the reprecipitation liquid thus obtained was centrifuged, the precipitate was separated from the reaction liquid, and then dried to obtain a purified product of black molybdenum-containing nanoparticles.
  • the primary particle size of the transition metal-containing nanoparticles obtained in Synthesis Examples 1 to 3, 5 to 8 and Comparative Synthesis Example 1 was measured using an ultra-high resolution field emission scanning electron microscope S-4800 manufactured by Hitachi High Technology. It was measured. A sample for measurement was prepared by dropping a few drops of a transition metal-containing nanoparticle dispersion solution on a commercially available microgrid with a supporting film and drying the solvent under reduced pressure. The particle image observation was performed in a scanning transmission electron microscope (STEM) mode. The average value of 20 observed bright particles was defined as the average particle size. The observed particle size is considered to be the average particle size of the transition metal-containing nanoparticles excluding the protective agent.
  • STEM scanning transmission electron microscope
  • the average particle diameter of the nanoparticles prepared in Synthesis Example 1 was 7 nm.
  • the average particle diameter of the nanoparticles prepared in Synthesis Example 2 was 9 nm.
  • the average particle diameter of the nanoparticles prepared in Synthesis Example 3 was 15 nm.
  • the average particle diameter of the nanoparticles prepared in Synthesis Example 5 was 6 nm.
  • the average particle diameter of the nanoparticles prepared in Synthesis Example 6 was 6 nm.
  • the average particle diameter of the nanoparticles prepared in Synthesis Example 7 was 8 nm.
  • the average particle diameter of the nanoparticles prepared in Synthesis Example 8 was 5 nm.
  • the average particle diameter of the nanoparticles prepared in Comparative Synthesis Example 1 was 6 nm.
  • the crystal structure of the molybdenum-containing nanoparticles obtained above was identified by powder X-ray diffraction.
  • RINT-1500 manufactured by Rigaku Corporation was used as a measuring device, and a sample for measurement was prepared by placing molybdenum-containing nanoparticle powder on glass.
  • a CuK ⁇ ray was used as the X-ray source, and the tube voltage was 50 kV and the tube current was 250 mA.
  • the measurement was performed by the 2 ⁇ / ⁇ scan method under the conditions of a scan speed of 2 ° per minute and a step angle of 0.05 °.
  • ⁇ Measurement of film thickness For the film thickness, a layer made of the material to be measured is formed as a single layer on a cleaned glass substrate with ITO, and a step is created with a cutter knife. -It measured by the tapping mode using Nanotechnology Co., Ltd. product and Nanopics1000.
  • ⁇ Measurement of ionization potential> The value of the work function measured using the photoelectron spectrometer AC-1 (manufactured by Riken Keiki Co., Ltd.) was applied as the ionization potential value in the present invention.
  • a layer formed of a material to be measured is formed as a single layer on a glass substrate with ITO (manufactured by Sanyo Vacuum Co., Ltd.), and photoelectrons are emitted from the photoelectron spectrometer AC-1. Determined by energy value.
  • a light amount of 50 nW was used in increments of 0.05 eV.
  • the ionization potential of the hole injection transport layer using the device material for hole injection transport layer obtained in Synthesis Example 1 was 5.4 eV.
  • the ionization potential of the hole injecting and transporting layer using the device material for hole injecting and transporting layer obtained in Synthesis Example 2 was 5.4 eV.
  • the ionization potential of the hole injection transport layer using the device material for hole injection transport layer obtained in Synthesis Example 3 was 5.6 eV.
  • the ionization potential of the hole injection transport layer using the device material for hole injection transport layer obtained in Synthesis Example 4 was 5.8 eV.
  • the ionization potential of the hole injection transport layer using the device material for hole injection transport layer obtained in Synthesis Example 5 was 5.4 eV.
  • the ionization potential of the hole injection transport layer using the device material for hole injection transport layer obtained in Synthesis Example 6 was 5.4 eV.
  • the ionization potential of the hole injecting and transporting layer using the device material for hole injecting and transporting layer obtained in Synthesis Example 7 was 5.4 eV.
  • the ionization potential of the hole injection transport layer using the device material for hole injection transport layer obtained in Synthesis Example 8 was 5.4 eV.
  • the ionization potential of the hole injection transport layer using the device material for hole injection transport layer obtained in Comparative Synthesis Example 1 was 5.0 eV.
  • the absorption spectrum is obtained by forming a layer made of the material to be measured as a single layer on a cleaned quartz substrate, and measuring the difference in optical absorption between this thin film-attached substrate and the reference quartz substrate by UV-3100PC (Hitachi). ).
  • the transmittance at a wavelength of 254 nm of the thin film (15 nm) of the device material for hole injecting and transporting layer obtained in Synthesis Examples 1 to 3 and 5 to 8 was a high value of 85%.
  • the transmittance of the hole injecting and transporting layer obtained in Synthesis Example 4 at a wavelength of 254 nm was as high as 80%.
  • ⁇ Measurement of liquid contact angle> The contact angle of the liquid was measured using a contact angle measuring device (manufactured by Kyowa Interface Science Co., Ltd., fully automatic contact angle meter (DM700)). Xylene (surface tension of 28.5 mN / m) was used as a standard solution, and the contact angle was measured 5 seconds after a 2 microliter droplet was dropped from the microsyringe.
  • ⁇ Surface analysis of hole injection transport layer> The valence of the transition metal contained in the transition metal-containing nanoparticles and the presence or absence of a fluoroalkyl group were measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • An ESCA-3400 model manufactured by Kratos was used for the measurement.
  • MgK ⁇ ray was used as the X-ray source used for the measurement.
  • the measurement was carried out under the conditions of an acceleration voltage of 10 kV and a filament current of 20 mA without using a monochromator.
  • the organic EL device of the present invention is subjected to a photocatalytic treatment after forming a hole injecting and transporting layer containing Mo-containing nanoparticles having a fluorine-containing organic compound attached on the glass substrate with a transparent anode, A hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode are formed and laminated to form a green light emitting organic EL device having a basic layer configuration. The characteristics and wettability of the organic EL element were evaluated.
  • Example 1 A patterned glass substrate with ITO (manufactured by Sanyo Vacuum Co., ITO film thickness: 150 nm) was subjected to UV ozone treatment by ultrasonic cleaning in the order of neutral detergent and ultrapure water. Next, a transition metal-containing nanoparticle thin film was formed on the substrate as a hole injection / transport layer by spin coating using the following hole injection / transport layer forming ink.
  • the hole injection / transport layer forming ink was prepared by dissolving 0.012 g of the hole injection / transport layer device material obtained in Synthesis Example 1 in 3.0 g of heptafluoro-n-ethyl butyrate to prepare a 0.4 wt% solution. did. After forming the coating film, it was dried on a hot plate at 200 ° C. The film thickness after drying was 15 nm.
  • a photomask with a photocatalyst-containing layer was prepared.
  • a photomask having a transmission region and a light shielding region formed on a synthetic quartz substrate was prepared.
  • a photocatalyst-containing layer-forming coating solution having the following composition is applied by a spin coater, subjected to a heat drying treatment at 150 ° C. for 10 minutes, cured by proceeding with a hydrolysis / polycondensation reaction, and photocatalyst Formed a transparent photocatalyst-containing layer having a film thickness of 100 nm, firmly fixed in the organosiloxane.
  • the hole injecting and transporting layer was exposed through the photomask with a photocatalyst containing layer prepared above to form a pattern composed of a lyophilic region and a lyophobic region.
  • the distance between the photocatalyst containing layer and the hole injecting and transporting layer of the photocatalyst containing layer is 100 ⁇ m using an ultraviolet exposure apparatus including a high pressure mercury lamp, a photomask with a photocatalyst containing layer, and a position adjusting mechanism of the substrate. After adjusting as described above, exposure was performed for 3 minutes from the back side of the photomask with a photocatalyst-containing layer so that the exposure amount of light at 254 nm was 5 J / cm 2 .
  • PVK polyvinyl carbazole
  • a hole blocking layer was formed on the light emitting layer by vapor deposition.
  • the hole blocking layer uses bis (2-methyl-8-quinolato) (p-phenylphenolate) aluminum complex (BAlq) as a block forming material, and is subjected to vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa) by resistance heating method.
  • the BAlq vapor deposition film was formed by vapor deposition so that the film thickness was 15 nm.
  • An electron transport layer was deposited on the hole blocking layer.
  • the electron transport layer was formed by vapor deposition of tris (8-quinolinolato) aluminum complex (Alq3) in a vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa) by a resistance heating method so that the film thickness of the Alq3 vapor deposition film was 20 nm.
  • An electron injection layer and a cathode were successively deposited on the electron transport layer of the produced glass substrate with a transparent anode / hole injection transport layer / hole transport layer / light emitting layer / hole block layer / electron transport layer.
  • a vapor deposition film was formed in vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa) by resistance heating vapor deposition sequentially for LiF (thickness: 0.5 nm) for the electron injection layer and Al (thickness: 100 nm) for the cathode.
  • the cathode After forming the cathode, the anode is sealed with a non-alkali glass and a UV curable epoxy adhesive in a low oxygen, low humidity glove box, and is patterned in a line shape with a width of mm, and orthogonal to the anode.
  • the organic EL element of Example 1 provided with the electron injection layer formed in the line shape of width mm and a cathode was produced.
  • the organic EL elements produced in the above examples and comparative examples all emitted green light derived from Ir (mppy) 3 .
  • the measurement results are shown in Table 1.
  • the current efficiency was calculated from the drive current and the luminance.
  • the lifetime characteristics of the organic EL element were evaluated by observing the luminance gradually decreasing with time by constant current driving.
  • the time (hr.) Until the retention rate deteriorates to a luminance of 50% with respect to the initial luminance of 2000 cd / m 2 is defined as a lifetime (LT50).
  • LT50 lifetime
  • Example 2 In Example 1, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer device material obtained in Synthesis Example 2 was used. Except that a hole injection transport layer (film thickness: 15 nm) was formed, a device was prepared in the same manner as in Example 1, and device characteristics were evaluated, and wettability and ionization potential of the hole injection transport layer were evaluated. It was.
  • Example 3 In Example 1, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer device material obtained in Synthesis Example 3 was used. Except that a hole injection transport layer (film thickness: 15 nm) was formed, a device was prepared in the same manner as in Example 1, and device characteristics were evaluated, and wettability and ionization potential of the hole injection transport layer were evaluated. It was.
  • Example 4 In Example 1, a device was prepared in the same manner as in Example 1 except that exposure was performed using vacuum ultraviolet light instead of 253 nm ultraviolet light as an exposure light source, evaluation of device characteristics, and hole injection and transport. The wettability and ionization potential of the layer were evaluated. At this time, vacuum ultraviolet light having a wavelength of 172 nm was exposed from the metal mask side so that the light exposure amount was 5 J / cm 2 .
  • Example 5 In Example 1, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the transition metal-containing nanoparticles obtained in Comparative Synthesis Example 1 and Synthesis Example 3 were used. An element was prepared in the same manner as in Example 1 except that a hole injection / transport layer (film thickness: 10 nm) was formed using the obtained device material for hole injection / transport layer, and evaluation of element characteristics and positive The wettability and ionization potential of the hole injection transport layer were evaluated.
  • a hole injection / transport layer film thickness: 10 nm
  • the ink for forming a hole injection transport layer in which the materials of Comparative Synthesis Example 1 and Synthesis Example 3 are mixed is compared with 4.0 g of a mixed solvent of ethyl heptafluoro-n-butyrate and cyclohexanone (weight ratio 1: 1).
  • a total of 0.016 g was dissolved so that the weight ratio of the material of 1 and Synthesis Example 3 was 1: 1, and the concentration of the solution was adjusted so that the film thickness after drying was 15 nm.
  • Example 6 In Example 1, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer forming ink obtained in Synthesis Example 4 was used. Except for the formation of a thin film (film thickness: 5 nm or less), an element was prepared in the same manner as in Example 1, and the element characteristics were evaluated, and the wettability and ionization potential of the hole injection transport layer were evaluated.
  • Example 7 In Example 1, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer forming ink obtained in Synthesis Example 5 was used. Except for the formation of a thin film (film thickness: 5 nm or less), an element was prepared in the same manner as in Example 1, and the element characteristics were evaluated, and the wettability and ionization potential of the hole injection transport layer were evaluated.
  • Example 8 In Example 1, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer forming ink obtained in Synthesis Example 6 was used. Except for the formation of a thin film (film thickness: 5 nm or less), an element was prepared in the same manner as in Example 1, and the element characteristics were evaluated, and the wettability and ionization potential of the hole injection transport layer were evaluated.
  • Example 9 In Example 1, instead of using the hole injection transport layer device material obtained in Synthesis Example 1 as the hole injection transport layer, the hole injection transport layer forming ink obtained in Synthesis Example 7 was used. Except for the formation of a thin film (film thickness: 5 nm or less), an element was prepared in the same manner as in Example 1, and the element characteristics were evaluated, and the wettability and ionization potential of the hole injection transport layer were evaluated.
  • Example 10 In Example 1, instead of using the hole injection transport layer device material obtained in Synthesis Example 1 as the hole injection transport layer, the hole injection transport layer forming ink obtained in Synthesis Example 8 was used. Except for the formation of a thin film (film thickness: 5 nm or less), an element was prepared in the same manner as in Example 1, and the element characteristics were evaluated, and the wettability and ionization potential of the hole injection transport layer were evaluated.
  • Example 1 In Example 1, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the transition metal-containing nanoparticles obtained in Comparative Synthesis Example 1 were used to form a thin film ( A device was formed in the same manner as in Example 1 except that the film thickness was 15 nm), and the device characteristics were evaluated, and the wettability and ionization potential of the hole injection transport layer were evaluated.
  • the ink for forming a hole injection transport layer of transition metal-containing nanoparticles obtained in Comparative Synthesis Example 1 is prepared by dissolving the material of Comparative Synthesis Example 1 in a cyclohexanone solvent so that the film thickness after drying is 15 nm. Produced.
  • Example 2 In Example 1, instead of the compound film of Synthesis Example 1 as the hole injection transport layer, PEDOT / PSS (AI4083 manufactured by Starck Co.) and 4- (3,3,4,4,5,5,6,6 , 7,7,8,8,9,9,10,10,10-heptadecafluorodecyl) benzylamine was formed in the same manner as in Example 1 except that a laminated thin film was formed by spin coating. The device characteristics were evaluated, and the wettability and ionization potential of the hole injection transport layer were evaluated. The PEDOT / PSS layer was prepared by diluting a PEDOT / PSS solution with distilled water and dissolving the film after drying to a thickness of 15 nm.
  • PEDOT / PSS AI4083 manufactured by Starck Co.
  • the thin film was dried by coating using heptadecafluorodecylbenzylamine dissolved in 0.4 wt% of heptafluoro-n-ethyl butyrate.
  • the film thickness after drying was not able to be measured and was 5 nm or less.
  • Comparative Example 3 In Comparative Example 2, an element was prepared in the same manner as in Comparative Example 5 except that the hole injecting and transporting layer was irradiated only with 253 nm ultraviolet light without passing through a mask with a photocatalyst mask. The wettability and ionization potential of the injection transport layer were evaluated.
  • Comparative Example 4 In Comparative Example 2, a device was prepared in the same manner as in Comparative Example 2 except that the hole injection / transport layer was not subjected to photocatalytic treatment, evaluation of device characteristics, and the wettability and ionization potential of the hole injection / transport layer. Evaluation was performed.
  • Example 1 In Example 1, an element was prepared in the same manner as in Example 1 except that the photoinjection treatment was not performed on the hole injecting and transporting layer, and evaluation of element characteristics and evaluation of wettability and ionization potential were performed.
  • Example 2 In Example 2, an element was prepared in the same manner as in Example 1 except that the hole injecting and transporting layer was not subjected to photocatalytic treatment, and evaluation of element characteristics and evaluation of wettability and ionization potential were performed.
  • Reference Example 3 In Example 3, an element was prepared in the same manner as in Example 1 except that the hole injecting and transporting layer was not subjected to photocatalytic treatment, and evaluation of element characteristics and evaluation of wettability and ionization potential were performed.
  • Example 4 and Reference Example 1 are compared, the contact angle is reduced from 58 ° to 5 ° or less by irradiation with vacuum ultraviolet light, and the ionization potential is increased from 5.4 eV to 5.5 eV. Furthermore, in terms of device characteristics, the lifetime is improved from 5 hours to 5.5 hours after irradiation with vacuum ultraviolet light. It is speculated that the properties were improved by the fact that the fluoroalkyl component was decomposed by irradiation with vacuum ultraviolet light and the surface of the Mo mixed nanoparticles was oxidized by ozone generated by vacuum ultraviolet light, which modified the surface. The When Example 1 and Example 5 are compared, in Example 5, the drive voltage is reduced by 1V.
  • Example 5 W-containing nanoparticles with fluoroalkyl had a small surface tension and floated when forming a thin film, and many Mo-containing nanoparticles without fluoroalkyl were present on the ITO side, and W-containing nanoparticles with fluoroalkyl were present. It is suggested that a film having a concentration gradient in which a large amount of is present on the hole transport layer side is formed. Since the ionization potential of the W-containing nanoparticle is larger than that of the Mo-containing nanoparticle, it is presumed that the hole injection property is increased and the voltage is lowered. Further, when Examples were compared with each other, Example 10 was excellent in luminance, current efficiency, and lifetime.
  • Example 1 with a fluorinated alkyl group is driven at 1 V lower voltage and has a longer life than Comparative Example 1 with a long-chain alkyl.
  • Comparing Comparative Examples 2 to 4 when PEDOT / PSS, which is a general organic hole injection material, is used for the hole injection / transport layer, the voltage is increased due to light irradiation and photocatalyst treatment, and the life is shortened. You can see that This result is considered that PEDOT / PSS was oxidized or decomposed by light irradiation and photocatalytic treatment, and hole injection property and driving durability were deteriorated. Comparing Example 6 and Comparative Example 4, oil repellency can be controlled in the Mo cluster of Example 6 as in the case of the Mo nanoparticles of Example 1, and higher characteristics can be obtained than when PEDOT / PSS is used. It has been.
  • Example 11 Mo-containing nanoparticles in which a fluorine-containing organic compound prepared in a synthesis example as a hole injection / transport layer 43 is attached on the surface of a glass substrate 41 on which an ITO transparent electrode (anode) 42 is formed.
  • a thin film of 10 nm is formed by spin coating, pattern exposure is performed using a photocatalyst-containing layer substrate (photomask 50 with a photocatalyst-containing layer) in which a light-shielding portion and a photocatalyst-containing layer are formed on a substrate, and an exposed portion and an unexposed portion are exposed.
  • the wettability of the part was examined by contact angle measurement.
  • an indium tin oxide (ITO) thin film (thickness: 150 nm) was used as a transparent electrode.
  • a glass substrate with ITO manufactured by Sanyo Vacuum Co., Ltd.
  • UV ozone treatment by ultrasonic cleaning in the order of neutral detergent and ultrapure water.
  • a Mo-containing nanoparticle thin film was applied and formed on the substrate as a hole injecting and transporting layer by a spin coating method.
  • the ink for forming a hole injection transport layer was prepared by dissolving the Mo-containing nanoparticles obtained in Synthesis Example 1 in ethyl heptafluoro-n-butyrate. After forming the coating film, it was dried on a hot plate at 200 ° C. The film thickness after drying was 15 nm.
  • the contact angle of the hole injecting and transporting layer surface with respect to xylene was 58 °.
  • a photomask 50 with a photocatalyst containing layer was prepared.
  • a photomask in which a chrome mask 54 was formed so as to provide a transmission region 52 and a light shielding region 53 on a synthetic quartz substrate 51 was prepared.
  • a photocatalyst-containing layer-forming coating solution having the following composition is applied by a spin coater, subjected to a heat drying treatment at 150 ° C. for 10 minutes, and cured by a hydrolysis / polycondensation reaction.
  • a transmission region 56 where the photocatalyst containing layer 55 is not formed is provided at the end on the synthetic quartz substrate 51.
  • the hole injecting and transporting layer was exposed through the photomask with a photocatalyst containing layer prepared above to form a pattern composed of a lyophilic region and a lyophobic region.
  • the distance between the photocatalyst containing layer 55 and the hole injecting and transporting layer 43 of the photocatalyst containing layer photomask 50 is determined using an ultraviolet exposure apparatus including a high pressure mercury lamp, a photocatalyst containing layer photomask and a substrate position adjusting mechanism. After adjusting to 100 ⁇ m, exposure was performed for 3 minutes from the rear surface side of the photomask 50 with a photocatalyst containing layer so that the exposure amount of 254 nm light was 5 J / cm 2 .
  • the static contact angle of the liquid between the exposed portion and the non-exposed portion on the hole injecting and transporting layer was measured with a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.).
  • a contact angle meter manufactured by Kyowa Interface Science Co., Ltd.
  • xylene surface tension: 28.5 mN / m
  • Example 12 In Example 11, a pattern composed of a lyophilic region and a liquid repellent region was formed in the same manner as in Example 11 except that exposure was performed using vacuum ultraviolet light instead of 253 nm ultraviolet light as an exposure light source. The wettability was evaluated. At this time, a pattern composed of a liquid repellent region and a lyophilic region was formed so that the exposure amount of vacuum ultraviolet light having a wavelength of 172 nm was 5 J / cm 2 from the metal mask side.
  • Example 13 In Example 11, instead of using the hole injection transport layer device material obtained in Synthesis Example 1 as the hole injection transport layer, the hole injection transport layer device material obtained in Synthesis Example 2 was used. A pattern composed of a new liquid region and a liquid repellent region was formed in the same manner as in Example 11 except that a hole injecting and transporting layer (film thickness: 15 nm) was formed, and wettability was evaluated.
  • Example 11 the hole injecting and transporting layer was heated at 200 ° C. for 1 hr. Except for heating, a thin film was formed in the same manner as in Example 11, and wettability was evaluated.
  • Reference Example 5 In Reference Example 4, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer device material obtained in Synthesis Example 2 was used. A thin film was formed in the same manner as in Reference Example 4 except that a hole injecting and transporting layer (film thickness: 15 nm) was formed, and wettability was evaluated.
  • Reference Example 6 In Reference Example 4, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer device material obtained in Synthesis Example 3 was used. A thin film was formed in the same manner as in Reference Example 4 except that a hole injecting and transporting layer (film thickness: 15 nm) was formed, and wettability was evaluated.
  • Reference Example 7 In Reference Example 4, instead of using the hole injection / transport layer device material obtained in Synthesis Example 1 as the hole injection / transport layer, the hole injection / transport layer device material obtained in Synthesis Example 4 was used. A thin film was formed in the same manner as in Reference Example 4 except that a hole injecting and transporting layer (film thickness: 15 nm) was formed, and wettability was evaluated.
  • the thin film was dried by coating using heptadecafluorodecylbenzylamine dissolved in 0.4 wt% of heptafluoro-n-ethyl butyrate.
  • the film thickness after drying was not able to be measured and was 5 nm or less.
  • Example 11 and 13 it can be seen that the material is not decomposed by the light of 254 nm in the region where only region IV is exposed, and the presence of the photocatalyst is necessary. XPS measurements of these surfaces showed that fluoroalkyl groups remained as much as untreated films. On the other hand, the contact angle in the exposed area in region IV of Example 12 is 22 °, which is 36 ° lower than that in the unexposed area. Since the liquid-repellent contrast between the unexposed area and the exposed area is 20 ° or more, it can be seen that in the case of vacuum ultraviolet light, the coating can be performed without a photocatalyst. XPS measurements of these surfaces showed that a small amount of fluoroalkyl groups remained.
  • FIG. 12A a partially enlarged schematic cross-sectional view is shown in FIG. 12A and a partially enlarged schematic plan view seen from above is shown in FIG. 12B.
  • a hole injecting and transporting layer is formed, the hole injecting and transporting layer is exposed with a photomask with a photocatalyst to perform wettability patterning, and the hole transporting layer and the light emitting layer are formed between the partition walls which are lyophilic parts by an inkjet method.
  • the light emitting surface of the device was observed.
  • the light emitting layer was painted in two colors, green and blue.
  • an ITO substrate on which a grid-like insulating layer and a line-shaped partition wall as shown in FIGS. 12A and 12B are formed is ultrasonically cleaned in the order of neutral detergent and ultrapure water. Finally, UV ozone treatment was performed. Next, a Mo-containing nanoparticle thin film was applied and formed on the substrate as a hole injecting and transporting layer by a spin coating method.
  • the hole injection / transport layer forming ink was prepared by dissolving 0.012 g of the hole injection / transport layer device material obtained in Synthesis Example 1 in 3.0 g of heptafluoro-n-ethyl butyrate to prepare a 0.4 wt% solution. Prepared.
  • the coating film After forming the coating film, it was dried on a hot plate at 200 ° C. The film thickness after drying was 10 nm. When the contact angle was measured at a flat portion having no partition wall structure, the contact angle on the surface of the hole injecting and transporting layer with respect to xylene was 58 °.
  • the opening is adjusted so as to be positioned on the linear partition, and the substrate is adjusted.
  • the film was exposed to and subjected to wettability patterning with high liquid repellency and contrast.
  • the distance between the photocatalyst containing layer and the hole injecting and transporting layer of the photocatalyst containing layer is 100 ⁇ m using an ultraviolet exposure apparatus including a high pressure mercury lamp, a photomask with a photocatalyst containing layer, and a position adjusting mechanism of the substrate.
  • the hole transport layer was formed by applying a coating liquid for forming a hole transport layer having the following composition to the lyophilic region formed between the partition walls by an inkjet method. After forming the coating film, it was dried in nitrogen at 200 ° C. for 60 minutes. The amount of ink applied was adjusted so that the film thickness after drying was 30 nm.
  • (Coating fluid for hole transport layer formation) Poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4 ′-(N- (4-sec-butylphenyl)) diphenylamine)] (TFB) 1.8 wt. Parts / Methylanisole 98.2 parts by weight
  • a green light emitting layer forming coating solution having the following composition is applied every other line by an inkjet method, and then a green light emitting layer forming coating solution is applied.
  • a blue light emitting layer forming coating solution was applied to the uncoated lines by an ink jet method to form a light emitting layer in which green and blue were arranged every other line.
  • After forming the coating film it was dried in nitrogen at 100 ° C. for 30 minutes. The amount of ink applied was adjusted so that the film thickness after drying was 40 nm.
  • a hole blocking layer was uniformly deposited on the light emitting layer.
  • the hole blocking layer uses bis (2-methyl-8-quinolato) (p-phenylphenolate) aluminum complex (BAlq) as a block forming material, and is subjected to vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa) by resistance heating method.
  • the BAlq vapor deposition film was formed by vapor deposition so that the film thickness was 15 nm.
  • An electron transport layer was deposited on the hole blocking layer.
  • the electron transport layer was formed by vapor deposition of tris (8-quinolinolato) aluminum complex (Alq3) in a vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa) by a resistance heating method so that the film thickness of the Alq3 vapor deposition film was 20 nm.
  • An electron injection layer and a cathode were successively deposited on the electron transport layer of the produced glass substrate with a transparent anode / hole injection transport layer / hole transport layer / light emitting layer / hole block layer / electron transport layer.
  • a vapor deposition film was formed in vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa) by resistance heating vapor deposition sequentially for LiF (thickness: 0.5 nm) for the electron injection layer and Al (thickness: 100 nm) for the cathode.
  • After forming the cathode it was sealed using a non-alkali glass and a UV curable epoxy adhesive in a low oxygen, low humidity glove box.
  • the light emitting layer was applied, the light emitting layer was observed with a fluorescence microscope, and it was confirmed that the green and blue colors could be neatly mixed without being mixed. Furthermore, when the light emitting surface of the manufactured device was observed with a microscope, it was confirmed that a device that emitted blue and green light every other line could be manufactured. It was confirmed that the light emission within each pixel was uniform, the light emission variation between the pixels was small, and the colors could be painted with very high accuracy. In this embodiment, two colors of green and blue are separately applied. However, according to the method of this embodiment, in principle, it can be easily expanded to three colors and four colors. It can be easily applied to production.
  • Example 15 In Example 14, the exposure light source was exposed using vacuum ultraviolet light instead of 253 nm ultraviolet light, and a photomask without a photocatalyst was used instead of a photomask with a photocatalyst. Thus, an organic EL device of Example 15 was produced. At this time, a pattern composed of a liquid repellent region and a lyophilic region was formed so that the exposure amount of vacuum ultraviolet light having a wavelength of 172 nm was 5 J / cm 2 from the photomask side. When the light emitting surface of the manufactured device was observed with a microscope, it was confirmed that a device emitting blue and green every other line was manufactured.
  • Example 16 In Example 14, instead of using the hole injection transport layer device material obtained in Synthesis Example 1, Example 14 except that the hole injection transport layer device material obtained in Synthesis Example 2 was used. Similarly, an organic EL element of Example 16 was produced. When the light emitting surface of the manufactured device was observed with a microscope, it was confirmed that a device emitting blue and green every other line was manufactured. It was confirmed that the light emission within each pixel was uniform, the light emission variation between the pixels was small, and the pixels could be painted with very high accuracy.
  • Example 17 In Example 14, the organic EL of Example 17 was used in the same manner as in Example 14 except that an ITO substrate having only an insulating layer and no barrier ribs was used instead of the ITO substrate having an insulating layer and barrier ribs. An element was produced. After applying the light-emitting layer, the light-emitting layer was observed with a fluorescence microscope. Even though there was no partition wall structure, the ink was not broken and green and blue were not mixed with each other. It could be confirmed. Furthermore, when the light emitting surface of the manufactured device was observed with a microscope, it was confirmed that a device that emitted blue and green light every other line could be manufactured.
  • Example 18 In Example 14, the photocatalyst with photocatalyst was not provided with a chrome pattern, and a photomask having no chrome pattern was used, and 254 nm exposure was performed from the ITO substrate side, not from the back side of the photomask with a photocatalyst containing layer.
  • An organic EL device of Example 18 was produced in the same manner as in Example 14 except that the exposure was performed for 9 minutes so as to be 2 . When the light emitting surface of the manufactured device was observed with a microscope, it was confirmed that a device emitting blue and green every other line was manufactured. It was confirmed that the light emission within each pixel was uniform, the light emission variation between the pixels was small, and the pixels could be painted with very high accuracy.
  • the hole injection / transport layer device material obtained in Synthesis Example 1 has a high transmittance at 254 nm, and further, as shown in the previous example, the device characteristics are not deteriorated by UV irradiation at 254 nm. It is advantageous for exposure from the back side.
  • Example 14 instead of using the hole injection transport layer device material obtained in Synthesis Example 1, PEDOT / PSS (AI4083 manufactured by Starck) and 4- (3,3,4,4,5,5, 6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl) benzylamine, except that a laminated thin film was formed by spin coating, the same as in Example 14 The organic EL element of Example 6 was produced.
  • the PEDOT / PSS layer was prepared by diluting a PEDOT / PSS solution with distilled water and dissolving the film after drying to a thickness of 15 nm.
  • the thin film was dried by coating using heptadecafluorodecylbenzylamine dissolved in 0.4 wt% of heptafluoro-n-ethyl butyrate.
  • the film thickness after drying was not able to be measured and was 5 nm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

