WO2011155507A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2011155507A1
WO2011155507A1 PCT/JP2011/063102 JP2011063102W WO2011155507A1 WO 2011155507 A1 WO2011155507 A1 WO 2011155507A1 JP 2011063102 W JP2011063102 W JP 2011063102W WO 2011155507 A1 WO2011155507 A1 WO 2011155507A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
host
ring
carbon atoms
Prior art date
Application number
PCT/JP2011/063102
Other languages
English (en)
French (fr)
Inventor
西村 和樹
均 熊
細川 地潮
英明 長島
真樹 沼田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP11792464.7A priority Critical patent/EP2581957A1/en
Priority to US13/702,625 priority patent/US8987715B2/en
Publication of WO2011155507A1 publication Critical patent/WO2011155507A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an organic electroluminescence element.
  • This phosphorescent organic EL element achieves high luminous efficiency by utilizing the singlet state and triplet state of the excited state of the organic phosphorescent material.
  • electrons and holes are recombined in the organic EL element, it is considered that singlet excitons and triplet excitons are generated at a ratio of 1: 3 due to the difference in spin multiplicity.
  • the light emission efficiency is 3 to 4 times that of an element using only fluorescence.
  • Various studies have been made to improve the luminous efficiency of organic EL elements using phosphorescent light emitting materials.
  • One of such studies is an organic EL element having a structure in which a plurality of light emitting layers are laminated between an anode and a cathode (for example, Patent Documents 1 to 5).
  • Patent Documents 1 to 5 a carbazole host having a high triplet energy for realizing blue light emission while being excellent in electron durability is used.
  • the carbazole host described in Patent Documents 1 to 5 can emit blue light but has a short device life.
  • Patent Documents 4 to 5 suggest a configuration in which a carbazole-based host is used in combination in the light emitting layer, but have not found a measure for improving the device lifetime.
  • Patent Document 4 discloses an organic EL element having a green-red light emitting layer in which CBP and another carbazole-based host are used in combination, but the lifetime is shortened by using the host in combination. It is shown.
  • An object of the present invention is to provide an organic electroluminescence device capable of emitting blue light and having a high efficiency and a long lifetime.
  • the first host affinity Af 1 and the second host affinity Af 2 are: It is preferable that the relationship of Af 2 -Af 1 ⁇ 0.4 [eV] is satisfied.
  • the difference between the singlet energy and the triplet energy of the first host is preferably smaller than the difference between the singlet energy and the triplet energy of the second host.
  • the emission peak of the phosphorescent dopant is preferably 480 nm or less.
  • an organic electroluminescence element which can emit blue light and has a high efficiency and a long lifetime.
  • the element configuration (5) is preferably used, but is not limited thereto.
  • the above-mentioned “hole injection / transport layer” means “at least one of a hole injection layer and a hole transport layer”, and “electron injection / transport layer” means “an electron injection layer and an electron transport layer”. Means at least one of them.
  • the organic EL element 1 in this embodiment includes a transparent substrate 2, an anode 3, a cathode 4, a hole transport layer 6, a light emitting layer 5, and an electron transport layer 7. Then, the hole transport layer 6, the light emitting layer 5, the electron transport layer 7, and the cathode 4 are laminated in this order from the anode 3 side.
  • the light emitting layer 5 is laminated adjacent to each other between the hole transport layer 6 and the electron transport layer 7.
  • the light emitting layer 5 contains a first host, a second host, and a phosphorescent dopant.
  • the first host is 10 mass% (mass%) or more and 90 mass% or less
  • the second host is It is preferable that 10 mass% or more and 90 mass% or less and a phosphorescent dopant shall be 0.1 mass% or more and 30 mass% or less.
  • the triplet energy of the first host is 2.8 eV or more, and the ionization potential of the first host is 5.5 eV or less.
  • a 1st host it is preferable that it is a non-amine type compound, and also the compound shown by following formula (1) is preferable.
  • the substituent which may have a same meaning as the above-mentioned alkyl group, cycloalkyl group and aryl group), A fluoro group, A cyano group, Is mentioned. Moreover, these substituents may be further substituted with these substituents.
  • R 1 to R 6 have the same meaning as the substituent described for R in the formula (1).
  • L connects two carbazole skeletons, and is a single bond or carbon (C), nitrogen (N), oxygen (O), silicon (Si), phosphorus (P), A divalent linking group containing an atom such as sulfur (S).
  • the substituent which may have) has the same meaning as the alkyl group, cycloalkyl group and aryl group described in R of the formula (1).
  • Divalent silyl group (however, it may have a substituent.
  • the substituent which may have) has the same meaning as the alkyl group, cycloalkyl group and aryl group described in R of the formula (1).
  • these linking groups may further have a substituent.
  • the substituent which may be present has the same meaning as the substituent described for R in the formula (1).
  • the first host is more preferably a compound represented by the following formula (2).
  • R 1 and R 2 preferably do not contain an azine ring.
  • R 1 to R 6 are An aromatic heterocyclic group containing an oxygen atom as a hetero atom, An aromatic heterocyclic group containing a sulfur atom as a hetero atom, It is preferably an aromatic heterocyclic group containing an oxygen atom and a sulfur atom as a hetero atom, or a monovalent residue of N arylcarbazole.
  • the monovalent residue of N arylcarbazole is a carbazole N substituted with an aryl group, and is not bonded to the biscarbazole skeleton represented by formula (1) or formula (2) via this aryl group. It is preferable.
  • the first host is preferably a compound represented by the following formula (1A) among the compounds represented by the formula (1).
  • a 1 represents a substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms.
  • a 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms.
  • X 1 and X 2 are linking groups, independently of each other, a single bond, A substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted condensed aromatic hydrocarbon group having 6 to 30 ring carbon atoms, A substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or This represents a substituted or unsubstituted condensed aromatic heterocyclic group having 2 to 30 ring carbon atoms.
  • Y 1 to Y 4 are independently of each other, Hydrogen atom, Fluorine atom, A cyano group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted alkylsilyl group having 1 to 10 carbon atoms, A substituted or unsubstituted arylsilyl group having 6 to 30 carbon atoms, A substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, A substituted or unsubstituted condensed aromatic hydrocarbon group having 6 to 30 ring carbon atoms, A substituted or unsubstituted aromatic heterocyclic group having
  • p and q represent an integer of 1 to 4.
  • r and s each represent an integer of 1 to 3.
  • p and q are integers of 2 to 4
  • r and s are integers of 2 to 3
  • the plurality of Y 1 to Y 4 may be the same or different.
  • examples of the case where Y 1 to Y 4 form a bond with each other to form a ring structure include, for example, each structure represented by the following formula (1B).
  • the first host is preferably a compound represented by the following formula (1C) among the compounds represented by the formula (1).
  • X 1 and X 2 are each independently an oxygen atom or a sulfur atom and do not simultaneously become a sulfur atom. That is, either X 1 and X 2 are oxygen atoms, or one of X 1 and X 2 is an oxygen atom and the other is a sulfur atom.
  • R 1 to R 8 are each independently an alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 20 ring carbon atoms, An alkoxy group having 1 to 20 carbon atoms, A cycloalkoxy group having 3 to 20 ring carbon atoms, An aryl group having 6 to 18 ring carbon atoms, An aryloxy group having 6 to 18 ring carbon atoms, A heteroaryl group having 5 to 18 ring atoms, An amino group, Silyl group, Represents a fluoro group or a cyano group.
  • R 1 to R 8 in the formula (1C) may be further substituted with these substituents.
  • R 1 to R 8 in these formulas (1C) may hereinafter be collectively referred to as “substituent R 1C ”. Further, when there are a plurality of R 1 to R 8 in the formula (1C), they may be the same or different.
  • a, d, f, and h each independently represent an integer of 0 to 4.
  • b, c, d, and g each independently represent an integer of 0 to 3.
  • the sum of a to h in the formula (1C) is 6 or less.
  • L 1 in the formula (1C) is Single bond, A divalent linking group containing N, A divalent linking group containing O, A divalent linking group containing Si, A divalent linking group containing P, A divalent linking group containing S, An alkylene group having 1 to 20 carbon atoms, A cycloalkylene group having 3 to 20 ring carbon atoms, An arylene group having 6 to 18 ring carbon atoms, A heteroarylene group having 5 to 18 ring atoms, Represents a divalent amino group or a divalent silyl group.
  • L 2 and L 3 in formula (1C) are each independently a single bond, An alkylene group having 1 to 20 carbon atoms, A cycloalkylene group having 3 to 20 ring carbon atoms, An arylene group having 6 to 18 ring carbon atoms, or a heteroarylene group having 5 to 18 ring atoms, Represents.
  • L 1 , L 2 , and L 3 in Formula (1C) may be further substituted with any of the above-described substituents R 1C .
  • R 1C substituents
  • L 1 is an arylene group having 6 to 18 ring carbon atoms or a heteroarylene group having 5 to 18 ring atoms
  • each of a and b is independently 1 to Any integer of 4 is represented.
  • Examples of the alkyl group represented by R 1 to R 8 in the formula (1C) include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group.
  • Examples of the cycloalkyl group represented by R 1 to R 8 in the formula (1C) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like.
  • Examples of the alkoxy group represented by R 1 to R 8 in the formula (1C) include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and the like. It may have a chain, a ring or a branch.
  • Examples of the cycloalkoxy group represented by R 1 to R 8 in the formula (1C) include a cyclopentoxy group and a cyclohexyloxy group.
  • Examples of the aryloxy group represented by R 1 to R 8 in the formula (1C) include a phenoxy group and a biphenyloxy group.
  • Examples of the heteroaryl group represented by R 1 to R 8 in the formula (1C) include a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a pyrrolyl group, a furyl group, a thienyl group, a silylyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • Benzofuryl group imidazolyl group, pyrimidyl group, selenophenyl group, oxadiazolyl group, triazolyl group and the like.
  • the amino group of R 1 to R 8 and the silyl group in formula (1C) may be substituted with the above-described substituents.
  • the silyl group a trimethylsilyl group is preferred.
  • A, d, f and h in the formula (1C) are each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2.
  • b, c, d, and g are each independently preferably an integer of 0 to 2, and more preferably an integer of 0 to 1.
  • the sum of a to h in the formula (1C) is preferably 4 or less in consideration of sublimation property and that when the molecular weight is too large, thermal decomposition tends to occur during vapor deposition.
  • L 1 in formula (1C) a divalent linking group containing N, a divalent linking group containing O, a divalent linking group containing Si, a divalent linking group containing P, and a divalent valence containing S
  • the linking group include each linking group represented by the following formula (1D).
  • L 1 , L 2 , and L 3 in formula (1C) an alkylene group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 ring carbon atoms, an arylene group having 6 to 18 ring carbon atoms, and ring formation
  • a heteroarylene group having 5 to 18 atoms, a divalent amino group, or a divalent silyl group one hydrogen atom of the substituent of R 1 to R 8 in the formula (1C) is replaced with a bond.
  • the arylene group also includes a 9,9-fluorenylidene group.
  • Examples of the arylene group represented by L 1 , L 2 , and L 3 in Formula (1C) include a 1,4-phenylene group, a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-naphthylene group, 2,6-naphthylene group, 1,5-naphthylene group, 9,10-anthranylene group, 9,10-phenanthrenylene group, 3,6-phenanthrenylene group, 1,6-pyrenylene group, 2, Examples thereof include 7-pyrenylene group, 6,12-chrysenylene group, 4,4′-biphenylene group, 3,3′-biphenylene group, 2,2′-biphenylene group, 2,7-fluorenylene group and the like.
  • p-phenylene group (1,4-phenylene group), m-phenylene group (1,3-phenylene group), and biphenylene group are preferable.
  • heteroarylene group of L 1 , L 2 , and L 3 in the formula (1C) include a 2,5-thiophenylene group, a 2,5-silolylene group, a 2,5-oxadiazolylene group, and the like. It is done.
  • amino groups of L 1 , L 2 and L 3 in the formula (1C) an amino group, an alkylamino group, an arylamino group, an aralkylamino group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfonyl group An amino group etc. are mentioned. Among these, a biphenylamino group is preferable.
  • the linking group of L 1 , L 2 , and L 3 in Formula (1C) may further have a substituent. This substituent and the substituent R 1C in formula (1C) have the same meaning.
  • the first host is preferably a compound represented by the following formula (2E) among the compounds represented by the formula (1C).
  • the first host is preferably a compound represented by the following formula (2F). This is because the compound represented by the formula (2F) has higher chemical stability.
  • R 1a , R 4a , R 6a , and R 8a are each independently a hydrogen atom or an aryl group having 6 to 18 ring carbon atoms (the same aryl group as the above-described substituent R 1C). ).
  • R 1a , R 4a , R 6a , and R 8a are hydrogen atoms, this corresponds to the case where a, d, h, and h in Formula (1F) are 0.
  • the aryl group may be further substituted with the substituent R 1C described above.
  • X 1 , X 2 , and L 1 to L 3 are the same as in the above formula (1C).
  • L 2 and L 3 are preferably single bonds, and L 1 is also preferably a single bond. This is because if the sublimation property and the molecular weight are too large, there is a possibility that thermal decomposition is likely to occur during vapor deposition. Furthermore, regarding L 1 to L 3 in the formula (2F), from the viewpoint of low voltage and half life, In the case of “L 1 is a single bond, and L 2 and L 3 are other linking groups”, In the case where “L 2 and L 3 are a single bond and L 1 is another linking group” and “L 1 , L 2 and L 3 are all a single bond” Preferably there is.
  • X 1 and X 2 in the formulas (1C), (2E), and (2F) are preferably oxygen atoms in terms of external quantum efficiency and lifetime.
  • the compound represented by the formula (2G) among the compounds represented by the above formula (2F) is preferable as the first host from the viewpoint of low voltage and half life.
  • R 1a and R 4a each independently represent a hydrogen atom or a phenyl group which may be substituted with a methyl group.
  • L 1a is a single bond or a phenylene group.
  • R 1a and R 4a are both hydrogen atoms and L 1a is not a phenylene group.
  • the 6-position of carbazole is a hydrogen atom, and the 3-position is bonded via a single bond.
  • the first host is preferably a compound represented by the following formula (9).
  • R 1 to R 8 in the formula (9) are each hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group , Arylthioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, Or it selects from the ring structures between adjacent substituents.
  • R 1 to R 4 in the formula (9) is a linking group Y.
  • the linking group Y in Formula (9) is a single bond, an alkyl chain, an alkylene chain, a cycloalkyl chain, an aryl chain, an amino chain, a heterocyclic chain, a silyl chain, an ether chain, or a thioether chain, either alone or in combination. Chosen from things.
  • R 9 in Formula (9) is selected from hydrogen, an alkyl group, and an aryl group.
  • N in Formula (9) is a natural number of 2 or more.
  • the alkyl group in the formula (9) represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, or a butyl group, which may be unsubstituted or substituted.
  • the cycloalkyl group in the formula (9) represents a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may be unsubstituted or substituted.
  • the aralkyl group in the formula (9) represents an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group or a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon may be unsubstituted. It may be replaced.
  • the alkenyl group in Formula (9) shows the unsaturated aliphatic hydrocarbon group containing double bonds, such as a vinyl group, an allyl group, and a butadienyl group, and this may be unsubstituted or substituted.
  • the cycloalkenyl group in the formula (9) represents an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexene group. It does not matter.
  • the alkynyl group in Formula (9) shows the unsaturated aliphatic hydrocarbon group containing triple bonds, such as an acetylenyl group, and this may be unsubstituted or substituted.
  • the alkoxy group in Formula (9) shows the aliphatic hydrocarbon group through ether bonds, such as a methoxy group, and an aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the alkylthio group in the formula (9) is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the aryl ether group refers to an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted.
  • a compound having a carbazole skeleton represented by the following formula (9A) is particularly preferable. Used for.
  • R 10 to R 23 in formula (9A) are each selected from the same groups as R 1 to R 8 in formula (9).
  • R 24 and R 25 in Formula (9A) are each selected from hydrogen, an alkyl group, and an aryl group.
  • the dicarbazolyl skeletons may be bonded to each other through the substituents R 24 and R 25 .
  • Specific examples of the compound having a carbazole skeleton represented by formula (9) and formula (9A) include the following structures.
  • the first host is preferably a compound represented by the following formula (10).
  • R1 to R4 have the same meaning as R in the formula (1).
  • Ar1 and Ar2 have the same meaning as the aryl group or heteroaryl group of R in Formula (1).
  • Ar3 and Ar4 have the same meaning as the aryl group of R in Formula (1).
  • R1 to R6 have the same meaning as R in the formula (1).
  • Ar5 has the same meaning as the aryl group for R in the formula (1).
  • Ar6 has the same meaning as the hydrogen atom or the aryl group of R in the formula (1).
  • R1 to R4 have the same meaning as R in the formula (1).
  • Ar1 and Ar2 are synonymous with the aryl group or heteroaryl group of R in the formula (1).
  • Ar3 and Ar4 have the same meaning as the hydrogen atom or the aryl group of R in the formula (1).
  • HAR 31 is heteroaryl which may have a substituent.
  • m is an integer of 0 to 5, preferably an integer of 1 to 3, and more preferably 1 or 2.
  • R 31 and R 32 are an alkyl group or an aryl group which may have a substituent, and may be a ring structure in which R 31 and R 32 are bonded to each other and a benzene ring is condensed.
  • the second host is preferably a compound represented by the following formulas (4) to (8) and (8A).
  • Ar 101 to Ar 104 are An aryl group having 6 to 60 carbon atoms (which may have a substituent), A heterocyclic group having 3 to 60 carbon atoms (which may have a substituent), One of The substituent which may be present has the same meaning as the substituent described for R in the formula (1).
  • R 110 and R 111 have the same meaning as the substituent described for R in the formula (1).
  • n is one of integers from 0 to 4
  • m is one of integers from 0 to 5.
  • the sum of n and m (n + m) has a relationship of 1 ⁇ (n + m) ⁇ 5.
  • the structures in which the skeleton of the formula (8A) is linked to R 121 to R 128 are R 121 and R 122 , R 122 and R 123 , R 123 and R 124 , R 125 and R 126 , R 126 and R 127 , And at least one of R 127 and R 128 is bonded to the skeleton of formula (8A).
  • R 129 is Hydrogen atom, An aryl group, Heteroaryl group alkyl group, One of An aryl group, a heteroaryl group, and an alkyl group are synonymous with what was described by R of the said Formula (1).
  • R 10 has the same meaning as that described for R in the formula (1).
  • n represents the number of R 10 .
  • n is 0-4.
  • the second host is preferably a compound represented by the following formula (12).
  • R is hydrogen, an aliphatic alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 1 to 12 carbon atoms, or 4 to 4 carbon atoms. 14 aromatic groups. This aromatic group may be substituted with one or more alkoxy or amines.
  • the second host is preferably the following compounds (A-6) or (A-9) having a dibenzofuran skeleton.
  • the second host is preferably a compound represented by the following formula (13).
  • the second host is preferably a compound represented by the following formula (14A), (14B) or (14C).
  • R 1 to R 10 have the same meanings as the substituents described for R in the formula (1).
  • R 1 to R 4 , R 5 to R 7 , and R 8 to R 10 are adjacent to each other, or R 7 and R 8 are saturated or unsaturated.
  • An annular structure may be formed.
  • X is an oxygen atom or a sulfur atom.
  • the second host is preferably a compound represented by the following formula (16).
  • R 1 to R 9 have the same meaning as the substituent described for R in the formula (1).
  • adjacent ones of R 1 to R 4 and R 5 to R 7 may form a saturated or unsaturated cyclic structure.
  • X is an oxygen atom or a sulfur atom.
  • R 1 to R 16 are respectively synonymous with R in the formula (1). Furthermore, in the formula (17) and the formula (18), R 1 to R 16 are respectively A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, A substituted or unsubstituted aralkylamino group having 7 to 60 carbon atoms, A substituted or unsubstituted aralkylsilyl group having 8 to 40 carbon atoms, A substituted or unsubstituted alkyl germanium group having 3 to 20 carbon atoms, Substituted or unsubstituted aryl germanium group having 8 to 40 carbon atoms, A substituted or unsubstituted aralkyl germanium group having 8 to 40 carbon atoms, or a substituted or unsubstituted ketoaryl group having 7 to 40 carbon atoms, It may be
  • R 4 to R 7 and R 8 to R 12 may form a saturated or unsaturated cyclic structure.
  • R 7 to R 11 and R 12 to R 16 adjacent to each other may form a saturated or unsaturated cyclic structure.
  • X is an oxygen atom or a sulfur atom.
  • X is an oxygen atom, it is preferable that a condensed aromatic hydrocarbon group is not included in the substituent for the dibenzofuran skeleton.
  • the second host contains a compound having a carbazole ring as a partial structure, the 9th position of all carbazole rings constituting the compound is substituted, and 1 in the 1st to 8th positions of the carbazole ring.
  • One or more have a substituent represented by the following formula (19), all the carbazole rings have a substituent at the 2-position or the 3-position, and in the molecule, a benzene ring or the following formula (20) It is preferable that it is a compound which has the partial structure represented.
  • a 1 to A 3 each represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom constituting the aromatic ring represented by Ar1, and the carbon atom, the nitrogen atom, the oxygen atom
  • the sulfur atom may further have a hydrogen atom or a substituent.
  • R 1 represents a substituent, and when Ar 1 is a condensed ring, R 1 may be a part of the condensed ring.
  • X represents an oxygen atom or a sulfur atom.
  • R 3 , R 4 , R 5 and R 6 each represent a hydrogen atom or a substituent.
  • Ar represents an aromatic substituent.
  • m represents an integer of 0 to 4.
  • examples of the aromatic ring represented by Ar1 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic hydrocarbon ring include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, Examples thereof include a p-terphenyl ring, an acenaphthene ring, a coronene ring, a fluorene ring, a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyr
  • the aromatic hydrocarbon ring represented by Ar1 is preferably a benzene ring or a naphthalene ring.
  • the aromatic heterocycle includes furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring.
  • Triazole ring imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, carboline ring, diazacarbazole ring (carboline ring)
  • R1 substituent A ring in which one of the carbon atoms of the hydrocarbon ring constituting is further substituted with a nitrogen atom).
  • the aromatic substituent represented by Ar represents an aromatic hydrocarbon ring group (also referred to as an aromatic hydrocarbon group or an aryl group) or an aromatic heterocyclic group.
  • the aromatic hydrocarbon ring group include a phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl Group, biphenylyl group and the like.
  • These aromatic hydrocarbon ring groups may be unsubstituted or may have a substituent represented by R1 in the general formula (19).
  • aromatic heterocyclic group examples include pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazole-1).
  • second host examples include compounds described in International Publication Nos. 2009/050281, 2009/003898, 2008/034758, 2006/056418, 2006/130598, and 2009/085344. Can also be used.
  • At least one of the phosphorescent dopants contained in the light emitting layer has an emission wavelength peak of 420 nm or more and 720 nm or less.
  • a specific host used in the present invention with a phosphorescent dopant having such an emission wavelength to form a light emitting layer, a highly efficient organic EL device can be obtained.
  • it is preferably 420 nm or more and 480 nm or less.
  • the triplet energy of the first host and the second host is 2.8 eV or more, and the ionization potential of the first host is 5.5 eV or less.
  • the affinity Af 1 of the first host is smaller than the affinity Af 2 of the second host.
  • the compound as a 1st host and a 2nd host was mentioned above in this invention, as long as the energy relationship of such a 1st host and a 2nd host is satisfy
  • FIG. 2 shows an energy diagram of the organic EL element 1. Since the ionization potential (Ip 1 ) of the first host is 5.5 eV or less, the difference between the work function of the anode and the ionization potential of the hole transport layer becomes small. Therefore, holes are easily injected from the hole transport layer into the light emitting layer. Then, the number of holes accumulated at the interface between the hole transport layer and the light emitting layer and in the vicinity thereof decreases, and the recombination region of holes and electrons in the light emitting layer moves from the interface with the hole transport layer and the vicinity thereof to the cathode side. It can be set to a position far away from each other.
  • the ionization potential (Ip 1 ) of the first host is 5.5 eV or less although the triplet energy of the first host is as large as 2.8 eV or more. Electrons that flow into the hole transport layer 6 can be easily injected and the recombination region of holes and electrons can be not in the hole transport layer 6 side but in the light emitting layer containing a host with high carrier resistance. As a result, the hole transport layer 6 is less likely to deteriorate.
  • the first host has a triplet energy of 2.8 eV or more and an ionization potential (Ip 1 ) of the first host of 5.5 eV or less, so that the affinity Af 1 of the first host is small.
  • Ip 1 an ionization potential
  • the light emitting layer includes a second host having an affinity Af 2 greater than the affinity Af 1 of the first host together with the first host. As a result, the energy barrier is reduced and the electron injection property is increased.
  • Ionization potential The material is irradiated with light from a deuterium lamp (excitation light) dispersed with a monochromator, the emitted photoelectron emission is measured with an electrometer, and the photoelectron emission threshold from the irradiation photon energy curve of the obtained photoelectron emission is excluded. Obtained and measured by the insertion method.
  • an atmospheric ultraviolet photoelectron analyzer AC-3 manufactured by Riken Keiki Co., Ltd.
  • Triplet energy (EgT) was determined by the following method.
  • the sample placed in the quartz cell was cooled to 77 K, irradiated with excitation light, and phosphorescence was measured with respect to the wavelength.A tangent line was drawn to the short wavelength side rise of the phosphorescence spectrum, and the wavelength value was converted into an energy value.
  • the value was EgT, which was measured using Hitachi F-4500 spectrofluorometer main unit and optional equipment for low temperature measurement.
  • the measuring device is not limited to this, but the cooling device, low temperature container, excitation light source, light receiving You may measure by combining an apparatus.
  • the wavelength is converted using the following equation.
  • EgT (eV) 1239.85 / ⁇ edge “ ⁇ edge” is a phosphorescence spectrum with the vertical axis representing the phosphorescence intensity and the horizontal axis representing the wavelength, and a tangent line is drawn with respect to the short wavelength side rise of the phosphorescence spectrum, and the intersection of the tangent line and the horizontal axis. Means the wavelength value of. Unit: nm.
  • the triplet energy means the difference between the energy in the lowest excited triplet state and the energy in the ground state, and the singlet energy (sometimes referred to as an energy gap) is the energy in the lowest excited singlet state and the ground state. This is the difference in energy.
  • the hole mobility of the first host is preferably higher in order to move holes injected from the hole transport layer, and the electron mobility of the second host is electron transport. The higher one is desirable for moving electrons injected from the layer.
  • Hole mobility of the first host upon 10 4 ⁇ 10 6 V / cm of electric field is applied, is preferably 10- 4 cm 2 / Vs or more.
  • the electron mobility of the second host is preferably 10 ⁇ 5 cm 2 / Vs or more when an electric field of 10 4 to 10 6 V / cm is applied.
  • the ratio of the hole mobility of the first host to the electron mobility of the first host is preferably 1 or more and 100 or less.
  • the ratio of the electron mobility of the second host to the hole mobility of the second host is preferably 10 or more and 100 or less.
  • the ratio of the hole mobility of the first host to the hole mobility of the second host is preferably 1 or more and 1000 or less.
  • the difference between the singlet energy and the triplet energy of the first host is preferably smaller than the difference between the singlet energy and the triplet energy of the second host.
  • the method for measuring hole or electron mobility is not particularly limited. Specific methods include, for example, the Timeof flight method (a method of calculating from the measurement of the travel time of charges in the organic film), a method of calculating from the voltage characteristics of the space limited current, and the like.
  • the Timeof flight method from the electrode / organic layer (the layer made of an organic material forming the electron transport layer or the hole transport layer) / electrode structure, the transient current is irradiated by light irradiation in the absorption wavelength region of the organic layer.
  • the time characteristic (transient characteristic time) is measured, and the hole or electron mobility is calculated from the following formula.
  • Mobility (organic film thickness) 2 / (transient characteristic time / applied voltage)
  • Electric field strength (applied voltage to the element) / (organic layer thickness)
  • the organic EL element 1 is configured by laminating an anode 3, a light emitting layer 5, a cathode 4 and the like on a translucent substrate 2.
  • the substrate 2 is a substrate that supports the anode 3 and the like, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode 3 of the organic EL element 1 plays a role of injecting holes into the hole injection layer, the hole transport layer 6 or the light emitting layer 5 and has an effective work function of 4.5 eV or more. is there.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode 3 can be produced by forming a thin film of these anode materials on the substrate 2 by a method such as vapor deposition or sputtering.
  • the light transmittance in the visible region of the anode 3 is greater than 10%.
  • the sheet resistance of the anode 3 is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode 3 depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode 4 can also be produced by forming a thin film on the electron transport layer 7 by a method such as vapor deposition or sputtering. Further, it is possible to adopt a mode in which light emission from the light emitting layer 5 is taken out from the cathode 4 side.
  • the transmittance of light in the visible region of the cathode 4 is larger than 10%.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less.
  • the thickness of the cathode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • a hole injection layer, a hole transport layer, an electron injection layer, and the like may be provided as necessary in order to further increase current (or light emission) efficiency.
  • a hole transport layer 6 and an electron transport layer 7 are provided.
  • a well-known organic material can be used as a conventional organic EL material. Specific examples include amine derivatives, stilbene derivatives, silazane derivatives, polysilanes, aniline copolymers, and the like.
  • the ionization potential Ip H of the adjacent layer (hole injection layer, hole transport layer, etc.) provided adjacent to the anode side of the light emitting layer is It is preferable that the ionization potential Ip 1 of the first host satisfies the relationship of the following formula. 0eV ⁇ Ip H ⁇ Ip 1 ⁇ 0.3 eV
  • the affinity Af E of the adjacent layer (electron injection layer, electron transport layer, etc.) provided adjacent to the cathode side of the light emitting layer is the second host. It is preferable to satisfy the affinity Af 2 and the following equation relationship. 0 eV ⁇ Af E ⁇ Af 2 ⁇ 0.4 eV
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following general formula (I) is preferably used.
  • Ar 1 to Ar 4 are An aromatic hydrocarbon group having 6 to 50 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent); An aromatic heterocyclic group having 2 to 40 ring carbon atoms or a condensed aromatic heterocyclic group (which may have a substituent), or A group in which these aromatic hydrocarbon group or condensed aromatic hydrocarbon group and aromatic heterocyclic group or condensed aromatic heterocyclic group are bonded, Represents.
  • aromatic amines of the following general formula (II) are also preferably used for forming the hole injection layer or the hole transport layer.
  • the electron injection layer or the electron transport layer is a layer that assists the injection of electrons into the light emitting layer, and has a high electron mobility.
  • the electron injection layer is provided to adjust the energy level, for example, to alleviate a sudden change in the energy level.
  • the organic EL device of the present invention preferably has an electron injection layer between the light emitting layer and the cathode, and the electron injection layer preferably contains a nitrogen-containing ring derivative as a main component.
  • the electron injection layer may be a layer that functions as an electron transport layer. “As a main component” means that the electron injection layer contains 50% by mass or more of a nitrogen-containing ring derivative.
  • an aromatic heterocyclic compound containing at least one hetero atom in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • a nitrogen-containing ring metal chelate complex represented by the following formula (A) is preferable.
  • R 2 to R 7 in the general formula (A) are independently Hydrogen atom, Halogen atoms, An oxy group, An amino group, A hydrocarbon group having 1 to 40 carbon atoms, An alkoxy group, An aryloxy group, An alkoxycarbonyl group, or An aromatic heterocyclic group, These may be substituted.
  • the halogen atom include fluorine, chlorine, bromine, iodine and the like.
  • the optionally substituted amino group include an alkylamino group, an arylamino group, and an aralkylamino group.
  • the alkoxycarbonyl group is represented as —COOY ′, and examples of Y ′ include the same as the alkyl group.
  • the alkylamino group and the aralkylamino group are represented as —NQ 1 Q 2 .
  • Specific examples of Q 1 and Q 2 are independently the same as those described for the alkyl group and the aralkyl group (a group in which a hydrogen atom of an alkyl group is substituted with an aryl group). Preferred examples Is the same.
  • One of Q 1 and Q 2 may be a hydrogen atom.
  • the aralkyl group is a group in which a hydrogen atom of the alkyl group is substituted with the aryl group.
  • the arylamino group is represented by —NAr 1 Ar 2, and specific examples of Ar 1 and Ar 2 are the same as those described for the non-condensed aromatic hydrocarbon group and the condensed aromatic hydrocarbon group, respectively.
  • One of Ar 1 and Ar 2 may be a hydrogen atom.
  • M is aluminum (Al), gallium (Ga) or indium (In), and is preferably In.
  • L in the above formula (A) is a group represented by the following formula (A ′) or (A ′′).
  • R 8 to R 12 are independently It is a hydrogen atom or a hydrocarbon group having 1 to 40 carbon atoms (however, it may have a substituent), and groups adjacent to each other may form a cyclic structure.
  • R 13 to R 27 are independently A hydrogen atom, or a hydrocarbon group having 1 to 40 carbon atoms (however, it may have a substituent), Adjacent groups may form a cyclic structure.
  • Examples of the hydrocarbon group having 1 to 40 carbon atoms represented by R 8 to R 12 and R 13 to R 27 in the formula (A ′) and the formula (A ′′) include R 2 to R 7 in the formula (A). The same thing as the specific example of is mentioned.
  • examples of the divalent group include a tetramethylene group, a pentamethylene group, a hexamethylene group, diphenylmethane-2,2
  • examples include a '-diyl group, a diphenylethane-3,3'-diyl group, and a diphenylpropane-4,4'-diyl group.
  • the electron transport layer preferably contains at least one of nitrogen-containing heterocyclic derivatives represented by the following formulas (201) to (203).
  • R is Hydrogen atom, An aromatic hydrocarbon group having 6 to 60 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent); Pyridyl group (however, it may have a substituent), A quinolyl group (however, it may have a substituent), An alkyl group having 1 to 20 carbon atoms (which may have a substituent), or an alkoxy group having 1 to 20 carbon atoms (which may have a substituent); n is an integer of 0-4.
  • R 1 is An aromatic hydrocarbon group having 6 to 60 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent); Pyridyl group (however, it may have a substituent), A quinolyl group (however, it may have a substituent), An alkyl group having 1 to 20 carbon atoms (which may have a substituent), or an alkoxy group having 1 to 20 carbon atoms (which may have a substituent);
  • R 2 and R 3 are independently Hydrogen atom, An aromatic hydrocarbon group having 6 to 60 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent); Pyridyl group (however, it may have a substituent), A quinolyl group (however, it may have a substituent), An alkyl group having 1 to 20 carbon atoms (which may have a substituent), or an alkoxy group having 1 to 20 carbon atoms (which may have a substituent);
  • L is An aromatic hydrocarbon group having 6 to 60 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent); Pyridinylene group (however, it may have a substituent), A quinolinylene group (which may have a substituent), or a fluorenylene group (which may have a substituent);
  • Ar 1 is An aromatic hydrocarbon group having 6 to 60 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent), or a pyridinylene group or a quinolinylene group (however, having a substituent) Good.)
  • Ar 2 is An aromatic hydrocarbon group having 6 to 60 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent); Pyridyl group (however, it may have a substituent), A quinolyl group (however, it may have a substituent), An alkyl group having 1 to 20 carbon atoms (which may have a substituent), or an alkoxy group having 1 to 20 carbon atoms (which may have a substituent);
  • Ar 3 is An aromatic hydrocarbon group having 6 to 60 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent); Pyridyl group (however, it may have a substituent), A quinolyl group (however, it may have a substituent), An alkyl group having 1 to 20 carbon atoms (however, it may have a substituent), An alkoxy group having 1 to 20 carbon atoms (which may have a substituent), or a group represented by —Ar 1 —Ar 2 (Ar 1 and Ar 2 are the same as defined above), respectively.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) aluminum is used.
  • 8-quinolinol or 8-hydroxyquinoline a metal chelate oxinoid compound containing a chelate of oxine
  • tris (8-quinolinol) aluminum is used.
  • an oxadiazole derivative the following can be mentioned.
  • Ar 17 , Ar 18 , Ar 19 , Ar 21 , Ar 22 and Ar 25 each represents an aromatic hydrocarbon group having 6 to 40 ring carbon atoms or a condensed aromatic hydrocarbon group which may have a substituent.
  • Ar 17 and Ar 18 , Ar 19 and Ar 21 , Ar 22 and Ar 25 may be the same as or different from each other.
  • the aromatic hydrocarbon group having 6 to 40 ring carbon atoms or the condensed aromatic hydrocarbon group examples thereof include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • Examples of the substituent for these include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • Ar 20 , Ar 23 and Ar 24 each represent a divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 40 ring carbon atoms which may have a substituent, and Ar 23 and Ar 24 May be the same as or different from each other.
  • Examples of the divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • Examples of the substituent for these include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • electron transfer compounds those having good thin film forming properties are preferably used.
  • Specific examples of these electron transfer compounds include the following.
  • the nitrogen-containing heterocyclic derivative as the electron transfer compound is a nitrogen-containing heterocyclic derivative composed of an organic compound having the following general formula, and includes a nitrogen-containing compound that is not a metal complex.
  • a 5-membered or 6-membered ring containing a skeleton represented by the following formula (B1) and a structure represented by the following formula (B2) can be given.
  • X represents a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 each independently represents an atomic group capable of forming a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocyclic derivative is more preferably an organic compound having a nitrogen-containing aromatic polycyclic group consisting of a 5-membered ring or a 6-membered ring. Further, in the case of such a nitrogen-containing aromatic polycyclic group having a plurality of nitrogen atoms, the nitrogen-containing compound having a skeleton in which the above formulas (B1) and (B2) or the above formula (B1) and the following formula (C) are combined. Aromatic polycyclic organic compounds are preferred.
  • the nitrogen-containing group of the nitrogen-containing aromatic polycyclic organic compound is selected from, for example, nitrogen-containing heterocyclic groups represented by the following general formula.
  • R is An aromatic hydrocarbon group having 6 to 40 ring carbon atoms or a condensed aromatic hydrocarbon group, An aromatic heterocyclic group having 2 to 40 ring carbon atoms or a condensed aromatic heterocyclic group, An alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is an integer of 2 or more, a plurality of Rs are the same or different from each other. May be.
  • preferred specific compounds include nitrogen-containing heterocyclic derivatives represented by the following formula (D).
  • HAr-L 1 -Ar 1 -Ar 2 (D)
  • HAr is a nitrogen-containing heterocyclic group having 1 to 40 ring carbon atoms (however, it may have a substituent).
  • L 1 is Single bond, An aromatic hydrocarbon group having 6 to 40 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent), or an aromatic heterocyclic group having 2 to 40 ring carbon atoms or a condensed ring An aromatic heterocyclic group (however, it may have a substituent).
  • Ar 1 is A divalent aromatic hydrocarbon group having 6 to 40 ring carbon atoms (however, it may have a substituent).
  • Ar 2 is An aromatic hydrocarbon group having 6 to 40 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent), or an aromatic heterocyclic group having 2 to 40 ring carbon atoms or a condensed ring An aromatic heterocyclic group (however, it may have a substituent).
  • HAr is selected from the following group, for example.
  • L 1 is selected from the following group, for example.
  • Ar 1 is selected from, for example, the following arylanthranyl groups.
  • R 1 to R 14 are independently Hydrogen atom, Halogen atoms, An alkyl group having 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 40 ring carbon atoms, An aromatic hydrocarbon group having 6 to 40 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent), or an aromatic heterocyclic group having 2 to 40 ring carbon atoms or a condensed ring An aromatic heterocyclic group (which may have a substituent);
  • Ar 3 is An aromatic hydrocarbon group having 6 to 40 ring carbon atoms or a condensed aromatic hydrocarbon group (which may have a substituent), or an aromatic heterocyclic group having 2 to 40 ring carbon atoms or a condensed ring An aromatic heterocyclic group (however, it may have a substituent).
  • R 1 to R 8 may be nitrogen-containing heterocyclic derivatives each of which is a hydrogen atom.
  • Ar 2 is selected from the following group, for example.
  • R 1 , R 2 , R 3 and R 4 are the same or different groups, and are an aromatic hydrocarbon group or a condensed aromatic hydrocarbon group represented by the following formula.
  • R 5 , R 6 , R 7 , R 8 and R 9 are the same or different groups, and a hydrogen atom or at least one of them is a saturated or unsaturated alkoxyl group, an alkyl group, an amino group Or an alkylamino group.
  • the electron transfer compound may be a polymer compound containing the nitrogen-containing heterocyclic group or the nitrogen-containing heterocyclic derivative.
  • the film thickness of the electron injection layer or the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm.
  • an insulator or a semiconductor as an inorganic compound as a constituent of the electron injection layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the organic EL device of the present invention preferably has a reducing dopant in the interface region between the cathode and the organic thin film layer. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the reducing dopant was selected from alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earth metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like. There is at least one kind.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxydiaryloxadiazole, hydroxydiarylthiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but not limited thereto.
  • the addition form of the reducing dopant it is preferable to form a layered or island-like shape in the interface region.
  • a formation method a method in which a reducing dopant is deposited in the organic material by simultaneously depositing a light emitting material forming an interface region or an organic material that is an electron injection material while depositing a reducing dopant by a resistance heating vapor deposition method is preferable.
  • the reducing dopant is vapor-deposited alone by resistance heating vapor deposition, preferably the layer thickness is 0. It is formed at 1 nm to 15 nm.
  • the reducing dopant is vapor-deposited by resistance heating vapor deposition alone, preferably the thickness of the island The film is formed at 0.05 nm to 1 nm.
  • the thickness of each layer provided between the anode and the cathode is not particularly limited except for those specifically defined in the above description. However, if the thickness is too thick, a high applied voltage is required and the efficiency is deteriorated. Therefore, the range of several nm to 1 ⁇ m is usually preferable.
  • each layer can be formed by a vacuum deposition method, a casting method, a coating method, a spin coating method, or the like.
  • a solution in which an organic material of each layer is dispersed in a transparent polymer such as polycarbonate, polyurethane, polystyrene, polyarylate, and polyester, the organic material and the transparent polymer are simultaneously used. It can also be formed by vapor deposition.
  • the present invention is not limited to the above description, and modifications within a range not departing from the gist of the present invention are included in the present invention.
  • the organic EL element provided with the hole transport layer between the anode and the light emitting layer has been described as an example, but the present invention is not limited thereto. That is, not only the hole transport layer but also a configuration provided with an adjacent layer adjacent to the light emitting layer may be provided between the anode and the light emitting layer. According to the present invention, it is possible to prevent the adjacent layer from being deteriorated due to such injection of electrons into the adjacent layer, and to prolong the lifetime of the organic EL element. Moreover, the structure provided with adjacent layers, such as an electron injection layer, between the light emitting layer and the cathode may be sufficient.
  • Example 1 The organic EL element according to Example 1 was manufactured as follows. A glass substrate with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. . The glass substrate with the transparent electrode line after the cleaning was mounted on a substrate holder of a vacuum deposition apparatus, and the compound HT was first laminated so as to cover the transparent electrode on the surface on which the transparent electrode line was formed. Thereby, a 10 nm thick hole transport layer was formed.
  • compound PBH-01 as the first host compound PBH-04 as the second host, and compound BD1 as the phosphorescent dopant were co-evaporated.
  • the proportions of Compound PBH-01, Compound PBH-04, and Compound BD1 contained in the light emitting layer were 45% by mass, 45% by mass, and 10% by mass, respectively.
  • a light emitting layer having a thickness of 40 nm and emitting blue light was formed.
  • compound PBH-04 was laminated on the light emitting layer to form an exciton blocking layer having a thickness of 5 nm. This is a layer for preventing diffusion of triplet energy from the light emitting layer.
  • the compound ET was stacked on the exciton blocking layer to form an electron transport layer having a thickness of 30 nm. Further, lithium fluoride (LiF) was deposited at a rate of 1 ⁇ / min to form an electron injecting cathode having a thickness of 1 nm. Further, metal aluminum (Al) was deposited on the electron injecting cathode to form a cathode having a thickness of 80 nm.
  • LiF lithium fluoride
  • Al metal aluminum
  • the organic EL element has a high driving voltage, low luminous efficiency, and a particularly short lifetime.
  • the organic EL element of Comparative Example 3 was an organic EL element having a high driving voltage, low luminous efficiency, and short life, among other Comparative Examples. This is because the organic EL element of Comparative Example 3 has a host ionization potential of 5.5 eV corresponding to the first host, so holes are efficiently injected into the light emitting layer, but the light emitting layer contains the second host. This is probably because electrons were not efficiently injected from the hole transport layer to the light emitting layer.
  • the electron injection property is low, the holes injected into the light emitting layer cannot be efficiently recombined with electrons in the light emitting layer, the light emitting efficiency is lowered, and the recombination region of holes and electrons is the electron transport layer. This is considered to be due to the deterioration of the compound of the electron transport layer having a low hole resistance due to the interface region between the light emitting layer and the light emitting layer.
