JP2008282610A - 有機エレクトロルミネッセンス素子の製造方法 - Google Patents

有機エレクトロルミネッセンス素子の製造方法 Download PDF

Info

Publication number
JP2008282610A
JP2008282610A JP2007124345A JP2007124345A JP2008282610A JP 2008282610 A JP2008282610 A JP 2008282610A JP 2007124345 A JP2007124345 A JP 2007124345A JP 2007124345 A JP2007124345 A JP 2007124345A JP 2008282610 A JP2008282610 A JP 2008282610A
Authority
JP
Japan
Prior art keywords
group
organic
ring
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007124345A
Other languages
English (en)
Inventor
Shigeru Kojima
茂 小島
Kunimasa Hiyama
邦雅 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007124345A priority Critical patent/JP2008282610A/ja
Publication of JP2008282610A publication Critical patent/JP2008282610A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】発光効率が高く製造歩留まりがよい有機EL素子の製造方法を提供することにある。
【解決手段】基板Aと基板Bを貼合して作製する有機エレクトロルミネッセンス素子の製造方法であって、前記有機エレクトロルミネッセンス素子はリン光性の発光性ドーパントを2種類以上含有し、色温度2500〜8000Kの照明色を有し、前記基板A、Bはそれぞれ陽極、陰極を有し、いずれかの基板は少なくとも有機層を有し、かつ、少なくとも一方の貼合面が前記発光性ドーパントを含有する有機層であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
【選択図】なし

Description

本発明は、有機エレクトロルミネッセンス素子の製造方法に関する。
消費電力が少なく、容積が小さい面発光素子のニーズが高まり、このような面発光素子の一つとしてエレクトロルミネッセンス素子(以下、EL素子ともいう)が注目されている。このようなEL素子は、使用する材料によって無機EL素子と有機EL素子とに大別される。
無機EL素子は一般に発光部に高電界を作用させ、電子をこの高電界中で加速して発光中心に衝突させ、これにより発光中心を励起させて発光させるようになっている。一方、有機EL素子は電子注入電極とホール注入電極とから、それぞれ電子とホールを発光層内に注入し、注入された電子とホールを発光層内で結合させて、有機材料を励起状態にし、この有機材料が励起状態から基底状態に戻るときに発光するようになっており、無機EL素子に比べて、低い電圧で駆動できるという利点がある。面で発光するという利点を活かして、薄型でフレキシブルな照明用途としての展開が期待されている。
しかしながら、フレキシブルかつ大面積の有機EL素子を作製すると、ゴミ等によるリーク電流の発生、歩留まりの低下等の問題が発生する。
この対策として、有機EL素子を二つの部材に分けて作製した後、これを貼合する方法が開示されている。例えば、貼合面を溶媒蒸気に接触させた後、貼合する方法(特許文献1参照)、有機層のうち、最もガラス転移温度の低い層で貼合した後、ガラス転移温度付近で加熱する方法(特許文献2参照)、同一の材料のところで真空で貼合する、材料の界面で貼合する、または有機層と電極の界面で貼合する方法(特許文献3参照)、貼合界面の双方に同一の材料を設け、貼合後、ベークする方法(特許文献4参照)、正孔輸送層と注入層に高分子接着剤を含み貼合(接着)する方法(特許文献5参照)等が提案されている。しかしながら、これらの製造方法で得られた有機EL素子は、いずれも発光効率が低く、製造歩留まりが低い問題があった。
特開2006−247161号公報 特開2000−077192号公報 特開2000−123971号公報 特開2002−203675号公報 特開2005−5209号公報
本発明は、上記課題に鑑みなされたものであり、その目的は、発光効率が高く製造歩留まりがよい有機EL素子の製造方法を提供することにある。
本発明の上記課題は、以下の構成により達成される。
1.基板Aと基板Bを貼合して作製する有機エレクトロルミネッセンス素子の製造方法であって、前記有機エレクトロルミネッセンス素子はリン光性の発光性ドーパントを2種類以上含有し、色温度2500〜8000Kの照明色を有し、前記基板A、Bはそれぞれ陽極、陰極を有し、いずれかの基板は少なくとも有機層を有し、かつ、少なくとも一方の貼合面が前記発光性ドーパントを含有する有機層であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
2.前記発光性ドーパントが3種類以上であり、赤領域(600〜640nm)、緑領域(500〜540nm)、青領域(440〜480nm)のそれぞれの領域に発光極大をもつ発光性ドーパントを1種類以上含有することを特徴とする前記1に記載の有機エレクトロルミネッセンス素子の製造方法。
3.前記基板Aと前記基板Bの貼合面が、前記発光性ドーパントを含有する有機層であることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
4.前記発光性ドーパントを含有する有機層のホスト化合物が、全て同一であることを特徴とする前記1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
5.前記基板Aと前記基板Bは発光性ドーパントを含有する有機層を有し、前記基板Aの有機層の発光性ドーパントが、前記基板Bの有機層の発光性ドーパントと異なることを特徴とする前記1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
6.前記基板Bの貼合面が、最も短波長の発光極大をもつ発光性ドーパントを含有する有機層であることを特徴とする前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
7.少なくとも1層以上の有機層をウエットプロセスにより作製することを特徴とする前記1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
8.前記ウエットプロセスに使用した溶媒が残留している状態で、貼合することを特徴とする前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
9.正孔輸送層及び/または電子輸送層が、金属化合物を含有する有機層を有することを特徴とする前記1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
本発明により、発光効率が高く製造歩留まりがよい有機EL素子の製造方法を提供することができる。
以下、本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明においては、リン光性の発光性ドーパントを2種類以上含有し、発光性ドーパントを含有する有機層で貼合することを特徴とする。
この製造方法により、発光効率が向上する理由は定かではないが、発光層の界面で貼合することで、その表面状態が変化し、発光層に電荷がより注入しやすい構造が形成されるものと推定される。特にウエットプロセスで製造することで発光効果が向上することも、表面状態と関係することを示唆している。さらに、溶媒を含んだ状態で貼合することで、その表面状態が一層変化するものと推定している。
また、本発明の製造方法を用いることで、予想外の効果として駆動経時の色変動が低下することが判明した。この効果についてもその理由は定かではないが、駆動で発光層等に劣化が生じても各発光層への電荷の注入のバランスが崩れにくいものと推定している。
また、本発明の製造方法は、ゴミ等によるリーク電流の発生が少なく、製造歩留まりが高い。
以下、本発明を詳細に説明する。
《有機EL素子の構成》
本発明に係る有機EL素子は、基板(支持基盤)、電極、種々の機能を有する有機層等によって構成される。好ましい構成の具体例を以下に示すが、本発明はこれらに限定されない。
(1)陽極/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極
(2)陽極/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(3)陽極/陽極バッファー層/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極
(4)陽極/陽極バッファー層/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
《発光層ユニット》
本発明に係る「発光層ユニット」とは、複数の発光層を有する構成単位であって、最も陽極側の発光層から最も陰極側の発光層まで積層された有機層をいう。
当該発光層ユニットの代表例を以下に例示するが、これらに限定されない。
(1)発光層A/発光層B
(2)発光層A/中間層/発光層B
(3)発光層A/正孔阻止層/発光層B
(4)発光層A/電子阻止層/発光層B
(5)発光層A/発光層B/発光層C
(6)発光層A/中間層/発光層B/中間層/発光層C
(7)発光層A/中間層/発光層B/正孔阻止層/発光層C
(8)発光層A/電子阻止層/発光層B/中間層/発光層C
本発明に係る有機EL素子の発光色を照明用にする場合には、2色以上の発光性ドーパントを含有することが必要である。さらに、演色性、色再現域等の点から3色以上の発光性ドーパントを含有することが好ましい。さらに、3色以上の発光性ドーパントのうち、3種類の発光極大は440〜480nm、500〜540nm、600〜640nmから選ばれることがより好ましい。発光極大波長の異なる2種以上の発光性ドーパントを含有する複数の発光層で構成することもできる。当該ユニットは、各発光層間に非発光性の中間層を設け、複数の発光層で構成しても、単層の中に発光極大波長の異なる2種以上の発光性ドーパントを含有することで、発光極大波長が異なる少なくとも2種以上の異なる発光をさせてもよい。有機EL素子の発光色を白色にする場合には、製造安定性等の観点から、複数の発光層を設け、各発光層の発光性ドーパントを2種類以下とすることが好ましい。
また、発光効率向上という点から、発光極大の近い発光性ドーパント2種を同一層に含有することが好ましい。さらに、発光極大が500〜540nm、600〜640nmの発光性ドーパントを同一層に含有することがより好ましい。さらに、前記発光極大が500〜540nm、600〜640nmの発光性ドーパントを含む発光層を、発光ユニットのなかで陽極側に配置することが好ましい。さらに、中間層を設けずに、前記発光極大が500〜540nm、600〜640nmの発光性ドーパントを含む発光層の陰極側に中間層を設けずに、発光極大が440〜480nmの発光性ドーパントを含む発光層を設けることが好ましい。
また、後述するホスト材料は有機EL素子の駆動寿命がよいという点から、全ての発光層で同一であることが好ましい。
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
(ホスト化合物)
本発明に係る有機EL素子の発光層に含まれるホスト化合物とは、その化合物上のキャリアの再結合によって生成した励起子のエネルギーを発光性ドーパント(ゲスト化合物)に移動し、発光性ドーパントを発光させる化合物、及びホスト化合物上のキャリアを発光性ドーパントにトラップさせ、発光性ドーパント上で励起子を生成させ、その結果、発光性ドーパントを発光させる化合物をいう。
本発明においては、発光層に含有される化合物の中で、そのホスト化合物の比率は20質量%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いても、複数種併用して用いてもよい。また、後述する発光性ドーパントとして用いられるリン光性化合物等を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
本発明に用いられる発光ホスト化合物としては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。
ホスト化合物の具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等に記載されている化合物が挙げられる。
本発明に用いられるホスト化合物としては下記一般式(a)で表されるホスト化合物が好ましい。
Figure 2008282610
式中、Xは、NR′、O、S、CR′R″またはSiR′R″を表す。R′、R″は、それぞれ水素原子または置換基を表す。Arは芳香環を表す。nは0〜8の整数を表す。
一般式(a)のXにおいて、R′、Rで表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1−プロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
一般式(a)において好ましいXは、NR′またはOであり、R′としては芳香族炭化水素基、芳香族複素環基が特に好ましい。
一般式(a)において、Arで表される芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、芳香環は単環でもよく、縮合環でもよく、さらに未置換でも、後述するような置換基を有していてもよい。
一般式(a)において、Arで表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環はさらに置換基を有していてもよい。
一般式(a)において、Arで表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。これらの環はさらに置換基を有していてもよい。
上記の中でも、一般式(a)において、Arで表される芳香環として、好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、特に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環である。
上記の中でも、置換基を有するベンゼン環が好ましく、特に好ましくは、カルバゾリル基を有するベンゼン環が好ましい。
また、一般式(a)において、Arで表される芳香環としては、下記に示すような、それぞれ3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環はさらに、置換基を有していてもよい。
また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環はさらに置換基を有していてもよい。
ここで、一般式(a)において、Arで表される芳香環が有してもよい置換基は、R′、R″で表される置換基と同義である。
また、一般式(a)において、nは0〜8の整数を表すが、0〜2であることが好ましく、特にXがO、Sである場合には1〜2であることが好ましい。
一般式(a)において、Arで表される芳香環が有してもよい置換基は、R′、R″で表される置換基と同義である。
以下に一般式(a)で表される発光ホスト化合物の具体例を示すが、これらに限定されるものではない。
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
(発光性ドーパント)
発光性ドーパントとしては、リン光性化合物(「リン光発光性ドーパント」、「リン光発光体」等ともいう。)及び蛍光性化合物が知られているが、本発明では発光効率の高い有機EL素子を得る観点から、リン光性発光化合物を用いることを特徴とする。
(リン光性化合物:リン光発光体)
本発明に係るリン光性化合物(「リン光発光体」、「リン光性ドーパント」ともいう。)は、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光体は、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。リン光発光体の発光は、原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光体に移動させることでリン光発光体からの発光を得るというエネルギー移動型、もう一つはリン光発光体がキャリアトラップとなり、リン光発光体上でキャリアの再結合が起こりリン光発光体からの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光発光体の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
リン発光体は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に係るリン光発光体としては、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
以下に、リン光発光体として用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
《非発光性の中間層》
本発明においては、キャリア制御層として、非発光性の中間層を設けてもよい。非発光性の中間層の層厚としては、1〜15nmの範囲にあるのが好ましく、さらに3〜10nmの範囲にあることが、隣接発光層間のエネルギー移動等相互作用を抑制し、かつ、素子の電流電圧特性に大きな負荷を与えないという観点から好ましい。
この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト化合物と同一であることが好ましい。
非発光性の中間層としては、ホストに用いることのできる化合物や、正孔輸送層あるいは電子輸送層に用いる材料を用いることができる。
《正孔輸送層》
正孔輸送層は、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するもので有機物、無機物のいずれでもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。さらに、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明ではより高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。本発明ではこのようなp性の高い正孔輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
《電子輸送層》
電子輸送層は、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含む。電子輸送層は単層または複数層設けることができる。従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料は従来公知の化合物の中から任意のものを選択して用いることができ、例えばニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることができる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができ、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。また不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
《注入層:電子注入層、正孔注入層》
注入層は、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
注入層は必要に応じて設け、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1〜5μmの範囲が好ましい。
《阻止層:正孔阻止層、電子阻止層》
正孔阻止層は、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、前述した電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
阻止層は、上記の如く、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
本発明においては、正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対し、そのイオン化ポテンシャルが0.2eV以上大きいことが好ましい。本発明に係る正孔阻止層は、前記エレクトロンドナーを含有すると電子密度が増加するので、さらなる低電圧化のために好ましい。
なお、イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。本発明に好ましく用いられる電子阻止層は、前記正孔輸送層の材料である。さらに前記エレクトロンアクセプターを含有すると更なる低電圧化の効果が得られる。
本発明に係る正孔阻止層、電子輸送層の膜厚としては好ましくは3〜100nmであり、さらに好ましくは5〜30nmである。
《反応性有機化合物》
本発明では、反応性基をもつ有機化合物(反応性有機化合物)を用いてもよい。反応性有機化合物を用いる層としては特に制限はなく、各層に用いることができる。
反応性有機化合物を基板上で反応させ、有機分子によるネットワークポリマーを形成させることができる。ネットワークポリーマーが生成することで、構成層のTg(ガラス転移点)調整による素子劣化の抑制させることができる。
また、素子使用中の活性ラジカルを用いて分子の共役系の切断または生成を伴う反応を調整することにより、有機EL素子の発光波長を変えたり、特定波長の劣化を抑制すること等も可能である。
一方、製造面では、例えば、ウエットプロセスで積層する工程の場合では、下層が上層の塗布液に溶解しないことが好ましく、下層を樹脂化し溶剤溶解性を劣化させることで、上層塗布を可能とすることができる。
本発明に用いることのできる反応性基の一例を示す。
Figure 2008282610
また、反応性有機化合物の一例を示す。
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
Figure 2008282610
《基板》
本発明に係る有機EL素子の基板(以下、基体、支持基盤、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
高バリア性フィルムとするために樹脂フィルム表面に形成されるバリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
《バリア膜の形成方法》
バリア膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。不透明な支持基盤としては、例えばアルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明に係る有機EL素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
《封止》
本発明に係る有機EL素子の封止に用いられる封止手段としては、例えば封止部材と、電極、支持基盤とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
封止に用いられる接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層を挟み支持基盤と対向する側の電極の外側に、該電極と有機層を被覆し、支持基盤と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることが好ましい。
これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。吸湿性化合物としては、例えば金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《保護膜、保護板》
有機層を挟み支持基盤と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、有機EL素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
《陰極》
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
《光取り出し及び/または集光シート》
特にバックライト用の有機EL素子においては、通常、全方位に光が放射され視野角が変わっても明るさが変わらないような特性が望ましいが、使用形態によっては、正面輝度をより高くし、大きな視野角(斜め方向から観察する角度)においては輝度を低下させることが望ましい。そのために、有機EL素子の上に、放射角を制御する拡散板、プリズムシート等が組み合わされることが好ましい。
《有機EL素子の発光、正面輝度、色度》
本発明に係る有機EL素子や当該素子に係る化合物の発光色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
本発明で言うところの照明色とは、色温度が2500〜8000K、かつ、UCS色度図(CIE1976)上でので、黒体軌跡との偏差を表すΔuvが、−0.01〜+0.01のことを言う。
ここで、Δuv=(Δu*2+Δv*21/2
Δu*、Δv*はそれぞれ、UCS色度(CIE1976)座標u*、v*の黒体軌跡・昼光軌跡との偏差を示す。
《有機EL素子の製造方法》
本発明の有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の製造方法について説明する。
まず適当な支持基盤上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成する。
この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、スプレー塗布法、ブレード塗布法、エアーナイフ塗布法、ワイヤーバー塗布法、グラビア塗布法、フレキソ塗布法、リバース塗布法、リバースロール塗布法、エクストルージョン塗布法等)が挙げられる。また層毎に異なる製膜法を適用してもよい。
製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10-6〜10-2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。蒸着法の場合は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
また、ウェットプロセスを用いる場合は、不活性ガス雰囲気下、かつ、クリーン環境で塗布することが好ましい。具体的には、JIS B9920に準拠し測定した清浄度がクラス100以下で、露点温度が−70℃以下、酸素濃度1ppm以下、かつ、10℃〜45℃の大気圧条件下の環境で行うことが好ましい。
これらの有機層を形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
また、電極を塗布する場合は、融点の低い金属、合金、電気伝導性化合物及びこれらの混合物を融解し塗布してもよいし、金属の分散物等を塗布してもよい。
《用途》
本発明に係る有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではないが、特に、カラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。本発明に係る有機EL素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、有機EL素子全層をパターニングしてもいい。
《表示装置》
本発明に係る表示装置は多色または白色の表示装置に用いられる。多色または白色の表示装置の場合は、発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを用いたパターニングが好ましい。また、作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層ユニット正孔輸送層、陽極の順に作製することも可能である。
このようにして得られた多色または白色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2V〜40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれらに限定されない。
《照明装置》
本発明に係る有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
なお、青色光(B)を発光する発光層の他に、緑色光(G)、赤色(R)光の発光層を具備することで、色度が改善された白色光を取出すことが可能な有機EL素子を得ることができる。
本発明に係る白色有機EL素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、素子全層をパターニングしてもいい。発光層に用いる発光材料としては特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、白金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて、また、光取りだし及び/または集光シートと組み合わせて、白色化すればよい。
このように、本発明に用いられる白色の有機EL素子は、CF(カラーフィルター)と組み合わせて、また、CF(カラーフィルター)パターンに合わせ素子及び駆動トランジスタ回路を配置することで、有機EL素子から取り出される白色光をバックライトとして、青色フィルタ、緑色フィルタ、赤色フィルタを介して、青色光、緑色光、赤色光を得ることで、低駆動電圧で、長寿命のフルカラーの有機ELディスプレイができ好ましい。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
実施例1
《有機EL素子の作製》
(基板1の作製)
市販の無アルカリ硝子基板上に、スパッタ装置により透明電極としてITOを110nm設けた。フォトリソグラフィー法により、4mm×4mmの発光部位が得られるようにITOのパターニングを実施し、基板1を作製した。
(可撓性フィルム2の作製)
可撓性フィルムとして、ポリエチレンテレフタレートフィルム(帝人・デユポン社製フィルム、以下、PETと略記する)の全面に、大気圧プラズマ放電処理装置を用いて特開2004−68143号に記載方法で、連続して可撓性フィルム上に、SiOxからなる無機物のガスバリア膜を形成し、酸素透過度0.01ml/m2/day以下、水蒸気透過度0.01g/m2/day以下のガスバリア性の可撓性フィルム2を作製した。
(有機EL素子11の作製)
上記基板1を、iso−プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、6つのタンタル製抵抗加熱ボートに、CuPC、α−NPD、H−A、Ir(bzq)3、Ir−A、Alq3をそれぞれ入れ、真空蒸着装置(第1真空槽)に取付けた。ここで、Ir(bzq)3、Ir−Aはリン光性発光ドーパントである。
さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。
まず、第1の真空槽を4×10-4Paまで減圧した後、下記表1に従い、CuPCの入った前記加熱ボートに通電して加熱し、蒸着速度0.1〜0.2nm/秒で透明支持基板に膜厚10nmの厚さになるように蒸着し、正孔注入層を設けた。
つづいて、α−NPDの入った前記過熱ボートに通電して過熱し、蒸着速度0.1〜0.2nm/秒で膜厚30nmの厚さになるように蒸着し、正孔輸送層を設けた。
さらに、H−Aの入った前記加熱ボートとIr(bzq)3の入ったボートをそれぞれ独立に通電して、発光ホストであるH−Aと発光ドーパントであるIr(bzq)3の蒸着速度が100:8になるように調節し膜厚30nmの厚さになるように蒸着し、黄色発光層を設けた。
さらに、H−Aの入った前記過熱ボートに通電して過熱し、蒸着速度0.1〜0.2nm/秒で膜厚5nmの厚さになるように蒸着し、中間層を設けた。
さらに、H−Aの入った前記加熱ボートとIr−Aの入ったボートをそれぞれ独立に通電して発光ホストであるH−Aと発光ドーパントであるIr−Aの蒸着速度が100:9になるように調節し膜厚30nmの厚さになるように蒸着し、青色発光層を設けた。
さらに、Alq3の入った前記過熱ボートに通電して過熱し、蒸着速度0.1〜0.2nm/秒で膜厚45nmの厚さになるように蒸着し、電子輸送層を設けた。
次に、前記の如く電子輸送層まで製膜した素子を真空のまま、2×10-4Paまで減圧された第2真空槽に移した後、電子注入層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。
フッ化リチウム入りのボートに通電して蒸着速度0.01〜0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して蒸着速度1〜2nm/秒で膜厚100nmの陰極を付けた。
さらに、この素子を大気に接触させることなく窒素雰囲気下、JIS B9920に準拠し、測定した清浄度がクラス10で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックス(以下グローブボックス)へ移し、あらかじめ熱硬化性樹脂を塗布しておいた可撓性フィルム2を密着して貼合し、100℃3時間加熱して有機EL素子11を作製した。
(有機EL素子12の作製)
有機EL素子11の作製において、下記表1に従い、基板1上に黄色発光層まで作製した後、H−Aの中間層を5nm設け、グローブボックスに移動させた。
一方、有機EL素子11の作製と同様に、第2真空槽にて、可撓性フィルム2上に陰極としてアルミニウムを100nm蒸着し、さらに、陰極バッファー層として0.5nmのLiFを蒸着した。このフィルムを第1真空槽に移動した。さらに、電子輸送層としてAlq3を45nm設けた。つづいて、青色発光層として、H−AとIr−Aを100:9の比で30nm蒸着した。このフィルムをグローボックスに移動させた。
グローブボックス中にて、発光層の蒸着された基板1と可撓性フィルム2をラミネータを用いて貼合し、有機EL素子12を得た。
(有機EL素子13、14の作製)
同様にして、下記表1に従い有機EL素子13、14を作製した。
Figure 2008282610
Figure 2008282610
Figure 2008282610
《有機EL素子の評価》
作製した有機EL素子について、下記の評価を行った。
(リーク特性)
有機EL素子を株式会社エーディーシー製、直流電圧・電流源/モニタR6243を用いてリーク特性を評価した。有機EL素子に順方向に1.0mA/cm2に流れる電圧にて、逆方向に流れる電流も測定し、そのときの順電流と逆電流の比、順電流÷逆電流をリーク特性とした。リーク特性が102以上であれば実用上使用可能と判断した。
D:リーク特性が102未満 使用にたえない
C:リーク特性が102以上、103未満 使用可能
B:リーク特性が103以上、104未満 より好ましい
A:リーク特性が104以上 最も好ましい
(発光効率)
前記R6243を用いて有機EL素子を駆動させ、コニカミノルタセンシング株式会社製分光放射輝度計CS1000を用いて輝度を測定し、電流あたりの発光輝度である電流効率(cd/A)を求めた。発光効率は、有機EL素子11の電流効率を100としたときの相対値で表す。
評価の結果を表2に示す。
Figure 2008282610
表2から、リン光性発光ドーパントを用いた素子を貼合して作製することにより、リーク特性及び発光効率が向上していることが分かる。蛍光発光性のドーパントではリーク特性及び発光効率の向上はあまり見られない。
実施例2
下記表3に従い、実施例1と同様にして有機EL素子21〜23を作製した。
Figure 2008282610
Figure 2008282610
作製した有機EL素子について、実施例1と同様に評価した。評価の結果を表4に示す。
Figure 2008282610
表4から、発光層同士を貼合した方が発光効率がよく、さらに、緑色ドーパントと赤色ドーパントを混合し陽極側に、青色ドーパントを陰極側に配置して貼合することで特に発光効率が向上していることが分かる。
実施例3
下記表5に従い、実施例1と同様にして有機EL素子31〜36を作製した。
Figure 2008282610
Figure 2008282610
作製した有機EL素子について、実施例1と同様の評価に加え、下記のようにして駆動色安定性について評価した。
(色安定性)
駆動前のCIE1931色度座標x、yをそれぞれx100、y100、有機EL素子を定電流駆動させ輝度が半減したときのCIE色度x、yをそれぞれx50、y50として、色変動ΔE=((x50−x100)2+(y50−y100)21/2として色変動を定義し、下記基準で色安定性を評価した。使用用途により異なるが、色変動は0.05未満であることが好ましい。
A:ΔEが0.001未満
B:ΔEが0.001以上、0.01未満
C:ΔEが0.01以上、0.05未満
D:ΔEが0.05以上
評価の結果を表6に示す。
Figure 2008282610
表6から、P型、N型の正孔/電子輸送層を用いて、貼合することでリーク特性、発光効率に加えて色変動が改善していることが分かる。
実施例4
(有機EL素子41の作製)
下記表7に従い、実施例1と同様にして有機EL素子41を作製した。
(有機EL素子42の作製)
基板1を洗浄し、グローブボックス中に移動し、この基板上に下記表7に従い、ウエットプロセスで有機層を作製した。この基板を市販のスピンコータに取り付け、化合物HT−A(45mg)をトルエン10mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート(膜厚約30nm)した。紫外光を30秒照射した後、60℃で1時間真空乾燥し、正孔輸送層とした。
次いで、H−B(30mg)、Ir(ppy)3(1.8mg)、Ir(piq)3(1mg)をトルエン11mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコートし(膜厚約30nm)、紫外光を30秒照射した後、60℃で1時間真空乾燥し黄色発光層とした。
ついで、可撓性フィルム2を洗浄し第2真空槽にセットした。陰極としてアルミニウム、陰極バッファー層としてフッ化リチウムを順に蒸着し、グローブボックスへ移動した。
陰極と陰極バッファー層の付いた可撓性フィルムを市販のスピンコーターに取り付け、化合物ET−B(68mg)をトルエン10mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート(膜厚約45nm)した。紫外光を30秒照射した後、60℃で1時間乾燥し電子輸送層とした。
次いで、H−B(30mg)とIr−A(2.7mg)をトルエン11mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート(膜厚約30nm)した。紫外光を30秒照射した後、60℃で1時間乾燥し青色発光層とした。
実施例1の有機EL素子12の作製と同様に、基板と可撓性フィルムを貼合し有機EL素子42を得た。
(有機EL素子43の作製)
有機EL素子42の作製と同様にして有機EL素子43を作製した。ただし、基板上に黄色発光層を設けた後の乾燥、及び、可撓性フィルム上に青色発光層を設けた後の乾燥はせずに、両方の塗布、紫外線照射が終わった直後に、貼合した。なお、乾燥しない場合、基板上に0.1%程度、溶媒であるトルエンが残留することを別途確認した。
Figure 2008282610
Figure 2008282610
作製した有機EL素子について、実施例3と同様に評価した。
評価の結果を表8に示す。
Figure 2008282610
表8から分かるように、蒸着法で作製した有機EL素子よりも、ウエットプロセスで作製した有機EL素子の方が色安定性がよく、さらに、基板上に溶媒が残留している状態で貼合した方がさらに色安定性がよいことが分かる。

Claims (9)

  1. 基板Aと基板Bを貼合して作製する有機エレクトロルミネッセンス素子の製造方法であって、前記有機エレクトロルミネッセンス素子はリン光性の発光性ドーパントを2種類以上含有し、色温度2500〜8000Kの照明色を有し、前記基板A、Bはそれぞれ陽極、陰極を有し、いずれかの基板は少なくとも有機層を有し、かつ、少なくとも一方の貼合面が前記発光性ドーパントを含有する有機層であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
  2. 前記発光性ドーパントが3種類以上であり、赤領域(600〜640nm)、緑領域(500〜540nm)、青領域(440〜480nm)のそれぞれの領域に発光極大をもつ発光性ドーパントを1種類以上含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  3. 前記基板Aと前記基板Bの貼合面が、前記発光性ドーパントを含有する有機層であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
  4. 前記発光性ドーパントを含有する有機層のホスト化合物が、全て同一であることを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  5. 前記基板Aと前記基板Bは発光性ドーパントを含有する有機層を有し、前記基板Aの有機層の発光性ドーパントが、前記基板Bの有機層の発光性ドーパントと異なることを特徴とする請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  6. 前記基板Bの貼合面が、最も短波長の発光極大をもつ発光性ドーパントを含有する有機層であることを特徴とする請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  7. 少なくとも1層以上の有機層をウエットプロセスにより作製することを特徴とする請求項1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  8. 前記ウエットプロセスに使用した溶媒が残留している状態で、貼合することを特徴とする請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  9. 正孔輸送層及び/または電子輸送層が、金属化合物を含有する有機層を有することを特徴とする請求項1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
JP2007124345A 2007-05-09 2007-05-09 有機エレクトロルミネッセンス素子の製造方法 Pending JP2008282610A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124345A JP2008282610A (ja) 2007-05-09 2007-05-09 有機エレクトロルミネッセンス素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124345A JP2008282610A (ja) 2007-05-09 2007-05-09 有機エレクトロルミネッセンス素子の製造方法

Publications (1)

Publication Number Publication Date
JP2008282610A true JP2008282610A (ja) 2008-11-20

Family

ID=40143259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124345A Pending JP2008282610A (ja) 2007-05-09 2007-05-09 有機エレクトロルミネッセンス素子の製造方法

Country Status (1)

Country Link
JP (1) JP2008282610A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095564A1 (ja) * 2009-02-18 2010-08-26 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP2011054931A (ja) * 2009-08-05 2011-03-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、及びその製造方法
WO2011093220A1 (ja) * 2010-01-29 2011-08-04 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2011222976A (ja) * 2010-03-23 2011-11-04 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
WO2011155507A1 (ja) 2010-06-08 2011-12-15 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2012169518A (ja) * 2011-02-16 2012-09-06 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2013517612A (ja) * 2010-01-20 2013-05-16 ユニバーサル ディスプレイ コーポレイション 照明用途のためのエレクトロルミネッセンスデバイス
JP2013168554A (ja) * 2012-02-16 2013-08-29 Konica Minolta Inc 有機エレクトロルミネッセンス素子
JP2016096118A (ja) * 2014-11-17 2016-05-26 大日本印刷株式会社 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス照明装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079300A (ja) * 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd 発光素子及びその製造方法
WO2006093007A1 (ja) * 2005-03-02 2006-09-08 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、画像表示装置および照明装置
WO2006128800A1 (en) * 2005-05-30 2006-12-07 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
JP2007027679A (ja) * 2005-07-15 2007-02-01 Samsung Sdi Co Ltd 白色有機発光素子
JP2007027092A (ja) * 2005-07-15 2007-02-01 Samsung Sdi Co Ltd 白色有機発光素子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079300A (ja) * 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd 発光素子及びその製造方法
WO2006093007A1 (ja) * 2005-03-02 2006-09-08 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、画像表示装置および照明装置
WO2006128800A1 (en) * 2005-05-30 2006-12-07 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
JP2007027679A (ja) * 2005-07-15 2007-02-01 Samsung Sdi Co Ltd 白色有機発光素子
JP2007027092A (ja) * 2005-07-15 2007-02-01 Samsung Sdi Co Ltd 白色有機発光素子及びその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095564A1 (ja) * 2009-02-18 2010-08-26 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP5765223B2 (ja) * 2009-02-18 2015-08-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法、並びに有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置
JPWO2010095564A1 (ja) * 2009-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP2011054931A (ja) * 2009-08-05 2011-03-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、及びその製造方法
US9054344B2 (en) 2010-01-20 2015-06-09 Universal Display Corporation Electroluminescent devices for lighting applications
JP2013517612A (ja) * 2010-01-20 2013-05-16 ユニバーサル ディスプレイ コーポレイション 照明用途のためのエレクトロルミネッセンスデバイス
WO2011093220A1 (ja) * 2010-01-29 2011-08-04 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2011222976A (ja) * 2010-03-23 2011-11-04 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
US8987715B2 (en) 2010-06-08 2015-03-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
WO2011155507A1 (ja) 2010-06-08 2011-12-15 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2012169518A (ja) * 2011-02-16 2012-09-06 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2013168554A (ja) * 2012-02-16 2013-08-29 Konica Minolta Inc 有機エレクトロルミネッセンス素子
JP2016096118A (ja) * 2014-11-17 2016-05-26 大日本印刷株式会社 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス照明装置の製造方法

Similar Documents

Publication Publication Date Title
JP5359869B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP5967057B2 (ja) 有機エレクトロルミネッセンス素子とその製造方法、照明装置及び表示装置
JP5533652B2 (ja) 白色発光有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5381719B2 (ja) 白色発光有機エレクトロルミネッセンス素子
JP5499890B2 (ja) 有機エレクトロルミネッセンス素子、及びその製造方法
JP5201054B2 (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、青色燐光発光素子、表示装置及び照明装置
JP5163642B2 (ja) 有機エレクトロルミネセンス素子
JP2013110262A (ja) 有機el素子ならびに有機elモジュールおよびその製造方法
JP2010205815A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2012096241A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6225915B2 (ja) 有機エレクトロルミネッセンス素子
JP2008282610A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2008293680A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2009076241A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5636630B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011009517A (ja) 有機エレクトロルミネッセンス素子
JP2010219410A (ja) 有機エレクトロルミネッセンス素子、それを用いた表示装置及び照明装置
JP2009152435A (ja) 白色有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
WO2018221173A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008235503A (ja) 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
JPWO2009008249A1 (ja) 発光装置
JP5867189B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5660129B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5655616B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2013172071A (ja) 有機エレクトロルミネッセンス素子及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515