エネルギー照射により濡れ性が変化すると共に、プロセス耐性が高く、且つ、優れた正孔注入輸送性を有し、溶液塗布法により正孔注入輸送層を形成可能な正孔注入輸送層用デバイス材料、及び当該デバイス材料を用いた正孔注入輸送層用インクを提供する。また、正孔注入輸送層上に積層される層をパターニング可能で、且つ、長寿命を達成可能なデバイス及びその製造方法を提供する。 少なくとも遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に、フッ素含有有機化合物が付着していることを特徴とする、正孔注入輸送層用デバイス材料である。また、当該デバイス材料を用いた、正孔注入輸送層用インク、デバイス及びその製造方法である。

Description

正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
 本発明は、エネルギー照射により濡れ性が変化すると共に正孔注入輸送性を有する正孔注入輸送層用デバイス材料、並びに、当該デバイス材料を用いた正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法に関するものである。
 正孔注入輸送層を有するデバイスとしては、有機エレクトロルミネセンス素子(以下、有機EL素子という。)、有機トランジスタ、有機太陽電池、有機半導体等の有機デバイス、またその他に、量子ドット発光素子、酸化物系化合物太陽電池等、広範な基本素子及び用途への展開が期待されている。
 例えば、有機EL素子は、発光層に到達した電子と正孔とが再結合する際に生じる発光を利用した電荷注入型の自発光デバイスである。有機EL素子の素子構造は、現在では、高い発光効率と長駆動寿命を得るために、電子注入層/電子輸送層/発光層/正孔輸送層/正孔注入層とからなる5層構造など、様々な多層構造が提案されている。
これら電子注入層、電子輸送層、正孔輸送層、正孔注入層などの発光層以外の層には、電荷を発光層へ注入・輸送しやすくする効果、あるいはブロックすることにより電子電流と正孔電流のバランスを保持する効果や、光エネルギー励起子の拡散を抑制するなどの効果があるといわれている。
 電荷輸送能力および電荷注入能力の向上を目的として酸化性化合物を、正孔輸送性材料に混合して電気伝導度を高くすることが試みられている。
 特許文献1~4においては、酸化性化合物すなわち電子受容性化合物として、化合物半導体である金属酸化物が用いられている。例えば五酸化バナジウムや三酸化モリブデンなどの金属酸化物を用いて蒸着法で薄膜を形成したり、或いはモリブデン酸化物とアミン系の低分子化合物との共蒸着により混合膜を形成している。
 非特許文献1においては、5酸化バナジウムの塗膜形成の試みとして、酸化性化合物すなわち電子受容性化合物として、オキソバナジウム(V)トリ-i-プロポキシドオキシドを溶解させた溶液を用い、それと正孔輸送性高分子との混合塗膜の形成後に水蒸気中で加水分解させてバナジウム酸化物として、電荷移動錯体を形成させる作製方法が挙げられている。
 特許文献5においては、三酸化モリブデンの塗膜形成の試みとして、三酸化モリブデンを物理的に粉砕して作製した微粒子を溶液に分散させてスラリーを作製し、それを塗工して正孔注入層を形成することが記載されている。
 しかしながら、特許文献1~5及び非特許文献1で開示されたような酸化性材料を正孔輸送性材料に用いても、長寿命素子の実現は困難であるか、更に寿命を向上させる必要があった。特許文献1~4で開示されている金属酸化物では、ある程度正孔注入特性は向上するものの、隣接する有機化合物層との界面の密着性が不十分になり、寿命特性に悪影響を及ぼしていると考えられる。
 特許文献5には平均粒径20nmの酸化モリブデン微粒子を溶媒に分散させたスラリーを用いて、スクリーン印刷法により電荷注入層を作製した旨の記述がある。しかしながら、特許文献5のようにMoO粉末を粉砕する方法だと、例えば10nm程度の正孔注入層を形成する要求に対して10nm以下のスケールで粒径のそろった微粒子を作製することは、実際には非常に困難である。また、粉砕されて作製される酸化モリブデン微粒子は、凝集させることなく溶液中に安定的に分散させることが非常に困難である。微粒子の溶液化が不安定であると、塗布膜作製の際に凹凸の大きな平滑性が悪い膜しか形成できず、デバイスの短絡の原因となる。蒸着法でしか薄膜形成できないと、発光層をインクジェット法等の溶液塗布法で塗り分けて形成しても、結局、溶液塗布法の利点を活かすことができないという問題がある。すなわち、親液性となるモリブデン酸化物によって各発光層の間の隔壁(バンク)の撥液性を損なわないために、無機化合物のモリブデン酸化物を含有する正孔注入層あるいは正孔輸送層を、高精細マスクを用いて蒸着する必要があり、結局コストや歩留まりの点から、溶液塗布法の利点を活かすことができなかった。さらに、無機化合物のモリブデン酸化物は酸素欠損型の酸化物半導体で、電気伝導性は酸化数+6のMoOよりも酸化数+5のMoは常温で良導体であるが大気中では不安定であり、容易に熱蒸着できる化合物は、MoOあるいはMoOなどの安定な価数をもつ酸化化合物に限定される。
 成膜性や薄膜の安定性は素子の寿命特性と大きく関係する。一般的に有機EL素子の寿命とは、一定電流駆動などで連続駆動させたときの輝度半減時間とし、輝度半減時間が長い素子ほど長駆動寿命であるという。
 一方、EL素子等を用いたディスプレイの製造にあっては、一般に、発光層等のパターニングがなされている。発光層等のパターニング方法としては、材料をシャドウマスクを介して蒸着する方法、インクジェットによる塗り分け方法、発光色素を転写する方法、フレキソ印刷法、グラビア印刷法等の種々のパターニング方法が提案されている。インクジェットによる塗り分け方法では、高精細な微細パターンを得るために、隔壁(バンク)を形成して、隔壁表面をフッ素ガス等のプラズマ処理により撥インク処理すること(例えば、特許文献6参照)や撥液性材料を用いて隔壁を形成すること(例えば、特許文献7参照)が提案されている。さらに、発光層のパターニング方法として、高精細なパターンの形成を可能とする、光触媒を用いる方法(例えば、特許文献8)や、真空紫外光を用いる方法(例えば、特許文献9)も提案されている。
 上記のような隔壁表面をフッ素ガス等のプラズマ処理により撥インク処理する方法によると、当該撥インク処理の耐熱性が低く、その後のプロセスに問題が生じる。例えば、撥インク処理後に隔壁の開口部に層を形成する際にかかる比較的高温(例えば200℃)の加熱によって、隔壁部に導入されたフッ素が脱離して隔壁部が親インク化され、更に層を積層することができずにデバイスの特性が低くなるという問題があった。また、撥液性材料を用いて隔壁を形成する場合においても、多くの撥液性材料は、比較的高温の加熱によりフッ素が脱離しやすく、耐性がないため、上記と同様の問題があった。また、このような隔壁においては、隔壁の頂部は撥インク性であるが側面を親インク性とすることはできなかった。
 また、上記の光触媒を用いる方法および真空紫外光を用いる方法では、エネルギー照射に伴う光触媒の作用が及んだ部分または真空紫外光が照射された部分にて、液体の接触角が低下するように濡れ性が変化することを利用している。すなわち、エネルギー照射に伴う光触媒の作用が及んだ部分または真空紫外光が照射された部分が親液性領域となり、エネルギー照射に伴う光触媒の作用が及ばない部分または真空紫外光が照射されない部分が撥液性領域となることを利用している。そのため、エネルギー照射に伴う光触媒の作用が及んだ部分または真空紫外光が照射された部分の上に発光層等が形成されることになる。しかしながら、濡れ性が変化する層が正孔輸送性等を有する場合には、エネルギー照射に伴う光触媒の作用が及んだ部分または真空紫外光が照射された部分にて材料が劣化し、正孔輸送性等が損なわれるという問題があった。
特開2006-155978号公報 特開2007-287586号公報 特許第3748110号公報 特許第2824411公報 特開2008-041894号公報 特許第3951445号公報 特開昭59-75205号公報 特開2004-71286号公報 特開2007-178783号公報
SID 07 DIGEST p.1840-1843 (2007)
 上記の光触媒を用いる方法および真空紫外光を用いる方法は、エネルギーの照射のみで濡れ性の違いによるパターンを形成することができることから、発光層等のパターニングに要する手間を大幅に省略することができる点で有用な方法である。しかしながら、従来、上記の光触媒を用いる方法および真空紫外光を用いる方法に適用しても、紫外光等のエネルギー照射に対する耐性が高く正孔注入輸送性が損なわれない材料であって、且つ、加熱プロセス時に親液性及び撥液性のパターニング性が損なわれない材料が、存在しなかった。
 同時に、溶液塗布法により正孔注入輸送層を形成可能で製造プロセスが容易でありながら、正孔注入輸送性に優れ、デバイスの長寿命を達成可能な正孔注入輸送材料が望まれていた。
 本発明は上記問題点に鑑みてなされたものであり、エネルギー照射により濡れ性が変化すると共に、プロセス耐性が高く、且つ、優れた正孔注入輸送性を有し、溶液塗布法により正孔注入輸送層を形成可能な正孔注入輸送層用デバイス材料、及び当該デバイス材料を用いた正孔注入輸送層用インクを提供することを目的とする。
 また、本発明の更なる目的は、上記正孔注入輸送層用デバイス材料を用いて親液性領域及び撥液性領域からなるパターンを形成することにより、正孔注入輸送層上に積層される層をパターニング可能で、且つ、長寿命を達成可能なデバイス及びその製造方法を提供することにある。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、表面にフッ素含有有機化合物が付着している遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターが、光触媒作用や真空紫外光照射により濡れ性が変化可能な上、プロセス耐性が高いこと、並びに、溶液塗布法により層を形成でき製造プロセスが容易でありながら、正孔注入特性を向上し、且つ、隣接する電極や有機層との密着性にも優れた、安定性の高い膜となることを見出し、本発明を完成させるに至った。
 すなわち、本発明の正孔注入輸送層用デバイス材料は、少なくとも遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に、フッ素含有有機化合物が付着していることを特徴とする。
 本発明の正孔注入輸送層用デバイス材料においては、前記遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターに含まれる、遷移金属酸化物中の遷移金属として、モリブデン、タングステン、及びバナジウムよりなる群から選択される少なくとも1種の金属を含むことが、駆動電圧の低下や素子寿命を向上させる点から好ましい。
 本発明の正孔注入輸送層用デバイス材料においては、前記フッ素含有有機化合物が、フッ素化アルキル基を含有することが、エネルギー照射による濡れ性の変化が良好で、優れたパターニングが得られる点から好ましい。
 本発明の正孔注入輸送層形成用インクは、上記本発明に係る正孔注入輸送層用デバイス材料と、有機溶媒とを含有することを特徴とする。
 本発明に係るデバイスの製造方法の第一の実施態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 パターン状に第一電極層が形成された基板上に、上記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層を形成する正孔注入輸送層形成工程と、
 基体上に少なくとも光触媒を含有する光触媒含有層が形成されている光触媒含有層基板を、前記正孔注入輸送層に対して、エネルギー照射に伴う光触媒の作用が及び得る間隙をおいて配置した後、パターン状にエネルギー照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成する濡れ性変化パターン形成工程とを有することを特徴とする。
 また、本発明に係るデバイスの製造方法の第二の実施態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 パターン状に電極層が形成された基板上に、上記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層を形成する正孔注入輸送層形成工程と、
 パターン状に真空紫外線を照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成する濡れ性変化パターン形成工程とを有することを特徴とする。
 本発明のデバイス及びその製造方法によれば、正孔注入輸送層が、撥液性のフッ素含有有機化合物が付着している材料を含有するので、光触媒の作用又は真空紫外線の照射によって、このフッ素含有有機化合物が分解除去されることで、エネルギーの照射部分と未照射部分とで濡れ性に大きな差を生じさせることができる。濡れ性が変化し得る正孔注入輸送層に、光触媒含有層を介してエネルギーを照射又は真空紫外線の照射することにより、濡れ性変化パターンを形成し、この濡れ性変化パターンの濡れ性の違いを利用することにより、容易に、当該正孔注入輸送層上にパターン状の層を積層することができる。
 本発明のデバイス及びその製造方法によれば、正孔注入輸送層に含有される上記本発明に係る正孔注入輸送層用デバイス材料中に含まれる遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターが、濡れ性変化パターン形成工程に用いられる紫外光に耐性を有するため、優れた正孔注入輸送性が、濡れ性変化パターン形成工程を経ても劣化されず、損なわれないというメリットを有する。また、上記本発明に係る正孔注入輸送層用デバイス材料は、比較的高温(例えば200℃)の加熱にも耐性があるため、加熱プロセス時に濡れ性変化パターンが損なわれず、正孔注入輸送層上に何層もパターン状に積層する工程が可能である。更に、本発明に係る正孔注入輸送層用デバイス材料は、耐熱性や耐光性が高く劣化し難いため、本発明の製造方法で製造されたデバイスの寿命も向上する。
 本発明のデバイスの製造方法においては、前記正孔注入輸送層形成工程において、上記本発明に係る正孔注入輸送層用デバイス材料と、有機溶媒とを含有する正孔注入輸送層形成用インクを調製する工程と、当該正孔注入輸送層形成用インクを酸素存在下で加熱する工程を有することが、製造プロセスが容易で、且つ、正孔注入輸送層性が良好な点から好ましい。
 本発明のデバイスの製造方法の第一の実施態様においては、前記正孔注入輸送層形成工程前に、前記パターン状に第一電極層が形成された基板上の前記第一電極層のパターン間に、絶縁層や隔壁等の仕切部を形成する仕切部形成工程を有していても良い。
 また、本発明のデバイスの製造方法の第一の実施態様においては、前記第一電極層が形成された基板が透光性基板であって、前記仕切部が濡れ性変化パターン形成工程にて照射されるエネルギー線を反射または吸収する仕切部であって、前記濡れ性変化パターン形成工程において、前記透光性基板側から前記エネルギー照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成することが好ましい。このような場合には、照射されるエネルギー線を反射または吸収する仕切部がマスクと同様の機能を果たし、別途マスクを用意しなくても、正孔注入輸送層にパターン状にエネルギー照射を行うことが可能である。本発明の正孔注入輸送層に用いられる正孔注入輸送層用デバイス材料は透過率が高くUV照射でも素子特性が劣化し難いので、このような正孔注入輸送層の背面からのエネルギー照射も可能になる。
 本発明のデバイスの製造方法の第一の実施態様においては、前記濡れ性変化パターン形成工程において、パターン状にエネルギー照射する方法が、マスクを用いてエネルギー照射する方法であっても良いし、紫外レーザーをパターン状にスキャンしてエネルギー照射する方法であっても良い。
 本発明のデバイスの第一の実施態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
 前記正孔注入輸送層が、上記本発明に係る正孔注入輸送層用デバイス材料を含有し、前記正孔注入輸送層の表層部の前記正孔注入輸送層用デバイス材料のフッ素含有有機化合物が分解除去されていることを特徴とする。
 また、本発明のデバイスの第二の実施態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
 パターン状に第一電極層が形成された基板上の前記第一電極層のパターン間に、仕切部を有し、前記仕切部の開口部内の前記第一電極層上及び前記仕切部上に連続した正孔注入輸送層を有し、
 前記仕切部の開口部内の前記第一電極層上及び前記仕切部の側部上の正孔注入輸送層においては、上記本発明に係る正孔注入輸送層用デバイス材料の少なくとも一部のフッ素含有有機化合物が分解除去されており、且つ、前記絶縁層の頂部上の正孔注入輸送層は上記本発明に係る正孔注入輸送層用デバイス材料を含有していることを特徴とする。
 本発明のデバイスは、正孔注入輸送層が、少なくとも一部のフッ素含有有機化合物が分解除去された上記本発明に係る正孔注入輸送層用デバイス材料を含有するため、製造プロセスが容易でありながら、正孔注入輸送性に優れ、長寿命を達成可能である。本発明のデバイスは、前記本発明に係るデバイスの製造方法によって得ることができるものである。
 本発明のデバイスは、少なくとも発光層を含む有機層を含有する有機EL素子として好適に用いられる。
 本発明によれば、エネルギー照射により濡れ性が変化すると共に、プロセス耐性が高く、且つ、優れた正孔注入輸送性を有し、溶液塗布法により正孔注入輸送層を形成可能な正孔注入輸送層用デバイス材料、及び当該デバイス材料を用いた正孔注入輸送層用インクを提供することが可能である。
 本発明に係るデバイスの製造方法によれば、製造プロセスが容易でありながら、正孔注入輸送層の良好な濡れ性変化パターンを利用でき、優れた正孔注入輸送層を得ることができるので、長寿命を達成可能なデバイスを提供することが可能である。
 本発明に係るデバイスは、製造プロセスが容易でありながら、正孔注入輸送性に優れ、長寿命を達成可能である。
図1(A)~図1(C)は、本発明のデバイスの製造方法の一例を示す工程図である。 図2(A)~図2(C)は、本発明のデバイスの製造方法の他の例を示す工程図である。 図3(A)~図3(C)は、本発明のデバイスの製造方法の他の例を示す工程図である。 図4(A)~図4(C)は、本発明のデバイスの製造方法の他の例を示す工程図である。 図5は、本発明に係るデバイスの一部のデバイス用基板の例を示す概略断面図である。 図6(A)~図6(B)は、本発明に用いられる光触媒含有層基板の例を示す概略断面図である。 図7(A)~図7(B)は、本発明に係るデバイスの一部のデバイス用基板の例を示す概略断面図である。 図8は、本発明のデバイスの一例を示す概略断面図である。 図9は、本発明のデバイスの他の例を示す概略断面図である。 図10は、本発明の有機EL素子の一例を示す概略断面図である。 図11は、本発明の有機EL素子において濡れ性変化の実験を示す概略断面図である。 図12(A)~図12(B)は、本発明に用いられる絶縁層と隔壁が形成されたITO基板の一例であり、図12(A)は一部拡大概略断面図を示し、図12(B)は一部拡大概略平面図を示す。 図13は、合成例5で得られたフッ素含有有機化合物F-1の1H NMRスペクトルである。 図14は、合成例6で得られたフッ素含有有機化合物F-2の1H NMRスペクトルである。 図15は、合成例7で得られたフッ素含有有機化合物F-3の1H NMRスペクトルである。 図16は、合成例8で得られたフッ素含有有機化合物F-4の1H NMRスペクトルである。
I.正孔注入輸送層用デバイス材料
 本発明の正孔注入輸送層用デバイス材料は、少なくとも遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に、フッ素含有有機化合物が付着していることを特徴とする。
 本発明の正孔注入輸送層用デバイス材料は、表面にフッ素含有有機化合物が付着している遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターであるため、エネルギー照射に伴う光触媒の作用や真空紫外光の照射等により、表面に付着しているフッ素含有有機化合物を分解して除去可能であることにより、撥液性から親液性に濡れ性が変化する材料である。本発明の正孔注入輸送層用デバイス材料を用いると、エネルギー照射に伴う光触媒の作用が及んだ部分または真空紫外光が照射された部分が親液性領域となり、エネルギー照射に伴う光触媒の作用が及ばない部分または真空紫外光が照射されない部分が撥液性領域となる。本発明の正孔注入輸送層用デバイス材料は、エネルギー照射に伴う光触媒の作用や真空紫外光の照射等により、表面に付着しているフッ素含有有機化合物は分解除去されるが、遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスター自体は、紫外光や比較的高温の加熱にも耐性があるため、遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターが有する優れた正孔注入輸送性が、エネルギー照射、光触媒の作用時及び加熱時等のプロセス時に損なわれないというメリットがある。更に、本発明の正孔注入輸送層用デバイス材料は、フッ素を分解する光触媒処理等の処理を経ることによって、酸化されてイオン化ポテンシャルが大きくなり、正孔注入性が向上するというメリットがある。
 また、本発明の正孔注入輸送層用デバイス材料は、無機化合物のモリブデン酸化物を用いる場合と異なり、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスター表面に保護剤として少なくともフッ素含有有機化合物を含む有機部分を含有するため、隣接する有機層との界面の密着性も良好となる。通常、本発明の正孔注入輸送層用デバイス材料を用いた正孔注入輸送層の少なくとも表層部のフッ素含有有機化合物を分解して親液性領域とした上に、別の有機層が積層される態様で用いられるため、隣接する有機層との界面においてフッ素含有有機化合物由来の撥液性の影響もなくなり、界面の密着性が優れたものになる。
また、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターは含まれる遷移金属酸化物又は遷移金属化合物の反応性が高く、電荷移動錯体を形成しやすいと考えられる。そのため、本発明の正孔注入輸送層用デバイス材料は、低電圧駆動、高電力効率、長寿命なデバイスを実現可能な正孔注入輸送層を形成することが可能である。
 更に、本発明の正孔注入輸送層用デバイス材料に用いられる遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターは、無機化合物のモリブデン酸化物等を用いる場合と異なり、表面に保護剤として少なくともフッ素含有有機化合物を含む有機部分を含有するため、溶剤に分散性を有する。そのため、溶液塗布法によって薄膜形成が可能であることから、基板に正孔注入輸送層から発光層等の積層する有機層までを順次塗布プロセスのみで形成でき、製造プロセス上のメリットが大きい。それ故、無機化合物のモリブデン酸化物の場合のように正孔注入層を高精細なマスク蒸着等で蒸着した後に、正孔輸送層や発光層を蒸着法又は溶液塗布法で形成し、さらに第二電極を蒸着するようなプロセスと比較して、単純であり、低コストでデバイスを作製できる利点がある。
 以下、本発明の正孔注入輸送層用デバイス材料の構成を順に説明する。
<遷移金属含有ナノ粒子及び遷移金属含有ナノクラスター>
 本発明の正孔注入輸送層用デバイス材料に含まれる遷移金属含有ナノ粒子は、少なくとも遷移金属酸化物を含むものである。なおここで、ナノ粒子とは、直径がnm(ナノメートル)オーダー、すなわち1μm未満の粒子をいう。
 少なくとも遷移金属酸化物を含む遷移金属含有ナノ粒子は、単一構造であっても複合構造であっても良く、コア・シェル構造、合金、島構造等であっても良い。遷移金属含有ナノ粒子内には処理条件によって様々な価数の遷移金属原子や化合物、例えば遷移金属の炭化物、硫化物、ホウ化物、セレン化物、ハロゲン化物、錯体等を含んでいても良い。
 一方、本発明の正孔注入輸送層用デバイス材料に含まれる、遷移金属酸化物を含む遷移金属含有ナノクラスターは、少なくとも遷移金属原子と酸素原子が複数集まって特定の構造単位を形成している原子団、当該原子団を含む化合物、又は当該化合物の集合体をいう。ナノクラスターとは、その形状の最長部がnm(ナノメートル)オーダー、すなわち1μm未満のものをいう。
 本発明の遷移金属含有ナノクラスターは、化学的に合成されたポリオキソメタレート(POM)を含有する巨大分子であることが好ましい。POMとはオキソ酸からなるポリ酸構造を有する。この化学的に合成されたPOMを含有する遷移金属含有ナノクラスターは、巨大な分子であるため、大きさと重量は分子量で規定され、一つ一つのクラスター形状や大きさは、異性体が存在するものの、基本的には同じであることが特徴である。また化学的に合成されたPOMを含有する遷移金属含有ナノクラスターは、電気的性質がアニオンで、各クラスターの特性がそれぞれ同様となる。という特徴がある。例えば、今回実施例で使用したNa15[MoVI 126Mo 28O462H14(H2O)70]0.5[MoVI 124Mo 28O457H14(H2O)68]0.5・400H2Oクラスター({Mo154}の1種)の場合には、分子はドーナツ形状をしていて直径は約4nmである。さらに、このモリブデン酸化物ナノクラスターは、1つ1つの分子内に6価(MoVI)と5価のモリブデン(MoV)が共存する混合原子価ポリオキソメタレートであり、アニオンクラスターになるという特徴もある。
 本願において、遷移金属含有ナノ粒子及び遷移金属含有ナノクラスター中には、遷移金属酸化物が必ず含まれる。遷移金属酸化物が必ず含まれることにより、イオン化ポテンシャルの値が最適になったり、不安定な酸化数+0の金属からの酸化による変化をあらかじめ抑制しておくことにより、駆動電圧の低下や素子寿命を向上させることが可能になる。中でも、遷移金属含有ナノ粒子及び遷移金属含有ナノクラスターは、酸化数の異なる遷移金属酸化物が共存して含まれることが好ましい。酸化数の異なる遷移金属酸化物が共存して必ず含まれることにより、酸化数のバランスによって正孔輸送や正孔注入性が適度に制御されることにより、駆動電圧の低下や素子寿命を向上させることが可能になる。
 本発明で用いられる遷移金属含有ナノ粒子及び遷移金属含有ナノクラスターに含まれる、遷移金属、又は、遷移金属化合物に含まれる遷移金属は、周期表で第3族~第11族の間に存在する金属元素の総称である。遷移金属は、具体的には例えば、モリブデン、タングステン、バナジウム、レニウム、ニッケル、銅、チタン、白金、銀等が挙げられる。
 中でも、前記遷移金属含有ナノ粒子及び遷移金属含有ナノクラスターに含まれる、遷移金属酸化物中の遷移金属は、モリブデン、タングステン、及びバナジウムよりなる群から選択される少なくとも1種の金属を含むことが、反応性が高いことから、電荷移動錯体を形成し易く、駆動電圧の低下や素子寿命を向上させる点から好ましい。
 前記遷移金属含有ナノ粒子及び遷移金属含有ナノクラスターに含まれる金属は、単一金属であっても良いし、2種以上含まれていても良い。ナノ粒子中に金属が2種以上含まれる態様としては、2種以上の金属微粒子又は金属酸化物微粒子が複合して含まれていても良いし、2種以上の金属が合金として含まれていても良い。
 なお、遷移金属含有ナノ粒子及び遷移金属含有ナノクラスターに含まれる金属は、少なくとも遷移金属が含まれれば、非遷移金属が含まれていても良い。
2種以上の金属を含むことにより、正孔輸送性や正孔注入性を互いに補い合ったり、光触媒性を付与したり、薄膜の屈折率や透過率を制御するなど他の機能を併せ持つ正孔注入輸送層を形成できるというメリットがある。
 本発明で用いられる遷移金属含有ナノ粒子に含まれる、遷移金属酸化物は、遷移金属及び遷移金属化合物中に30モル%以上含まれることが好ましく、更に、50モル%以上含まれることが駆動電圧の低下や素子寿命を向上させる点から好ましい。
 本発明で用いられる遷移金属含有ナノクラスターとしては、下記式で表されるポリオキソメタレートを用いることができる。
[XxMyOz]n-
ここで、Xは第13-18族から選ばれる少なくとも1種の元素、コバルト、又は希土類から選ばれる少なくとも1種の元素であり、Mは第4-11族から選ばれる少なくとも1種の遷移金属元素又はアルミニウムであり、少なくともXかMのいずれかに遷移金属元素が含まれる。Oは酸素原子を表す。
 Mは、例えば、Mo、W、Cr、V、Nb、Fe、Ta、Alなどが挙げられる。Xは、例えば、P、As、Si、B、Coなどが挙げられる。xは0以上の整数であり、yは1以上の整数であり、zは1以上の整数である。x=0の場合は、イソポリ酸であり、xが1以上の整数の場合は、ヘテロポリ酸である。また、上記X及びMは、それぞれ独立に、1種単独でもよいし、2種以上含まれていても良い。
 イソポリ酸の具体例は、[Mo6O19]2-、[Mo10O32]4-などが挙げられる。ヘテロポリ酸の具体例としては、[PMo12O40]3-、[BW12O40]5-、[SbW6O24]8- 、[SiV2W10O40]6-、[V18O44N3]n-、[PWnMomO40]3-(n+m=12、n,mは0,1,2,3・・・)、[SiWnMomO40]4-(n+m=12、n,mは0,1,2,3・・・,[PVnWmO40]r-(n+m=1, n=1,2,3,4, r-n=3)、[PVnMomO40]r-(n+m=12、n=1,2,3,4,r-n=3)などが挙げられる。通常のMoO3のなどのモリブデン酸化物の組成式がMoVI nO3nに対し、[MoVI 6O19]2-などのポリ酸はMonO3n+m (m=1,2,3,・・・)と、同じ6価のモリブデンでも、ポリ酸は酸素が多く、アニオン状態に寄与している。これらのアニオンクラスターは通常対カチオンと共に水和物として存在しており、例えば、[BW12O40]5-の場合は、K5[BW12O40]・13H2Oとして存在することが知られている。
 本発明で用いられる遷移金属含有ナノクラスターの金属酸化物クラスターの構造としては、例えば、ケギン型、ドーソン型、アンダーソン型などを用いることができる。POMは遷移金属イオンに酸化物イオンが4~6個配位することができるので、四面体、四角錐、八面体などの多面体を基本単位とし、それらが積み重なって構成される。原子と構造の組み合わせから、非常に多くの分子構造が考えられ、さらにα、β、γ、σ体などの構造異性体も存在する。
 本発明で用いられる遷移金属含有ナノクラスターとしては、還元された混合原子価ポリオキソメタレートも用いることができる。どのPOMでも、還元反応により、容易に混合原子価状態をとることができる。例えば、[PMoVI 12O40]3-は、[PMoVI 11 MoO40]3-や[PMoVI 10 Mo 2O40]4-に還元でき、分子内に異なる原子価を持つ構造をとることができる。POMは、例えばドナー性ゲスト分子などにより還元することができる。還元されたアニオンは、一電子ごとに安定に還元されるという特徴があり、通常のMoO3などのモリブデン酸化物とは異なる。
 本発明で用いられる遷移金属含有ナノクラスターとしては、上記の構造を組み合わせた、巨大な混合原子価POMを用いることができる。例えば本実施例で用いたクラスターとしてNa15[MoVI 126Mo 28O462H14(H2O)70]0.5[MoVI 124Mo 28O457H14(H2O)68]0.5・400H2Oが挙げられる。これらは分子構造が複雑なために、簡便的な表記法として、分子内に含まれる遷移金属で代表してこの構造を{Mo154}と表記する方法が一般に用いられる。本発明に適用できる遷移金属含有ナノクラスターとしては、例えば、球形状の{Mo132}、リング形状である{Mo142}、{Mo154}、及び{Mo176}、ホイール形状の{Mo248}、レモン形状の{Mo368}が好適に用いられる。その他に、[PMo6O19]2-、[PMo12O40]3-等も用いることができる。
 また、タングステンやバナジウムを含む遷移金属含有ナノクラスターとしては、例えば、[KAs4W40(VO)2O140]23-、Mo8V2O28・7H2O、 [alpha-P2W18O62]6- 、[alpha-P2W17V(V)O62]7-、[alpha-1,2,3-P2W15V(V) 3O629-、[[alpha-PW12O40]3-W)、[alpha-P W11V(V)O40]4-、[alpha-1,2-PW10V(V) 2O405-、[alpha-1,2,3-PW9V(V) 3O406-、[alpha-1,4,9-PW9V(V) 3O406-、[V10O28]6-等が挙げられる。なお、上記記載において“V(V)”は5価のバナジウムを表わす。
 上記以外にも、2種以上の遷移金属元素を含む、例えば、{Mo132}の一部をタングステンで置換した{W72Mo60}を用いることができる。その他、{Mo57V6}、{Mo57Fe6}、{Mo72Cr30}、{W72Mo60}、{Ag2Mo8}等も用いることができる。
 本発明で遷移金属含有ナノクラスターとして用いられる混合原子価POMは、POMを化学反応で還元して合成して、異なる原子価を持つ金属を導入(例えば、Moの6価にMoの5価を導入)して結合させているので、構造的に安定で、取り込まれた異なる原子価を持つ金属(例えば、Moの5価)も安定に存在できる。異なる原子価が安定に存在し、安定したアニオン状態を維持できるので、寿命特性に優れた正孔注入層を形成することができる。一方、通常のMoO3のなどのモリブデン酸化物の場合は、モリブデンのほとんどがMoVIであり、組成式だとMonO3nとなる。しかし蒸着時の酸素欠損やスラリー形成時の物理的な粉砕により生じた粒子表面などに存在する酸素欠陥などによりMonO3n-mになり、Moも多少存在するかもしれない。しかし、MoO3で導入されるMoは酸素欠陥により生じるので、不均一であり不安定である。
 本発明で用いられる遷移金属含有ナノクラスターは、化学的に合成されたPOMを含有する金属酸化物クラスターのように、多くのクラスターは対カチオンを含有することができる。対カチオンとしてはH+、Na+、K+を好適に用いることができる。またカチオン性有機物あるいはイオン性液体を用いることもできる。
 遷移金属含有ナノクラスター内には合成条件によって様々な酸化数の遷移金属原子や遷移金属化合物、例えば遷移金属の硫化物、ホウ化物、セレン化物、ハロゲン化物や、配位子、非遷移金属原子等を含んでいても良い。
<表面に付着したフッ素含有有機化合物>
 本発明の正孔注入輸送層用デバイス材料は、前記少なくとも遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に、フッ素含有有機化合物が付着している。