  • the organic EL element of the present invention can emit blue light and can be used as an organic EL element with high efficiency and long life.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陽極(3)と陰極(4)との間に発光層(5)を有する有機エレクトロルミネッセンス素子(1)であって、発光層(5)は、第一ホストと第二ホストと燐光発光性ドーパントとを含み、第一ホスト及び第二ホストの三重項エネルギーは、それぞれ2.8eV以上であり、第一ホストのイオン化ポテンシャルは、5.5eV以下であり、第一ホストのアフィニティAfは、第二ホストのアフィニティAfよりも小さいことを特徴とする。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下エレクトロルミネッセンスをELと略記することがある)は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。
 また、有機EL素子の発光層に有機燐光材料を利用する、燐光型有機EL素子が提案されている。この燐光型有機EL素子は、有機燐光材料の励起状態の一重項状態と三重項状態とを利用することにより、高い発光効率が達成される。有機EL素子内で電子と正孔とが再結合する際には、スピン多重度の違いから一重項励起子と三重項励起子とが1:3の割合で生成すると考えられているので、燐光性の発光材料を用いれば蛍光のみを使った素子の3~4倍の発光効率の達成が考えられる。
 そして、燐光性の発光材料を用いた有機EL素子の発光効率を向上させるために様々な検討がなされている。
 そのような検討の内の一つとして、陽極と陰極との間で、複数の発光層を積層させた構成の有機EL素子が挙げられる(例えば、特許文献1~5)。
特開2008-84913号公報 特開2010-34484号公報 国際公開第2005/079118号 特開2008-181937号公報 特開2008-282610号公報
 特許文献1~5に記載された有機EL素子では、電子耐久性に優れるとともに、青色発光を実現するための3重項エネルギーの大きいカルバゾール系のホストが用いられている。
 しかしながら、特許文献1~5に記載された当該カルバゾール系のホストでは、青色発光が可能となったものの、素子寿命が短い。
 また、特許文献4~5では、発光層においてカルバゾール系のホストを併用する構成が示唆されているものの、素子寿命を向上させる方策を見出せていない。特に、特許文献4では、CBPと他のカルバゾール系のホストとを併用した緑赤色発光層を有する有機EL素子が示されているが、いずれもホストを併用することで寿命が却って短くなったことが示されている。
 本発明の目的は、青色発光が可能であり、高効率かつ長寿命の有機エレクトロルミネッセンス素子を提供することである。
 本発明の有機エレクトロルミネッセンス素子は、陽極と陰極との間に発光層を有する有機エレクトロルミネッセンス素子であって、
 前記発光層は、第一ホストと第二ホストと燐光発光性ドーパントとを含み、
 前記第一ホスト及び前記第二ホストの三重項エネルギーは、それぞれ2.8eV以上であり、
 前記第一ホストのイオン化ポテンシャルは、5.5eV以下であり、
 前記第一ホストのアフィニティAfは、前記第二ホストのアフィニティAfよりも小さい
 ことを特徴とする。
 本発明において、
 前記第一ホストのアフィニティAf及び前記第二ホストのアフィニティAfは、
 Af-Af≧0.4[eV]の関係を満たすことが好ましい。
 本発明において、
 前記第一ホストの一重項エネルギーと三重項エネルギーとの差が、前記第二ホストの一重項エネルギーと三重項エネルギーとの差よりも小さい
 ことが好ましい。
 本発明において、
 前記燐光発光性ドーパントの発光ピークが480nm以下である
 ことが好ましい。
 本発明によれば、青色発光が可能であり、高効率かつ長寿命の有機エレクトロルミネッセンス素子を提供することができる。
本発明に係る実施形態における有機エレクトロルミネッセンス素子の一例の概略構成を示す図。 前記実施形態における有機エレクトロルミネッセンス素子のエネルギーダイアグラムを示す図。
 以下、本発明の実施形態について説明する。
<有機エレクトロルミネッセンス素子の構成>
 以下、本発明の有機エレクトロルミネッセンス素子(以下、有機EL素子と称する)の素子構成について説明する。
 有機EL素子の代表的な素子構成としては、
(1)陽極/発光層/陰極
(2)陽極/正孔注入層/発光層/陰極
(3)陽極/発光層/電子注入・輸送層/陰極
(4)陽極/正孔注入層/発光層/電子注入・輸送層/陰極
(5)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極などの構造を挙げることができる。
 上記の中で(5)の素子構成が好ましく用いられるが、これらに限定されるものではない。
 なお、上記「正孔注入・輸送層」は「正孔注入層および正孔輸送層の少なくともいずれか1つ」を意味し、「電子注入・輸送層」は「電子注入層および電子輸送層の少なくともいずれか1つ」を意味する。
 次に、本実施形態における有機EL素子1を図1に示す。
 有機EL素子1は、透明な基板2と、陽極3と、陰極4と、正孔輸送層6と、発光層5と、電子輸送層7とを備える。
 そして、陽極3側から順に、正孔輸送層6、発光層5、電子輸送層7、及び陰極4が積層される。
〔発光層〕
 発光層5は、正孔輸送層6と電子輸送層7との間に、それぞれに対して隣接して積層される。
 発光層5は、第一ホストと第二ホストと燐光発光性ドーパントとを含有する。
 ここで、第一ホストは、10質量%(mass%)以上90質量%以下、第二ホストは、
10質量%以上90質量%以下、燐光発光性ドーパントは、0.1質量%以上30質量%以下とするのが好ましい。
(第一ホスト)
 本発明において、第一ホストの三重項エネルギーは、2.8eV以上であるとともに、第一ホストのイオン化ポテンシャルは、5.5eV以下である。
 そして、このような第一ホストとしては、非アミン系の化合物であることが好ましく、さらに、下記式(1)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、Rは、カルバゾール骨格、及びLのいずれかに対して置換し得る置換基である。nは、Rの数を表す。nは、0~6であり、好ましくは、0~4である。nが2以上の場合には、Rはそれぞれ異なっていてもよい。
 Rとしては、
  炭素数1~20のアルキル基、
  炭素数3~20のシクロアルキル基、
  炭素数1~20のアルコキシ基、
  炭素数3~20のシクロアルコキシ基、
  炭素数6~18のアリール基、
  炭素数6~18のアリールオキシ基、
  炭素数5~18のヘテロアリール基(カルバゾール、ジベンゾフラン、ジベンゾチオフェンを含む)、
  アミノ基(但し、置換基を有しても良い。有してもよい置換基は、前記のアルキル基、シクロアルキル基、アリール基と同義。)、
  シリル基(但し、置換基を有しても良い。有してもよい置換基は、前記のアルキル基、シクロアルキル基、アリール基と同義。)、
  フルオロ基、
  シアノ基、
が挙げられる。
 また、これらの置換基が、さらにこれらの置換基によって置換されていても良い。
 式(1)において、R~Rは、前記式(1)のRで述べた置換基と同義である。
 式(1)において、Lは、2つのカルバゾール骨格を連結するものであって、単結合、もしくは炭素(C)、窒素(N)、酸素(O)、ケイ素(Si)、リン(P)、硫黄(S)等の原子を含む二価の連結基である。
 例えば、
  酸素(O)原子、
  硫黄(S)原子、
  スルホキシド基、
  二価のホスホキシド基、
  二価の炭素数1~20のアルキレン基、
  二価の炭素数3~20のシクロアルキレン基、
  二価の炭素数6~18のアリーレン基、
  二価の炭素数5~18のヘテロアリーレン基(カルバゾール、ジベンゾフラン、ジベンゾチオフェンを含む)、
  二価のアミノ基(但し、置換基を有しても良い。有してもよい置換基は、前記式(1)のRで述べた、アルキル基、シクロアルキル基、アリール基と同義。)、
  二価のシリル基(但し、置換基を有しても良い。有してもよい置換基は、前記式(1)のRで述べた、アルキル基、シクロアルキル基、アリール基と同義。)、
が挙げられる。
 また、これらの連結基が、さらに置換基を有してもよい。有してもよい置換基は前記式(1)のRで述べた置換基と同義である。
 式(1)において、Rは、水素原子であってもよい。なお、本明細書中、「水素」という場合、重水素も含むものである。
 式(1)において、Rとしてのアリール基(芳香族炭化水素基)は、環形成炭素数が6~30であってもよい。なお、アリール基には、縮合環構造のものを含む。
 式(1)において、Rとしてのアルキル基、及びアルコキシ基は、ハロゲンで置換されたハロアルキル基、及びハロアルコキシ基であってもよい。
 式(1)において、Rとしてのヘテロアリール基(芳香族複素環基)は、環形成炭素数が2~30であってもよい。なお、ヘテロアリール基には、縮合環構造のものを含む。
 式(1)において、R、及びRは、カルバゾール骨格のN位(9位)に対して直接又は連結基を介して結合されていても良い。この連結基としては、後述の式(1A)におけるX、X、及び後述の式(1C)におけるL、Lで示されているものが挙げられる。
 式(1)において、カルバゾール骨格に置換されている置換基の内、隣接する置換基同士が互いに結合を形成し、環構造を形成しても良い。
 さらに、本発明において、第一ホストとしては、下記式(2)で示される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(2)におけるR、R~Rは、前記式(1)のRで述べたものと同義であり、
 nは、前記式(1)のnで述べたものと同義であり、
 Lは、前記式(1)のLで述べたものと同義である。(但し、Lは2つのカルバゾール骨格の位置番号が3の炭素原子同士を連結する。)
 式(1)または式(2)において、R、及びRは、アジン環を含まないことが好ましい。
 式(1)または式(2)において、R~Rは、
  酸素原子をヘテロ原子として含む芳香族複素環基、
  硫黄原子をヘテロ原子として含む芳香族複素環基、
  酸素原子、及び硫黄原子をヘテロ原子として含む芳香族複素環基、または
  Nアリールカルバゾールの一価残基
であることが好ましい。ここで、Nアリールカルバゾールの一価残基は、カルバゾールのNにアリール基が置換したものであり、このアリール基を介して式(1)または式(2)で示されるビスカルバゾール骨格に結合しないことが好ましい。
 本発明において、第一ホストとしては、式(1)で示される化合物の内、下記式(1A)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(1A)において、Aは、環形成炭素数1~30の置換又は無置換の含窒素複素環基を表す。
 式(1A)において、Aは、環形成炭素数6~30の置換もしくは無置換の芳香族炭化水素基、又は環形成炭素数1~30の置換もしくは無置換の含窒素複素環基を表す。
 式(1A)において、X,Xは、連結基であり、互いに独立して
  単結合、
  環形成炭素数6~30の置換もしくは無置換の芳香族炭化水素基
  環形成炭素数6~30の置換もしくは無置換の縮合芳香族炭化水素基、
  環形成炭素数2~30の置換もしくは無置換の芳香族複素環基、又は、
  環形成炭素数2~30の置換もしくは無置換の縮合芳香族複素環基
を表す。
 式(1A)において、Y~Yは、互いに独立して、
  水素原子、
  フッ素原子、
  シアノ基、
  炭素数1~20の置換もしくは無置換のアルキル基、
  炭素数1~20の置換もしくは無置換のアルコキシ基、
  炭素数1~20の置換もしくは無置換のハロアルキル基、
  炭素数1~20の置換もしくは無置換のハロアルコキシ基、
  炭素数1~10の置換もしくは無置換のアルキルシリル基、
  炭素数6~30の置換もしくは無置換のアリールシリル基、
  環形成炭素数6~30の置換もしくは無置換の芳香族炭化水素基、
  環形成炭素数6~30の置換もしくは無置換の縮合芳香族炭化水素基、
  環形成炭素数2~30の置換もしくは無置換の芳香族複素環基、又は、
  環形成炭素数2~30の置換もしくは無置換の縮合芳香族複素環基
を表す。
 なお、式(1A)において、隣接するY~Y同士が互いに結合を形成し、環構造を形成しても良い。
 式(1A)において、p,qは、1~4の整数を表す。
 式(1A)において、r,sは、1~3の整数を表す。
 なお、p,qが2~4の整数、r,sが2~3の整数の場合、複数のY~Yは、それぞれ同一でも異なっても良い。
 ここで、Y~Y同士が互いに結合を形成し、環構造を形成する場合としては、例えば、以下の式(1B)で表される各構造があげられる。
Figure JPOXMLDOC01-appb-C000004
 また、本発明において、第一ホストとしては、式(1)で示される化合物の内、下記式(1C)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(1C)において、X、及びXは、それぞれ独立して酸素原子又は硫黄原子であって、同時に硫黄原子になることはない。すなわち、X、及びXがどちらも酸素原子となる場合か、X、及びXの一方が酸素原子で、他方が硫黄原子となる場合である。
 式(1C)において、R~Rは、それぞれ独立して
  炭素数1~20のアルキル基、
  環形成炭素数3~20のシクロアルキル基、
  炭素数1~20のアルコキシ基、
  環形成炭素数3~20のシクロアルコキシ基、
  環形成炭素数6~18のアリール基、
  環形成炭素数6~18のアリールオキシ基、
  環形成原子数5~18のヘテロアリール基、
  アミノ基、
  シリル基、
  フルオロ基、又は
  シアノ基
を表す。式(1C)におけるR~Rは、さらにこれらの置換基で置換されていてもよい。なお、これらの式(1C)におけるR~Rを、以下、まとめて「置換基R1C」ということがある。また、式(1C)におけるR~Rのそれぞれが複数ある場合は、それぞれ同一でも異なっていてもよい。
 式(1C)におけるa、d、f、及びhは、それぞれ独立して0~4のいずれかの整数を表す。
 式(1C)におけるb、c、d、及びgは、それぞれ独立して0~3のいずれかの整数を表す。
 式(1C)におけるa~hの合計は、6以下である。
 式(1C)におけるLは、
  単結合、
  Nを含む2価の連結基、
  Oを含む2価の連結基、
  Siを含む2価の連結基、
  Pを含む2価の連結基、
  Sを含む2価の連結基、
  炭素数1~20のアルキレン基、
  環形成炭素数3~20のシクロアルキレン基、
  環形成炭素数6~18のアリーレン基、
  環形成原子数5~18のヘテロアリーレン基、
  2価のアミノ基、又は
  2価のシリル基
を表す。
 式(1C)におけるL、及びLは、それぞれ独立して
  単結合、
  炭素数1~20のアルキレン基、
  環形成炭素数3~20のシクロアルキレン基、
  環形成炭素数6~18のアリーレン基、又は
  環形成原子数5~18のヘテロアリーレン基、
を表す。
 式(1C)におけるL、L、及びLは、さらに、上述の置換基R1Cのいずれかで置換されていてもよい。
 但し、式(1C)において、Lが環形成炭素数6~18のアリーレン基又は環形成原子数5~18のヘテロアリーレン基である場合は、a、及びbは、それぞれ独立して1~4のいずれかの整数を表す。
 ここで、式(1C)のように、カルバゾール骨格のN位(9位)でジベンゾフラニル基又はジベンゾチオフェニル基が直接又は連結基を介して結合することで、ジベンゾフラン又はジベンゾチオフェンのLUMO準位が深くなり、本発明の有機EL素子の発光層などへの電子の注入が容易になる。これにより、キャリアバランス調整が容易になり、本発明の効果が良好に奏される。
 式(1C)におけるR~Rのアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられる。
 式(1C)におけるR~Rのシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。
 式(1C)におけるR~Rのアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは、直鎖状、環状又は分岐を有するものでもよい。
 式(1C)におけるR~Rのシクロアルコキシ基としては、シクロペントキシ基、シクロヘキシルオキシ基等が挙げられる。
 式(1C)におけるR~Rのアリール基としては、フェニル基、トリル基、キシリル基、メシチル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、o-ターフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基等が挙げられる。これらの中でも、フェニル基やメシチル基が好ましい。
 式(1C)におけるR~Rのアリールオキシ基としては、フェノキシ基、ビフェニルオキシ基等が挙げられる。
 式(1C)におけるR~Rのヘテロアリール基としては、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ピローリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフリル基、イミダゾリル基、ピリミジル基、セレノフェニル基、オキサジアゾリル基、トリアゾーリル基等が挙げられる。
 式(1C)におけるR~Rのアミノ基、及びシリル基は、上述のような置換基で置換されていてもよい。シリル基については、トリメチルシリル基が好ましい。
 式(1C)におけるa、d、f、及びhは、それぞれ独立して0~3のいずれかの整数であることが好ましく、0~2のいずれかの整数であることがより好ましい。
 式(1C)におけるb、c、d、及びgは、それぞれ独立して0~2のいずれかの整数であることが好ましく、0~1のいずれかの整数であることがより好ましい。
 さらに、式(1C)におけるa~hの合計は、昇華性、及び分子量が大きすぎると蒸着の際に熱分解を伴いやすくなることを考慮して、4以下であることが好ましい。
 式(1C)におけるLの、Nを含む2価の連結基、Oを含む2価の連結基、Siを含む2価の連結基、Pを含む2価の連結基、Sを含む2価の連結基としては、下記式(1D)で示された各連結基が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(1D)で示された各式において、R、R、及びRは、それぞれ独立に、水素原子又は上述の置換基R1Cから選ばれる基である。また、Rは、酸素原子である。
 式(1D)で示された各式の中では、「-S-」基(スルフィド基)、ホスホキシド基、及びエーテル基が好ましい。
 式(1C)におけるL、L、及びLの、炭素数1~20のアルキレン基、環形成炭素数3~20のシクロアルキレン基、環形成炭素数6~18のアリーレン基、環形成原子数5~18のヘテロアリーレン基、2価のアミノ基、又は2価のシリル基としては、式(1C)における上述のR~Rの置換基の1つの水素原子を結合手で置き換えたものが挙げられる。
 また、本発明においては、アリーレン基には、9,9-フルオレニリデン基も含まれる。
 式(1C)におけるL、L、及びLのアリーレン基としては、例えば、1,4-フェニレン基、1,2-フェニレン基、1,3-フェニレン基、1,4-ナフチレン基、2,6-ナフチレン基、1,5-ナフチレン基、9,10-アントラニレン基、9,10-フェナントレニレン基、3,6-フェナントレニレン基、1,6-ピレニレン基、2,7-ピレニレン基、6,12-クリセニレン基、4,4’-ビフェニレン基、3,3’-ビフェニレン基、2,2’-ビフェニレン基、2,7-フルオレニレン基等が挙げられる。これらの中でも、p-フェニレン基(1,4-フェニレン基)、m-フェニレン基(1,3-フェニレン基)、ビフェニレン基が好適である。
 式(1C)におけるL、L、及びLのヘテロアリーレン基としては、例えば、2,5-チオフェニレン基、2,5-シローリレン基、2,5-オキサジアゾーリレン基等が挙げられる。
 式(1C)におけるL、L、及びLのアミノ基としては、アミノ基、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基等が挙げられる。これらの中でも、ビフェニルアミノ基が好適である。
 式(1C)におけるL、L、及びLの連結基は、さらに置換基を有してもよい。この置換基と、式(1C)における置換基R1Cとは、同義である。
 本発明において、第一ホストとしては、式(1C)で示される化合物の内、下記式(2E)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(2)や式(2E)で示される化合物のように、2個のカルバゾリル基が、互いに3位で、直接又は連結基を介して結合する場合の利点としては、下記の通りである。
  (1)合成上の利便性が高い。
  (2)カルバゾールの3位、及び6位は、化学的安定性に劣る部位であり、3位、及び6位のうち一方でも水素原子以外の置換基を導入することで化学的安定性を高められる可能性がある。このため、さらに6位にも置換基を導入した構造は、さらに好ましい。
  (3)3位でカルバゾールが単結合を介して結合した場合は、2つのカルバゾール上の窒素原子同士が共役することによってHOMO準位が浅くなる。その結果、正孔注入性や正孔輸送性が高まり、キャリアバランス調整が容易になる。
 式(2E)において、X、X、R~R、a~h、L~Lは、上述の式(1C)における場合と同様である。
 また、本発明において、第一ホストとしては、下記式(2F)で示される化合物が好ましい。式(2F)で示される化合物は、化学的安定性がさらに高いためである。
Figure JPOXMLDOC01-appb-C000008
 式(2F)における、R1a、R4a、R6a、及びR8aは、それぞれ独立して、水素原子又は環形成炭素数6~18のアリール基(上述の置換基R1Cと同様のアリール基)を表す。ここで、R1a、R4a、R6a、及びR8aが、水素原子の場合は、式(1F)におけるa、d、h、及びhが0の場合に相当する。また、当該アリール基は、さらに上述の置換基R1Cで置換されていてもよい。
 式(2F)において、X、X、L~Lは、上述の式(1C)における場合と同様である。
 式(2F)において、L、及びLが単結合であることが好ましく、Lも単結合であることが好ましい。これは、昇華性、及び分子量が大きすぎると、蒸着の際に熱分解を伴いやすくなる可能性が有るからである。
 さらに、式(2F)におけるL~Lに関して、低電圧化や半減寿命の点から、
 「Lが単結合であって、L、及びLがその他の連結基」の場合、
 「L、及びLが単結合であって、Lがその他の連結基」の場合、及び
 「L、L、及びLがいずれも単結合」の場合
の内のいずれかであることが好ましい。
 また、式(1C)、(2E)、及び(2F)におけるX、及びXは、酸素原子であることが外部量子効率、及び寿命の点で好ましい。
 さらに、本発明において低電圧化や半減寿命の点で、第一ホストとしては、上記式(2F)で示される化合物の内、式(2G)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(2G)における、R1a、及びR4aは、それぞれ独立して、水素原子又はメチル基で置換されていてもよいフェニル基を表す。
 式(2G)における、L1aは、単結合又はフェニレン基である。
 但し、R1a、及びR4aが共に水素原子であって、L1aがフェニレン基である場合はない。式(2G)において、R1a、及びR4aが共に水素原子であって、L1aがフェニレン基である場合には、カルバゾールの6位が水素原子であり、かつ、3位で単結合を介して結合していないため、化学的安定性やキャリアバランス調整の点で、第一ホストとして特に優れた材料ではない。
 本発明において、第一ホストは、下記式(9)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(9)におけるR1~R8は、それぞれ、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、あるいは隣接する置換基との間の環構造の中から選ばれる。
 但し、式(9)におけるR1~R4の少なくとも1つは、連結基Yである。式(9)における連結基Yは、単結合、アルキル鎖、アルキレン鎖、シクロアルキル鎖、アリール鎖、アミノ鎖、複素環鎖、シリル鎖、エーテル鎖、あるいはチオエーテル鎖のいずれかより単独または組み合わせたものより選ばれる。
 式(9)におけるR9は、水素、アルキル基、アリール基から選ばれる。
 式(9)におけるnは、2以上の自然数である。
 式(9)におけるアルキル基とは例えばメチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、式(9)におけるシクロアルキル基とは例えばシクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、式(9)におけるアラルキル基とは例えばベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。
 また、式(9)におけるアルケニル基とは例えばビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、式(9)におけるシクロアルケニル基とは例えばシクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、式(9)におけるアルキニル基とは例えばアセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、式(9)におけるアルコキシ基とは例えばメトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。
 また、式(9)におけるアルキルチオ基とはアルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリールエーテル基とは例えばフェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。
 また、式(9)におけるアリールチオエーテル基とはアリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。
 また、式(9)におけるアリール基とは例えばフェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、式(9)における複素環基とは例えばフリル基、チエニル基、オキサゾリル基、ピリジル基、キノリル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。
 式(9)におけるハロゲンとはフッ素、塩素、臭素、ヨウ素を示す。
 式(9)におけるハロアルカン、ハロアルケン、ハロアルキンとは例えばトリフルオロメチル基などの、上記アルキル基、アルケニル基、アルキニルの一部あるいは全部が、上記ハロゲンで置換されたものを示し、残りの部分は無置換でも置換されていてもかまわない。
 式(9)におけるアルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基には脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換されたものも含み、さらに脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。
 式(9)におけるシリル基とは例えばトリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。
 式(9)におけるシロキサニル基とは例えばトリメチルシロキサニル基などのエーテル結合を介したケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。
 また、式(9)において、隣接置換基との間に環構造を形成しても構わない。形成される環構造は無置換でも置換されていてもかまわない。
 カルバゾール骨格を有する化合物の中でもジカルバゾリル骨格を有するものは、分子が剛直であり、更に耐熱性に優れるため、本発明においては、特に、下記式(9A)で表されるカルバゾール骨格を有する化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000011
 式(9A)におけるR10~R23は、それぞれ、式(9)におけるR~Rと同様のものの中から選ばれる。
 式(9A)におけるR24およびR25は、それぞれ、水素、アルキル基、アリール基より選ばれる。なお、ジカルバゾリル骨格同士がR24およびR25の置換基を介して結合してもよい。
 式(9)、及び式(9A)で示されるカルバゾール骨格を有する化合物として、具体的には下記のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 本発明において、第一ホストは、下記式(10)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(10)において、R1~R4は、式(1)におけるRと同義である。
 式(10)において、Ar1、及びAr2は、式(1)におけるRのアリール基またはヘテロアリール基と同義である。
 式(10)において、Ar3、及びAr4は、式(1)におけるRのアリール基と同義である。
 式(10)で表される化合物の中でも、下記式(10A)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(10A)において、R1~R6は、式(1)におけるRと同義である。
 式(10A)において、Ar5は、式(1)におけるRのアリール基と同義である。
 式(10A)において、Ar6は、水素原子または式(1)におけるRのアリール基と同義である。
 式(10)、及び式(10A)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 本発明において、第一ホストは、下記式(11)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(11)において、R1~R4は、式(1)におけるRと同義である。
 式(11)において、Ar1、及びAr2は、式(1)におけるRのアリール基またはヘテロアリール基と同義である。
 式(11)において、Ar3、及びAr4は、水素原子または式(1)におけるRのアリール基と同義である。
 式(11)で表される化合物の中でも、下記式(11A)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(11A)において、R1~R6は、式(1)におけるRと同義である。
 式(11A)において、Ar5は、式(1)におけるRのアリール基と同義である。
 式(11A)において、Ar6は、水素原子または式(1)におけるRのアリール基と同義である。
 式(11)、及び式(11A)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(第二ホスト)
 本発明において、第二ホストの三重項エネルギーは、2.8eV以上である。
 そして、このような第二ホストとしては、アジン系の化合物であることが好ましい。
 そして、本発明において、第二ホストは、下記式(3)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 式(3)において、HAR31は、置換基を有しても良いヘテロアリールである。
 式(3)において、mは、0~5の整数のうちのいずれかであり、好ましくは、1~3の整数のうちのいずれかであり、さらに好ましくは、1又は2である。
 式(3)において、nは、0~3の整数のうちのいずれかである。n=0のとき、HAR31は、カルバゾール骨格の窒素原子に結合する。
 式(3)において、R31及びR32は、置換基を有しても良いアルキル基又はアリール基などであり、R31及びR32が結合してベンゼン環が縮合した環構造でも良い。
 さらに、本発明において、第二ホストは、下記式(4)~(8)、(8A)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 式(4)~(7)において、Ar101~Ar104は、
  炭素数6~60のアリール基(但し、置換基を有しても良い。)、
  炭素数3~60の複素環基(但し、置換基を有しても良い。)、
のうちのいずれかである。有してもよい置換基は前記式(1)のRで述べた置換基と同義である。
 式(4)~(7)において、R110及びR111は、前記式(1)のRで述べた置換基と同義である。
 式(4)~(7)において、nは、0~4の整数のうちのいずれかであり、mは、0~5の整数のうちのいずれかである。nとmの和(n+m)は、1≦(n+m)≦5の関係である。
 式(8)及び(8A)において、Xは、N又はCHであり、Nの数は1~4である。
 式(8)において、R121~R128は、それぞれ、
  水素原子、
  アリール基、
  ヘテロアリール基
  アルキル基、
  式(8A)の骨格が連結されている構造、
のうちのいずれかである。アリール基、ヘテロアリール基、及びアルキル基は前記式(1)のRで述べたものと同義である。
 R121~R128に式(8A)の骨格が連結されている構造は、R121とR122、R122とR123、R123とR124、R125とR126、R126とR127、及びR127とR128のうちの少なくともいずれかが式(8A)の骨格に結合した構造である。
 式(8A)において、R129は、
  水素原子、
  アリール基、
  ヘテロアリール基
  アルキル基、
のうちのいずれかである。アリール基、ヘテロアリール基、及びアルキル基は前記式(1)のRで述べたものと同義である。
 式(8)及び(8A)において、R10は、前記式(1)のRで述べたものと同義である。
 式(8)及び(8A)において、nは、R10の数を表す。nは、0~4である。
 さらに本発明において、第二ホストは、下記式(12)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
 式(12)において、Rは、水素、炭素数1~12の脂肪族アルキル基、炭素数1~12の分枝したアルキル基、炭素数1~12の環状アルキル基、または炭素数が4~14の芳香族基である。この芳香族基は1または2以上のアルコキシまたはアミンで置換してもよい。
 また、本発明において、第二ホストは、ジベンゾフラン骨格を有する次に示す化合物(A-6)や(A-9)であることも好ましい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本発明において、第二ホストは、下記式(13)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(13)において、R~R12は、前記式(1)のRで述べた置換基と同義である。式(13)において、R~R、R~R、R~R12で隣接するもの同士またはRとRとで飽和または不飽和の環状構造を形成してもよい。
 式(13)において、Xは、酸素原子または硫黄原子である。
 式(13)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 本発明において、第二ホストは、下記式(14A)、(14B)または(14C)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
 式(14A)、(14B)、及び(14C)において、R~R10は、前記式(1)のRで述べた置換基と同義である。
 式(14A)、(14B)、及び(14C)において、R~R、R~R、R~R10で隣接するもの同士またはRとRとで飽和または不飽和の環状構造を形成してもよい。
 式(14A)、(14B)、及び(14C)において、Xは、酸素原子または硫黄原子である。
 本発明において、第二ホストは、下記式(15A)、(15B)または(15C)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000037
 式(15A)、(15B)、及び(15C)において、R~R11は、前記式(1)のRで述べた置換基と同義である。
 式(15A)において、R~R、R~R、R~R11で隣接するもの同士で飽和または不飽和の環状構造を形成してもよい。
 式(15B)において、R~R、R~R、R~R、R10~R11で隣接するもの同士またはRとRとで飽和または不飽和の環状構造を形成してもよい。
 式(15C)において、R~R、R~R、R~R11で隣接するもの同士またはRとRとで飽和または不飽和の環状構造を形成してもよい。
 式(15A)、(15B)、及び(15C)において、Xは、酸素原子または硫黄原子である。
 本発明において、第二ホストは、下記式(16)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000038
 式(16)において、R~Rは、前記式(1)のRで述べた置換基と同義である。
 式(16)において、R~R、R~Rで隣接するもの同士で飽和または不飽和の環状構造を形成してもよい。
 式(16)において、Xは、酸素原子または硫黄原子である。
 式(14A)、(14B)、(14C)、(15A)、(15B)、(15C)、及び(16)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 本発明において、第二ホストは、下記式(17)または式(18)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000041
 式(17)、及び式(18)において、R~R16は、それぞれ、上記式(1)のRと同義である。さらに、式(17)、及び式(18)において、R~R16は、それぞれ、
  炭素数2~40の置換もしくは無置換のアルケニル基、
  炭素数7~20の置換もしくは無置換のアラルキル基、
  炭素数7~60の置換もしくは無置換のアラルキルアミノ基、
  炭素数8~40の置換もしくは無置換のアラルキルシリル基、
  炭素数3~20の置換もしくは無置換のアルキルゲルマニウム基、
  炭素数8~40の置換もしくは無置換のアリールゲルマニウム基、
  炭素数8~40の置換もしくは無置換のアラルキルゲルマニウム基、または
  炭素数7~40の置換もしくは無置換ケトアリール基、
であってもよい。
 式(17)において、R~R、R~R12で隣接するもの同士で飽和または不飽和の環状構造を形成してもよい。
 式(18)において、R~R11、R12~R16で隣接するもの同士で飽和または不飽和の環状構造を形成してもよい。
 式(17)、及び式(18)において、Xは、酸素原子または硫黄原子である。ここで、Xが酸素原子の場合、ジベンゾフラン骨格に対する置換基に縮合芳香族炭化水素基が含まれないことが好ましい。
 式(17)及び(18)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 また、本発明において第二ホストは、カルバゾール環を部分構造として有する化合物を含有し、該化合物を構成する全てのカルバゾール環の9位が置換されており、該カルバゾール環の1~8位の1つ以上が下記式(19)で表される置換基を有し、前記全てのカルバゾール環が、2位または3位に置換基を有し、分子内に、ベンゼン環または下記式(20)で表される部分構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 式(19)において、*は、前記カルバゾール環との連結部位を表し、Ar1は芳香環を表す。
 式(19)において、A1~A3は、各々該Ar1で表される芳香環を構成する炭素原子、窒素原子、酸素原子または硫黄原子を表し、該炭素原子、該窒素原子、該酸素原子、該硫黄原子は、更に水素原子または置換基を有していてもよい。
 式(19)において、R1は、置換基を表し、Ar1が縮合環の場合、R1は縮合環の一部であってもよい。
 式(20)において、Xは、酸素原子または硫黄原子を表す。
 式(20)において、R3、R4、R5、R6は、各々水素原子または置換基を表す。
 式(20)において、Arは、芳香族置換基を表す。
 式(20)において、mは、0~4の整数を表す
 式(19)において、Ar1で表される芳香環としては、芳香族炭化水素環、芳香族複素環が挙げられる。
 芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、置換基R1を有してもよく、この置換基R1は、上記式(1)のRと同義である。
 式(19)において、Ar1で表される芳香族炭化水素環として好ましいのは、ベンゼン環またはナフタレン環である。
 また、芳香族複素環としては、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。これらの環は、置換基R1を有してもよく、この置換基R1は、上記式(1)のRと同義である。
 式(19)において、Ar1で表される芳香族複素環として好ましいのは、ベンゾフラン環、ジベンゾフラン環、ピロール環、ピリジン環、イミダゾール環、ベンゾイミダゾール環である。
 式(20)において、Arで表される芳香族置換基は、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)または芳香族複素環基を表す。 芳香族炭化水素環基としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。これらの芳香族炭化水素環基は、無置換でもよく、また、一般式(19)においてR1で表される置換基を有してもよい。
 また、芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。これらの芳香族複素環基は、無置換でもよく、また、一般式(19)においてR1で表される置換基を有してもよい。
 このようなカルバゾール環を部分構造として有する化合物の具体例としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 その他、第二ホストとしては、国際公開第2009/050281号、同2009/003898号、同2008/034758号、同2006/056418号、同2006/130598号、同2009/085344号に記載された化合物を用いることもできる。
(燐光発光性ドーパント)
 本発明において、燐光発光性ドーパントは、金属錯体を含有し、この金属錯体は、Ir(イリジウム),Pt(白金),Os(オスミウム),Au(金),Cu(銅),Re(レニウム)及びRu(ルテニウム)から選択される金属原子と、配位子と、を有することが好ましい。特に、前記配位子は、オルトメタル結合を有することが好ましい。
 燐光量子収率が高く、有機EL素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体であるとさらに好ましく、中でもイリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。
 好ましい金属錯体の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 本発明では、発光層に含まれる前記燐光発光性ドーパントのうち少なくとも1種は、発光波長のピークが420nm以上720nm以下であることが好ましい。
 このような発光波長の燐光発光性ドーパントを、本発明で用いる特定のホストにドープして発光層を構成することにより、高効率な有機EL素子とすることができる。
 なお、青色発光を示す上で好ましくは420nm以上480nm以下である。
(第一ホスト及び第二ホストの関係1 
  「三重項エネルギー、イオン化ポテンシャル、及びアフィニティ」)
 本発明において、第一ホスト及び第二ホストの三重項エネルギーは、2.8eV以上であるとともに、第一ホストのイオン化ポテンシャルは、5.5eV以下である。
 そして、本発明において、第一ホストのアフィニティAfは、第二ホストのアフィニティAfよりも小さい。
 なお、第一ホスト及び第二ホストとしての化合物を上記したが、本発明においては、このような第一ホスト及び第二ホストのエネルギー関係を満たしている限り、上記化合物に特に制限されない。
 図2には、有機EL素子1のエネルギーダイアグラムが示されている。
 第一ホストのイオン化ポテンシャル(Ip)は、5.5eV以下であるので、陽極の仕事関数、及び正孔輸送層のイオン化ポテンシャルとの差が小さくなる。そのため、正孔は、正孔輸送層から発光層に注入され易くなる。そして、正孔輸送層と発光層との界面やその近傍に蓄積する正孔が少なくなり、発光層における正孔及び電子の再結合領域を、正孔輸送層との界面やその近傍から陰極側に離れた位置とすることができる。
 従来、青色燐光発光させるために三重項エネルギーの大きいホストを用いた有機EL素子では、ホストのバンドギャップが大きくなることに伴って、ホストのイオン化ポテンシャルも大きくなり、正孔が発光層へ注入され難かった。この構成の欠点は、正孔及び電子の再結合領域が正孔輸送層6側に偏り、アフィニティが小さくバンドギャップの大きい第一ホストから、アフィニティがホストよりも大きい正孔輸送層6に電子が流れ込むため、電子耐性のない正孔輸送層6が劣化しやすくなる。これに対して、本発明では、第一ホストの三重項エネルギーが2.8eV以上と大きいにもかかわらず、第一ホストのイオン化ポテンシャル(Ip)が5.5eV以下である構成をとることにより正孔が注入され易く、正孔及び電子の再結合領域を正孔輸送層6側でなく、キャリア耐性の高いホストを含む発光層中とすることができるため、正孔輸送層6に流れ込む電子が減り、正孔輸送層6が劣化しにくい構造となる。
 また、本発明では、第一ホストの三重項エネルギーを2.8eV以上とし、第一ホストのイオン化ポテンシャル(Ip)を5.5eV以下としたことに伴い、第一ホストのアフィニティAfが小さくなる。そのため、発光層に含まれるホストがそのような第一ホストだけの場合、電子輸送層と発光層とのエネルギー障壁(アフィニティの差)が大きくなり、電子注入性が不十分となり駆動電圧の上昇を招く。
 しかしながら、本発明では、発光層中に、第一ホストのアフィニティAfよりも大きいアフィニティAfを有する第二ホストが、第一ホストと共に含まれているため、電子輸送層と第二ホストとの関係でエネルギー障壁が小さくなり、電子注入性が高まる。
 ここで、第一ホストのアフィニティAf及び第二ホストのアフィニティAfは、
 Af-Af≧0.4[eV]
の関係を満たすことが好ましい。この関係を満たすことで、発光層への電子注入性がさらに高まるとともに、正孔輸送層6側及び陽極3側への電子の注入を妨げることもできる。結果として、素子の長寿命化に繋がる。
 このように、正孔が発光層へ注入され易くなり、電子が発光層に注入され易くなるので、キャリア耐久性の高い発光層において電子と正孔とが効率よく再結合し、発光効率が向上する。
 そして、再結合領域が正孔輸送層側、及び電子輸送層側から遠ざかるとともに、電子耐久性の低い正孔輸送層へ移動する電子、及び正孔耐久性の低い電子輸送層へ移動する正孔が少なくなるので、正孔輸送層、及び電子輸送層が劣化し難くなる。その結果、有機EL素子の寿命が長くなる。
・イオン化ポテンシャル(Ip)
 材料にモノクロメーターで分光した重水素ランプの光(励起光)を照射し、放出された光電子放出をエレクトロメータで測定し、得られた光電子放出の照射光子エネルギー曲線からの光電子放出の閾値を外挿法により求めて測定した。測定機器としては、大気中紫外線光電子分析装置AC-3(理研計器株式会社製)を用いた。
・一重項エネルギー(Eg)
 各材料のトルエン希薄溶液に波長分解した光を照射し、その吸収スペクトルの最長波長から換算して求めた。測定機器としては、分光光度計(U-3400(商品名)、日立製)を用いた。
・三重項エネルギー(EgT)
 三重項エネルギー(EgT)は、以下の方法により求めた。有機材料を、公知の燐光測定法(例えば、「光化学の世界」(日本化学会編・1993)50頁付近の記載の方法)により測定した。具体的には、有機材料を溶媒に溶解(試料10μmol/リットル、EPA(ジエチルエーテル:イソハペンタン:エタノール=5:5:2容積比、各溶媒は分光用グレード)し、燐光測定用試料とした。石英セルへ入れた試料を77Kに冷却、励起光を照射し、燐光を波長に対し、測定した。燐光スペクトルの短波長側の立ち上がりに対して接線を引き、該波長値をエネルギー値に換算した値をEgTとした。日立製F-4500形分光蛍光光度計本体と低温測定用オプション備品を用いて測定した。尚、測定装置はこの限りではなく、冷却装置及び低温用容器と励起光源、受光装置を組み合わせることにより、測定してもよい。
 尚、本発明では、以下の式を用いて、該波長を換算した。
 換算式 EgT(eV)=1239.85/λedge
 「λedge」とは、縦軸に燐光強度、横軸に波長をとって、燐光スペクトルを表したときに、燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値を意味する。単位:nm。
 また、本発明で三重項エネルギーは、最低励起三重項状態におけるエネルギーと基底状態におけるエネルギーの差をいい、一重項エネルギーは(エネルギーギャップという場合もある)、最低励起一重項状態におけるエネルギーと基底状態におけるエネルギーの差をいう。
・アフィニティ(Af)
 該測定値Ip、Egを用いて、Af=Ip-Egより算出した。
(第一ホスト及び第二ホストの関係2  「正孔移動度、及び電子移動度」)
 本発明の有機EL素子において、第一ホストの正孔移動度は、正孔輸送層から注入された正孔を移動させるために、高い方が望ましく、第二ホストの電子移動度は、電子輸送層から注入された電子を移動させるために、高い方が望ましい。
 第一ホストの正孔移動度は、10~10V/cmの電界印加時に、10-cm/Vs以上であることが好ましい。
 そして、第二ホストの電子移動度は、10~10V/cmの電界印加時に、10-5cm/Vs以上であることが好ましい。
 また、第一ホストの電子移動度に対する第一ホストの正孔移動度の比は、1以上100以下であることが好ましい。
 1以下である場合には、正孔輸送性能が低いために正孔輸送層の劣化につながる。100以上である場合には、電子耐久性が弱く第一ホストの劣化につながる。
 さらに、第二ホストの正孔移動度に対する第二ホストの電子移動度の比は、10以上100以下であることが好ましい。
 加えて、第二ホストの正孔移動度に対する第一ホストの正孔移動度の比は、1以上1000以下であることが好ましい。
 本発明において、第一ホストの一重項エネルギーと三重項エネルギーの差が第二ホストの一重項エネルギーと三重項エネルギーの差よりも小さいことが好ましい。
 正孔又は電子移動度の測定法は特に限定されるものではない。具体的な方法としては、例えば、Timeof flight法(有機膜内の電荷の走行時間の測定から算出する方法)や空間制限電流の電圧特性から算出する方法等が挙げられる。Timeof flight法では、電極/有機層(電子輸送層又は正孔輸送層を形成する有機材料からなる層)/電極構成から、該有機層の吸収波長域の波長の光照射により、その過渡電流の時間特性(過渡特性時間)を測定し、下記式から正孔又は電子移動度を算出する。
  移動度=(有機膜厚)/(過渡特性時間・印可電圧)
  電界強度=(素子への印可電圧)/(有機層膜厚)
 また、Electronic Processin Organic Crystals(M.Pope,C.E.Swenberg)やOrganicMolecular Solids(W.Jones)等に記載された方法も用いることができる。
〔透光性基板〕
 有機EL素子1は、透光性の基板2上に陽極3、発光層5、陰極4等が積層されて構成される。基板2は、これら陽極3等を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
 具体的には、ガラス板、ポリマー板等が挙げられる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。
 またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
〔陽極及び陰極〕
 有機EL素子1の陽極3は、正孔を正孔注入層、正孔輸送層6又は発光層5に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。
 陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。
 陽極3は、これらの陽極材料を蒸着法やスパッタリング法等の方法で、例えば基板2上に薄膜を形成させることにより作製することができる。
 本実施形態のように、発光層5からの発光を陽極3側から取り出す場合、陽極3の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極3のシート抵抗は、数百Ω/□以下が好ましい。陽極3の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
 陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。
 陰極4も、陽極3と同様に、蒸着法やスパッタリング法等の方法で、例えば電子輸送層7上に薄膜を形成させることにより作製することができる。また、陰極4側から、発光層5からの発光を取り出す態様を採用することもできる。発光層5からの発光を陰極4側から取り出す場合、陰極4の可視領域の光の透過率を10%より大きくすることが好ましい。
 陰極のシート抵抗は、数百Ω/□以下が好ましい。
 陰極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは50~200nmの範囲で選択される。
〔その他の層〕
 本発明の有機EL素子は、さらに電流(又は発光)効率を上げるために、必要に応じて、正孔注入層、正孔輸送層、電子注入層等を設けてもよい。有機EL素子1では、正孔輸送層6及び電子輸送層7を設けている。
 これらの層に用いる材料には特に制限はなく、従来の有機EL用材料として公知の有機材料を用いることができる。具体的には、アミン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン、アニリン共重合体等が挙げられる。
 なお、本発明では、発光層への正孔注入性を高める観点から、発光層の陽極側に隣接して設けられる隣接層(正孔注入層や正孔輸送層等)のイオン化ポテンシャルIpが、第一ホストのイオン化ポテンシャルIpと次式の関係を満たすことが好ましい。
 0eV≦Ip-Ip≦0.3eV
 また、本発明では、発光層への電子注入性を高める観点から、発光層の陰極側に隣接して設けられる隣接層(電子注入層や電子輸送層等)のアフィニティAfが、第二ホストのアフィニティAfと次式の関係を満たすことが好ましい。
 0eV≦Af-Af≦0.4eV
(正孔注入層および正孔輸送層)
 正孔注入層又は正孔輸送層(正孔注入輸送層も含む)には、芳香族アミン化合物、例えば、下記一般式(I)で表わされる芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000056
 前記一般式(I)において、Ar~Arは、
  環形成炭素数6~50の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、
  環形成炭素数2~40の芳香族複素環基もしくは縮合芳香族複素環基(但し、置換基を有しても良い。)、又は、
  それら芳香族炭化水素基もしくは縮合芳香族炭化水素基と芳香族複素環基もしくは縮合芳香族複素環基とを結合させた基、
を表す。
 また、下記一般式(II)の芳香族アミンも正孔注入層又は正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000057
 前記一般式(II)において、Ar~Arの定義は前記一般式(I)のAr~Arの定義と同様である。
(電子注入層および電子輸送層)
 電子注入層又は電子輸送層は、発光層への電子の注入を助ける層であって、電子移動度が大きい。電子注入層はエネルギーレベルの急な変化を緩和する等、エネルギーレベルを調整するために設ける。
 本発明の有機EL素子は、発光層と陰極との間に電子注入層を有し、前記電子注入層は、含窒素環誘導体を主成分として含有することが好ましい。ここで、電子注入層は電子輸送層として機能する層であってもよい。
 なお、「主成分として」とは、電子注入層が50質量%以上の含窒素環誘導体を含有していることを意味する。
 電子注入層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 この含窒素環誘導体としては、例えば、下記式(A)で表される含窒素環金属キレート錯体が好ましい。
Figure JPOXMLDOC01-appb-C000058
 一般式(A)におけるR~Rは、独立に、
  水素原子、
  ハロゲン原子、
  オキシ基、
  アミノ基、
  炭素数1~40の炭化水素基、
  アルコキシ基、
  アリールオキシ基、
  アルコキシカルボニル基、又は、
  芳香族複素環基であり、
これらは置換されていてもよい。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。また、置換されていてもよいアミノ基の例としては、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基が挙げられる。
 アルコキシカルボニル基は-COOY’と表され、Y’の例としては前記アルキル基と同様のものが挙げられる。アルキルアミノ基及びアラルキルアミノ基は-NQと表される。Q及びQの具体例としては、独立に、前記アルキル基、前記アラルキル基(ルキル基の水素原子がアリール基で置換された基)で説明したものと同様のものが挙げられ、好ましい例も同様である。Q及びQの一方は水素原子であってもよい。なお、アラルキル基は、前記アルキル基の水素原子が前記アリール基で置換された基である。
 アリールアミノ基は-NArArと表され、Ar及びArの具体例としては、それぞれ独立に前記非縮合芳香族炭化水素基及び縮合芳香族炭化水素基で説明した基と同様である。Ar及びArの一方は水素原子であってもよい。
 Mは、アルミニウム(Al)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。
 上記式(A)のLは、下記式(A’)又は(A”)で表される基である。
Figure JPOXMLDOC01-appb-C000059
 前記式(A’)中、R~R12は、独立に、
  水素原子、又は炭素数1~40の炭化水素基(但し、置換基を有しても良い。)であり、互いに隣接する基が環状構造を形成していてもよい。
 また、前記式(A”)中、R13~R27は、独立に、
  水素原子、又は
  炭素数1~40の炭化水素基(但し、置換基を有しても良い。)、であり、
互いに隣接する基が環状構造を形成していてもよい。
 前記式(A’)及び式(A”)のR~R12及びR13~R27が示す炭素数1~40の炭化水素基としては、前記式(A)中のR~Rの具体例と同様のものが挙げられる。
 また、R~R12及びR13~R27の互いに隣接する基が環状構造を形成した場合の2価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2,2’-ジイル基、ジフェニルエタン-3,3’-ジイル基、ジフェニルプロパン-4,4’-ジイル基等が挙げられる。
 また、電子輸送層は、下記式(201)~(203)で表される含窒素複素環誘導体の少なくともいずれか1つを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000060
 前記式(201)~(203)中、Rは、
  水素原子、
  環形成炭素数6~60の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、
  ピリジル基(但し、置換基を有しても良い。)、
  キノリル基(但し、置換基を有しても良い。)、
  炭素数1~20のアルキル基(但し、置換基を有しても良い。)、又は
  炭素数1~20のアルコキシ基(但し、置換基を有しても良い。)である。
 nは0~4の整数である。
 前記式(201)~(203)中、Rは、
  環形成炭素数6~60の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、
  ピリジル基(但し、置換基を有しても良い。)、
  キノリル基(但し、置換基を有しても良い。)、
  炭素数1~20のアルキル基(但し、置換基を有しても良い。)、又は
  炭素数1~20のアルコキシ基(但し、置換基を有しても良い。)である。
 前記式(201)~(203)中、R及びRは、独立に、
  水素原子、
  環形成炭素数6~60の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、
  ピリジル基(但し、置換基を有しても良い。)、
  キノリル基(但し、置換基を有しても良い。)、
  炭素数1~20のアルキル基(但し、置換基を有しても良い。)、又は
  炭素数1~20のアルコキシ基(但し、置換基を有しても良い。)である。
 前記式(201)~(203)中、Lは、
  環形成炭素数6~60の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、
  ピリジニレン基(但し、置換基を有しても良い。)、
  キノリニレン基(但し、置換基を有しても良い。)、又は
  フルオレニレン基(但し、置換基を有しても良い。)である。
 前記式(201)~(203)中、Arは、
  環形成炭素数6~60の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、又は
  ピリジニレン基もしくはキノリニレン基(但し、置換基を有しても良い。)である。
 前記式(201)~(203)中、Arは、
  環形成炭素数6~60の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、
  ピリジル基(但し、置換基を有しても良い。)、
  キノリル基(但し、置換基を有しても良い。)、
  炭素数1~20のアルキル基(但し、置換基を有しても良い。)、又は
  炭素数1~20のアルコキシ基(但し、置換基を有しても良い。)である。
 前記式(201)~(203)中、Arは、
  環形成炭素数6~60の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、
  ピリジル基(但し、置換基を有しても良い。)、
  キノリル基(但し、置換基を有しても良い。)、
  炭素数1~20のアルキル基(但し、置換基を有しても良い。)、
  炭素数1~20のアルコキシ基(但し、置換基を有しても良い。)、又は
  -Ar-Arで表される基(Ar及びArは、それぞれ前記と同じ)である。
 電子注入層又は電子輸送層に用いられる電子伝達性化合物としては、8-ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを用いることができる。そして、オキサジアゾール誘導体としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000061
 前記式中、
 Ar17、Ar18、Ar19、Ar21、Ar22及びAr25は、それぞれ置換基を有しても良い環形成炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、
 Ar17とAr18、Ar19とAr21、Ar22とAr25は、互いに同一でも異なっていてもよい。
 環形成炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基としては、
  フェニル基、ナフチル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられる。そして、これらへの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 Ar20、Ar23及びAr24は、それぞれ置換基を有しても良い環形成炭素数6~40の2価の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar23とAr24は、互いに同一でも異なっていてもよい。
 この2価の芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。そして、これらへの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 これらの電子伝達性化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000062
 電子伝達性化合物としての含窒素複素環誘導体は、以下の一般式を有する有機化合物からなる含窒素複素環誘導体であって、金属錯体でない含窒素化合物が挙げられる。例えば、下記式(B1)に示す骨格を含有する5員環もしくは6員環や、下記式(B2)に示す構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000063
 前記式(B2)中、Xは炭素原子もしくは窒素原子を表す。ZならびにZは、それぞれ独立に含窒素ヘテロ環を形成可能な原子群を表す。
 含窒素複素環誘導体は、さらに好ましくは、5員環もしくは6員環からなる含窒素芳香多環族を有する有機化合物である。さらには、このような複数窒素原子を有する含窒素芳香多環族の場合は、上記式(B1)と(B2)もしくは上記式(B1)と下記式(C)を組み合わせた骨格を有する含窒素芳香多環有機化合物が好ましい。
Figure JPOXMLDOC01-appb-C000064
 前記の含窒素芳香多環有機化合物の含窒素基は、例えば、以下の一般式で表される含窒素複素環基から選択される。
Figure JPOXMLDOC01-appb-C000065
 前記各式中、Rは、
  環形成炭素数6~40の芳香族炭化水素基もしくは縮合芳香族炭化水素基、
  環形成炭素数2~40の芳香族複素環基もしくは縮合芳香族複素環基、
  炭素数1~20のアルキル基、又は
  炭素数1~20のアルコキシ基
であり、nは0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよい。
 さらに、好ましい具体的な化合物として、下記式(D)で表される含窒素複素環誘導体が挙げられる。
 HAr-L-Ar-Ar  ・・・(D)
 前記式(D)中、HArは、環形成炭素数1~40の含窒素複素環基(但し、置換基を有しても良い。)である。
  前記式(D)中、Lは、
  単結合、
  環形成炭素数6~40の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、又は
  環形成炭素数2~40の芳香族複素環基もしくは縮合芳香族複素環基(但し、置換基を有しても良い。)である。
 前記式(D)中、Arは、
  環形成炭素数6~40の2価の芳香族炭化水素基(但し、置換基を有しても良い。)である。
 前記式(D)中、Arは、
  環形成炭素数6~40の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、又は
  環形成炭素数2~40の芳香族複素環基もしくは縮合芳香族複素環基(但し、置換基を有しても良い。)である。
 HArは、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000066
 Lは、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000067
 Arは、例えば、下記のアリールアントラニル基から選択される。
Figure JPOXMLDOC01-appb-C000068
 前記式中、R~R14は、独立して、
  水素原子、
  ハロゲン原子、
  炭素数1~20のアルキル基、
  炭素数1~20のアルコキシ基、
  環形成炭素数6~40のアリールオキシ基、
  環形成炭素数6~40の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、又は
  環形成炭素数2~40の芳香族複素環基もしくは縮合芳香族複素環基(但し、置換基を有しても良い。)であり、
 Arは、
  環形成炭素数6~40の芳香族炭化水素基もしくは縮合芳香族炭化水素基(但し、置換基を有しても良い。)、又は
  環形成炭素数2~40の芳香族複素環基もしくは縮合芳香族複素環基(但し、置換基を有しても良い。)である。
 また、R~Rは、いずれも水素原子である含窒素複素環誘導体であってもよい。
 Arは、例えば、下記の群から選択される。
 電子伝達性化合物としての含窒素芳香多環有機化合物には、この他、下記の化合物(特開平9-3448号公報参照)も好適に用いられる。
Figure JPOXMLDOC01-appb-C000070
 前記式中、R~Rは、独立に、
  水素原子、
  脂肪族基(但し、置換基を有しても良い。)、
  脂肪族式環基(但し、置換基を有しても良い。)、
  炭素環式芳香族環基(但し、置換基を有しても良い。)、
  複素環基(但し、置換基を有しても良い。)
を表し、
 X、Xは、独立に、酸素原子、硫黄原子、又はジシアノメチレン基を表す。
 また、電子伝達性化合物として、下記の化合物(特開2000-173774号公報参照)も好適に用いられる。
Figure JPOXMLDOC01-appb-C000071
 前記式中、R、R、R及びRは互いに同一の又は異なる基であって、下記式で表わされる芳香族炭化水素基又は縮合芳香族炭化水素基である。
Figure JPOXMLDOC01-appb-C000072
 前記式中、R、R、R、R及びRは互いに同一の又は異なる基であって、水素原子、或いはそれらの少なくとも1つが飽和もしくは不飽和アルコキシル基、アルキル基、アミノ基、又はアルキルアミノ基である。
 さらに、電子伝達性化合物は、該含窒素複素環基又は含窒素複素環誘導体を含む高分子化合物であってもよい。
 なお、電子注入層又は電子輸送層の膜厚は、特に限定されないが、好ましくは、1nm~100nmである。
 また、電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、LiO、KO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、本発明における電子注入層は、前述の還元性ドーパントを含有していても好ましい。
(還元性ドーパント)
 本発明の有機EL素子は、陰極と有機薄膜層との界面領域に還元性ドーパントを有することも好ましい。
 このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。
 還元性ドーパントとしては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。
 アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が可能である。
 アルカリ金属化合物としては、LiO、CsO、K2O等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、LiO、NaFが好ましい。
 アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaxSr1-xO(0<x<1)、BaxCa1-xO(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。
 希土類金属化合物としては、YbF、ScF、ScO、Y、Ce、GdF、TbF等が挙げられ、YbF、ScF、TbFが好ましい。
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、βージケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。
 還元性ドーパントの添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により還元性ドーパントを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に還元ドーパントを分散する方法が好ましい。分散濃度はモル比で有機物:還元性ドーパント=100:1~1:100、好ましくは5:1~1:5である。
 還元性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。
 還元性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm~1nmで形成する。
 また、本発明の有機EL素子における、主成分と還元性ドーパントの割合としては、モル比で主成分:還元性ドーパント=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
〔膜厚〕
 本発明の有機EL素子において、陽極と陰極との間に設けられた各層の膜厚は、前述した中で特に規定したものを除いて、特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
〔有機EL素子の製造法〕
 本発明の有機EL素子の製造法については、特に制限はなく、従来の有機EL素子に使用される製造方法を用いて製造することができる。具体的には、各層を真空蒸着法、キャスト法、塗布法、スピンコート法等により形成することができる。また、ポリカーボネート、ポリウレタン、ポリスチレン、ポリアリレート、ポリエステル等の透明ポリマーに、各層の有機材料を分散させた溶液を用いたキャスト法、塗布法、スピンコート法の他、有機材料と透明ポリマーとの同時蒸着等によっても形成することができる。
 なお、本発明は、上記の説明に限られるものではなく、本発明の趣旨を逸脱しない範囲での変更は本発明に含まれる。
 前記実施形態では、陽極と発光層との間に正孔輸送層を備えた有機EL素子を例に挙げて説明したがこれに限られない。すなわち、正孔輸送層に限らず、陽極と発光層との間に設けられるとともに、発光層と隣接する隣接層を備えた構成であってもよい。本発明によれば、このような隣接層に電子が注入されることによる当該隣接層の劣化を防止し、有機EL素子の寿命を長くすることができる。また、発光層と陰極との間に電子注入層等の隣接層を備えた構成であってもよい。
 以下、本発明に係る実施例を説明するが、本発明はこれらの実施例によって限定されない。
(実施例1)
 実施例1に係る有機EL素子は、以下のようにして作製した。
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック(株)社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして、化合物HTを積層した。これにより、厚さ10nmの正孔輸送層を形成した。
 この正孔輸送層上に、第一ホストとして化合物PBH-01と、第二ホストとして化合物PBH-04と、燐光発光性ドーパントとして化合物BD1とを共蒸着した。化合物PBH-01、化合物PBH-04、及び化合物BD1の発光層中に含まれる割合は、それぞれ、45質量%、45質量%、10質量%とした。これにより、青色発光を示す厚さ40nmの発光層を形成した。
 次に、この発光層上に化合物PBH-04を積層して、厚さ5nmの励起子阻止層を形成した。発光層からの三重項エネルギーの拡散を防ぐための層である。
 さらに、励起子阻止層上に、化合物ETを積層して、厚さ30nmの電子輸送層を形成した。
 そしてさらに、フッ化リチウム(LiF)をレート1Å/minで蒸着し、厚さ1nmの電子注入性陰極を形成した。さらに、電子注入性陰極上に、金属アルミニウム(Al)を蒸着し、厚さ80nmの陰極を形成した。
(実施例2~4及び比較例1~3)
 実施例1の各材料、各層の厚み、及び各発光材料の濃度を、表1に示すように変更した以外は、実施例1と同様にして有機EL素子を作製した。なお、比較例3は、発光層に第一ホストに相当する化合物と、燐光発光性ドーパントとを含み、第二ホストに相当する化合物は含まない構成とした。
 なお、表1中のカッコ( )内の数字は、各層の厚さ(単位:nm)を示す。また、同じくカッコ( )内において、パーセント表示された数字は、各発光層中における、第一ホスト、第二ホスト、及び燐光発光性材料の割合(質量百分率)を示す。なお、比較例3では、ホストと燐光発光性ドーパントとの割合(質量百分率)を示す。
Figure JPOXMLDOC01-appb-T000073
 実施例1~4及び比較例1~3で用いた第一ホスト、第二ホスト、燐光発光性ドーパント、正孔輸送層の材料、及び電子輸送層の材料の化学式については以下に示す。
(第一ホスト)
Figure JPOXMLDOC01-appb-C000074
(第二ホスト)
Figure JPOXMLDOC01-appb-C000075
(燐光発光性ドーパント)
Figure JPOXMLDOC01-appb-C000076
(正孔輸送層の材料)
Figure JPOXMLDOC01-appb-C000077
(電子輸送層の材料)
Figure JPOXMLDOC01-appb-C000078
 実施例1~4及び比較例1~3で用いた第一ホスト、第二ホスト、正孔輸送層の材料、及び電子輸送層の材料について、イオン化ポテンシャル、アフィニティ及び三重項エネルギーを測定した。その結果をそれぞれ表2~4に示す。なお、測定方法は、上記明細書中に記載の通りである。
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
 次に、実施例1~4、比較例1~3の有機EL素子を電流密度10mA/cmで駆動させたきの、電圧、発光効率、耐久性(寿命)を測定し、評価した。その結果を表5に示す。寿命は、初期輝度が半減するまでの時間とした。
Figure JPOXMLDOC01-appb-T000082
 表5が示すように、実施例1~4の有機EL素子は、第一ホスト及び第二ホストの三重項エネルギーは、それぞれ2.8eV以上であり、当該第一ホストのイオン化ポテンシャルは、5.5eV以下であり、当該第一ホストのアフィニティAfは、当該第二ホストのアフィニティAfよりも小さいので、駆動電圧が低く、発光効率に優れ、寿命の長い有機EL素子となった。
 一方で、比較例1,及び2の有機EL素子は、第一ホストのイオン化ポテンシャルが5.5eVを超えるため、正孔輸送層から発光層に正孔が効率良く注入されず、実施例1~4の有機EL素子に比べると、駆動電圧が高く、発光効率が低く、寿命が特に短い有機EL素子となった。比較例3の有機EL素子は、比較例の中でも特に、駆動電圧が高く、発光効率が低く、寿命が短い有機EL素子となった。これは、比較例3の有機EL素子は、第一ホストに相当するホストのイオン化ポテンシャルが5.5eVなので、正孔が発光層へ効率良く注入されるものの、発光層に第二ホストが含まれていないため、正孔輸送層から発光層へ効率良く電子が注入されなかったためと考えられる。そして、電子注入性が低いので、発光層に注入された正孔は、発光層で電子と効率よく再結合できず、発光効率が低くなり、正孔と電子との再結合領域が電子輸送層と発光層との界面領域となり、正孔耐性の低い電子輸送層の化合物が劣化したためと考えられる。
 本発明の有機EL素子は、青色発光が可能であり、高効率かつ長寿命の有機EL素子として利用できる。
1 有機EL素子
2 基板
3 陽極
4 陰極
5 発光層
6 正孔輸送層
7 電子輸送層

Claims (4)

  1.  陽極と陰極との間に発光層を有する有機エレクトロルミネッセンス素子であって、
     前記発光層は、第一ホストと第二ホストと燐光発光性ドーパントとを含み、
     前記第一ホスト及び前記第二ホストの三重項エネルギーは、それぞれ2.8eV以上であり、
     前記第一ホストのイオン化ポテンシャルは、5.5eV以下であり、
     前記第一ホストのアフィニティAfは、前記第二ホストのアフィニティAfよりも小さい
     ことを特徴とする有機エレクトロルミネッセンス素子。
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     前記第一ホストのアフィニティAf及び前記第二ホストのアフィニティAfは、
     Af-Af≧0.4[eV]
     の関係を満たす
     ことを特徴とする有機エレクトロルミネッセンス素子。
  3.  請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記第一ホストの一重項エネルギーと三重項エネルギーとの差が、前記第二ホストの一重項エネルギーと三重項エネルギーとの差よりも小さい
     ことを特徴とする有機エレクトロルミネッセンス素子。
  4.  請求項1から請求項3までのいずれかに記載の有機エレクトロルミネッセンス素子において、
     前記燐光発光性ドーパントの発光ピークが480nm以下である
     ことを特徴とする有機エレクトロルミネッセンス素子。
PCT/JP2011/063102 2010-06-08 2011-06-08 有機エレクトロルミネッセンス素子 WO2011155507A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11792464.7A EP2581957A1 (en) 2010-06-08 2011-06-08 Organic electroluminescence element
US13/702,625 US8987715B2 (en) 2010-06-08 2011-06-08 Organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010131537A JP2013201153A (ja) 2010-06-08 2010-06-08 有機エレクトロルミネッセンス素子
JP2010-131537 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011155507A1 true WO2011155507A1 (ja) 2011-12-15

Family

ID=45098111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063102 WO2011155507A1 (ja) 2010-06-08 2011-06-08 有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US8987715B2 (ja)
EP (1) EP2581957A1 (ja)
JP (1) JP2013201153A (ja)
WO (1) WO2011155507A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069637A1 (ja) * 2012-11-02 2014-05-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置および表示装置
JPWO2012128298A1 (ja) * 2011-03-24 2014-07-24 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
US8803134B2 (en) 2011-02-07 2014-08-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence
JP2014157947A (ja) * 2013-02-15 2014-08-28 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子および電子機器
US20150115240A1 (en) * 2012-03-30 2015-04-30 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
WO2015156587A1 (en) * 2014-04-08 2015-10-15 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
US9203043B2 (en) 2012-05-28 2015-12-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2015190718A1 (ko) * 2014-06-09 2015-12-17 주식회사 두산 유기 전계 발광 소자
CN106133113A (zh) * 2014-04-08 2016-11-16 罗门哈斯电子材料韩国有限公司 多组分主体材料和包含其的有机电致发光装置
US9530969B2 (en) 2011-12-05 2016-12-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
JPWO2015022987A1 (ja) * 2013-08-16 2017-03-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
WO2017115596A1 (ja) * 2015-12-28 2017-07-06 新日鉄住金化学株式会社 有機電界発光素子
JP2017529686A (ja) * 2014-07-22 2017-10-05 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機電界発光デバイス
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10297756B2 (en) 2012-12-27 2019-05-21 Samsung Display Co., Ltd. Organic light-emitting diode
JP2020170853A (ja) * 2012-08-03 2020-10-15 株式会社半導体エネルギー研究所 発光装置
USRE49343E1 (en) * 2012-06-01 2022-12-20 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US11594685B2 (en) 2017-03-30 2023-02-28 Lg Chem, Ltd. Organic light emitting device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478000B1 (ko) * 2010-12-21 2015-01-05 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP6152053B2 (ja) 2011-11-22 2017-06-21 出光興産株式会社 芳香族複素環誘導体、および有機エレクトロルミネッセンス素子用材料
WO2013084881A1 (ja) 2011-12-05 2013-06-13 出光興産株式会社 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
US9705099B2 (en) * 2012-01-26 2017-07-11 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region
KR102126877B1 (ko) 2012-02-03 2020-06-25 이데미쓰 고산 가부시키가이샤 카르바졸 화합물, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
EP2821459B1 (en) * 2013-07-01 2017-10-04 Cheil Industries Inc. Composition and organic optoelectric device and display device
KR102148534B1 (ko) * 2013-12-27 2020-08-27 두산솔루스 주식회사 유기 전계 발광 소자
KR102273047B1 (ko) * 2014-06-30 2021-07-06 삼성디스플레이 주식회사 유기 발광 소자
KR102398064B1 (ko) 2014-12-26 2022-05-16 삼성디스플레이 주식회사 유기 발광 소자
KR102360221B1 (ko) * 2015-01-08 2022-02-09 솔루스첨단소재 주식회사 유기 전계 발광 소자
KR102388726B1 (ko) * 2015-04-29 2022-04-21 삼성디스플레이 주식회사 유기 발광 소자
US11522140B2 (en) * 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
KR102399570B1 (ko) 2015-11-26 2022-05-19 삼성디스플레이 주식회사 유기 발광 소자
KR20170068705A (ko) * 2015-12-09 2017-06-20 삼성디스플레이 주식회사 유기 발광 소자
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
KR102396293B1 (ko) * 2015-12-29 2022-05-11 삼성디스플레이 주식회사 유기 발광 소자
KR20170127101A (ko) 2016-05-10 2017-11-21 삼성디스플레이 주식회사 유기 발광 소자
JP6927963B2 (ja) * 2016-05-19 2021-09-01 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US11325934B2 (en) * 2017-09-29 2022-05-10 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent materials containing tetraphenylene ligands
KR20210054737A (ko) 2019-11-06 2021-05-14 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR20220031451A (ko) 2020-09-04 2022-03-11 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093448A (ja) 1995-06-23 1997-01-07 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用電子輸送材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2000173774A (ja) 1998-12-09 2000-06-23 Sony Corp 有機電界発光素子
WO2005079118A1 (ja) 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2006056418A2 (de) 2004-11-25 2006-06-01 Basf Aktiengesellschaft Verwendung von übergangsmetall-carbenkomplexen in organischen licht-emittierenden dioden (oleds)
WO2006130598A2 (en) 2005-05-31 2006-12-07 Universal Display Corporation Triphenylene hosts in phosphorescent light emitting diodes
JP2006352046A (ja) * 2005-06-20 2006-12-28 Fujifilm Holdings Corp 有機電界発光素子
JP2007251097A (ja) * 2006-03-20 2007-09-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子を用いた表示装置及び照明装置
JP2007288035A (ja) * 2006-04-19 2007-11-01 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007311460A (ja) * 2006-05-17 2007-11-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008034758A2 (de) 2006-09-21 2008-03-27 Basf Se Oled-anzeige mit verlängerter lebensdauer
WO2008035571A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Élément électroluminescent organique
JP2008084913A (ja) 2006-09-26 2008-04-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2008135498A (ja) * 2006-11-28 2008-06-12 Toray Ind Inc 発光素子
JP2008181937A (ja) 2007-01-23 2008-08-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び照明装置
JP2008282610A (ja) 2007-05-09 2008-11-20 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
WO2009003898A1 (de) 2007-07-05 2009-01-08 Basf Se Organische leuchtdioden enthaltend carben-übergangsmetall-komplex-emitter und mindestens eine verbindung ausgewählt aus disilylcarbazolen; disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
WO2009050281A1 (de) 2007-10-17 2009-04-23 Basf Se Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds
WO2009066778A1 (ja) * 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. 有機el素子および有機el材料含有溶液
JP2010034484A (ja) 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
JP2011008991A (ja) * 2009-06-24 2011-01-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310360B1 (en) * 1999-07-21 2001-10-30 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
WO2004034751A1 (ja) * 2002-10-09 2004-04-22 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
US7329466B2 (en) * 2004-01-30 2008-02-12 Eastman Kodak Company Organic element for electroluminescent devices
JP4989881B2 (ja) * 2004-12-28 2012-08-01 富士フイルム株式会社 有機電界発光素子
US7683536B2 (en) * 2005-03-31 2010-03-23 The Trustees Of Princeton University OLEDs utilizing direct injection to the triplet state
US20080284318A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
JP2009076865A (ja) * 2007-08-29 2009-04-09 Fujifilm Corp 有機電界発光素子
US8877350B2 (en) * 2007-12-11 2014-11-04 Global Oled Technology Llc White OLED with two blue light-emitting layers
JP2009211892A (ja) * 2008-03-03 2009-09-17 Fujifilm Corp 有機電界発光素子
JP5279583B2 (ja) * 2008-12-24 2013-09-04 出光興産株式会社 有機el素子
US8039129B2 (en) * 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
WO2011148909A1 (ja) * 2010-05-24 2011-12-01 出光興産株式会社 有機エレクトロルミネッセンス素子

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093448A (ja) 1995-06-23 1997-01-07 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用電子輸送材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2000173774A (ja) 1998-12-09 2000-06-23 Sony Corp 有機電界発光素子
WO2005079118A1 (ja) 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2006056418A2 (de) 2004-11-25 2006-06-01 Basf Aktiengesellschaft Verwendung von übergangsmetall-carbenkomplexen in organischen licht-emittierenden dioden (oleds)
WO2006130598A2 (en) 2005-05-31 2006-12-07 Universal Display Corporation Triphenylene hosts in phosphorescent light emitting diodes
JP2006352046A (ja) * 2005-06-20 2006-12-28 Fujifilm Holdings Corp 有機電界発光素子
JP2007251097A (ja) * 2006-03-20 2007-09-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子を用いた表示装置及び照明装置
JP2007288035A (ja) * 2006-04-19 2007-11-01 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007311460A (ja) * 2006-05-17 2007-11-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008035571A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Élément électroluminescent organique
WO2008034758A2 (de) 2006-09-21 2008-03-27 Basf Se Oled-anzeige mit verlängerter lebensdauer
JP2008084913A (ja) 2006-09-26 2008-04-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2008135498A (ja) * 2006-11-28 2008-06-12 Toray Ind Inc 発光素子
JP2008181937A (ja) 2007-01-23 2008-08-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び照明装置
JP2008282610A (ja) 2007-05-09 2008-11-20 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
WO2009003898A1 (de) 2007-07-05 2009-01-08 Basf Se Organische leuchtdioden enthaltend carben-übergangsmetall-komplex-emitter und mindestens eine verbindung ausgewählt aus disilylcarbazolen; disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
WO2009050281A1 (de) 2007-10-17 2009-04-23 Basf Se Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds
WO2009066778A1 (ja) * 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. 有機el素子および有機el材料含有溶液
JP2010034484A (ja) 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
JP2011008991A (ja) * 2009-06-24 2011-01-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Hikarikagaku no Sekai", 1993

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803134B2 (en) 2011-02-07 2014-08-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10230057B2 (en) 2011-02-07 2019-03-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US9818958B2 (en) 2011-02-07 2017-11-14 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US11271171B2 (en) 2011-02-07 2022-03-08 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
JPWO2012128298A1 (ja) * 2011-03-24 2014-07-24 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
US9530969B2 (en) 2011-12-05 2016-12-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
US20150115240A1 (en) * 2012-03-30 2015-04-30 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
US10340460B2 (en) * 2012-03-30 2019-07-02 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
US9203043B2 (en) 2012-05-28 2015-12-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
USRE46974E1 (en) 2012-05-28 2018-07-31 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
USRE49343E1 (en) * 2012-06-01 2022-12-20 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2023029394A (ja) * 2012-08-03 2023-03-03 株式会社半導体エネルギー研究所 発光装置
JP2020170853A (ja) * 2012-08-03 2020-10-15 株式会社半導体エネルギー研究所 発光装置
US10897012B2 (en) 2012-08-03 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11043637B2 (en) 2012-08-03 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2021170644A (ja) * 2012-08-03 2021-10-28 株式会社半導体エネルギー研究所 発光装置
JP7199475B2 (ja) 2012-08-03 2023-01-06 株式会社半導体エネルギー研究所 発光装置
US11968889B2 (en) 2012-08-03 2024-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JPWO2014069637A1 (ja) * 2012-11-02 2016-09-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置および表示装置
WO2014069637A1 (ja) * 2012-11-02 2014-05-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置および表示装置
US10297756B2 (en) 2012-12-27 2019-05-21 Samsung Display Co., Ltd. Organic light-emitting diode
JP2014157947A (ja) * 2013-02-15 2014-08-28 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子および電子機器
USRE47763E1 (en) 2013-02-15 2019-12-10 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
USRE49237E1 (en) 2013-02-15 2022-10-04 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
JPWO2015022987A1 (ja) * 2013-08-16 2017-03-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
JP2017513220A (ja) * 2014-04-08 2017-05-25 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 多成分ホスト材料及びそれを含む有機電界発光デバイス
CN106133113A (zh) * 2014-04-08 2016-11-16 罗门哈斯电子材料韩国有限公司 多组分主体材料和包含其的有机电致发光装置
WO2015156587A1 (en) * 2014-04-08 2015-10-15 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
WO2015190718A1 (ko) * 2014-06-09 2015-12-17 주식회사 두산 유기 전계 발광 소자
JP2017529686A (ja) * 2014-07-22 2017-10-05 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機電界発光デバイス
WO2017115596A1 (ja) * 2015-12-28 2017-07-06 新日鉄住金化学株式会社 有機電界発光素子
JPWO2017115596A1 (ja) * 2015-12-28 2018-11-29 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
US11594685B2 (en) 2017-03-30 2023-02-28 Lg Chem, Ltd. Organic light emitting device

Also Published As

Publication number Publication date
JP2013201153A (ja) 2013-10-03
EP2581957A1 (en) 2013-04-17
US8987715B2 (en) 2015-03-24
US20130075716A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
WO2011155507A1 (ja) 有機エレクトロルミネッセンス素子
WO2011155508A1 (ja) 有機エレクトロルミネッセンス素子
JP5870045B2 (ja) ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5802854B2 (ja) 縮合フルオランテン化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
CN107108585B (zh) 新颖化合物及包含其的有机发光器件
JP6088161B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JP6195828B2 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP5357150B2 (ja) ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2018186374A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP6270735B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
KR102282551B1 (ko) 카바졸 유도체, 이것을 이용한 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
JP5756288B2 (ja) 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2014024880A1 (ja) 有機エレクトロルミネッセンス素子、および電子機器
JP2012156499A (ja) 有機エレクトロルミネッセンス素子
WO2015072520A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子および電子機器
KR20160137587A (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
KR20180099657A (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
WO2014051004A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2014054263A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP2012140367A (ja) 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP2014196251A (ja) ヘテロアレーン誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13702625

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011792464

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP