WO2015005412A1 - 有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュール - Google Patents

有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュール Download PDF

Info

Publication number
WO2015005412A1
WO2015005412A1 PCT/JP2014/068391 JP2014068391W WO2015005412A1 WO 2015005412 A1 WO2015005412 A1 WO 2015005412A1 JP 2014068391 W JP2014068391 W JP 2014068391W WO 2015005412 A1 WO2015005412 A1 WO 2015005412A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
organic
layer
ring
Prior art date
Application number
PCT/JP2014/068391
Other languages
English (en)
French (fr)
Inventor
邦明 上澤
森川 雅弘
新藤 博之
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201480038850.9A priority Critical patent/CN105637980B/zh
Priority to KR1020167000243A priority patent/KR101816458B1/ko
Priority to US14/903,948 priority patent/US9755191B2/en
Priority to JP2015526390A priority patent/JP6361660B2/ja
Publication of WO2015005412A1 publication Critical patent/WO2015005412A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths

Definitions

  • the present invention relates to a method and an apparatus for manufacturing an organic electroluminescence element, and an organic electroluminescence module. More specifically, the present invention relates to a method and apparatus for manufacturing an organic electroluminescence element having high shape accuracy and capable of switching a light emission pattern, and an organic electroluminescence module including the organic electroluminescence element manufactured by the manufacturing method.
  • a light emitting diode Light Emitting Diode: LED
  • an organic light emitting diode Organic Light Emitting Diode: OLED
  • organic EL Organic Light Emitting Diode
  • LEDs using light guide plates not only general illumination but also various backlights for liquid crystal display (LCD) backlights, etc. Have been used in applications (see, for example, Patent Document 1).
  • buttons having functions and shapes are provided.
  • a dot-shaped deflection pattern is printed in advance on the light guide plate according to the pattern shape of the mark to be displayed, and light is irradiated to the side end surface of the light guide plate to the side of the light guide plate.
  • An LED light source is provided.
  • the light emitted from the LED light source enters from the side end face of the light guide plate, and the incident light is totally reflected by the deflection reflection surface of the deflection pattern in the front direction of the light guide plate.
  • the pattern appears to emit light.
  • the display of the main display is also rotated 90 ° clockwise.
  • a function that changes direction is standard.
  • the above-mentioned common function key buttons cannot be switched to the mark direction or any mark shape at the same place according to the direction of the smart device.
  • the common common function key button usually employs the light guide plate LED as the backlight, but the common function key button having such a configuration includes the following.
  • the common function key button having such a configuration includes the following.
  • There's a problem For example, in order to switch to a mark orientation or an arbitrary mark shape according to the orientation of the smart device, it is necessary to stack a plurality of light guide plate LEDs.
  • the plurality of light guide plate LEDs are increased in thickness, there is a problem that they cannot be accommodated in the smart device.
  • the mark of the common function key button is formed by a dot-shaped deflection member printed on the light guide plate, the dot-shaped deflection member is also visually recognized, and the light emission pattern cannot be displayed clearly. is there.
  • the common function key button is displayed using an organic EL element in which a plurality of light emitting units in which different light emitting patterns are formed (patterned) for each light emitting unit are displayed, the above problem does not occur. That is, the light emission pattern of the organic EL element can be switched by switching the light emitting unit to emit light according to the direction of the smart device. Further, such an organic EL element is very thin and has a flat shape, and therefore can be accommodated in the smart device.
  • Patent Document 2 discloses a method of irradiating ultraviolet rays and changing the light emitting function of the irradiated portion. However, Patent Document 2 does not disclose a patterning method for forming different patterns on a plurality of light emitting units.
  • the present invention has been made in view of the above-described problems and situations, and the problem to be solved is a manufacturing method and manufacturing apparatus of an organic electroluminescence element having high shape accuracy and capable of switching a light emission pattern, and a manufacturing method thereof.
  • An organic electroluminescence module including the manufactured organic electroluminescence element is provided.
  • the present inventor in the process of examining the cause of the above problems, at least one organic functional layer in each light emitting unit is mask-patterned in the process of forming the organic functional layer, After the organic functional layer is formed, the light emitting pattern is formed by patterning by light irradiation and dividing (patterning) into a region where the light emitting function is modulated and a region where the light emitting function is not modulated, while maintaining the shape accuracy.
  • the present inventors have found that an organic EL element that can be switched and has no light emission unevenness during driving can be provided.
  • An organic device having at least two light emitting units having at least one organic functional layer and at least one intermediate electrode layer on a support substrate, the intermediate electrode layer being disposed between the light emitting units.
  • a method for producing an electroluminescent device comprising: At least one organic functional layer in each of the light emitting units, A first patterning step of patterning using a mask; A second patterning step of patterning into a region where the light emitting function is modulated and a region where the light emitting function is not modulated by light irradiation; Have The method of manufacturing an organic electroluminescence element, wherein the second patterning step is performed each time the light emitting unit is manufactured.
  • a method for producing an organic electroluminescent device comprising: At least one organic functional layer in each of the light emitting units, Patterning using a mask; A light irradiation step of partitioning into a region where the light emitting function is modulated and a region which is not modulated by light irradiation; Have After all the light emitting units are stacked, the light irradiation step is performed, In the light irradiation step, the method of manufacturing an organic electroluminescence element is characterized in that light irradiation is performed by changing an irradiation amount within a region in which a light emitting function is modulated.
  • An organic device having at least two light emitting units having at least one organic functional layer and at least one intermediate electrode layer on a support substrate, the intermediate electrode layer being disposed between the light emitting units.
  • An apparatus for manufacturing an electroluminescence element At least one organic functional layer in each of the light emitting units, A first patterning unit that performs patterning using a mask; A second patterning unit that patterns into a region in which the light emitting function is modulated and a region that is not modulated by light irradiation; Have The apparatus for manufacturing an organic electroluminescence element, wherein the second patterning unit performs patterning each time the light emitting unit is manufactured.
  • An organic electroluminescence module comprising an organic electroluminescence element produced by the method for producing an organic electroluminescence element according to any one of items 1 to 4.
  • the edge of the organic functional layer (hole injection layer) formed using a mask is sagging and the shape accuracy (resolution) of the light emitting pattern is lowered.
  • the light emission pattern can be trimmed and the shape accuracy of the light emission pattern can be improved by irradiating only the sag portion with light and modulating the light emission function so as not to emit light.
  • the mask edge may become a shadow depending on the thickness of the mask, and the film forming material may not be sufficiently laminated around the edge.
  • Schematic sectional view showing an example of an organic EL element Schematic configuration diagram showing an organic EL device manufacturing apparatus Schematic configuration diagram showing an example of a film forming chamber constituting an organic EL element manufacturing apparatus Schematic showing a part of the support substrate
  • Schematic side view showing transport roller and receiving roller Schematic side view showing transport roller and receiving roller
  • Schematic showing part of continuous mask Schematic configuration diagram showing an example of a film forming chamber constituting an organic EL element manufacturing apparatus
  • Schematic configuration diagram showing a part of the continuous mask used in the hole injection layer deposition chamber Schematic showing a part of the continuous mask used in the hole injection layer deposition chamber
  • Schematic configuration diagram showing an example of the second patterning unit Schematic which shows a part of continuous mask which a 2nd patterning part has Schematic configuration diagram showing an example of the second patterning unit
  • Schematic configuration diagram showing an example of the second patterning unit Schematic configuration diagram showing a laminating chamber constituting an organic EL element manufacturing apparatus
  • At least one organic functional layer in each light-emitting unit is mask-patterned in the process of forming the organic functional layer, and further patterned by light irradiation after the organic functional layer is formed. And is divided (patterned) into a region where the light emitting function is modulated and a region where the light emitting function is not modulated.
  • the light irradiation in the second patterning step is performed under conditions in which the wavelength is in the range of 320 to 420 nm and the irradiance is in the range of 10 to 1000 mW / cm 2 . According to this, since it is not necessary to prepare a special irradiation apparatus in manufacturing the organic EL element, the effect that the organic EL element according to the present invention can be easily manufactured is obtained.
  • At least one organic functional layer patterned by light irradiation is a hole transport layer or a hole injection layer.
  • the organic EL device manufacturing apparatus of the present invention includes a first patterning unit that patterns at least one organic functional layer in each light emitting unit using a mask, a region in which a light emitting function is modulated by light irradiation, A second patterning portion that performs patterning on an unmodulated region, and the second patterning portion performs patterning each time a light emitting unit is manufactured.
  • the organic EL element according to the present invention can be suitably included in an organic EL module.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • an organic EL device having the above-mentioned configuration (I) is shown in FIG.
  • the organic EL element 1 is configured by sequentially laminating an anode 23, a first light emitting unit 25 a, an intermediate electrode layer 27, a second light emitting unit 25 b, and a cathode 26 on a support substrate 21.
  • An extraction wiring 24 is formed at the end portion on the support substrate 21 side so that a part thereof is in contact with the anode 23.
  • the intermediate electrode layer 27 is preferably light transmissive with respect to visible light.
  • the number of layers of the light emitting unit is not particularly limited as long as it is 2 or more, but in view of production efficiency, it is preferably in the range of 2 to 10, and preferably in the range of 2 to 3. More preferred.
  • the number of light emitting units is N (N is an integer of 2 or more), the number of intermediate electrode layers is (N ⁇ 1).
  • the light emitting unit in the present invention is a laminated body including one or more organic functional layers.
  • the organic functional layer used in the light emitting unit include a hole injection layer (anode buffer layer), a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer (cathode buffer layer), a hole blocking layer, and A well-known thing is mentioned, such as an electron blocking layer.
  • a hole injection layer anode buffer layer
  • a hole transport layer a hole transport layer
  • a light emitting layer an electron transport layer
  • an electron injection layer cathode buffer layer
  • a hole blocking layer such as an electron blocking layer.
  • each light emitting unit may be configured by combining different organic functional layers, but is preferably configured using the same organic functional layer and material, and the number of light emitting layers is also the same. It is preferable that they are the same. Thereby, since it can suppress that the number of articles
  • Examples of the method for forming each organic functional layer constituting the light emitting unit include, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blojet method), an ink jet method, a spray method, a printing method, and a slot type coater.
  • the film can be formed by a known thin film forming method such as a method.
  • the method for producing an organic EL device of the present invention comprises at least two light emitting units having at least one organic functional layer and at least one intermediate electrode layer on a support substrate, and the intermediate electrode layer is A method for manufacturing an organic EL element disposed between light emitting units, wherein at least one organic functional layer in each light emitting unit is patterned using a mask, and light is emitted by light irradiation.
  • the light irradiation in the second patterning step is performed under the condition that the irradiance is within the range of 320 to 420 nm and the irradiance is within the range of 10 to 1000 mW / cm 2. Is preferred.
  • FIG. 2 is a schematic view showing an example of the organic EL device manufacturing apparatus 100 of the present invention.
  • a manufacturing apparatus 100 shown in FIG. 2 is an apparatus that manufactures the organic EL element 1 by continuously transporting the support substrate 21 wound in a roll shape.
  • an inorganic insulating layer is formed in advance on the film formation surface of the support substrate 21.
  • an inorganic insulating layer it can select from the well-known thing used for an organic EL element suitably, and can use it.
  • the support substrate 21 unwound from the unwinding unit 101 placed in a reduced-pressure atmosphere enters the front chamber R1 through the guide rollers 102 and 103, and further passes through the slit roller 104 to perform surface treatment in a vacuum atmosphere. It is carried into the accumulation chamber R10 and the surface is subjected to dry cleaning and dehydration.
  • the pressure in the surface treatment / accumulation chamber R10 is preferably set in the range of 1 ⁇ 10 ⁇ 5 to 10 Pa.
  • the support substrate 21 is continuously transferred from the surface treatment / accumulation chamber R10 to the film formation chamber R20.
  • a gate valve or a pressure adjustment chamber is provided to adjust a differential pressure between the surface treatment / accumulation chamber R10 and the film formation chamber R20.
  • a first patterning process in which at least one organic functional layer of the light emitting unit is formed while patterning using a mask, a region in which the light emitting function is modulated by light irradiation, and a modulation are performed. And performing a second patterning step of patterning in a region not present.
  • the continuous mask mentioned later is employ
  • the mask used in the first patterning step is not limited to this continuous mask, and a known mask such as a plate-shaped mask can also be used.
  • a 1st patterning process is performed in the 1st patterning part patterned using the mask before formation of an intermediate electrode layer with respect to the at least 1 layer of organic functional layer of a light emission unit.
  • the first patterning unit is a film formation chamber provided with a continuous mask among the film formation chambers R21 to R25 described later. In the film forming chamber provided with this continuous mask, each organic functional layer is formed while being patterned.
  • the first patterning step may be performed on a plurality of organic functional layers or any one of the organic functional layers, but may be performed on the hole transport layer or the hole injection layer. Is particularly preferred.
  • the film forming chamber R20 includes a plurality of film forming chambers R21 to R25 and a second patterning unit RL, and an accumulator mechanism that absorbs the processing speed is provided between the film forming chambers R21 to R25 and the second patterning unit RL. It is done.
  • the film forming chambers R21 to R25 and the second patterning unit RL are independently evacuated and kept in a vacuum or a reduced pressure state.
  • the film forming pressure varies depending on the film forming method, but is 1 ⁇ 10 ⁇ 6 to It is preferably set to about 10 Pa.
  • an anode is formed on the support substrate 21 by a film forming method such as a vacuum deposition method, a sputtering method, or an ion plating method using a conductive material such as metal or metal oxide as a film forming material. 23 is formed.
  • a film forming method such as a vacuum deposition method, a sputtering method, or an ion plating method using a conductive material such as metal or metal oxide as a film forming material. 23 is formed.
  • FIG. 3 is a schematic configuration diagram in the first film formation chamber R21.
  • the first film forming chamber R21 includes a plurality of transport rollers 51 and 52 and receiving rollers 53 and 54 that transport the support substrate 21 along a predetermined transport path, and a raw material supply unit 55 that faces the film deposition surface of the transported support substrate 21.
  • a back surface cooling roller 56 that cools the support substrate 21 in contact with the surface opposite to the film formation surface of the support substrate 21 is provided inside.
  • a loop-shaped continuous mask 60 having an opening having a predetermined pattern shape, a rotation moving unit 70 that rotates and moves the continuous mask 60 in the loop direction, and a continuous mask 60 are provided.
  • a cleaning unit 80 for cleaning may be provided.
  • the support substrate 21 has a plurality of first guide holes 211 opened at equal intervals in the conveyance direction (movement direction) at both ends in the width direction. Yes.
  • the conveyance rollers 51 and 52 have a plurality of protrusions protruding in the radial direction on the peripheral surface.
  • the transport rollers 51 and 52 are configured in the same manner as transport rollers 71 to 78 of the rotational movement unit 70 described later.
  • the receiving roller 53 conveys the support substrate 21 together with the conveying rollers 51 and 52 by being rotationally driven.
  • the receiving roller 53 has a plurality of recesses 530 formed on the surface.
  • the receiving roller 54 is configured similarly to the receiving roller 53. Details of the receiving rollers 53 and 54 will be described later.
  • the raw material supply unit 55 has a film forming mechanism corresponding to each method such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, and is provided to face the film forming surface of the support substrate 21 to be conveyed. Thereby, the anode 23 can be formed on a predetermined region of the film formation surface of the support substrate 21 transported in the first film formation chamber R21.
  • the back surface cooling roller 56 is a roller member that is rotatably supported and includes a predetermined cooling mechanism.
  • the back surface cooling roller 56 is provided on the opposite side of the raw material supply unit 55 across the support substrate 21, and comes into contact with the surface on the opposite side of the film formation surface of the support substrate 21, so that the raw material supply unit 55 of the support substrate 21.
  • the region where the film is formed is cooled by the above.
  • the continuous mask 60 is a pattern deposition mask that is continuous in a loop shape in the first deposition chamber R21.
  • the continuous mask 60 is stretched around a plurality of transport rollers 71 to 78 constituting the rotational movement unit 70.
  • the continuous mask 60 will be described below with reference to FIGS. 6A and 6B.
  • 6A is a schematic diagram of a continuous mask 60 formed seamlessly
  • FIG. 6B is a schematic diagram of a continuous mask 60 formed by joining a plurality of single-wafer masks 64 together.
  • the continuous mask 60 has a plurality of openings 61 having a predetermined pattern shape, and the anode 23 having a predetermined pattern shape is formed by forming a film on the support substrate 21 through the openings 61. be able to. In addition, since the continuous mask 60 is in close contact with the supporting substrate 21 being transported, it is preferable that the continuous mask 60 be flexible like the supporting substrate 21.
  • the material of the continuous mask 60 includes SUS300, Invar, 42 alloy alloy, Fe-Ni alloy such as Hastelloy (registered trademark), Inconel (registered trademark), metal foil or alloy foil such as aluminum, magnesium, titanium, silicon, Thin ceramics such as alumina and boron nitride, thin glass, thermoplastic resins such as polyester and polyurethane, thermosetting resins with high heat resistance such as polyimide, epoxy resin, bakelite resin, polycarbonate, acrylic resin, urea resin, phenol resin Can be mentioned.
  • a metal is used as the material of the continuous mask 60, the process of opening patterning is easy, the heat resistance is high, and the continuous mask 60 having a low linear expansion coefficient can be used.
  • thermosetting resin when used as the material of the continuous mask 60, it is preferable that the resin contains glass fiber or carbon fiber from the viewpoint of improving heat resistance and reducing the linear expansion coefficient.
  • the dimensional accuracy can be improved.
  • the thickness of the continuous mask 60 is preferably in the range of 0.1 to 3 mm from the viewpoint of flexibility and durability.
  • the surface of the continuous mask 60 is subjected to Ni plating treatment, alumite treatment, fluorine coating treatment, etc. for the purpose of imparting durability to the dry cleaning process of the continuous mask 60 to be described later and easy peelability of deposits. It may be.
  • the continuous mask 60 may be formed in a seamless belt shape without any seam as long as it is in a loop shape (see FIG. 6A), or formed by connecting a plurality of single-wafer masks. (See FIG. 6B).
  • the continuous mask 60 is composed of a plurality of single-wafer masks, for example, the continuous mask 60 is configured to connect a plurality of sheet-shaped single-wafer masks 64 in which openings having a predetermined pattern shape are formed in advance using the connection jig 62. Consists of.
  • connection jig 62 riveting, metal chain bonding, flexible tape, flexible belt, or the like can be used.
  • the continuous mask 60 has a plurality of second guide holes 63 opened at equal intervals in the loop direction (movement direction) at both ends in the width direction.
  • the plurality of second guide holes 63 have the same size and interval as the first guide holes 211 of the support substrate 21 described above.
  • the rotational movement unit 70 is composed of a plurality of transport rollers 71 to 78.
  • a continuous mask 60 is stretched between the plurality of transport rollers 71 to 78, and the plurality of transport rollers 71 to 78 are rotationally driven to rotate and move the continuous mask 60 in the loop direction.
  • the rotational movement unit 70 can superimpose a part of the continuous mask 60 on the supporting substrate 21 being transported by rotating the continuous mask 60. Further, the rotation moving unit 70 can move the continuous mask 60 further to move the continuous mask 60 superimposed on the support substrate 21 away from the support substrate 21.
  • the rotational movement speed of the continuous mask 60 by the rotational movement unit 70 is controlled to be the same as the conveyance speed of the support substrate 21.
  • the conveyance roller 71 will be described with reference to FIGS. 5A and 5B.
  • 5A is a view of the transport roller 71 and the receiving roller 53 viewed from the axial direction
  • FIG. 5B is a side view of the transport roller 71 and the receiving roller 53.
  • the transport roller 71 includes a rotation shaft 711 that can be driven to rotate, a roller 712 that is provided at the center in the axial direction of the rotation shaft 711, and rollers that are provided at both ends of the rotation shaft 711. 713 and 714 are provided.
  • the roller 712 is fixed to the rotation shaft 711 and rotates together with the rotation drive of the rotation shaft 711.
  • the rollers 713 and 714 are fixed with respect to the rotation direction of the rotation shaft 711 and are provided so as to be movable in directions away from each other with respect to the axial direction of the rotation shaft 711 (an arrow direction in FIG. 5B).
  • Each of the rollers 713 and 714 has a plurality of protrusions 715 that protrude in the radial direction on the peripheral surface.
  • the protrusion 715 is preferably formed in a tapered shape so that it can be easily inserted into the second guide hole 63.
  • the transport rollers 72 to 78 are configured in the same manner as the transport roller 71.
  • the transport rollers 71 and 74 are installed so as to contact the receiving rollers 53 and 54, respectively. Further, since the protruding portion 715 of the transport roller 71 is configured to be accommodated in the recess 530 of the receiving roller 53, the transport rollers 71 and 74 contact the receiving rollers 53 and 54 with almost no gap. . Thereby, the continuous mask 60 rotated and moved by the conveyance rollers 71 and 74 and the like overlaps and adheres to the support substrate 21 conveyed by the receiving rollers 53 and 54 and the like.
  • the protrusions 715 of the transport rollers 71 and 74 are inserted into the second guide hole 63 of the continuous mask 60 and are also inserted into the first guide hole 211 of the support substrate 21. Since the first guide hole 211 and the second guide hole 63 are previously formed at positions corresponding to each other, the protrusion 715 is inserted into the first guide hole 211 and the second guide hole 63, so that the continuous mask 60 and The support substrate 21 can be overlapped while being aligned. Thereby, it is possible to perform highly accurate alignment and pattern film formation without using a complicated alignment mechanism while the support substrate 21 is transported. Note that tension can be applied in the width direction not only to the continuous mask 60 but also to the support substrate 21 by a mechanism that moves the rollers 713 and 714 of the transport rollers 71 and 74 away from each other.
  • the cleaning unit 80 performs dry cleaning (a cleaning method that does not use a liquid cleaning solvent) on the continuous mask 60 that is separated from the support substrate 21 by the rotational movement unit 70, and the film attached to the continuous mask 60 at the time of film formation. Remove.
  • the cleaning unit 80 is provided in the first film formation chamber R ⁇ b> 21, and cleans an area of the continuous mask 60 that is not superimposed on the support substrate 21 in parallel with the film formation process using the continuous mask 60. It can be performed. Therefore, the film forming process can be continuously performed after the cleaning is completed without releasing the continuous mask 60 into the atmosphere. Further, since the cleaning unit 80 can clean the continuous mask 60 in the first film formation chamber R21 in parallel with the film formation process, the support substrate 21 is transported for replacement work or cleaning work of the continuous mask 60. There is no need to stop and productivity can be improved. Furthermore, since it is not necessary to separately provide a cleaning mechanism for cleaning the continuous mask 60 outside the first film forming chamber R21, the size of the manufacturing apparatus 100 in the width direction can be reduced.
  • the cleaning frequency of the continuous mask 60 by the cleaning unit 80 may be performed every time the film forming process is performed, but cleaning is performed every 5 to 100 film forming processes in order to reduce the production cost. It is good also as what implements.
  • the cleaning unit 80 performs dry cleaning in a reduced pressure atmosphere of about 0.1 to 200 Pa, cleaning can be performed with almost no change in the pressure of the first film formation chamber R21. Therefore, it is not necessary to provide an accumulator, a gate valve, or the like in the first film forming chamber R21, and it is possible to perform cleaning while rotating the continuous mask 60. In addition, since the first film formation chamber R21 is already in a reduced pressure state, it is possible to easily improve the etching rate, remove particles, remove outgas, and the like.
  • the cleaning unit 80 is configured to perform a plasma etching process as a dry cleaning method. That is, the cleaning unit 80 includes a cooling unit 81 and a plasma etching unit 82.
  • the cooling unit 81 cools the continuous mask 60 heated by the film forming process.
  • the plasma etching unit 82 applies a high-frequency voltage to a cleaning gas such as O 2 (oxygen), NF 3 (nitrogen trifluoride), Ar (argon), or N 2 (nitrogen) to generate plasma, thereby generating plasma.
  • the surface of the continuous mask 60 is etched with the cleaning gas. Thereby, the film on the surface of the continuous mask 60 can be effectively removed. Since the continuous mask 60 is heated by performing the plasma etching process, the cleaning unit 80 cools the continuous mask 60 (not shown) before the continuous mask 60 is overlaid on the support substrate 21 again. ) May be further provided.
  • a blast etching process using dry ice fine particles may be performed as shown in FIG.
  • a cleaning unit 80a configured with a heating unit 83 and a plurality of cleaning heads 84 is provided in the first film forming chamber R21.
  • the heating unit 83 heats the continuous mask 60 in advance so that the dry ice particles sprayed on the continuous mask 60 are efficiently sublimated.
  • the plurality of cleaning heads 84 spray powdery dry ice fine particles onto the continuous mask 60, and deposits on the surface of the continuous mask 60 using the force of volume expansion when the dry ice fine particles hit the continuous mask 60 and sublimate. Remove.
  • the method for cleaning the continuous mask 60 is not limited to the plasma etching process or the blast etching process using dry ice fine particles as described above.
  • a method of removing a deposit by bringing a roll member coated with an acrylic slight adhesive or a flexible resin into contact with the continuous mask 60, or a roll member having brush-like protrusions in contact with the continuous mask 60 It is also possible to use a cleaning method that physically removes the deposits from the continuous mask 60 by bringing the roll-shaped cleaning member into contact with the continuous mask 60, such as a method for removing the deposits.
  • a step of removing the generated particles by removing nitrogen particles from the slit-like nozzle by blowing nitrogen gas to the continuous mask 60 may be provided. .
  • the cleaning frequency when the cleaning using the roll-shaped cleaning member is performed may be performed every time the film forming process is performed, but in consideration of the durability of the roll-shaped cleaning member, the cleaning frequency is 5 to 100 times. For each film forming process, cleaning with a roll-shaped cleaning member may be performed as necessary.
  • the first film formation chamber R21 is configured as described above.
  • the second film forming chamber R22, the fourth film forming chamber R24, the fifth film forming chamber R25, and the sixth film forming chamber R30 have substantially the same configuration as the first film forming chamber R21 described above, and are used. The material is different.
  • the extraction wiring 24 is formed.
  • the second film forming chamber R22 is formed on the support substrate 21 by a film forming method such as a vacuum deposition method, a sputtering method, or an ion plating method using a conductive material such as metal or metal oxide as a film forming material.
  • the extraction wiring 24 is formed so that a part thereof is in contact with the anode 23.
  • the first film formation chamber R21 and the second film formation chamber R22 are provided separately, any one of them may be provided.
  • the anode 23 and the lead-out wiring 24 (also referred to as a lead-out electrode) can be formed by forming the anode 23 and the lead-out wiring 24 with the same material using one continuous mask. , Production costs can be reduced.
  • the third film forming chamber R23 performs film formation of the first light emitting unit 25a and the second light emitting unit 25b.
  • the first light emitting unit 25a and the second light emitting unit 25b are formed by vacuum deposition, and therefore the film forming pressure in the third film forming chamber R23 is 1 ⁇ 10 ⁇ 6 to 1 ⁇ . It is preferably set in a high vacuum region within a range of 10 ⁇ 4 Pa.
  • FIG. 8 is a schematic configuration diagram in the third film forming chamber R23.
  • the third film formation chamber R23 in the present embodiment includes a hole injection layer film formation chamber R231a or R231b and an organic functional layer film formation chamber R232 that forms an organic functional layer other than the hole injection layer.
  • the third film formation chamber R23 shown in FIG. 8 is an example in the case of having a hole injection layer film formation chamber R231a and an organic functional layer film formation chamber R232.
  • the hole injection layer deposition chambers R231a and R231b and the organic functional layer deposition chamber R232 have substantially the same configuration as the first deposition chamber R21 described above.
  • the organic functional layer film formation chamber R232 forms the electron injection layer, and the intermediate electrode layer and the electron injection layer formed in the fourth film formation chamber R24 To be adjacent.
  • the hole injection layer film forming chambers R231a and R231b are different from the first film forming chamber R21 in the film forming material used and the shape of the continuous mask. Further, the hole injection layer film forming chamber R231a and the hole injection layer film forming chamber R231b are the same except for the shape of the continuous mask.
  • 9A and 9B are schematic views showing a part of a continuous mask used in the hole injection layer film forming chambers R231a and R231b of this embodiment.
  • the continuous mask 60a is used in the hole injection layer deposition chamber R231a.
  • a pattern (light emission pattern) of a shape that the first light emitting unit 25a wants to emit light such as a mark of a common function key button. It has the opening part 61a formed in this.
  • the positive hole injection layer which the 1st light emission unit 25a has is laminated in the shape of the opening part 61a.
  • the continuous mask 60b is used in the hole injection layer deposition chamber R231b, and has an opening 61b formed in a shape rotated 90 ° clockwise relative to the shape of the opening 61a as shown in FIG. 9B. ing.
  • the positive hole injection layer which the 2nd light emission unit 25b has is laminated in the shape of the opening part 61b. That is, the light emission pattern of the second light emitting unit 25b is formed in a shape rotated 90 ° clockwise relative to the light emission pattern of the first light emitting unit 25a. For this reason, for example, when the smart device is rotated 90 ° in the clockwise direction, the first light emitting unit 25a is switched to the second light emitting unit 25b to emit light. Can be kept against.
  • the light emitting pattern of the second light emitting unit 25b is formed in a shape rotated 90 ° clockwise with respect to the light emitting pattern of the first light emitting unit 25a, but is not limited thereto. It is good also as forming in arbitrary shapes.
  • the continuous mask 60b has an opening 61b formed in a shape to be formed. Thereby, the light emission pattern of arbitrary shapes is formed in the 2nd light emission unit 25b.
  • the organic functional layer film formation chamber R232 includes transport rollers 511 and 512 and receiving rollers 531 to 533 that transport the support substrate 21 along a predetermined transport path, a raw material supply unit 551 that faces the film formation surface of the transported support substrate 21, 552 and backside cooling rollers 561 and 562 that contact the opposite side of the film forming surface of the support substrate 21 to cool the support substrate 21.
  • a continuous mask 60, a second rotational movement unit 70a, and a cleaning unit 80 are provided in the organic functional layer deposition chamber R232.
  • the second rotational movement unit 70a is composed of transport rollers 701 to 711.
  • Each member in the organic functional layer deposition chamber R232 is configured in the same manner as the member having the same name in the first deposition chamber R21.
  • the organic functional layer deposition chamber R232 is different from the first deposition chamber R21 only in the number and arrangement of the members. With this configuration, film formation can be continuously performed by the raw material supply units 551 and 552 in a region where the support substrate 21 and the continuous mask 60 overlap.
  • the film formation can be performed a plurality of times with one continuous mask 60 as shown in FIG.
  • the raw material supply unit and the back surface cooling roller are provided two by two, and an example in which two film formations can be continuously performed is shown. It is preferable that as many cooling rollers as the number of layers constituting the light emitting unit are provided.
  • the second patterning unit RL performs a second patterning step of patterning the organic functional layer into a region where the light emission function is modulated and a region where the light emission function is not modulated by light irradiation.
  • modulating the light emitting function by light irradiation means changing the light emitting function of the light emitting unit by changing the function of a hole injecting and transporting material constituting the light emitting unit by light irradiation.
  • the second patterning step is a step of trimming the light emitting pattern for each light emitting unit by modulating the light emitting function by light irradiation for each light emitting unit having an organic functional layer patterned in advance.
  • the light irradiation method is performed by irradiating a predetermined pattern area of each light emitting unit (in the present embodiment, the first light emitting unit 25a and the second light emitting unit 25b) with a predetermined light irradiation. Any method may be used as long as the light emitting region can be changed in luminance, and the method is not limited to a specific method. For example, surface exposure, line exposure, and point drawing described later may be used.
  • the light irradiated in the light irradiation step may further contain ultraviolet rays, visible rays or infrared rays, but preferably contains ultraviolet rays.
  • ultraviolet rays refer to electromagnetic waves having a wavelength longer than that of X-rays and shorter than the shortest wavelength of visible light, and specifically have a wavelength in the range of 1 to 400 nm.
  • the ultraviolet ray generating means and the irradiating means are not particularly limited as long as the ultraviolet ray is generated and irradiated by a conventionally known apparatus or the like.
  • Specific light sources include ultraviolet LEDs, high pressure mercury lamps, low pressure mercury lamps, hydrogen (deuterium) lamps, rare gas (xenon, argon, helium, neon, etc.) discharge lamps, nitrogen lasers, excimer lasers (XeCl, XeF, KrF, KrCl, etc.), hydrogen laser, halogen laser, harmonics of various visible (LD) -infrared lasers (THG (Third Harmonic Generation) light of YAG laser) and the like.
  • LD visible
  • THG Total Harmonic Generation
  • the second patterning unit RL has substantially the same configuration as the first film formation chamber R21. That is, the plurality of transport rollers 51 and 52 and the receiving rollers 53 and 54 that transport the support substrate 21 along a predetermined transport path, the ultraviolet irradiation device L1 that faces the film formation surface of the transported support substrate 21, and the support substrate 21
  • the back surface cooling roller 56 which contacts the surface opposite to the film forming surface and cools the support substrate 21 is provided inside.
  • each member in these 2nd patterning part RL is respectively comprised similarly to the member of the same name in the above-mentioned 1st film-forming chamber R21 except the ultraviolet irradiation device L1 and the continuous mask 60L.
  • FIG. 10 is a schematic configuration diagram illustrating an example of the second patterning unit RL that performs surface exposure.
  • FIG. 11 is a schematic diagram illustrating an example of a continuous mask 60L included in the second patterning unit RL illustrated in FIG.
  • the second patterning portion RL shown in FIG. 10 is provided with a continuous mask 60L having a transparent sheet portion 61L formed of a transparent sheet resistant to ultraviolet rays such as an ultraviolet irradiation device L1 and polyethylene terephthalate (PET) resin.
  • PET polyethylene terephthalate
  • the ultraviolet irradiation device L1 includes a plurality of ultraviolet LED light sources and an array lens, and has an irradiation range having a length w1 in the direction orthogonal to the loop direction and a length w2 in the loop direction. Thereby, the ultraviolet irradiation device L1 can collectively irradiate the transparent sheet portion 61L. Moreover, it is preferable that a water cooling pipe (not shown) is connected to an external chiller in order to cool the ultraviolet LED light source. Thereby, the lifetime of the ultraviolet LED light source can be extended, and the effect that the running cost of the ultraviolet irradiation device L1 can be reduced is obtained.
  • a pattern portion 61S is printed in the shape of a common function key button on the transparent sheet portion 61L of the continuous mask 60L.
  • the pattern portion 61S shields ultraviolet rays. For this reason, the ultraviolet light irradiated from the ultraviolet irradiation device L1 is irradiated through the continuous mask 60L to the first light emitting unit 25a before forming the intermediate electrode layer.
  • the sagging portion of the edge of the organic functional layer (hole injection layer) generated by the patterning performed when forming the organic functional layer is prevented from emitting light, and a sharp pattern without blur is emitted. Can do.
  • FIG. 12A is a schematic configuration diagram illustrating an example of a second patterning unit RL that performs line exposure.
  • the second patterning unit RL shown in FIG. 12A is provided with an ultraviolet irradiation device L2 and a continuous mask 60L shown in FIG.
  • the light emitted from the ultraviolet irradiation device L2 is condensed on the continuous mask 60L into a linear shape having a length of w1 or more extending in a direction orthogonal to the loop direction of the continuous mask 60L.
  • the density of irradiance can be increased, and the time required for patterning can be shortened.
  • the light condensed in a straight line is irradiated, the light can be irradiated almost perpendicularly to the surface having the same curvature as that of the rear cooling roller 56, and the time required for patterning can be further reduced. It becomes.
  • FIG. 12B is a schematic configuration diagram illustrating an example of the second patterning unit RL that performs point drawing.
  • the second patterning unit RL shown in FIG. 12B is provided with a condensing spot irradiating device L3 that irradiates the light emitting unit with a condensing spot formed by condensing the light emitted from the light source.
  • This condensing spot irradiation device L3 includes a galvanometer mirror inside, and can scan the condensing spot in a direction orthogonal to the loop direction.
  • the second patterning unit RL includes a camera and a light emission control device inside.
  • the position information of the first guide hole 211 of the support substrate 21 in the area irradiated by the camera can be acquired. Further, the light emission control device controls the irradiation by the focused spot irradiation device L3 based on the position information of the first guide hole 211, and trims the light emission pattern. Note that the light emission control device may be incorporated into the focused spot irradiation device L3 as described above, or may be provided outside the second patterning unit RL. In addition, a laser light source with high directivity is preferable as the light source. Further, a blue-violet light source having a wavelength of 400 to 420 nm may be used as the laser light source.
  • the light emission pattern can be drawn in the shape of the mark of the common function key button.
  • a mask such as a continuous mask is unnecessary, and the cost of the mask and the cost for maintenance of the equipment can be reduced.
  • the intermediate electrode layer 27 is formed.
  • the intermediate electrode layer 27 is formed by a film formation method such as a vacuum deposition method, a sputtering method, or an ion plating method using a metal, a metal oxide, or the like as a conductive material.
  • the film forming pressure in the fourth film forming chamber R24 is preferably set in the range of 1 ⁇ 10 ⁇ 6 to 10 Pa.
  • the cathode 26 is formed.
  • the cathode 26 is formed by a film forming method such as a vacuum deposition method, a sputtering method, or an ion plating method using a metal, a metal oxide or the like as a conductive material.
  • the film formation pressure in the fifth film formation chamber R25 is preferably set in the range of 1 ⁇ 10 ⁇ 6 to 10 Pa.
  • the support substrate 21 in which the anode 23, the extraction wiring 24, the first light emitting unit 25a, the intermediate electrode layer 27, the second light emitting unit 25b, and the cathode 26 are stacked on one surface is provided.
  • the sixth patterning chamber R30 is continuously formed. It is conveyed to. Thereby, since the patterning by light irradiation can be performed without absorbing a part of the irradiation light by the intermediate electrode layer 27, the time required for patterning can be shortened and the production efficiency can be improved.
  • the configuration in which two light emitting units are formed by the configuration having two third film forming chambers R23 is described, but the present invention is not limited to this, and the third film forming chamber R23 includes two chambers. It is good also as having the above structure and forming three or more light emitting units.
  • the third film forming chambers R23 may be provided by the number of repetitions, and the second patterning unit RL and the fourth film forming chamber R24 may be provided between the third film forming chambers R23.
  • the sixth film forming chamber R30 performs a film forming process for forming the sealing layer 28 (see FIG. 1) on the film forming surface of the supporting substrate 21 being transferred.
  • the sealing layer 28 made of an inorganic compound is formed by a film forming method such as a vacuum evaporation method, a sputtering method, an ion plating method, or a plasma CVD method.
  • the sealing layer 28 is preferably formed by a method having good step coverage because it covers the steps and irregularities between the constituent layers on the support substrate 21.
  • Examples of such a film forming method include a sputtering method, an ion plating method, and a CVD method in which the film forming pressure is relatively high and the source gas is easily circulated.
  • the film formation pressure in the sixth film formation chamber R30 is set to a relatively low vacuum state in the range of 0.1 to 200 Pa in consideration of the balance between step coverage and film density. At such a film formation pressure, step coverage is good, but in the case of mask film formation, if the mask is not sufficiently adhered to the support substrate 21, the film formation pattern is likely to deteriorate due to the wraparound of the film formation material. . In the present invention, since the film formation is performed on the support substrate 21 which has a larger deflection than the glass substrate, it is possible to prevent the mask from floating. Note that, when the sealing layer 28 is formed by a vacuum evaporation method, the wraparound of the film forming material is reduced even if the mask is slightly lifted, which is effective in increasing the pattern accuracy.
  • the support substrate 21 is continuously transferred from the sixth film formation chamber R30 to the accumulation chamber R40.
  • the support substrate 21 whose pressure and conveyance speed are adjusted in the accumulation chamber R40 is continuously conveyed into the lamination chamber R50 while being kept in a reduced pressure state.
  • the strip-shaped back film 4 (see FIG. 1) continuously conveyed by the laminating chamber R50 with respect to the film formation surface of the supporting substrate 21 being conveyed is applied to the resin adhesive layer 3 (see FIG. 1). It is preferable to carry out a laminating step for bonding via 1).
  • FIG. 13 is a schematic configuration diagram in the laminating chamber R50.
  • the inside of the laminate chamber R50 is preferably set to a vacuum or a reduced pressure state.
  • a plurality of transport rollers 90 to 93 that transport the support substrate 21 along a predetermined transport path, a second unwinding portion 94 that supports the roll-shaped back film 4, and the back film 4 are bonded to the support substrate 21.
  • the plurality of transport rollers 90 to 93 are configured in the same manner as the transport roller 71 described above, and a protruding portion (not shown) is inserted into the first guide hole 211 of the support substrate 21 so that the support substrate 21 is moved. It can be transported smoothly.
  • the transport rollers 91 and 92 are arranged so as to contact the receiving rollers 96 and 97.
  • the second unwinding portion 94 supports the back film 4 wound up in a roll shape, and sequentially feeds the back film 4.
  • the resin adhesive layer 3 is formed in advance on the back film 4 in a predetermined region on the surface facing the support substrate 21.
  • the resin adhesive layer 3 is a thermosetting resin because the back film 4 is bonded to the film formation surface of the support substrate 21 by thermocompression bonding with the heating roller 98 and the pressure roller 99. It consists of
  • the back film 4 has a plurality of third guide holes 41 that are opened at the same interval as the interval of the first guide holes 211 of the support substrate 21 in the conveyance direction (movement direction) at both ends in the width direction. Yes.
  • the transport roller 95 is configured in the same manner as the transport roller 71 described above, and a protrusion (not shown) is inserted into the third guide hole 41 of the back film 4 to smoothly transport the back film 4. be able to.
  • the receiving rollers 96 and 97 are configured in the same manner as the receiving roller 53 described above. As a result, since the protruding portions of the transport rollers 91 and 92 are configured to fit in the recesses (not shown) of the receiving rollers 96 and 97, the transport rollers 91 and 92 are substantially spaced from the receiving rollers 96 and 97. Contact in the absence of Thereby, the back film 4 overlaps and adheres to the support substrate 21. Further, the protruding portions of the transport rollers 91 and 92 are inserted into the first guide hole 211 of the support substrate 21 and are also inserted into the third guide hole 41 of the back film 4.
  • the support substrate 21 and the back film 4 can be overlapped while being aligned. Thereby, the back film 4 can be positioned with high accuracy without using a complicated positioning mechanism while the support substrate 21 is transported. By overlapping the back film 4 while aligning in this way, it is possible to prevent the resin adhesive layer 3 and the back film 4 from covering the take-out wiring 24 provided on the support substrate 21 and to improve the yield. .
  • the heating roller 98 and the pressure roller 99 are in close contact with the support substrate 21 and the back film 4 overlapped by the transport roller 91 and the receiving roller 96 from both sides in the thickness direction, and are heated and pressed, whereby the support substrate 21 is heated.
  • the back film 4 is bonded to the film formation surface via the resin adhesive layer 3.
  • the laminating chamber R50 there is further a mechanism for performing a curing process by light or heat on the support substrate 21 on which the back film 4 is bonded to the downstream side in the transport direction from the heating roller 98 and the pressure roller 99. It may be provided.
  • the support substrate 21 is continuously conveyed from the laminating chamber R50 into the winding chamber R60 and wound up in the winding chamber R60.
  • the organic EL element 1 manufactured as described above has a structure in which portions other than the extraction wiring 24 are covered with the sealing layer 28 and the back film 4.
  • the organic EL element 1 is not shown, but the lead-out wiring 24 is connected to a power supply unit (power feeding unit) including a printed circuit board or a flexible circuit board provided with a current amount adjustment IC or the like, and further includes a housing, a frame member,
  • the structure is reinforced by a fixing substrate or the like and used as a lighting device or a light emitting device.
  • the continuous mask 60 is provided in all of the film forming chambers R21 to R25, R30.
  • any one of the film forming chambers R21 to R25, R30 is used. It is good also as what is provided in.
  • the laminating process is continuously performed on the main body of the organic EL element 1, but the laminating process may be performed by another apparatus or the like.
  • the light emitting unit in which the intermediate electrode layer 27 is not laminated on the light extraction surface side may be irradiated with light after sealing without being irradiated with light by the second patterning unit RL.
  • the first light emitting unit 25a is irradiated with light from the support substrate 21 side after sealing without being irradiated with light by the second patterning unit RL. It may be broken.
  • the intermediate electrode layer (also referred to as an intermediate metal layer) according to the present invention is disposed between two light emitting units.
  • the intermediate electrode layer may be formed in a state in which a metal material is hardly formed in a partial fine region thereof, that is, a so-called pinhole is formed, or may be formed in a net shape in the in-plane direction.
  • the intermediate electrode layer forming portion may be formed in an island shape (spot shape).
  • a metal is used for the intermediate electrode layer of the present invention.
  • Materials used for the intermediate electrode layer include aluminum (work function 4.28 eV, melting point 933.5 K), silver (work function 4.26 eV, melting point 1235.9 K), calcium (work function 2.87 eV, melting point 1112.2 K). ), Lithium (2.9 eV, 453.7 K), sodium (2.75 eV, 371 K), potassium (2.3 eV, 336.9 K), cesium (2.14 eV, 301.6 K) ), Rubidium (2.16 eV, 312.1 K), barium (2.7 eV, 998.2 K), and strontium (2.59 eV, 1042.2 K).
  • the intermediate electrode layer is used adjacent to the electron injection layer.
  • the thickness of the intermediate electrode layer is preferably in the range of 0.6 to 5 nm, more preferably in the range of 0.8 to 3 nm, and still more preferably in the range of 0.8 to 2 nm.
  • the thickness of the intermediate electrode layer is smaller than 5 nm, a decrease in efficiency of the organic EL element due to visible light absorption of the metal material used is suppressed, and storage stability and drive stability are not deteriorated.
  • the thickness of the intermediate conductive layer is larger than 0.6 nm, the performance stability of the organic EL element, in particular, the performance fluctuation at a relatively initial stage after the element fabrication is small.
  • the “layer thickness of the intermediate electrode layer” in the present invention is defined as “average layer thickness” obtained by dividing the film formation mass per unit area of the intermediate electrode layer by the material density. Therefore, the layer thickness of an arbitrary portion of the intermediate electrode layer may be thicker than the “average layer thickness” or may be thinner.
  • the intermediate electrode layer may be formed using the same metal as that used in the anode and cathode described later.
  • the light emitting unit side surfaces of the intermediate electrode layer have at least a completely flat surface.
  • One of the surfaces is preferably formed as a non-flat surface.
  • the intermediate electrode layer having a non-flat surface means that the shape of the intermediate electrode layer in the in-plane direction is a net shape or an island shape.
  • the layer adjacent to the anode side of the intermediate electrode layer is preferably a layer formed by forming a single organic compound.
  • the production process is simplified and process management is facilitated, and the risk of performance fluctuation due to the use of multiple materials can be avoided, as well as better long-term or high-temperature storage stability and long-term drive stability. Since it is obtained, it is preferable.
  • the layer adjacent to the intermediate electrode layer is used to transfer charge from each light emitting unit to / from each light emitting unit via the intermediate electrode layer between the light emitting unit located on the cathode side and the light emitting unit located on the anode side. It is desirable to have a function that allows easy injection.
  • a layer having such a function in order to enhance charge transportability, for example, a charge transportable organic material and an inorganic material capable of oxidizing or reducing the organic material or forming a charge transfer complex with the organic material Or a mixed layer doped with an organometallic complex.
  • the light emitting layer preferably contains a host compound and a light emitting dopant.
  • the light-emitting dopant contained in the light-emitting layer may be contained at a uniform concentration in the thickness direction of the light-emitting layer, or may have a concentration distribution.
  • the layer thickness of each light emitting layer included in each light emitting unit is not particularly limited, but it prevents the homogeneity of the film to be formed, the application of unnecessary high voltage during light emission, and the driving current. From the viewpoint of improving the stability of the luminescent color, it is preferably adjusted within the range of 5 to 200 nm, more preferably within the range of 10 to 100 nm.
  • the host compound and phosphorescent dopant contained in the light emitting layer will be described.
  • the host compound used in the present invention is not particularly limited in terms of structure, but is typically a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, or a thiophene derivative.
  • the host compounds may be used alone or in combination of two or more.
  • the host compound used in the light emitting layer according to the present invention is preferably a compound represented by the following general formula (a).
  • X represents NR ′, O, S, CR′R ′′ or SiR′R ′′.
  • R ′ and R ′′ each independently represents a hydrogen atom or a substituent.
  • Ar represents an aromatic ring.
  • n represents an integer of 0 to 8.
  • examples of the substituent represented by R ′ and R ′′ include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, isopropenyl group, etc.), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group
  • alkyl group for example,
  • preferred “X” is NR ′ or O, and R ′ is particularly preferably an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • examples of the aromatic ring represented by “Ar” include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring represented by “Ar” may be either a single ring or a condensed ring, and may be unsubstituted or may have a substituent represented by the above R ′ and R ′′.
  • examples of the aromatic hydrocarbon ring represented by “Ar” include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, and naphthacene ring.
  • Triphenylene ring Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring and the like.
  • examples of the aromatic heterocycle represented by “Ar” include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring Quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboxazole ring,
  • the aromatic ring represented by “Ar” is preferably a carbazole ring, a carboline ring, a dibenzofuran ring, or a benzene ring, and more preferably a carbazole.
  • a benzene ring having a substituent is particularly preferable, and a benzene ring having a carbazolyl group is most preferable.
  • the aromatic ring represented by “Ar” is preferably a condensed ring having three or more rings, as shown below, and such three rings.
  • condensed aromatic hydrocarbon condensed rings include naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, chrysene ring, benzochrysene Ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthoperylene ring, pentabenzoperylene
  • aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring,
  • One of the carbon atoms of the hydrocarbon ring that constitutes the carboline ring is quindrine ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring.
  • n represents an integer of 0 to 8, preferably an integer of 0 to 2, particularly 1 or 2 when “X” is O or S. It is preferable.
  • the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • the host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • a compound having a glass transition point of 90 ° C. or higher is preferable, and a compound having a glass transition temperature of 130 ° C. or higher is preferable because excellent characteristics can be obtained.
  • the glass transition point (Tg) is a value obtained by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
  • a conventionally known host compound can also be used.
  • conventionally known host compounds compounds described in the following documents can be suitably used.
  • the host compound may be different for each light emitting layer, but the same compound is preferable in terms of production efficiency and process management.
  • the host compound preferably has a minimum excited triplet energy (T 1 ) larger than 2.7 eV because higher luminous efficiency can be obtained.
  • T 1 minimum excited triplet energy
  • the lowest excited triplet energy as used in the present invention refers to the peak energy of an emission band corresponding to the transition between the lowest vibrational bands of a phosphorescence emission spectrum observed at a liquid nitrogen temperature after dissolving a host compound in a solvent.
  • the phosphorescence emission dopant which can be used for this invention can be selected from a well-known thing. For example, it can be selected from complex compounds containing metals of Group 8 to Group 10 in the periodic table of elements, preferably iridium compounds, osmium compounds, platinum compounds, or rare earth complexes. Of these, iridium compounds are most preferred.
  • a phosphorescent light emitting material is preferable as a light emitter that emits light in at least the green, yellow, and red regions.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group.
  • Rb and Rc each independently represent a hydrogen atom or a substituent.
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • M represents Ir or Pt.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group.
  • Rb”, “Rc”, “Rb 1 ” and “Rc 1 ” each independently represent a hydrogen atom or a substituent.
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • M represents Ir or Pt.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group.
  • Rb and Rc each independently represent a hydrogen atom or a substituent.
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • M represents Ir or Pt.
  • the aliphatic group represented by “Ra” is an alkyl group (for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, isopentyl group, 2-ethyl group).
  • -Hexyl group octyl group, undecyl group, dodecyl group, tetradecyl group
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group
  • aromatic groups include, for example, phenyl group, tolyl group, azulenyl group, Anthranyl group, phenanthryl group, pyrenyl group, chrysenyl group, naphthacenyl group, o-terphenyl group, m-terphenyl group, p-terphenyl group, acenaphthenyl group, coronenyl group, fluorenyl group, perylenyl group, etc.
  • Examples of the ring group include a pyrrolyl group, an indolyl group, a furyl group, a thienyl group, and an imidazolyl group.
  • These groups may have a substituent represented by R ′ and R ′′ in the general formula (a).
  • substituents represented by “Rb”, “Rc”, “Rb 1 ” and “Rc 1 ” are alkyl groups (for example, a methyl group, an ethyl group, a propyl group).
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group for example, Vinyl group, allyl group, etc.
  • pyridazinyl group pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, Quinazolinyl group, phthalazinyl group, etc.
  • heterocyclic group eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.
  • alkoxyl group eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group) Octyloxy group, dodecyloxy group, etc.
  • cycloalkoxyl group eg, cyclopentyloxy group, cyclohexyloxy group, etc.
  • aryloxy group eg, phenoxy group, naphthyloxy group, etc.
  • alkylthio group eg, methylthio group,
  • the aromatic ring represented by “A1” includes a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring , Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring, etc., and aromatic heterocycle includes furan ring, thiophene ring, pyridine ring
  • M represents Ir or Pt, and among them, Ir is preferable.
  • the structures of the general formulas (A) to (C) are partial structures, and a ligand corresponding to the valence of the central metal is necessary for the structure itself to be a light-emitting dopant of a completed structure.
  • a ligand include a halogen (eg, fluorine atom, chlorine atom, bromine atom or iodine atom), an aryl group (eg, phenyl group, p-chlorophenyl group, mesityl group, tolyl group).
  • Xylyl group biphenyl group, naphthyl group, anthryl group, phenanthryl group, etc.
  • alkyl group for example, methyl group, ethyl group, isopropyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, etc.
  • a tris body having a completed structure with three partial structures of the general formulas (A) to (C) is preferable.
  • blue phosphorescent dopants having the partial structures of the general formulas (A) to (C) will be exemplified, but the invention is not limited thereto.
  • Fluorescent luminescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes. Fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • injection layer hole injection layer, electron injection layer>
  • the injection layer can be provided as necessary and exists between the anode or the intermediate electrode layer and the light emitting layer or the hole transport layer, or between the cathode or the intermediate electrode layer and the light emitting layer or the electron transport layer. You may let them.
  • the injection layer is a layer provided between the electrode and the intermediate electrode layer and the organic functional layer in order to lower the drive voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998) The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition of “NITS, Inc.”.
  • the hole injection layer anode buffer layer
  • the electron injection layer Cathode buffer layer
  • hole injection layer anode buffer layer
  • JP-A-9-45479 JP-A-9-260062, JP-A-8-288069, and the like.
  • Specific examples thereof include copper phthalocyanine.
  • Phthalocyanine buffer layer typified by (1), oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene, and the like. It is also preferable to use the materials described in JP-T-2003-519432.
  • the hole injection layer may be used by mixing a plurality of materials, but in the present invention, the hole injection layer is preferably formed by forming a single organic compound.
  • the reason for this is that when a plurality of materials are mixed and used, the risk of performance fluctuations due to fluctuations in the mixing ratio during production, for example, concentration fluctuations in the film formation substrate surface, is increased.
  • the layer thickness of the hole injection layer is not particularly limited, but is usually in the range of about 0.1 to 100 nm, preferably in the range of 1 to 30 nm.
  • Suitable materials for the electron injection layer include alkali metals, alkaline earth metals, and compounds thereof having a work function of 3 eV or less in the electron injection layer provided between the electron transport layer and the cathode.
  • Specific examples of the alkali metal compound include potassium fluoride, lithium fluoride, sodium fluoride, cesium fluoride, lithium oxide, lithium quinoline complex, cesium carbonate and the like, and lithium fluoride and cesium fluoride are preferable.
  • a layer adjacent to the anode side of the intermediate electrode layer a layer made of an alkali metal compound or an alkaline earth compound is preferably not provided.
  • the layer thickness of the electron injection layer is not particularly limited, but is usually in the range of about 0.1 to 10 nm, preferably in the range of 0.1 to 2 nm.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer and the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers.
  • hole transporting material those described above can be used, but it is further preferable to use a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually in the range of about 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the electron transport layer is made of a material having a function of transporting electrons.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transporting material used for the electron transporting layer only needs to have a function of transmitting electrons injected through the cathode or the intermediate electrode layer to the light emitting layer, and any one of conventionally known compounds can be used. It can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, bipyridyl derivatives, fluorenylidenemethane derivatives, carbodiimides, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • a compound including a pyridine ring in its structure is preferable.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfo group can be preferably used as the electron transporting material.
  • distyrylpyrazine derivatives that are also used as a material for the light emitting layer can be used as an electron transport material.
  • n-type-Si, n-type-SiC, etc. Inorganic semiconductors can also be used as electron transport materials.
  • a plurality of materials may be mixed and used for the electron transport layer.
  • Alkali metal, alkaline earth metal, alkali metal compound or alkaline earth metal compound can be doped, but the electron transport layer according to the present invention is formed by forming a single organic compound. Is preferred. The reason for this is that when a plurality of materials are mixed and used, the risk of performance fluctuations due to fluctuations in the mixing ratio during production, for example, concentration fluctuations in the film formation substrate surface, is increased.
  • an intermediate electrode layer having a low work function suitable performance can be obtained without impairing the electron injection property from the intermediate electrode layer without doping with an alkali metal or the like.
  • the glass transition temperature of the organic compound contained in the electron transport layer is 110 ° C. or higher because better high temperature storage stability and high temperature process stability can be obtained.
  • the layer thickness of the electron transport layer is not particularly limited, but is usually in the range of about 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the support substrate (also referred to as a substrate, substrate, substrate, or support) applied to the organic EL device according to the present invention is not particularly limited in the type of glass, plastic, and the like, and is transparent or opaque. It may be.
  • the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film.
  • a particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or abortion (trade name,
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability measured by a method according to JIS K 7129-1992 is 0.01 g / (m 2 24h)
  • the following gas barrier film is preferable, and the oxygen permeability measured by a method according to JIS K 7126-1992 is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24h ⁇ atm).
  • a high gas barrier film having a water vapor permeability of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less is preferable, and further, an oxygen permeability is 1 ⁇ 10 ⁇ 5 ml / (m 2 It is particularly preferable that the water vapor permeability is 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • the material for forming the gas barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the gas barrier film is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferably used. be able to.
  • the opaque support substrate examples include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.
  • Examples of the sealing means used for sealing the organic EL element according to the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film or a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the oxygen permeability is 1 ⁇ 10 ⁇ 5 ml / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability is 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h).
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • adhesives include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. Can be mentioned. Moreover, the heat
  • an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature (25 degreeC) to 80 degreeC is preferable. Further, a desiccant may be dispersed in the adhesive. Application
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc., used for the above-mentioned sealing can be used. It is preferable to use a film.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, Ag, and Al, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (100 ⁇ m or more) Degree), a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the sheet resistance value as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected within the range of 5 to 1000 nm, preferably within the range of 5 to 200 nm.
  • Electrode what uses a metal, an alloy, an electroconductive compound, and these mixtures as an electrode substance is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals, silver, aluminum and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum, silver and the like are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance value as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 5 nm to 5 ⁇ m, preferably within the range of 5 to 200 nm.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the above material with a film thickness in the range of 1 to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the organic EL element according to the present invention can be suitably used for various devices.
  • an organic EL module is demonstrated as the example.
  • the organic EL module has an independent function in which a conductive material (member) is connected to the anode and the cathode of at least one organic EL element and is further connected to a wiring board or the like. Refers to the mounting body.
  • FIG. 15 shows an example of the organic EL module of the present invention.
  • the organic EL module 30 mainly includes an organic EL element 1, an anisotropic conductive film (ACF) 32, and a flexible printed circuit (FPC) 34.
  • the organic EL element 1 has a laminated body 14 including a support substrate 21 and electrodes and various organic functional layers.
  • the take-out wiring 24 and the flexible printed board 34 formed at the end portion on the support substrate 21 side where the laminated body 14 is not laminated are electrically connected through the anisotropic conductive film 32.
  • the flexible printed board 34 is bonded onto the organic EL element 1 (laminated body 14) via an adhesive 36.
  • the flexible printed board 34 is connected to a driver IC or printed board (not shown).
  • an extraction wiring is formed so that a part of the cathode 26 (see FIG. 1) is in contact with the cathode 26, and the extraction wiring and the flexible printed board 34 are electrically connected. It is connected to the.
  • the polarizing member 38 may be provided on the light emitting surface side of the support substrate 21. Instead of the polarizing member 38, a half mirror or a black filter may be used. Thereby, the organic EL module 30 of the present invention can express black that cannot be expressed by the light guide dots in the LED.
  • the anisotropic conductive film according to the present invention is obtained by dispersing conductive particles, for example, a metal core itself such as gold, nickel, silver, or a resin core gold-plated in a binder.
  • a thermoplastic resin or a thermosetting resin is used as the binder.
  • a thermosetting resin is preferable, and an epoxy resin is more preferable.
  • An anisotropic conductive film in which nickel fibers (fibrous) are oriented as a filler can also be suitably used.
  • a fluid material such as a conductive paste such as a silver paste may be used instead of the anisotropic conductive film.
  • polarizing member As a polarizing member which concerns on this invention, a commercially available polarizing plate or a circularly-polarizing plate is mentioned.
  • a polarizing film which is a main component of a polarizing plate, is an element that transmits only light having a polarization plane in a certain direction, and a typical example is a polyvinyl alcohol polarizing film. This mainly includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.
  • a polarizing film having a polarizing film thickness in the range of 5 to 30 ⁇ m, preferably in the range of 8 to 15 ⁇ m is preferably used. In the present invention, such a polarizing film is also preferably used. it can.
  • polarizing plate protective film specifically, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FR -2, KC8UE, KC4UE (manufactured by Konica Minolta Co., Ltd.) and the like.
  • the pressure-sensitive adhesive used for bonding the polarizing member and the support substrate is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
  • Specific examples include acrylic copolymers, epoxy resins, polyurethanes, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers.
  • an acrylic copolymer can be preferably used because it is most easy to control the adhesive physical properties and is excellent in transparency, weather resistance, durability, and the like.
  • These pressure-sensitive adhesives can be cured by forming a film by a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method or the like after coating on a substrate.
  • the organic EL module can be manufactured by connecting an anode take-out wiring that is a current feeding portion and a cathode take-out wiring (not shown) that is a current receiving portion by a predetermined method.
  • an anisotropic conductive film when used as a connection method, it has a role of temporarily bonding the anisotropic conductive film by the temporary bonding temperature and actually taking electrical connection in the anisotropic conductive film.
  • the anisotropic conductive film and the extraction electrode are electrically connected by performing a pressure-bonding step of crushing the conductive particles.
  • an anisotropic conductive film whose crimping temperature is in the range of 100 to 150 ° C. (for example, Hitachi Chemical Co., Ltd., MF series) is used to reduce thermal damage to the film base material. Is selected.
  • a temporary bonding process of an anisotropic conductive film is performed.
  • an ACF sticking apparatus manufactured by Ohashi Seisakusho: LD-03
  • the heat tool temperature for temporary bonding is set to about 80 ° C.
  • the organic EL element and the anisotropic conductive film are aligned, and then at a predetermined pressure (0.1 to 0.3 MPa) for 5 seconds.
  • Bonding is performed by pressing at a degree.
  • this bonding process (crimping process) is implemented.
  • a main crimping device manufactured by Ohashi Seisakusho: BD-02
  • BD-02 main crimping device
  • the heat tool temperature for main bonding is set to about 130 to 150 ° C.
  • the contact pad of the flexible printed circuit board connected to the organic EL element is set in alignment with the electrode extraction position of the organic EL element.
  • the bonding process is completed by pressing the heat tool at a predetermined pressure (1 to 3 MPa) for about 10 seconds from the flexible printed circuit board.
  • a silicone resin or the like may be potted from above the bonding portion for reinforcement.
  • a polarizing member, a half mirror member or a black filter can be provided on the light emitting surface side of the support substrate via an adhesive depending on the application.
  • At least one organic functional layer in each light emitting unit is mask-patterned in the process of forming the organic functional layer, and further, after the organic functional layer is formed, it is patterned by light irradiation to emit light.
  • the point of partitioning (patterning) into a region where the function is modulated and a region where the function is not modulated is common to the first embodiment, but the first embodiment is mainly described in the following points. Is different.
  • an organic EL device having one or more organic functional layers between at least a pair of electrodes can switch two or more types of light emitting patterns depending on the state. And capable of emitting light evenly.
  • the “pattern” means a design (pattern or pattern in the figure), characters, images, etc. displayed by the organic EL element.
  • the organic EL element 1 is configured by sequentially laminating an anode 23, a first light emitting unit 25a, an intermediate electrode layer 29, a second light emitting unit 25b, and a cathode 26 on a support substrate 21.
  • An anode 23 is drawn out at the end of the support substrate 21 and an extraction electrode 23a is formed.
  • the intermediate electrode layer 29 is light transmissive.
  • a support substrate 21 is prepared, and a thin film made of a desired electrode material, for example, an anode material, is deposited on the support substrate 21 so as to have a film thickness of 1 ⁇ m or less, preferably within a range of 10 to 200 nm.
  • the anode 23 is formed by a method such as sputtering.
  • an extraction electrode 23a connected to an external power source is formed at the end of the anode 23 by an appropriate method such as vapor deposition.
  • a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer constituting the first light emitting unit 25a are sequentially stacked thereon.
  • the shadow mask pattern at the time of film-forming is selected suitably so that the pattern different from the 2nd light-emitting unit 25b mentioned later may be formed at the time of film-forming of the 1st light emission unit 25a.
  • the same shadow mask pattern may be used for all of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer. It is preferable to use the hole injection layer and the hole transport layer, and it is more preferable to use a shadow mask only for the hole injection layer.
  • each of these layers includes spin coating, casting, inkjet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous layer is easily obtained and pinholes are difficult to generate.
  • the method or spin coating method is particularly preferred.
  • different formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m.
  • a thin film made of the material for the intermediate electrode layer is preferably formed thereon with a layer thickness within the range of 0.6 to 5 nm, more preferably within the range of 0.8 to 3 nm, still more preferably 0.8.
  • An intermediate electrode layer 29 is formed by vapor deposition so as to be in the range of 8 to 2 nm.
  • each layer of the second light emitting unit 25b is formed in the same manner as the film formation of the first light emitting unit 25a.
  • a shadow mask pattern at the time of film formation is different from that of the first light emitting unit 25a.
  • the cathode 26 is formed on the upper portion by an appropriate forming method such as vapor deposition or sputtering. At this time, the cathode 26 has a shape in which a terminal portion is drawn from the upper side of the second light emitting unit 25b to the periphery of the support substrate 21 while maintaining the insulating state with respect to the intermediate electrode layer 29 and the anode 23 by the light emitting units 25a and 25b. Form a pattern.
  • a step (sealing step) for sealing the organic EL element 1 is performed. That is, a sealing material that covers at least the light emitting units 25 a and 25 b is provided on the support substrate 21 with the terminal portions of the anode 23 (extraction electrode 23 a) and the cathode 26 exposed.
  • the light emitting function of the light emitting units 25a and 25b is modulated by light irradiation, and the organic EL element 1 having a predetermined light emission pattern can be manufactured.
  • modulating the light emitting function by light irradiation means changing the light emitting function of the light emitting unit by changing the function of a hole transport material or the like constituting the light emitting unit by light irradiation.
  • the light irradiation method may be any method as long as the irradiated portion can be changed to a light emitting region whose luminance has changed by irradiating the predetermined pattern region of the light emitting units 25a and 25b with the predetermined light.
  • the present invention is not limited to a specific method.
  • the light irradiated in the light irradiation step may further contain ultraviolet rays, visible rays or infrared rays, but preferably contains ultraviolet rays.
  • ultraviolet rays refer to electromagnetic waves having a wavelength longer than that of X-rays and shorter than the shortest wavelength of visible light, and specifically have a wavelength in the range of 1 to 400 nm.
  • the ultraviolet ray generating means and the irradiating means are not particularly limited as long as the ultraviolet ray is generated and irradiated by a conventionally known apparatus or the like.
  • Specific light sources include a high pressure mercury lamp, a low pressure mercury lamp, a hydrogen (deuterium) lamp, a rare gas (xenon, argon, helium, neon, etc.) discharge lamp, a nitrogen laser, an excimer laser (XeCl, XeF, KrF, KrCl). Etc.), hydrogen laser, halogen laser, various harmonics of visible (LD) -infrared laser (THG (Third Harmonic Generation) light of YAG laser) and the like.
  • Such a light irradiation process is preferably performed after the sealing process.
  • the light irradiation step by adjusting the light intensity or irradiation time and changing the light irradiation amount, it is possible to change the light emission luminance of the light irradiation portion according to the light irradiation amount.
  • the organic EL element 1 having a desired light emission pattern can be manufactured.
  • the first light emitting unit 25a to the cathode 26 are consistently produced by one evacuation.
  • the support substrate 21 is taken out from the vacuum atmosphere and formed differently. You may apply the law. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • Luminescence can be observed when a voltage of about 2 to 40 V is applied to the layer 29 with a negative polarity.
  • an AC voltage may be applied, and the AC waveform to be applied may be arbitrary. At this time, since the current flows only in the light emitting pattern portion, the power consumption can be reduced as compared with the LED that guides light to the unnecessary portion.
  • patterning by light irradiation can be used to further increase the shape accuracy.
  • a vapor deposition process is performed using a metal mask having an opening shape corresponding to FIG. 17A, and the hole injection layer 7 shown in FIG. Form.
  • a vapor deposition process is similarly performed using a metal mask having an opening shape corresponding to FIG. 17B, and the hole injection shown in FIG. 17B is performed. Layer 11 is formed. With this method, it is possible to confirm the light emission in the arrow shape corresponding to FIGS. 17A and 17B in each of the light emitting units 25a and 25b.
  • the accuracy of the arrow shape includes blurring of film formation at the time of vapor deposition, and it becomes dull, with some brightness around the arrow shape.
  • the second light emitting unit 25b when the second light emitting unit 25b is electrically driven to emit light, the light emission corresponding to the portion where the hole injection layer 11 overlaps the hole injection layer 7 when viewed in plan, that is, the overlapping portion 11a Of the emitted light from the corresponding light emitting layer, the amount of emitted light (transmitted light amount) extracted outside the support substrate 21 is absorbed by the overlapping portion 7a of the hole injecting layer 7 and the like. This is less than the non-overlapping portion 11b of the hole injection layer 11 that does not overlap. As a result, the light emission luminances of the overlapping portion 11a and the non-overlapping portion 11b are different, causing light emission unevenness.
  • a light irradiation process is performed after the film formation and sealing process. Specifically, as shown in FIG. 18, a mask plate 65 that has been processed so as to control the amount of transmitted light is prepared.
  • the mask plate 65 includes a transmission part 66 that transmits all light, a non-transmission part 67 that does not transmit light, and a semi-transmission part 68 that limits the amount of light transmitted.
  • the mask plate 65 is fixed by aligning the light emission position of FIG. 17A and FIG.
  • the semi-transmissive portion 68 is aligned above the non-overlapping portion 11 b of the hole injection layer 11. After completion of the alignment, a light irradiation process is performed.
  • luminance change can be performed for the surrounding part (edge part) of an arrow shape, and shape accuracy can be made high. Further, by performing light irradiation with a controlled light irradiation amount on the non-overlapping portion 11b of the hole injection layer 11, the amount of transmitted light from the overlapping portion 11a and the non-overlapping portion 11b to the support substrate 21 side becomes equal, It is possible to obtain a light emission pattern without light emission unevenness.
  • the organic EL device 1 manufactured as described above when only the first light emitting unit 25a is driven, the light emission pattern having the shape shown in FIG. 17A is observed, and when only the second light emitting unit 25b is driven, FIG. A light emission pattern having the shape shown is observed. Electrical driving of the light emitting units 25a and 25b is controlled by a driver IC (Integrated Circuit) based on information such as a position sensor.
  • a driver IC Integrated Circuit
  • each light emission unit 25a and 25b is arbitrary, and may be the same or different.
  • the intermediate electrode layer according to the present embodiment is disposed between the two light emitting units and has light transmittance.
  • the intermediate electrode layer may be formed in a state in which a metal material is hardly formed in a partial fine region thereof, that is, a so-called pinhole is formed, or may be formed in a net shape in the in-plane direction.
  • the intermediate electrode layer forming portion may be formed in an island shape (spot shape).
  • a metal having a work function of 3.0 eV or less is used as the intermediate electrode layer of the present invention.
  • Materials used for the intermediate electrode layer include calcium (work function 2.87 eV, melting point 1112.2 K), lithium (2.9 eV, 453.7 K), sodium (2.75 eV, 371 K), potassium ( 2.3 eV, 336.9 K), cesium (2.14 eV, 301.6 K), rubidium (2.16 eV, 312.1 K), barium (2.7 eV, 998.2 K), Strontium (2.59 eV, 1042.2 K) is mentioned.
  • lithium, calcium, and barium which have a melting point of 400 K or more at normal pressure and are less likely to impair the performance of the organic EL device in a high temperature environment. Strontium is preferred.
  • the thickness of the intermediate electrode layer is preferably in the range of 0.6 to 5 nm, more preferably in the range of 0.8 to 3 nm, and still more preferably in the range of 0.8 to 2 nm.
  • the thickness of the intermediate electrode layer is smaller than 5 nm, a decrease in efficiency of the organic EL element due to light absorption of the metal material to be used is suppressed, and storage stability and drive stability are not deteriorated.
  • the layer thickness of the intermediate electrode layer is larger than 0.6 nm, the performance stability of the organic EL element, in particular, the performance fluctuation at a relatively initial stage after the element fabrication is small.
  • the “layer thickness of the intermediate electrode layer” in the present invention is defined as “average layer thickness” obtained by dividing the film formation mass per unit area of the intermediate electrode layer by the material density. Therefore, the layer thickness of an arbitrary portion of the intermediate electrode layer may be thicker than the “average layer thickness” or may be thinner.
  • the light emitting unit side surfaces of the intermediate electrode layer have at least a completely flat surface.
  • One of the surfaces is preferably formed as a non-flat surface.
  • the intermediate electrode layer having a non-flat surface means that the shape of the intermediate electrode layer in the in-plane direction is a net shape or an island shape.
  • the layer adjacent to the anode side of the intermediate electrode layer is preferably a layer formed by forming a single organic compound.
  • the production process is simplified and process management is facilitated, and the risk of performance fluctuation due to the use of multiple materials can be avoided, as well as better long-term or high-temperature storage stability and long-term drive stability. Since it is obtained, it is preferable.
  • the layer adjacent to the intermediate electrode layer is used to transfer charge from each light emitting unit to / from each light emitting unit via the intermediate electrode layer between the light emitting unit located on the cathode side and the light emitting unit located on the anode side. It is desirable to have a function that allows easy injection.
  • a layer having such a function in order to enhance charge transportability, for example, a charge transportable organic material and an inorganic material capable of oxidizing or reducing the organic material or forming a charge transfer complex with the organic material Or a mixed layer doped with an organometallic complex.
  • the deposition crucible containing the compound M-4 was energized and heated, and the deposition rate was 0.1 nm / second. It vapor-deposited on the transparent support substrate and provided the layer with a layer thickness of 15 nm.
  • Compound M-2 was deposited in the same manner to provide a layer having a layer thickness of 40 nm.
  • Compound BD-1, Compound GD-1, RD-1, Compound H-1, and Compound H-2 are Compound BD-1 5%, Compound GD-1 17%, RD-1 0.8%
  • the first white light-emitting layer having a layer thickness of 30 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of compound H-1 was 37.2% and the concentration of compound H-2 was 40%.
  • Compound E-1 was deposited at a deposition rate of 0.1 nm / second to form a layer having a layer thickness of 30 nm.
  • lithium was vapor-deposited to provide an intermediate electrode layer having a layer thickness of 1.5 nm.
  • Compound M-4 was deposited at a deposition rate of 0.1 nm / second to provide a layer with a layer thickness of 15 nm.
  • Compound M-2 was deposited at a deposition rate of 0.1 nm / second to provide a layer having a layer thickness of 50 nm.
  • Compound BD-1, Compound GD-1, RD-1, Compound H-1, and Compound H-2 are Compound BD-1 5%, Compound GD-1 17%, RD-1 0.8%
  • the second white light-emitting layer having a layer thickness of 30 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so that the concentration of compound H-1 was 37.2% and the concentration of compound H-2 was 40%.
  • Compound E-1 was deposited at a deposition rate of 0.1 nm / second to form a layer having a layer thickness of 30 nm.
  • LiF was formed with a thickness of 1.5 nm
  • aluminum was deposited with a thickness of 110 nm to form a cathode.
  • the vapor deposition surface side of the organic EL element produced as described above is covered with a glass case, and the glove box (high purity nitrogen having a purity of 99.999% or more is used in a nitrogen atmosphere without bringing the organic EL element into contact with the air. Sealing was performed under a gas atmosphere.
  • a pattern mask (see FIG. 18) and an ultraviolet absorption filter (made by Isuzu Seiko Glass Co., Ltd.) are placed under reduced pressure, Using a UV tester (manufactured by Iwasaki Electric Co., Ltd., SUV-W151: 100 mW / cm 2 ), ultraviolet rays were irradiated from the substrate side for 3 hours to perform patterning.
  • the ultraviolet absorption filter used the thing with the light transmittance of a wavelength component of 320 nm or less of 50% or less (cut wavelength: 320 nm).
  • the present invention provides a method and an apparatus for manufacturing an organic EL element having high shape accuracy and capable of switching a light emission pattern, and an organic EL module including an organic EL element manufactured by the manufacturing method. It can be suitably used.

Abstract

 本発明の課題は、形状精度が高く、かつ発光パターンを切り替え可能な有機EL素子の製造方法を提供することである。 本発明の有機EL素子の製造方法は、支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、少なくとも1層の中間電極層とを有し、中間電極層が発光ユニット間に配置されている有機EL素子の製造方法であって、それぞれの発光ユニットにおける少なくとも1層の有機機能層を、マスクを用いてパターニングする第1パターニング工程と、光照射により、発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング工程と、を有し、発光ユニットを作製するごとに、第2パターニング工程を行うことを特徴とする。

Description

有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュール
 本発明は、有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュールに関する。より詳しくは、形状精度が高く、かつ発光パターンを切り替え可能な有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びにその製造方法により製造された有機エレクトロルミネッセンス素子を備えた有機エレクトロルミネッセンスモジュールに関する。
 近年、平面状の光源体として、導光板(フィルム)を用いた発光ダイオード(Light Emitting Diode:LED)及び有機発光ダイオード(Organic Light Emitting Diode:OLED、以下、「有機エレクトロルミネッセンス素子」又は「有機EL素子」ともいう。)が注目されている。特に、導光板を用いたLED(以下、「導光板LED」ともいう。)については、一般的な照明のみならず、液晶表示装置(Liquid Crystal Display:LCD)用のバックライトなど、様々な場面、用途で使用されるようになってきた(例えば、特許文献1参照。)。
 また、近年、スマートフォンやタブレットなどスマートデバイスが急速に普及している。
 このスマートデバイスは、メインディスプレイの外側に、四角形などのマークで表示された「ホーム」ボタン、矢印マークなどで表示された「戻る」ボタン、虫眼鏡マークなどで表示された「検索」ボタンなどの固定の機能及び形状を持ったボタン(以下、「共通機能キーボタン」という。)を備えていることが多い。
 このような共通機能キーボタンは、表示するマークのパターン形状に応じて、あらかじめ導光板にドット形状の偏向パターンが印刷され、当該導光板の側方に、導光板の側端面に光を照射するLED光源が設けられて構成されている。また、この共通機能キーボタンにおいては、LED光源から出射した光が導光板の側端面から入射し、当該入射光が偏向パターンの偏向反射面によって導光板の正面方向へ全反射される。これにより、所定のパターンで導光板の正面側から光が出射されて、導光板を正面から見たときに当該パターンで発光して見えるようになる。
 一般的なスマートデバイスにおいては、例えば、スマートデバイスを時計回りに90°回転させた時に、メインディスプレイの表示も時計回りに90°回転するなど、スマートデバイスの向きに応じて、メインディスプレイの表示の向きが変わる機能が標準となっている。
 しかしながら、上述の共通機能キーボタンは、スマートデバイスの向きに応じて、同一場所でマークの向きや任意のマーク形状に切り替えることができない。
 また、一般的な共通機能キーボタンは、上述のように、バックライトとして導光板LEDが採用されていることが通常であるが、このような構成の共通機能キーボタンには、下記のような問題がある。
 例えば、スマートデバイスの向きに応じて、マークの向きや任意のマーク形状に切り替えるためには、導光板LEDを複数枚重ねる必要がある。
 しかしながら、複数重ねられた導光板LEDは、厚さが増加しているため、スマートデバイスの内部に収納できない、という問題がある。
 また、導光板LEDが採用されている共通機能キーボタンでは、導光板の側端面から導光されるため、共通機能キーボタンの模様や形状によっては発光輝度のムラが多くなってしまうという問題がある。
 さらに、共通機能キーボタンのマークは、導光板に印刷されたドット形状の偏向部材によって形成されているため、このドット形状の偏向部材も視認されてしまい、発光パターンを鮮明に表示できないという問題がある。
 しかし、発光ユニットごとに異なる発光パターンが形成(パターニング)された発光ユニットを複数積層した有機EL素子を用いて共通機能キーボタンを表示させれば、上記問題は発生しない。すなわち、発光させる発光ユニットをスマートデバイスの向きに応じて切り替えることで、有機EL素子の発光パターンを切り替えられるようにすることができる。また、このような有機EL素子は、非常に薄く、平面状であるため、スマートデバイスの内部に収納できる。
 発光ユニットにパターニングする方法として、紫外線を照射し、照射された部分の発光機能を変化させる方法が特許文献2に開示されている。
 しかし、特許文献2には、複数の発光ユニットに異なるパターンを形成するパターニングの方法は開示されていない。
 また、マスクを用いた成膜によって、発光ユニットごとに異なる発光パターンの有機機能層を形成することが考えられる。しかし、有機機能層をマスクを用いて成膜することでパターニングを行うだけでは、発光パターンの形状精度(解像度)が低いという問題がある。
米国特許第8330724号明細書 特開2012-028335号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、形状精度が高く、かつ発光パターンを切り替え可能な有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びにその製造方法により製造された有機エレクトロルミネッセンス素子を備えた有機エレクトロルミネッセンスモジュールを提供することである。
 さらには、発光ムラのない有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュールを提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、各発光ユニットにおける少なくとも1層の有機機能層を、当該有機機能層の形成過程においてマスクパターン化し、更に、当該有機機能層の形成後に、光照射によりパターン化して、発光機能が変調されている領域と、変調されていない領域とに区画(パターニング)することにより、形状精度を維持しつつ、発光パターンを切り替え可能であり、更に、駆動時における発光ムラのない有機EL素子を提供できることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、少なくとも1層の中間電極層とを有し、前記中間電極層が前記発光ユニット間に配置されている有機エレクトロルミネッセンス素子の製造方法であって、
 それぞれの前記発光ユニットにおける少なくとも1層の前記有機機能層を、
 マスクを用いてパターニングする第1パターニング工程と、
 光照射により、発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング工程と、
を有し、
 前記発光ユニットを作製するごとに、前記第2パターニング工程を行うことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
 2.前記第2パターニング工程における前記光照射を、波長が320~420nmの範囲内での放射照度が10~1000mW/cmの範囲内の条件で行うことを特徴とする第1項に記載の有機エレクトロルミネッセンス素子の製造方法。
 3.支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、光透過性を有する少なくとも1層の中間電極層とを有し、前記中間電極層が前記発光ユニット間に配置されている有機エレクトロルミネッセンス素子の製造方法であって、
 それぞれの前記発光ユニットにおける少なくとも1層の前記有機機能層を、
 マスクを用いて、パターニングする工程と、
 光照射により、発光機能が変調された領域と、変調されていない領域とに区画する光照射工程と、
を有し、
 前記発光ユニットをすべて積層した後、前記光照射工程を行い、
 前記光照射工程では、発光機能を変調する領域内で、照射量を変化させて光照射することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
 4.前記少なくとも1層の有機機能層が、正孔輸送層又は正孔注入層であることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。
 5.支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、少なくとも1層の中間電極層とを有し、前記中間電極層が前記発光ユニット間に配置されている有機エレクトロルミネッセンス素子の製造装置であって、
 それぞれの前記発光ユニットにおける少なくとも1層の前記有機機能層を、
 マスクを用いてパターニングする第1パターニング部と、
 光照射により、発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング部と、
を有し、
 前記第2パターニング部は、前記発光ユニットを作製するごとにパターニングを施すことを特徴とする有機エレクトロルミネッセンス素子の製造装置。
 6.第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法によって製造された有機エレクトロルミネッセンス素子を備えたことを特徴とする有機エレクトロルミネッセンスモジュール。
 7.前記支持基板の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを有することを特徴とする第6項に記載の有機エレクトロルミネッセンスモジュール。
 本発明の上記手段により、形状精度が高く、かつ発光パターンを切り替え可能な有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びにその製造方法により製造された有機エレクトロルミネッセンス素子を備えた有機エレクトロルミネッセンスモジュールを提供することができる。
 さらには、発光ムラのない有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュールを提供することができる。
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。
 従来、マスクを用いて成膜された有機機能層(正孔注入層)のエッジは、ダレてしまい発光パターンの形状精度(解像度)が低下するという問題がある。
 しかし、このダレ部だけに光照射し、発光機能を変調させて発光しないようにすることにより、発光パターンのトリミングが行え、発光パターンの形状精度を向上させることができる。
 また、マスクの厚さによりマスクのエッジが影となり、当該エッジ近辺には成膜物質が十分積層されない場合もある。このような場合には、あらかじめ発光パターンよりも幅広に有機機能層を成膜しておき、光照射で不要な部分を発光しないようにトリミングすることで、発光パターンの形状精度を向上させることができる。
有機EL素子の一例を示す概略断面図 有機EL素子の製造装置を示す概略構成図 有機EL素子の製造装置を構成する成膜室の一例を示す概略構成図 支持基板の一部を示す概略図 搬送ローラー及び受けローラーを示す概略側面図 搬送ローラー及び受けローラーを示す概略側面図 連続マスクの一部を示す概略図 連続マスクの一部を示す概略図 有機EL素子の製造装置を構成する成膜室の一例を示す概略構成図 有機EL素子の製造装置を構成する成膜室の一例を示す概略構成図 正孔注入層成膜室で用いられる連続マスクの一部を示す概略図 正孔注入層成膜室で用いられる連続マスクの一部を示す概略図 第2パターニング部の一例を示す概略構成図 第2パターニング部が有する連続マスクの一部を示す概略図 第2パターニング部の一例を示す概略構成図 第2パターニング部の一例を示す概略構成図 有機EL素子の製造装置を構成するラミネート室を示す概略構成図 背面フィルムの一部を示す概略図 有機ELモジュールの一例を示す概略断面図 有機EL素子の一例を示す概略断面図 発光ユニットの正孔注入層におけるパターン形状を示す平面図 発光ユニットの正孔注入層におけるパターン形状を示す平面図 光照射に用いられるマスク板の概略構成を示す模式図
 本発明の有機EL素子の製造方法は、各発光ユニットにおける少なくとも1層の有機機能層を、当該有機機能層の形成過程においてマスクパターン化し、更に、当該有機機能層の形成後に、光照射によりパターン化して、発光機能が変調されている領域と、変調されていない領域とに区画(パターニング)することを特徴とする。この特徴は、請求項1から請求項7までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、第2パターニング工程における前記光照射を、波長が320~420nmの範囲内での放射照度が10~1000mW/cmの範囲内の条件で行うことが好ましい。これによれば、有機EL素子の製造にあたり、特別な照射装置を用意する必要がないため、本発明に係る有機EL素子を容易に製造できるという効果が得られ好ましい。
 また、本発明において、光照射によりパターン化される少なくとも1層の有機機能層が、正孔輸送層又は正孔注入層であることが、マスク精度を向上させる観点から好ましい。
 本発明の有機EL素子の製造装置は、それぞれの発光ユニットにおける少なくとも1層の有機機能層を、マスクを用いてパターニングする第1パターニング部と、光照射により、発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング部と、を有し、第2パターニング部は、発光ユニットを作製するごとにパターニングを施すことを特徴とする。
 また、本発明に係る有機EL素子は、有機ELモジュールに好適に具備され得る。
 本発明の実施態様としては、支持基板の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを有することが、非発光時に黒色となることから好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。
[第1の実施形態]
≪有機EL素子の構成≫
 本発明に係る有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (I)陽極/第1発光ユニット/中間電極層/第2発光ユニット/陰極
 (II)陽極/第1発光ユニット/第1中間電極層/第2発光ユニット/第2中間電極層/第3発光ユニット/陰極
 (I-1)陽極/白色発光ユニット/中間電極層/白色発光ユニット/陰極
 (II-1)陽極/白色発光ユニット/第1中間電極層/白色発光ユニット/第2中間電極層/白色発光ユニット/陰極
 本発明に係る有機EL素子の一例として、上記構成(I)の有機EL素子を図1に示す。
 図1に示すとおり、有機EL素子1は、支持基板21上に、陽極23、第1発光ユニット25a、中間電極層27、第2発光ユニット25b及び陰極26が順次積層され、構成されている。
 支持基板21側端部には、その一部が陽極23に接するようにして取出し配線24が形成されている。
 中間電極層27は、可視光に対して光透過性を有していることが好ましい。
 本発明において、発光ユニットの層数は、2以上であれば特に制限はないが、生産効率を鑑みると、2~10の範囲内であることが好ましく、2~3の範囲内であることがより好ましい。なお、発光ユニットの層数をN(Nは2以上の整数)とすると、中間電極層の層数は(N-1)である。
 本発明における発光ユニットとは、1層又は複数層の有機機能層を含んで構成される積層体である。
 発光ユニットに使用される有機機能層としては、例えば、正孔注入層(陽極バッファー層)、正孔輸送層、発光層、電子輸送層、電子注入層(陰極バッファー層)、正孔阻止層及び電子阻止層など、公知のものが挙げられる。
 以下に、発光ユニットを構成する有機機能層の好ましい具体例及び積層の順序を示すが、本発明はこれらに限定されない。
 (i)正孔注入輸送層/発光層/電子注入輸送層
 (ii)正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層
 (iii)正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層
 (iv)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層
 (v)正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層
 (vi)正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層
 本発明において、各発光ユニットは、互いに異なる有機機能層を組み合わせて構成されていてもよいが、同一の有機機能層及び材料を用いて構成されることが好ましく、また、発光層の層数も同一であることが好ましい。これにより、発光ユニットを形成する材料の物品点数が増加することを抑制できるため、コストを抑え、かつ、品質管理もしやすくなり、ひいては、生産効率を上昇させることができる。また、各有機機能層の形成を蒸着プロセスで行う態様であれば、成膜チャンバーを各発光ユニットで共通化しやすい等、更に生産効率を上昇させることができる。
 発光ユニットを構成する各有機機能層の形成方法としては、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア-ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コーター法等の公知の薄膜形成法により成膜して形成することができる。
≪有機EL素子の製造方法及び製造装置≫
 以下、有機EL素子1を製造する製造方法及び製造装置について、図2~図14を参照して説明する。
 本発明の有機EL素子の製造方法は、支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、少なくとも1層の中間電極層とを有し、中間電極層が発光ユニット間に配置されている有機EL素子の製造方法であって、それぞれの発光ユニットにおける少なくとも1層の前記有機機能層を、マスクを用いてパターニングする第1パターニング工程と、光照射により、発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング工程と、を有し、発光ユニットを作製するごとに、第2パターニング工程を行うことを特徴とし、その製造装置としては、以下に説明する製造装置100に限定されるものではない。
 また、本発明の有機EL素子の製造方法においては、第2パターニング工程における光照射を、波長が320~420nmの範囲内での放射照度が10~1000mW/cmの範囲内の条件で行うことが好ましい。
 図2は、本発明の有機EL素子の製造装置100の一例を示す概略図である。図2に示す製造装置100は、ロール状に巻回された支持基板21を連続的に搬送して有機EL素子1を製造する装置である。なお、本実施形態では、支持基板21の成膜面には、あらかじめ無機絶縁層が形成されているものとする。無機絶縁層としては、有機EL素子に使用される公知のものの中から適宜選択して用いることができる。
 減圧雰囲気下に置かれた巻出部101から巻き出された支持基板21は、各ガイドローラー102、103を通って前室R1に入り、更にスリットローラー104を介して真空雰囲気下の表面処理兼アキューム室R10に搬入され、表面のドライクリーニング及び脱水処理が行われる。表面処理兼アキューム室R10内の圧力は、1×10-5~10Paの範囲内に設定されていることが好ましい。
 次いで、支持基板21は、表面処理兼アキューム室R10から成膜室R20へ連続的に搬送される。表面処理兼アキューム室R10と成膜室R20との間には、ゲートバルブ又は圧力調整室が備えられ、表面処理兼アキューム室R10と成膜室R20との差圧を調整する。
 本発明の製造方法では、まず、成膜室R20及び後述する第6成膜室R30により、搬送中の支持基板21の成膜面に対し、有機機能層のいずれかの層を形成する成膜工程を行う。
 さらに、この成膜工程では、発光ユニットの少なくとも1層の有機機能層を、マスクを用いてパターニングしながら形成する第1パターニング工程と、光照射により、発光機能が変調された領域及び変調されていない領域にパターニングする第2パターニング工程とを行う。
 本実施形態では、第1パターニング工程で用いられるマスクとして、後述する連続マスクを採用する。なお、第1パターニング工程で用いられるマスクは、この連続マスクに限定されず、板状のマスクなど、公知のマスクも採用できる。
 なお、第1パターニング工程は、発光ユニットの少なくとも1層の有機機能層に対して、中間電極層の形成前にマスクを用いてパターニングする第1パターニング部で行われる。
 本実施形態において第1パターニング部とは、後述の成膜室R21~R25のうち、連続マスクを備える成膜室のことである。この連続マスクを備える成膜室では、各有機機能層をパターニングしながら形成する。
 なお、第1パターニング工程は、複数の有機機能層に行われてもよいし、いずれか一つの有機機能層に行われてもよいが、正孔輸送層又は正孔注入層に行われることが、特に好ましい。
 成膜室R20は、複数の成膜室R21~R25及び第2パターニング部RLからなり、各成膜室R21~R25及び第2パターニング部RLの間には処理スピードを吸収するアキュームレーター機構が設けられる。成膜室R21~R25及び第2パターニング部RLは、それぞれ独立に排気されて、真空又は減圧状態に保たれており、その成膜圧力は、成膜方法により異なるが、1×10-6~10Pa程度に設定されていることが好ましい。
 第1成膜室R21では、金属や金属酸化物等の導電性材料を成膜材料として、例えば、真空蒸着法、スパッタ法、イオンプレーティング法等の成膜方法により、支持基板21上に陽極23の成膜を行う。
 ここで、第1成膜室R21について、図3を参照して以下説明する。図3は、第1成膜室R21内の概略構成図である。
 第1成膜室R21は、支持基板21を所定の搬送経路で搬送する複数の搬送ローラー51、52及び受けローラー53、54、搬送される支持基板21の成膜面に対向する原料供給部55、並びに、支持基板21の成膜面と反対側の面に当接して支持基板21を冷却する背面冷却ローラー56を内部に備えて構成されている。また、第1成膜室R21内には、所定のパターン形状の開口部を有するループ状の連続マスク60、連続マスク60をそのループ方向に回転移動させる回転移動部70、及び、連続マスク60をクリーニングするクリーニング部80が設けられていてもよい。
 ここで、本発明において、支持基板21は、図4に示すように、その幅方向両端部に、搬送方向(移動方向)において等間隔で開口された複数の第1ガイド孔211を有している。
 搬送ローラー51、52は、その周面上に、径方向に突設された複数の突起部を有している。支持基板21の搬送時に、当該突起部が支持基板21の第1ガイド孔211内に挿通されることで、支持基板21が円滑に搬送される。搬送ローラー51、52は、後述する回転移動部70の搬送ローラー71~78と同様に構成されているものである。
 受けローラー53は、回転駆動することにより、搬送ローラー51、52とともに支持基板21を搬送する。また、受けローラー53は、図5A及び図5Bに示すように、表面に複数の凹部530が凹設されている。受けローラー54についても、受けローラー53と同様に構成されている。これら受けローラー53、54の詳細については後述する。
 原料供給部55は、真空蒸着法、スパッタ法、イオンプレーティング法等の各方法に対応した成膜機構を有し、搬送される支持基板21の成膜面に対向して設けられている。これにより、第1成膜室R21内を搬送される支持基板21の成膜面のうち所定領域に対して、陽極23の成膜を行うことができる。
 背面冷却ローラー56は、回転可能に支持され、所定の冷却機構を備えるローラー部材である。背面冷却ローラー56は、支持基板21を挟んで原料供給部55の反対側に設けられ、支持基板21の成膜面の反対側の面に当接することで、支持基板21のうち原料供給部55により成膜が行われる領域を冷却する。
 連続マスク60は、第1成膜室R21内でループ状に連続したパターン成膜用マスクである。連続マスク60は、回転移動部70を構成する複数の搬送ローラー71~78に張架されている。
 連続マスク60について、図6A及び図6Bを参照して以下説明する。図6Aは、シームレスに形成された連続マスク60の概略図、図6Bは、複数の枚葉マスク64が繋ぎ合わされて形成された連続マスク60の概略図である。
 連続マスク60は、所定のパターン形状の開口部61を複数有するものであり、この開口部61を介して支持基板21上に成膜が行われることで、所定のパターン形状の陽極23を形成することができる。また、連続マスク60は、搬送中の支持基板21に対して密着されるため、支持基板21と同じように可撓性を有するものであることが好ましい。
 連続マスク60の材料としては、SUS300系、インバー、42アロイ合金、ハステロイ(登録商標)、インコネル(登録商標)等のFe-Ni合金、アルミニウム、マグネシウム、チタン等の金属箔又は合金箔、シリコン、アルミナや窒化ホウ素等の薄板セラミックスや薄板ガラス、ポリエステルやポリウレタンなどの熱可塑性樹脂、ポリイミド、エポキシ樹脂、ベークライト樹脂、ポリカーボネート、アクリル樹脂、尿素樹脂、フェノール樹脂等の耐熱性の高い熱硬化性樹脂が挙げられる。
 特に、連続マスク60の材料として金属が用いられる場合には、開口パターニングの加工性が容易であり、耐熱性が高く線膨脹係数の低い連続マスク60とすることができるだけでなく、後述するドライクリーニング工程に対する耐久性を向上させることができる。
 また、連続マスク60の材料として熱硬化性樹脂が用いられる場合には、耐熱性向上と線膨脹係数低減の観点から、当該樹脂にガラス繊維や炭素繊維等を含有させることが好ましく、これによりマスク寸法精度を向上させることができる。
 連続マスク60の厚さは、0.1~3mmの範囲内であることが可撓性及び耐久性の観点から好ましい。また、後述する連続マスク60のドライクリーニング工程に対する耐久性と付着物の易剥離性とを付与する目的で、連続マスク60の表面には、Niメッキ処理、アルマイト処理、フッ素コーティング処理等が施されていてもよい。
 また、連続マスク60は、ループ状になっていれば、全く継ぎ目のないシームレスのベルト状に形成されていてもよいし(図6A参照。)、複数の枚葉マスクが接続されて形成されていてもよい(図6B参照。)。連続マスク60が、複数の枚葉マスクからなる場合、連続マスク60は、例えば、あらかじめ所定パターン形状の開口部が形成されたシート状の枚葉マスク64を、接続治具62で複数接続することにより構成される。接続治具62としては、リベット止め、金属チェーン接合、フレキシブルテープ、フレキシブルベルト等を用いることができる。このように構成されることで、連続マスク60を低コストで作製でき、また、連続マスク60の一部が損傷した場合であっても当該損傷箇所の枚葉マスクのみを交換することによって容易に修理・再使用することができる。
 また、連続マスク60は、図6A及び図6Bに示すように、その幅方向両端部に、ループ方向(移動方向)に等間隔で開口された複数の第2ガイド孔63を有する。複数の第2ガイド孔63の大きさ及び間隔は、上記した支持基板21の第1ガイド孔211の大きさ及び間隔と同一に形成されている。
 回転移動部70は、複数の搬送ローラー71~78から構成されている。これら複数の搬送ローラー71~78には、連続マスク60が張架されており、複数の搬送ローラー71~78が回転駆動することにより、連続マスク60がそのループ方向に回転移動する。回転移動部70は、連続マスク60を回転移動させることで、連続マスク60の一部を搬送中の支持基板21に重ね合わせることが可能である。また、回転移動部70は、連続マスク60を更に回転移動させることで、支持基板21に重ね合わされた連続マスク60を当該支持基板21から離間させることが可能である。
 なお、回転移動部70による連続マスク60の回転移動速度は、支持基板21の搬送速度と同一になるように制御される。
 搬送ローラー71について、図5A及び図5Bを参照して説明する。図5Aは、搬送ローラー71及び受けローラー53を軸方向から見た図であり、図5Bは、搬送ローラー71及び受けローラー53の側面図である。
 搬送ローラー71は、図5A及び図5Bに示すように、回転駆動可能な回転軸711、当該回転軸711の軸方向中央部に設けられたローラー712、回転軸711の両端部に設けられたローラー713、714を備えて構成されている。ローラー712は、回転軸711に対して固定されており、回転軸711の回転駆動とともに回転する。ローラー713、714は、回転軸711の回転方向に対して固定されているとともに、回転軸711の軸方向に対して互いに離れる方向(図5B中、矢印方向)に移動可能に設けられている。また、ローラー713、714は、それぞれ、周面上に径方向に突設された複数の突起部715を有している。ローラー713、714の突起部715が連続マスク60の第2ガイド孔63に挿通することで、搬送ローラー71は、連続マスク60を円滑に回転移動させることができる。また、突起部715が第2ガイド孔63に挿通した状態で、ローラー713とローラー714を互いに離れる方向に移動させることで、連続マスク60に対して幅方向に張力を付与することができる。これにより、連続マスク60をより精度良く支持基板21に対して重ね合わせることができる。突起部715は、第2ガイド孔63内に挿通されやすいように、テーパー状に形成されていることが好ましい。なお、搬送ローラー72~78についても、搬送ローラー71と同様に構成されている。
 複数の搬送ローラー71~78のうち搬送ローラー71、74は、それぞれ上記した受けローラー53、54に当接するように設置されている。また、搬送ローラー71の突起部715は、受けローラー53の凹部530内に収まるように構成されているため、搬送ローラー71、74が受けローラー53、54に対してほぼ隙間のない状態で当接する。これにより、搬送ローラー71、74等によって回転移動される連続マスク60が、受けローラー53、54等によって搬送される支持基板21に重なり、密着する。
 また、搬送ローラー71、74の突起部715は、連続マスク60の第2ガイド孔63に挿通するとともに、支持基板21の第1ガイド孔211にも挿通する。あらかじめ第1ガイド孔211及び第2ガイド孔63は互いに対応する位置に形成されているため、第1ガイド孔211及び第2ガイド孔63に突起部715が挿通されることで、連続マスク60と支持基板21とを位置合わせしながら重ね合わせることができる。これにより、支持基板21を搬送したまま、複雑な位置合わせ機構を用いることなく、高精度な位置合わせ及びパターン成膜を行うことができる。
 なお、上記した搬送ローラー71、74のローラー713と714を互いに離れる方向に移動させる機構により、連続マスク60だけでなく、支持基板21に対しても幅方向に張力を付与することができる。
 クリーニング部80は、回転移動部70により支持基板21から離間された連続マスク60に対してドライクリーニング(液体の洗浄溶剤を使わない洗浄方法)を行い、成膜時に連続マスク60に付着した被膜を除去する。クリーニング部80は、第1成膜室R21内に設けられており、連続マスク60を用いた成膜処理と並行して、連続マスク60のうち支持基板21に重ね合わされていない領域に対してクリーニングを行うことができる。したがって、連続マスク60を大気中に解放することなく、クリーニング終了後も連続して成膜処理を行うことができる。また、クリーニング部80は、第1成膜室R21内で、成膜処理と並行して連続マスク60のクリーニングを行えるので、連続マスク60の交換作業や洗浄作業のために支持基板21の搬送を停止する必要がなく、生産性を向上させることができる。さらに、連続マスク60をクリーニングするクリーニング機構を第1成膜室R21外に別途設ける必要がないため、幅方向における製造装置100のサイズを小型化することができる。
 クリーニング部80による連続マスク60のクリーニング頻度としては、成膜処理を1回行うごとにクリーニングを実施するものとしてもよいが、生産コストを低減するために5~100回の成膜処理毎にクリーニングを実施するものとしてもよい。
 クリーニング部80は、0.1~200Pa程度の減圧雰囲気下でドライクリーニングを行うため、第1成膜室R21の圧力をほとんど変更することなくクリーニングを行える。したがって、第1成膜室R21内にアキュームやゲートバルブ等を設ける必要がなく、連続マスク60を回転移動させたままクリーニングを行うことが可能である。また、第1成膜室R21内は既に減圧状態であるため、エッチング速度の向上、パーティクル除去、アウトガスの除去等を容易に行うことができる。
 図3に示す例では、クリーニング部80は、ドライクリーニングの方法として、プラズマエッチング処理を行うように構成されている。すなわち、クリーニング部80は、冷却部81及びプラズマエッチング部82を備えて構成されている。冷却部81は、成膜処理により加熱された連続マスク60を冷却するものである。また、プラズマエッチング部82は、O(酸素)、NF(三フッ化窒素)、Ar(アルゴン)、N(窒素)等のクリーニングガスに高周波電圧を印加してプラズマ化させ、プラズマ化したクリーニングガスにより連続マスク60の表面エッチング処理を行う。これにより、連続マスク60の表面の被膜を効果的に除去することができる。
 なお、プラズマエッチング処理が行われることで連続マスク60が加熱されるため、クリーニング部80は、連続マスク60が再度支持基板21に重ね合わされる前に当該連続マスク60を冷却する冷却機構(図示しない)を更に備えていてもよい。
 なお、連続マスク60に対するドライクリーニングの方法として、図7に示すように、ドライアイス微粒子を用いたブラストエッチング処理を行うように構成されていてもよい。
 この場合、第1成膜室R21内には、冷却部81及びプラズマエッチング部82の代わりに、加熱部83及び複数のクリーニングヘッド84を備えて構成されたクリーニング部80aが設けられている。加熱部83は、連続マスク60に吹き付けられるドライアイス微粒子が効率的に昇華されるように、あらかじめ連続マスク60を加熱するものである。複数のクリーニングヘッド84は、連続マスク60に対して粉末状のドライアイス微粒子を吹き付け、当該ドライアイス微粒子が連続マスク60に当たって昇華する際の体積膨張の力を利用して連続マスク60表面の付着物を除去する。
 また、連続マスク60をクリーニングする方法としては、上記のような、プラズマエッチング処理やドライアイス微粒子を用いたブラストエッチング処理に限られるものではない。
 例えば、アクリル系微粘着剤や柔軟性の樹脂等でコーティングされたロール部材を連続マスク60に接触させて付着物を除去する方法や、ブラシ状の突起の付いたロール部材を連続マスク60に接触させて付着物を除去する方法など、ロール状洗浄部材を連続マスク60に接触させることによって、物理的に連続マスク60から付着物を除去するクリーニング方法を用いることもできる。このような方法でクリーニングを行った後、連続マスク60に対しスリット状ノズルから窒素ガスを吹き付けることで、残留した付着物を剥離させ、発生したパーティクルを除去する工程を更に設けるようにしてもよい。
 ロール状洗浄部材を用いたクリーニングを行う場合の洗浄頻度としては、成膜処理1回ごとにクリーニングを実施するものとしてもよいが、ロール状洗浄部材の耐久性を考慮して、5~100回の成膜処理ごとに、必要に応じてロール状洗浄部材によるクリーニングを実施するものとしてもよい。
 第1成膜室R21内は以上のように構成されている。
 続いて、再び図2を参照して、成膜室R22~R25、R30及び第2パターニング部RLについて以下説明する。なお、第2成膜室R22、第4成膜室R24、第5成膜室R25及び第6成膜室R30は、上記した第1成膜室R21とほぼ同じ構成であり、用いられる成膜材料が異なっている。
 第2成膜室R22は、取出し配線24の成膜を行う。第2成膜室R22は、金属や金属酸化物等の導電性材料を成膜材料として、例えば、真空蒸着法、スパッタ法、イオンプレーティング法等の成膜方法により、支持基板21上においてその一部が陽極23に接するようにして取出し配線24の成膜を行う。
 なお、第1成膜室R21と第2成膜室R22とは別個に設けられているものとしたが、いずれか一方が設けられているものとしてもよい。この場合には、陽極23と取出し配線24とを、同一材料を用いて一の連続マスクにより成膜を行うことで、陽極23及び取出し配線24(取出し電極ともいう。)を形成することができ、生産コストを低減することができる。
 第3成膜室R23は、第1発光ユニット25a及び第2発光ユニット25bの成膜を行う。第3成膜室R23は、真空蒸着法により第1発光ユニット25a及び第2発光ユニット25bの成膜を行うため、第3成膜室R23内の成膜圧力は1×10-6~1×10-4Paの範囲内の高真空領域に設定されていることが好ましい。
 第3成膜室R23について、図8を参照して説明する。図8は、第3成膜室R23内の概略構成図である。
 本実施形態における第3成膜室R23は、正孔注入層成膜室R231a又はR231bと、正孔注入層以外の有機機能層を成層する有機機能層成膜室R232とを有する。図8に示す第3成膜室R23は、正孔注入層成膜室R231aと、有機機能層成膜室R232とを有する場合の例である。
 なお、正孔注入層成膜室R231a及びR231b並びに有機機能層成膜室R232は、上記した第1成膜室R21とほぼ同じ構成である。
 また、中間電極層として、アルミニウムや銀を用いる場合は、有機機能層成膜室R232が電子注入層を成膜し、第4成膜室R24で成膜される中間電極層と電子注入層とが隣接するようにする。
 正孔注入層成膜室R231a及びR231bは、上記した第1成膜室R21とは用いられる成膜材料及び連続マスクの形状が異なっている。また、正孔注入層成膜室R231aと正孔注入層成膜室R231bとは、互いに連続マスクの形状が異なるだけで、他の構成は同一である。
 図9A及び図9Bは、本実施形態の正孔注入層成膜室R231a及びR231bで用いられる連続マスクの一部を示す概略図である。
 連続マスク60aは、正孔注入層成膜室R231aで用いられ、例えば、図9Aに示すように、共通機能キーボタンのマークなど、第1発光ユニット25aに発光させたい形状のパターン(発光パターン)に形成された開口部61aを有している。これにより、本実施形態では、第1発光ユニット25aが有する正孔注入層は、開口部61aの形状に成層される。
 連続マスク60bは、正孔注入層成膜室R231bで用いられ、図9Bに示すように、開口部61aの形状に対して時計回りに90°回転した形状に形成された開口部61bを有している。これにより、本実施形態では、第2発光ユニット25bが有する正孔注入層が、開口部61bの形状に成層される。すなわち、第2発光ユニット25bの発光パターンは、第1発光ユニット25aの発光パターンに対して時計回りに90°回転した形状に形成される。このため、例えば、スマートデバイスを時計回りに90°回転させた時に、第1発光ユニット25aから第2発光ユニット25bに切り替えて発光させることで、例えば、共通機能キーボタンのマークの向きがユーザーに対して保たれるようにすることができる。
 なお、本実施形態では、第2発光ユニット25bの発光パターンは、第1発光ユニット25aの発光パターンに対して時計回りに90°回転した形状に形成されることとしたが、これに限定されず、任意の形状に形成されることとしてもよい。この場合、連続マスク60bは、形成したい形状に形成された開口部61bを有することとする。これにより、第2発光ユニット25bには、任意の形状の発光パターンが形成される。
 有機機能層成膜室R232は、支持基板21を所定の搬送経路で搬送する搬送ローラー511、512及び受けローラー531~533、搬送される支持基板21の成膜面に対向する原料供給部551、552、並びに、支持基板21の成膜面と反対側に当接して支持基板21を冷却する背面冷却ローラー561、562を内部に備えて構成されている。また、有機機能層成膜室R232内には、連続マスク60、第2回転移動部70a及びクリーニング部80が設けられている。第2回転移動部70aは、搬送ローラー701~711から構成されている。
 これら有機機能層成膜室R232内の各部材は、それぞれ、上記した第1成膜室R21内の同一名称の部材と同様に構成されている。
 つまり、有機機能層成膜室R232は、各部材の設けられている数と配置が第1成膜室R21と異なっているのみである。このように構成されていることにより、支持基板21と連続マスク60とが重なる領域に対して、原料供給部551、552により連続して成膜を行うことができる。
 このように、支持基板21上に、同一のパターン形状で複数の層を形成する場合には、図8に示すように、一の連続マスク60で複数回成膜を行うことができる。
 なお、図8に示す例では、原料供給部及び背面冷却ローラーが二つずつ設けられ、2回の成膜を連続して行えるように構成された例を示しているが、原料供給部及び背面冷却ローラーは発光ユニットを構成する層の積層数分だけ設けられていることが好ましい。
 第2パターニング部RLは、光照射により、有機機能層を発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング工程を行う。
 ここで、光照射により発光機能を変調させるとは、光照射により、発光ユニットを構成する正孔注入輸送材料等の機能を変化させることにより、当該発光ユニットの発光機能を変化させることをいう。
 複数層の発光ユニットを有する有機EL素子を光照射して発光輝度を変化、低減させる場合、封止を終えた有機EL素子に一括で光照射をしてしまうと、それぞれの発光ユニットで異なった図柄やマークを表示させることができなくなる。
 第2パターニング工程は、これを避けるため、あらかじめパターニングされた有機機能層を有する発光ユニットごとに、光照射によって発光機能を変調させることにより、発光パターンのトリミングを発光ユニットごとに実施する工程である。
 光照射工程において、その光照射方法は、発光ユニットごと(本実施形態では、第1発光ユニット25a及び第2発光ユニット25b)の所定のパターン領域に所定の光照射をすることで当該照射部分を輝度が変化した発光領域とすることができれば、いずれの方法であってもよく、特定の方法に限定されるものではない。例えば、後述する面露光、線露光及び点描画であってもよい。
 光照射工程において照射される光は、紫外線、可視光線又は赤外線を更に含有していてもよいが、紫外線を含むことが好ましい。
 ここで、本発明において、紫外線とは、その波長がX線よりも長く、可視光線の最短波長より短い電磁波をいい、具体的には波長が1~400nmの範囲内のものである。
 紫外線の発生手段及び照射手段は、従来公知の装置等により紫外線を発生させ、かつ、照射すればよく、特に限定されない。具体的な光源としては、紫外線LED、高圧水銀ランプ、低圧水銀ランプ、水素(重水素)ランプ、希ガス(キセノン、アルゴン、ヘリウム、ネオンなど)放電ランプ、窒素レーザー、エキシマレーザー(XeCl、XeF、KrF、KrClなど)、水素レーザー、ハロゲンレーザー、各種可視(LD)-赤外レーザーの高調波(YAGレーザーのTHG(Third Harmonic Generation)光など)等が挙げられる。
 以下、図10から図12Bまでを参照に、第2パターニング部RLによる露光の方法の例を面露光、線露光及び点描画を行う場合に分けて説明する。なお、第2パターニング部RLは、上記した第1成膜室R21とほぼ同じ構成である。すなわち、支持基板21を所定の搬送経路で搬送する複数の搬送ローラー51、52及び受けローラー53、54、搬送される支持基板21の成膜面に対向する紫外線照射装置L1、並びに、支持基板21の成膜面と反対側の面に当接して支持基板21を冷却する背面冷却ローラー56を内部に備えて構成されている。また、第2パターニング部RL内には、所定のパターン形状の開口部を有するループ状の連続マスク60L、連続マスク60Lをそのループ方向に回転移動させる回転移動部70が設けられている。回転移動部70は、搬送ローラー71~78から構成されている。なお、第2パターニング部RLが、点描画を行う場合、連続マスク60Lを設ける必要がなく、回転移動部70を設けなくてよい(図12B参照。)。
 なお、これら第2パターニング部RL内の各部材は、紫外線照射装置L1及び連続マスク60Lを除いて、それぞれ、上記した第1成膜室R21内の同一名称の部材と同様に構成されている。
(1)面露光
 図10は、面露光を行う第2パターニング部RLの一例を示す概略構成図である。図11は、図10に示す第2パターニング部RLが有する連続マスク60Lの一例を示す概略図である。
 図10に示す第2パターニング部RLには、紫外線照射装置L1及びポリエチレンテレフタレート(PET)樹脂など紫外線に対して耐性のある透明シートによって形成される透明シート部61Lを有する連続マスク60Lが設けられている。
 紫外線照射装置L1は、複数の紫外線LED光源とアレイレンズとを含んで構成され、ループ方向に直交する方向に長さw1、ループ方向に長さw2の照射範囲を有している。これにより、紫外線照射装置L1は、透明シート部61Lを一括照射できる。
 また、紫外線LED光源を冷却するため水冷用の配管(不図示)が外部のチラーと接続されていることが好ましい。これにより、紫外線LED光源の長寿命化が可能となり、紫外線照射装置L1のランニングコストを低減できるとの効果が得られる。
 連続マスク60Lが有する透明シート部61Lには、共通機能キーボタンの形状にパターン部61Sが印刷されている。このパターン部61Sは、紫外線を遮蔽するようになっている。このため、紫外線照射装置L1から照射された紫外線が、中間電極層成膜前の第1発光ユニット25aに連続マスク60Lを介して照射される。これにより、有機機能層を成膜するときに行ったパターニングで生じた有機機能層(正孔注入層)のエッジのダレ部が、発光しないようになり、ボケのない鮮鋭なパターンを発光させることができる。
(2)線露光
 図12Aは、線露光を行う第2パターニング部RLの一例を示す概略構成図である。
 図12Aに示す第2パターニング部RLには、紫外線照射装置L2及び図11に示す連続マスク60Lが設けられている。
 紫外線照射装置L2から照射される光は、連続マスク60L上で、連続マスク60Lのループ方向に直交する方向に延びる、長さw1以上の直線の形状に集光される。
 このように、紫外線照射装置L2から照射された光を一方向に絞って直線状に集光することで、放射照度の密度を高くすることができ、パターニングに要する時間の短縮が可能となる。また、直線状に集光された光を照射するので、背面冷却ローラー56と同一の曲率を持った面に対してほぼ垂直に光を照射することができ、更にパターニングに要する時間の短縮が可能となる。
(3)点描画
 図12Bは、点描画を行う第2パターニング部RLの一例を示す概略構成図である。
 図12Bに示す第2パターニング部RLには、光源から出射された光を集光することで形成される集光スポットを発光ユニットに照射する集光スポット照射装置L3が設けられている。
 この集光スポット照射装置L3は、内部にガルバノミラーを備えており、ループ方向に直交する方向に集光スポットを走査させることができる。
 さらに第2パターニング部RLは、内部にカメラ及び発光制御装置を備えている。当該カメラにより照射するエリアの支持基板21の第1ガイド孔211の位置情報を取得できるようになっている。また、発光制御装置は、この第1ガイド孔211の位置情報をもとに集光スポット照射装置L3による照射を制御し、発光パターンのトリミングを行う。
 なお、発光制御装置は、上述のように集光スポット照射装置L3の内部に組み込まれていてもよいし、第2パターニング部RLの外部に設けられていてもよい。また、光源としては指向性の高いレーザー光源が好ましい。さらに、レーザー光源として波長が400~420nmの青紫帯の光源を用いてもよい。
 この集光スポット照射装置L3によれば、例えば、共通機能キーボタンのマークの形状に発光パターンを描画することができる。この場合、連続マスクなどのマスクは不要となり、マスクの費用や設備のメンテナンスにかかるコストを低減させることができる。
 第4成膜室R24は、中間電極層27の成膜を行う。第4成膜室R24は、金属や金属酸化物等を導電性材料として、例えば、真空蒸着法、スパッタ法、イオンプレーティング法等の成膜方法により、中間電極層27の成膜を行う。第4成膜室R24内の成膜圧力は、1×10-6~10Paの範囲内に設定されていることが好ましい。
 第5成膜室R25は、陰極26の成膜を行う。第5成膜室R25は、金属や金属酸化物等を導電性材料として、例えば、真空蒸着法、スパッタ法、イオンプレーティング法等の成膜方法により、陰極26の成膜を行う。第5成膜室R25内の成膜圧力は、1×10-6~10Paの範囲内に設定されていることが好ましい。
 このように、本実施形態では、一方の面上に、陽極23、取出し配線24、第1発光ユニット25a、中間電極層27、第2発光ユニット25b及び陰極26が積層形成された支持基板21は、第1パターニング部及び第2パターニング部(成膜室R20)において、発光ユニットを作製するごとに、第1パターニング工程及び第2パターニング工程が行われた後、第6成膜室R30に連続的に搬送される。
 これにより、中間電極層27に照射光の一部を吸収されることなく、光照射によるパターニングを行えるため、パターニングに要する時間を短縮することができ、生産効率を向上させることができる。
 なお、本実施形態では、第3成膜室R23を2室有する構成によって発光ユニットを二つ形成する形態を説明したが、本発明はこれに限定されず、第3成膜室R23を2室以上有する構成とし、発光ユニットを三つ以上形成することとしてもよい。なお、この場合、繰り返しの数だけ第3成膜室R23を設け、各第3成膜室R23の間に第2パターニング部RL、第4成膜室R24を設ければよい。
 第6成膜室R30は、搬送中の支持基板21の成膜面に対し、封止層28(図1参照。)を形成する成膜工程を行う。
 第6成膜室R30は、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法等の成膜方法により無機化合物からなる封止層28の成膜を行う。特に、封止層28は、支持基板21上の各構成層間の段差や凹凸を被覆するため、ステップカバーレッジ性が良好な方法で形成されることが好ましい。そのような成膜方法としては、比較的成膜圧力が高く、原料ガスが回り込みやすいスパッタ法、イオンプレーティング法又はCVD法が挙げられる。これらの成膜方法を採用することにより、ステップカバーレッジ性が良好で、かつ、緻密でガスバリアー性能の高い封止を行うことができる。
 第6成膜室R30内の成膜圧力は、ステップカバーレッジ性と膜密度のバランスを考慮して、0.1~200Paの範囲内の比較的低真空状態に設定される。このような成膜圧力では、ステップカバーレッジ性がよい反面、マスク成膜を行う場合に、マスクを支持基板21に十分に密着しないと成膜材料の回り込みによって成膜パターン精度の低下が起こりやすい。本発明では、ガラス基板に比して撓みの大きい支持基板21に対して成膜を行うものであるため、マスク浮きを防ぐことができる。なお、真空蒸着法により封止層28を成膜する場合には、マスクが多少浮いても成膜材料の回り込みが低減するため、パターン精度を高めるという点では有効である。
 次いで、支持基板21は、第6成膜室R30からアキューム室R40へ連続的に搬送される。アキューム室R40で圧力と搬送速度が調整された支持基板21は、減圧状態に保持されたままラミネート室R50内へ連続的に搬送される。
 本発明の製造方法では、ラミネート室R50により、搬送中の支持基板21の成膜面に対し、連続的に搬送される帯状の背面フィルム4(図1参照。)を、樹脂接着層3(図1参照。)を介して貼り合わせるラミネート工程を行うことが好ましい。
 ラミネート室R50について、図13を参照して以下説明する。図13は、ラミネート室R50内の概略構成図である。ラミネート室R50内は、真空又は減圧状態に設定されていることが好ましい。
 ラミネート室R50は、支持基板21を所定の搬送経路で搬送する複数の搬送ローラー90~93、ロール状の背面フィルム4を支持する第2巻出部94、背面フィルム4を支持基板21と貼り合わせることができる位置まで搬送する搬送ローラー95、搬送ローラー91、92との間に支持基板21と背面フィルム4とを挟持する受けローラー96、97、及び、密着された支持基板21と背面フィルム4とを加熱及び加圧する加熱ローラー98及び加圧ローラー99を備えて構成されている。なお、背面フィルム4の支持基板21に対向する面には、あらかじめ樹脂接着層3が形成されているものとする。
 複数の搬送ローラー90~93は、上記した搬送ローラー71と同様に構成されており、突起部(図示しない)が支持基板21の第1ガイド孔211内に挿通されることで、支持基板21を円滑に搬送することができる。これらの搬送ローラー90~93のうち、搬送ローラー91、92は、受けローラー96、97に当接するように配置されている。
 第2巻出部94は、ロール状に巻き取られた背面フィルム4を支持し、順次背面フィルム4を繰り出す。背面フィルム4は、図14に示すように、支持基板21に対向する面の所定領域に樹脂接着層3があらかじめ形成されている。なお、本実施形態の製造装置100では、加熱ローラー98及び加圧ローラー99による加熱圧着により背面フィルム4を支持基板21の成膜面に対して貼り合わせるため、樹脂接着層3は熱硬化性樹脂で構成されている。
 また、背面フィルム4は、その幅方向両端部に、搬送方向(移動方向)において支持基板21の第1ガイド孔211の間隔と同じ間隔で開口された複数の第3ガイド孔41を有している。
 搬送ローラー95は、上記した搬送ローラー71と同様に構成されており、突起部(図示しない)が背面フィルム4の第3ガイド孔41内に挿通されることで、背面フィルム4を円滑に搬送することができる。
 受けローラー96、97は、上記した受けローラー53と同様に構成されている。
 これにより、搬送ローラー91、92の突起部が受けローラー96、97の凹部(図示しない)内に収まるように構成されているため、搬送ローラー91、92が受けローラー96、97に対してほぼ隙間のない状態で当接する。これにより、支持基板21に背面フィルム4が重なり、密着する。
 また、搬送ローラー91、92の突起部は、支持基板21の第1ガイド孔211に挿通するとともに、背面フィルム4の第3ガイド孔41にも挿通する。あらかじめ第1ガイド孔211と第3ガイド孔41とは互いに対応する位置に形成されているため、支持基板21と背面フィルム4とを位置合わせしながら重ね合わせることができる。これにより、支持基板21を搬送したまま、複雑な位置合わせ機構を用いることなく、背面フィルム4の高精度な位置合わせを行うことができる。このように背面フィルム4を位置合わせしながら重ねることで、樹脂接着層3及び背面フィルム4が、支持基板21上に設けられた取出し配線24を覆うことを防止でき、歩留りを向上させることができる。
 加熱ローラー98及び加圧ローラー99は、搬送ローラー91と受けローラー96により重ね合わされた支持基板21と背面フィルム4に厚さ方向両側から密着し、加熱及び加圧を行うことにより、支持基板21の成膜面に対し樹脂接着層3を介して背面フィルム4を貼り合わせる。
 なお、ラミネート室R50内には、加熱ローラー98及び加圧ローラー99よりも搬送方向下流側に、背面フィルム4が貼り合わされた支持基板21に対して、光又は熱による硬化処理を行う機構が更に設けられていてもよい。
 最後に、支持基板21は、ラミネート室R50から巻取室R60内に連続的に搬送され、当該巻取室R60にて巻き取られる。
 以上のようにして作製された有機EL素子1は、取出し配線24以外の部分は封止層28及び背面フィルム4によって被覆された構造となる。そして、有機EL素子1は、図示しないが、取出し配線24は電流量調整用IC等を設けたプリント基板やフレキシブル基板からなる電源ユニット(給電部)と接続され、更に、筐体やフレーム部材、固定用基板等によって補強された構造とされて照明デバイスや発光デバイスとして使用される。
 なお、上記した製造方法及び製造装置100では、連続マスク60が、各成膜室R21~R25、R30の全てに設けられているものとしたが、各成膜室R21~R25、R30のいずれかに設けられているものとしてもよい。
 また、上記した製造方法及び製造装置100では、有機EL素子1本体に対してラミネート工程を連続的に行うものとしたが、ラミネート工程は別の装置等により行うものとしてもよい。
 また、光取り出し面側に中間電極層27が積層されない発光ユニットに対しては、第2パターニング部RLによって光照射されなくとも、封止の後に光照射が行われてもよい。例えば、光取り出し面が支持基板21側の場合には、第1発光ユニット25aに対しては、第2パターニング部RLによって光照射をせずに封止の後に支持基板21側から光照射が行われてもよい。
 以下、上記した製造方法及び製造装置100により製造される有機EL素子1の各層の構成をより具体的に説明する。
<中間電極層>
 本発明に係る中間電極層(中間金属層ともいう。)は、二つの発光ユニット間に配置される。
 中間電極層は、その一部微細領域にほとんど金属材料が成膜されていない状態、いわゆるピンホールが形成されていても、面内方向において網状に形成されていてもよい。あるいは、中間電極層形成部分が、島状(斑状)に形成されていてもよい。
 本発明の中間電極層としては、金属が用いられる。
 中間電極層に用いられる材料としては、アルミニウム(仕事関数4.28eV、融点933.5K)、銀(仕事関数4.26eV、融点1235.9K)、カルシウム(仕事関数2.87eV、融点1112.2K)、リチウム(同2.9eV、同453.7K)、ナトリウム(同2.75eV、同371K)、カリウム(同2.3eV、同336.9K)、セシウム(同2.14eV、同301.6K)、ルビジウム(同2.16eV、同312.1K)、バリウム(同2.7eV、同998.2K)、ストロンチウム(同2.59eV、同1042.2K)が挙げられるが、中でも、常圧での融点が400K以上であり、有機EL素子の高温環境下での性能を損なうおそれの小さいアルミニウム、銀、リチウム、カルシウム、バリウム、ストロンチウムが好ましい。
 なお、中間電極層として、アルミニウムや銀を用いる場合は、電子注入層と隣接させて用いる。
 中間電極層の層厚は、0.6~5nmの範囲内であることが好ましく、より好ましくは0.8~3nmの範囲内であり、更に好ましくは0.8~2nmの範囲内である。
 中間電極層の層厚が5nmより小さい場合、使用する金属材料の可視光吸収による有機EL素子の効率低下を抑制し、保存安定性、駆動安定性が劣化することがない。
 一方で、中間導電層の層厚が0.6nmより大きい場合、有機EL素子の性能安定性、特に素子作製後、比較的初期段階における性能変動が小さい。
 なお、本発明における「中間電極層の層厚」とは、中間電極層の単位面積当たりの成膜質量を材料の密度で除して求められる「平均層厚」として定義される。したがって、中間電極層の任意の部分の層厚が「平均層厚」より厚くても、あるいは逆に薄くなっていても構わない。
 なお、中間電極層は、後述する陽極及び陰極において用いられる金属と同様の金属を用いて形成されたものであってもよい。
 本発明においては、中間電極層の電圧印加方向の導電性を損なうことなく、面内方向の導電性を抑えられることから、中間電極層の発光ユニット側両面が完全平坦面を有するよりも、少なくともその一方の面が非平坦面として形成されていることが好ましい。中間電極層が非平坦面を有するとは、中間電極層の面内方向における形状が網状又は島状となっていることを意味する。
 また、中間電極層の陽極側に隣接する層が、単一の有機化合物を成膜することにより形成された層であることが好ましい。この場合、生産プロセスが簡便になり工程管理が容易となること、複数材料を使用することによる性能変動リスクを回避できるという点はもとより、より優れた長期あるいは高温保存安定性、長期駆動安定性が得られることから好ましい。
 中間電極層に隣接する層は、陰極側に位置する発光ユニットと陽極側に位置する発光ユニット間で、中間電極層を介して、各発光ユニットからの電荷の授受、各発光ユニットへの電荷の注入を容易に行うことができる機能を有していることが望ましい。
 このような機能を有する層として、電荷輸送性を高めるため、例えば、電荷輸送性有機材料と、該有機材料を酸化若しくは還元できる、又は該有機材料と電荷移動錯体を形成し得るような無機材料や有機金属錯体とをドーピングした混合層として形成することが好ましい。
<発光層>
 発光層には、ホスト化合物及び発光ドーパントが含まれていることが好ましい。
 発光層に含有される発光ドーパントは、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また濃度分布を有していてもよい。
 各発光ユニットに包含される個々の発光層の層厚は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、5~200nmの範囲内に調整することが好ましく、更に好ましくは10~100nmの範囲内に調整される。
 以下、発光層に含まれるホスト化合物及びリン光発光ドーパントについて説明する。
 (1)ホスト化合物
 本発明に用いられるホスト化合物としては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するものや、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
 ホスト化合物は、単独で用いてもよいし、複数種併用して用いてもよい。
 本発明に係る発光層に用いられるホスト化合物としては、下記一般式(a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 
 一般式(a)中、「X」は、NR′、O、S、CR′R″又はSiR′R″を表す。R′及びR″は、それぞれ独立に、水素原子又は置換基を表す。「Ar」は、芳香族環を表す。nは、0~8の整数を表す。
 一般式(a)における「X」において、R′及びR″で表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1-プロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は、複数が互いに結合して環を形成していてもよい。
 一般式(a)において、好ましい「X」はNR′又はOであり、R′としては芳香族炭化水素基、芳香族複素環基が特に好ましい。
 一般式(a)において、「Ar」で表される芳香族環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。
 「Ar」で表される芳香族環は、単環、縮合環のいずれでもよく、更には、未置換でも、上述のR′及びR″で表される置換基を有していてもよい。
 一般式(a)において、「Ar」で表される芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 一般式(a)において、「Ar」で表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが窒素原子で置換されている環を示す。)等が挙げられる。
 上記の中でも、一般式(a)において、「Ar」で表される芳香族環として好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、より好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環である。さらには、置換基を有するベンゼン環が特に好ましく、カルバゾリル基を有するベンゼン環が最も好ましい。
 また、一般式(a)において、「Ar」で表される芳香族環としては、下記に示すような、各々3環以上の縮合環であることが好ましい一態様であり、そのような3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが窒素原子で置き換わったものを示す。)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。
 また、一般式(a)において、nは0~8の整数を表すが、0~2の整数であることが好ましく、特に「X」がO又はSである場合には、1又は2であることが好ましい。
 以下、一般式(a)で表されるホスト化合物の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
 また、本発明に用いるホスト化合物は、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
 ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。本発明においては、ガラス転移点が90℃以上の化合物が好ましく、更には130℃以上の化合物が優れた特性を得られることから好ましい。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS K 7121に準拠した方法により求められる値である。
 また、本発明においては、従来公知のホスト化合物を用いることもできる。
 従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を好適に用いることができる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。
 本発明に係る有機EL素子が複数の発光層を有する場合、ホスト化合物は発光層ごとに異なっていてもよいが、同一の化合物であることが生産効率上、工程管理上好ましい。
 また、ホスト化合物は、その最低励起3重項エネルギー(T)が、2.7eVより大きいことがより高い発光効率を得られることから好ましい。
 本発明でいう最低励起3重項エネルギーとは、ホスト化合物を溶媒に溶解し、液体窒素温度において観測したリン光発光スペクトルの最低振動バンド間遷移に対応する発光バンドのピークエネルギーのことをいう。
(2)リン光発光ドーパント
 本発明に用いることができるリン光発光ドーパントは、公知のものの中から選ぶことができる。例えば、元素の周期表で8族~10族の金属を含有する錯体系化合物、好ましくはイリジウム化合物、オスミウム化合物、若しくは白金化合物、又は希土類錯体から選ぶことができる。中でも、最も好ましいのはイリジウム化合物である。
 白色発光を呈する有機EL素子を作製する場合、少なくとも緑、黄、赤領域の発光を担う発光体としては、リン光発光材料が好ましい。
(一般式(A)~(C)で表される部分構造)
 また、リン光発光ドーパントとして青色リン光発光ドーパントを用いる場合、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、下記一般式(A)~(C)から選ばれる少なくとも一つの部分構造を有していることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 
 一般式(A)中、「Ra」は、水素原子、脂肪族基、芳香族基又は複素環基を表す。「Rb」及び「Rc」は、それぞれ独立に、水素原子又は置換基を表す。「A1」は、芳香族環又は芳香族複素環を形成するのに必要な残基を表す。「M」は、Ir又はPtを表す。
Figure JPOXMLDOC01-appb-C000011
 
 一般式(B)中、「Ra」は、水素原子、脂肪族基、芳香族基又は複素環基を表す。「Rb」、「Rc」、「Rb」及び「Rc」は、それぞれ独立に、水素原子又は置換基を表す。「A1」は、芳香族環又は芳香族複素環を形成するのに必要な残基を表す。「M」は、Ir又はPtを表す。
Figure JPOXMLDOC01-appb-C000012
 
 一般式(C)中、「Ra」は、水素原子、脂肪族基、芳香族基又は複素環基を表す。「Rb」及び「Rc」は、それぞれ独立に、水素原子又は置換基を表す。「A1」は、芳香族環又は芳香族複素環を形成するのに必要な残基を表す。「M」は、Ir又はPtを表す。
 一般式(A)~(C)において、「Ra」で表される脂肪族基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、イソペンチル基、2-エチル-ヘキシル基、オクチル基、ウンデシル基、ドデシル基、テトラデシル基)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基)が挙げられ、芳香族基としては、例えば、フェニル基、トリル基、アズレニル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、ナフタセニル基、o-テルフェニル基、m-テルフェニル基、p-テルフェニル基、アセナフテニル基、コロネニル基、フルオレニル基、ペリレニル基等が挙げられ、複素環基としては、例えば、ピロリル基、インドリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、インドリジニル基、キノリニル基、カルバゾリル基、インドリニル基、チアゾリル基、ピリジル基、ピリダジニル基、チアジアジニル基、オキサジアゾリル基、ベンゾキノリニル基、チアジアゾリル基、ピロロチアゾリル基、ピロロピリダジニル基、テトラゾリル基、オキサゾリル基、クロマニル基等を挙げることができる。
 これらの基は、一般式(a)におけるR′及びR″で表される置換基を有していてもよい。
 一般式(A)~(C)において、「Rb」、「Rc」、「Rb」及び「Rc」で表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシル基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシル基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。
 これらの置換基は、上記の置換基によって更に置換されていてもよい。
 一般式(A)~(C)において、「A1」で表される芳香族環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられ、芳香族複素環としては、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが窒素原子で置換されている環を示す。)等が挙げられる。
 一般式(A)~(C)において、「M」は、Ir又はPtを表すが、中でもIrが好ましい。
 一般式(A)~(C)の構造は部分構造であり、それ自身が完成構造の発光ドーパントとなるには、中心金属の価数に対応した配位子が必要である。そのような配位子としては、具体的には、ハロゲン(例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子等)、アリール基(例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ビフェニル基、ナフチル基、アントリル基、フェナントリル基等)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t-ブチル基等)、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、フタラジニル基等)、一般式(A)~(C)の金属を除いた部分構造等が挙げられる。
 発光ドーパントとしては、一般式(A)~(C)の部分構造3個で完成構造となるトリス体が好ましい。
 以下、上記一般式(A)~(C)の部分構造を有する青色リン光発光ドーパントを例示するが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
(3)蛍光発光ドーパント
 蛍光発光ドーパント(蛍光性ドーパント、蛍光発光体等ともいう。)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、希土類錯体系蛍光体等が挙げられる。
<注入層:正孔注入層、電子注入層>
 注入層は、必要に応じて設けることができ、陽極又は中間電極層と、発光層又は正孔輸送層との間、あるいは陰極又は中間電極層と、発光層又は電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために、電極及び中間電極層と有機機能層間に設けられる層のことで、例えば、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 正孔注入層(陽極バッファー層)としては、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。また、特表2003-519432号公報に記載されている材料を使用することも好ましい。
 正孔注入層は、複数の材料を混合して用いてもよいが、本発明においては、単一の有機化合物を成膜することによって形成されることが好ましい。理由として、複数の材料を混合して使用する場合、混合比の生産時における変動、例えば、成膜基板面内における濃度変動等による性能変動のリスクが高くなることが挙げられる。
 正孔注入層の層厚については特に制限はないが、通常は0.1~100nm程度の範囲内、好ましくは1~30nmの範囲内である。
 電子注入層に好適な材料としては、電子輸送層と陰極間に設ける電子注入層においては、仕事関数3eV以下のアルカリ金属、アルカリ土類金属、及びこれらの化合物が挙げられる。アルカリ金属化合物としては、具体的には、フッ化カリウム、フッ化リチウム、フッ化ナトリウム、フッ化セシウム、酸化リチウム、リチウムキノリン錯体、炭酸セシウム等が挙げられ、フッ化リチウム、フッ化セシウムが好ましい。
 中間電極層の陽極側に隣接する層としては、アルカリ金属化合物あるいはアルカリ土類化合物からなる層を設けないことが好ましい。
 電子注入層の層厚については特に制限はないが、通常は0.1~10nm程度の範囲内、好ましくは0.1~2nmの範囲内である。
<阻止層:正孔阻止層、電子阻止層>
 阻止層は、必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
 正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 一方、電子阻止層とは、広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
 本発明に係る正孔阻止層及び電子阻子層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。
<正孔輸送層>
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。
 正孔輸送層は、単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入若しくは輸送、又は電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体や、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては、上記のものを使用することができるが、更には、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、更には、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3個スターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)、特表2003-519432号公報に記載されているような、いわゆるp型半導体的性質を有するとされる正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
 正孔輸送層は、上記材料の1種又は2種以上からなる1層構造であってもよい。
 正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度の範囲内、好ましくは5~200nmの範囲内である。
<電子輸送層>
 電子輸送層とは、電子を輸送する機能を有する材料からなる。
 電子輸送層は、単層又は複数層設けることができる。
 電子輸送層に用いられる電子輸送材料としては、陰極又は中間電極層を介して注入された電子を発光層に伝達する機能を有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ビピリジル誘導体、フレオレニリデンメタン誘導体、カルボジイミド、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。また、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明においては、中間電極層に隣接して電子輸送層を設ける場合には、ピリジン環をその構造の中に包含する化合物であることが好ましい。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホ基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料としても用いられるジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層には、複数の材料を混合して用いてもよい。アルカリ金属、アルカリ土類金属、アルカリ金属化合物又はアルカリ土類金属化合物のドーピングを行うこともできるが、本発明に係る電子輸送層は、単一の有機化合物を成膜することによって形成されることが好ましい。理由として、複数の材料を混合して使用する場合、混合比の生産時における変動、例えば、成膜基板面内における濃度変動等による性能変動のリスクが高くなることが挙げられる。
 本発明においては、低仕事関数の中間電極層を用いることにより、アルカリ金属等のドーピングを行わずとも、中間電極層からの電子注入性を損なうことなく好適な性能を得ることができる。
 電子輸送層に含まれる有機化合物のガラス転移温度は、110℃以上であることがより優れた高温保存性、高温プロセス安定性が得られることから好ましい。
 電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度の範囲内、好ましくは5~200nmの範囲内である。
<支持基板>
 本発明に係る有機EL素子に適用する支持基板(基体、基板、基材、支持体ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名、JSR社製)あるいはアペル(商品名、三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度が0.01g/(m・24h)以下のガスバリアー性フィルムであることが好ましく、更には、JIS K 7126-1992に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、及び水蒸気透過度が1×10-3g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましく、更には、酸素透過度が1×10-5ml/(m・24h・atm)以下、及び水蒸気透過度が1×10-5g/(m・24h)であることが特に好ましい。
 ガスバリアー膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などを用いることができる。さらに、ガスバリアー膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機材料からなる層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 ガスバリアー膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものも好適に用いることができる。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
<封止>
 本発明に係る有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。
 また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム又は金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、酸素透過度が1×10-3ml/(m・24h・atm)以下、及び水蒸気透過度が1×10-3g/(m・24h)以下のものであることが好ましい。また、酸素透過度が1×10-5ml/(m・24h・atm)以下、及び水蒸気透過度が1×10-5g/(m・24h)であることがより好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステルなどの湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
<保護膜、保護板>
 有機EL素子の機械的強度を高めるために、上記封止用フィルムの外側に保護膜あるいは保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、上記封止に用いたのと同様のガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということから、ポリマーフィルムを用いることが好ましい。
<陽極>
 陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au、Ag、Al等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式など湿式成膜法を用いることもできる。
 陽極側より発光を取り出す場合には、透過率を10%より大きくすることが望ましい。
 また、陽極としてのシート抵抗値は、数百Ω/□以下が好ましい。
 膜厚は材料にもよるが、通常5~1000nmの範囲内、好ましくは5~200nmの範囲内で選ばれる。
<陰極>
 一方、陰極としては、金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、銀、アルミニウム等が挙げられる。これらの中でも、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第2金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物や、アルミニウム、銀等が好適である。
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 また、陰極としてのシート抵抗値は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μmの範囲内、好ましくは5~200nmの範囲内で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば、発光輝度が向上し好都合である。
 また、陰極に上記材料を1~20nmの範囲内の膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極との両方が透過性を有する素子を作製することができる。
≪有機EL素子の用途≫
 本発明に係る有機EL素子は、各種デバイスに好適に用いることができる。
 以下では、その一例として、有機ELモジュールについて説明する。
≪有機ELモジュールの構成≫
 本発明において、有機ELモジュールとは、少なくとも1以上の有機EL素子の陽極及び陰極に導電性材料(部材)が接続され、更に、配線基板等に接続された、それ自体が独立の機能を有する実装体のことをいう。
 図15に、本発明の有機ELモジュールの一例を示す。
 図15に示すように、有機ELモジュール30は、主に、有機EL素子1、異方性導電フィルム(Anisotropic Condactive Film:ACF)32及びフレキシブルプリント基板(Flexible Printed Circuits:FPC)34から構成されている。
 有機EL素子1は、支持基板21及び電極や各種有機機能層を含む積層体14を有している。積層体14が積層されていない支持基板21側端部に形成された取出し配線24とフレキシブルプリント基板34とが、異方性導電フィルム32を介して、電気的に接続されている。
 フレキシブルプリント基板34は、有機EL素子1(積層体14)上に、接着剤36を介して、接合されている。フレキシブルプリント基板34は、図示しないドライバーICやプリント基板に接続されている。
 図15においては図示していないが、陰極26(図1参照。)についても、その一部が陰極26に接するようにして取出し配線が形成され、当該取出し配線とフレキシブルプリント基板34とが電気的に接続されている。
 また、本発明においては、支持基板21の発光面側に偏光部材38を設けてもよい。偏光部材38に代えて、ハーフミラーや黒色フィルターを用いることもできる。これにより、本発明の有機ELモジュール30は、LEDでは導光ドットにより表現することができなかった黒色を表現可能となる。
<異方性導電フィルム>
 本発明に係る異方性導電フィルムは、導電性粒子、例えば、金、ニッケル、銀等の金属核そのものや樹脂核に金メッキしたもの等をバインダーに分散したものである。
 バインダーとしては、熱可塑性樹脂や熱硬化性樹脂が使われており、中でも、熱硬化性樹脂が好ましく、エポキシ樹脂を用いたものがより好ましい。
 フィラーとしてニッケルファイバー(繊維状)を配向させた異方性導電性フィルムも好適に使用できる。
 また、本発明においては、異方導電性フィルムに代えて、導電性ペースト等の流動性材料、例えば、銀ペースト等を用いてもよい。
<偏光部材>
 本発明に係る偏光部材としては、市販の偏光板又は円偏光板が挙げられる。
 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、代表的なものとして、ポリビニルアルコール系偏光フィルムがある。これは、主に、ポリビニルアルコール系フィルムにヨウ素を染色させたものと2色性染料を染色させたものとがある。偏光膜は、ポリビニルアルコール水溶液を成膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚としては、5~30μmの範囲内、好ましくは8~15μmの範囲内である偏光膜が好ましく用いられており、本発明においては、このような偏光膜も好適に用いることができる。
 また、市販の偏光板保護フィルムを用いることも好ましく、具体的には、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(コニカミノルタ(株)製)等が挙げられる。
 偏光部材と支持基板とを貼り合わせるために用いられる粘着剤は、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
 具体的には、アクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴム等が挙げられる。中でも、アクリル系共重合体は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていることから好ましく用いることができる。
 これら粘着剤は、基板上に塗設後、乾燥法、化学硬化法、熱硬化法、熱熔融法、光硬化法等により膜形成させ、硬化させることができる。
≪発光パターンを有する有機ELモジュールの製造方法≫
 有機ELモジュールは、電流の給電部である陽極の取出し配線と、電流の受取り部である陰極の取出し配線(図示略)を所定の方法にて接続することにより作製することができる。
 特に、接続方法として異方性導電フィルムを用いた場合には、異方性導電フィルムの仮接着温度による仮貼合工程と、実際に異方性導電フィルム中の電気的接続を取る役割を有する導電性粒子を押しつぶす圧着工程を行うことにより、異方性導電フィルムと取出し電極が電気的に接続される。
 支持基板がフィルム基材である場合には、フィルム基材への熱ダメージ低減のため、圧着温度が100~150℃の範囲内である異方性導電フィルム(例えば、日立化成社 MFシリーズ等)を選定する。
 より具体的には、工程としては、まず、異方性導電フィルムの仮貼合工程を実施する。この工程は、例えば、ACF貼り付け装置(大橋製作所製:LD-03)などを用いる。仮貼合用のヒートツール温度は、80℃程度に設定し、有機EL素子と異方性導電フィルムとを位置合わせした後、所定の圧力(0.1~0.3MPa)にて、5秒程度の押圧により貼合を行う。
 次いで、本貼合工程(圧着工程)を実施する。この工程は、例えば、本圧着装置(大橋製作所製:BD-02)などを用いる。まず、本貼合用のヒートツール温度を130~150℃程度に設定する。次に、有機EL素子に接続するフレキシブルプリント基板のコンタクトパッドを有機EL素子の電極取出し位置に位置合わせしてセットする。位置合わせ完了後、ヒートツールを所定の圧力(1~3MPa)で、フレキシブルプリント基板上から10秒程度押圧して本貼合工程が完了する。貼合後、異方性導電フィルム接合部補強のため、貼合部の上からシリコーン樹脂などをポッティングして補強してもよい。
 その他、用途に応じて、支持基板の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを、接着剤を介して、設けることもできる。
[第2の実施形態]
 第2の実施形態は、各発光ユニットにおける少なくとも1層の有機機能層を、当該有機機能層の形成過程においてマスクパターン化し、更に、当該有機機能層の形成後に、光照射によりパターン化して、発光機能が変調されている領域と、変調されていない領域とに区画(パターニング)する、という点については第1の実施形態と共通しているが、主に、下記の点で第1の実施形態と異なっている。
≪有機EL素子の製造方法≫
 本発明の発光パターンを有する有機EL素子の製造方法は、少なくとも一対の電極間に一つ又は複数の有機機能層を備えた有機EL素子が、状態に応じて、発光パターンを2種類以上切り替え可能とし、かつ、ムラなく発光できるようにすることを特徴とする。
 なお、ここでいう「パターン」とは、有機EL素子により表示される図案(図の柄や模様)、文字、画像等をいう。
 ここでは、一例として、図16に示す有機EL素子1の製造方法を説明する。
 なお、有機EL素子1は、支持基板21上に、陽極23、第1発光ユニット25a、中間電極層29、第2発光ユニット25b及び陰極26が順次積層され、構成されている。支持基板21側端部には、陽極23が引き出され、取出し電極23aが形成されている。中間電極層29は、光透過性を有している。
(1)積層工程
 本発明の有機EL素子1の製造方法では、支持基板21上に、陽極23、第1発光ユニット25a、中間電極層29、第2発光ユニット25b及び陰極26を積層して形成する工程(積層工程)を行う。
 まず、支持基板21を準備し、該支持基板21上に、所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極23を作製する。同時に、陽極23端部に、外部電源と接続される取出し電極23aを蒸着法等の適宜の方法に形成する。
 次に、この上に、第1発光ユニット25aを構成する正孔注入層、正孔輸送層、発光層、電子輸送層を順に積層し形成する。
 なお、第1発光ユニット25aの成膜時には、後述する第2発光ユニット25bとは異なるパターンが形成されるように、成膜時のシャドーマスクパターンを適宜選択する。
 シャドーマスクパターンは、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の全ての層に同一のシャドーマスクパターンを用いてもよいが、成膜精度の観点から、正孔注入層及び正孔輸送層に用いることが好ましく、正孔注入層のみにシャドーマスクを用いることがより好ましい。
 これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに、層ごとに異なる形成法を適用してもよい。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。
 これらの層を形成後、その上に中間電極層用物質からなる薄膜を、好ましくは層厚0.6~5nmの範囲内、より好ましくは0.8~3nmの範囲内、更に好ましくは0.8~2nmの範囲内になるように蒸着法により形成させ中間電極層29を設ける。
 次いで、第1発光ユニット25aの成膜と同様にして、第2発光ユニット25bの各層を形成する。この際、上述したように、成膜時のシャドーマスクパターンは、第1発光ユニット25aとは異なるものを用いる。
 以上のようにして第2発光ユニット25bを形成した後、この上部に陰極26を蒸着法やスパッタ法などの適宜の形成法によって形成する。この際、陰極26は、発光ユニット25a及び25bによって中間電極層29や陽極23に対して絶縁状態を保ちつつ、第2発光ユニット25bの上方から支持基板21の周縁に端子部分を引き出した形状にパターン形成する。
(2)封止工程
 積層工程の後には、有機EL素子1を封止する工程(封止工程)を行う。
 すなわち、陽極23(取出し電極23a)及び陰極26の端子部分を露出させた状態で、支持基板21上に、少なくとも発光ユニット25a及び25bを覆う封止材を設ける。
(3)光照射工程
 光照射することにより発光ユニット25a及び25bの発光機能を変調させて、所定の発光パターンを有する有機EL素子1を製造することができる。
 ここで、光照射により発光機能を変調させるとは、光照射により、発光ユニットを構成する正孔輸送材料等の機能を変化させることにより、当該発光ユニットの発光機能を変化させることをいう。
 光照射工程において、その光照射方法は、発光ユニット25a及び25bの所定パターン領域に所定の光照射をすることで当該照射部分を輝度が変化した発光領域とすることができれば、いずれの方法であってもよく、特定の方法に限定されるものではない。
 光照射工程において照射される光は、紫外線、可視光線又は赤外線を更に含有していてもよいが、紫外線を含むことが好ましい。
 ここで、本発明において、紫外線とは、その波長がX線よりも長く、可視光線の最短波長より短い電磁波をいい、具体的には波長が1~400nmの範囲内のものである。
 紫外線の発生手段及び照射手段は、従来公知の装置等により紫外線を発生させ、かつ、照射すればよく、特に限定されない。具体的な光源としては、高圧水銀ランプ、低圧水銀ランプ、水素(重水素)ランプ、希ガス(キセノン、アルゴン、ヘリウム、ネオンなど)放電ランプ、窒素レーザー、エキシマレーザー(XeCl、XeF、KrF、KrClなど)、水素レーザー、ハロゲンレーザー、各種可視(LD)-赤外レーザーの高調波(YAGレーザーのTHG(Third Harmonic Generation)光など)等が挙げられる。
 このような光照射工程は、封止工程の後に行われることが好ましい。
 また、光照射工程において、光強度又は照射時間等を調整して、光照射量を変化させることにより、当該光照射量に応じて光照射部分の発光輝度を変化させることが可能である。光照射量が多いほど発光輝度は減衰し、光照射量が少ないほど発光輝度の減衰率は小さい。したがって、光照射量が0、すなわち、光未照射の場合には、発光輝度は最大である。
 以上により、所望の発光パターンを有する有機EL素子1を製造することができる。このような有機EL素子1の製造においては、1回の真空引きで一貫して第1発光ユニット25aから陰極26まで作製するのが好ましいが、途中で真空雰囲気から支持基板21を取り出して異なる形成法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
 また、このようにして得られた有機EL素子1に直流電圧を印加する場合には、発光させる発光ユニット25a又は25bの両側に配置された電極(例えば、陽極23を+の極性とし、中間電極層29を-の極性とする。)に、2~40V程度の電圧を印加すると発光が観測できる。また、交流電圧を印加してもよく、印加する交流の波形は任意でよい。
 この際、電流は、発光パターン部分にのみ流れるため、不必要な部分にまで光を導光するLEDと比較して、消費電力を低減させることができる。
 さらには、マスクを用いたパターン化に加えて、光照射によるパターン化を施すことで、より形状精度を高くすることができる。
<有機EL素子の発光パターン>
 複数層の発光ユニットを有する有機EL素子を光照射して発光輝度を変化、低減させる場合、封止工程を終えた有機EL素子に一括で光照射をしてしまうと、それぞれの発光ユニットで異なった図柄やマークを表示させることができなくなる。
 これを避けるため、各発光ユニット間で図柄やマークを変える際には、成膜マスクにより有機層、特に、正孔輸送層や正孔注入層をマスクパターニングしておき、最終のトリミングの位置付けで光照射による発光輝度変化プロセスを実施するとよい。
 以下、図面を用いて、図16で示される有機EL素子1について、より詳細に説明する。
 まず、第1発光ユニット25aにおける正孔注入層7の成膜時に、図17Aに対応する開口形状を有したメタルマスクを用いて蒸着工程を実施し、図17Aで示される正孔注入層7を形成する。次に、第2発光ユニット25bにおける正孔注入層11の成膜時に、図17Bに対応する開口形状を有したメタルマスクを用いて蒸着工程を同様に実施し、図17Bで示される正孔注入層11を形成する。
 本方式により、それぞれの発光ユニット25a及び25bにおいて、図17A及び図17Bに対応する矢印形状の発光をそれぞれ確認することが可能となる。
 しかし、矢印形状の精度は、蒸着時の成膜広がりボケを含んだものとなり、矢印形状の周囲部にも若干の輝度をもった、ぼんやりとしたものとなってしまう。
 また、第2発光ユニット25bを電気的に駆動して発光させた場合、平面視したとき、正孔注入層11が正孔注入層7と重複する部分に対応した発光、すなわち、重複部11aに対応した発光層からの発光のうち、支持基板21の外側へ取り出される発光の量(透過光量)は、正孔注入層7の重複部7aで吸収等されることにより、正孔注入層7と重複していない正孔注入層11の非重複部11bと比較して少なくなってしまう。その結果、重複部11aと非重複部11bとの発光輝度が異なり、発光ムラの原因となる。
 これらを解決するために、成膜、封止工程実施後に、光照射工程を行う。
 具体的には、図18に示すような、透過する光量を制御できるように加工が施されたマスク板65を用意する。マスク板65は、光を全て透過させる透過部66と、光を透過させない非透過部67と、透過させる光量を制限する準透過部68とから構成されている。
 光照射工程では、まず、図17A及び図17Bの発光位置と上記マスク板65を位置合わせしてマスク板65を固定し、位置合わせする。なお、ここで、準透過部68は、正孔注入層11の非重複部11bの上方に位置合わせされる。当該位置合わせ終了後、光照射工程を実施する。
 これにより、矢印形状の周囲部(エッジ部)を輝度変化させ、形状精度を高くすることができる。
 また、正孔注入層11の非重複部11bに光照射量が制御された光照射を行うことで、重複部11aと非重複部11bとからの支持基板21側への透過光量が等しくなり、発光ムラのない発光パターンを得ることが可能となる。
 この方式により、複数層の発光ユニットを有し、かつそれぞれの発光ユニットで発光形状を変える場合であっても、図柄やマークを精度よく、発光ムラのない発光パターンを形成することが可能となる。
 このようにして作製された有機EL素子1は、第1発光ユニット25aのみを駆動すれば、図17Aに示す形状の発光パターンが観測され、第2発光ユニット25bのみを駆動すれば、図17Bに示す形状の発光パターンが観測される。
 発光ユニット25a及び25bの電気的駆動は、位置センサー等の情報に基づいて、ドライバーIC(Integrated Circuit)で制御される。
 なお、各発光ユニット25a及び25bの発光色は任意であり、同一であっても、異なっていてもよい。
<中間電極層>
 本実施形態に係る中間電極層は、二つの発光ユニット間に配置され、かつ光透過性を有している。
 中間電極層は、その一部微細領域にほとんど金属材料が成膜されていない状態、いわゆるピンホールが形成されていたり、面内方向において網状に形成されていてもよい。あるいは、中間電極層形成部分が、島状(斑状)に形成されていてもよい。
 本発明の中間電極層としては、仕事関数3.0eV以下の金属が用いられる。
 中間電極層に用いられる材料としては、カルシウム(仕事関数2.87eV、融点1112.2K)、リチウム(同2.9eV、同453.7K)、ナトリウム(同2.75eV、同371K)、カリウム(同2.3eV、同336.9K)、セシウム(同2.14eV、同301.6K)、ルビジウム(同2.16eV、同312.1K)、バリウム(同2.7eV、同998.2K)、ストロンチウム(同2.59eV、同1042.2K)が挙げられるが、中でも、常圧での融点が400K以上であり、有機EL素子の高温環境下での性能を損なうおそれの小さいリチウム、カルシウム、バリウム、ストロンチウムが好ましい。
 中間電極層の層厚は、0.6~5nmの範囲内であることが好ましく、より好ましくは0.8~3nmの範囲内であり、更に好ましくは0.8~2nmの範囲内である。
 中間電極層の層厚が5nmより小さい場合、使用する金属材料の光吸収による有機EL素子の効率低下を抑制し、保存安定性、駆動安定性が劣化することがない。
 一方で、中間電極層の層厚が0.6nmより大きい場合、有機EL素子の性能安定性、特に素子作製後、比較的初期段階における性能変動が小さい。
 なお、本発明における「中間電極層の層厚」とは、中間電極層の単位面積当たりの成膜質量を材料の密度で除して求められる「平均層厚」として定義される。したがって、中間電極層の任意の部分の層厚が「平均層厚」より厚くても、あるいは逆に薄くなっていても構わない。
 本発明においては、中間電極層の電圧印加方向の導電性を損なうことなく、面内方向の導電性を抑えられることから、中間電極層の発光ユニット側両面が完全平坦面を有するよりも、少なくともその一方の面が非平坦面として形成されていることが好ましい。中間電極層が非平坦面を有するとは、中間電極層の面内方向における形状が網状又は島状となっていることを意味する。
 また、中間電極層の陽極側に隣接する層が、単一の有機化合物を成膜することにより形成された層であることが好ましい。この場合、生産プロセスが簡便になり工程管理が容易となること、複数材料を使用することによる性能変動リスクを回避できるという点はもとより、より優れた長期あるいは高温保存安定性、長期駆動安定性が得られることから好ましい。
 中間電極層に隣接する層は、陰極側に位置する発光ユニットと陽極側に位置する発光ユニット間で、中間電極層を介して、各発光ユニットからの電荷の授受、各発光ユニットへの電荷の注入を容易に行うことができる機能を有していることが望ましい。
 このような機能を有する層として、電荷輸送性を高めるため、例えば、電荷輸送性有機材料と、該有機材料を酸化若しくは還元できる、又は該有機材料と電荷移動錯体を形成し得るような無機材料や有機金属錯体とをドーピングした混合層として形成することが好ましい。
 以下、第2の実施形態について、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
≪有機EL素子の作製≫
 陽極として、30mm×60mm、厚さ0.7mmのガラス基板上に、ITOを150nmの厚さで成膜した支持基板にパターニングを行った後、このITO透明電極を付けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を最適の量で充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、図17Aの図柄がパターニングできるシャドーマスクを用い、化合物M-4の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、層厚15nmの層を設けた。
 次いで、化合物M-2を同様にして蒸着し、層厚40nmの層を設けた。
 次いで、化合物BD-1、化合物GD-1、RD-1、化合物H-1及び化合物H-2を化合物BD-1が5%、化合物GD-1が17%、RD-1が0.8%、化合物H-1が37.2%、化合物H-2が40%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの第1白色発光層を形成した。
 次いで、化合物E-1を蒸着速度0.1nm/秒で蒸着して、層厚30nmの層を形成した。
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
 続いて、リチウムを蒸着し、層厚1.5nmの中間電極層を設けた。
 次いで、図17Bの図柄がパターニングできるシャドーマスクを用い、化合物M-4を蒸着速度0.1nm/秒で蒸着し、層厚15nmの層を設けた。
 次いで、化合物M-2を蒸着速度0.1nm/秒で蒸着し、層厚50nmの層を設けた。
 次いで、化合物BD-1、化合物GD-1、RD-1、化合物H-1及び化合物H-2を化合物BD-1が5%、化合物GD-1が17%、RD-1が0.8%、化合物H-1が37.2%、化合物H-2が40%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの第2白色発光層を形成した。
 次いで、化合物E-1を蒸着速度0.1nm/秒で蒸着して、層厚30nmの層を形成した。
 さらに、LiFを厚さ1.5nmで形成した後に、アルミニウム110nmを蒸着して陰極を形成した。
 次いで、上記素子の非発光面をガラスケースで覆い、有機EL素子を作製した。
 次いで、上記のようにして作製した有機EL素子の蒸着面側をガラスケースで覆い、有機EL素子を大気に接触させることなく、窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で封止を行った。
 次いで、基板の上記各層が設けられている側と反対側の面上に、パターンマスク(図18参照。)及び紫外線吸収フィルター(五鈴精工硝子株式会社製)を配置した状態で減圧密着させ、UVテスター(岩崎電気株式会社製、SUV-W151:100mW/cm)を用いて、基板側から紫外線を3時間照射し、パターニングした。
 なお、紫外線吸収フィルターは、320nm以下の波長成分の光透過率が50%以下のもの(カット波長:320nm)を用いた。
 上記のようにして作製した有機EL素子の各発光ユニットを個別に駆動すると、形状精度に優れ、かつ発光ムラのない図17A及び図17Bに示すような異なる発光パターンを確認することができた。
 本発明は、形状精度が高く、かつ発光パターンを切り替え可能な有機EL素子の製造方法及び製造装置、並びにその製造方法により製造された有機EL素子を備えた有機ELモジュールを提供することに、特に好適に利用することができる。
1 有機EL素子
3 樹脂接着層
4 背面フィルム
7 正孔注入層
7a 重複部
11 正孔注入層
11a 重複部
11b 非重複部
14 積層体
21 支持基板
23 陽極
23a 取出し電極
24 取出し配線
25a 第1発光ユニット
25b 第2発光ユニット
26 陰極
27、29 中間電極層
28 封止層
30 有機ELモジュール
32 異方性導電フィルム
34 フレキシブル基板
36 接着剤
38 偏光部材
41 第3ガイド孔
51、52 搬送ローラー
53、54 受けローラー
55 原料供給部
56 背面冷却ローラー
60、60a、60b、60L 連続マスク
61、61a、61b 開口部
61L 透明シート部
61S パターン部
62 接続治具
63 第2ガイド孔
64 枚葉マスク
65 マスク板
66 透過部
67 非透過部
68 準透過部
70   回転移動部
70a  第2回転移動部
71~78 搬送ローラー
80、80a クリーニング部
81 冷却部
82 プラズマエッチング部
83 加熱部
84 クリーニングヘッド
90~93 搬送ローラー
94 第2巻出部
95 搬送ローラー
96、97 受けローラー
98 加熱ローラー
99 加圧ローラー
100 製造装置
101 巻出部
102、103 ガイドローラー
104 スリットローラー
211 第1ガイド孔
511、512 搬送ローラー
530 凹部
531~533 受けローラー
551、552 原料供給部
561、562 背面冷却ローラー
711  回転軸
712~714 ローラー
715 突起部
R1 前室
R10 表面処理兼アキューム室
R20 成膜室
R21 第1成膜室
R22 第2成膜室
R23 第3成膜室
R24 第4成膜室
R25 第5成膜室
R30 第6成膜室
R40 アキューム室
R50 ラミネート室
R60 巻取室
R231a、R231b 正孔注入層成膜室
R232 有機機能層成膜室
RL 第2パターニング部
L1、L2 紫外線照射装置
L3 集光スポット照射装置
w1、w2 長さ

Claims (7)

  1.  支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、少なくとも1層の中間電極層とを有し、前記中間電極層が前記発光ユニット間に配置されている有機エレクトロルミネッセンス素子の製造方法であって、
     それぞれの前記発光ユニットにおける少なくとも1層の前記有機機能層を、
     マスクを用いてパターニングする第1パターニング工程と、
     光照射により、発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング工程と、
    を有し、
     前記発光ユニットを作製するごとに、前記第2パターニング工程を行うことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
  2.  前記第2パターニング工程における前記光照射を、波長が320~420nmの範囲内での放射照度が10~1000mW/cmの範囲内の条件で行うことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  3.  支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、光透過性を有する少なくとも1層の中間電極層とを有し、前記中間電極層が前記発光ユニット間に配置されている有機エレクトロルミネッセンス素子の製造方法であって、
     それぞれの前記発光ユニットにおける少なくとも1層の前記有機機能層を、
     マスクを用いて、パターニングする工程と、
     光照射により、発光機能が変調された領域と、変調されていない領域とに区画する光照射工程と、
    を有し、
     前記発光ユニットをすべて積層した後、前記光照射工程を行い、
     前記光照射工程では、発光機能を変調する領域内で、照射量を変化させて光照射することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
  4.  前記少なくとも1層の有機機能層が、正孔輸送層又は正孔注入層であることを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。
  5.  支持基板上に、一つ又は複数の有機機能層を有する、少なくとも二つの発光ユニットと、少なくとも1層の中間電極層とを有し、前記中間電極層が前記発光ユニット間に配置されている有機エレクトロルミネッセンス素子の製造装置であって、
     それぞれの前記発光ユニットにおける少なくとも1層の前記有機機能層を、
     マスクを用いてパターニングする第1パターニング部と、
     光照射により、発光機能が変調された領域と、変調されていない領域とにパターニングする第2パターニング部と、
    を有し、
     前記第2パターニング部は、前記発光ユニットを作製するごとにパターニングを施すことを特徴とする有機エレクトロルミネッセンス素子の製造装置。
  6.  請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法によって製造された有機エレクトロルミネッセンス素子を備えたことを特徴とする有機エレクトロルミネッセンスモジュール。
  7.  前記支持基板の発光面側に、偏光部材、ハーフミラー部材又は黒色フィルターを有することを特徴とする請求項6に記載の有機エレクトロルミネッセンスモジュール。
PCT/JP2014/068391 2013-07-11 2014-07-10 有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュール WO2015005412A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480038850.9A CN105637980B (zh) 2013-07-11 2014-07-10 有机电致发光元件的制造方法及制造装置、以及有机电致发光模块
KR1020167000243A KR101816458B1 (ko) 2013-07-11 2014-07-10 유기 일렉트로루미네센스 소자의 제조 방법 및 제조 장치, 및 유기 일렉트로루미네센스 모듈
US14/903,948 US9755191B2 (en) 2013-07-11 2014-07-10 Method and apparatus for manufacturing organic electroluminescent element, and organic electroluminescent module
JP2015526390A JP6361660B2 (ja) 2013-07-11 2014-07-10 有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュールの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-145063 2013-07-11
JP2013-145281 2013-07-11
JP2013145063 2013-07-11
JP2013145281 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015005412A1 true WO2015005412A1 (ja) 2015-01-15

Family

ID=52280090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068391 WO2015005412A1 (ja) 2013-07-11 2014-07-10 有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュール

Country Status (5)

Country Link
US (1) US9755191B2 (ja)
JP (1) JP6361660B2 (ja)
KR (1) KR101816458B1 (ja)
CN (1) CN105637980B (ja)
WO (1) WO2015005412A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158946A1 (ja) * 2016-03-18 2017-09-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子のパターニング方法及びパターニング装置
JP2017188362A (ja) * 2016-04-07 2017-10-12 住友化学株式会社 有機電子デバイスの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6823470B2 (ja) * 2017-01-23 2021-02-03 住友化学株式会社 有機デバイスの製造方法及び成膜装置
JP6947550B2 (ja) * 2017-06-27 2021-10-13 株式会社ジャパンディスプレイ 表示装置
KR20190009020A (ko) * 2017-07-17 2019-01-28 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN107385392A (zh) * 2017-08-17 2017-11-24 京东方科技集团股份有限公司 一种掩膜版、oled显示基板、显示装置及制作方法
DE102017122886A1 (de) 2017-10-02 2019-04-04 Aixtron Se Verfahren zur Herstellung einer leuchtenden Pixelanordnung
US10923689B2 (en) 2018-01-25 2021-02-16 OLEDWorks LLC Method for mask-free OLED deposition and manufacture
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11758751B2 (en) * 2020-06-22 2023-09-12 Emagin Corporation Display comprising OLEDs having transparent top electrodes and method of forming same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255692A (ja) * 1991-02-07 1992-09-10 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子のパターン化方法
JPH08315985A (ja) * 1995-05-16 1996-11-29 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2005099309A (ja) * 2003-09-24 2005-04-14 Seiko Epson Corp 表示装置および電子機器
JP2009535779A (ja) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド 発光パターンを有する有機発光素子、その製造方法および装置
JP2010027584A (ja) * 2008-06-20 2010-02-04 Canon Inc 有機el表示装置
JP2011034884A (ja) * 2009-08-04 2011-02-17 Toshiba Mobile Display Co Ltd 有機el装置
JP2012506604A (ja) * 2008-10-21 2012-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 透明oledデバイス
WO2013011599A1 (ja) * 2011-07-20 2013-01-24 パナソニック株式会社 有機el表示パネルおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US7564182B2 (en) * 2005-06-29 2009-07-21 Eastman Kodak Company Broadband light tandem OLED display
JP4338143B2 (ja) * 2006-11-29 2009-10-07 財団法人山形県産業技術振興機構 有機エレクトロルミネッセンス素子のパターン化方法
KR100859649B1 (ko) 2007-04-19 2008-09-23 삼성에스디아이 주식회사 다기능 키 패드용 표시 장치 및 이를 갖는 전자기기
JP5531843B2 (ja) * 2009-07-31 2014-06-25 大日本印刷株式会社 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
JP5560996B2 (ja) * 2009-07-31 2014-07-30 大日本印刷株式会社 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
CN102024915A (zh) * 2009-09-16 2011-04-20 上海广电电子股份有限公司 一种带有图案的有机电致发光照明器件的制作方法
CN102110775B (zh) * 2010-12-03 2012-11-07 哈尔滨工业大学深圳研究生院 实现半导体聚合物图形化的方法及其应用器件
CN105247960B (zh) * 2013-05-30 2017-03-15 柯尼卡美能达株式会社 有机电致发光元件、有机电致发光元件的制造方法、及有机电致发光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255692A (ja) * 1991-02-07 1992-09-10 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子のパターン化方法
JPH08315985A (ja) * 1995-05-16 1996-11-29 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2005099309A (ja) * 2003-09-24 2005-04-14 Seiko Epson Corp 表示装置および電子機器
JP2009535779A (ja) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド 発光パターンを有する有機発光素子、その製造方法および装置
JP2010027584A (ja) * 2008-06-20 2010-02-04 Canon Inc 有機el表示装置
JP2012506604A (ja) * 2008-10-21 2012-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 透明oledデバイス
JP2011034884A (ja) * 2009-08-04 2011-02-17 Toshiba Mobile Display Co Ltd 有機el装置
WO2013011599A1 (ja) * 2011-07-20 2013-01-24 パナソニック株式会社 有機el表示パネルおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158946A1 (ja) * 2016-03-18 2017-09-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子のパターニング方法及びパターニング装置
JP2017188362A (ja) * 2016-04-07 2017-10-12 住友化学株式会社 有機電子デバイスの製造方法

Also Published As

Publication number Publication date
JP6361660B2 (ja) 2018-07-25
CN105637980B (zh) 2017-07-04
US20160164046A1 (en) 2016-06-09
JPWO2015005412A1 (ja) 2017-03-02
KR101816458B1 (ko) 2018-01-08
US9755191B2 (en) 2017-09-05
CN105637980A (zh) 2016-06-01
KR20160015380A (ko) 2016-02-12

Similar Documents

Publication Publication Date Title
JP6361660B2 (ja) 有機エレクトロルミネッセンス素子の製造方法及び製造装置、並びに有機エレクトロルミネッセンスモジュールの製造方法
JP5472121B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置、ならびに有機エレクトロルミネッセンス素子の製造方法
JP5765223B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、並びに有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置
WO2014208271A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、及び有機エレクトロルミネッセンスデバイス
JP6056884B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2013110262A (ja) 有機el素子ならびに有機elモジュールおよびその製造方法
WO2013031345A1 (ja) 有機エレクトロルミネッセンス素子
JP5629970B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012069737A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5182225B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2014073300A1 (ja) 有機エレクトロルミネッセンス素子
JP2008293680A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2008282610A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5636630B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5218185B2 (ja) 有機エレクトロルミネッセンス素子、それを用いた表示装置及び照明装置
JP2009076241A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP6361654B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンスモジュールの製造方法
WO2015068779A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンスモジュール
JP2013102006A (ja) 有機el素子
JP2013089608A (ja) 有機el素子
WO2014208486A1 (ja) 面発光装置及びスマートデバイス
WO2015111489A1 (ja) 有機エレクトロルミネッセンス素子
JPWO2016047661A1 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167000243

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822484

Country of ref document: EP

Kind code of ref document: A1