 本発明の正孔注入輸送層用デバイス材料において「付着」とは、有機溶剤中に分散しても、剥離しない程度に、フッ素含有有機化合物が遷移金属含有ナノ粒子又は遷移金属含有ナノクラスター表面に固定していることをいう。「付着」には、吸着や配位も含まれるが、イオン結合、共有結合等の化学結合であることが好ましい。「付着」の態様は、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面の全体をフッ素含有有機化合物が被覆するように付着している態様であっても良いし、表面の一部にフッ素含有有機化合物が付着している態様であっても良い。
 本発明の正孔注入輸送層用デバイス材料においては、特に遷移金属含有ナノ粒子又は遷移金属含有ナノクラスター表面に、少なくともフッ素含有有機化合物を含む有機化合物が付着しているので、特許文献5のような単に遷移金属酸化物が粉砕されて形成された粒子と異なり、ナノ粒子又はナノクラスターの分散安定性が非常に高いものとなり、均一性の高いnmオーダーの薄膜を形成することができる。そのため本発明の正孔注入輸送層用デバイス材料で形成された薄膜は、経時安定性及び均一性が高いためショートし難い。更に、隣接する電極や有機層との密着性に優れるようになる。
 表面に付着したフッ素含有有機化合物の種類は適宜選択され、特に限定されない。フッ素含有有機化合物としては、フッ素以外のヘテロ原子を含んでいても良い、直鎖、分岐、又は環状の飽和又は不飽和炭化水素に含まれる水素の一部又は全部をフッ素で置換した有機化合物が挙げられる。従来正孔注入輸送材料として用いられていたヘテロ原子を含んでいても良い有機化合物に含まれる水素の一部又は全部をフッ素で置換した有機化合物であっても良い。或いは、従来正孔注入輸送材料として用いられていたヘテロ原子を含んでいても良い有機化合物にフッ素含有有機化合物を含む置換基を導入した化合物であっても良い。
 フッ素含有有機化合物としては、具体的には、直鎖、分岐、又は環状のアルキル基、アリール基の水素の一部又は全部をフッ素化したフッ素化アルキル基やフッ素化アリール基、及びこれらの組み合わせが挙げられる。フッ素化アルキル基の炭素数は、特に限定されないが、2~10が好ましく、更に4~6が好ましい。また、フッ素化アリール基、又はフッ素化アリール化アルキル基等のフッ素化アルキル基とフッ素化アリール基の組み合わせの炭素数も、特に限定されないが、6~12が好ましく、更に6~9が好ましい。
 前記フッ素含有有機化合物としては、フッ素化アルキル基を含有することが、エネルギー照射による濡れ性の変化が良好で、優れたパターニングが得られる点から好ましい。
 また、フッ素含有有機化合物としては、-NH-、-N=、-S-、-O-、-NH(C=O)-、-O-(C=O)-、-O-(SO2)-、-O-(C=O)-O-、-S-(C=O)-O-、-SiR-(C=O)-O-、-SiR-のような、複素環を形成していないヘテロ原子を含むことが、エネルギー照射によってフッ素有機化合物が分解されやすいため、濡れ性変化パターン形成工程で感度が向上する点から好ましい。
 中でも、C2n+12m-[mは0~20の整数、nは1~20の整数であり、m+nは1~30である。]で表されるフッ素化アルキル基は、高い撥油性を維持する点、及び、mが1以上の時、エーテル結合など他の元素に結合する場合に直接C2n+1と結合するよりもC2mを介した方が、化合物の安定性が高まる点から好ましい。一方で、エーテル結合など他の元素に結合する場合に直接C2n+1と結合する場合には、エネルギー照射によってフッ素有機化合物が分解されやすいため、濡れ性変化パターン形成工程で感度が向上し、正孔注入輸送層表面の残留有機成分が少なくなることにより、薄膜界面の密着性が向上し、素子特性が向上する点から好ましい。nは、更に2~10の整数、よりさらに4~6の整数であることが好ましい。mは0~10の整数、よりさらに2~8の整数であることが好ましい。
 前記フッ素化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは50~100%、さらに好ましくは80~100%であり、特に水素原子をすべてフッ素原子で置換したパーフルオロアルキル基が、高い撥油性を発現させる点から好ましい。
 また、芳香族炭化水素及び/又は複素環を含むフッ素含有有機化合物は、フッ素含有有機化合物の沸点を上げることができる点から好ましい。例えば、本発明のフッ素含有有機化合物が付着している正孔注入輸送層用デバイス材料の合成温度の制約を広げることができたり、デバイスを作製する場合の高温プロセス温度を高く設定可能という利点がある。
 また、芳香族炭化水素及び/又は複素環は電荷輸送性を有することが多いため、芳香族炭化水素及び/又は複素環を含むフッ素含有有機化合物により作製した正孔注入輸送層中の電荷移動度を高く維持できるので、低電圧化をはじめとする高効率化に対して利点がある。後述するフッ素含有有機化合物を分解するような処理により、膜の表層部のフッ素含有有機化合物は除去されるが、膜の内部には芳香族炭化水素及び/又は複素環を含むフッ素含有有機化合物が残るため、電荷輸送性が高い方が高効率化に寄与し得る。
 また、例えば有機EL素子等の有機デバイスの各層には通常芳香族炭化水素及び/又は複素環電荷輸送性材料が含まれるため、隣接する有機層と正孔注入輸送層の密着性の向上を考慮すると、芳香族炭化水素及び/又は複素環の構造を含むことが長駆動寿命化に寄与する点から好ましい。
 フッ素化アルキル基の例としては、下記構造が挙げられる。
 CF-、CFCF-、CHFCF-、CF(CF-、CF(CF-、CF(CF-、CF(CF-、CF(CF-、CF(CF-、CF(CF-、CF(CF-、CF(CF11-、CF(CF15-、CFCHCH-、CFCFCHCH-、CHFCFCHCH-、CF(CFCHCH-、CF(CFCHCH-、CF(CFCHCH-、CF(CFCHCH-、CF(CFCHCH-、CF(CFCHCH-、CF(CFCHCH-、CF(CFCHCH-、CF(CF11CHCH-、CF(CF15CHCH-、CF(CFO(CF)CF-、CF(CFO(CF)CFCFO(CF)CF-、CF(CFO(CF)CFCFO(CF)CFCFO(CF)CFCFO(CF)CF-、CF(CFO(CF)CF-。以上は、直鎖構造を例示したが、イソプロピル基など分岐構造であっても良い。
 芳香族炭化水素及び/又は複素環を含むフッ素含有有機化合物の例としては、ペンタフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、3,4,5-トリフルオロフェニル基、2,4-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、ノナフルオロビフェニル基、α,α,α,2,3,5,6-ヘプタフルオロ-p-トリル基、ヘプタフルオロナフチル基、(トリフルオロメチル)フェニル基、3,5-ビス(トリフルオロメチル)フェニル基、ペンタフルオロフェニルメチル基、2,3,5,6-テトラフルオロフェニルメチル基、3,4,5-トリフルオロフェニルメチル基、2,4-ジフルオロフェニルメチル基、3,4-ジフルオロフェニルメチル基、3,5-ジフルオロフェニルメチル基、ノナフルオロビフェニルメチル基、α,α,α,2,3,5,6-ヘプタフルオロ-p-トリルメチル基、ヘプタフルオロナフチルメチル基、(トリフルオロメチル)フェニルメチル基、3,5-ビス(トリフルオロメチル)フェニルメチル基、4,4’,4”-トリフルオロトリチル基等が挙げられる。
 フッ素含有有機化合物としては、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面保護と分散安定性の点から、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に、前記遷移金属及び/又は遷移金属化合物と連結する作用を生ずる連結基を用いて付着されていることが好ましい。すなわち、フッ素含有有機化合物の末端に連結基が含まれる保護剤によって、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面にフッ素含有有機化合物が付着していることが好ましい。
 連結基としては、遷移金属及び/又は遷移金属化合物と連結する作用を有すれば、特に限定されない。連結には、吸着や配位も含まれるが、イオン結合、共有結合等の化学結合であることが好ましい。保護剤中の連結基の数は分子内に1つ以上であればいくつであっても良い。しかしながら、溶液への溶解性や分散安定性、撥油性の発現性を考慮すると、連結基は保護剤の1分子内に1つであることが好ましい。連結基の数が1分子内に1つの場合は、保護剤は粒子と結合するか、2分子反応で二量体を形成して反応が停止する。当該二量体については、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターとの密着性が弱いため、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの調製工程に洗い流す工程を付与すると容易に取り除くことができる。また、連結基の数が1分子内に2つ以上存在するとナノ粒子同士が連結されてインク中で粒子が凝集し易くなる恐れがある。
 当該連結基としては、例えばカルボキシル基、アミノ基、水酸基、チオール基、アルデヒド基、スルホン酸基、アミド基、スルホンアミド基、リン酸基、ホスフィン酸基、P=O基などの親水性基、または、アンモニウム塩、イミダゾリウム塩、ピリジウム塩、スルフォニウム塩、ホスフォニウム塩、モルフォリニウム塩、ピペリジニウム塩などのイオン性液体などが挙げられる。連結基としては、以下の式(1a)~(1n)で示される官能基より選択される1種以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Z、Z及びZは、それぞれ独立にハロゲン原子、又はアルコキシ基を表す。)
 本発明に係る正孔注入輸送層用デバイス材料に好適に用いられる、フッ素含有有機化合物の末端に連結基が含まれる保護剤としては、例えば、下記一般式(I)で表わされる保護剤が挙げられる。
 一般式(I)
 Y-Q-(A’-FQ’)-(A-FQ)
(一般式(I)において、Yは前記連結基を表す。Qは、直鎖、分岐又は環状の脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基又はこれらの組み合わせ、或いは直接結合を表す。A及びA’はそれぞれ独立に、-NH-、-N=、-S-、-O-、-NH(C=O)-、-O-(C=O)-、-O-(SO2)-、-O-(C=O)-O-、-S-(C=O)-O-、-SiR-(C=O)-O-、-SiR-、又は直接結合を表し、当該Rは水素又は直鎖、分岐又は環状の脂肪族炭化水素基を表す。FQ及びFQ’はそれぞれ独立に、は、前記フッ素含有有機化合物を表す。また、nは0又は1以上の整数である。)
 上記A及び/又はA’が、-NH-、-N=、-S-、-O-、-NH(C=O)-、-O-(C=O)-、-O-(SO2)-、-O-(C=O)-O-、-S-(C=O)-O-、-SiR-(C=O)-O-、-SiR-である場合には、エネルギー照射によってA及び/又はA’の部分で切断されやすく、FQで表わされるフッ素有機化合物が分解されやすいため、濡れ性変化パターン形成工程の感度が向上する点から好ましい。
 また、Qが、芳香族炭化水素基や芳香族複素環基を含む場合には、正孔注入輸送層における電荷移動度を高くすることに寄与できるので、低電圧化をはじめとする高効率化に対して利点がある。後述するフッ素含有有機化合物を分解するような処理により、A及び/又はA’において切断される場合には、フッ素含有有機化合物FQは分解除去されるが、芳香族炭化水素及び/又は複素環を含むQの部分は、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に残るため、Qが電荷輸送性が高い場合には、デバイスの高効率化に寄与し得る。
 FQは1価のフッ素含有有機化合物基であり、FQ’は2価のフッ素含有有機化合物基である。
 nが1以上の場合はエネルギー照射によってA’の部分で切断されやすく、FQで表わされるフッ素有機化合物が分解されやすくなる。nが1以上の場合としては、例えば、-O-(CH2p-O-(CH22-(CF2q- CF3などが挙げられる。
 nは5以下であることが好ましく、更に4以下であることが分解速度が速くなる点から好ましい。
 前記一般式(I)で表わされる保護剤としては、例えば、以下の構造が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
(n及びn’は1~5の整数、m及びm’は0又は1~5の整数、lは0又は1~5の整数である。Yは、前記式(1a)~(1n)で示される官能基のいずれかである。)
Figure JPOXMLDOC01-appb-C000003
(nは1~5の整数、mは0又は1~5の整数、lは0又は1~5の整数である。Yは、前記式(1a)~(1n)で示される官能基のいずれかである。)
Figure JPOXMLDOC01-appb-C000004
(nは1~5の整数、lは0又は1~5の整数である。Yは、前記式(1a)~(1n)で示される官能基のいずれかである。)
 また、表面に付着したフッ素含有有機化合物は、高分子化合物であっても使用可能であるが、分子量が1000以下であることが好ましい。分子量が大きくなるとフッ素含有有機化合物1分子内の有機成分に対する連結基の割合が小さくなるため、ナノ粒子と結合する確率が小さくなり、分散性が悪くなったり、粒径の均一性の制御が難しかったり、粒径が大きくなってしまう恐れがある。また、表面に付着したフッ素含有有機化合物の分子量が大きくなると、デバイスにした時に、残留する有機成分の割合が多くなり、高電圧化するなど特性に悪影響を及ぼす恐れがある。更に、光触媒処理する際に、有機成分を分解するのに時間がかかり、スループットが悪くなる恐れがある。
 なお、表面に付着したフッ素含有有機化合物の分子量は、分子量分布を有しない場合には、化合物そのものの分子量を意味し、分子量分布を有する場合にはゲル浸透クロマトグラフィー(GPC)により測定したポリスチレン換算値である重量平均分子量を意味する。
 本発明に係る正孔注入輸送層用デバイス材料において、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面には少なくともフッ素含有有機化合物が付着しているが、フッ素含有有機化合物ではない有機化合物が付着していても良い。
このようなフッ素含有有機化合物ではない有機化合物には、製法上フッ素含有有機化合物を含む保護剤を置換する前に遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に存在していた保護剤や、フッ素を含まない電荷輸送性化合物、架橋性を有する化合物、溶解性を制御するための化合物等が含まれる。
 本発明で用いられる遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターにおいて、遷移金属化合物及び遷移金属と、その表面に付着しているフッ素含有有機化合物を含む有機化合物との含有比率は、適宜選択され、特に限定されないが、遷移金属化合物及び遷移金属原子100重量部に対して、表面に付着しているフッ素含有有機化合物を含む有機化合物が10~200重量部、更に10~20重量部で仕込まれることが好ましい。
 また、1つの遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターにおいて、遷移金属原子とフッ素含有有機化合物の含有割合は、粒子乃至クラスターの大きさにより表面積が変わるため、適宜選択されることが好ましい。遷移金属原子とフッ素含有有機化合物分子のモル比は、10:1~1:5、更に5:1~1:2の範囲で選択されることが好ましい。これらの比率は、例えば、NMR法やX線光電子分光法により、求めることができる。
 また、本発明に係る正孔注入輸送層用デバイス材料において、表面に付着しているフッ素含有有機化合物の量は、当該正孔注入輸送層用デバイス材料を用いて形成された層の撥液性に対する要求に対して適宜選択しても良い。
 例えば、表面張力28.5mN/mの液体の接触角が25°以上となるように、より好ましくは45°以上、さらに好ましくは55°以上となるように選択することが挙げられる。
 本発明で用いられる正孔注入輸送層用デバイス材料の平均粒径は、特に限定されるものではなく例えば0.5nm~999nmの範囲内であるが、0.5nm~50nmの範囲内、中でも0.5nm~20nmの範囲内であることが好ましい。本発明で用いられる正孔注入輸送層用デバイス材料の平均粒径は、更に、15nm以下であることが好ましく、特に1nm~10nmの範囲内であることが好ましい。粒子径が1nm以下になると動的光散乱法などの分解能を超えているため、粒子の存在を実証することや安定に製造することが困難であるからである。一方、粒子径が大きすぎると、単位重量当たりの表面積(比表面積)が小さくなり、所望の効果が得られない可能性があり、さらに薄膜の表面粗さが大きくなりショートが多発する恐れがあるからである。
 ここで平均粒径は、動的光散乱法により測定される個数平均粒径であるが、正孔注入輸送層に分散された状態においては、平均粒径は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて得られた画像から、遷移金属含有ナノ粒子が20個以上存在していることが確認される領域を選択し、この領域中の全ての遷移金属含有ナノ粒子について粒径を測定し、平均値を求めることにより得られる値とする。
 なお、球状でないナノクラスターにおいて、粒径は、最長径、例えばドーナツ型の場合には外円の直径をいい、レモン型の場合は長軸の長さをいう。
 本発明で用いられる正孔注入輸送層用デバイス材料の製造方法は、上述した遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面にフッ素含有有機化合物が付着したものを得ることができる方法であれば、特に限定されるものではない。フッ素含有有機化合物が表面に付着した遷移金属含有ナノ粒子の製法としては、例えば、遷移金属錯体と、フッ素含有有機化合物の末端に連結基を有する保護剤を有機溶媒中で反応させるなどの液相法等が挙げられる。遷移金属錯体と、フッ素含有有機化合物を含まない保護剤を有機溶媒中で反応させた後、フッ素含有有機化合物を含まない保護剤の一部又は全部をフッ素含有有機化合物を含む保護剤に置換しても良い。ナノ粒子を製造する際の有機溶媒中の反応温度としては、150~300℃、更に220~280℃であることが好ましい。
 また、フッ素含有有機化合物が表面に付着した遷移金属含有ナノクラスターの製法としては、遷移金属含有ナノクラスターを合成後、カチオン交換などでフッ素含有有機化合物の末端に連結基を有する保護剤を付着させるなどの方法が挙げられる。カチオン交換に用いる塩は、前述のアンモニウム塩などのイオン性液体が好適に用いられる。この場合、対アニオンには無機アニオンおよび有機アニオン共に用いることができる。
II.正孔注入輸送層用インク
 本発明に係る正孔注入輸送層形成用インクは、前記本発明に係る正孔注入輸送層用デバイス材料と、有機溶媒とを含有することを特徴とする。
 本発明に係る正孔注入輸送層形成用インクは、必要に応じて、さらに他の化合物を含んでいても良い。前記本発明に係る正孔注入輸送層用デバイス材料と有機溶媒に、例えば、後述するような正孔輸送性化合物、及び、正孔のトラップにならないバインダー樹脂や塗布性改良剤などの添加剤を添加し、溶解乃至分散して正孔注入輸送層形成用インクを調製しても良い。
 インクに用いられる有機溶媒としては、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターと、必要に応じて含有するその他成分とが良好に溶解乃至分散すれば特に限定されないが、例えば、トルエン、キシレン、ドデシルベンゼン、シクロヘキサノン、シクロヘキサノール、テトラリン、メシチレン、アニソール、塩化メチレン、テトラヒドロフラン、ジクロロエタン、クロロホルム、安息香酸エチル、安息香酸ブチル、ジフェニルエーテル、シクロヘキシルベンゼン、1-メチルナフタレン等が挙げられる。
 また本発明では、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面にフッ素含有有機化合物が付着しているため、フッ素系の溶媒が好適に用いられる。例えば、トリフルオロメチルベンゼン、ヘプタフルオロ-n-酪酸エチル、ヘプタフルオロ-n-酪酸メチル、1,1,3,3-ヘキサフルオロ-2-プロパノール、1,1,3,3-ヘキサフルオロ-2-フェニル-2-プロパノール、1H,1H-トリフルオロエタノール、1H,1H,3H-テトラフルオロプロパノール、1H,1H,5H-オクタフルオロペンタノールなど前記溶媒の全部あるいは一部をフッ素化したものを用いることができる。以上の溶媒は単独で用いても、複数を混ぜ合わせた共溶媒にして用いて用いることもできる。
 本発明に係る正孔注入輸送層形成用インクは、表面にフッ素含有有機化合物が付着した少なくとも遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターと有機溶媒を混合して調製しても良い。また、表面にフッ素含有有機化合物が付着した遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターと有機溶媒を混合し、前記遷移金属含有ナノ粒子又は遷移金属含有ナノクラスター中に含まれる遷移金属及び/又は遷移金属化合物を遷移金属酸化物に酸化させて、本発明に係る正孔注入輸送層形成用インクを得ても良い。上記酸化させる方法としては、酸素存在下で加熱、又は光照射などが挙げられる。
 酸化させる方法として加熱する場合には、加熱手段としては、ホットプレート上で加熱する方法やオーブン中で加熱する方法などが挙げられる。加熱温度としては、50~250℃が好ましい。
 酸化させる方法として光照射する場合には、光照射手段としては、紫外線を露光する方法等が挙げられる。
 加熱温度や光照射量により、遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの相互作用に違いが生じるため、適宜調節することが好ましい。
 本発明に係る正孔注入輸送層形成用インク中における前記本発明に係る正孔注入輸送層用デバイス材料の含有量は、目的に応じて適宜調整可能であり、特に限定されないが、例えばインク全量中に0.1~10.0重量%程度が好ましい。
III.デバイスの製造方法
 本発明に係るデバイスの製造方法の第一の態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 パターン状に第一電極層が形成された基板上に、前記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層を形成する正孔注入輸送層形成工程と、
 基体上に少なくとも光触媒を含有する光触媒含有層が形成されている光触媒含有層基板を、前記正孔注入輸送層に対して、エネルギー照射に伴う光触媒の作用が及び得る間隙をおいて配置した後、パターン状にエネルギー照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成する濡れ性変化パターン形成工程とを有することを特徴とする。
 また、本発明に係るデバイスの製造方法の第二の態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 パターン状に電極層が形成された基板上に、前記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層を形成する正孔注入輸送層形成工程と、
 パターン状に真空紫外線を照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成する濡れ性変化パターン形成工程とを有することを特徴とする。
 本発明によれば、正孔注入輸送層が、撥液性のフッ素含有有機化合物が付着している材料を含有するので、光触媒の作用又は真空紫外線の照射によって、このフッ素含有有機化合物が分解されフッ素が除去されることで、エネルギーの照射部分と未照射部分とで濡れ性に大きな差を生じさせることができる。濡れ性が変化し得る正孔注入輸送層に、光触媒含有層を介してエネルギーを照射又は真空紫外線の照射することにより、濡れ性変化パターンを形成し、この濡れ性変化パターンの濡れ性の違いを利用することにより、容易に、当該正孔注入輸送層上にパターン状のデバイス層を塗布法により積層することができる。
 本発明によれば、正孔注入輸送層に含有される上記本発明に係る正孔注入輸送層用デバイス材料中に含まれる遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターが、濡れ性変化パターン形成工程に用いられる紫外光に耐性を有するため、優れた正孔注入輸送性が、濡れ性変化パターン形成工程を経ても劣化されず、損なわれないというメリットを有する。更に、光触媒処理等の濡れ性変化パターン形成工程を経ることにより、上記本発明に係る正孔注入輸送層用デバイス材料はイオン化ポテンシャルが大きくなり、正孔注入性が向上する。本発明に係る正孔注入輸送層用デバイス材料が、耐熱性や耐光性が高く劣化し難く、濡れ性変化パターン形成工程を経ることにより正孔注入性が向上するため、本発明の製造方法で製造されたデバイスは、寿命も向上する。
 また、本発明に係る正孔注入輸送層用デバイス材料は、比較的高温(例えば200℃)の加熱にも耐性があるため、加熱プロセス時に濡れ性変化パターンが損なわれず、正孔注入輸送層上に何層もパターン状に積層する工程を行うことができる。
 本発明に係るデバイスは、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスである。
 本発明に係るデバイスには、有機EL素子、有機トランジスタ、色素増感太陽電池、有機薄膜太陽電池、有機半導体を包含する有機デバイスのほか、正孔注入輸送層を有する量子ドット発光素子、酸化物系化合物太陽電池等も含まれる。
 本発明のデバイスの製造方法について図面を参照しながら説明する。
 図1(A)~図1(C)は、本発明のデバイスの製造方法の一例を示す工程図である。まず、図1(A)に示すように、基板2上に第一電極層3をパターン状に形成し、この第一電極層3上に上記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層4を形成する(正孔注入輸送層形成工程)。次に、図1(B)に示すように、基体22と、この基体22上にパターン状に形成された遮光部23と、遮光部23を覆うように基体22上に形成され、光触媒を含有する光触媒含有層24とを有する光触媒含有層基板21を準備する。次いで、光触媒含有層基板21を、正孔注入輸送層4に対して、エネルギー照射に伴う光触媒の作用が及び得る間隙をおいて配置した後、光触媒含有層基板21を介して正孔注入輸送層4に対してパターン状にエネルギー線27を照射する。エネルギー線27の照射により、図1(C)に示すように、光触媒含有層24に含有される光触媒の作用から、正孔注入輸送層4の露光部では、正孔注入輸送層4の少なくとも表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物が分解除去された、正孔注入輸送層のフッ素分解部5が形成され、正孔注入輸送層4の露光部の表面に親液性領域11が形成される。一方、正孔注入輸送層4の未露光部では、正孔注入輸送層24の表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物がそのまま残り、撥液性領域12となる(濡れ性変化パターン形成工程)。このようにして、デバイス用基板1が得られる。その後、デバイス用基板1上の親液性領域11上に、少なくともデバイスに必要なパターン状の層を積層し、第二電極層を積層し、デバイスを製造することができる。
 図2(A)~図2(C)は、本発明のデバイスの製造方法の他の例を示す工程図である。
まず、図2(A)に示すように、基板2上に第一電極層3をパターン状に形成し、パターンの開口部に仕切り部(隔壁6a)を形成し、第一電極層3および仕切り部(隔壁6a)の上に上記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層4を形成する(正孔注入輸送層形成工程)。ここで、基板2が透光性基板であって、前記仕切部(隔壁6a)が濡れ性変化パターン形成工程にて照射されるエネルギー線を反射または吸収する仕切部である。次に、図2(B)に示すように、基体22と、この基体22上に形成された光触媒を含有する光触媒含有層24とを有する光触媒含有層基板21を準備する。次いで、光触媒含有層基板21を、正孔注入輸送層4に対して、エネルギー照射に伴う光触媒の作用が及び得る間隙をおいて配置した後、透光性基板である基板2側からエネルギー線27を照射する。この態様の場合、仕切部(隔壁6a)がエネルギー線を反射または吸収するので、仕切部(隔壁6a)が形成されていない箇所はエネルギー線27が照射され、仕切部(隔壁6a)が形成されている箇所はエネルギー線27が照射されない。エネルギー線27の照射により、図2(C)に示すように、光触媒含有層24に含有される光触媒の作用から、正孔注入輸送層4の露光部では、正孔注入輸送層4の少なくとも表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物が分解除去された、正孔注入輸送層のフッ素分解部5が形成され、正孔注入輸送層4の露光部の表面に親液性領域11が形成される。一方、正孔注入輸送層4の未露光部では、正孔注入輸送層24の表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物がそのまま残り、撥液性領域12となる(濡れ性変化パターン形成工程)。このようにして、デバイス用基板1が得られる。その後、デバイス用基板1上の親液性領域11上に、デバイスに必要なパターン状のデバイス層を塗布法により積層することが可能で、その後第二電極層を積層し、デバイスを製造することができる。
 図2(A)~図2(C)における製造方法の場合には、照射されるエネルギー線を反射または吸収する仕切部がマスクとして機能するため、光触媒含有基板中の遮光部や別途フォトマスクをわざわざ準備しなくても、正孔注入輸送層にパターン状にエネルギー照射を行うことが可能であり、製造プロセス上のメリットが大きい。本発明の正孔注入輸送層に用いられる正孔注入輸送層用デバイス材料は、従来の有機化合物系の正孔注入輸送材料と比べて紫外光波長領域の透過率が高いので、このような正孔注入輸送層の背面からのエネルギー照射も可能になる。
 図3(A)~図3(C)は、本発明のデバイスの製造方法の他の例を示す工程図である。
まず図3(A)に示すように、基板2上に第一電極層3をパターン状に形成し、パターンの開口部に仕切り部(隔壁6a)を形成し、第一電極層3および仕切り部(隔壁6a)の上に上記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層4を形成する(正孔注入輸送層形成工程)。次に、図3(B)に示すように、基体22と、この基体22上に形成された光触媒を含有する光触媒含有層24とを有する光触媒含有層基板21を準備する。次いで、光触媒含有層基板21を、正孔注入輸送層4に対して、エネルギー照射に伴う光触媒の作用が及び得る間隙をおいて配置した後、光触媒含有層基板21を介して正孔注入輸送層4に対して紫外レーザー光28をパターン状にスキャンして照射する。紫外レーザー光28の照射により、図3(C)に示すように、光触媒含有層24に含有される光触媒の作用から、正孔注入輸送層4の露光部では、正孔注入輸送層4の少なくとも表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物が分解除去された、正孔注入輸送層のフッ素分解部5が形成され、正孔注入輸送層4の露光部の表面に親液性領域11が形成される。一方、正孔注入輸送層4の未露光部では、正孔注入輸送層24の表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物がそのまま残り、撥液性領域12となる(濡れ性変化パターン形成工程)。このようにして、デバイス用基板1が得られる。その後、デバイス用基板1上の親液性領域11上に、デバイスに必要なパターン状のデバイス層を塗布法により積層することが可能で、その後第二電極層を積層し、デバイスを製造することができる。
 図4(A)~図4(C)は、本発明のデバイスの製造方法の他の例を示す工程図である。
まず、図4(A)に示すように、基板2上に第一電極層3をパターン状に形成し、パターンの開口部に仕切り部(隔壁6a)を形成し、第一電極層3および仕切り部(隔壁6a)の上に上記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層4を形成する(正孔注入輸送層形成工程)。次に、図4(B)に示すように、メタルマスク30を正孔注入輸送層4の表面に配置し、メタルマスク30を介して正孔注入輸送層4に対して真空紫外光29を照射する。真空紫外光29の照射により、図4(C)に示すように、正孔注入輸送層4の露光部では、正孔注入輸送層4の少なくとも表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物が分解除去された、正孔注入輸送層のフッ素分解部5が形成され、正孔注入輸送層4の露光部の表面に親液性領域11が形成される。一方、正孔注入輸送層4の未露光部では、正孔注入輸送層24の表層部の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物がそのまま残り、撥液性領域12となる(濡れ性変化パターン形成工程)。このようにして、デバイス用基板1が得られる。その後、デバイス用基板1上の親液性領域11上に、デバイスに必要なパターン状のデバイス層を塗布法により積層することが可能で、その後第二電極層を積層し、デバイスを製造することができる。
 このように、エネルギー照射に伴う光触媒の作用が及んだ部分または真空紫外光が照射された部分では、正孔注入輸送層4の少なくとも表層部に親液性領域11が形成される。これは、正孔注入輸送層4の少なくとも表層部中の正孔注入輸送層デバイス材料の表面に存在するフッ素含有有機化合物が、エネルギー照射に伴う光触媒の作用または真空紫外光の照射等により分解除去されることでフッ素分解部が形成され、表面にフッ素含有有機化合物が存在する正孔注入輸送層が有する撥液性に対して、親液性を有する領域となるためであると考えられる。したがって、図1(C)、図2(C)、図3(C)及び図4(C)に例示するように正孔注入輸送層4の構成材料中のフッ素が分解除去された正孔注入輸送層のフッ素分解部5の表面からなる親液性領域11と、正孔注入輸送層4の構成材料中のフッ素が分解除去されず、親液性領域11以外の領域である撥液性領域12とからなるパターンを形成することができる。
なお、「親液性領域」とは、撥液性領域よりも液体の接触角が小さい領域をいい、正孔注入輸送層上に隣接して形成される層形成用インク等に対する濡れ性の良好な領域である。また、「撥液性領域」とは、親液性領域よりも液体の接触角が大きい領域をいい、上記層形成用インク等に対する濡れ性が悪い領域である。
 撥液性領域の液体の接触角は、親液性領域の液体の接触角よりも、表面張力28.5mN/mの液体を用いた場合に、10°以上高いことが好ましく、中でも20°以上高いことが好ましく、特に40°以上高いことが好ましい。
 また、撥液性領域では、表面張力28.5mN/mの液体の接触角が25°以上であることが好ましく、より好ましくは45°以上、さらに好ましくは55°以上である。撥液性領域は撥液性が要求される部分であるため、上記液体の接触角が小さすぎると、撥液性が十分でなく、撥液性領域にも上記層形成用インク等が付着する可能性があるからである。
 一方、親液性領域では、表面張力28.5mN/mの液体の接触角が20°以下であることが好ましく、より好ましくは10°以下、さらに好ましくは5°以下である。上記液体の接触角が高すぎると、上記層形成用インク等が濡れ広がりにくくなる可能性があり、隣接して形成される層等が欠ける等の可能性があるからである。
 なお、液体の接触角は、種々の表面張力を有する液体の接触角を接触角測定器(協和界面科学(株)製 CA-Z型)を用いて測定(マイクロシリンジから液滴を滴下して5秒後)し、その結果から、もしくはその結果をグラフにして求めることができる。この測定に際しては、種々の表面張力を有する液体として、純正化学株式会社製のぬれ指数標準液を用いることとする。
 1.正孔注入輸送層形成工程
 本発明における正孔注入輸送層形成工程は、パターン状に第一電極層が形成された基板上に、前記本発明に係る正孔注入輸送層用デバイス材料を含有する正孔注入輸送層を形成する工程である。
 (正孔注入輸送層の形成方法)
 正孔注入輸送層の形成方法としては、パターン状に第一電極層が形成された基板上の全面に、前記本発明に係る正孔注入輸送層用デバイス材料を成膜することが可能な方法であれば特に限定されるものではない。例えば、前記本発明に係る正孔注入輸送層用デバイス材料と、有機溶媒とを含有する正孔注入輸送層形成用インクを調製し、当該インクを用いて塗布して層を形成するウェットプロセスがプロセス優位性の点から好ましい。また、当該インクを用いて塗布して形成された層を転写する転写法も用いることができる。なお、パターン状に第一電極層が形成された基板上であれば、当該第一電極層上に例えば別途正孔注入層が形成された上に、本発明の正孔注入輸送層が形成されてもよい。
 前記本発明に係る正孔注入輸送層用デバイス材料と、有機溶媒とを含有する正孔注入輸送層形成用インクは、前記「II.正孔注入輸送層形成用インク」の箇所で説明したものと同様に調製することができる。正孔注入輸送層形成用インク中に、上述のようなその他の成分を適宜添加することにより、その他の成分を更に含む正孔注入輸送層を形成することができる。
 また、塗布する前に当該正孔注入輸送層形成用インクを酸素存在下で加熱する工程を有していても良い。この場合、正孔注入輸送層用デバイス材料中の遷移金属酸化物量が増加し、正孔注入輸送性が向上する場合がある。あるいは遷移金属含有ナノ粒子の外郭が酸化されて安定化し、駆動耐性が高まる場合がある。
 正孔注入輸送層形成用インクを塗布する方法としては、基板の全面に均一に上記の材料を成膜できる方法であればよく、例えば、ダイコート法、スピンコート法、ディップコート法、ロールコート法、ビードコート法、スプレーコート法、バーコート法、グラビアコート法、ブレードコート法、キャスト法、インクジェット法、ノズルプリンティング法、エアロゾル法、フレキソ印刷法、スクリーン印刷法、オフセット印刷法等を挙げることができる。
 また、正孔注入輸送層形成用インクを塗布した後は、乾燥処理を行ってもよい。乾燥方法としては、一般的な乾燥方法を用いることができ、例えば加熱する方法が挙げられる。加熱する方法としては、例えば、オーブンのような特定の空間全体を加熱する装置内を通過または静置させる方法、熱風を当てる方法、遠赤外線等により直接的に加熱する方法、あるいはホットプレートで加熱する方法等を用いることができる。酸素存在下で加熱すると、層中に含まれる前記本発明に係る正孔注入輸送層用デバイス材料中の遷移金属酸化物の含有量が増加し、正孔注入輸送性が向上する場合がある。
 正孔注入輸送層の膜厚は、目的や隣接する層により適宜決定することができるが、通常0.1~1000nm、好ましくは1~500nmである。
 また、上記正孔注入輸送層の仕事関数は5.0~6.0eV、更に5.0~5.8eVであることが、正孔注入効率の点から好ましい。
 (基板)
 基板は、光を透過する透光性であってもよく、透光性でなくてもよい。例えば、本発明のデバイスにおいて、基板側から光を取り出す場合や、本発明のデバイスを作製する過程において、親液性領域および撥液性領域からなるパターンを形成する際に基板側からエネルギーを照射する場合には、基板は透光性であることが好ましい。透光性基板としては、例えば、石英、ガラス等を挙げることができる。透光性が必要とされない場合の基板としては、アルミニウムおよびその合金等の金属、プラスチック、織物、不織布等を用いることができる。
 (第一電極層)
 本発明に用いられる第一電極層は、パターン状に基板上に形成されているものである。
 第一電極層を形成する材料としては、導電性を有する材料であれば特に限定されるものではない。
 また、第一電極層を形成する材料としては、透明性を有していてもよく、有さなくてもよい。例えば、本発明のデバイスにおいて、基板側から光を取り出す場合や、本発明のデバイスを作製する過程において、親液性領域および撥液性領域からなるパターンを形成する際に基板側からエネルギーを照射する場合には、第一電極層は透明性を有することが好ましい。導電性および透明性を有する材料としては、In-Zn-O(IZO)、In-Sn-O(ITO)、ZnO-Al、Zn-Sn-O等を好ましいものとして例示することができる。一方、例えば、本発明のデバイスにおいて、基板の反対側から光を取り出す場合には、第一電極層に透明性は要求されない。この場合、導電性を有する材料として、金属を用いることができ、具体的には、Au、Ta、W、Pt、Ni、Pd、Cr、あるいは、Al合金、Ni合金、Cr合金等を挙げることができる。
 第一電極層はパターン状に形成されている。第一電極層の成膜方法としては、一般的な電極の成膜方法を用いることができ、スパッタリング法、イオンプレーティング法、真空蒸着法等を挙げることができる。また、第一電極層のパターニング方法としては、フォトリソグラフィー法を挙げることができる。
 2.濡れ性変化パターン形成工程
 本発明における濡れ性変化パターン形成工程は、前記正孔注入輸送層表面に濡れ性(wetting)の変化した濡れ性変化パターンを形成する工程である。
 正孔注入輸送層表面に濡れ性変化パターンを形成するための、パターン状にエネルギー照射する方法としては、正孔注入輸送層に含有される材料をパターン状に分解できる方法であれば特に限定されるものではないが、通常、エネルギー照射によって、酸素ラジカルなどの活性酸素種を発生させることができる方法が用いられる。この活性酸素種の強力な酸化・還元力により、正孔注入輸送層に含有される材料の表面に付着しているフッ素含有有機化合物を分解することができるからである。
 本発明における濡れ性変化パターン形成工程としては、(1)光触媒を含有する光触媒含有層を有する光触媒含有層基板を用い、パターン状にエネルギー照射することに伴う光触媒の作用によって正孔注入輸送層に含有される材料のフッ素を分解除去することにより、フッ素が分解除去された親液性領域、及びフッ素が分解除去されていない撥液性領域からなるパターンを形成する工程、および、(2)真空紫外光をパターン状に照射することによって、正孔注入輸送層に含有される材料のフッ素を分解除去することにより、フッ素が分解除去された親液性領域、及びフッ素が分解除去されていない撥液性領域からなるパターンを形成する工程が挙げられる。また、例えば、パターン状の開口部を有するマスクを介して電子線またはプラズマ等を照射する方法や、マスクを介して真空中で酸素ラジカルを吹きつける方法等を用いることもできる。
 親液性領域は、エネルギー照射に伴う光触媒の作用が及んだ部分または真空紫外光が照射された部分において、上記正孔注入輸送層に含有される正孔注入輸送層用デバイス材料の表面に付着されたフッ素含有有機化合物が分解され、フッ素が除去された、正孔注入輸送層のフッ素分解部である。
 親液性領域は、正孔注入輸送層用デバイス材料の表面に付着されたフッ素含有有機化合物が含有されていない、または、正孔注入輸送層にもともと含有されていた材料の表面に付着されたフッ素含有有機化合物の量と比較して、親液性領域はフッ素含有有機化合物が少ない量含有されている。
 また、親液性領域が、正孔注入輸送層に含有される正孔注入輸送層用デバイス材料の表面に付着されたフッ素含有有機化合物が分解され、フッ素が除去されたものであることは、例えば、素子部と隔壁部の正孔注入輸送層のフッ素の分布をTOF-SIMSなどで分析して比較することにより確認することができる。
 親液性領域および撥液性領域の形成位置としては、所望のパターンに発光層等のデバイスの機能層をパターニング可能であれば特に限定されるものではない。例えば第一電極層がパターン状に形成されている場合には、親液性領域が第一電極層のパターン上に配置され、撥液性領域が、図1(C)のように第一電極層のパターンの開口部上に配置されていることが好ましい。
 また、例えば図5に示すように、第一電極層3が形成された基板2上に仕切部(隔壁6a)が形成されている場合には、仕切部(隔壁6a)の頂部P1上に撥液性領域12が配置され、仕切部(隔壁6a)の側部P2上および仕切部(隔壁6a)の開口部P3上に親液性領域11が配置されていることが好ましい。このような正孔注入輸送層上に隣接する層を作製する際に、仕切部の頂部上に配置された撥液性領域上には隣接する層のインクが付着せずに層が形成されないので、正孔注入輸送層上に隣接する層等を精度良くパターニングすることができるからである。
 さらに、従来のような撥液性材料を用いた隔壁や撥液化処理された隔壁では、隔壁の頂部だけでなく側部も撥液性を有するものとなるため、仕切部の側部から発光層が物理的に剥離したり、発光層等の厚みの薄い箇所や発光層等が形成されない箇所が発生したりするという不具合があった。これに対し、本発明においては、仕切部の側部上には親液性領域が配置され得るので、仕切り部の側部から発光層が物理的に剥離したり、発光層等の厚みの薄い箇所や発光層等が形成されない箇所が発生したりするのを抑制することができる。
 上記仕切部が形成されている場合、撥液性領域の形成位置としては、仕切部の頂部上であればよく、図5に例示するように、仕切部(隔壁6a)の頂部P1のみに撥液性領域12が配置されていてもよく、或いは、図示しないが、仕切部(隔壁6a)の頂部P1および側部P2の一部分に撥液性領域12が配置されていてもよい。前者の場合、撥液性領域は、仕切部の頂部の全体に形成されていてもよく、仕切部の頂部の一部分に形成されていてもよい。また、後者の場合、デバイスの設計に適宜合わせて、正孔注入輸送層上にパターニングされて積層される層用のインクの表面が平坦となった場合に想定される高さより低い位置まで撥液性領域12が形成されていてもよいし、当該高さより高い位置まで撥液性領域12が形成されていてもよい。
 また、親液性領域および撥液性領域のパターン形状としては、正孔注入輸送層上に所望のパターン状に積層される層をパターニング可能であれば特に限定されるものではない。例えば第一電極層がパターン状に形成されている場合、親液性領域および撥液性領域のパターン形状は、第一電極層のパターン形状に応じて適宜選択される。具体的には、第一電極層がストライプ状に形成されている場合、この第一電極層のストライプパターンに対応して、親液性領域もストライプ状に形成される。また、画素に対応して第一電極層がモザイク状に形成されている場合、親液性領域はストライプ状に形成されていてもよく、格子状やモザイク状に形成されていてもよい。
 以下、濡れ性変化パターン形成工程について、上記(1)、(2)の方法をそれぞれ説明する。
 (1)光触媒作用を用いる方法
 エネルギー照射に伴う光触媒の作用を利用する方法は、基体上に少なくとも光触媒を含有する光触媒含有層が形成されている光触媒含有層基板を用い、上記光触媒含有層基板を、上記正孔注入輸送層に対して、エネルギーの照射に伴う光触媒の作用がおよび得る間隙をおいて配置した後、パターン状にエネルギーを照射する方法である。
 エネルギー照射に伴う光触媒の作用により正孔注入輸送層に含有される材料が正孔注入輸送層用デバイス材料の表面に付着されたフッ素含有有機化合物が分解される機構については、必ずしも明確ではないが、エネルギー照射によって光触媒含有層に含有される光触媒が酸化還元反応を引き起こし、これによって生成されたスーパーオキサイドラジカル(・O2-)やヒドロキシラジカル(・OH)などの活性酸素種が、上記フッ素含有有機化合物正に作用を及ぼすことにより、フッ素含有有機化合物が分解物となり、この分解物が揮発除去されることで、正孔注入輸送層に含有される正孔注入輸送層用デバイス材料の表面に付着されたフッ素含有有機化合物が分解され、フッ素が除去された領域を形成することができると考えられる。
 以下、光触媒含有層基板および光触媒含有層基板を用いて正孔注入輸送層に光触媒の作用を及ぼす方法について説明する。
 (光触媒含有層基板)
 本発明に用いられる光触媒含有層基板は、基体上に少なくとも光触媒を含有する光触媒含有層が形成されているものである。
 光触媒含有層の形成位置としては、図2(B)に例示するように、基体22上の全面に光触媒含有層24が形成されていてもよく、図6(A)に例示するように、基体22上に光触媒含有層24がパターン状に形成されていてもよい。
 光触媒含有層がパターン状に形成されている場合には、光触媒含有層を正孔注入輸送層に対して所定の間隙をおいて配置し、エネルギーを照射する際に、フォトマスク等を用いてパターン照射する必要がなく、全面に照射することにより、正孔注入輸送層に含有される材料が分解された撥液性領域をパターン状に形成することができる。また、この場合、エネルギーの照射方向としては、光触媒含有層と正孔注入輸送層とが面する部分にエネルギーが照射されれば、いかなる方向であってもよい。さらには、照射されるエネルギーも、平行光等の平行なものに限定されない。
 また、光触媒含有層基板には、遮光部がパターン状に形成されていてもよい。パターン状の遮光部を有する光触媒含有層基板を用いた場合には、エネルギー照射に際して、フォトマスクを用いたり、レーザー光による描画照射を行ったりする必要がない。したがって、この場合には、光触媒含有層基板とフォトマスクとの位置合わせが不要であることから、簡便な工程とすることができ、また描画照射に必要な高価な装置も不要であることから、コスト的に有利となる。
 遮光部の形成位置としては、図1(B)に例示するように、基体22上に遮光部23がパターン状に形成され、この遮光部23上に光触媒含有層24が形成されていてもよく、図6(B)に例示するように、基体22上に光触媒含有層24が形成され、この光触媒含有層24上に遮光部23がパターン状に形成されていてもよく、図示しないが、基体の光触媒含有層が形成されていない側の表面に遮光部がパターン状に形成されていてもよい。
 基体上に遮光部が形成されている場合、および、光触媒含有層上に遮光部が形成されている場合は、フォトマスクを用いる場合と比較すると、光触媒含有層と正孔注入輸送層とが間隙をおいて配置される部分の近傍に、遮光部が配置されることになるので、基体内等におけるエネルギーの散乱の影響を少なくすることができる。このため、エネルギーのパターン照射を極めて正確に行うことが可能となる。
 また、基体の光触媒含有層が形成されていない側の表面に遮光部が形成されている場合は、例えばフォトマスクを遮光部の表面に着脱可能な程度に密着させることができるので、デバイスの製造を小ロットで変更するような場合に好適である。
 光触媒含有層基板としては、具体的には、特開2000-249821号公報等に記載されている光触媒含有層側基板と同様とすることができる。
(光触媒含有層基板と正孔注入輸送層の配置)
 本発明においては、光触媒含有層基板を、正孔注入輸送層に対して、エネルギー照射に伴う光触媒の作用がおよび得る間隙をおいて配置する。なお、間隙とは、光触媒含有層および正孔注入輸送層が接触している状態も含むものとする。
 光触媒含有層と正孔注入輸送層との間隔は、具体的には、200μm以下であることが好ましい。光触媒含有層と正孔注入輸送層とを所定の間隔をおいて配置することにより、酸素、水および光触媒作用により生じた活性酸素種が脱着しやすくなるからである。
 上記間隔は、パターン精度が極めて良好であり、光触媒の感度も高く、分解除去の効率が良好である点を考慮すると、0.2μm~20μmの範囲内であることがより好ましく、さらに好ましくは1μm~10μmの範囲内である。
 一方、例えば300mm×300mmを超える大面積のデバイスを製造する場合には、上述したような微細な間隙を光触媒含有層基板と正孔注入輸送層との間に設けることは極めて困難である。さらに光触媒含有層に付着する汚れなどの生産性の低下も懸念される。したがって、比較的大面積のデバイスを製造する場合は、上記間隙は、50μm~150μmの範囲内であることが好ましく、さらに好ましくは80μm~120μmの範囲内である。上記間隙を上記範囲とすることにより、パターンがぼやける、あるいはずれる等のパターン精度の低下を抑制することができ、また光触媒の感度が悪化して分解除去の効率が悪化するのを抑制することができるからである。
 また、上記のような比較的大面積に対してエネルギー照射する際には、エネルギー照射装置内の光触媒含有層基板と正孔注入輸送層との位置決め装置における間隙の設定を、10μm~200μmの範囲内、特に25μm~75μmの範囲内に設定することが好ましい。上記間隙の設定値を上記範囲とすることにより、パターン精度の大幅な低下や光触媒の感度の大幅な悪化を招くことなく、かつ光触媒含有層基板と正孔注入輸送層とを接触させずに配置することができるからである。
 なお、上述のような間隙をおいた配置状態は、少なくともエネルギー照射の間だけ維持されればよい。
(エネルギー照射)
 エネルギー照射に用いる光の波長は、通常、450nm以下の範囲で設定され、好ましくは380nm以下の範囲で設定される。これは、上述したように、光触媒含有層に用いられる好ましい光触媒が二酸化チタンであり、この二酸化チタンにより光触媒作用を活性化させるエネルギーとして、上記の波長の光が好ましいからである。
 エネルギー照射に用いることができる光源としては、水銀ランプ、メタルハライドランプ、キセノンランプ、エキシマランプ、その他種々の光源を挙げることができる。
 また、パターン状にエネルギーを照射する方法としては、これらの光源を用い、フォトマスクを介してパターン照射する方法の他、エキシマ、YAG等のレーザーを用いてパターン状に描画照射する方法を用いることもできる。
エネルギー照射に際してのエネルギーの照射量は、光触媒含有層中の光触媒の作用により電荷注入輸送層表面の濡れ性が変化するのに必要な照射量とする。
この際、光触媒含有層を加熱しながらエネルギー照射することが好ましい。感度を上昇させことができ、効率的に濡れ性を変化させることができるからである。具体的には、基板およびマスクを30℃~80℃の範囲内で加熱することが好ましい。基板とマスクの温度差は、露光精度の観点からできるだけ小さい方が良いが、1℃以内であることが好ましい。
 エネルギー照射方向は、光触媒含有層基板に遮光部が形成されているか否か、あるいは、デバイスの光の取り出し方向等により決定される。例えば、光触媒含有層基板に遮光部が形成されており、光触媒含有層基板の基体が透明である場合は、光触媒含有層基板側からエネルギー照射が行なわれる。また例えば、光触媒含有層がパターン状に形成されている場合には、エネルギー照射方向は、上述したように、光触媒含有層と正孔注入輸送層とが面する部分にエネルギーが照射されれば、いかなる方向であってもよい。さらに例えば、フォトマスクを用いる場合は、フォトマスクが配置された側からエネルギーが照射される。この場合、フォトマスクが配置された側が透明である必要がある。
 エネルギー照射に伴う光触媒の作用を利用する方法においては、光触媒含有層基板を用い、パターン状にエネルギーを照射する態様の具体例としては、以下のものが挙げられる。
 基体22上の全面に光触媒含有層24が形成されている場合には、フォトマスクを介してパターン状にエネルギーを照射するか、或いは、図2(B)に例示するように、マスクとして、エネルギー線を反射または吸収する仕切部を有する透光性基板側(正孔注入輸送層の背面側)から照射してパターン状にエネルギーを照射する。また、図3(B)に例示するように基体22上の全面に光触媒含有層24が形成されている場合であって、レーザーを用いてパターン状に描画照射しても良い。また、図6(A)に例示するように基体22上に光触媒含有層24がパターン状に形成されている場合には、マスクとして光触媒含有層基板を用いることによりパターン状にエネルギーを照射する。さらに、図1(B)に例示するように遮光部23がパターン状に形成されている場合には、マスクとして光触媒含有層基板を用いることによりパターン状にエネルギーを照射する。
 光触媒含有層基板を用いて正孔注入輸送層に光触媒の作用を及ぼす方法としては、具体的には、特開2000-249821号公報等に記載されている光触媒含有層側基板を用いて特性変化層に光触媒の作用を及ぼす方法と同様とすることができる。
 (2)パターン状に真空紫外光を照射する方法
 パターン状に真空紫外光を照射する方法は、マスクとして真空紫外光用マスクを用い、エネルギーとして真空紫外光を照射する方法が挙げられる。
 真空紫外光の照射により、正孔注入輸送層に含有される材料が正孔注入輸送層用デバイス材料の表面に付着されたフッ素含有有機化合物が分解される機構については、必ずしも明確ではないが、正孔注入輸送層に真空紫外光が照射されると、正孔注入輸送層に含有されるフッ素含有有機化合物の分子結合が、真空紫外光の作用により切断されたり、また酸素の存在下、酸素が励起されて発生するオゾンや酸素原子ラジカルがフッ素含有有機化合物に作用を及ぼすことにより、フッ素含有有機化合物が分解物となり、この分解物が揮発除去されたりすることで、フッ素が除去されたフッ素分解部を形成することができると考えられる。
 真空紫外光の波長は、酸素と作用することにより酸素ラジカルを発生できる範囲内であれば特に限定されるものでないが、通常100nm~250nmの範囲内であることが好ましく、中でも150nm~200nmの範囲内であることが好ましい。波長が上記範囲よりも長いと、酸素ラジカルの発生効率が低くなり、正孔注入輸送層に含有される材料の分解除去効率が低下してしまうおそれがあるからである。また、波長が上記範囲よりも短いと、安定した真空紫外光の照射が困難となる可能性があるからである。
 上記波長範囲の真空紫外光の照射に用いられる光源としては、例えば、エキシマランプ、低圧水銀ランプ、その他種々の光源を挙げることができる。
 また、真空紫外光の照射量としては、上記親液性層形成用層を除去できる範囲内であれば特に限定されるものではなく、正孔注入輸送層に含有される材料の種類や、上記真空紫外光の波長等によって適宜調整すればよい。
 真空紫外光の照射の際に用いられる真空紫外光用マスクとしては、真空紫外光をパターン状に透過することができるものであればよく、例えば、パターン状の開口部を有するメタルマスクや、真空紫外光を透過することができる透明基材と、透明基材上にパターン状に形成され、真空紫外光を遮光することができる遮光部とを有するマスクを挙げることができる。
 メタルマスクの材料としては、上記真空紫外光を遮光することができるものであればよく、例えば、特開2007-178783号公報等に記載されたものを用いることができる。
 一方、透明基材としては、真空紫外光を透過することができるものであればよく、例えば、石英基板等を用いることができる。また、遮光部を構成する遮光材料としては、クロム、酸化クロム等の金属が挙げられる。
 真空紫外光は指向性の無い分散光であることから、真空紫外光用マスクを介して真空紫外光を照射する場合は、この真空紫外光用マスクを正孔注入輸送層にできるだけ接近させ、真空紫外光が正孔注入輸送層と真空紫外光用マスクとの間に回折しないようにすることが好ましい。
 中でも、隔壁や絶縁層等の仕切部が形成されていない場合には、真空紫外光用マスクを正孔注入輸送層にできるだけ接近させ、かつ、真空紫外光用マスクが正孔注入輸送層に接触しないように、真空紫外光用マスクを配置することが好ましい。
 一方、隔壁や絶縁層等の仕切部が形成されている場合には、真空紫外光用マスクを正孔注入輸送層にできるだけ接近させ、かつ、真空紫外光用マスクが正孔注入輸送層に接触するように、真空紫外光用マスクを配置してもよく、また真空紫外光用マスクを正孔注入輸送層にできるだけ接近させ、かつ、真空紫外光用マスクが正孔注入輸送層に接触しないように、真空紫外光用マスクを配置してもよい。隔壁や絶縁層等の仕切部が形成されている場合であって、透明基材上に遮光部がパターン状に形成された真空紫外光用マスクを用いる場合には、真空紫外光用マスクを正孔注入輸送層に密着するように固定することができる。
(3)濡れ性変化パターンの調整方法
 仕切部の頂部上に位置する正孔注入輸送層の部分にエネルギーを照射する場合であって、マスクとして透過領域および遮光領域を有するマスクを用いる場合には、仕切部の頂部の面積に対するマスクの透過領域の面積の比率、および、正孔注入輸送層およびマスク間の距離の少なくともいずれか一方を調整して、正孔注入輸送層側の表面での液体の接触角が仕切部の側部側から頂部側に向かって高くなるように、撥液性領域を形成してもよい。
 例えば、上記のエネルギー照射に伴う光触媒の作用を利用する方法の場合であって、光触媒含有基板にて遮光部がパターン状に形成されている場合、基体上に遮光部が設けられている遮光領域と、この遮光領域以外の領域であり、基体上に光触媒含有層のみが設けられた透過領域と有する光触媒含有層基板を用いることができる。この場合、仕切部(隔壁6a)の頂部の面積S1に対する光触媒含有層基板の透過領域の面積S2の比率、および、正孔注入輸送層および光触媒含有層基板間の距離Dの少なくともいずれか一方を調整することにより、正孔注入輸送層側の表面での液体の接触角が仕切部(隔壁6a)の側部側から頂部側に向かって高くなるように、撥液性領域12を形成することができる。
 また例えば、上記の真空紫外光を照射する方法の場合、仕切部(隔壁6a)の頂部の面積S1に対するメタルマスクの透過領域の面積S2の比率を調整することにより、正孔注入輸送層側の表面での液体の接触角が仕切部(隔壁6a)の側部側から頂部側に向かって高くなるように、撥液性領域12を形成することができる。
 これは、光の回折現象と立体角の効果によるものである。前者は、仕切部の頂部の面積に対するマスクの透過領域の面積の比率、および、正孔注入輸送層およびマスク間の距離の少なくともいずれか一方を調整することで、光の回折現象等により、正孔注入輸送層に照射されるエネルギーの照射量に勾配が生じ、その結果、正孔注入輸送層に含有される材料が分解される量に勾配が生じる。後者に関して、仕切部の頂部では光の入射に対して垂直であるのに対し、仕切部の側部では角度をもつために立体角が小さくなり、光の見かけの照射量が小さくなり、その結果、正孔注入輸送層に含有される材料が分解される量に勾配が生じる。これにより、正孔注入輸送層側の表面にて、液体の接触角が仕切部の側部側から頂部側に向かって高くなるように、液体の接触角に傾斜をもたせることができるのである。
 また、隔壁のように膜厚が比較的厚い仕切部の場合、仕切部の頂部側から側部側に向かって、正孔注入輸送層とマスクとの距離が徐々に広くなることから、この正孔注入輸送層とマスクとの距離に応じて、液体の接触角に傾斜をもたせることもできる。
 仕切部の頂部の面積に対するマスクの透過領域の面積の比率を調整することにより、液体の接触角に傾斜を生じさせる場合には、仕切部の頂部の面積よりもマスクの透過領域の面積を同等か大きくすることが好ましい。これにより、仕切部の頂部および側部の境界付近に位置する領域にて、液体の接触角に傾斜をつけやすくなるからである。
 3.仕切部形成工程
 本発明においては、必要に応じて、前記正孔注入輸送層形成工程前に、前記パターン状に第一電極層が形成された基板上の前記第一電極層のパターン間に、仕切部を形成する仕切部形成工程を有していても良い。
 仕切部としては、例えば、隔壁および絶縁層が挙げられる。図2(A)、図3(A)、図4(A)の隔壁6aとして例示するように、仕切部としては、隔壁及び絶縁層の両方の機能を果たすものが一体となって形成されても良い。以下、隔壁および絶縁層に分けて説明する。
 本発明に係るデバイスにおいて、この仕切部が形成された部分は、通常、非発光領域となる。
 (1)隔壁
 本発明においては、図2(A)、図3(A)、図4(A)に例示するように、第一電極層3が形成された基板2上に、隔壁6aがパターン状に形成されていてもよい。通常、第一電極層がパターン状に形成されている場合には、隔壁6aは第一電極層3のパターンの開口部に形成される。
 隔壁は、正孔注入輸送層上に形成される層をパターン状に塗り分けるために設けられるものである。
 隔壁の形成材料としては、特に限定されるものではなく、有機材料であってもよく、無機材料であってもよく、一般的に有機EL素子等のデバイスにおける隔壁に用いられる材料を使用することができる。
 有機材料としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-塩化ビニル共重合体、エチレン-ビニル共重合体、ポリスチレン、アクリロニトリル-スチレン共重合体、ABS樹脂、ポリメタクリル酸樹脂、エチレン-メタクリル酸樹脂、ポリ塩化ビニル樹脂、塩素化塩化ビニル、ポリビニルアルコール、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ナイロン6、ナイロン66、ナイロン12、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリビニルアセタール、ポリエーテルエーテルケトン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリビニルブチラール、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミック酸樹脂、ポリエーテルイミド樹脂、フェノール樹脂、ユリア樹脂等が挙げられる。
 無機材料としては、例えば、SiO2などを挙げることができる。
 隔壁の高さとしては、0.01μm~50μm程度とすることができる。
 また、絶縁層上に別途、隔壁が形成されている場合、隔壁の幅としては、図7(A)に例示するように、隔壁6aの幅が第一電極層3のパターン間の幅よりも狭くてもよく、図7(B)に例示するように、隔壁6aの幅が第一電極層3のパターン間の幅よりも広くてもよい。
 また、隔壁の形成方法としては、フォトリソグラフィー法、印刷法等の一般的な方法を
用いることができる。
 (2)絶縁層
 本発明においては、図7(A)及び図7(B)に例示するように、第一電極層3が形成された基板2上に、絶縁層6bがパターン状に形成されていてもよい。通常、第一電極層がパターン状に形成されている場合には、絶縁層6bは第一電極層3のパターンの開口部に形成され、かつ、第一電極層のパターンの端部を覆うように形成される。図7(A)及び図7(B)においては、絶縁層6b上に隔壁6aも形成されているが、絶縁層6bのみが形成され、隔壁6aが形成されていない態様であっても良い。
 絶縁層は、隣接する第一電極層のパターン間での導通や、第一電極層および第2電極層
間での導通を防ぐために設けられるものである。
 絶縁層の形成材料としては、絶縁性を有するものであれば特に限定されるものではなく、有機材料であってもよく、無機材料であってもよく、一般的に有機EL素子等のデバイスにおいて絶縁層に用いられる材料を使用することができる。
 また、絶縁層の形成方法としては、フォトリソグラフィー法、印刷法等の一般的な方法
を用いることができる。
 絶縁層の膜厚としては、10nm~50μm程度とすることができる。
 4.その他の工程
 デバイスの製造方法における、その他の工程については、各デバイスに応じて、従来公知の工程を適宜用いることができる。
 本発明の必須成分である第二電極層としても、各デバイスに応じて、従来公知の材料を適宜採用して、従来公知の工程により適宜形成すれば良い。本発明のデバイスにおいて、第二電極層は、金属又は金属酸化物で形成されることが好ましく、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物などの金属酸化物により形成することができる。
 電極は、通常、基板上にスパッタリング法、真空蒸着法などの方法により形成されることが多いが、塗布法やディップ法等の湿式法により形成することもできる。電極の厚さは、各々の電極に要求される透明性等により異なる。透明性が必要な場合には、電極の可視光波長領域の光透過率が、通常、60%以上、好ましくは80%以上となることが望ましく、この場合の厚さは、通常10~1000nm、好ましくは20~500nm程度である。
IV.デバイス
 本発明に係るデバイスの第一の態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
 前記正孔注入輸送層が、前記本発明に係る正孔注入輸送層用デバイス材料を含有し、前記正孔注入輸送層の表層部の前記正孔注入輸送層用デバイス材料のフッ素含有有機化合物が分解除去されていることを特徴とする。
 また、本発明に係るデバイスの第二の態様は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
 パターン状に第一電極層が形成された基板上の前記第一電極層のパターン間に、仕切部を有し、前記仕切部の開口部内の前記第一電極層上及び前記仕切部上に連続した正孔注入輸送層を有し、
 前記仕切部の開口部内の前記第一電極層上及び前記仕切部の側部上の正孔注入輸送層においては、前記本発明に係る正孔注入輸送層用デバイス材料の少なくとも一部のフッ素含有有機化合物が分解除去されており、且つ、前記絶縁層の頂部上の正孔注入輸送層は前記本発明に係る正孔注入輸送層用デバイス材料を含有していることを特徴とする。
 上記本発明のデバイスはいずれの態様も、前記本発明に係るデバイスの製造方法によって得ることができるものである。
 以下、本発明に係るデバイスの層構成について、図面を参照しながら説明する。
 図8は、本発明に係るデバイスの第一の態様の基本的な層構成を示す断面概念図である。本発明のデバイス10の基本的な層構成は、基板2上に対向する2つの電極(3及び9)と、その2つの電極(3及び9)間に配置された正孔注入輸送層4を含み、当該正孔注入輸送層4が、前記本発明に係る正孔注入輸送層用デバイス材料を含有し、前記正孔注入輸送層の表層部の前記正孔注入輸送層用デバイス材料のフッ素含有有機化合物が分解除去されている、正孔注入輸送層のフッ素分解部5を含む。そして前記第一電極層3上及び仕切り部6aの側部上に存在する正孔注入輸送層4の表層部に親液性領域11、及び仕切部6aの頂部上に撥液性領域12からなるパターンが形成されている。上記正孔注入輸送層4の親液性領域11上に、デバイスの機能の中心となる層(以下、機能層と称呼する。)や、当該機能層の補助的な層(以下、補助層と称呼する。)を含むデバイス層7が形成されている。
 基板7は、デバイスを構成する各層を形成するための支持体であり、必ずしも電極1の表面に設けられる必要はなく、デバイスの最も外側の面に設けられていればよい。
 正孔注入輸送層4は、少なくとも前記本発明に係る正孔注入輸送層用デバイス材料を含有し、電極3からデバイス層7への正孔の注入及び/又は輸送を担う層である。
 デバイス層7は、正孔注入輸送されることにより、デバイスの種類によって様々な機能を発揮する層であり、単層からなる場合と多層からなる場合がある。デバイス層7が多層からなる場合は、機能層や、補助層を含んでいる。例えば、有機EL素子の場合、正孔注入輸送層の表面に更に積層される正孔輸送層が補助層に該当し、当該正孔輸送層の表面に積層される発光層が機能層に該当する。
 第二電極層9は、対向する電極1との間に正孔注入輸送層4とデバイス層7が存在する箇所に少なくとも設けられる。また、必要に応じて、図示しない第三の電極を有していてもよい。これらの電極間に電場を印加することにより、デバイスの機能を発現させることができる。
 図9は、本発明に係るデバイスの第二の態様の基本的な層構成を示す断面概念図である。本発明のデバイスの基本的な層構成は、パターン状に第一電極層3が形成された基板2上の前記第一電極層3のパターン間に、仕切部6aを有し、前記仕切部6aの開口部内の前記第一電極層3上及び前記仕切部6a上に連続した正孔注入輸送層(4及び5)を有し、前記仕切部6aの開口部内の前記第一電極層3上及び前記仕切部6aの側部上の正孔注入輸送層4においては、前記本発明に係る正孔注入輸送層用デバイス材料の少なくとも一部のフッ素含有有機化合物が分解除去されて、正孔注入輸送層のフッ素分解部5になっており、且つ、前記仕切部の頂上の正孔注入輸送層4は、フッ素が分解されておらず、前記本発明に係る正孔注入輸送層用デバイス材料を含有している。なお、図9は、前記仕切部6aの開口部内の前記第一電極層3上及び前記仕切部6aの側部上の正孔注入輸送層4においては、前記本発明に係る正孔注入輸送層用デバイス材料の全部のフッ素含有有機化合物が分解除去されて、正孔注入輸送層のフッ素分解部5になっている図を示している。
 そして前記第一電極層3上及び仕切り部6aの側部上に存在する正孔注入輸送層のフッ素分解部5が親液性領域11、及び仕切部6aの頂部上に撥液性領域12からなるパターンが形成されている。上記正孔注入輸送層4の親液性領域11上に、デバイス層7が形成されている。更に、第二電極層9が、基板2上に2つの電極(3及び9)が対向し、その2つの電極(3及び9)間に配置された正孔注入輸送層4を有するように、形成されている。
 なお、前記仕切部6aの開口部内の前記第一電極層3上及び前記仕切部6a上に連続した正孔注入輸送層(4及び5)は、正孔注入輸送層に別層として設けられた界面がない。正孔注入輸送層のフッ素分解部5は、正孔注入輸送層4と同じ材料から正孔注入輸送層用デバイス材料の少なくとも一部のフッ素含有有機化合物が分解除去された部分として、正孔注入輸送層にパターン状に含まれるものである。
 本発明に係るデバイスは、上記のように、正孔注入輸送層のフッ素分解部5(親液性領域11)上に、デバイス層7が形成されている。本発明に係る正孔注入輸送層のフッ素分解部5に含まれている正孔注入輸送層用デバイス材料は、フッ素を分解する光触媒処理等の処理を経ることによって、酸化されてイオン化ポテンシャルが大きくなり、正孔注入性が高くなっている。本発明のデバイスは、このように正孔注入性が向上した正孔注入輸送上にデバイス層が形成されているため、製造プロセスが容易でありながら、正孔注入輸送性に優れ、長寿命を達成可能である。
 尚、本発明のデバイスの層構成は、上記例示に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 本発明のデバイスにおいて、第一電極層、第二電極層、正孔注入輸送層、及び、当該正孔注入輸送層に用いられる正孔注入輸送層用デバイス材料については、上記の「I.正孔注入輸送層用デバイス材料」、「II.正孔注入輸送層用インク」、「III.デバイスの製造方法」において記載したのと同様であっても良い。更にデバイスに含まれるデバイス層(機能層や補助層)については、後述するデバイスの具体例において、詳細に述べる。
 ここでは、正孔注入輸送層について、さらに補足する。
<正孔注入輸送層>
 本発明のデバイスにおける正孔注入輸送層は、少なくとも上記本発明に係る正孔注入輸送層用デバイス材料を含有するものである。当該正孔注入輸送層は、正孔注入輸送層用デバイス材料のみからなるものであっても良いが、更に他の成分を含有していても良い。
 その他の成分として、上記本発明に係る正孔注入輸送層用デバイス材料以外の正孔輸送性化合物としては、本発明の効果が損なわれない限り、正孔輸送性を有する化合物であれば、適宜用いることができる。ここで、正孔輸送性とは、公知の光電流法により、正孔輸送による過電流が観測されることを意味する。
 正孔輸送性化合物としては、低分子化合物の他、高分子化合物も好適に用いられる。正孔輸送性高分子化合物は、正孔輸送性を有し、且つ、ゲル浸透クロマトグラフィーのポリスチレン換算値による重量平均分子量が2000以上の高分子化合物をいう。本発明の正孔注入輸送層においては、溶液塗布法により安定な膜を形成することを目的として、正孔輸送性材料としては有機溶媒に溶解しやすく且つ化合物が凝集し難い安定な塗膜を形成可能な高分子化合物を用いることが好ましい。
 正孔輸送性化合物としては、特に限定されることなく、例えばアリールアミン誘導体、アントラセン誘導体、カルバゾール誘導体、チオフェン誘導体、フルオレン誘導体、ジスチリルベンゼン誘導体、スピロ化合物等を挙げることができる。アリールアミン誘導体の具体例としては、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン(TPD)、ビス(N-(1-ナフチル-N-フェニル)ベンジジン)(α-NPD)、4,4',4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン(MTDATA)、4,4’,4”-トリス(N-(2-ナフチル)-N-フェニルアミノ)トリフェニルアミン(2-TNATA)など、カルバゾール誘導体としては4,4-N,N’-ジカルバゾール-ビフェニル(CBP)など、フルオレン誘導体としては、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-9,9-ジメチルフルオレン(DMFL-TPD)など、ジスチリルベンゼン誘導体としては、4-(ジ-p-トリルアミノ)-4’-[(ジ-p-トリルアミノ)スチリル]スチルベン(DPAVB)など、スピロ化合物としては、2,7-ビス(N-ナフタレン-1-イル-N-フェニルアミノ)-9,9-スピロビフルオレン(Spiro-NPB)、2,2’,7,7’-テトラキス(N,N-ジフェニルアミノ)-9,9’-スピロビフルオレン(Spiro-TAD)などが挙げられる。
 また、正孔輸送性高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリフェニレンビニレン誘導体等を用いることができる。ポリアニリン、ポリチオフェン、ポリフェニレンビニレン誘導体等の導電性高分子は、酸によりドーピングされていてもよい。更に、アリールアミン誘導体、アントラセン誘導体、カルバゾール誘導体、チオフェン誘導体、フルオレン誘導体、ジスチリルベンゼン誘導体、スピロ化合物等を繰り返し単位に含む重合体を挙げることができる。
 本発明の正孔注入輸送層において、上記本発明に係る正孔注入輸送層用デバイス材料以外の正孔輸送性化合物が用いられる場合には、当該正孔輸送性化合物の含有量は、上記本発明に係る正孔注入輸送層用デバイス材料100重量部に対して、10~10000重量部であることが、正孔注入輸送性を高くし、且つ、膜の安定性が高く長寿命を達成する点から好ましい。
 また、本発明の正孔注入輸送層は、本発明の効果を損なわない限り、バインダー樹脂や硬化性樹脂や塗布性改良剤などの添加剤を含んでいても良い。バインダー樹脂としては、ポリカーボネート、ポリスチレン、ポリアリレート、ポリエステル等が挙げられる。また、熱または光等により硬化するバインダー樹脂を含有していてもよい。熱または光等光等により硬化する材料としては、上記正孔輸送性化合物において分子内に硬化性の官能基が導入されたもの、あるいは、硬化性樹脂等を使用することができる。具体的に、硬化性の官能基としては、アクリロイル基やメタクリロイル基などのアクリル系の官能基、またはビニレン基、エポキシ基、イソシアネート基等を挙げることができる。硬化性樹脂としては、熱硬化性樹脂であっても光硬化性樹脂であってもよく、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコン樹脂、シランカップリング剤等を挙げることができる。
<有機EL素子>
 本発明のデバイスの一実施形態として、少なくとも本発明の正孔注入輸送層及び発光層を含む有機層を含有する、有機EL素子が挙げられる。
 以下、有機EL素子を構成する各層について、図10を用いて順に説明する。
 図10は、本発明の有機EL素子の一例を示す概略断面図である。図10に例示する有機EL素子31は、基板2上に第1電極層3がパターン状に形成され、第1電極層3のパターンの開口部に隔壁6aが形成され、第1電極層3および隔壁6aの上に正孔注入輸送層4が形成され、この正孔注入輸送層4の表層部の前記正孔注入輸送層用デバイス材料のフッ素含有有機化合物が分解除去されてフッ素除去層5が形成されており、フッ素除去層5の表面に親液性領域11、および隔壁6aの頂上部に撥液性領域12からなるパターンが形成され、さらに、親液性領域11上に形成された発光層32と、発光層32上に形成された電子注入輸送層33と、電子注入輸送層33上に形成された第2電極層34とを有している。
 図10においては、図示されていないが、正孔注入輸送層の親液性領域11と発光層32との間に、更に正孔輸送層が形成されていても良い。
 上記図10においては、第一電極層3は陽極、第二電極層34は陰極として機能する。上記有機EL素子は、陽極と陰極の間に電場を印加されると、正孔が陽極から正孔注入輸送層4を経て発光層32に注入され、且つ電子が陰極から発光層に注入されることにより、発光層5の内部で注入された正孔と電子が再結合し、素子の外部に発光する機能を有する。
 素子の外部に光を放射するため、発光層の少なくとも一方の面に存在する全ての層は、可視波長域のうち少なくとも一部の波長の光に対する透過性を有することを必要とする。また、発光層と電極6(陰極)の間には、必要に応じて電子注入輸送層33が設けられる。
 以下、本発明に係る有機EL素子の各層について詳細に説明する。
 なお、基板、電極層については、上記デバイスの説明において挙げたものを用いることができる。
 (正孔注入輸送層、正孔輸送層、及び正孔注入層)
 本発明のデバイスにおいて必須成分である、上記本発明に係る正孔注入輸送層用デバイス材料又はその分解物を含有する正孔注入輸送層以外にも、更に正孔注入輸送層、正孔輸送層、及び正孔注入層が、発光層と第一電極層の間に適宜形成されても良い。上記本発明に係る正孔注入輸送層用デバイス材料又はその分解物を含有する正孔注入輸送層の上に更に正孔輸送層を積層し、その上に発光層を積層してもよいし、正孔注入層の上に更に上記本発明に係る正孔注入輸送層用デバイス材料又はその分解物を含有する正孔注入輸送層を積層し、その上に発光層を積層してもよい。
 本発明の必須成分の正孔注入輸送層の上に更に正孔輸送層を積層する場合に、正孔輸送層に用いられる正孔輸送性化合物は、特に限定されず、上述した正孔注入輸送層の補足に記載したような正孔注入輸送性化合物を適宜選択して用いることができる。本発明の必須成分の正孔注入輸送層に、上記本発明に係る正孔注入輸送層用デバイス材料又はその分解物とは異なる正孔注入輸送性化合物を更に含む場合には、隣接する正孔輸送層には、当該本発明の必須成分の正孔注入輸送層に含まれる正孔輸送性化合物と同じ化合物を用いることが、本発明の必須成分の正孔注入輸送層と正孔輸送層の界面の密着安定性を向上させ、長駆動寿命化に寄与する点から好ましい。
 正孔輸送層は、正孔注入輸送性化合物を用いて、後述の発光層と同様方法で形成することができる。正孔輸送層の膜厚は、通常0.1~1μm、好ましくは1~500nmである。
 また、正孔注入層の上に更に本発明の必須成分の正孔注入輸送層を積層する場合に、正孔注入層に用いられる正孔注入材料は特に限定されず、従来公知の化合物を用いることができる。例えば、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。
 正孔注入層は、正孔注入材料を用いて、後述の発光層と同様方法で形成することができる。正孔注入層の膜厚は、通常1nm~1μm、好ましくは2nm~500nm、さらに好ましくは5nm~200nmである。
 さらに、正孔注入特性を考慮すると、第一電極層側から発光層5に向かって各層の仕事関数(HOMO)の値が階段状に大きくなるような正孔注入性材料及び正孔輸送性材料を選択して、各界面での正孔注入のエネルギー障壁をできるだけ小さくし、第一電極層と発光層の間の大きな正孔注入のエネルギー障壁を補完することが好ましい。
 (発光層)
 発光層32は、図10に示すように、第一電極層3が形成された基板2と第二電極層34との間の、上記正孔注入輸送層上の親液性領域11上に形成される。
 本発明の発光層に用いられる材料としては、通常、発光材料として用いられている材料であれば特に限定されず、蛍光材料およびりん光材料のいずれも用いることができる。具体的には、色素系発光材料、金属錯体系発光材料等の材料を挙げることができ、低分子化合物または高分子化合物のいずれも用いることができる。
 [色素系発光材料の具体例]
 色素系発光材料としては、例えば、アリールアミン誘導体、アントラセン誘導体、(フェニルアントラセン誘導体、)、オキサジアゾール誘導体、オキサゾール誘導体、オリゴチオフェン誘導体、カルバゾール誘導体、シクロペンタジエン誘導体、シロール誘導体、ジスチリルベンゼン誘導体、ジスチリルピラジン誘導体、ジスチリルアリーレン誘導体、シロール誘導体、スチルベン誘導体、スピロ化合物、チオフェン環化合物、テトラフェニルブタジエン誘導体、トリアゾール誘導体、トリフェニルアミン誘導体、トリフマニルアミン誘導体、ピラゾロキノリン誘導体、ヒドラゾン誘導体、ピラゾリンダイマー、ピリジン環化合物、フルオレン誘導体、フェナントロリン類、ペリノン誘導体、ペリレン誘導体等を挙げることができる。またこれらの2量体や3量体やオリゴマー、2種類以上の誘導体の化合物も用いることができる。
 これらの材料は単独で用いてもよく2種以上を併用してもよい。
 [金属錯体系発光材料の具体例]
金属錯体系発光材料としては、例えばアルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾール亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等、あるいは中心金属にAl、Zn、Be等または、Tb、Eu、Dy等の希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダール、キノリン構造等を有する金属錯体を挙げることができる。
 これらの材料は単独で用いてもよく2種以上を併用してもよい。
 [高分子系発光材料の具体例]
 高分子系発光材料としては、分子内に上記低分子系材料を分子内に直鎖あるいは側鎖あるいは官能基として導入されたもの、重合体およびデンドリマー等を使用することができる。
例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリビニルカルバゾール、ポリフルオレノン誘導体、ポリフルオレン誘導体、ポリキノキサリン誘導体、及びそれらの共重合体等を挙げることができる。
 [ドーパントの具体例]
 上記発光層中には、発光効率の向上や発光波長を変化させる等の目的でドーピング材料を添加してもよい。高分子系材料の場合は、これらを分子構造の中に発光基として含んでいても良い。このようなドーピング材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクドリン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾリン誘導体、デカシクレン、フェノキサゾン、キノキサリン誘導体、カルバゾール誘導体、フルオレン誘導体を挙げることができる。またこれらにスピロ基を導入した化合物も用いることができる。
 これらの材料は単独で用いてもよく2種以上を併用してもよい。
 本発明においては、発光層の材料としては蛍光発光する低分子化合物または高分子化合物や、燐光発光する低分子化合物または高分子化合物のいずれをも用いることができる。本発明において、発光層を設ける下地層が本発明の上記正孔注入輸送層である場合、当該正孔注入輸送層は電荷移動錯体を形成して溶液塗布法に用いたキシレン等の非水系溶媒に不溶になる傾向があり、発光層の材料としては、キシレン等の非水系溶媒に溶解しやすく溶液塗布法により層を形成する高分子型材料を用いることが可能である。この場合、蛍光発光する高分子化合物または蛍光発光する低分子化合物を含む高分子化合物や、燐光発光する高分子化合物または燐光発光する低分子化合物を含む高分子化合物を好適に用いることができる。
 発光層は、正孔注入輸送層表面の濡れ性変化パターンを利用して、発光材料を用いて溶液塗布法により形成することができる。溶液塗布法は、上述のデバイスの製造方法の項目において説明したのと同様の方法を用いることができる。正孔注入輸送層表面の濡れ性変化パターンを利用して正孔輸送層など他の層が形成される場合、蒸着法や転写法で作製しても良い。蒸着法は、例えば真空蒸着法の場合には、発光層の材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10‐4Pa程度にまで排気した後、ルツボを加熱して、発光層の材料を蒸発させ、ルツボと向き合って置かれた基板、第一電極層、正孔注入輸送層、及び正孔輸送層の積層体の上に発光層を形成させる。転写法は、例えば、予めフィルム上に溶液塗布法又は蒸着法で形成した発光層を、第一電極層上に設けた正孔注入輸送層に貼り合わせ、加熱により発光層を正孔注入輸送層上に転写することにより形成される。
 発光層の膜厚は、通常、1~500nm、好ましくは20~1000nm程度である。本発明は、正孔注入輸送層を溶液塗布法で形成することが好適であり、正孔注入輸送層表面の濡れ性変化パターンを利用して、発光層も溶液塗布法で形成することができるので、この場合、プロセスコストを下げることができるという利点がある。
 なお、色素増感太陽電池、有機薄膜太陽電池、有機半導体等、有機トランジスタのその他の有機デバイス、正孔注入輸送層を有する量子ドット発光素子、酸化物系化合物太陽電池等についても、正孔注入輸送層を上記本発明に係る正孔注入輸送層とすれば、その他の構成は特に限定されず、適宜公知の構成と同じであって良い。
 以下、実施例を挙げて、本発明を更に具体的に説明する。これらの記載により本発明を制限するものではない。尚、実施例中、部は特に特定しない限り重量部を表す。また、層又は膜の厚みは平均膜厚で表わされている。
 以下の合成例1~4において、本発明の正孔注入輸送層用デバイス材料である、表面にフッ素含有有機化合物が付着している遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターを得た。
[合成例1]
 次の手順で、4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロウンデシルアミンで保護されたモリブデン含有ナノ粒子を合成した。25 ml三ッ口フラスコ中に、n-オクチルエーテル 3.2 g(東京化成工業株式会社製)を量り取り、攪拌しながら減圧し、低揮発成分除去のために室温(24℃)にて1.5時間放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.2 g(関東化学株式会社製)、4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロウンデシルアミン 0.4 g(Fluka社製)を添加した。この混合液をアルゴンガス雰囲気とし、攪拌しながら250℃まで加熱し、その温度を1時間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、エタノール 5 gを添加し、遠心分離によって沈殿物を反応液から分離した。その後、得られた沈殿物をクロロホルム、エタノールで洗い、乾燥することにより、黒色のモリブデン含有ナノ粒子の精製物を得た。
[合成例2]
 次の手順で、4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル)ベンジルアミンで保護されたモリブデン含有ナノ粒子を合成した。25 ml三ッ口フラスコ中に、n-オクチルエーテル 6.4 g(東京化成工業株式会社製)を量り取り、攪拌しながら減圧し、低揮発成分除去のために室温(24℃)にて2.5時間放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.4 g(関東化学株式会社製)、4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル)ベンジルアミン 0.9 g(Aldrich社製)を添加した。この混合液をアルゴンガス雰囲気とし、攪拌しながら250℃まで加熱し、その温度を1時間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、エタノール 10 gを添加し、遠心分離によって沈殿物を反応液から分離した。その後、得られた沈殿物をクロロホルム、エタノールで洗い、乾燥することにより、黒色のモリブデン含有ナノ粒子の精製物を得た。
[合成例3]
 次の手順で、4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロウンデシルアミンで保護されたタングステン含有ナノ粒子を合成した。25 ml三ッ口フラスコ中に、n-オクチルエーテル 6.4 g(東京化成工業株式会社製)を量り取り、攪拌しながら減圧し、低揮発成分除去のために室温(24℃)にて3時間放置した。真空下から大気雰囲気へ変更し、タングステンヘキサカルボニル 0.4 g(Aldrich社製)、4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロウンデシルアミン 0.8 g(Fluka社製)を添加した。この混合液をアルゴンガス雰囲気とし、攪拌しながら250℃まで加熱し、その温度を1時間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、エタノール 10 gを添加し、遠心分離によって沈殿物を反応液から分離した。その後、得られた沈殿物をクロロホルム、エタノールで洗い、乾燥することにより、茶色のタングステン含有ナノ粒子の精製物を得た。
[合成例4]
{Mo154クラスター}Na15[MoVI 126Mo 28O462H14(H2O)70]0.5[MoVI 124Mo 28O457H14(H2O)68]0.5・400H2Oクラスターの合成方法
 100mLナス型フラスコに磁気撹拌子を入れ、モリブデン(VI)酸二ナトリウム二水和物(3.04g)、蒸留水(25mL)、35%塩酸(2.47mL)を加えた。ついで亜ジチオン酸ナトリウム(0.15g)を加え、室温で24時間撹拌した。その後、5日完静置し、析出した濃青色の固体をろ過し、冷水で洗浄した。濃青色油状物をサンプル瓶に移し、デシケーター内で乾燥させ濃青色固体の水溶性のモリブデン酸化物クラスター(以下、簡略化して「Moクラスター」という)(1.46g)を得た。Moクラスターが合成できていることは、フーリエ変換赤外分光法(FT-IR法)とラマン分光法により確認した。FT-IR法には、VARIAN社製FT-IR装置(FTS6000)を用い、KBr法で測定した。FT-IR法にて、各波長における強度分布を測定することによりモリブデン酸化物クラスターを構成する元素の種類と結合状態(原子団;部分構造)及びその量を分析した。その結果、波数:νcm-1,1617、974、912、820、747、632、557に吸収が観測された。吸収のある波数の値は、非特許文献1の“Synthetic Metals”,(1997),vol.85,p.1229-1232に示されている水溶性Mo154クラスターに特徴的な吸収波数と一致した。
 ラマン分光法には、HORIBA社製レーザラマン分光装置LabRAM HR-800Lを用いた。514nmレーザーを用い、グレーティングが1800本、積算回数10回の条件で測定した。
 その結果、下記の波数に吸収が観察され、モリブデンと酸素の結合があることが確認された。resonance Raman bands (solid; λe = 514nm):ν(cm-1)= 997,824,666,465,379,339,290,242,216,199,154,129,119.
 合成したMoクラスター1の平均粒子径を測定するためMoクラスター1(Mo154)を蒸留水に0.4重量%溶解させ、超音波で1時間溶解させた後に80度水浴で10分、さらに超音波で1時間溶解させ、0.2μmフィルターでろ過した溶液を測定した。
 測定強度L.I.0.045の時に、個数平均粒径MN(Mean Number Diameter)は4nmであった。Mo154はドーナツ型をしていて直径が約4nmといわれており、個数平均粒径の4nmの測定結果とほぼ一致している。
 上記で合成したMo154クラスターにトリエチル(1H,1H,2H,2H-トリデカフルオロ-n-オクチル)アンモニウム アイオダイド塩をカチオン交換法で吸着させた。Mo154クラスター水溶液0.5wt%(濃紺)とトリエチル(1H,1H,2H,2H-トリデカフルオロ-n-オクチル)アンモニウム アイオダイド塩のシクロヘキサノン溶液0.5wt%(薄黄)を混合させて、60℃で1時間加熱したところ、シクロヘキサノン溶液中に紺色の成分が微少量抽出された。このシクロヘキサノン溶液成分のみを取り出して、合成例4の正孔注入輸送層形成用インキを得た。
[合成例5]
(1)フッ素含有有機化合物F-1の合成
 ジクロロメタン溶媒中で、N,N'-ジシクロヘキシルカルボジイミド(東京化成社製)を用いて、2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプタン酸(アルドリッチ社製)と1,4-ジアミノブタン(東京化成社製)との縮合反応を行い、フッ素含有有機化合物F-1を合成した。なお、得られたフッ素含有有機化合物の構造は、1H NMR(日本電子社製 α-400)および質量分析(日本電子社製 JMS600)により特定した。得られた化合物F-1の分子量が質量分析により434であること、及び1H NMRより、下記構造式の化合物が合成されていることを確認した。取得したNMRスペクトルを図13に示す。
Figure JPOXMLDOC01-appb-C000005
(2)フッ素含有有機化合物F-1で保護されたモリブデン含有ナノ粒子の合成
 100 ml三ッ口フラスコ中に、n-オクチルエーテル 6.4 g(東京化成工業株式会社製)を量り取り、攪拌しながら減圧し、低揮発成分除去のために室温(24℃)にて1.5時間放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.2 g(関東化学株式会社製)、フッ素含有有機化合物F-1 0.7 gを添加した。この混合液をアルゴンガス雰囲気とし、攪拌しながら220℃まで加熱し、その温度を30分間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、エタノール 5 gを添加し、遠心分離によって沈殿物を反応液から分離した。その後、得られた沈殿物をクロロホルム、エタノールで洗い、乾燥することにより、黒色のモリブデン含有ナノ粒子の精製物を得た。
 [合成例6]
(1)フッ素含有有機化合物F-2の合成
 クロロホルム中、トリエチルアミン存在下で、1H,1H,2H,2H-トリデカフルオロ-n-オクチルヨージド(東京化成社製)と2-アミノエタンチオール(東京化成社製)との縮合反応を行い、フッ素含有有機化合物F-2を合成した。得られた化合物F-2の分子量が質量分析により423であること、及び1H NMRより、下記構造式の化合物が合成されていることを確認した。取得したNMRスペクトルを図14に示す。
Figure JPOXMLDOC01-appb-C000006
(2)フッ素含有有機化合物F-2で保護されたモリブデン含有ナノ粒子の合成
 合成例5のモリブデン含有ナノ粒子の合成において、フッ素含有有機化合物F-1を用いる代わりに、フッ素含有有機化合物F-2を用いた以外は、合成例5と同様にして、黒色のモリブデン含有ナノ粒子の精製物を得た。
 [合成例7]
(1)フッ素含有有機化合物F-3の合成
 水素化アルミニウムリチウムを用いて、合成例1で得られたフッ素含有有機化合物F-1を還元することにより、フッ素含有有機化合物F-3を得た。得られた化合物F-3の分子量が質量分析により420であること、及び1H NMRより、下記構造式の化合物が合成されていることを確認した。取得したNMRスペクトルを図15に示す。
Figure JPOXMLDOC01-appb-C000007
(2)フッ素含有有機化合物F-3で保護されたモリブデン含有ナノ粒子の合成
 合成例5のモリブデン含有ナノ粒子の合成において、フッ素含有有機化合物F-1を用いる代わりに、フッ素含有有機化合物F-3を用いた以外は、合成例5と同様にして、黒色のモリブデン含有ナノ粒子の精製物を得た。
 [合成例8]
(1)フッ素含有有機化合物F-4の合成
 2,3,3,3-テトラフルオロ-2-(1,1,2,2,3,3,3-ヘプタフルオロプロポキシ)プロパン酸ナトリウム(アルドリッチ社製)をジクロロメタン溶媒中、ピリジン共存下でシアヌル酸フルオライド(アルドリッチ社製)を反応させることにより酸フッ化物に変換した。ジクロロメタン溶媒中で、当該酸フッ化物と1,4-ジアミノブタンとの縮合反応を行うことにより、フッ素含有有機化合物F-4を合成した。得られた化合物F-4の分子量が質量分析により400であること、及び1H NMRより、下記構造式の化合物が合成されていることを確認した。取得したNMRスペクトルを図16に示す。
Figure JPOXMLDOC01-appb-C000008
(2)フッ素含有有機化合物F-4で保護されたモリブデン含有ナノ粒子の合成
 合成例5のモリブデン含有ナノ粒子の合成において、フッ素含有有機化合物F-1を用いる代わりに、フッ素含有有機化合物F-4を用いた以外は、合成例5と同様にして、黒色のモリブデン含有ナノ粒子の精製物を得た。
[比較合成例1]
 次の手順で、n-ヘキサデシルアミンで保護されたモリブデン含有ナノ粒子を合成した。25ml三ッ口フラスコ中に、n-ヘキサデシルアミン 0.8g(関東化学株式会社製)、n-オクチルエーテル 12.8g(東京化成工業株式会社製)を量り取り、攪拌しながら減圧し、低揮発成分除去のために室温(24℃)にて1hr放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.8g(関東化学株式会社製)を添加した。この混合液をアルゴンガス雰囲気とし、攪拌しながら280℃まで加熱し、その温度を1h維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、エタノールを20g滴下した。次いで、遠心分離によって沈殿物を反応液から分離した後、下記に示す手順で再沈殿による精製を行った。
 すなわち、沈殿物をクロロホルム3gと混合して分散液とし、この分散液にエタノール6gを滴下することにより精製された沈殿物を得た。
 このようにして得られた再沈殿液を遠心分離し、沈殿物を反応液から分離した後、乾燥することにより、黒色のモリブデン含有ナノ粒子の精製物を得た。
<粒径の測定>
 合成例1~3、5~8及び比較合成例1で得られた遷移金属含有ナノ粒子の一次粒径は、日立ハイテクノロジー社製の超高分解能電界放出形走査電子顕微鏡S-4800を用いて測定した。測定用試料は、遷移金属含有ナノ粒子分散溶液を市販の支持膜付きのマイクログリッド上に数滴滴下し、溶媒を減圧乾燥させることによって作製した。粒子像観察は、走査型透過電子顕微法(STEM)モードにて行った。観察された明るい粒子の20個の平均値を平均粒径とした。観察している粒径は、保護剤を除いた遷移金属含有ナノ粒子の平均粒径であると考えられる。
 合成例1で作製したナノ粒子の平均粒径は、7nmであった。合成例2で作製したナノ粒子の平均粒径は、9nmであった。合成例3で作製したナノ粒子の平均粒径は、15nmであった。合成例5で作製したナノ粒子の平均粒径は、6nmであった。合成例6で作製したナノ粒子の平均粒径は、6nmであった。合成例7で作製したナノ粒子の平均粒径は、8nmであった。合成例8で作製したナノ粒子の平均粒径は、5nmであった。比較合成例1で作製したナノ粒子の平均粒径は、6nmであった。
<遷移金属含有ナノ粒子の結晶構造の測定>
 粉末X線回折法にて上記で得られたモリブデン含有ナノ粒子の結晶構造を同定した。測定装置にはリガク社製RINT-1500を用い、測定用試料はモリブデン含有ナノ粒子粉末をガラス上にのせて作製した。X線源としてはCuKα線を用い、管電圧50 kV、管電流250 mAの条件で実施した。2θ/θスキャン法でスキャン速度が毎分2°、ステップ角が0.05°の条件で測定した。
 合成例1~2、5~8および比較合成例1で得られたモリブデン含有ナノ粒子はいずれも、2θ=37.8、43.7、63.4、75.7、79.9°に鋭いピークが観察された。データベースJCPDS card No.15-0457の値から、作製したモリブデン含有ナノ粒子はMoCやMoCを主体とする炭化Moナノ粒子であることがわかった。
 なお、合成例3で得られたタングステン含有ナノ粒子のXRDチャートはブロードであり結晶構造を特定できなかった。アモルファスなナノ粒子が形成されていると推測される。
<膜厚の測定>
 膜厚は、洗浄済みのITOつきガラス基板上に、測定しようとする材料で形成した層を単層として形成し、カッターナイフで段差を作製してから、段差の高さをプローブ顕微鏡(エスアイアイ・ナノテクノロジー(株)製、Nanopics1000)を用い、タッピングモードで測定した。
<イオン化ポテンシャルの測定>
 本発明でのイオン化ポテンシャルの値は、光電子分光装置AC-1(理研計器製)を用いて測定した仕事関数の値を適用した。測定は、洗浄済みのITO付きガラス基板(三容真空社製)上に、測定しようとする材料で形成した層を単層として形成し、前記の光電子分光装置AC-1で光電子が放出されるエネルギー値で決定した。測定条件としては、50nWの光量で0.05eV刻みで行った。
 合成例1で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.4eVであった。合成例2で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.4eVであった。合成例3で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.6eVであった。合成例4で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.8eVであった。合成例5で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.4eVであった。合成例6で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.4eVであった。合成例7で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.4eVであった。合成例8で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.4eVであった。比較合成例1で得られた正孔注入輸送層用デバイス材料を用いた正孔注入輸送層のイオン化ポテンシャルは5.0eVであった。
<吸収スペクトルの測定>
吸収スペクトルは、洗浄済みの石英基板上に、測定しようとする材料で形成した層を単層として形成し、この薄膜付基板とリファレンスの石英基板との光学吸収の差を、UV-3100PC(日立製)を用いて測定した。
合成例1~3、5~8で得られた正孔注入輸送層用デバイス材料の薄膜(15nm)の254nmの波長での透過率はいずれも85%と高い値であった。合成例4で得られた正孔注入輸送層の254nmの波長での透過率は80%と高い値であった。
<液体の接触角の測定>
 液体の接触角は接触角測定器(協和界面科学(株)製、全自動接触角計(DM700))を用いて測定した。標準溶液としてキシレン(表面張力28.5mN/m)を用い、マイクロシリンジから2マイクロリットルの液滴を滴下してから5秒後の接触角を測定した。
<正孔注入輸送層の表面分析>
 X線光電子分光法(XPS)にて、遷移金属含有ナノ粒子に含まれる遷移金属の価数とフルオロアルキル基の有無を測定した。測定にはKratos社製ESCA-3400型を用いた。測定に用いたX線源としては、MgKα線を用いた。モノクロメーターは使用せず、加速電圧10kV、フィラメント電流20mAの条件で測定した。
≪素子特性の実験≫
 本発明の有機EL素子は、透明陽極付ガラス基板の上に、表面にフッ素含有有機化合物が付着しているMo含有ナノ粒子を含む正孔注入輸送層を形成した後に光触媒処理を施し、その後に正孔輸送層、発光層、正孔ブロック層、電子輸送層、電子注入層、陰極の基本層構成を有するように製膜して積層し、封止して緑発光の有機EL素子として作製し、その有機EL素子の特性、及び濡れ性を評価した。
[実施例1]
 パターン形成されたITO付ガラス基板(三容真空社製、ITO膜厚:150nm)を、中性洗剤、超純水の順番に超音波洗浄し、UVオゾン処理を施した。
 次に、上記基板の上に正孔注入輸送層として、遷移金属含有ナノ粒子薄膜を、下記正孔注入輸送層形成用インクを用いてスピンコート法により塗布形成した。正孔注入輸送層形成用インクは、合成例1で得られた正孔注入輸送層用デバイス材料0.012gをヘプタフルオロ-n-酪酸エチル3.0gに溶解させて0.4wt%の溶液を調製した。塗膜形成後はホットプレート上200℃で乾燥させた。乾燥後の膜厚は15nmであった。
 次に、光触媒含有層付きフォトマスクを調製した。合成石英基板上に透過領域と遮光領域を形成したフォトマスクを用意した。このフォトマスク上に、下記組成の光触媒含有層形成用塗工液をスピンコーターにより塗布し、150℃で10分間の加熱乾燥処理を施し、加水分解・重縮合反応を進行させて硬化させ、光触媒がオルガノシロキサン中に強固に固定された、膜厚100nmの透明な光触媒含有層を形成した。
 (光触媒含有層形成用塗工液)
・二酸化チタン(石原産業(株)製、ST-K01) 2重量部
・オルガノアルコキシシラン(東芝シリコーン(株)製、TSL8113) 0.4重量部
・イソプロピルアルコール 3重量部
 次に、上記で調製した光触媒含有層付きフォトマスクを介して正孔注入輸送層を露光して、親液性領域および撥液性領域からなるパターンを形成した。高圧水銀灯と、光触媒含有層付きフォトマスクおよび基板の位置調整機構とを備える紫外露光装置を用い、光触媒含有層付きフォトマスクの光触媒含有層と正孔注入輸送層との間の距離が100μmになるように調整した後、光触媒含有層付きフォトマスクの裏面側から254nmの光の露光量が5J/cm2となるように3分間露光した。
 次に処理された正孔注入輸送層の上に、正孔輸送層として、ポリビニルカルバゾール(PVK)(分子量70万)薄膜をスピンコート法により塗布形成した。塗工液は、PVKを1,2-ジクロロエタンに溶解させて調製した。塗膜形成後はホットプレート上150℃で乾燥させた。乾燥後の膜厚は20nmであった。
 次に、上記正孔輸送層の上に、トリス[2-(p-トリル)ピリジン)]イリジウム(III)(Ir(mppy)3)を発光性ドーパントとして含有し、4,4’-ビス(9-カルバゾリル-2,2’ジメチルビフェニル(CDBP)をホストとして含有する発光層薄膜をスピンコート法により塗布形成した。塗工液は、ホストであるCDBPとドーパントであるIr(mppy)3の重量比が20:1で含有した状態で、乾燥後の合計膜厚が40nmになるように、トルエンに溶解させて調製した。塗膜形成後はホットプレート上100℃で乾燥させた。
 上記発光層の上に、正孔ブロック層を蒸着形成した。正孔ブロック層はブロック形成材料にビス(2-メチル-8-キノリラト)(p-フェニルフェノラート)アルミニウム錯体(BAlq)を用い、抵抗加熱法により真空中(圧力:1×10-4Pa)でBAlq蒸着膜の膜厚が15nmになるように蒸着形成した。
 上記正孔ブロック層の上に、電子輸送層を蒸着形成した。電子輸送層は、トリス(8-キノリノラト)アルミニウム錯体(Alq3)を抵抗加熱法により真空中(圧力:1×10-4Pa)でAlq3蒸着膜の膜厚が20nmになるように蒸着形成した。
 作製した透明陽極付きガラス基板/正孔注入輸送層/正孔輸送層/発光層/正孔ブロック層/電子輸送層の電子輸送層上に、さらに、電子注入層及び陰極を順次蒸着形成した。電子注入層は、LiF(厚み:0.5nm)を、陰極は、Al(厚み:100nm)を順次抵抗加熱蒸着法により真空中(圧力:1×10-4Pa)で蒸着膜を形成した。
 陰極形成後、低酸素、低湿度状態のグローブボックス内にて無アルカリガラスとUV硬化型エポキシ接着剤を用いて封止し、幅mmのライン状にパターニングされた陽極と、この陽極に直交するように幅mmのライン状に形成された電子注入層、陰極を備える実施例1の有機EL素子を作製した。
 これらの素子を、10mA/cmで駆動させて、発光輝度とスペクトルをトプコン社製の分光放射計SR-2を測定した。上記実施例及び比較例において作製した有機EL素子は、いずれもIr(mppy)由来の緑色に発光した。測定結果を表1に示す。なお、電流効率は駆動電流と輝度から算出して求めた。
 有機EL素子の寿命特性は、定電流駆動で輝度が経時的に徐々に低下する様子を観察して評価した。ここでは初期輝度2000cd/mに対して保持率が50%の輝度に劣化するまでの時間(hr.)を寿命(LT50)とした。
 更に、上述のように、正孔注入輸送層に対して、光触媒処理前後の濡れ性と、イオン化ポテンシャルの評価を行った。これらの結果も合わせて表1に示す。
 [実施例2]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例2で得られた正孔注入輸送層用デバイス材料を用いて正孔注入輸送層(膜厚:15nm)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [実施例3]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例3で得られた正孔注入輸送層用デバイス材料を用いて正孔注入輸送層(膜厚:15nm)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [実施例4]
 実施例1において、露光用光源として253nmの紫外光の代わりに、真空紫外光を用いて露光した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。この際、メタルマスク側から波長172nmの真空紫外光を、光の露光量が5J/cm2になるように、露光した。
 [実施例5]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、比較合成例1で得られた遷移金属含有ナノ粒子と合成例3で得られた正孔注入輸送層用デバイス材料を用いて正孔注入輸送層(膜厚:10nm)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。比較合成例1と合成例3の材料が混合された正孔注入輸送層形成用インクは、ヘプタフルオロ-n-酪酸エチルとシクロヘキサノンの混合溶媒(重量比1:1)4.0gに比較合成例1と合成例3の材料の重量比が1:1になるように合計0.016gを溶解させて、乾燥後の膜厚が15nmになるように溶液の濃度を調整した。
 [実施例6]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例4で得られた正孔注入輸送層形成用インクを用いて薄膜(膜厚:5nm以下)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [実施例7]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例5で得られた正孔注入輸送層形成用インクを用いて薄膜(膜厚:5nm以下)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [実施例8]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例6で得られた正孔注入輸送層形成用インクを用いて薄膜(膜厚:5nm以下)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [実施例9]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例7で得られた正孔注入輸送層形成用インクを用いて薄膜(膜厚:5nm以下)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [実施例10]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例8で得られた正孔注入輸送層形成用インクを用いて薄膜(膜厚:5nm以下)を形成した以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [比較例1]
 実施例1において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、比較合成例1で得られた遷移金属含有ナノ粒子を用いて薄膜(膜厚:15nm)を形成した以外は、実施例1と同様に素子を形成し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。比較合成例1で得られた遷移金属含有ナノ粒子の正孔注入輸送層形成用インクは、シクロヘキサノンの溶媒に比較合成例1の材料を、乾燥後の膜厚が15nmになるように溶解させて作製した。
[比較例2]
 実施例1において、正孔注入輸送層として、合成例1の化合物膜の代わりに、PEDOT/PSS(スタルク社製AI4083)と4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル)ベンジルアミンをスピンコート法で積層薄膜を形成した以外は、実施例1と同様に素子を形成し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。PEDOT/PSS層はPEDOT/PSS溶液を蒸留水で薄めて、乾燥後の膜厚が15nmになるように溶解させて作製した。次にヘプタデカフルオロデシルベンジルアミンを、ヘプタフルオロ-n-酪酸エチルに0.4wt%溶解させた溶液を用いて、塗布形成して薄膜を乾燥させた。乾燥後の膜厚は計測不能で5nm以下であった。
 [比較例3]
 比較例2において、正孔注入輸送層に光触媒マスクつきマスクを介さずに253nmの紫外光のみを照射した以外は、比較例5と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [比較例4]
 比較例2において、正孔注入輸送層に光触媒処理を施さなかった以外は、比較例2と同様に素子を作製し、素子特性の評価、並びに、正孔注入輸送層の濡れ性及びイオン化ポテンシャルの評価を行った。
 [参考例1]
 実施例1において、正孔注入輸送層に光触媒処理を施さなかった以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、濡れ性及びイオン化ポテンシャルの評価を行った。
 [参考例2]
 実施例2において、正孔注入輸送層に光触媒処理を施さなかった以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、濡れ性及びイオン化ポテンシャルの評価を行った。
 [参考例3]
 実施例3において、正孔注入輸送層に光触媒処理を施さなかった以外は、実施例1と同様に素子を作製し、素子特性の評価、並びに、濡れ性及びイオン化ポテンシャルの評価を行った。
Figure JPOXMLDOC01-appb-T000009
 [評価]
 実施例1と参考例1を比較すると、光触媒処理後に接触角は58°から5°以下に低下し、イオン化ポテンシャルは5.4eVから5.6eVに上昇している。さらに素子特性では光触媒処理後に寿命が5時間から7時間に向上している。光触媒処理によってフルオロアルキル成分が分解されたことと、Mo混合ナノ粒子の表面が酸化されたことにより表面が改質されて、特性が改善したものと推測される。この結果は、実施例2と参考例2の比較、および実施例3と参考例3の比較においても、同様に特性が改善されたと示される結果が得られている。
 実施例4と参考例1を比較すると、真空紫外光照射により接触角は58°から5°以下に低下し、イオン化ポテンシャルは5.4eVから5.5eVに上昇している。さらに素子特性では真空紫外光照射後に寿命が5時間から5.5時間に向上している。真空紫外光照射によりフルオロアルキル成分が分解されたことと、Mo混合ナノ粒子の表面が真空紫外光で発生したオゾンにより酸化されたことにより表面が改質されて、特性が改善したものと推測される。
 実施例1と実施例5を比較すると、実施例5では駆動電圧が1V減少している。この結果は、実施例5ではフルオロアルキルつきのW含有ナノ粒子が、表面張力が小さく、薄膜形成時に浮き上がり、フルオロアルキルなしのMo含有ナノ粒子がITO側に多く存在し、フルオロアルキルつきのW含有ナノ粒子が正孔輸送層側に多く存在するような濃度勾配をもつ膜が形成されていることが示唆される。Mo含有ナノ粒子よりもW含有ナノ粒子の方のイオン化ポテンシャルが大きいため、ホールの注入性が高くなって低電圧化したものと推測される。
 また、実施例同士を比較すると、実施例10が、輝度、電流効率及び寿命のいずれも優れていた。これは、エーテル結合を持つフッ素成分が分解しやすく、正孔注入輸送層表面の残留有機成分が少なくなることにより、薄膜界面の密着性が向上し、素子特性が向上したのではないかと推定される。
 実施例1と比較例1を比較すると、フッ素化アルキル基つきの実施例1の方が、長鎖アルキルつきの比較例1よりも1V低電圧駆動であり寿命も長い。この結果はフルオロアルキル基が付くことによってイオン化ポテンシャルが大きくなるため、ホールの注入性が高くなって低電圧化し、長寿命化したものと推測される。
 比較例2~4を比較すると、正孔注入輸送層に一般的な有機系正孔注入材料であるPEDOT/PSSを用いた場合には、光照射および、光触媒処理により、高電圧化し寿命が短くなっていることがわかる。この結果は光照射および光触媒処理によって、PEDOT/PSSが酸化あるいは分解されて、正孔注入性や駆動耐性が劣化したものと考えられる。
 実施例6と比較例4を比較すると、実施例6のMoクラスターにおいても実施例1のMoナノ粒子の場合と同様に撥油性がコントロールでき、PEDOT/PSSを用いた場合よりも高特性が得られている。
≪濡れ性変化の実験≫
 [実施例11]
 図11に示すように、ITO透明電極(陽極)42が形成されたガラス基板41の上に、正孔注入輸送層43として合成例で作製したフッ素含有有機化合物が表面に付着したMo含有ナノ粒子の薄膜をスピンコート法で10nm形成し、基体上に遮光部と光触媒含有層とが形成された光触媒含有層基板(光触媒含有層付きフォトマスク50)を用いてパターン露光し、露光部と非露光部の濡れ性を接触角測定により調べた。
 まず、透明電極として酸化インジウム錫(ITO)の薄膜(厚み:150nm)を用いた。ITO付ガラス基板(三容真空社製)を、中性洗剤、超純水の順に超音波洗浄し、UVオゾン処理を施した。
 次に、上記基板の上に正孔注入輸送層として、Mo含有ナノ粒子薄膜をスピンコート法により塗布形成した。正孔注入輸送層形成用インクは、合成例1で得られたMo含有ナノ粒子をヘプタフルオロ-n-酪酸エチルに溶解させて調製した。塗膜形成後はホットプレート上200℃で乾燥させた。乾燥後の膜厚は15nmであった。キシレンに対する正孔注入輸送層表面の接触角は58°であった。
 次に、光触媒含有層付きフォトマスク50を調製した。合成石英基板51上に透過領域52と遮光領域53を設けるようにクロムマスク54を形成したフォトマスクを用意した。このフォトマスク上に、下記組成の光触媒含有層形成用塗工液をスピンコーターにより塗布し、150℃で10分間の加熱乾燥処理を施し、加水分解・重縮合反応を進行させて硬化させ、光触媒がオルガノシロキサン中に強固に固定された、膜厚100nmの透明な光触媒含有層55を形成した。合成石英基板51上の端部に光触媒含有層55を形成しない透過領域56が設けられた。
 (光触媒含有層形成用塗工液)
・二酸化チタン(石原産業(株)製、ST-K01) 2重量部
・オルガノアルコキシシラン(東芝シリコーン(株)製、TSL8113) 0.4重量部
・イソプロピルアルコール 3重量部
 次に、上記で調製した光触媒含有層付きフォトマスクを介して正孔注入輸送層を露光して、親液性領域および撥液性領域からなるパターンを形成した。高圧水銀灯と、光触媒含有層付きフォトマスクおよび基板の位置調整機構とを備える紫外露光装置を用い、光触媒含有層付きフォトマスク50の光触媒含有層55と正孔注入輸送層43との間の距離が100μmになるように調整した後、光触媒含有層付きフォトマスク50の裏面側から254nmの光の露光量が5J/cm2となるように3分間露光した。
 続いて、正孔注入輸送層上の露光部と非露光部との液体の静的接触角を接触角計(協和界面科学社製)により測定した。液体にはキシレン(表面張力:28.5mN/m)を使用した。
 [実施例12]
 実施例11において、露光用光源として253nmの紫外光の代わりに、真空紫外光を用いて露光した以外は、実施例11と同様に親液性領域および撥液性領域からなるパターンを形成し、濡れ性の評価を行った。この際、メタルマスク側から波長172nmの真空紫外光を、光の露光量が5J/cm2になるように、撥液性領域および親液性領域からなるパターンを形成した。
 [実施例13]
 実施例11において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例2で得られた正孔注入輸送層用デバイス材料を用いて正孔注入輸送層(膜厚:15nm)を形成した以外は、実施例11と同様に新液性領域および撥液性領域からなるパターンを形成し、濡れ性の評価を行った。
 [参考例4]
 実施例11において、光触媒処理をせずに、正孔注入輸送層をホットプレートで200℃1hr.加熱した以外は、実施例11と同様に薄膜を形成し、濡れ性の評価を行った。
 [参考例5]
 参考例4において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例2で得られた正孔注入輸送層用デバイス材料を用いて正孔注入輸送層(膜厚:15nm)を形成した以外は、参考例4と同様に薄膜を形成し、濡れ性の評価を行った。
 [参考例6]
 参考例4において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例3で得られた正孔注入輸送層用デバイス材料を用いて正孔注入輸送層(膜厚:15nm)を形成した以外は、参考例4と同様に薄膜を形成し、濡れ性の評価を行った。
 [参考例7]
 参考例4において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例4で得られた正孔注入輸送層用デバイス材料を用いて正孔注入輸送層(膜厚:15nm)を形成した以外は、参考例4と同様に薄膜を形成し、濡れ性の評価を行った。
 [比較例5]
 参考例4において、正孔注入輸送層として、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、PEDOT/PSS(スタルク社製AI4083)と4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル)ベンジルアミンをスピンコート法で積層薄膜を形成した以外は、参考例4と同様に素子を形成し、濡れ性の評価を行った。PEDOT/PSS層はPEDOT/PSS溶液を蒸留水で薄めて、乾燥後の膜厚が15nmになるように溶解させて作製した。次にヘプタデカフルオロデシルベンジルアミンを、ヘプタフルオロ-n-酪酸エチルに0.4wt%溶解させた溶液を用いて、塗布形成して薄膜を乾燥させた。乾燥後の膜厚は計測不能で5nm以下であった。
 [評価]
 実施例11~13について、光照射前の正孔注入輸送層の表面である領域I、図11に示す、光が照射され、光触媒が作用した領域II、未露光部で光触媒が作用しなかった領域III、及び、光が照射されたが、光触媒は作用しなかった領域IVにおける液体の接触角を下記表2に示す。
Figure JPOXMLDOC01-appb-T000010
 また、参考例4~7、及び比較例5について、正孔注入輸送層の200℃加熱前及び後における液体の接触角を下記表3に示す。
Figure JPOXMLDOC01-appb-T000011
 実施例11~13において、領域II(光触媒の存在下で光照射)のキシレンの接触角がすべて5°以下に下がっている。この結果はフォトマスク上で発生したスーパーオキサイドラジカルまたはヒドロキシラジカルによりフルオロアルキル基成分が分解され、親液化したものと考えられる。これらの表面のXPS測定では、フルオロアルキル基が除去されていることが観測された。一方、領域III(未露光部)では液体の接触角はすべて初期の領域Iと同じであった。未露光部と露光部の撥液性のコントラストは20°以上あるため、本プロセスによりインクの塗り分けができることがわかる。また、実施例11および13において領域IVの露光のみの箇所では、254nmの光で材料は分解されておらず、光触媒の存在が必要であることがわかる。これらの表面のXPS測定ではフルオロアルキル基が未処理の膜と同程度残っていることが観測された。一方、実施例12の領域IVの露光部では接触角が22°であり、未露光部と比較して36°下がっている。未露光部と露光部の撥液性のコントラストは20°以上あるため、真空紫外光の場合は光触媒が無くても塗り分けができることがわかる。これらの表面のXPS測定ではフルオロアルキル基が少量残っていることが観測された。真空紫外光の場合は直接C-C結合が光のエネルギーにより切れているものと推測される。従って、実施例12の領域IIでは光触媒の効果と光による直接分解の2つの効果が期待される。
 参考例4~7において、本発明に係る正孔注入輸送層用デバイス材料は加熱によってそれぞれ10°程度接触角が低下していることが観察されたが、未露光部と比較してコントラストは20°以上あるため、塗り分けが可能であることがわかる。従って、正孔輸送層の乾燥や熱硬化プロセスで高温の加熱が必要な場合も撥油性が維持できることがわかる。一方、比較例5では加熱により撥液性が完全に損なわれており、加熱により塗り分けが不可能になることがわかる。
≪発光層がパターニングされたデバイスの作製≫
 [実施例14]
絶縁層と隔壁が形成されたITO基板(図12(A)に一部拡大概略断面図及び図12(B)に上から見た一部拡大概略平面図が示されている)上に、正孔注入輸送層を形成し、正孔注入輸送層に対して光触媒つきフォトマスクで露光して濡れ性パターニングを施し、親液性部である隔壁間に正孔輸送層と発光層をインクジェット法で塗布形成し、正孔ブロック層、電子輸送層、電子注入層、陰極の基本層構成を有するように製膜して積層し、封止して緑発光の有機EL素子として作製し、その有機EL素子の発光面を観察した。発光層は緑と青の2色で塗り分けた。
 まず、図12(A)及び図12(B)に示されるような格子状の絶縁層とライン状の隔壁が形成されたITO基板を、中性洗剤、超純水の順番に超音波洗浄し、最後にUVオゾン処理を施した。
 次に、上記基板の上に正孔注入輸送層として、Mo含有ナノ粒子薄膜をスピンコート法により塗布形成した。正孔注入輸送層形成用インクは、合成例1で得られた正孔注入輸送層用デバイス材料0.012gをヘプタフルオロ-n-酪酸エチル3.0gに溶解させて0.4wt%の溶液を調製した。塗膜形成後はホットプレート上200℃で乾燥させた。乾燥後の膜厚は10nmであった。隔壁構造の無い平坦部で接触角を測ったところ、キシレンに対する正孔注入輸送層表面の接触角は58°であった。
 次に、図12(B)に示す開口部が90μmになるようにライン状の遮光領域が形成されたフォトマスクを用い、開口部がライン状の隔壁上に位置するように調整して、基板に対して露光し、撥液性のコントラストの高い濡れ性パターニングを施した。高圧水銀灯と、光触媒含有層付きフォトマスクおよび基板の位置調整機構とを備える紫外露光装置を用い、光触媒含有層付きフォトマスクの光触媒含有層と正孔注入輸送層との間の距離が100μmになるように調整した後、光触媒含有層付きフォトマスクの裏面側から254nmの光の露光量が5J/cm2となるように3分間露光した。露光部であり、かつ隔壁構造の無い平坦部分で接触角を測ったところ、キシレンに対する正孔注入輸送層表面の接触角は5°以下であり、親液化していた。
 次に、隔壁の間に形成された親液性領域に下記組成の正孔輸送層形成用塗工液をインクジェット法により塗布して正孔輸送層を形成した。塗膜形成後、窒素中200℃で60分乾燥させた。乾燥後の膜厚が30nmになるようにインクの塗出量を調整した。
 (正孔輸送層形成用塗工液)
・ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)](TFB) 1.8重量部
・メチルアニソール 98.2重量部
 次に、隔壁の間に形成された正孔輸送層の上に下記組成の緑発光層形成用塗工液を1ライン置きにインクジェット法により塗布し、続いて緑発光層形成用塗工液を塗布しなかったラインに青発光層形成用塗工液をインクジェット法により塗布して、1ライン置きに緑と青が配列した発光層を形成した。塗膜形成後、窒素中100℃で30分乾燥させた。乾燥後の膜厚が40nmになるようにインクの塗出量を調整した。
 (緑発光層形成用塗工液)
・2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン(MADN) 1.8重量部
・9,10-ビス[N,N-ジ-(p-トリル)-アミノ]アントラセン(TTPA) 0.02重量部
・安息香酸エチル 98重量部
 (青発光層形成用塗工液)
・2-メチル-9、10-ビス(ナフタレン-2-イル)アントラセン(MADN) 1.8重量部
・1-tert-ブチル-ペリレン(TBP) 0.02重量部
・安息香酸エチル 98重量部
 上記発光層の上に、正孔ブロック層を一様に蒸着形成した。正孔ブロック層はブロック形成材料にビス(2-メチル-8-キノリラト)(p-フェニルフェノラート)アルミニウム錯体(BAlq)を用い、抵抗加熱法により真空中(圧力:1×10-4Pa)でBAlq蒸着膜の膜厚が15nmになるように蒸着形成した。
 上記正孔ブロック層の上に、電子輸送層を蒸着形成した。電子輸送層は、トリス(8-キノリノラト)アルミニウム錯体(Alq3)を抵抗加熱法により真空中(圧力:1×10-4Pa)でAlq3蒸着膜の膜厚が20nmになるように蒸着形成した。
 作製した透明陽極付きガラス基板/正孔注入輸送層/正孔輸送層/発光層/正孔ブロック層/電子輸送層の電子輸送層上に、さらに、電子注入層及び陰極を順次蒸着形成した。電子注入層は、LiF(厚み:0.5nm)を、陰極は、Al(厚み:100nm)を順次抵抗加熱蒸着法により真空中(圧力:1×10-4Pa)で蒸着膜を形成した。
 陰極形成後、低酸素、低湿度状態のグローブボックス内にて無アルカリガラスとUV硬化型エポキシ接着剤を用いて封止した。
 発光層を塗布した後に、蛍光顕微鏡により発光層の観察を行ったところ、緑と青が混色することなくきれいに塗り分けができていることが確認できた。さらに、作製したデバイスの発光面を顕微鏡で観察したところ、青と緑が1ライン置きに発光するデバイスが作製できていることを確認された。各ピクセルのピクセル内の発光は一様で、ピクセル間の発光ばらつきが小さく、非常に精度高く塗り分けができていることが確認された。
 本実施例では緑と青の2色を塗り分けたが、本実施例の方法に従えば、原理的には3色、4色にも容易に拡張することができ、RGBの塗り分けパネルの作製にも容易に適用可能である。
 [実施例15]
 実施例14において、露光用光源として253nmの紫外光の代わりに、真空紫外光を用いて露光し、光触媒付きのフォトマスクの代わりに光触媒なしのフォトマスクを使用した以外は、実施例14と同様にして実施例15の有機EL素子を作製した。この際、フォトマスク側から波長172nmの真空紫外光を、光の露光量が5J/cm2になるように、撥液性領域および親液性領域からなるパターンを形成した。
作製したデバイスの発光面を顕微鏡で観察したところ、青と緑が1ライン置きに発光するデバイスが作製できていることを確認された。各ピクセルのピクセル内の発光は一様で、ピクセル間の発光ばらつきは小さく、非常に精度高く塗り分けできていることが確認された。
 本実施例では緑と青の2色を塗り分けたが、本実施例の方法に従えば、原理的には3色、4色にも容易に拡張することができ、RGBの塗り分けパネルの作製にも容易に適用可能である。
 [実施例16]
実施例14において、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、合成例2で得られた正孔注入輸送層用デバイス材料を用いた以外は、実施例14と同様にして実施例16の有機EL素子を作製した。
作製したデバイスの発光面を顕微鏡で観察したところ、青と緑が1ライン置きに発光するデバイスが作製できていることを確認された。各ピクセルのピクセル内の発光は一様で、ピクセル間の発光ばらつきは小さく、非常に精度高く塗り分けできていることが確認された。
 [実施例17]
実施例14において、絶縁層と隔壁が形成されたITO基板の代わりに、絶縁層のみで隔壁が形成されていないITO基板を用いた以外は、実施例14と同様にして実施例17の有機EL素子を作製した。
 発光層を塗布した後に、蛍光顕微鏡により発光層の観察を行ったところ、隔壁構造が無いにもかかわらず、インキが決壊することなく緑と青が混色することなくきれいに塗り分けできていることが確認できた。さらに、作製したデバイスの発光面を顕微鏡で観察したところ、青と緑が1ライン置きに発光するデバイスが作製できていることを確認された。各ピクセルのピクセル内の発光は一様で、ピクセル間の発光ばらつきは小さく、非常に精度高く塗り分けできていることが確認された。
 本実施例では緑と青の2色を塗り分けたが、本実施例の方法に従えば、原理的には3色、4色にも容易に拡張することができ、RGBの塗り分けパネルの作製にも容易に適用可能である。
 [実施例18]
実施例14において、光触媒付きフォトマスクがクロムパターン付きではなく、クロムパターンがまったく無いフォトマスクを用い、254nmの露光を光触媒含有層付きフォトマスクの裏面側からではなく、ITO基板側から15J/cm2となるように9分間露光した以外は、実施例14と同様にして実施例18の有機EL素子を作製した。
作製したデバイスの発光面を顕微鏡で観察したところ、青と緑が1ライン置きに発光するデバイスが作製できていることを確認された。各ピクセルのピクセル内の発光は一様で、ピクセル間の発光ばらつきは小さく、非常に精度高く塗り分けできていることが確認された。
合成例1で得られた正孔注入輸送層用デバイス材料は254nmでの透過率が高く、更に、先の実施例で示したように254nmのUV照射で素子特性が劣化することは無いので、背面からの露光に有利であることを示している。
 [比較例6]
実施例14において、合成例1で得られた正孔注入輸送層用デバイス材料を用いる代わりに、PEDOT/PSS(スタルク社製AI4083)と4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル)ベンジルアミンをスピンコート法で積層薄膜を形成した以外は、実施例14と同様に、比較例6の有機EL素子を作製した。PEDOT/PSS層はPEDOT/PSS溶液を蒸留水で薄めて、乾燥後の膜厚が15nmになるように溶解させて作製した。次にヘプタデカフルオロデシルベンジルアミンを、ヘプタフルオロ-n-酪酸エチルに0.4wt%溶解させた溶液を用いて、塗布形成して薄膜を乾燥させた。乾燥後の膜厚は計測不能で5nm以下であった。
 作製したデバイスの発光面を顕微鏡で観察したところ、青と緑のインキの混色がひどく、ピクセル間の発光ばらつきはひどく悪く、撥油性層がまったく機能していないことが確認された。
 1 デバイス用基板
 2 基板
 3 第一電極層
 4 正孔注入輸送層
 5 正孔注入輸送層のフッ素分解部
 6a 仕切部(隔壁)
 6b 仕切部(絶縁層)
 11 親液性領域
 12 撥液性領域
 21 光触媒含有層基板
 22 基体
 23 遮光部
 24 光触媒含有層
 27 エネルギー線
 28 レーザー
 29 真空紫外光
 30 メタルマスク
 31 有機EL素子
 32 発光層
 33 電子注入輸送層
 34 第二電極層
 41 ガラス基板
 42 ITO透明電極(陽極)
 43 正孔注入輸送層
 50 光触媒含有層付きフォトマスク
 51 合成石英基板
 52 透過領域
 53 遮光領域
 54 クロムマスク
 55 光触媒含有層
 56 光触媒含有層を形成しない透過領域
 60 絶縁層と隔壁が形成されたITO基板
 61 ガラス基板
 62 ITO透明電極(陽極)
 63 仕切部(絶縁層)
 64 仕切部(隔壁)

Claims (14)

  1.  少なくとも遷移金属酸化物を含む遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターの表面に、フッ素含有有機化合物が付着していることを特徴とする、正孔注入輸送層用デバイス材料。
  2.  前記遷移金属含有ナノ粒子又は遷移金属含有ナノクラスターに含まれる、遷移金属酸化物中の遷移金属として、モリブデン、タングステン、及びバナジウムよりなる群から選択される少なくとも1種の金属を含むことを特徴とする、請求項1に記載の正孔注入輸送層用デバイス材料。
  3.  前記フッ素含有有機化合物が、フッ素化アルキル基を含有することを特徴とする、請求項1又は2に記載の正孔注入輸送層用デバイス材料。
  4.  前記請求項1乃至3のいずれかに記載の正孔注入輸送層用デバイス材料と、有機溶媒とを含有することを特徴とする、正孔注入輸送層形成用インク。
  5.  基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
     パターン状に第一電極層が形成された基板上に、前記請求項1乃至3のいずれかに記載の正孔注入輸送層用デバイス材料を含有する正孔注入輸送層を形成する正孔注入輸送層形成工程と、
     基体上に少なくとも光触媒を含有する光触媒含有層が形成されている光触媒含有層基板を、前記正孔注入輸送層に対して、エネルギー照射に伴う光触媒の作用が及び得る間隙をおいて配置した後、パターン状にエネルギー照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成する濡れ性変化パターン形成工程とを有することを特徴とする、デバイスの製造方法。
  6.  前記正孔注入輸送層形成工程前に、前記パターン状に第一電極層が形成された基板上の前記第一電極層のパターン間に、仕切部を形成する仕切部形成工程を有することを特徴とする、請求項5に記載のデバイスの製造方法。
  7.  前記第一電極層が形成された基板が透光性基板であって、前記仕切部が濡れ性変化パターン形成工程にて照射されるエネルギー線を反射または吸収する仕切部であって、前記濡れ性変化パターン形成工程において、前記透光性基板側からエネルギー照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成することを特徴とする、請求項6に記載のデバイスの製造方法。
  8.  前記濡れ性変化パターン形成工程において、パターン状にエネルギー照射する方法が、マスクを用いてエネルギー照射する方法であることを特徴とする、請求項5乃至7のいずれかに記載のデバイスの製造方法。
  9.  前記濡れ性変化パターン形成工程において、パターン状にエネルギー照射する方法が、紫外レーザーをパターン状にスキャンしてエネルギー照射する方法であることを特徴とする、請求項請求項5乃至7のいずれかに記載のデバイスの製造方法。
  10.  基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
     パターン状に電極層が形成された基板上に、前記請求項1乃至3のいずれかに記載の正孔注入輸送層用デバイス材料を含有する正孔注入輸送層を形成する正孔注入輸送層形成工程と、
     パターン状に真空紫外線を照射することにより、前記正孔注入輸送層表面に濡れ性の変化した濡れ性変化パターンを形成する濡れ性変化パターン形成工程とを有することを特徴とする、デバイスの製造方法。
  11.  前記正孔注入輸送層形成工程において、前記請求項1乃至3のいずれかに記載の正孔注入輸送層用デバイス材料と、有機溶媒とを含有する正孔注入輸送層形成用インクを調製する工程と、当該正孔注入輸送層形成用インクを酸素存在下で加熱する工程を有することを特徴とする、請求項5乃至10のいずれかに記載のデバイスの製造方法。
  12.  基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
     前記正孔注入輸送層が、前記請求項1乃至3のいずれかに記載の正孔注入輸送層用デバイス材料を含有し、前記正孔注入輸送層の表層部の前記正孔注入輸送層用デバイス材料のフッ素含有有機化合物が分解除去されていることを特徴とする、デバイス。
  13.  基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
     パターン状に第一電極層が形成された基板上の前記第一電極層のパターン間に、仕切部を有し、前記仕切部の開口部内の前記第一電極層上及び前記仕切部上に連続した正孔注入輸送層を有し、
     前記仕切部の開口部内の前記第一電極層上及び前記仕切部の側部上の正孔注入輸送層においては、前記請求項1乃至3のいずれかに記載の正孔注入輸送層用デバイス材料の少なくとも一部のフッ素含有有機化合物が分解除去されており、且つ、前記仕切部の頂部上の正孔注入輸送層は前記請求項1乃至3のいずれかに記載の正孔注入輸送層用デバイス材料を含有していることを特徴とする、デバイス。
  14.  前記デバイスが、少なくとも発光層を含む有機層を含有する有機EL素子である、請求項12又は13に記載のデバイス。
PCT/JP2010/062822 2009-07-31 2010-07-29 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法 WO2011013759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080029869.9A CN102473850B (zh) 2009-07-31 2010-07-29 空穴注入传输层用器件材料、空穴注入传输层形成用油墨、具有空穴注入传输层的器件及其制造方法
EP10804505.5A EP2461388A4 (en) 2009-07-31 2010-07-29 MATERIAL COMPRISING A HOLES INJECTION AND TRANSPORT LAYER DEVICE, HOLES INJECTION LAYER FORMING INK, HOLES INJECTION AND TRANSPORTING LAYER, AND METHOD OF MANUFACTURING SAME
US13/387,227 US9102872B2 (en) 2009-07-31 2010-07-29 Device material for hole injection transport layer, ink for forming hole injection transport layer, device comprising hole injection transport layer, and method for producing the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009179440 2009-07-31
JP2009-179440 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013759A1 true WO2011013759A1 (ja) 2011-02-03

Family

ID=43529411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062822 WO2011013759A1 (ja) 2009-07-31 2010-07-29 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法

Country Status (6)

Country Link
US (1) US9102872B2 (ja)
EP (1) EP2461388A4 (ja)
JP (1) JP5531843B2 (ja)
KR (1) KR101570265B1 (ja)
CN (1) CN102473850B (ja)
WO (1) WO2011013759A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102101A (ja) * 2011-11-10 2013-05-23 Konica Minolta Holdings Inc 半導体ナノ粒子分散液、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013166870A (ja) * 2012-02-16 2013-08-29 Sumitomo Chemical Co Ltd ナノマテリアル組成物及びこれを用いたナノマテリアル含有層の形成方法
EP2677560A4 (en) * 2011-02-15 2016-08-17 Konica Minolta Inc ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
CN107123751A (zh) * 2017-04-28 2017-09-01 武汉华星光电技术有限公司 一种柔性有机发光二极管显示器及其制作方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905584B2 (ja) * 2009-10-27 2012-03-28 大日本印刷株式会社 遷移金属化合物含有ナノ粒子及びその製造方法、正孔注入輸送層用インク、並びに正孔注入輸送層を有するデバイス及びその製造方法
KR102064551B1 (ko) * 2012-03-28 2020-01-09 삼성전자주식회사 이산화탄소 흡착제, 그 제조 방법 및 이를 포함하는 이산화탄소 포집 모듈
EP2963699A4 (en) * 2013-02-26 2016-08-10 Nissan Chemical Ind Ltd CARGO TRANSPORT PAINT
WO2015005412A1 (ja) * 2013-07-11 2015-01-15 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュール
KR102102705B1 (ko) * 2013-12-04 2020-04-21 엘지디스플레이 주식회사 유기전계발광표시장치
JP6176224B2 (ja) * 2013-12-25 2017-08-09 日亜化学工業株式会社 半導体素子及びそれを備える半導体装置、並びに半導体素子の製造方法
KR20160009120A (ko) * 2014-07-15 2016-01-26 한양대학교 산학협력단 유기 링킹 물질을 갖는 무기막 구조체, 및 그 제조 방법
JP6473361B2 (ja) * 2015-03-25 2019-02-20 スタンレー電気株式会社 電子デバイスの製造方法、および、電子デバイス
JP6630053B2 (ja) 2015-03-25 2020-01-15 スタンレー電気株式会社 電子デバイスの製造方法
JP6491032B2 (ja) 2015-04-24 2019-03-27 スタンレー電気株式会社 抵抗器の製造方法、および、抵抗器
KR20180019148A (ko) * 2015-06-22 2018-02-23 스미또모 가가꾸 가부시키가이샤 유기 전자 소자의 제조 방법 및 정공 주입층의 형성 방법
US20170054100A1 (en) * 2015-08-19 2017-02-23 Rohm And Haas Electronic Materials Llc Method of preparing a hole transport layer having improved hole mobility
US11871655B2 (en) * 2016-05-10 2024-01-09 Lg Chem, Ltd. Organic electroluminescent device and manufacturing method therefor
KR102186093B1 (ko) 2016-11-07 2020-12-03 주식회사 엘지화학 코팅 조성물 및 이를 포함하는 유기전계 발광소자
CN107768528B (zh) * 2017-09-13 2019-10-29 北京大学深圳研究生院 氟代醇溶剂在制备钙钛矿光电器件中的应用
KR102375620B1 (ko) * 2017-10-16 2022-03-16 엘지디스플레이 주식회사 발광다이오드 및 이를 포함하는 발광장치
JP6440802B1 (ja) * 2017-11-08 2018-12-19 住友化学株式会社 有機デバイスの製造方法
CN109810574A (zh) * 2017-11-21 2019-05-28 深圳Tcl工业研究院有限公司 无机纳米材料印刷油墨及其制备方法和应用
CN109810573A (zh) * 2017-11-21 2019-05-28 Tcl集团股份有限公司 无机纳米材料印刷油墨及其制备方法和应用
CN109810572A (zh) * 2017-11-21 2019-05-28 深圳Tcl工业研究院有限公司 无机纳米材料印刷油墨及其制备方法和应用
CN109810570A (zh) * 2017-11-21 2019-05-28 Tcl集团股份有限公司 无机纳米材料印刷油墨及其制备方法和应用
CN109810568A (zh) * 2017-11-21 2019-05-28 Tcl集团股份有限公司 无机纳米材料印刷油墨及其制备方法和应用
CN109735167B (zh) * 2019-01-08 2021-11-05 京东方科技集团股份有限公司 一种空穴注入层墨水、有机电致发光器件及其制作方法
CN112018264B (zh) * 2020-09-01 2023-04-28 合肥鑫晟光电科技有限公司 一种发光基板及其制备方法
CN112646418A (zh) * 2020-12-21 2021-04-13 广东聚华印刷显示技术有限公司 量子点油墨、量子点发光二极管的制备方法以及显示装置
WO2023152972A1 (ja) * 2022-02-14 2023-08-17 シャープディスプレイテクノロジー株式会社 発光デバイスおよびその製造方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975205A (ja) 1982-10-25 1984-04-27 Seiko Epson Corp カラ−フイルタの製造方法
JP2824411B2 (ja) 1995-08-25 1998-11-11 株式会社豊田中央研究所 有機薄膜発光素子
JP2000249821A (ja) 1999-03-02 2000-09-14 Dainippon Printing Co Ltd パターン形成体の製造方法
JP2004071286A (ja) 2002-08-05 2004-03-04 Dainippon Printing Co Ltd エレクトロルミネッセント素子の製造方法
JP3748110B1 (ja) 2003-09-26 2006-02-22 株式会社半導体エネルギー研究所 発光装置およびそれを用いた電子機器
JP2006155978A (ja) 2004-11-26 2006-06-15 Seiko Epson Corp 有機el装置の製造方法、および電子機器
JP2007178783A (ja) 2005-12-28 2007-07-12 Dainippon Printing Co Ltd パターン形成体の製造方法、および、パターン形成体製造装置
JP3951445B2 (ja) 1998-05-15 2007-08-01 セイコーエプソン株式会社 有機el素子、表示装置、光学装置、有機el素子の製造方法、表示装置の製造方法、および光学装置の製造方法
JP2007287586A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子の製造方法、有機エレクトロルミネッセント素子、これを用いた表示装置および露光装置
JP2008041894A (ja) 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2008153159A (ja) * 2006-12-20 2008-07-03 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2009027154A (ja) * 2007-06-20 2009-02-05 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法、並びに電子機器
JP2009087781A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子およびその製造方法
WO2009133907A1 (ja) * 2008-04-28 2009-11-05 大日本印刷株式会社 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク
WO2009133903A1 (ja) * 2008-04-28 2009-11-05 大日本印刷株式会社 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085420A (ko) * 2000-02-23 2001-09-07 기타지마 요시토시 전계발광소자와 그 제조방법
US7078276B1 (en) * 2003-01-08 2006-07-18 Kovio, Inc. Nanoparticles and method for making the same
JP4963172B2 (ja) * 2004-10-22 2012-06-27 株式会社半導体エネルギー研究所 複合材料及び発光素子
JP5008324B2 (ja) * 2005-03-23 2012-08-22 株式会社半導体エネルギー研究所 複合材料、発光素子用材料、発光素子、発光装置及び電子機器。
WO2006101018A1 (en) * 2005-03-23 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
JP4904903B2 (ja) * 2006-04-20 2012-03-28 大日本印刷株式会社 有機エレクトロルミネッセンス素子の製造方法
CN101432259B (zh) 2006-04-28 2013-09-18 株式会社半导体能源研究所 蒽衍生物以及使用蒽衍生物的发光元件、发光器件和电子设备
KR100863905B1 (ko) * 2007-01-15 2008-10-17 삼성에스디아이 주식회사 함불소계 화합물 및 이를 이용한 유기 발광 소자
WO2008117633A1 (en) * 2007-03-23 2008-10-02 Semiconductor Energy Laboratory Co., Ltd. Composition, method for fabricating light-emitting element, light-emitting element, light-emitting device, and electronic device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975205A (ja) 1982-10-25 1984-04-27 Seiko Epson Corp カラ−フイルタの製造方法
JP2824411B2 (ja) 1995-08-25 1998-11-11 株式会社豊田中央研究所 有機薄膜発光素子
JP3951445B2 (ja) 1998-05-15 2007-08-01 セイコーエプソン株式会社 有機el素子、表示装置、光学装置、有機el素子の製造方法、表示装置の製造方法、および光学装置の製造方法
JP2000249821A (ja) 1999-03-02 2000-09-14 Dainippon Printing Co Ltd パターン形成体の製造方法
JP2004071286A (ja) 2002-08-05 2004-03-04 Dainippon Printing Co Ltd エレクトロルミネッセント素子の製造方法
JP3748110B1 (ja) 2003-09-26 2006-02-22 株式会社半導体エネルギー研究所 発光装置およびそれを用いた電子機器
JP2006155978A (ja) 2004-11-26 2006-06-15 Seiko Epson Corp 有機el装置の製造方法、および電子機器
JP2007178783A (ja) 2005-12-28 2007-07-12 Dainippon Printing Co Ltd パターン形成体の製造方法、および、パターン形成体製造装置
JP2007287586A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子の製造方法、有機エレクトロルミネッセント素子、これを用いた表示装置および露光装置
JP2008041894A (ja) 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2008153159A (ja) * 2006-12-20 2008-07-03 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2009027154A (ja) * 2007-06-20 2009-02-05 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法、並びに電子機器
JP2009087781A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子およびその製造方法
WO2009133907A1 (ja) * 2008-04-28 2009-11-05 大日本印刷株式会社 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク
WO2009133903A1 (ja) * 2008-04-28 2009-11-05 大日本印刷株式会社 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461388A4
SID 07 DIGEST, 2007, pages 1840 - 1843
SYNTHETIC METALS, vol. 85, 1997, pages 1229 - 1232

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677560A4 (en) * 2011-02-15 2016-08-17 Konica Minolta Inc ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
US9871222B2 (en) 2011-02-15 2018-01-16 Konica Minolta, Inc. Organic electroluminescence element and illumination device
JP2013102101A (ja) * 2011-11-10 2013-05-23 Konica Minolta Holdings Inc 半導体ナノ粒子分散液、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013166870A (ja) * 2012-02-16 2013-08-29 Sumitomo Chemical Co Ltd ナノマテリアル組成物及びこれを用いたナノマテリアル含有層の形成方法
CN107123751A (zh) * 2017-04-28 2017-09-01 武汉华星光电技术有限公司 一种柔性有机发光二极管显示器及其制作方法

Also Published As

Publication number Publication date
KR20120052948A (ko) 2012-05-24
CN102473850A (zh) 2012-05-23
JP5531843B2 (ja) 2014-06-25
JP2011049545A (ja) 2011-03-10
EP2461388A1 (en) 2012-06-06
KR101570265B1 (ko) 2015-11-18
US20120119200A1 (en) 2012-05-17
CN102473850B (zh) 2015-02-11
US9102872B2 (en) 2015-08-11
EP2461388A4 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5531843B2 (ja) 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
JP5560996B2 (ja) 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
EP2495781B1 (en) Nanoparticle containing transition metal compound, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same
US9252381B2 (en) Organic electronic device and method for producing the same
JP5572920B2 (ja) 有機エレクトロルミネッセンス素子用基板および有機エレクトロルミネッセンス素子ならびにそれらの製造方法
JP5783179B2 (ja) 遷移金属化合物含有ナノ粒子及びその製造方法、遷移金属化合物含有ナノ粒子分散インク及びその製造方法、並びに正孔注入輸送層を有するデバイス及びその製造方法
JP5699323B2 (ja) モリブデン化合物ナノ粒子およびその製造方法、モリブデン化合物ナノ粒子分散インク、デバイスおよびその製造方法
JP5104538B2 (ja) 有機エレクトロルミネッセンス素子用基板および有機エレクトロルミネッセンス素子ならびにそれらの製造方法
JP2016207750A (ja) デバイスの製造方法
JP2011171243A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP6492565B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス照明装置の製造方法
JP6503699B2 (ja) 有機エレクトロルミネッセンス素子、及びその製造方法、並びに有機エレクトロルミネッセンス照明装置
JP2017098172A (ja) 電荷輸送層形成用インクの製造方法、デバイスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029869.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010804505

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13387227

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127002554

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE