WO2011007718A1 - 受信装置 - Google Patents

受信装置 Download PDF

Info

Publication number
WO2011007718A1
WO2011007718A1 PCT/JP2010/061657 JP2010061657W WO2011007718A1 WO 2011007718 A1 WO2011007718 A1 WO 2011007718A1 JP 2010061657 W JP2010061657 W JP 2010061657W WO 2011007718 A1 WO2011007718 A1 WO 2011007718A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
broadcast signal
receiving unit
unit
satellite wave
Prior art date
Application number
PCT/JP2010/061657
Other languages
English (en)
French (fr)
Inventor
吉田 俊和
英明 小澤
充 井ヶ田
英俊 栗原
吉田 浩二
勝 嶋貫
正志 今井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2011522790A priority Critical patent/JP5828764B2/ja
Priority to KR1020127000313A priority patent/KR101737651B1/ko
Priority to RU2011153298/07A priority patent/RU2539880C2/ru
Priority to CN201080030501.4A priority patent/CN102474660B/zh
Priority to EP10799776.9A priority patent/EP2456197A4/en
Priority to US13/382,691 priority patent/US8587729B2/en
Publication of WO2011007718A1 publication Critical patent/WO2011007718A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/455Demodulation-circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/46Receiver circuitry for the reception of television signals according to analogue transmission standards for receiving on more than one standard at will

Definitions

  • the present invention relates to a receiving device forming a front end module for receiving an analog television broadcast signal and a digital television broadcast signal.
  • a recording device In the case of a recording device, it is also necessary to output a television broadcast signal as an RF signal from a signal output terminal to another module.
  • one splitter module and two or three front-end modules are provided separately (see, for example, Patent Document 1).
  • a tuner module that receives analog television broadcasting and digital television broadcasting, and a circuit that supplies power to the tuner module are mounted on separate boards.
  • Patent Document 2 describes a digital broadcast receiving apparatus having a plurality of tuners.
  • the local frequency of one television tuner may overlap within the desired frequency band of another television tuner.
  • the signal level of the interference wave depends on the isolation performance of the distributor in the reception band. In the case of analog broadcasting, the level at which the jamming wave can be detected as a beat is very sensitive, and it is necessary to reduce the influence of the jamming wave as much as possible.
  • the present invention provides a receiving apparatus capable of reducing the influence of interference waves without complicating the configuration and capable of receiving analog and digital broadcast signals without interference by a single front-end module. There is.
  • a receiving device receives first and second receiving units that receive a broadcast signal in a first frequency band, and a broadcast signal in a second frequency band that is different from the first frequency band.
  • a third receiving unit, and the third receiving unit is disposed between the first and second receiving units.
  • a plurality of the third receiving units can be arranged between the first and second receiving units.
  • the first to third receivers can frequency-convert received broadcast signals.
  • first and second intermediate receiving units are arranged as two third receiving units, and the first and second receiving units are arranged.
  • a terrestrial broadcast signal in the UHF or VHF frequency band as the broadcast signal in the first frequency band and converting it to an intermediate frequency signal
  • a satellite wave digital broadcast signal in the SHF frequency band can be received and converted into a baseband signal.
  • a first distribution unit that distributes the digital broadcast signal to the first satellite wave broadcast signal and the second satellite wave broadcast signal, and supplies the input satellite wave digital broadcast signal to the first output terminal;
  • the terrestrial broadcast signal input from the second input terminal is distributed to the first terrestrial broadcast signal and the second terrestrial broadcast signal, and the input terrestrial broadcast signal is distributed to the second terrestrial broadcast signal.
  • the first intermediate arrangement receiving unit receives the first satellite wave broadcast signal distributed by the first distribution unit and converts the frequency into a first baseband signal.
  • the second intermediate arrangement receiving unit receives the second satellite wave broadcast signal distributed by the first distribution unit, converts the frequency into a second baseband signal, and converts the first satellite band broadcast signal to the first baseband signal.
  • the receiving unit receives the first terrestrial broadcast signal distributed by the second distributing unit, converts the frequency into a first intermediate frequency signal, and the second receiving unit includes the second terrestrial broadcast signal.
  • the second terrestrial broadcast signal distributed by the distribution unit can be received and converted into a second intermediate frequency signal.
  • a first demodulator having a function of demodulating the first baseband signal by the first intermediate arrangement receiver and the first intermediate frequency signal by the first receiver; and the second intermediate arrangement reception.
  • a second demodulating unit having a function of demodulating the second baseband signal by the unit and the second intermediate frequency signal by the second receiving unit.
  • the first demodulating unit has a digital demodulation function and an analog demodulation function, demodulates a video signal and an audio signal of the first baseband signal, and generates a first transport stream.
  • the intermediate frequency signal is a signal obtained by frequency-converting a terrestrial digital broadcast signal
  • the video signal and audio signal of the first intermediate frequency signal are demodulated, and a second transport stream is generated.
  • the intermediate frequency signal of 1 is a signal obtained by frequency-converting a terrestrial analog broadcast signal
  • the video signal and audio signal of the first intermediate frequency signal are demodulated to generate an analog video signal and an analog audio signal.
  • the second demodulation unit has a digital demodulation function, demodulates the video signal and audio signal of the second baseband signal, and generates a third transport stream; and the second intermediate frequency
  • the signal is a signal obtained by frequency-converting a terrestrial digital broadcast signal
  • the video signal and audio signal of the second intermediate frequency signal can be demodulated and a fourth transport stream can be generated.
  • the first demodulator may supply the generated first transport stream or the second transport stream to the third output terminal, and the generated analog video signal may be supplied to the third output terminal.
  • the analog audio signal can be supplied to the sixth output terminal.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit are distributed outputs of the first distributing unit and the second distributing unit.
  • the first receiving unit and the second receiving unit that are arranged in parallel with each other and perform frequency conversion of the terrestrial broadcast signal are arranged outside the parallel arrangement, and the arrangement unit of the first receiving unit and The first intermediate arrangement receiving unit and the second intermediate arrangement receiving unit may be arranged in parallel with the arrangement unit of the second reception unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit that are arranged in parallel are connected to the first receiving unit from one outer arrangement unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, and the second receiving unit may be arranged in this order.
  • the first demodulator and the second demodulator include the first receiver arranged in parallel, the first intermediate receiver, the second intermediate receiver, and the second receiver.
  • the first receiver and the first intermediate receiver are arranged in parallel so that the output side faces the input side of the first demodulator
  • the second intermediate arrangement receiving unit and the second receiving unit may be arranged in parallel so that the output side faces the input side of the second demodulation unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit that are arranged in parallel are connected to the first receiving unit from one outer arrangement unit.
  • the second intermediate arrangement receiving unit, the first intermediate arrangement receiving unit, and the second receiving unit may be arranged in this order.
  • the first demodulator and the second demodulator include the first receiver, the second intermediate receiver, the first intermediate receiver, and the second receiver arranged in parallel.
  • the first distribution unit includes a filter for removing unnecessary components of the satellite wave digital broadcast signal input from the first input terminal, an amplifier for amplifying the output signal of the filter, and an output signal of the amplifier for the first signal. And a distributor for distributing the first satellite wave broadcast signal, the second satellite wave broadcast signal, and the output satellite wave digital broadcast signal. The distributor distributes the first satellite wave broadcast signal to the first satellite wave broadcast signal.
  • the first distribution unit includes a filter for removing unnecessary components of the satellite wave digital broadcast signal input from the first input terminal, and a first signal for distributing the output signal of the filter to two satellite wave digital broadcast signals.
  • a divider an amplifier for amplifying one of the satellite wave digital broadcast signals distributed by the first divider, and an output signal of the amplifier as the first satellite wave broadcast signal and the second satellite wave broadcast;
  • a second distributor that distributes the signal, the first distributor supplies the other distributed satellite wave digital broadcast signal to the first output terminal, and the second distributor
  • the first satellite wave broadcast signal can be supplied to the first intermediate arrangement receiving unit, and the second satellite wave broadcast signal can be supplied to the second intermediate arrangement receiving unit.
  • the second distribution unit includes a filter for removing unnecessary components of the terrestrial broadcast signal input from the second input terminal, an amplifier for amplifying the output signal of the filter, and an output signal of the amplifier for the first signal.
  • a distributor for distributing the terrestrial broadcast signal to the second terrestrial broadcast signal and the output terrestrial broadcast signal.
  • the distributor distributes the first terrestrial broadcast signal to the first terrestrial broadcast signal.
  • the second terrestrial broadcast signal may be supplied to the second receiving unit, and the output terrestrial broadcast signal may be supplied to the second output terminal.
  • the second distributor includes a filter for removing unnecessary components of the terrestrial broadcast signal input from the second input terminal, and a third distributor for distributing the output signal of the filter to two terrestrial broadcast signals.
  • An amplifier that amplifies one of the terrestrial broadcast signals distributed by the third distributor, and an output signal of the amplifier is distributed to the first terrestrial broadcast signal and the second terrestrial broadcast signal.
  • a third distributor, the third distributor supplies the other distributed terrestrial broadcast signal to the second output terminal, and the fourth distributor is configured to supply the first ground signal.
  • a wave broadcast signal can be supplied to the first receiver, and the second terrestrial broadcast signal can be supplied to the second receiver.
  • the first to third receiving means may be arranged in parallel on the module substrate, and the first and second receiving means may be arranged on the edge side of the module substrate.
  • a tuner module having a first to third receiver, a demodulator that demodulates a video signal and an audio signal from signals frequency-converted by the first to third receivers, and a drive to the tuner module
  • a power supply unit that supplies power, and the tuner module unit and the power supply unit are arranged separately on one board, and the power supply unit is driven by at least the first to third receiving units.
  • a plurality of regulators capable of supplying power can be provided, and driving power can be selectively supplied to receiving units corresponding to the plurality of regulators according to the received broadcast signal.
  • a first input terminal to which a satellite wave digital broadcast signal is input and a second input terminal to which an analog or digital terrestrial broadcast signal is input can be further provided, and the third receiving unit includes: The tuner module unit converts the satellite wave digital broadcast signal input from the first input terminal into the first satellite wave broadcast signal and the second satellite wave.
  • a first distribution unit that distributes the broadcast signal to the broadcast signal, and a second distribution unit that distributes the terrestrial broadcast signal input from the second input terminal to the first terrestrial broadcast signal and the second terrestrial broadcast signal A first intermediate arrangement receiving unit that receives the first satellite wave broadcast signal distributed by the first distribution unit and converts the frequency into a first baseband signal, and the first distribution unit.
  • a second intermediate arrangement receiving unit that receives the transmission signal and converts the frequency into a second baseband signal; and the first terrestrial broadcast signal distributed by the second distribution unit receives the first terrestrial broadcast signal.
  • a first receiving unit that converts the frequency into an intermediate frequency signal, and a second receiving unit that receives the second terrestrial broadcast signal distributed by the second distributing unit and converts the frequency into a second intermediate frequency signal.
  • the power supply unit is selectively common to a plurality of receiving units among the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit.
  • the first distribution unit includes a first amplifier that amplifies a satellite wave digital broadcast signal input from the first input terminal, and the second distribution unit inputs from the second input terminal.
  • a second amplifier for amplifying the terrestrial broadcast signal, and the power supply unit can selectively supply drive power to the first amplifier and the second amplifier in accordance with the received broadcast signal. Can be.
  • the first distributor distributes the satellite wave digital broadcast signal input from the first input terminal to the first satellite wave broadcast signal and the second satellite wave broadcast signal.
  • the second distribution unit converts the terrestrial broadcast signal input from the second input terminal to the first output terminal.
  • the terrestrial broadcast signal and the second terrestrial broadcast signal can be distributed and the input terrestrial broadcast signal can be supplied to the second output terminal.
  • the first demodulating unit has a digital demodulation function and an analog demodulation function, demodulates a video signal and an audio signal of the first baseband signal, and generates a first transport stream.
  • the intermediate frequency signal is a signal obtained by frequency-converting a terrestrial digital broadcast signal
  • the video signal and audio signal of the first intermediate frequency signal are demodulated, and a second transport stream is generated.
  • the intermediate frequency signal of 1 is a signal obtained by frequency-converting a terrestrial analog broadcast signal
  • the video signal and audio signal of the first intermediate frequency signal are demodulated to generate an analog video signal and analog audio signal
  • the second demodulator has a digital demodulation function, demodulates the video signal and audio signal of the second baseband signal, and outputs a third transformer. If the second intermediate frequency signal is a signal obtained by frequency-converting a terrestrial digital broadcast signal, the video signal and audio signal of the second intermediate frequency signal are demodulated, and the fourth transformer A function of generating a port stream.
  • the first receiving unit and the second receiving unit that are arranged in parallel with each other and perform frequency conversion of the terrestrial broadcast signal are arranged outside the parallel arrangement, and the arrangement unit of the first receiving unit and The first intermediate arrangement receiving unit and the second intermediate arrangement receiving unit may be arranged in parallel with the arrangement unit of the second reception unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit that are arranged in parallel are connected to the first receiving unit from one outer arrangement unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, and the second receiving unit may be arranged in this order.
  • the first demodulator and the second demodulator include the first receiver arranged in parallel, the first intermediate receiver, the second intermediate receiver, and the second receiver.
  • the first receiver and the first intermediate receiver are arranged in parallel so that the output side faces the input side of the first demodulator
  • the second intermediate arrangement receiving unit and the second receiving unit may be arranged in parallel so that the output side faces the input side of the second demodulation unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit that are arranged in parallel are connected to the first receiving unit from one outer arrangement unit.
  • the second intermediate arrangement receiving unit, the first intermediate arrangement receiving unit, and the second receiving unit may be arranged in this order.
  • the first demodulator and the second demodulator include the first receiver, the second intermediate receiver, the first intermediate receiver, and the second receiver arranged in parallel.
  • the first receiver and the second intermediate receiver are arranged in parallel so that the output side faces the input side of the first demodulator,
  • the first intermediate arrangement receiving unit and the second receiving unit may be arranged in parallel so that the output side faces the input side of the second demodulation unit.
  • the first distribution unit includes a filter for removing unnecessary components of the satellite wave digital broadcast signal input from the first input terminal, a first amplifier for amplifying the output signal of the filter, and the first amplifier.
  • the first distribution unit includes a filter for removing unnecessary components of the satellite wave digital broadcast signal input from the first input terminal, and a first signal for distributing the output signal of the filter to two satellite wave digital broadcast signals.
  • the second distributor can supply the first satellite wave broadcast signal to the first intermediate arrangement reception unit and supply the second satellite wave broadcast signal to the second intermediate arrangement reception unit.
  • the second distribution unit includes a filter for removing unnecessary components of the terrestrial broadcast signal input from the second input terminal, a second amplifier for amplifying the output signal of the filter, and the second amplifier.
  • the second distributor includes a filter for removing unnecessary components of the terrestrial broadcast signal input from the second input terminal, and a third distributor for distributing the output signal of the filter to two terrestrial broadcast signals.
  • a second amplifier for amplifying one of the terrestrial broadcast signals distributed by the third distributor, and an output signal of the second amplifier as the first terrestrial broadcast signal and the second terrestrial broadcast signal.
  • a fourth distributor for distributing to the wave broadcast signal, the third distributor supplies the other distributed terrestrial broadcast signal to the second output terminal, and the fourth distributor
  • the first terrestrial broadcast signal can be supplied to the first receiver, and the second terrestrial broadcast signal can be supplied to the second receiver.
  • a distribution unit that distributes an input broadcast signal to a plurality of broadcast signals, and a tuner unit that includes the first to third reception units that receive the plurality of broadcast signals distributed by the distribution unit and perform frequency conversion; And an isolation amplifier unit disposed on at least one of a plurality of signal lines for propagating the broadcast signal distributed by the distribution unit to a corresponding reception unit.
  • a broadcast amplifier distributed by the distribution unit is input to the control terminal, and a buffer amplifier formed by a transistor that performs low impedance output by impedance conversion can be provided.
  • the isolation amplifier unit may be configured such that an attenuator is disposed on at least one of the input side and the output side of the buffer amplifier.
  • a first input terminal to which a satellite wave digital broadcast signal is input, a second input terminal to which an analog or digital terrestrial broadcast signal is input, and a satellite wave digital broadcast signal input from the first input terminal And a second output terminal for outputting a terrestrial broadcast signal input from the second input terminal, and the distributing unit may include the first output terminal for outputting a terrestrial broadcast signal input from the second input terminal.
  • the satellite wave digital broadcast signal input from the first input terminal is distributed to the first satellite wave broadcast signal and the second satellite wave broadcast signal, and the input satellite wave digital broadcast signal is distributed to the first satellite wave broadcast signal.
  • a second receiving unit that receives the signal and converts the frequency into a second intermediate frequency signal
  • the isolation amplifier unit includes at least the first distribution unit and the second distribution unit. It can be arranged on at least one of the third signal line and the fourth signal line connected to the second distributor.
  • the second distributor includes a filter that removes unnecessary components of the terrestrial broadcast signal input from the second input terminal, and a first distributor that distributes the output signal of the filter into two terrestrial broadcast signals. And an amplifier that amplifies one of the terrestrial broadcast signals distributed by the first distributor, and an output signal of the amplifier is distributed to the first terrestrial broadcast signal and the second terrestrial broadcast signal.
  • a second distributor wherein the first distributor supplies the other distributed terrestrial broadcast signal to the second output terminal, and the second distributor includes the third signal.
  • the first terrestrial broadcast signal is supplied to the first receiver via a line
  • the second terrestrial broadcast signal is supplied to the second receiver via the fourth signal line.
  • the first distribution unit includes a filter for removing unnecessary components of the satellite wave digital broadcast signal input from the first input terminal, an amplifier for amplifying the output signal of the filter, and an output signal of the amplifier for the first signal.
  • a distributor for distributing the first satellite wave broadcast signal, the second satellite wave broadcast signal, and the output satellite wave digital broadcast signal, the distributor via the first signal line. 1 satellite wave broadcast signal is supplied to the first intermediate arrangement receiving unit, the second satellite wave broadcast signal is supplied to the second intermediate arrangement receiving unit via the second signal line, and An output satellite wave digital broadcast signal can be supplied to the first output terminal.
  • the first distribution unit includes a filter for removing unnecessary components of the satellite wave digital broadcast signal input from the first input terminal, and a third signal for distributing the output signal of the filter to two satellite wave digital broadcast signals.
  • a distributor an amplifier for amplifying one of the satellite wave digital broadcast signals distributed by the third distributor, and an output signal of the amplifier as the first satellite wave broadcast signal and the second satellite wave broadcast;
  • the first satellite wave broadcast signal is supplied to the first intermediate receiving unit via the first signal line
  • the second satellite wave broadcast signal is supplied to the first intermediate line receiving unit via the second signal line. 2 intermediate arrangement receivers.
  • the tuner unit includes a first demodulator having a function of demodulating the first baseband signal by the first intermediate arrangement receiver and the first intermediate frequency signal by the first receiver; A second demodulator having a function of demodulating the second baseband signal by the second intermediate arrangement receiver and the second intermediate frequency signal by the second receiver, and the first demodulator.
  • Has a digital demodulation and analog demodulation function demodulates the video signal and audio signal of the first baseband signal, generates a first transport stream, and the first intermediate frequency signal is terrestrial And a function of demodulating the video signal and audio signal of the first intermediate frequency signal to generate a second transport stream, and
  • the interfrequency signal is a signal obtained by frequency-converting the terrestrial analog broadcast signal
  • the video signal and audio signal of the first intermediate frequency signal are demodulated, and the analog video signal and analog audio signal are generated.
  • the second demodulator has a digital demodulation function, demodulates the video signal and audio signal of the second baseband signal, and generates a third transport stream, and the second intermediate
  • the frequency signal is a signal obtained by frequency-converting a terrestrial digital broadcast signal
  • the video signal and audio signal of the second intermediate frequency signal can be demodulated and a fourth transport stream can be generated.
  • the first receiving unit and the second receiving unit that are arranged in parallel with each other and perform frequency conversion of the terrestrial broadcast signal are arranged outside the parallel arrangement, and the arrangement unit of the first receiving unit and The first intermediate arrangement receiving unit and the second intermediate arrangement receiving unit may be arranged in parallel with the arrangement unit of the second reception unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit that are arranged in parallel are connected to the first receiving unit from one outer arrangement unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, and the second receiving unit may be arranged in this order.
  • the first demodulator and the second demodulator include the first receiver arranged in parallel, the first intermediate receiver, the second intermediate receiver, and the second receiver.
  • the first receiver and the first intermediate receiver are arranged in parallel so that the output side faces the input side of the first demodulator
  • the second intermediate arrangement receiving unit and the second receiving unit may be arranged in parallel so that the output side faces the input side of the second demodulation unit.
  • the first intermediate arrangement receiving unit, the second intermediate arrangement receiving unit, the first receiving unit, and the second receiving unit that are arranged in parallel are connected to the first receiving unit from one outer arrangement unit.
  • the second intermediate arrangement receiving unit, the first intermediate arrangement receiving unit, and the second receiving unit may be arranged in this order.
  • the first demodulator and the second demodulator include the first receiver, the second intermediate receiver, the first intermediate receiver, and the second receiver arranged in parallel.
  • a receiving apparatus capable of reducing the influence of an interference wave without complicating the configuration and capable of receiving analog and digital broadcast signals without interference by a single front-end module. provide.
  • FIG. 1 shows the structural example of the broadcast signal receiver which concerns on the 1st Embodiment of this invention. It is a figure which shows the structural example of the oscillation system of the 1st and 2nd satellite wave tuner which concerns on this embodiment, and the 1st and 2nd terrestrial wave tuner. It is a figure which shows the structure which replaced the structure of FIG. 2 and the arrangement position of the 1st and 2nd satellite wave tuner. It is a block diagram which shows the structural example of the digital analog demodulation part which concerns on this embodiment. It is a figure which shows typically an example of the countermeasure against disturbance in this embodiment. It is a figure which shows the structural example of the broadcast signal receiver which concerns on the 2nd Embodiment of this invention. It is FIG.
  • FIG. 1 which shows the structural example of the broadcast signal receiver which concerns on the 3rd Embodiment of this invention.
  • FIG. 2 which shows the structural example of the broadcast signal receiver which concerns on the 3rd Embodiment of this invention.
  • FIG. 2 which shows the structural example of the broadcast signal receiver which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a diagram illustrating a configuration example of a broadcast signal receiving apparatus according to the first embodiment of the present invention.
  • the receiving apparatus 10 is configured to receive terrestrial analog television broadcast, terrestrial digital television broadcast, and satellite wave digital television broadcast with one front-end module without interference between the digital circuit and the analog circuit. Yes.
  • the receiving device 10 is configured to be able to receive a plurality of broadcasts simultaneously on two channels, such as a signal distribution unit, a frequency converter and a demodulator separated from each other, and a separation position of a terrestrial frequency converter. Is adopted. Further, in the receiving device 10, filtering of TS (transport stream) clock output, which is a demodulated signal of terrestrial digital television broadcasting and satellite digital television broadcasting, and common GND of the digital circuit unit and the analog circuit unit are performed. It has been broken. In the receiving device 10, a GND pattern design measure is taken in consideration of the return current flowing through the GND section.
  • the satellite wave digital television broadcast RF signal is referred to as a satellite wave digital broadcast signal
  • the analog and digital terrestrial television broadcast RF signals are referred to as terrestrial broadcast signals.
  • the frequency bands applied in the present embodiment are as follows.
  • the VHF band is 30 MHz to 300 MHz
  • the UHF band is 300 MHz to 3 GHz
  • the satellite wave band is 950 MHz to 2150 MHz.
  • the receiving device 10 has the following functional blocks isolated on one module substrate 11.
  • the module substrate 11 is provided with a first distribution unit 12, a second distribution unit 13, a first satellite wave tuner 14, a second satellite wave tuner 15, a first terrestrial tuner 16, and a second terrestrial tuner 17.
  • the digital analog demodulator 18 and the digital demodulator 19 are formed separately.
  • the first satellite wave tuner 14 functions as a first frequency conversion unit
  • the second satellite wave tuner 15 functions as a second frequency conversion unit.
  • the first terrestrial tuner 16 functions as a third frequency converter
  • the second terrestrial tuner 17 functions as a fourth frequency converter.
  • the digital analog demodulator 18 functions as a first demodulator
  • the digital demodulator 19 functions as a second demodulator.
  • the module substrate 11 is formed in a rectangular shape.
  • a first input terminal TI11, a second input terminal TI12, a first output terminal TO11, and a second output terminal TO12 are formed on the first edge (side) 11a of the module substrate 11.
  • the first input terminal TI ⁇ b> 11 and the first output terminal TO ⁇ b> 11 are formed in parallel in close proximity to the first edge 11 a on the upper left side in FIG. 1.
  • the 1st distribution part 12 is arrange
  • the second input terminal TI 12 and the second output terminal TO 12 are formed in close proximity to and parallel to the first left edge 11 a in FIG.
  • the 2nd distribution part 13 is arrange
  • the satellite wave digital broadcast signal Sat is input to the first input terminal TI11, and the satellite wave digital broadcast signal Sat is input to the first distribution unit 12.
  • the first output terminal TO11 is configured to be able to output the satellite wave digital broadcast signal Sat input from the first input terminal TI11 to the first distributor 12 to another module device.
  • the second input terminal TI12 receives the terrestrial broadcast signal Terr, and inputs the terrestrial broadcast signal Terr to the second distribution unit 13.
  • the second output terminal TO12 is configured to be able to output the terrestrial broadcast signal Terr input from the second input terminal TI12 to the second distribution unit 13 to another module device.
  • a third output terminal TO13 and a fourth output terminal TO14 are formed on the second edge 11b facing the first edge 11a of the module substrate 11.
  • a fifth output terminal TO15 and a sixth output terminal TO16 are formed on the third edge 11c of the module substrate 11 at a position close to the second edge 11b.
  • a third output terminal TO13 is formed below the center portion of the second edge portion 11b on the right side in FIG.
  • a fourth output terminal TO14 is formed above the center of the second edge 11b on the right side in FIG.
  • the fifth output terminal TO15 and the sixth output terminal TO16 are formed close to each other in parallel at a position near the second edge 11b of the lower third edge 11c in FIG. .
  • a digital signal serving as a first demodulator close to the formation positions of the third output terminal TO13 and the fifth output terminal TO15 and the sixth output terminal TO16.
  • An analog demodulator 18 is arranged.
  • a digital demodulator 19 as a second demodulator is disposed on the upper right side of the module substrate 11 in FIG. 1 in the vicinity of the formation position of the fourth output terminal TO14.
  • the third output terminal TO13 is arranged to output a TS (transport stream) generated by the digital analog demodulator 18 serving as the first demodulator.
  • the fourth output terminal TO14 is arranged to output the TS generated by the digital demodulator 19 as the second demodulator.
  • the fifth output terminal TO15 is arranged to output the analog video signal ASV generated by the digital analog demodulator 18.
  • the sixth output terminal TO16 is arranged to output the analog audio signal ASA generated by the digital / analog demodulator 18.
  • the first distribution unit 12 distributes the satellite wave digital broadcast signal Sat input from the first input terminal TI11 into the first satellite wave broadcast signal Sat1 and the second satellite wave broadcast signal Sat2, and receives the input satellite
  • the wave digital broadcast signal Sat is supplied to the first output terminal TO11.
  • the first distribution unit 12 supplies the distributed first satellite wave broadcast signal Sat1 to the first satellite wave tuner 14 as a first frequency conversion unit via the first signal line SL11.
  • the first distribution unit 12 supplies the distributed second satellite wave broadcast signal Sat2 to the second satellite wave tuner 15 as the second frequency conversion unit via the second signal line SL12.
  • the first distribution unit 12 includes a high-pass filter (HPF) 121, a low noise amplifier (LNA) 122, and a distributor 123.
  • HPF high-pass filter
  • LNA low noise amplifier
  • the HPF 121 removes unnecessary components of the satellite wave digital broadcast signal Sat input from the first input terminal TI11 and outputs the result to the LNA 122. That is, for example, the HPF 121 removes a low frequency component less than a predetermined frequency from the frequency component of the satellite wave digital broadcast signal Sat input from the first input terminal TI11 as an unnecessary component, and a high frequency equal to or higher than the predetermined frequency. The frequency component is output to the LNA 122.
  • the LNA 122 amplifies the satellite wave digital broadcast signal Sat from which unnecessary components have been removed by the HPF 121 and outputs the amplified signal to the distributor 123.
  • the distributor 123 distributes the satellite wave digital broadcast signal Sat output from the LNA 122 to the first satellite wave broadcast signal Sat1, the second satellite wave broadcast signal Sat2, and the output satellite wave digital broadcast signal SatO.
  • the distributor 123 supplies the distributed first satellite wave broadcast signal Sat1 to the first satellite wave tuner 14 as a first frequency converter via the first signal line SL11.
  • the distributor 123 supplies the distributed second satellite wave broadcast signal Sat2 to the second satellite wave tuner 15 as the second frequency conversion unit via the second signal line SL12.
  • the distributor 123 supplies the distributed output satellite wave digital broadcast signal SatO to the first output terminal TO11.
  • the second distribution unit 13 distributes the terrestrial broadcast signal Terr input from the second input terminal TI12 into the first terrestrial broadcast signal Terr1 and the second terrestrial broadcast signal Terr2, and receives the input terrestrial broadcast signal Terr2.
  • the broadcast signal Terr is supplied to the second output terminal TO12.
  • the second distributor 13 supplies the distributed first terrestrial broadcast signal Terr1 to the first terrestrial tuner 16 as a third frequency converter via the third signal line SL13.
  • the second distribution unit 13 supplies the distributed second terrestrial broadcast signal Terr2 to the second terrestrial tuner 17 as the fourth frequency conversion unit via the fourth signal line SL14.
  • the second distribution unit 13 includes a low-pass filter (LPF) 131, an LNA 132, and distributors 133 and 134.
  • the distributor 133 corresponds to a fourth distributor
  • the distributor 134 corresponds to a third distributor.
  • the LPF 131 removes unnecessary components of the terrestrial broadcast signal Terr input from the second input terminal TO12 and outputs the result to the distributor 134. That is, for example, the LPF 131 removes a high frequency component having a frequency equal to or higher than a predetermined frequency from the frequency component of the terrestrial broadcast signal Terr input from the second input terminal TO12 as an unnecessary component, and a low frequency less than the predetermined frequency. The frequency component is output to the distributor 134.
  • the distributor 134 distributes the terrestrial broadcast signal Terr output from the LPF 131 into two, outputs one of the distributed terrestrial broadcast signals to the LNA 132, and outputs the other distributed terrestrial broadcast signal to the terrestrial wave for output.
  • the broadcast signal TerrO is supplied to the second output terminal TO12.
  • the first satellite wave tuner 14 is supplied with the first satellite wave broadcast signal Sat1 distributed by the first distributor 12, and converts the frequency of the first satellite wave broadcast signal Sat1 into a first baseband signal. A function as a first frequency converter.
  • the first satellite wave tuner 14 outputs a first baseband signal obtained by frequency conversion as a signal S14 to a digital analog demodulator 18 as a first demodulator.
  • the second satellite wave tuner 15 is supplied with the second satellite wave broadcast signal Sat2 distributed by the first distributor 12, and converts the frequency of the second satellite wave broadcast signal Sat2 into a second baseband signal. And function as a second frequency converter.
  • the second satellite wave tuner 15 outputs the second baseband signal obtained by frequency conversion to the digital demodulator 19 as the second demodulator as a signal S15.
  • the first terrestrial tuner 16 is supplied with the first terrestrial broadcast signal Terr1 distributed by the second distributor 13, and converts the frequency of the first terrestrial broadcast signal Terr1 into a first intermediate frequency signal. Function as a third frequency converter.
  • the first terrestrial tuner 16 outputs the first intermediate frequency signal to the digital / analog demodulator 18 as a signal S16.
  • the second terrestrial tuner 17 is supplied with the second terrestrial broadcast signal Terr2 distributed by the second distributor 13 and converts the second terrestrial broadcast signal Terr2 into a second intermediate frequency signal. Function as a fourth frequency converter.
  • the second terrestrial tuner 17 outputs the second intermediate frequency signal to the digital demodulator 19 as a signal S17.
  • FIG. 2 is a diagram illustrating a configuration example of the oscillation system of the first and second satellite wave tuners and the first and second terrestrial tuners according to the present embodiment.
  • FIG. 2 only the oscillation system is shown, and a mixer or the like that receives the clock signal from the oscillation system and mixes the input broadcast signal is omitted.
  • the first satellite wave tuner 14 includes a local oscillator 141 made up of a voltage controlled oscillator (VCO) that oscillates a local oscillation signal having a frequency of 2150 MHz to 4300 MHz, a buffer 142, and a frequency divider 143, for example.
  • the first satellite wave tuner 14 includes, for example, a crystal oscillator 144 that oscillates a reference clock having a frequency of 16 MHz, a buffer 145, and a PLL circuit 146.
  • the PLL circuit 146 supplies a clock signal obtained by synchronizing the phase of the local oscillation signal divided by the frequency divider 143 with the reference clock signal to a mixer (not shown).
  • the second satellite wave tuner 15 includes a local oscillator 151 made up of a voltage controlled oscillator (VCO) that oscillates a local oscillation signal having a frequency of 2150 MHz to 4300 MHz, a buffer 152, and a frequency divider 153, for example.
  • the second satellite wave tuner 15 includes a crystal oscillator 154 that oscillates a reference clock having a frequency of 16 MHz, a buffer 155, and a PLL circuit 156, for example.
  • the PLL circuit 156 supplies a clock signal obtained by synchronizing the phase of the local oscillation signal divided by the frequency divider 153 with the reference clock signal to a mixer (not shown).
  • the first terrestrial tuner 16 includes a local oscillator 161 made up of a voltage controlled oscillator (VCO) that oscillates a local oscillation signal having a frequency of 1800 MHz to 3600 MHz, a buffer 162, and a frequency divider 163, for example.
  • the first terrestrial tuner 16 includes, for example, a crystal oscillator 164 that oscillates a reference clock having a frequency of 4 MHz, a buffer 165, and a PLL circuit 166.
  • the PLL circuit 166 supplies a clock signal obtained by synchronizing the phase of the local oscillation signal divided by the frequency divider 163 with the reference clock signal to a mixer (not shown).
  • the second terrestrial tuner 17 includes, for example, a local oscillator 171 including a voltage controlled oscillator (VCO) that oscillates a local oscillation signal having a frequency of 1800 MHz to 3600 MHz, a buffer 172, and a frequency divider 173.
  • the second terrestrial tuner 17 includes a crystal oscillator 174 that oscillates a reference clock having a frequency of 4 MHz, a buffer 175, and a PLL circuit 176, for example.
  • the PLL circuit 176 supplies a clock signal obtained by synchronizing the phase of the local oscillation signal divided by the frequency divider 173 with the reference clock signal to a mixer (not shown).
  • the first satellite wave tuner 14, the second satellite wave tuner 15, the first terrestrial tuner 16, and the second terrestrial tuner 17 are distributed by the first distributor 12 and the second distributor 13. Arranged in parallel with the output.
  • the first terrestrial tuner 16 and the second terrestrial tuner 17 are the module substrate 11. Are spaced apart on the edge side (outside). That is, since terrestrial tuners have analog broadcasts that are most susceptible to interference, by arranging each of the terrestrial tuners at the edge (end) of the module substrate 11, it is possible to prevent local oscillation interference. All measures are taken.
  • the interference such as noise will be described in detail later.
  • the first terrestrial tuner 16 as a third frequency converter that performs frequency conversion of a terrestrial broadcast signal and the second terrestrial tuner 17 as a fourth frequency converter are provided. Arranged outside the parallel arrangement. Specifically, the first terrestrial tuner 16 is disposed on the third edge portion 11c side and the second terrestrial tuner 17 is disposed on the fourth edge portion 11d side in the substantially central portion of the module substrate 11. Yes. A first satellite wave tuner 14 and a second frequency conversion unit as a first frequency conversion unit are disposed between the arrangement unit of the first terrestrial tuner 16 and the arrangement unit of the second terrestrial tuner 17. As a second satellite wave tuner is arranged in parallel.
  • the first terrestrial tuner 16, the first satellite wave tuner 14, the second satellite wave tuner 15, and the second terrestrial tuner 17 from the side of the third edge 11 c, which is one outer arrangement portion. are arranged in order.
  • a digital analog demodulator 18 and a digital demodulator are arranged in parallel.
  • the first terrestrial tuner 16 and the first satellite wave tuner 14 are arranged in parallel so that the output side faces the input side of the digital analog demodulator 18 as the first demodulator.
  • the second satellite wave tuner 15 and the second terrestrial tuner 17 are arranged in parallel so that the output side faces the input side of the digital demodulator 19 as the second demodulator.
  • first satellite wave tuner 14 and the second satellite wave tuner 15 can be arranged with their arrangement positions changed as shown in FIG.
  • the first terrestrial tuner 16, the second satellite wave tuner 15, the first satellite wave tuner 14, and the second terrestrial tuner 17 are arranged from the side of the third edge 11 c that is one outer arrangement portion. Are arranged in order.
  • a digital analog demodulator 18 and a digital demodulator The parts 19 are arranged in parallel.
  • the first terrestrial tuner 16 and the second satellite wave tuner 15 are arranged in parallel so that the output side faces the input side of the digital analog demodulator 18 serving as the first demodulator.
  • the first satellite wave tuner 14 and the second terrestrial tuner 17 are arranged in parallel so that the output side faces the input side of the digital demodulator 19 as the second demodulator.
  • the digital / analog demodulation unit 18 includes a digital demodulation and an analog demodulation function, and has the following functions.
  • the digital / analog demodulation unit 18 demodulates the video signal and audio signal of the first baseband signal by the first satellite wave tuner 14 to generate a first transport stream.
  • the digital analog demodulator 18 converts the video signal and audio signal of the first intermediate frequency signal. Demodulate to generate a second transport stream.
  • the digital analog demodulator 18 demodulates the video signal and audio signal of the first intermediate frequency signal, and the analog video signal ASV and An analog audio signal ASA is generated.
  • the digital / analog demodulator 18 supplies the generated first transport stream or second transport stream to the third output terminal TO13.
  • the digital analog demodulator 18 supplies the generated analog video signal to the fifth output terminal TO15, and supplies the analog audio signal to the sixth output terminal TO16.
  • FIG. 4 is a block diagram illustrating a configuration example of the digital analog demodulation unit according to the present embodiment.
  • the digital analog demodulator 18 includes a satellite wave demodulator 183, a terrestrial digital demodulator 184, and a terrestrial analog demodulator 185.
  • the satellite wave demodulation unit 183 corresponds to the ISDB-S (Integrated Services Digital Broadcasting-Satellite) method
  • the terrestrial digital demodulation unit 184 corresponds to the ISDB-T (Terrestrial) method
  • the terrestrial analog demodulation unit 185 conforms to the NTSC method. It corresponds.
  • the TS output control unit 1835 outputs TS and outputs error information.
  • the satellite wave demodulator 183 includes ADCs 1831-1, 1831-2, 8PSK demodulator 1832, Viterbi decoder 1833, Reed-Solomon (RS) decoder 1834, and TS output controller 1835.
  • the satellite wave demodulation unit 183 includes a TMCC (Transmission and Multiplexing Configuration and Control) unit 1836 corresponding to emergency warning broadcasting, a status monitor 1837, and an AGC (Auto Gain Control) unit 1838.
  • the status monitor 1837 outputs an emergency warning signal (EWS: Emergency Warning Signal), outputs a demodulation OK flag indicating that the demodulation is normally completed, and the like.
  • EWS Emergency Warning Signal
  • the terrestrial digital demodulation unit 184 includes an OFDM demodulator 1841, a Viterbi decoder 1842, an RS decoder 1843, a TS output control unit 1844, a TMCC unit 1845 corresponding to emergency warning broadcasting, a status monitor 1846, and an AGC unit 1847.
  • the status monitor 1846 outputs an EWS, outputs a demodulation OK flag indicating that the demodulation is normally completed, and the like.
  • the terrestrial analog demodulation unit 185 includes a video intermediate frequency signal processing unit (VIF) 1851, a digital analog converter (DAC) 1852, a sound intermediate frequency signal processing unit (SIF) 1853, an audio multiplexing demodulator 1854, and an AGC unit 1855.
  • VIF video intermediate frequency signal processing unit
  • DAC digital analog converter
  • SIF sound intermediate frequency signal processing unit
  • AGC unit 1855 AGC unit
  • the digital demodulator 19 includes a second baseband signal by a second satellite wave tuner 15 as a second frequency converter and a second intermediate frequency by a second terrestrial tuner 17 as a fourth frequency converter. It functions as a second demodulator having a signal demodulation function. As shown in FIGS. 2 and 3, the digital demodulator 19 includes a crystal oscillator 191 that generates a master lock, and an analog-digital converter (ADC) 192.
  • ADC analog-digital converter
  • the digital demodulator 19 includes a digital demodulation function and has the following functions.
  • the digital demodulator 19 demodulates the video signal and audio signal of the second baseband signal by the second satellite wave tuner 15 to generate a third transport stream.
  • the second intermediate frequency signal by the second terrestrial tuner 17 is a signal obtained by frequency-converting the terrestrial digital broadcast signal
  • the digital demodulator 19 demodulates the video signal and the audio signal of the second intermediate frequency signal. Then, the fourth transport stream is generated.
  • the digital demodulator 19 supplies the generated third transport stream or fourth transport stream to the fourth output terminal TO14.
  • the digital demodulator 19 has the same configuration as the satellite wave demodulator 183 and the terrestrial digital demodulator 184 shown in FIG.
  • the receiving apparatus having the above configuration is capable of receiving terrestrial analog television broadcast, terrestrial digital television broadcast, and satellite wave digital television broadcast with one front-end module without interference between the digital circuit and the analog circuit. is there.
  • the receiving device 10 can receive these multiple broadcasts simultaneously on two channels.
  • the receiving device 10 receives a combination of terrestrial analog television broadcast and terrestrial digital television broadcast, terrestrial analog television broadcast and satellite wave digital television broadcast, terrestrial digital television broadcast and terrestrial digital television broadcast. Is possible.
  • the receiving apparatus 10 can receive a combination of terrestrial digital television broadcast and satellite wave digital television broadcast, or satellite wave digital television broadcast and satellite wave digital television broadcast.
  • interference interference In order to operate the front end module smoothly without interference, it is necessary to take measures against the following problems that may occur.
  • the harmonics of the satellite wave digital TS output from the digital demodulator 19 jump into the terrestrial RF band and are superimposed as an interference signal in the intermediate frequency signal band output from the first terrestrial tuner 16. (Disturbance 1).
  • the harmonics of the terrestrial digital TS output from the digital demodulator 19 jump into the terrestrial RF band and are superimposed as an interference signal in the intermediate frequency signal band output from the first terrestrial tuner 16. (Interference 2).
  • the local oscillation component of the first terrestrial tuner 16 jumps into the satellite wave RF band, and noise is superimposed on the baseband signal output from the second satellite wave tuner 15 (interference 3).
  • the local oscillation component of the second terrestrial tuner 17 jumps into the satellite wave RF band, and noise is superimposed on the baseband signal output from the first satellite wave tuner 14 (interference 4).
  • a crystal oscillation signal harmonic component used for frequency conversion of the first and second satellite wave tuners 14 and 15 jumps into the terrestrial RF band and is output from the first and second terrestrial tuners 16 and 17. Is superimposed as an interference signal in the intermediate frequency signal band (interference 5).
  • the harmonic of the master clock of the digital / analog demodulator 18 jumps into the terrestrial RF band and is superposed as an interference signal in the intermediate frequency signal band output from the first terrestrial tuner 16 (interference 6 ).
  • the local oscillation component of the second terrestrial tuner 17 jumps into the terrestrial RF band and is superimposed as an interference signal in the intermediate frequency signal band output from the first terrestrial tuner 16 (interference 7).
  • the local oscillation component of the first terrestrial tuner 16 jumps into the terrestrial RF band and is superimposed as an interference signal in the intermediate frequency signal band output from the second terrestrial tuner 17 (interference 8).
  • the local oscillation component of the first satellite wave tuner 14 jumps into the satellite wave RF band, and noise is superimposed on the baseband signal output from the second satellite wave tuner 15 (interference 9).
  • the local oscillation component of the second satellite wave tuner 15 jumps into the satellite wave RF band, and noise is superimposed on the baseband signal output from the first satellite wave tuner 14 (interference 10).
  • FIG. 5 is a diagram schematically illustrating an example of countermeasures against interference in the present embodiment.
  • walls are formed in the distributing unit (splitter unit), the terrestrial tuner unit, the satellite wave tuner unit, and the demodulating unit to isolate them.
  • the terrestrial tuner since the terrestrial tuner has analog broadcasting that is most susceptible to interference, by placing each terrestrial tuner on the edge (end) of the module substrate 11, Measures are taken against local disturbance. Further, the joint portion between the ground GND of the module substrate 11 and the shield case is disposed at a position in consideration of the return current.
  • the GND pattern is also designed in consideration of the return current, so that the above-described radiation interference is suppressed, and a single front end module serves as a distribution unit (splitter).
  • terrestrial analog television broadcasting and terrestrial digital television broadcasting, terrestrial analog television broadcasting and satellite digital television broadcasting, and combinations of terrestrial digital television broadcasting and terrestrial digital television broadcasting can be received. It is. Further, it is possible to receive each combination of terrestrial digital television broadcast and satellite wave digital television broadcast, satellite wave digital television broadcast and satellite wave digital television broadcast.
  • the satellite wave digital broadcast signal Sat is input to the first input terminal TI11 for inputting the satellite wave signal, and is supplied to the first distributor 12.
  • the first distributor 12 unnecessary components are removed by the HPF 121, amplified by the LNA 122, the first satellite wave broadcast signal Sat 1, the second satellite wave broadcast signal Sat 2, and the output satellite wave digital by the distributor 123.
  • Distributed to the broadcast signal SatO The distributed first satellite wave broadcast signal Sat1 is supplied to the first satellite wave tuner 14 as a first frequency converter via the first signal line SL11.
  • the distributed second satellite wave broadcast signal Sat2 is supplied to the second satellite wave tuner 15 as the second frequency converter via the second signal line SL12.
  • the distributed satellite digital broadcast signal SatO for output is supplied to the first output terminal TO11.
  • the terrestrial broadcast signal Terr is input to the second input terminal TI12 for terrestrial signal input, and is supplied to the second distributor 13.
  • the second distribution unit 13 unnecessary components are removed by the LPF 131, and the terrestrial broadcast signal Terr output from the LPF 131 is distributed by the distributor 134 into two.
  • One distributed terrestrial broadcast signal is output to the LNA 132, and the other distributed terrestrial broadcast signal is supplied to the second output terminal TO12 as an output terrestrial broadcast signal TerrO.
  • one terrestrial broadcast signal from the distributor 134 is amplified and output to the distributor 133.
  • the distributor 133 distributes the terrestrial broadcast signal Terr output from the LNA 132 to the first terrestrial broadcast signal Terr1 and the second terrestrial broadcast signal Terr2.
  • the distributed first terrestrial broadcast signal Terr1 is supplied to the first terrestrial tuner 16 as a third frequency converter via the third signal line SL13.
  • the distributed second terrestrial broadcast signal Terr2 is supplied to a second terrestrial tuner 17 serving as a fourth frequency converter via a fourth signal line SL14.
  • the first terrestrial tuner 16 converts the frequency of the first terrestrial broadcast signal Terr1 into a first intermediate frequency signal
  • the second terrestrial tuner 17 converts the second terrestrial broadcast signal Terr2 to the second intermediate frequency. Frequency converted to signal.
  • the first intermediate frequency signal is input to the digital analog demodulator 18, and the second intermediate frequency signal is input to the digital demodulator 19.
  • the terrestrial analog signal is demodulated into an analog video signal and an audio signal by the digital / analog demodulator 18 and output to the fifth output terminal TO15 for video and the sixth output terminal TO16 for audio, respectively. Further, the terrestrial digital signal is demodulated by the digital analog demodulator 18 and the digital demodulator 19, and is converted into the terrestrial digital TS in the MPEG-2 format in the same manner as the BSCS digital signal. Output from the output terminal TO14.
  • a single front-end module is configured to receive terrestrial analog television broadcast, terrestrial digital television broadcast, and satellite wave digital television broadcast.
  • the signal distribution unit, the frequency conversion unit, and the demodulation unit are separated from each other, and the terrestrial frequency conversion unit is separated as a configuration that enables the plurality of broadcasts to be simultaneously received by two channels.
  • Such a characteristic configuration is adopted.
  • filtering of TS clock output which is a demodulated signal of terrestrial digital television broadcasting and satellite wave digital television broadcasting, is performed, and GND of the digital circuit unit and analog circuit unit is shared.
  • a GND pattern design measure is taken in consideration of the return current flowing through the GND section. As a result, it is possible to receive all broadcasts without radiation interference.
  • terrestrial analog television broadcast and terrestrial digital television broadcast, terrestrial analog television broadcast and satellite wave digital television broadcast can be viewed and recorded simultaneously.
  • Digital terrestrial television broadcasting and terrestrial television broadcasting, terrestrial digital television broadcasting and satellite digital television broadcasting, and combination of satellite digital television broadcasting and satellite digital television broadcasting enable simultaneous viewing and recording can do.
  • the mounting area can be reduced compared with the normal method, and since the shield can be used in a state where the interference problem due to the layout at the time of use has already been solved, the interference on the mounted board side can be reduced. It is possible to facilitate the design study including it.
  • FIG. 6 is a diagram illustrating a configuration example of a broadcast signal receiving apparatus according to the second embodiment of the present invention.
  • the receiving device 10A according to the second embodiment is different from the receiving device 10 according to the first embodiment described above in the configuration of the first distribution unit 12A and the second distribution unit 13A.
  • a distributor (first distributor) 124 is provided at the output stage of the HPF 121 in the first distributor 12A, and a distributor 134 is omitted in the second distributor 13A.
  • the distributor 124 as the first distributor distributes the HPF 121 output signal to two satellite wave digital broadcast signals, and the other satellite wave digital broadcast signal SatO is distributed to the first output terminal.
  • Supply to TO11 The distributor 123A as the second distributor distributes the output signal of the LNA 122 to the first satellite wave broadcast signal Sat1 and the second satellite wave broadcast signal Sat2.
  • the distributor 123A supplies the distributed first satellite wave broadcast signal Sat1 to the first satellite wave tuner 14 as the first frequency converter via the first signal line SL11.
  • the distributor 123A supplies the distributed second satellite wave broadcast signal Sat2 to the second satellite wave tuner 15 as the second frequency conversion unit via the second signal line SL12.
  • the distributor 133A distributes the output signal of the LNA 132 into the first terrestrial broadcast signal Terr1, the second terrestrial broadcast signal Terr2, and the output terrestrial broadcast signal TerrO.
  • the distributor 133A supplies the distributed first terrestrial broadcast signal Terr1 to the first terrestrial tuner 16 as a third frequency converter via the third signal line SL13.
  • the distributor 133A supplies the distributed second terrestrial broadcast signal Terr2 to the second terrestrial tuner 17 as the fourth frequency conversion unit via the fourth signal line SL14.
  • the distributor 133A supplies the distributed output terrestrial broadcast signal TerrO to the second output terminal TO12.
  • the first distribution unit 12, 12A and the second distribution unit 13, 13A can be used in appropriate combination without being limited to the configurations of the first and second embodiments.
  • Third Embodiment> 7 and 8 are diagrams illustrating a configuration example of a broadcast signal receiving apparatus according to the third embodiment of the present invention.
  • the receiving device 10B of the third embodiment shares the ground GND of the tuner module unit 20 and the power supply unit 30, and the tuner module unit 20 and the power supply unit are separated from each other. Arranged, and spurious power supply wiring is performed.
  • a stable power source is provided for the purpose of receiving terrestrial analog television broadcasting, terrestrial digital television broadcasting, and satellite digital television broadcasting on a single board 11B, and a tuner module that receives them. The purpose of supply is made possible at the same time.
  • tuner module unit 20 is formed as a module including the receiving device 10 of the first embodiment or the receiving device 10A of the second embodiment.
  • the power supply unit 30 includes power regulators 31 to 36 that can selectively supply drive power according to the received broadcast signal.
  • the power regulator 31 selectively supplies driving power to the LNA 122 of the first distribution unit 12.
  • the power regulator 32 selectively supplies driving power to the LNA 132 of the second distribution unit 13.
  • the power regulator 33 selectively supplies driving power to the first terrestrial tuner 16.
  • the power regulator 34 selectively supplies driving power to the first satellite wave tuner 14.
  • the power regulator 35 selectively supplies driving power to the second satellite wave tuner 15.
  • the power regulator 36 selectively supplies driving power to the second terrestrial tuner 17.
  • the power regulators 31 to 36 are supplied with power from an external power source and converted into voltage of the module specification, respectively. 20 is supplied.
  • the power supply terminals TP11 to TP14 for inputting power are formed on the module substrate 11B.
  • FIG. 9 is a diagram illustrating a configuration example of the power regulator 31 (32 to 36).
  • a voltage is supplied from the outside to the terminal Vin, and a switch signal SW is supplied to the terminal Cont.
  • the power regulator 31 is turned on and off by the switch signal SW, and can thereby selectively supply driving power to the supply target.
  • FIG. 10 is a diagram for explaining an example of power supply control in a case where a plurality of broadcasts are simultaneously received by two or one channel in the third embodiment.
  • the power regulator 32 supplies drive power to the LNA 132 of the second distributor 13. Driving power is supplied to the first terrestrial tuner 16 by the power regulator 33. Driving power is supplied to the second terrestrial tuner 17 by the power regulator 36. The supply of drive power to the LNA 122 of the first distribution unit 12 by the power regulator 31 is stopped. The supply of drive power to the first satellite wave tuner 14 by the power regulator 34 is stopped. The supply of drive power to the second satellite wave tuner 15 by the power regulator 35 is stopped.
  • the power regulator 31 supplies drive power to the LNA 122 of the first distributor 12. Driving power is supplied to the LNA 132 of the second distribution unit 13 by the power regulator 32. Drive power is supplied to the first terrestrial tuner 16 by the power regulator 33. The supply of drive power to the second satellite wave tuner 15 by the power regulator 35 is stopped. The supply of drive power to the first satellite wave tuner 14 by the power regulator 34 is stopped. The supply of drive power to the second terrestrial tuner 17 by the power regulator 36 is stopped.
  • the power regulator 31 supplies drive power to the LNA 122 of the first distribution unit 12. Driving power is supplied to the first terrestrial tuner 16 by the power regulator 33. The supply of drive power to the LNA 132 of the second distribution unit 13 by the power regulator 32 is stopped. The power regulator 35 stops the supply of driving power to the second satellite wave tuner 15. The supply of drive power to the first satellite wave tuner 14 by the power regulator 34 is stopped. The supply of drive power to the second terrestrial tuner 17 by the power regulator 36 is stopped.
  • driving power is supplied to the LNA 122 of the first distributor 12 by the power regulator 31.
  • Driving power is supplied to the LNA 132 of the second distribution unit 13 by the power regulator 32.
  • Driving power is supplied to the first satellite wave tuner 14 by the power regulator 34.
  • Driving power is supplied to the second terrestrial tuner 17 by the power regulator 36.
  • Drive power is supplied to the first terrestrial tuner 16 by the power regulator 33. The supply of drive power to the second satellite wave tuner 15 by the power regulator 35 is stopped.
  • the above is an example in which a power regulator is provided on a one-to-one basis for each tuner, but it is also possible to provide one power regulator for a plurality of tuners. In this case, it is possible to achieve low power consumption by putting a non-processed (unused) tuner in the sleep state (low power consumption mode) in accordance with the received broadcast signal among a plurality of tuners that have supplied power. It is.
  • FIG. 11 is a diagram for explaining another example of power supply control in the case where a plurality of broadcasts are simultaneously received by two or one channel in the third embodiment.
  • the power regulator 37 selectively supplies drive power to the first terrestrial tuner 16 and the first satellite wave tuner 14, and the power regulator 38 is the second terrestrial tuner 17 and the second satellite wave. Drive power is selectively supplied to the tuner 15.
  • the power regulator 32 supplies drive power to the LNA 132 of the second distributor 13.
  • a power regulator 37 supplies driving power to the first terrestrial tuner 16 and the first satellite wave tuner 14.
  • a power regulator 38 supplies driving power to the second terrestrial tuner 17 and the second satellite wave tuner 15. The supply of drive power to the LNA 122 of the first distribution unit 12 by the power regulator 31 is stopped. Then, the first satellite wave tuner 14 and the second satellite wave tuner 15 are controlled to the sleep mode.
  • the power regulator 31 supplies drive power to the LNA 122 of the first distributor 12. Driving power is supplied to the LNA 132 of the second distribution unit 13 by the power regulator 32.
  • a power regulator 37 supplies driving power to the first terrestrial tuner 16 and the first satellite wave tuner 14.
  • a power regulator 38 supplies driving power to the second terrestrial tuner 17 and the second satellite wave tuner 15. Then, second terrestrial tuner 17 and first satellite wave tuner 14 are controlled to the sleep mode.
  • the power regulator 31 supplies drive power to the LNA 122 of the first distribution unit 12.
  • a power regulator 37 supplies driving power to the first terrestrial tuner 16 and the first satellite wave tuner 14.
  • the supply of drive power to the LNA 132 of the second distribution unit 13 by the power regulator 32 is stopped.
  • the supply of drive power to the second terrestrial tuner 17 and the second satellite wave tuner 15 by the power regulator 38 is stopped.
  • the first satellite wave tuner 14, the second satellite wave tuner 15, and the second terrestrial tuner 17 are controlled to the sleep mode.
  • driving power is supplied to the LNA 122 of the first distributor 12 by the power regulator 31.
  • Driving power is supplied to the LNA 132 of the second distribution unit 13 by the power regulator 32.
  • a power regulator 37 supplies driving power to the first terrestrial tuner 16 and the first satellite wave tuner 14.
  • a power regulator 38 supplies driving power to the second terrestrial tuner 17 and the second satellite wave tuner 15. Then, the first terrestrial tuner 14 and the second satellite wave tuner 15 are controlled to the sleep mode.
  • terrestrial analog television broadcast, terrestrial digital television broadcast, and satellite wave digital television broadcast are received while power is stably supplied by one module.
  • the ground GND of the tuner module unit 20 and the power supply unit 30 is shared, and the tuner module unit 20 and the power supply unit 30 are separated from each other. Then, by performing the junction position of the shield case and the GND pattern in consideration of the return current from the ground GND and the GND pattern design, radiation interference can be suppressed and all broadcasts can be received stably.
  • this power supply integrated front end module it is possible to simplify the use of two substrates of the tuner unit and the power supply unit in a normal manner in a television receiver to one substrate. .
  • the mounting area can be reduced as compared with the normal method, and further, it can be used in a state where the problem of interference due to the problem such as the arrangement at the time of use is already solved, so that the design study on the use side can be facilitated.
  • FIG. 12 is a diagram illustrating a configuration example of a broadcast signal receiving apparatus according to the fourth embodiment of the present invention.
  • the isolation amplifier unit 40 is arranged on the fourth signal line SL14.
  • the isolation amplifier unit 40 includes a buffer amplifier formed by a transistor that receives a terrestrial broadcast signal distributed by the second distribution unit 13 and inputs a low impedance output by impedance conversion.
  • An attenuator is disposed on at least one of the input side and the output side of the buffer amplifier. The attenuator attenuates an input signal and outputs an attenuated signal.
  • FIG. 13 is a diagram illustrating a first configuration example of the distributor and the isolation amplifier unit according to the fourth embodiment.
  • the distributor 133 in FIG. 13 is formed by a distribution transformer T133.
  • Distribution transformer T133 includes inductor L11 and inductor L12. The other end of the inductor L11 and one end of the inductor L12 are connected to a supply terminal for the terrestrial broadcast signal Terr (the output of the LNA 132). One end of the inductor L11 and the other end of the inductor L12 are connected to the third signal line SL13 and the fourth signal line SL14.
  • An attenuator ATT41 is disposed on the third signal line SL13, and an output of the attenuator ATT41 is connected to the first terrestrial tuner 16 via a capacitor C41.
  • the attenuator ATT42 is disposed on the fourth signal line SL14, and the output of the attenuator ATT42 is connected to the isolation amplifier unit 40.
  • An attenuator ATT 43 is arranged on the output side of the isolation amplifier section 40. The output of the attenuator ATT43 is connected to the second terrestrial tuner 17 via the capacitor C42.
  • the isolation amplifier section 40 includes an npn transistor Q41 and resistance elements R41, R42, and R43.
  • the collector of the transistor Q41 is connected to the power supply 50, and the emitter is connected to the ground GND (reference potential) via the resistor element R41.
  • Resistive elements R42 and R43 are connected in series between the power supply 50 and the ground GND, and the connection node ND41 is connected to the base of the transistor Q41 which is a control terminal and the output of the attenuator ATT42.
  • the isolation amplifier section 40 is formed of a grounded collector transistor.
  • the isolation amplifier section 40 can be arranged not only in the fourth signal line SL14 but also in the third signal line SL13. Further, it can be arranged in the first signal line SL11 and the second signal line SL12.
  • FIG. 14 is a diagram illustrating a second configuration example of the distributor and the isolation amplifier unit according to the fourth embodiment.
  • an isolation amplifier section 40A is also disposed in the third signal line SL13. Since the configuration is the same as that of the isolation amplifier section 40, description thereof is omitted. Further, an attenuator ATT 44 is disposed between the input of the capacitor C41 and the first terrestrial tuner 16. In this case, even when the first terrestrial tuner 16 and the second terrestrial tuner 17 are operated at the same time, the respective tuners can receive without problems without being affected.
  • FIG. 15 is a diagram showing isolation characteristics between television tuners when an isolation improvement circuit is actually inserted.
  • the curve indicated by the broken line A indicates the characteristic before the insertion of the isolation amplifier part
  • the curve indicated by the solid line B indicates the characteristic after the insertion of the isolation amplifier part.
  • the characteristic of the curve of the broken line A is improved to the characteristic of the curve of the solid line B.
  • a collector grounding type distortion characteristics are better than other grounding types, and it is possible to construct a circuit at a low cost while minimizing peripheral circuits. Since no higher voltage is required, the voltage in the module can be used, and this form can be said to be a circuit suitable for improving isolation.
  • the local frequency of one television tuner is changed to the desired frequency band of the other television tuner. It may overlap inside.
  • the configuration of the fourth embodiment is effective when such isolation is required. Further, a transistor for improving isolation can secure isolation characteristics in the UHF band by using a straight type lead.
  • the interference wave leaked from the respective television tuners to the signal line has a level that does not affect the reception of other television tuners. Can be dropped. As a result, simultaneous reception of a plurality of television tuners can be achieved without interference.
  • the receiving apparatus of the first to fourth embodiments described above has been described by way of example as a module, it can be formed on a circuit board of a set device, for example.
  • the first satellite wave tuner 14 and the second satellite wave tuner 15 generally receive weak radio waves from one or two satellites. Since the electric field strength of the weak radio wave received is substantially proportional to the distance from the satellite, the first satellite wave tuner 14 and the second satellite wave tuner 15 are multi-channel broadcasts having almost the same reception power. A signal will be received.
  • the first terrestrial tuner 16 and the second terrestrial tuner 17 normally receive a plurality of channels simultaneously.
  • the electric field strength of each of the plurality of channels (frequency bands) to be received varies significantly depending on the distance from the radio station transmitting the radio wave as the channel and the influence of obstacles.
  • the reception power differs for each channel to be received.
  • a broadcast signal corresponding to a channel with low reception power is subject to interference from the broadcast signal corresponding to a channel with high reception power, causing problems such as distortion in the waveform of the signal.
  • the temperatures of the respective circuits further increase due to the heat generated from the respective circuits. Resulting in.
  • the first terrestrial tuner 16 and the second terrestrial tuner 17 are arranged apart from each other so as not to be adjacent to each other. This prevents the temperature from rising further.
  • a first satellite wave tuner 14 and a second satellite wave tuner are provided between the first terrestrial tuner 16 and the second terrestrial tuner 17. 15 is provided so that the space formed between the first terrestrial tuner 16 and the second terrestrial tuner 17 is effectively used.
  • first satellite wave tuner 14 and the second satellite wave tuner 15 do not require a large current to flow as in the case of the first terrestrial tuner 16 and the second terrestrial tuner 17, Even if it arrange
  • satellite wave tuners first satellite wave tuner 14 and second satellite wave tuner 15
  • other tuners may be provided.
  • a tuner for receiving a broadcast signal in a frequency band corresponding to any of a long wave, a medium wave, a short wave, an ultrashort wave, a millimeter wave, or a submillimeter wave may be provided.
  • a circuit other than the tuner may be provided in a space formed between the first terrestrial tuner 16 and the second terrestrial tuner 17.
  • first satellite wave tuner 14 and the second satellite wave tuner 15 are provided in the space formed between the first terrestrial tuner 16 and the second terrestrial tuner 17, The arrangement and the number are not limited to this.
  • any arrangement method may be used as long as the terrestrial tuner whose circuit temperature is high because it is necessary to flow a large current so as not to be adjacent to each other.
  • the two or more terrestrial tuners are arranged so as not to be adjacent to each other.
  • position so that one or more satellite wave tuners may be provided between each of two or more terrestrial tuners.
  • the satellite wave tuners may be arranged so that the space formed between the terrestrial tuners can be used efficiently. As shown in FIG. 1, FIG. 6, and FIG. There is no need to place them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Superheterodyne Receivers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本発明は、構成の複雑化を招くことなく、妨害波の影響を低減することが可能で、1つのフロントエンドモジュールでアナログおよびデジタル放送信号を干渉なく受信できるようにする受信装置に関する。 受信装置10は、モジュール基板11上に、第1の周波数帯域の放送信号を受信する第1の地上波チューナ16および第2の地上波チューナ17と、上記第1の周波数帯域とは異なる第2の周波数帯域の放送信号を受信する第1の衛星波チューナ14とを含み、第1の地上波チューナ16および第2の地上波チューナ17の間には、第1の衛星波チューナ14が配置されている。本発明は、例えば異なる周波数帯域の放送信号を受信する受信装置に適用できる。

Description

受信装置
 本発明は、アナログテレビジョン放送信号およびデジタルテレビジョン放送信号を受信するフロントエンドモジュールを形成する受信装置に関するものである。
 近年、地上波アナログテレビジョン放送、地上波デジタルテレビジョン放送、衛星波デジタルテレビジョン放送が同時に送信されており、様々な放送波の組み合わせで2つのチャンネルでの同時視聴や同時録画が必要とされてきている。
 また、録画機器の場合、さらに別のモジュールに信号出力端子からRF信号であるテレビジョン放送信号を出力することも必要とされている。
 これらを実現しようとする場合、1個のスプリッタモジュールと2個もしくは3個のフロントエンドモジュールを各々別個に装備するように構成される(たとえば特許文献1参照)。また、このフロントエンドモジュールは、アナログテレビジョン放送およびデジタルテレビジョン放送を受信するチューナモジュールと、チューナモジュールに電源を供給する回路は別基板で搭載されている。
 特許文献2には、複数のチューナを有するデジタル放送受信装置が記載されている。
特開2007-116358号公報 WO2006-109477号公報
 ところで、特許文献1に開示された技術では、1個のスプリッタモジュールと2個もしくは3個のフロントエンドモジュールを各々別個に装備する必要がある。また、チューナモジュールと、チューナモジュールに電力を供給する回路は別基板で搭載されている。しかしこれでは部品点数が多くなり、構成が複雑になると共に受信装置内に部品を装備する際のスペースにも制約が生じるという不利益がある。
 特許文献2のように、テレビジョンチューナを複数搭載する際、テレビジョンチューナ間の妨害がしばしば問題となる。たとえば、1個のテレビジョンチューナの局発周波数が、他のテレビジョンチューナの希望周波数帯域内に重なってくることがある。特に、信号ラインを通ってくる妨害波に対しては、受信帯域内の場合、妨害波の信号レベルは分配器のアイソレーション性能に依存する。アナログ放送の場合、妨害波がビートとして検知できるレベルが非常にセンシティブであり、可能な限り妨害波の影響を低減させる必要がある。
 本発明は、構成の複雑化を招くことなく、妨害波の影響を低減することが可能で、1つのフロントエンドモジュールでアナログおよびデジタル放送信号を干渉なく受信することが可能な受信装置を提供することにある。
 本発明の一側面の受信装置は、第1の周波数帯域の放送信号を受信する第1および第2の受信部と、上記第1の周波数帯域とは異なる第2の周波数帯域の放送信号を受信する第3の受信部とを含み、上記第1および第2の受信部の間には、上記第3の受信部が配置されている受信装置である。
 上記第1および第2の受信部の間には、複数個の上記第3の受信部を配置することができる。
 上記第1乃至第3の受信部には、受信した放送信号を周波数変換させることができる。
 上記第1および第2の受信部の間には、2個の上記第3の受信部として、第1および第2の中間配置受信部が配置されており、上記第1および第2の受信部には、上記第1の周波数帯域の放送信号として、UHFまたはVHFの周波数帯域の地上波放送信号を受信して中間周波信号に周波数変換させ、上記第1および第2の中間配置受信部には、上記第2の周波数帯域の放送信号として、SHFの周波数帯域の衛星波デジタル放送信号を受信してベースバンド信号に周波数変換させることができる。
 衛星波デジタル放送信号が入力される第1の入力端子と、アナログまたはデジタルの地上波放送信号が入力される第2の入力端子と、上記第1の入力端子から入力された衛星波デジタル放送信号を出力するための第1の出力端子と、上記第2の入力端子から入力された地上波放送信号を出力するための第2の出力端子と、上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配し、かつ、当該入力された衛星波デジタル放送信号を上記第1の出力端子に供給する第1の分配部と、上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配し、かつ、当該入力された地上波放送信号を上記第2の出力端子に供給する第2の分配部とをさらに設けることができ、前記第1の中間配置受信部には、上記第1の分配部により分配された上記第1の衛星波放送信号を受信して第1のベースバンド信号に周波数変換させ、前記第2の中間配置受信部には、上記第1の分配部により分配された上記第2の衛星波放送信号を受信して第2のベースバンド信号に周波数変換させ、前記第1の受信部には、上記第2の分配部により分配された上記第1の地上波放送信号を受信して第1の中間周波信号に周波数変換させ、前記第2の受信部には、上記第2の分配部により分配された上記第2の地上波放送信号を受信して第2の中間周波信号に周波数変換させることができる。
 上記第1の中間配置受信部による上記第1のベースバンド信号および上記第1の受信部による上記第1の中間周波信号の復調機能を有する第1の復調部と、上記第2の中間配置受信部による上記第2のベースバンド信号および上記第2の受信部による上記第2の中間周波信号の復調機能を有する第2の復調部と、をさらに設けることができる。
 上記第1の復調部は、デジタル復調およびアナログ復調機能を有し、上記第1のベースバンド信号の映像信号および音声信号を復調し、第1のトランスポートストリームを生成する機能と、上記第1の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、第2のトランスポートストリームを生成する機能と、上記第1の中間周波信号が地上波アナログ放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、アナログ映像信号およびアナログ音声信号を生成する機能とを有することができる。
 上記第2の復調部は、デジタル復調機能を有し、上記第2のベースバンド信号の映像信号および音声信号を復調し、第3のトランスポートストリームを生成する機能と、上記第2の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第2の中間周波信号の映像信号および音声信号を復調し、第4のトランスポートストリームを生成する機能とを有することができる。
 上記第1の復調部で生成されるトランスポートストリームを出力するための第3の出力端子と、上記第2の復調部で生成されるトランスポートストリームを出力するための第4の出力端子と、上記第1の復調部で生成されるアナログ映像信号を出力するための第5の出力端子と、上記第1の復調部で生成されるアナログ音声信号を出力するための第6の出力端子とをさらに設けることができ、上記第1の復調部は、生成した上記第1のトランスポートストリームまたは上記第2のトランスポートストリームを上記第3の出力端子に供給し、生成したアナログ映像信号を上記第5の出力端子に供給し、アナログ音声信号を上記第6の出力端子に供給することができる。
 上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、上記第1の分配部および上記第2の分配部の分配出力に対して並列に配置され、上記地上波放送信号の周波数変換を行う上記第1の受信部および上記第2の受信部が並列配置の外側に配置され、上記第1の受信部の配置部と上記第2の受信部の配置部との間に、上記第1の中間配置受信部および上記第2の中間配置受信部が並列に配置されているようにすることができる。
 並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、一方の外側配置部から、上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の順に配置されているようにすることができる。
 上記第1の復調部および上記第2の復調部は、上記並列配置された上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、上記第1の受信部および上記第1の中間配置受信部は、出力側が上記第1の復調部の入力側に対向するように並列に配置され、上記第2の中間配置受信部および上記第2の受信部は、出力側が上記第2の復調部の入力側に対向するように並列に配置されているようにすることができる。
 並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、一方の外側配置部から、上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の順に配置されているようにすることができる。
 上記第1の復調部および上記第2の復調部は、上記並列配置された上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、上記第1の受信部および上記第2の中間配置受信部は、出力側が上記第1の復調部の入力側に対向するように並列に配置され、上記第1の中間配置受信部および上記第2の受信部は、出力側が上記第2の復調部の入力側に対向するように並列に配置されているようにすることができる。
 上記第1の分配部は、上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を増幅する増幅器と、上記増幅器の出力信号を上記第1の衛星波放送信号、上記第2の衛星波放送信号、および出力用衛星波デジタル放送信号に分配する分配器とを有し、上記分配器は、上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、上記第2の衛星波放送信号を上記第2の中間配置受信部に供給し、上記出力用衛星波デジタル放送信号を上記第1の出力端子に供給することができる。
 上記第1の分配部は、上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を2つの衛星波デジタル放送信号に分配する第1の分配器と、上記第1の分配器で分配された一方の衛星波デジタル放送信号を増幅する増幅器と、上記増幅器の出力信号を上記第1の衛星波放送信号、および上記第2の衛星波放送信号に分配する第2の分配器とを有し、上記第1の分配器は、分配した他方の衛星波デジタル放送信号を上記第1の出力端子に供給し、上記第2の分配器は、上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、上記第2の衛星波放送信号を上記第2の中間配置受信部に供給することができる。
 上記第2の分配部は、上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を増幅する増幅器と、上記増幅器の出力信号を上記第1の地上波放送信号、上記第2の地上波放送信号、および出力用地上波放送信号に分配する分配器とを有し、上記分配器は、上記第1の地上波放送信号を上記第1の受信部に供給し、上記第2の地上波放送信号を上記第2の受信部に供給し、上記出力用地上波放送信号を上記第2の出力端子に供給することができる。
 上記第2の分配部は、上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を2つの地上波放送信号に分配する第3の分配器と、上記第3の分配器で分配された一方の地上波放送信号を増幅する増幅器と、上記増幅器の出力信号を上記第1の地上波放送信号および上記第2の地上波放送信号に分配する第4の分配器とを有し、上記第3の分配器は、分配した他方の地上波放送信号を上記第2の出力端子に供給し、上記第4の分配器は、上記第1の地上波放送信号を上記第1の受信部に供給し、上記第2の地上波放送信号を上記第2の受信部に供給することができる。
 前記第1乃至第3の受信手段は、モジュール基板上に並列配置されており、前記第1および第2の受信手段は、前記モジュール基板の縁部側に配置されているようにすることができる。
 前記第1乃至第3の受信部と、前記第1乃至第3の受信部により周波数変換後の信号から映像信号および音声信号を復調する復調部を有するチューナモジュール部と、上記チューナモジュール部に駆動電力を供給する電力供給部とを含み、上記チューナモジュール部および上記電力供給部は、1つの基板に隔離して配置され、上記電力供給部は、少なくとも上記第1乃至第3の受信部に駆動電力を供給可能な複数のレギュレータを有し、受信放送信号に応じて、上記複数のレギュレータに対応する受信部に、駆動電力を選択的に供給可能であるようにすることができる。
 衛星波デジタル放送信号が入力される第1の入力端子と、アナログまたはデジタルの地上波放送信号が入力される第2の入力端子とをさらに設けることができ、前記第3の受信部は、第1及び第2の中間配置受信部により構成されており、上記チューナモジュール部は、上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配する第1の分配部と、上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配する第2の分配部と、上記第1の分配部により分配された上記第1の衛星波放送信号を受信して第1のベースバンド信号に周波数変換する第1の中間配置受信部と、上記第1の分配部により分配された上記第2の衛星波放送信号を受信して第2のベースバンド信号に周波数変換する第2の中間配置受信部と、上記第2の分配部により分配された上記第1の地上波放送信号を受信して第1の中間周波信号に周波数変換する第1の受信部と、上記第2の分配部により分配された上記第2の地上波放送信号を受信して第2の中間周波信号に周波数変換する第2の受信部と、上記第1の中間配置受信部による上記第1のベースバンド信号および上記第1の受信部による上記第1の中間周波信号の復調機能を有する第1の復調部と、上記第2の中間配置受信部による上記第2のベースバンド信号および上記第2の受信部による上記第2の中間周波信号の復調機能を有する第2の復調部とを有し、上記電力供給部は、上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部に、選択的に駆動電力を供給可能であるようにすることができる。
 上記電力供給部は、上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部のうち複数の受信部に共通で選択的に駆動電力を供給可能であり、共通に駆動電力を供給した複数の受信部のうち受信中の放送波に対して非処理の周波数変換部をスリープ状態に保持する機能を有するようにすることができる。
 上記第1の分配部は、上記第1の入力端子から入力した衛星波デジタル放送信号を増幅する第1の増幅器を有し、上記第2の分配部は、上記第2の入力端子から入力した地上波放送信号を増幅する第2の増幅器を有し、上記電力供給部は、受信放送信号に応じて、上記第1の増幅器および上記第2の増幅器に駆動電力を選択的に供給可能であるようにすることができる。
 上記第1の入力端子から入力された衛星波デジタル放送信号を出力するための第1の出力端子と、上記第2の入力端子から入力された地上波放送信号を出力するための第2の出力端子とをさらに設けることができ、上記第1の分配部は、上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配し、かつ、当該入力された衛星波デジタル放送信号を上記第1の出力端子に供給し、上記第2の分配部は、上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配し、かつ、当該入力された地上波放送信号を上記第2の出力端子に供給することができる。
 上記第1の復調部は、デジタル復調およびアナログ復調機能を有し、上記第1のベースバンド信号の映像信号および音声信号を復調し、第1のトランスポートストリームを生成する機能と、上記第1の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、第2のトランスポートストリームを生成する機能と、上記第1の中間周波信号が地上波アナログ放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、アナログ映像信号およびアナログ音声信号を生成する機能とを有し、上記第2の復調部は、デジタル復調機能を有し、上記第2のベースバンド信号の映像信号および音声信号を復調し、第3のトランスポートストリームを生成する機能と、上記第2の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第2の中間周波信号の映像信号および音声信号を復調し、第4のトランスポートストリームを生成する機能とを有することができる。
 上記第1の復調部で生成されるトランスポートストリームを出力するための第3の出力端子と、上記第2の復調部で生成されるトランスポートストリームを出力するための第4の出力端子と、上記第1の復調部で生成されるアナログ映像信号を出力するための第5の出力端子と、上記第1の復調部で生成されるアナログ音声信号を出力するための第6の出力端子とをさらに設けることができ、上記第1の復調部は、生成した上記第1のトランスポートストリームまたは上記第2のトランスポートストリームを上記第3の出力端子に供給し、生成したアナログ映像信号を上記第5の出力端子に供給し、アナログ音声信号を上記第6の出力端子に供給することができる。
 上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、上記第1の分配部および上記第2の分配部の分配出力に対して並列に配置され、上記地上波放送信号の周波数変換を行う上記第1の受信部および上記第2の受信部が並列配置の外側に配置され、上記第1の受信部の配置部と上記第2の受信部の配置部との間に、上記第1の中間配置受信部および上記第2の中間配置受信部が並列に配置されているようにすることができる。
 並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、一方の外側配置部から、上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の順に配置されているようにすることができる。
 上記第1の復調部および上記第2の復調部は、上記並列配置された上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、上記第1の受信部および上記第1の中間配置受信部は、出力側が上記第1の復調部の入力側に対向するように並列に配置され、上記第2の中間配置受信部および上記第2の受信部は、出力側が上記第2の復調部の入力側に対向するように並列に配置されているようにすることができる。
 並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、一方の外側配置部から、上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の順に配置されているようにすることができる。
 上記第1の復調部および上記第2の復調部は、上記並列配置された上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、上記第1の受信部および上記第2の中間配置受信部は、出力側が上記第1の復調部の入力側に対向するように並列に配置され、上記第1の中間配置受信部および上記第2の受信部は、出力側が上記第2の復調部の入力側に対向するように並列に配置されているようにすることができる。
 上記第1の分配部は、上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を増幅する第1の増幅器と、上記第1の増幅器の出力信号を上記第1の衛星波放送信号、上記第2の衛星波放送信号、および出力用衛星波デジタル放送信号に分配する分配器とを有し、上記分配器は、上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、上記第2の衛星波放送信号を上記第2の中間配置受信部に供給し、上記出力用衛星波デジタル放送信号を上記第1の出力端子に供給することができる。
 上記第1の分配部は、上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を2つの衛星波デジタル放送信号に分配する第1の分配器と、上記第1の分配器で分配された一方の衛星波デジタル放送信号を増幅する第1の増幅器と、上記第1の増幅器の出力信号を上記第1の衛星波放送信号、および上記第2の衛星波放送信号に分配する第2の分配器とを有し、上記第1の分配器は、分配した他方の衛星波デジタル放送信号を上記第1の出力端子に供給し、上記第2の分配器は、上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、上記第2の衛星波放送信号を上記第2の中間配置受信部に供給することができる。
 上記第2の分配部は、上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を増幅する第2の増幅器と、上記第2の増幅器の出力信号を上記第1の地上波放送信号、上記第2の地上波放送信号、および出力用地上波放送信号に分配する分配器とを有し、上記分配器は、上記第1の地上波放送信号を上記第1の受信部に供給し、上記第2の地上波放送信号を上記第2の受信部に供給し、上記出力用地上波放送信号を上記第2の出力端子に供給することができる。
 上記第2の分配部は、上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を2つの地上波放送信号に分配する第3の分配器と、上記第3の分配器で分配された一方の地上波放送信号を増幅する第2の増幅器と、上記第2の増幅器の出力信号を上記第1の地上波放送信号および上記第2の地上波放送信号に分配する第4の分配器とを有し、上記第3の分配器は、分配した他方の地上波放送信号を上記第2の出力端子に供給し、上記第4の分配器は、上記第1の地上波放送信号を上記第1の受信部に供給し、上記第2の地上波放送信号を上記第2の受信部に供給することができる。
 入力された放送信号を複数の放送信号に分配する分配部と、それぞれ上記分配部で分配された複数の放送信号を受けて周波数変換を行う前記第1乃至第3の受信部を有するチューナ部と、上記分配部で分配した放送信号を対応する受信部に伝播する複数の信号ラインのうちの少なくとも一つに配置されたアイソレーションアンプ部とをさらに設けることができ、上記アイソレーションアンプ部は、上記分配部で分配した放送信号が制御端子に入力されて、インピーダンス変換により低インピーダンス出力を行うトランジスタにより形成されるバッファアンプを有することができる。
 上記アイソレーションアンプ部は、上記バッファアンプの入力側および出力側の少なくとも一方にアッテネータが配置されているようにすることができる。
 衛星波デジタル放送信号が入力される第1の入力端子と、アナログまたはデジタルの地上波放送信号が入力される第2の入力端子と、上記第1の入力端子から入力された衛星波デジタル放送信号を出力するための第1の出力端子と、上記第2の入力端子から入力された地上波放送信号を出力するための第2の出力端子とをさらに設けることができ、上記分配部は、上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配し、かつ、当該入力された衛星波デジタル放送信号を上記第1の出力端子に供給する第1の分配部と、上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配し、かつ、当該入力された地上波放送信号を上記第2の出力端子に供給する第2の分配部とを有し、前記第3の受信部は、第1および第2の中間配置受信部により構成されており、上記チューナ部は、第1の信号ラインを介して、上記第1の分配部により分配された上記第1の衛星波放送信号を受信して第1のベースバンド信号に周波数変換する第1の中間配置受信部と、第2の信号ラインを介して、上記第1の分配部により分配された上記第2の衛星波放送信号を受信して第2のベースバンド信号に周波数変換する第2の中間配置受信部と、第3の信号ラインを介して、上記第2の分配部により分配された上記第1の地上波放送信号を受信して第1の中間周波信号に周波数変換する第1の受信部と、第4の信号ラインを介して、上記第2の分配部により分配された上記第2の地上波放送信号を受信して第2の中間周波信号に周波数変換する第2の受信部とを有し、上記アイソレーションアンプ部は、上記第1の分配部および上記第2の分配部のうち、少なくとも上記第2の分配部に接続された上記第3の信号ラインおよび上記第4の信号ラインのうちの少なくとも一方に配置されているようにすることができる。
 上記第2の分配部は、上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を2つの地上波放送信号に分配する第1の分配器と、上記第1の分配器で分配された一方の地上波放送信号を増幅する増幅器と、上記増幅器の出力信号を上記第1の地上波放送信号および上記第2の地上波放送信号に分配する第2の分配器とを有し、上記第1の分配器は、分配した他方の地上波放送信号を上記第2の出力端子に供給し、上記第2の分配器は、上記第3の信号ラインを介して上記第1の地上波放送信号を上記第1の受信部に供給し、上記第4の信号ラインを介して上記第2の地上波放送信号を上記第2の受信部に供給することができる。
 上記第1の分配部は、上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を増幅する増幅器と、上記増幅器の出力信号を上記第1の衛星波放送信号、上記第2の衛星波放送信号、および出力用衛星波デジタル放送信号に分配する分配器とを有し、上記分配器は、上記第1の信号ラインを介して上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、上記第2の信号ラインを介して上記第2の衛星波放送信号を上記第2の中間配置受信部に供給し、上記出力用衛星波デジタル放送信号を上記第1の出力端子に供給することができる。
 上記第1の分配部は、上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、上記フィルタの出力信号を2つの衛星波デジタル放送信号に分配する第3の分配器と、上記第3の分配器で分配された一方の衛星波デジタル放送信号を増幅する増幅器と、上記増幅器の出力信号を上記第1の衛星波放送信号、および上記第2の衛星波放送信号に分配する第4の分配器とを有し、上記第3の分配器は、分配した他方の衛星波デジタル放送信号を上記第1の出力端子に供給し、上記第2の分配器は、上記第1の信号ラインを介して上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、上記第2の信号ラインを介して上記第2の衛星波放送信号を上記第2の中間配置受信部に供給することができる。
 上記チューナ部は、上記第1の中間配置受信部による上記第1のベースバンド信号および上記第1の受信部による上記第1の中間周波信号の復調機能を有する第1の復調部と、上記第2の中間配置受信部による上記第2のベースバンド信号および上記第2の受信部による上記第2の中間周波信号の復調機能を有する第2の復調部とを有し、上記第1の復調部は、デジタル復調およびアナログ復調機能を有し、上記第1のベースバンド信号の映像信号および音声信号を復調し、第1のトランスポートストリームを生成する機能と、上記第1の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、第2のトランスポートストリームを生成する機能と、上記第1の中間周波信号が地上波アナログ放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、アナログ映像信号およびアナログ音声信号を生成する機能とを有し、上記第2の復調部は、デジタル復調機能を有し、上記第2のベースバンド信号の映像信号および音声信号を復調し、第3のトランスポートストリームを生成する機能と、上記第2の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第2の中間周波信号の映像信号および音声信号を復調し、第4のトランスポートストリームを生成する機能とを有することができる。
 上記第1の復調部で生成されるトランスポートストリームを出力するための第3の出力端子と、上記第2の復調部で生成されるトランスポートストリームを出力するための第4の出力端子と、上記第1の復調部で生成されるアナログ映像信号を出力するための第5の出力端子と、上記第1の復調部で生成されるアナログ音声信号を出力するための第6の出力端子とをさらに設けることができ、上記第1の復調部は、生成した上記第1のトランスポートストリームまたは上記第2のトランスポートストリームを上記第3の出力端子に供給し、生成したアナログ映像信号を上記第5の出力端子に供給し、アナログ音声信号を上記第6の出力端子に供給することができる。
 上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、上記第1の分配部および上記第2の分配部の分配出力に対して並列に配置され、上記地上波放送信号の周波数変換を行う上記第1の受信部および上記第2の受信部が並列配置の外側に配置され、上記第1の受信部の配置部と上記第2の受信部の配置部との間に、上記第1の中間配置受信部および上記第2の中間配置受信部が並列に配置されているようにすることができる。
 並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、一方の外側配置部から、上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の順に配置されているようにすることができる。
 上記第1の復調部および上記第2の復調部は、上記並列配置された上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、上記第1の受信部および上記第1の中間配置受信部は、出力側が上記第1の復調部の入力側に対向するように並列に配置され、上記第2の中間配置受信部および上記第2の受信部は、出力側が上記第2の復調部の入力側に対向するように並列に配置されているようにすることができる。
 並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、一方の外側配置部から、上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の順に配置されているようにすることができる。
 上記第1の復調部および上記第2の復調部は、上記並列配置された上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、上記第1の受信部および上記第2の中間配置受信部は、出力側が上記第1の復調部の入力側に対向するように並列に配置され、上記第1の中間配置受信部および上記第2の受信部は、出力側が上記第2の復調部の入力側に対向するように並列に配置されているようにすることができる。
 本発明によれば、第1の周波数帯域の放送信号を受信する第1および第2の受信部の間に、上記第1の周波数帯域とは異なる第2の周波数帯域の放送信号を受信する第3の受信部が配置される。
 本発明によれば、構成の複雑化を招くことなく、妨害波の影響を低減することが可能で、1つのフロントエンドモジュールでアナログおよびデジタル放送信号を干渉なく受信することが可能な受信装置を提供する。
本発明の第1の実施形態に係る放送信号受信装置の構成例を示す図である。 本実施形態に係る第1および第2の衛星波チューナ、並びに第1および第2の地上波チューナの発振系の構成例を示す図である。 図2の構成と第1および第2の衛星波チューナの配置位置を入れ替えた構成を示す図である。 本実施形態に係るデジタルアナログ復調部の構成例を示すブロック図である。 本実施形態における妨害対策の一例を模式的に示す図である。 本発明の第2の実施形態に係る放送信号受信装置の構成例を示す図である。 本発明の第3の実施形態に係る放送信号受信装置の構成例を示す第1図である。 本発明の第3の実施形態に係る放送信号受信装置の構成例を示す第2図である。 電力レギュレータの構成例を示す図である。 本第3の実施形態において複数の放送を同時に2または1つのチャンネルで受信する場合の電力供給制御の一例について説明するための図である。 本第3の実施形態において複数の放送を同時に2または1つのチャンネルで受信する場合の電力供給制御の他例について説明するための図である。 本発明の第4の実施形態に係る放送信号受信装置の構成例を示す図である。 本第4の実施形態に係る分配器およびアイソレーションアンプ部の第1の構成例を示す図である。 本第4の実施形態に係る分配器およびアイソレーションアンプ部の第2の構成例を示す図である。 実際にアイソレーション改善回路を挿入した場合のテレビジョンチューナ間のアイソレーション特性を示す図である。 本第4の実施形態に係る分配器およびアイソレーションアンプ部の第3の構成例を示す図である。 本第4の実施形態に係る分配器およびアイソレーションアンプ部の第4の構成例を示す図である。 周波数帯域を説明するための図である。
 以下、本発明の実施形態を図面に関連付けて説明する。
 なお、説明は以下の順序で行う。
1.第1の実施形態(受信装置の第1の構成例)
2.第2の実施形態(受信装置の第2の構成例)
3.第3の実施形態(受信装置の第3の構成例)
4.第4の実施形態(受信装置の第4の構成例)
<1.第1の実施形態>
 図1は、本発明の第1の実施形態に係る放送信号受信装置の構成例を示す図である。
 本受信装置10は、1つのフロントエンドモジュールで、デジタル回路とアナログ回路間の干渉なく、地上波アナログテレビジョン放送、地上波デジタルテレビジョン放送および衛星波デジタルテレビジョン放送を受信可能に構成されている。受信装置10において、これら複数の放送を同時に2つのチャンネルで受信可能とする構成として、信号分配部、周波数変換部および復調部の隔離配置、地上波用の周波数変換部の離間位置等の特徴的な構成が採用されている。また、受信装置10においては、地上波デジタルテレビジョン放送および衛星波デジタルテレビジョン放送復調信号であるTS(トランスポートストリーム)クロック出力のフィルタリング、デジタル回路部、アナログ回路部のGNDの共通化が行われている。また、受信装置10においては、GND部を流れるリターン電流に配慮したGNDパターン設計対策が行われている。
 以下、受信装置10の具体的な構成および機能について説明する。なお、以下の説明では、衛星波デジタルテレビジョン放送RF信号を衛星波デジタル放送信号、アナログおよびデジタルの地上波テレビジョン放送RF信号を地上波放送信号と呼ぶ。また、例として、本実施形態で適用される周波数帯域は、以下のとおりである。VHF帯は30MHz乃至300MHz、UHF帯は300MHz乃至3GHz、衛星波帯は950MHz乃至2150MHzである。
 受信装置10は、1つのモジュール基板11に、次の機能ブロックが隔離して配置されている。モジュール基板11に、第1の分配部12、第2の分配部13、第1の衛星波チューナ14、第2の衛星波チューナ15、第1の地上波チューナ16、第2の地上波チューナ17、デジタルアナログ復調部18、およびデジタル復調部19が隔離して形成されている。第1の衛星波チューナ14は第1の周波数変換部として機能し、第2の衛星波チューナ15は第2の周波数変換部として機能する。第1の地上波チューナ16は第3の周波数変換部として機能し、第2の地上波チューナ17は第4の周波数変換部として機能する。デジタルアナログ復調部18は第1の復調部として機能し、デジタル復調部19は第2の復調部として機能する。
 モジュール基板11は、矩形状に形成されている。モジュール基板11の第1縁部(側部)11aには、第1の入力端子TI11、第2の入力端子TI12、第1の出力端子TO11、および第2の出力端子TO12が形成されている。モジュール基板11において、図1中の左上側の第1縁部11aに第1の入力端子TI11および第1の出力端子TO11が近接して並列に形成されている。そして、第1の入力端子TI11および第1の出力端子TO11の形成位置に対向するように第1の分配部12が配置されている。モジュール基板11において、図1中の左下側の第1縁部11aに第2の入力端子TI12および第2の出力端子TO12が近接して並列に形成されている。そして、第2の入力端子TI12および第2の出力端子TO12の形成位置に対向するように第2の分配部13が配置されている。
 第1の入力端子TI11は、衛星波デジタル放送信号Satが入力され、この衛星波デジタル放送信号Satを第1の分配部12に入力させる。第1の出力端子TO11は、第1の入力端子TI11から第1の分配部12に入力された衛星波デジタル放送信号Satを別のモジュール機器に出力可能に形成されている。第2の入力端子TI12は、地上波放送信号Terrが入力され、この地上波放送信号Terrを第2の分配部13に入力させる。第2の出力端子TO12は、第2の入力端子TI12から第2の分配部13に入力された地上波放送信号Terrを別のモジュール機器に出力可能に形成されている。
 モジュール基板11の第1縁部11aに対向する第2縁部11bには、第3の出力端子TO13および第4の出力端子TO14が形成されている。モジュール基板11の第3縁部11cには、その第2縁部11bに近い位置に、第5の出力端子TO15および第6の出力端子TO16が形成されている。モジュール基板11において、図1中の右側の第2縁部11bの中央部より下側に第3の出力端子TO13が形成されている。モジュール基板11において、図1中の右側の第2縁部11bの中央部より上側に第4の出力端子TO14が形成されている。モジュール基板11において、図1中の下側の第3縁部11cの第2縁部11bに近い位置に第5の出力端子TO15および第6の出力端子TO16が近接して並列に形成されている。モジュール基板11の図1中の右下側において、第3の出力端子TO13、並びに、第5の出力端子TO15および第6の出力端子TO16の形成位置に近接して第1の復調部としてのデジタルアナログ復調部18が配置されている。モジュール基板11の図1中の右上側において、第4の出力端子TO14の形成位置に近接して第2の復調部としてのデジタル復調部19が配置されている。
 第3の出力端子TO13は、第1の復調部としてのデジタルアナログ復調部18で生成されるTS(トランスポートストリーム)を出力するために配置されている。第4の出力端子TO14は、第2の復調部としてのデジタル復調部19で生成されるTSを出力するために配置されている。第5の出力端子TO15は、デジタルアナログ復調部18で生成されるアナログ映像信号ASVを出力するために配置されている。第6の出力端子TO16は、デジタルアナログ復調部18で生成されるアナログ音声信号ASAを出力するために配置されている。
 第1の分配部12は、第1の入力端子TI11から入力された衛星波デジタル放送信号Satを第1の衛星波放送信号Sat1および第2の衛星波放送信号Sat2に分配し、入力された衛星波デジタル放送信号Satを第1の出力端子TO11に供給する。第1の分配部12は、分配した第1の衛星波放送信号Sat1を第1の信号ラインSL11を介して第1の周波数変換部として第1の衛星波チューナ14に供給する。第1の分配部12は、分配した第2の衛星波放送信号Sat2を第2の信号ラインSL12を介して第2の周波数変換部としての第2の衛星波チューナ15に供給する。
 第1の分配部12は、図1に示すように、ハイパスフィルタ(HPF)121、低雑音増幅器(LNA)122、および分配器123を有する。
 HPF121は、第1の入力端子TI11から入力した衛星波デジタル放送信号Satの不要成分を除去してLNA122に出力する。すなわち、例えば、HPF121は、第1の入力端子TI11から入力した衛星波デジタル放送信号Satの周波数成分のうち、所定の周波数未満の低域周波数成分を不要成分として除去し、所定の周波数以上の高域周波数成分をLNA122に出力する。LNA122は、HPF121で不要成分が除去された衛星波デジタル放送信号Satを増幅して分配器123に出力する。分配器123は、LNA122から出力された衛星波デジタル放送信号Satを、第1の衛星波放送信号Sat1、第2の衛星波放送信号Sat2、および出力用衛星波デジタル放送信号SatOに分配する。分配器123は、分配した第1の衛星波放送信号Sat1を第1の信号ラインSL11を介して第1の周波数変換部として第1の衛星波チューナ14に供給する。分配器123は、分配した第2の衛星波放送信号Sat2を第2の信号ラインSL12を介して第2の周波数変換部としての第2の衛星波チューナ15に供給する。分配器123は、分配した出力用衛星波デジタル放送信号SatOを第1の出力端子TO11に供給する。
 第2の分配部13は、第2の入力端子TI12から入力された地上波放送信号Terrを第1の地上波放送信号Terr1および第2の地上波放送信号Terr2に分配し、入力された地上波放送信号Terrを第2の出力端子TO12に供給する。第2の分配部13は、分配した第1の地上波放送信号Terr1を第3の信号ラインSL13を介して第3の周波数変換部として第1の地上波チューナ16に供給する。第2の分配部13は、分配した第2の地上波放送信号Terr2を第4の信号ラインSL14を介して第4の周波数変換部としての第2の地上波チューナ17に供給する。
 第2の分配部13は、図1に示すように、ローパスフィルタ(LPF)131、LNA132、および分配器133,134を有する。分配器133は第4の分配器に相当し、分配器134は第3の分配器に相当する。
 LPF131は、第2の入力端子TO12から入力した地上波放送信号Terrの不要成分を除去して分配器134に出力する。すなわち、例えば、LPF131は、第2の入力端子TO12から入力した地上波放送信号Terrの周波数成分のうち、所定の周波数以上の高域周波数成分を不要成分として除去し、所定の周波数未満の低域周波数成分を分配器134に出力する。分配器134は、LPF131から出力された地上波放送信号Terrを2つに分配し、分配した一方の地上波放送信号をLNA132に出力し、分配した他方の地上波放送信号を出力用の地上波放送信号TerrOとして第2の出力端子TO12に供給する。LNA132は、分配器134による一方の地上波放送信号を増幅して分配器133に出力する。分配器133は、LNA132から出力された地上波放送信号Terrを、第1の地上波放送信号Terr1と第2の地上波放送信号Terr2に分配する。分配器133は、分配した第1の地上波放送信号Terr1を第3の信号ラインSL13を介して第3の周波数変換部として第1の地上波チューナ16に供給する。分配器133は、分配した第2の地上波放送信号Terr2を第4の信号ラインSL14を介して第4の周波数変換部としての第2の地上波チューナ17に供給する。
 第1の衛星波チューナ14は、第1の分配部12により分配された第1の衛星波放送信号Sat1が供給され、この第1の衛星波放送信号Sat1を第1のベースバンド信号に周波数変換する第1の周波数変換部としての機能を有する。第1の衛星波チューナ14は、周波数変換して得られた第1のベースバンド信号を信号S14として第1の復調部としてのデジタルアナログ復調部18に出力する。
 第2の衛星波チューナ15は、第1の分配部12により分配された第2の衛星波放送信号Sat2が供給され、この第2の衛星波放送信号Sat2を第2のベースバンド信号に周波数変換する第2の周波数変換部としての機能を有する。第2の衛星波チューナ15は、周波数変換して得られた第2のベースバンド信号を信号S15として第2の復調部としてのデジタル復調部19に出力する。
 第1の地上波チューナ16は、第2の分配部13により分配された第1の地上波放送信号Terr1が供給され、この第1の地上波放送信号Terr1を第1の中間周波信号に周波数変換する第3の周波数変換部として機能を有する。第1の地上波チューナ16は、第1の中間周波信号を信号S16としてデジタルアナログ復調部18に出力する。第2の地上波チューナ17は、第2の分配部13により分配された第2の地上波放送信号Terr2が供給され、この第2の地上波放送信号Terr2を第2の中間周波信号に周波数変換する第4の周波数変換部として機能を有する。第2の地上波チューナ17は、第2の中間周波信号を信号S17としてデジタル復調部19に出力する。
 図2は、本実施形態に係る第1および第2の衛星波チューナ、並びに第1および第2の地上波チューナの発振系の構成例を示す図である。なお、図2においては、発振系のみ示し、発振系によるクロック信号を受けて入力放送信号のミキシングを行うミキサ等については省略してある。
 第1の衛星波チューナ14は、たとえば周波数2150MHz乃至4300MHzの局部発振信号を発振する電圧制御発振器(VCO)からなる局部発振器141、バッファ142、分周器143を有する。第1の衛星波チューナ14は、たとえば周波数16MHzの基準クロックを発振するクリスタル発振器144、バッファ145、およびPLL回路146を有する。PLL回路146は、分周器143で分周された局部発振信号を基準クロック信号と位相同期させたクロック信号を図示しないミキサに供給する。
 第2の衛星波チューナ15は、たとえば周波数2150MHz乃至4300MHzの局部発振信号を発振する電圧制御発振器(VCO)からなる局部発振器151、バッファ152、分周器153を有する。第2の衛星波チューナ15は、たとえば周波数16MHzの基準クロックを発振するクリスタル発振器154、バッファ155、およびPLL回路156を有する。PLL回路156は、分周器153で分周された局部発振信号を基準クロック信号と位相同期させたクロック信号を図示しないミキサに供給する。
 第1の地上波チューナ16は、たとえば周波数1800MHz乃至3600MHzの局部発振信号を発振する電圧制御発振器(VCO)からなる局部発振器161、バッファ162、分周器163を有する。第1の地上波チューナ16は、たとえば周波数4MHzの基準クロックを発振するクリスタル発振器164、バッファ165、およびPLL回路166を有する。PLL回路166は、分周器163で分周された局部発振信号を基準クロック信号と位相同期させたクロック信号を図示しないミキサに供給する。
 第2の地上波チューナ17は、たとえば周波数1800MHz乃至3600MHzの局部発振信号を発振する電圧制御発振器(VCO)からなる局部発振器171、バッファ172、分周器173を有する。第2の地上波チューナ17は、たとえば周波数4MHzの基準クロックを発振するクリスタル発振器174、バッファ175、およびPLL回路176を有する。PLL回路176は、分周器173で分周された局部発振信号を基準クロック信号と位相同期させたクロック信号を図示しないミキサに供給する。
 これら第1の衛星波チューナ14、第2の衛星波チューナ15、第1の地上波チューナ16、および第2の地上波チューナ17は、第1の分配部12および第2の分配部13の分配出力に対して並列に配置されている。そして、本実施形態においては、ノイズ等の妨害対策の一つとして、並列配置された4つのチューナ14乃至17のうち、第1の地上波チューナ16および第2の地上波チューナ17がモジュール基板11の縁部側(外側)に離間して配置されている。すなわち、地上波チューナは一番妨害に対して影響を受けやすいアナログ放送を有するため、地上波チューナ同士のそれぞれをモジュール基板11の縁部(端部)に配置することにより、局部発振妨害に対しての対策を施してある。ノイズ等の妨害については後で詳述する。
 図1および図2の構成では、地上波放送信号の周波数変換を行う第3の周波数変換部としての第1の地上波チューナ16および第4の周波数変換部としての第2の地上波チューナ17が並列配置の外側に配置されている。具体的には、モジュール基板11の略中央部において、第1の地上波チューナ16が第3縁部11c側に配置され、第2の地上波チューナ17が第4縁部11d側に配置されている。そして、第1の地上波チューナ16の配置部と第2の地上波チューナ17の配置部との間に、第1の周波数変換部としての第1の衛星波チューナ14および第2の周波数変換部としての第2の衛星波チューナが並列に配置されている。この場合、一方の外側配置部である第3縁部11c側から、第1の地上波チューナ16、第1の衛星波チューナ14、第2の衛星波チューナ15、および第2の地上波チューナ17が順に配置されている。並列配置された第1の地上波チューナ16、第1の衛星波チューナ14、第2の衛星波チューナ15、および第2の地上波チューナ17の出力に対して、デジタルアナログ復調部18およびデジタル復調部19が並列に配置されている。そして、第1の地上波チューナ16および第1の衛星波チューナ14は、出力側が第1の復調部としてのデジタルアナログ復調部18の入力側に対向するように並列に配置されている。第2の衛星波チューナ15および第2の地上波チューナ17は、出力側が第2の復調部としてのデジタル復調部19の入力側に対向するように並列に配置されている。
 なお、第1の衛星波チューナ14および第2の衛星波チューナ15は、図3に示すように、配置位置を入れ替えて配置することも可能である。この場合、一方の外側配置部である第3縁部11c側から、第1の地上波チューナ16、第2の衛星波チューナ15、第1の衛星波チューナ14、および第2の地上波チューナ17が順に配置されている。並列配置された第1の地上波チューナ16、第2の衛星波チューナ15、第1の衛星波チューナ14、および第2の地上波チューナ17の出力に対して、デジタルアナログ復調部18およびデジタル復調部19が並列に配置されている。そして、第1の地上波チューナ16および第2の衛星波チューナ15は、出力側が第1の復調部としてのデジタルアナログ復調部18の入力側に対向するように並列に配置されている。第1の衛星波チューナ14および第2の地上波チューナ17は、出力側が第2の復調部としてのデジタル復調部19の入力側に対向するように並列に配置されている。
 デジタルアナログ復調部18は、第1の周波数変換部としての第1の衛星波チューナ14による第1のベースバンド信号および第3の周波数変換部としての第1の地上波チューナ16による第1の中間周波信号の復調機能を有する第1の復調部として機能する。デジタルアナログ復調部18は、図2および図3に示すように、マスターロックを生成するクリスタル発振器181、アナログデジタル変換器(ADC)182を含んで構成される。
 デジタルアナログ復調部18は、デジタル復調およびアナログ復調機能を含んで構成され、以下の機能を有する。デジタルアナログ復調部18は、第1の衛星波チューナ14による第1のベースバンド信号の映像信号および音声信号を復調し、第1のトランスポートストリームを生成する。デジタルアナログ復調部18は、第1の地上波チューナ16による第1の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、この第1の中間周波信号の映像信号および音声信号を復調し、第2のトランスポートストリームを生成する。デジタルアナログ復調部18は、第1の中間周波信号が地上波アナログ放送信号を周波数変換した信号である場合、この第1の中間周波信号の映像信号および音声信号を復調し、アナログ映像信号ASVおよびアナログ音声信号ASAを生成する。デジタルアナログ復調部18は、生成した第1のトランスポートストリームまたは第2のトランスポートストリームを第3の出力端子TO13に供給する。デジタルアナログ復調部18は、生成したアナログ映像信号を第5の出力端子TO15に供給し、アナログ音声信号を第6の出力端子TO16に供給する。
 図4は、本実施形態に係るデジタルアナログ復調部の構成例を示すブロック図である。
 デジタルアナログ復調部18は、衛星波復調部183、地上波デジタル復調部184、および地上波アナログ復調部185を有する。衛星波復調部183はISDB-S(Integrated Services Digital Broadcasting‐Satellite)方式に対応し、地上波デジタル復調部184はISDB-T(Terrestrial)方式に対応し、地上波アナログ復調部185はNTSC方式に対応している。TS出力制御部1835は、TSの出力を行い、また、エラー情報に出力を行う。
 衛星波復調部183は、ADC1831-1,1831-2、8PSK復調器1832、ビタビ復号器1833、リードソロモン(RS)復号器1834、およびTS出力制御部1835を有する。衛星波復調部183は、緊急警報放送に対応したTMCC(Transmission and Multiplexing Configuration and Control)部1836、ステータスモニタ1837、およびAGC(Auto Gain Control)部1838を有する。ステータスモニタ1837は、緊急警報信号(EWS:Emergency Warning Signal)の出力や復調が正常に終了したことを示す復調OKフラグの出力等を行う。
 地上波デジタル復調部184は、OFDM復調器1841、ビタビ復号器1842、RS復号器1843、TS出力制御部1844、緊急警報放送に対応したTMCC部1845、ステータスモニタ1846、およびAGC部1847を有する。ステータスモニタ1846は、EWSの出力や復調が正常に終了したことを示す復調OKフラグの出力等を行う。
 地上波アナログ復調部185は、ビデオ中間周波信号処理部(VIF)1851、デジタルアナログ変換器(DAC)1852、サウンド中間周波信号処理部(SIF)1853、音声多重復調器1854、およびAGC部1855を有する。DAC1852はアナログ映像信号を出力し、音声多重復調器1854はアナログ音声信号を出力する。
 デジタル復調部19は、第2の周波数変換部としての第2の衛星波チューナ15による第2のベースバンド信号および第4の周波数変換部としての第2の地上波チューナ17による第2の中間周波信号の復調機能を有する第2の復調部として機能する。デジタル復調部19は、図2および図3に示すように、マスターロックを生成するクリスタル発振器191、アナログデジタル変換器(ADC)192を含んで構成される。
 デジタル復調部19は、デジタル復調機能を含んで構成され、以下の機能を有する。デジタル復調部19は、第2の衛星波チューナ15による第2のベースバンド信号の映像信号および音声信号を復調し、第3のトランスポートストリームを生成する。デジタル復調部19は、第2の地上波チューナ17による第2の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、この第2の中間周波信号の映像信号および音声信号を復調し、第4のトランスポートストリームを生成する。
 デジタル復調部19は、生成した第3のトランスポートストリームまたは第4のトランスポートストリームを第4の出力端子TO14に供給する。
 デジタル復調部19は、図4に示す衛星波復調部183および地上波デジタル復調部184と同様の構成を有する。
 以上の構成を有する受信装置は、1つのフロントエンドモジュールで、デジタル回路とアナログ回路間の干渉なく、地上波アナログテレビジョン放送、地上波デジタルテレビジョン放送および衛星波デジタルテレビジョン放送を受信可能である。受信装置10において、これら複数の放送を同時に2つのチャンネルで受信可能である。受信装置10は、地上波アナログテレビジョン放送と地上波デジタルテレビジョン放送、地上波アナログテレビジョン放送と衛星波デジタルテレビジョン放送、地上波デジタルテレビジョン放送と地上波デジタルテレビジョン放送の組み合わせを受信可能である。受信装置10は、地上波デジタルテレビジョン放送と衛星波デジタルテレビジョン放送、衛星波デジタルテレビジョン放送と衛星波デジタルテレビジョン放送の組み合わせを受信可能である。
 次に、干渉妨害について述べる。フロントエンドモジュールを干渉妨害なく円滑に動作させる上で、以下に示すような発生するおそれのある課題に対して対策を施す必要がある。
(1)デジタル復調部19から出力される衛星波デジタルTSの高調波が地上波RF帯域内に飛びこみ、第1の地上波チューナ16から出力される中間周波信号帯域内に妨害信号として重畳されてしまう(妨害1)。
(2)デジタル復調部19から出力される地上デジタルTSの高調波が地上波RF帯域内に飛びこみ、第1の地上波チューナ16から出力される中間周波信号帯域内に妨害信号として重畳されてしまう(妨害2)。
(3)第1の地上波チューナ16の局発発振成分が衛星波RF帯域内に飛び込み、第2の衛星波チューナ15から出力されるベースバンド信号にノイズが重畳されてしまう(妨害3)。
(4)第2の地上波チューナ17の局発発振成分が衛星波RF帯域内に飛び込み、第1の衛星波チューナ14から出力されるベースバンド信号にノイズが重畳されてしまう(妨害4)。
(5)第1および第2の衛星波チューナ14、15の周波数変換に用いる水晶発振信号高調波成分が地上波RF帯域内に飛びこみ、第1および第2の地上波チューナ16、17から出力される中間周波信号帯域内に妨害信号として重畳されてしまう(妨害5)。
(6)デジタルアナログ復調部18のマスタークロックの高調波が地上波RF帯域内に飛びこみ、第1の地上波チューナ16から出力される中間周波信号帯域内に妨害信号として重畳されてしまう(妨害6)。
(7)第2の地上波チューナ17の局発発振成分が地上波RF帯域内に飛びこみ、第1の地上波チューナ16から出力される中間周波信号帯域内に妨害信号として重畳されてしまう(妨害7)。
(8)第1の地上波チューナ16の局発発振成分が地上波RF帯域内に飛びこみ、第2の地上波チューナ17から出力される中間周波信号帯域内に妨害信号として重畳されてしまう(妨害8)。
(9)第1の衛星波チューナ14の局発発振成分が衛星波RF帯域内に飛び込み、第2の衛星波チューナ15から出力されるベースバンド信号にノイズが重畳されてしまう(妨害9)。
(10)第2の衛星波チューナ15の局発発振成分が衛星波RF帯域内に飛び込み、第1の衛星波チューナ14から出力されるベースバンド信号にノイズが重畳されてしまう(妨害10)。
 そこで本実施形態では、上記の妨害1乃至10に対して以下に示すような妨害対策を施してある。図5は、本実施形態における妨害対策の一例を模式的に示す図である。本実施形態においては、図5に示すように、分配部(スプリッタ部)、地上波チューナ部、衛星波チューナ部、復調部にそれぞれ壁を作り各々を隔離している。さらに、本実施形態においては、地上波チューナは一番妨害に対して影響を受けやすいアナログ放送を有するため、地上波チューナ同士それぞれをモジュール基板11の縁部(端部)に配置することにより、局発妨害に対しての対策を施してある。また、モジュール基板11のグランドGNDとシールドケースの接合部分がリターン電流に配慮した位置に配置されている。また、GNDパターンもリターン電流に配慮した設計をすることにより、上記の輻射妨害を抑えて、1個のフロントエンドモジュールで分配部(スプリッタ)の役割を果たしている。さらには、地上波アナログテレビジョン放送と地上波デジタルテレビジョン放送、地上波アナログテレビジョン放送と衛星波デジタルテレビジョン放送、地上波デジタルテレビジョン放送と地上波デジタルテレビジョン放送の組み合わせの受信が可能である。さらに、地上波デジタルテレビジョン放送と衛星波デジタルテレビジョン放送、衛星波デジタルテレビジョン放送と衛星波デジタルテレビジョン放送のそれぞれの組み合わせの受信が可能である。
 次に、動作について説明する。衛星波デジタル放送信号Satは衛星波信号入力用の第1の入力端子TI11に入力され、第1の分配部12に供給される。第1の分配部12においては、HPF121で不要成分を除去され、LNA122で増幅され、分配器123で第1の衛星波放送信号Sat1、第2の衛星波放送信号Sat2、および出力用衛星波デジタル放送信号SatOに分配される。分配された第1の衛星波放送信号Sat1は第1の信号ラインSL11を介して第1の周波数変換部として第1の衛星波チューナ14に供給される。分配された第2の衛星波放送信号Sat2は第2の信号ラインSL12を介して第2の周波数変換部としての第2の衛星波チューナ15に供給される。分配された出力用衛星波デジタル放送信号SatOは第1の出力端子TO11に供給される。第1の衛星波チューナ14では第1の衛星波放送信号Sat1が第1のベースバンド信号に周波数変換され、第2の衛星波チューナ15では第2の衛星波放送信号Sat2が第2のベースバンド信号に周波数変換される。ベースバンドの映像信号および音声信号がデジタルアナログ復調部18およびデジタル復調部19に入力される。デジタルアナログ復調部18およびデジタル復調部19では、入力映像信号および音声信号を復調され、たとえばMPEG-2形式の衛星波デジタルTSの復調信号にして第3の出力端子TO13、第4の出力端子TO14から出力される。
 一方、地上波放送信号Terrは、地上波信号入力用の第2の入力端子TI12に入力され、第2の分配部13に供給される。第2の分配部13においては、LPF131で不要成分を除去され、分配器134でLPF131から出力された地上波放送信号Terrを2つに分配される。分配された一方の地上波放送信号はLNA132に出力され、分配された他方の地上波放送信号は出力用の地上波放送信号TerrOとして第2の出力端子TO12に供給される。LNA132では、分配器134による一方の地上波放送信号が増幅されて分配器133に出力される。分配器133では、LNA132から出力された地上波放送信号Terrが、第1の地上波放送信号Terr1と第2の地上波放送信号Terr2に分配される。分配された第1の地上波放送信号Terr1は第3の信号ラインSL13を介して第3の周波数変換部として第1の地上波チューナ16に供給される。
 分配された第2の地上波放送信号Terr2は第4の信号ラインSL14を介して第4の周波数変換部としての第2の地上波チューナ17に供給される。第1の地上波チューナ16では第1の地上波放送信号Terr1が第1の中間周波信号に周波数変換され、第2の地上波チューナ17では第2の地上波放送信号Terr2が第2の中間周波信号に周波数変換される。第1の中間周波信号はデジタルアナログ復調部18に入力され、第2の中間周波信号はデジタル復調部19に入力される。地上波アナログ信号はデジタルアナログ復調部18でアナログの映像信号と音声信号に復調され、映像用の第5の出力端子TO15と音声用の第6の出力端子TO16にそれぞれ出力される。また、地上波デジタル信号は、デジタルアナログ復調部18、デジタル復調部19で復調され、BSCSデジタル信号と同様にMPEG-2形式の地上波デジタルTSにされ、第3の出力端子TI13、第4の出力端子TO14から出力される。
 本第1の実施形態によれば、1つのフロントエンドモジュールで地上波アナログテレビジョン放送、地上波デジタルテレビジョン放送および衛星波デジタルテレビジョン放送を受信する構成を有する。本第1の実施形態においては、これら複数の放送を同時に2つのチャンネルで受信可能とする構成として、信号分配部、周波数変換部および復調部の隔離配置、地上波用の周波数変換部の離間位置等の特徴的な構成が採用されている。また、本第1の実施形態においては、地上波デジタルテレビジョン放送および衛星波デジタルテレビジョン放送復調信号であるTSクロック出力のフィルタリング、デジタル回路部、アナログ回路部のGNDの共通化が行われている。また、受信装置10においては、GND部を流れるリターン電流に配慮したGNDパターン設計対策が行われている。その結果、輻射妨害なく全放送の受信を可能にすることができる。
 また、このフロントエンドモジュールを用いると、地上波アナログテレビジョン放送と地上波デジタルテレビジョン放送、地上波アナログテレビジョン放送と衛星波デジタルテレビジョン放送の組み合わせで同時に視聴や録画を可能にすることができる。地上波デジタルテレビジョン放送と地上波テレビジョン放送、地上波デジタルテレビジョン放送と衛星波デジタルテレビジョン放送、衛星波デジタルテレビジョン放送と衛星波デジタルテレビジョン放送の組み合わせで同時に視聴や録画を可能にすることができる。さらには、地上波放送信号Terrと、衛星波デジタル放送信号Satを別のモジュールに出力することが可能にすることができる。また、この受信装置(フロントエンドモジュール)を用いると、テレビジョン受像機において省スペース化を実現でき、さらにシステム設計を容易にできるようになる。それ故通常方式と比較して実装面積が削減でき、しかも使用時の配置等の問題による干渉の問題を既に解決した状態でシールドがされて使用できるため、実装される基板側での干渉等を含めた設計検討を容易にすることができる。
<2.第2の実施形態>
 図6は、本発明の第2の実施形態に係る放送信号受信装置の構成例を示す図である。
 本第2の実施形態に係る受信装置10Aが上述した第1の実施形態に係る受信装置10と異なる点は、第1の分配部12Aおよび第2の分配部13Aの構成にある。受信装置10Aにおいて、第1の分配部12AではHPF121の出力段に分配器(第1の分配器)124を設け、第2の分配部13Aでは分配器134を省略している。
 第1の分配部12Aは、第1の分配器としての分配器124がHPF121出力信号を2つの衛星波デジタル放送信号に分配し、分配した他方の衛星波デジタル放送信号SatOを第1の出力端子TO11に供給する。第2の分配器としての分配器123Aは、LNA122の出力信号を第1の衛星波放送信号Sat1および第2の衛星波放送信号Sat2に分配する。分配器123Aは、分配した第1の衛星波放送信号Sat1を第1の信号ラインSL11を介して第1の周波数変換部として第1の衛星波チューナ14に供給する。分配器123Aは、分配した第2の衛星波放送信号Sat2を第2の信号ラインSL12を介して第2の周波数変換部としての第2の衛星波チューナ15に供給する。
 第2の分配部13Aにおいて、分配器133AがLNA132の出力信号を第1の地上波放送信号Terr1、第2の地上波放送信号Terr2、および出力用地上波放送信号TerrOに分配する。分配器133Aは、分配した第1の地上波放送信号Terr1を第3の信号ラインSL13を介して第3の周波数変換部として第1の地上波チューナ16に供給される。分配器133Aは、分配した第2の地上波放送信号Terr2を第4の信号ラインSL14を介して第4の周波数変換部としての第2の地上波チューナ17に供給する。分配器133Aは、分配した出力用地上波放送信号TerrOを第2の出力端子TO12に供給する。
 その他の構成は第1の実施形態と同様である。本第2の実施形態によれば、上述した第1の実施形態の効果と同様の効果を得ることができる。なお、第1および第2の実施形態の構成に限らず、第1の分配部12,12A、第2の分配部13,13Aを適宜組み合わせて用いることが可能である。
<3.第3の実施形態>
 図7および図8は、本発明の第3の実施形態に係る放送信号受信装置の構成例を示す図である。
 本第3の実施形態の受信装置10Bは、図7および図8に示すように、チューナモジュール部20と電力供給部30のグランドGNDを共通化し、チューナモジュール部20と電力供給部が隔離して配置され、さらにスプリアスに配慮した電源配線が行われている。この構成により1枚の基板11B上にて、地上波アナログテレビジョン放送、地上波デジタルテレビジョン放送及び衛星波デジタルテレビジョン放送を受信する目的と、これらを受信するチューナモジュールに安定した電力源を供給する目的を同時に可能としている。
 なお、チューナモジュール部20は、第1の実施形態の受信装置10または第2の実施形態の受信装置10Aを含むモジュールとして形成されている。
 電力供給部30は、受信放送信号に応じて、駆動電力を選択的に供給可能な電力レギュレータ31乃至36を有する。電力レギュレータ31は、たとえば第1の分配部12のLNA122に駆動電力を選択的に供給する。電力レギュレータ32は、たとえば第2の分配部13のLNA132に駆動電力を選択的に供給する。電力レギュレータ33は、第1の地上波チューナ16に駆動電力を選択的に供給する。電力レギュレータ34は、第1の衛星波チューナ14に駆動電力を選択的に供給する。電力レギュレータ35は、第2の衛星波チューナ15に駆動電力を選択的に供給する。電力レギュレータ36は、第2の地上波チューナ17に駆動電力を選択的に供給する。
 チューナモジュール部20を安定に動作させるために、電力供給部30において、電力レギュレータ31乃至36には外部電源から電力を印加し、それぞれモジュール仕様の電圧に変換した後安定的な電力をチューナモジュール部20に供給する。そのために、モジュール基板11Bには、電力を入力するための電源端子TP11乃至TP14が形成されている。
 図9は、電力レギュレータ31(32乃至36)の構成例を示す図である。
 電力レギュレータ31は、端子Vinに外部から電圧が供給され、端子Contにスイッチ信号SWが供給される。電力レギュレータ31は、スイッチ信号SWによってオン、オフされ、これにより駆動電力を供給対象に選択的に供給することができる。
 ところで、上記の電源一体型受信装置(フロントエンドモジュール)を干渉妨害なく円滑に動作させる上で、以下の点で問題になるおそれがある。すなわち、チューナモジュール側から発生するスプリアス(不要波)に対して、電力供給部を介して再びチューナに飛び込んでしまい、妨害信号となる問題や、電力供給部からのスプリアスがチューナに飛び込んでしまい、問題になることがある。
 そこで、本第3の実施形態では、上記の妨害に対して以下に示すような対策を施してある。図8に示すように、チューナモジュール部20にシールド21を形成し、電力供給部30との隔離を行っている。
 また、電源配線をスプリアスに考慮して行い、また基板のグランドGNDとシールドケースの接合部分をリターン電流に配慮した位置に設置し、またGNDパターンもリターン電流に配慮した設計が行われている。これにより、上記の輻射妨害を抑えて、安定した電源をチューナモジュールに供給しながら、地上波アナログテレビジョン放送、地上波デジタルテレビジョン放送と衛星波デジタルテレビジョン放送の受信を可能にしている。
 ここで、複数の放送を同時に2または1つのチャンネルで受信する場合の電力供給制御の一例について説明する。図10は、本第3の実施形態において複数の放送を同時に2または1つのチャンネルで受信する場合の電力供給制御の一例について説明するための図である。
[地上波アナログと地上波デジタルの放送信号を同時受信]
 地上波アナログと地上波デジタルの放送信号を同時受信は、電力レギュレータ32により第2の分配部13のLNA132に駆動電力が供給される。電力レギュレータ33により第1の地上波チューナ16に駆動電力が供給される。電力レギュレータ36により第2の地上波チューナ17に駆動電力が供給される。電力レギュレータ31による第1の分配部12のLNA122への駆動電力の供給が停止される。電力レギュレータ34による第1の衛星波チューナ14への駆動電力の供給が停止される。電力レギュレータ35による第2の衛星波チューナ15への駆動電力の供給が停止される。
[地上波デジタルと衛星波デジタルの放送信号を同時受信]
 地上波デジタルと衛星波デジタルの放送信号を同時受信は、電力レギュレータ31により第1の分配部12のLNA122に駆動電力が供給される。電力レギュレータ32により第2の分配部13のLNA132に駆動電力が供給される。電力レギュレータ33による第1の地上波チューナ16に駆動電力が供給される。電力レギュレータ35による第2の衛星波チューナ15への駆動電力の供給が停止される。電力レギュレータ34による第1の衛星波チューナ14への駆動電力の供給が停止される。電力レギュレータ36による第2の地上波チューナ17への駆動電力の供給が停止される。
[地上波アナログの放送信号を単独受信]
 地上波アナログの放送信号を単独受信は、電力レギュレータ31により第1の分配部12のLNA122に駆動電力が供給される。電力レギュレータ33により第1の地上波チューナ16に駆動電力が供給される。電力レギュレータ32による第2の分配部13のLNA132への駆動電力の供給が停止される。電力レギュレータ35により第2の衛星波チューナ15への駆動電力の供給が停止される。電力レギュレータ34による第1の衛星波チューナ14への駆動電力の供給が停止される。電力レギュレータ36による第2の地上波チューナ17への駆動電力の供給が停止される。
[衛星波デジタルと地上波デジタルの放送信号を同時受信]
 衛星波デジタルと地上波デジタルの放送信号を同時受信は、電力レギュレータ31により第1の分配部12のLNA122に駆動電力が供給される。電力レギュレータ32により第2の分配部13のLNA132に駆動電力が供給される。電力レギュレータ34により第1の衛星波チューナ14に駆動電力が供給される。電力レギュレータ36により第2の地上波チューナ17に駆動電力が供給される。電力レギュレータ33による第1の地上波チューナ16に駆動電力が供給される。電力レギュレータ35による第2の衛星波チューナ15への駆動電力の供給が停止される。
 以上は、各チューナに1対1で電力レギュレータを設けた例であるが、複数のチューナに対して1つの電力レギュレータを設けることも可能である。この場合、電力を供給した複数のチューナのうち、受信放送信号に応じて非処理(未使用)のチューナをスリープ状態(低消費電力モード)とすることで低消費電力化を実現することも可能である。
 図11は、本第3の実施形態において複数の放送を同時に2または1つのチャンネルで受信する場合の電力供給制御の他例について説明するための図である。
 この例では、電力レギュレータ37が第1の地上波チューナ16および第1の衛星波チューナ14に駆動電力を選択的に供給し、電力レギュレータ38が第2の地上波チューナ17および第2の衛星波チューナ15に駆動電力を選択的に供給する。
[地上波アナログと地上波デジタルの放送信号を同時受信]
 地上波アナログと地上波デジタルの放送信号を同時受信は、電力レギュレータ32により第2の分配部13のLNA132に駆動電力が供給される。電力レギュレータ37が第1の地上波チューナ16および第1の衛星波チューナ14に駆動電力を供給する。電力レギュレータ38が第2の地上波チューナ17および第2の衛星波チューナ15に駆動電力を供給する。電力レギュレータ31による第1の分配部12のLNA122への駆動電力の供給が停止される。そして、第1の衛星波チューナ14および第2の衛星波チューナ15がスリープモードに制御される。
[地上波デジタルと衛星波デジタルの放送信号を同時受信]
 地上波デジタルと衛星波デジタルの放送信号を同時受信は、電力レギュレータ31により第1の分配部12のLNA122に駆動電力が供給される。電力レギュレータ32により第2の分配部13のLNA132に駆動電力が供給される。電力レギュレータ37が第1の地上波チューナ16および第1の衛星波チューナ14に駆動電力を供給する。電力レギュレータ38が第2の地上波チューナ17および第2の衛星波チューナ15に駆動電力を供給する。そして、第2の地上波チューナ17および第1の衛星波チューナ14がスリープモードに制御される。
[地上波アナログの放送信号を単独受信]
 地上波アナログの放送信号を単独受信は、電力レギュレータ31により第1の分配部12のLNA122に駆動電力が供給される。電力レギュレータ37が第1の地上波チューナ16および第1の衛星波チューナ14に駆動電力を供給する。電力レギュレータ32による第2の分配部13のLNA132への駆動電力の供給が停止される。電力レギュレータ38による第2の地上波チューナ17および第2の衛星波チューナ15への駆動電力の供給が停止される。そして、第1の衛星波チューナ14、第2の衛星波チューナ15、および第2の地上波チューナ17がスリープモードに制御される。
[衛星波デジタルと地上波デジタルの放送信号を同時受信]
 衛星波デジタルと地上波デジタルの放送信号を同時受信は、電力レギュレータ31により第1の分配部12のLNA122に駆動電力が供給される。電力レギュレータ32により第2の分配部13のLNA132に駆動電力が供給される。電力レギュレータ37が第1の地上波チューナ16および第1の衛星波チューナ14に駆動電力を供給する。電力レギュレータ38が第2の地上波チューナ17および第2の衛星波チューナ15に駆動電力を供給する。そして、第1の地上波チューナ14および第2の衛星波チューナ15がスリープモードに制御される。
 本第3の実施形態によれば、1つのモジュールで電力を安定に供給しながら地上波アナログテレビジョン放送、地上波デジタルテレビジョン放送および衛星波デジタルテレビジョン放送を受信する。また、本第3の実施形態によれば、チューナモジュール部20と電力供給部30のグランドGNDの共通化や、チューナモジュール部20と電力供給部30の隔離配置が行われている。そして、グランドGNDからのリターン電流に配慮したシールドケースとGNDパターンの接合位置やGNDパターン設計を行うことによって、輻射妨害が抑えられ、全放送を安定的に受信することが可能になる。また、この電源一体型フロントエンドモジュールを用いると、テレビジョン受像機において通常方式でチューナ部、電源部の2枚の基板を使用していたところを、1枚の基板に簡略化することができる。これにより、省スペース化や構成分品の削減が実現でき、さらにシステム設計を容易にできるようになる。それ故通常方式と比較して実装面積が削減でき、しかも使用時の配置等の問題による干渉の問題を既に解決した状態で使用できるため、使用する側の設計検討を容易にすることができる。
<4.第4の実施形態>
 図12は、本発明の第4の実施形態に係る放送信号受信装置の構成例を示す図である。
 本第4の実施形態に係る受信装置10Cは、第4の信号ラインSL14にアイソレーションアンプ部40が配置されている。
 アイソレーションアンプ部40は、第2の分配部13で分配した地上波放送信号が制御端子に入力されて、インピーダンス変換により低インピーダンス出力を行うトランジスタにより形成されるバッファアンプを含む。そして、バッファアンプの入力側または出力側の少なくとも一方にアッテネータが配置される。なお、アッテネータは、入力された信号を減衰し、減衰後の信号を出力するものである。
 図13は、本第4の実施形態に係る分配器およびアイソレーションアンプ部の第1の構成例を示す図である。
 図13の分配器133は、分配トランスT133により形成されている。分配トランスT133は、インダクタL11とインダクタL12を有する。インダクタL11の他端およびインダクタL12の一端が地上波放送信号Terrの供給端子(LNA132の出力)に接続されている。インダクタL11の一端およびインダクタL12の他端が第3の信号ラインSL13および第4の信号ラインSL14に接続されている。第3の信号ラインSL13にアッテネータATT41が配置され、アッテネータATT41の出力がキャパシタC41を介して第1の地上波チューナ16に接続されている。
 第4の信号ラインSL14にアッテネータATT42が配置され、アッテネータATT42の出力がアイソレーションアンプ部40に接続されている。そして、アイソレーションアンプ部40に出力側にアッテネータATT43が配置されている。アッテネータATT43の出力がキャパシタC42を介して第2の地上波チューナ17に接続されている。
 アイソレーションアンプ部40は、npn型トランジスタQ41、および抵抗素子R41,R42,R43を有する。トランジスタQ41のコレクタが電源50に接続され、エミッタが抵抗素子R41を介してグランドGND(基準電位)に接続されている。
 電源50とグランドGNDとの間に抵抗素子R42,R43が直列に接続され、その接続ノードND41が制御端子であるトランジスタQ41のベースおよびアッテネータATT42の出力に接続されている。
 このように、アイソレーションアンプ部40は、コレクタ接地型トランジスタにより形成されている。
 このような構成を採用することで、1個の第2の入力端子TI12から第2の分配部13を介して複数の地上波チューナに信号を送り、それらのチューナで同時に受信させた場合、妨害波の影響を受けることなく問題なく受信可能である。1個の地上波チューナ(テレビジョンチューナ)のアンテナ端子から漏洩する妨害波に、残りのテレビジョンチューナが影響を受けずに問題なく受信できることを、信号ラインにコレクタ接地型トランジスタとアッテネータを挿入することにより実現されている。このように、本第4の実施形態によれば、端子間同士のアイソレーションを改善し、他の端子への妨害波を軽減することで、弱電界での受信を可能にしている。
 なお、アイソレーションアンプ部40は、第4の信号ラインSL14のみならず、第3の信号ラインSL13に配置することも可能である。さらに、第1の信号ラインSL11や第2の信号ラインSL12にも配置することは可能である。
 図14は、本第4の実施形態に係る分配器およびアイソレーションアンプ部の第2の構成例を示す図である。
 図14においては、図13の構成に加えて第3の信号ラインSL13にもアイソレーションアンプ部40Aが配置されている。その構成は、アイソレーションアンプ部40と同じであることからその説明は省略する。また、キャパシタC41と第1の地上波チューナ16の入力間にアッテネータATT44が配置されている。この場合、第1の地上波チューナ16および第2の地上波チューナ17を同時に動作させた場合でも、それぞれのチューナが影響を受けずに問題なく受信できる。
 図15は、実際にアイソレーション改善回路を挿入した場合のテレビジョンチューナ間のアイソレーション特性を示す図である。破線Aで示す曲線がアイソレーションアンプ部の挿入前の特性を、実線Bで示す曲線がアイソレーションアンプ部を挿入後の特性を示している。破線Aの曲線の特性だったのが、実線Bの曲線の特性に改善された。さらにコレクタ接地形式とすることにより、他の接地形式と比較し歪特性が良好であり、周辺回路も最小限に抑え安価に回路を構成することができる。さらに高い電圧を必要としないためモジュール内での電圧を利用でき、本形式はアイソレーション改善に適した回路であると言える。
 なお、以上の説明ではバイポーラトランジスタを用いたコレクタ接地形式の場合を例に説明したが、図16および図17に示すように、電界効果トランジスタを用いたいわゆるドレイン接地型のものも適用可能であり、同様の効果を得ることができる。
 中間周波数を通常のIFp=58.75MHzから、たとえばIFp=5.75MHzに変更している同時受信する際に、1個のテレビジョンチューナの局発周波数が、他のテレビジョンチューナの希望周波数帯域内に重なってくることがある。本第4の実施形態の構成は、このようなアイソレーションが必要とされている場合に有効である。また、アイソレーションを改善するためのトランジスタは、ストレートタイプのリードを使用することにより、UHF帯でのアイソレーション特性を確保できる。
 本第4の実施形態によれば、複数のテレビジョンチューナを動作させた場合に、それぞれのテレビジョンチューナから信号ラインに漏洩される妨害波を、他テレビジョンチューナの受信への影響が無いレベルまで落とすことができる。その結果、複数テレビジョンチューナの同時受信を干渉させることなく可能にすることができる。
 なお、上述した第1乃至第4の実施形態の受信装置は、モジュールとして構成される場合を例に説明したが、たとえばセット機器の回路基板に形成することも可能である。
 ところで、第1の衛星波チューナ14および第2の衛星波チューナ15においては、一般的に、1個または2個の衛星からの微弱電波を受信する。そして、受信する微弱電波の電界強度は、衛星からの距離にほぼ比例するため、第1の衛星波チューナ14および第2の衛星波チューナ15は、それぞれ、殆ど同一の受信電力の多チャンネルの放送信号を受信することとなる。
 これに対して、第1の地上波チューナ16および第2の地上波チューナ17は、通常、複数のチャンネルを同時に受信する。そして、受信する複数のチャンネル(周波数帯域)それぞれの電界強度は、チャンネルとしての電波を送信する電波局からの距離や、障害物の影響に応じて、著しく異なるものとなる。
 このため、第1の地上波チューナ16および第2の地上波チューナ17においては、受信するチャンネル毎に受信電力が異なるものとなる。そして、受信電力の弱いチャンネルに対応する放送信号は、受信電力の強いチャンネルに対応する放送信号から干渉を受けて、信号の波形に歪みが生じる等の問題が発生する。
 よって、第1の地上波チューナ16および第2の地上波チューナ17では、このような問題を解決するために、第1の地上波チューナ16および第2の地上波チューナ17それぞれを構成する回路に大きな電流を流すようにしている。
 これにより、受信電力の弱いチャンネルに対応する放送信号において、広いダイナミックレンジを確保できるとともに、上述の問題を軽減することができる。
 しかしながら、この場合、第1の地上波チューナ16および第2の地上波チューナ17では、それぞれを構成する回路に大きな電流を流すことになるため、それらの回路の温度が上昇し、回路に誤作動が生じ得る。
 したがって、回路の温度が上昇する第1の地上波チューナ16および第2の地上波チューナ17を隣接させて配置する場合には、互いの回路から発せられる熱により、互いの回路の温度がより上昇してしまう。
 このため、図1、図6および図12に示されるように、第1の地上波チューナ16と第2の地上波チューナ17とが隣接しないように離間して配置するようにして、互いの回路の温度がより上昇する事態を防止するようにしている。
 また、図1、図6および図12に示されるように、第1の地上波チューナ16と第2の地上波チューナ17との間に、第1の衛星波チューナ14および第2の衛星波チューナ15を設けるようにして、第1の地上波チューナ16と第2の地上波チューナ17との間にできた空間を有効に利用するようにしている。
 なお、第1の衛星波チューナ14および第2の衛星波チューナ15においては、第1の地上波チューナ16および第2の地上波チューナ17の場合のように、大きな電流を流す必要がないため、隣接して配置するようにしても、第1の衛星波チューナ14および第2の衛星波チューナ15の回路が高温になることはなく、誤作動が生じることはない。
 図1、図6および図12に示されるように、第1の地上波チューナ16と第2の地上波チューナ17との間にできた空間を有効に利用するために、SHFの周波数帯域の放送信号を受信する衛星波チューナ(第1の衛星波チューナ14や第2の衛星波チューナ15)を設けるようにしたが、それ以外のチューナを設けるようにしてもよい。
 すなわち、例えば、図18に示されるように、長波、中波、短波、超短波、ミリ波、またはサブミリ波のいずれかに対応する周波数帯域の放送信号を受信するチューナを設けるようにしてもよい。その他、例えば、第1の地上波チューナ16と第2の地上波チューナ17との間にできた空間には、チューナ以外の回路等を設けるようにしてもよい。
 なお、第1の地上波チューナ16と第2の地上波チューナ17との間にできた空間に、第1の衛星波チューナ14および第2の衛星波チューナ15を設けるようにしたが、チューナの配置や個数は、これに限定されない。
 すなわち、大きな電流を流す必要があるために回路の温度が高温となる地上波チューナを隣接させないように配置するのであれば、どのような配置方法であってもよい。
 すなわち、例えば、2個以上の地上波チューナを設けるようにした場合には、2個以上の地上波チューナそれぞれが隣接しないように配置されることとなる。この場合、2個以上の地上波チューナそれぞれの間に、1個以上の衛星波チューナを設けるように配置すればよい。なお、衛星波チューナの配置は、地上波チューナそれぞれの間にできた空間を効率的に利用できるように配置すればよく、図1、図6および図12に示されるように、必ずしも一直線上に配置する必要はない。
 また、例えば、1個の地上波チューナ(例えば、第1の地上波チューナ16や、第2の地上波チューナ17)を設けた場合には、例えば、その地上波チューナの両端に、第1の衛星波チューナ14と第2の衛星波チューナ15とを配置するようにしてもよし。設けられた1個の地上波チューナの周囲に配置するようにしてもよい。
 10,10A乃至10C・・・受信装置、11,11A,11B・・・モジュール基板、12・・・第1の分配部、13・・・第2の分配部、14・・・第1の衛星波チューナ、15・・・第2の衛星波チューナ、16・・・第1の地上波チューナ、17・・・第2の地上波チューナ、18・・・デジタルアナログ復調部、19・・・デジタル復調部、20・・・チューナモジュール部、30・・・電力供給部、40,40A・・・アイソレーションアンプ部、ATT41乃至ATT44・・・アッテネータ。

Claims (48)

  1.  第1の周波数帯域の放送信号を受信する第1および第2の受信部と、
     上記第1の周波数帯域とは異なる第2の周波数帯域の放送信号を受信する第3の受信部と
     を含み、
     上記第1および第2の受信部の間には、上記第3の受信部が配置されている
     受信装置。
  2.  上記第1および第2の受信部の間には、複数個の上記第3の受信部が配置されている
     請求項1に記載の受信装置。
  3.  上記第1乃至第3の受信部は、受信した放送信号を周波数変換する
     請求項2に記載の受信装置。
  4.  上記第1および第2の受信部の間には、2個の上記第3の受信部として、第1および第2の中間配置受信部が配置されており、
     上記第1および第2の受信部は、上記第1の周波数帯域の放送信号として、UHFまたはVHFの周波数帯域の地上波放送信号を受信して中間周波信号に周波数変換し、
     上記第1および第2の中間配置受信部は、上記第2の周波数帯域の放送信号として、SHFの周波数帯域の衛星波デジタル放送信号を受信してベースバンド信号に周波数変換する
     請求項3に記載の受信装置。
  5.  衛星波デジタル放送信号が入力される第1の入力端子と、
     アナログまたはデジタルの地上波放送信号が入力される第2の入力端子と、
     上記第1の入力端子から入力された衛星波デジタル放送信号を出力するための第1の出力端子と、
     上記第2の入力端子から入力された地上波放送信号を出力するための第2の出力端子と、
     上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配し、かつ、当該入力された衛星波デジタル放送信号を上記第1の出力端子に供給する第1の分配部と、
     上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配し、かつ、当該入力された地上波放送信号を上記第2の出力端子に供給する第2の分配部と
     をさらに含み、
     前記第1の中間配置受信部は、上記第1の分配部により分配された上記第1の衛星波放送信号を受信して第1のベースバンド信号に周波数変換し、
     前記第2の中間配置受信部は、上記第1の分配部により分配された上記第2の衛星波放送信号を受信して第2のベースバンド信号に周波数変換し、
     前記第1の受信部は、上記第2の分配部により分配された上記第1の地上波放送信号を受信して第1の中間周波信号に周波数変換し、
     前記第2の受信部は、上記第2の分配部により分配された上記第2の地上波放送信号を受信して第2の中間周波信号に周波数変換する
     請求項4に記載の受信装置。
  6.  上記第1の中間配置受信部による上記第1のベースバンド信号および上記第1の受信部による上記第1の中間周波信号の復調機能を有する第1の復調部と、
     上記第2の中間配置受信部による上記第2のベースバンド信号および上記第2の受信部による上記第2の中間周波信号の復調機能を有する第2の復調部と、
     をさらに含む請求項5に記載の受信装置。
  7.  上記第1の復調部は、
      デジタル復調およびアナログ復調機能と、
      上記第1のベースバンド信号の映像信号および音声信号を復調し、第1のトランスポートストリームを生成する機能と、
      上記第1の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、第2のトランスポートストリームを生成する機能と、
      上記第1の中間周波信号が地上波アナログ放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、アナログ映像信号およびアナログ音声信号を生成する機能と
     を有する請求項6に記載の受信装置。
  8.  上記第2の復調部は、
      デジタル復調機能と、
      上記第2のベースバンド信号の映像信号および音声信号を復調し、第3のトランスポートストリームを生成する機能と、
      上記第2の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第2の中間周波信号の映像信号および音声信号を復調し、第4のトランスポートストリームを生成する機能と
     を有する請求項6または7に記載の受信装置。
  9.  上記第1の復調部で生成されるトランスポートストリームを出力するための第3の出力端子と、
     上記第2の復調部で生成されるトランスポートストリームを出力するための第4の出力端子と、
     上記第1の復調部で生成されるアナログ映像信号を出力するための第5の出力端子と、
     上記第1の復調部で生成されるアナログ音声信号を出力するための第6の出力端子と
     をさらに含み、
     上記第1の復調部は、
      生成した上記第1のトランスポートストリームまたは上記第2のトランスポートストリームを上記第3の出力端子に供給し、
      生成したアナログ映像信号を上記第5の出力端子に供給し、アナログ音声信号を上記第6の出力端子に供給する
     請求項8に記載の受信装置。
  10.  上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      上記第1の分配部および上記第2の分配部の分配出力に対して並列に配置され、
      上記地上波放送信号の周波数変換を行う上記第1の受信部および上記第2の受信部が並列配置の外側に配置され、
      上記第1の受信部の配置部と上記第2の受信部の配置部との間に、上記第1の中間配置受信部および上記第2の中間配置受信部が並列に配置されている
     請求項6から9のいずれか1つに記載の受信装置。
  11.  並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      一方の外側配置部から、上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の順に配置されている
     請求項10に記載の受信装置。
  12.  上記第1の復調部および上記第2の復調部は、
      上記並列配置された上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、
     上記第1の受信部および上記第1の中間配置受信部は、
      出力側が上記第1の復調部の入力側に対向するように並列に配置され、
     上記第2の中間配置受信部および上記第2の受信部は、
      出力側が上記第2の復調部の入力側に対向するように並列に配置されている
     請求項11に記載の受信装置。
  13.  並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      一方の外側配置部から、上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の順に配置されている
     請求項10に記載の受信装置。
  14.  上記第1の復調部および上記第2の復調部は、
      上記並列配置された上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、
     上記第1の受信部および上記第2の中間配置受信部は、
      出力側が上記第1の復調部の入力側に対向するように並列に配置され、
     上記第1の中間配置受信部および上記第2の受信部は、
      出力側が上記第2の復調部の入力側に対向するように並列に配置されている
     請求項13に記載の受信装置。
  15.  上記第1の分配部は、
      上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を増幅する増幅器と、
      上記増幅器の出力信号を上記第1の衛星波放送信号、上記第2の衛星波放送信号、および出力用衛星波デジタル放送信号に分配する分配器と
     を有し、
      上記分配器は、
       上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、
       上記第2の衛星波放送信号を上記第2の中間配置受信部に供給し、
       上記出力用衛星波デジタル放送信号を上記第1の出力端子に供給する
     請求項6から14のいずれか1つに記載の受信装置。
  16.  上記第1の分配部は、
      上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を2つの衛星波デジタル放送信号に分配する第1の分配器と、
      上記第1の分配器で分配された一方の衛星波デジタル放送信号を増幅する増幅器と、
      上記増幅器の出力信号を上記第1の衛星波放送信号、および上記第2の衛星波放送信号に分配する第2の分配器と
     を有し、
      上記第1の分配器は、
       分配した他方の衛星波デジタル放送信号を上記第1の出力端子に供給し、
      上記第2の分配器は、
       上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、
       上記第2の衛星波放送信号を上記第2の中間配置受信部に供給する
     請求項6から14のいずれか1つに記載の受信装置。
  17.  上記第2の分配部は、
      上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を増幅する増幅器と、
      上記増幅器の出力信号を上記第1の地上波放送信号、上記第2の地上波放送信号、および出力用地上波放送信号に分配する分配器と
     を有し、
      上記分配器は、
       上記第1の地上波放送信号を上記第1の受信部に供給し、
       上記第2の地上波放送信号を上記第2の受信部に供給し、
       上記出力用地上波放送信号を上記第2の出力端子に供給する
     請求項6から16のいずれか1つに記載の受信装置。
  18.  上記第2の分配部は、
      上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を2つの地上波放送信号に分配する第3の分配器と、
      上記第3の分配器で分配された一方の地上波放送信号を増幅する増幅器と、
      上記増幅器の出力信号を上記第1の地上波放送信号および上記第2の地上波放送信号に分配する第4の分配器と
     を有し、
      上記第3の分配器は、
       分配した他方の地上波放送信号を上記第2の出力端子に供給し、
      上記第4の分配器は、
       上記第1の地上波放送信号を上記第1の受信部に供給し、
       上記第2の地上波放送信号を上記第2の受信部に供給する
     請求項6から16のいずれか1つに記載の受信装置。
  19.  前記第1乃至第3の受信手段は、モジュール基板上に並列配置されており、
     前記第1および第2の受信手段は、前記モジュール基板の縁部側に配置されている
     請求項1に記載の受信装置。
  20.  前記第1乃至第3の受信部と、前記第1乃至第3の受信部により周波数変換後の信号から映像信号および音声信号を復調する復調部を有するチューナモジュール部と、
     上記チューナモジュール部に駆動電力を供給する電力供給部と
     を含み、
     上記チューナモジュール部および上記電力供給部は、
      1つの基板に隔離して配置され、
     上記電力供給部は、
      少なくとも上記第1乃至第3の受信部に駆動電力を供給可能な複数のレギュレータを有し、
      受信放送信号に応じて、上記複数のレギュレータに対応する受信部に、駆動電力を選択的に供給可能である
     請求項1に記載の受信装置。
  21.  衛星波デジタル放送信号が入力される第1の入力端子と、
     アナログまたはデジタルの地上波放送信号が入力される第2の入力端子と
     をさらに含み、
     前記第3の受信部は、第1及び第2の中間配置受信部により構成されており、
     上記チューナモジュール部は、
      上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配する第1の分配部と、
      上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配する第2の分配部と、
      上記第1の分配部により分配された上記第1の衛星波放送信号を受信して第1のベースバンド信号に周波数変換する第1の中間配置受信部と、
      上記第1の分配部により分配された上記第2の衛星波放送信号を受信して第2のベースバンド信号に周波数変換する第2の中間配置受信部と、
      上記第2の分配部により分配された上記第1の地上波放送信号を受信して第1の中間周波信号に周波数変換する第1の受信部と、
      上記第2の分配部により分配された上記第2の地上波放送信号を受信して第2の中間周波信号に周波数変換する第2の受信部と、
      上記第1の中間配置受信部による上記第1のベースバンド信号および上記第1の受信部による上記第1の中間周波信号の復調機能を有する第1の復調部と、
      上記第2の中間配置受信部による上記第2のベースバンド信号および上記第2の受信部による上記第2の中間周波信号の復調機能を有する第2の復調部と
     を有し、
     上記電力供給部は、
      上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部に、選択的に駆動電力を供給可能である
     請求項20に記載の受信装置。
  22.  上記電力供給部は、
      上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部のうち複数の受信部に共通で選択的に駆動電力を供給可能であり、
      共通に駆動電力を供給した複数の受信部のうち受信中の放送波に対して非処理の周波数変換部をスリープ状態に保持する機能を有する
     請求項21に記載の受信装置。
  23.  上記第1の分配部は、
      上記第1の入力端子から入力した衛星波デジタル放送信号を増幅する第1の増幅器を有し、
     上記第2の分配部は、
      上記第2の入力端子から入力した地上波放送信号を増幅する第2の増幅器を有し、
     上記電力供給部は、
      受信放送信号に応じて、上記第1の増幅器および上記第2の増幅器に駆動電力を選択的に供給可能である
     請求項21または22に記載の受信装置。
  24.  上記第1の入力端子から入力された衛星波デジタル放送信号を出力するための第1の出力端子と、
     上記第2の入力端子から入力された地上波放送信号を出力するための第2の出力端子と
     をさらに含み、
     上記第1の分配部は、
      上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配し、かつ、当該入力された衛星波デジタル放送信号を上記第1の出力端子に供給し、
     上記第2の分配部は、
      上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配し、かつ、当該入力された地上波放送信号を上記第2の出力端子に供給する
     請求項21から23のいずれか1つに記載の受信装置。
  25.  上記第1の復調部は、
      デジタル復調およびアナログ復調機能と、
      上記第1のベースバンド信号の映像信号および音声信号を復調し、第1のトランスポートストリームを生成する機能と、
      上記第1の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、第2のトランスポートストリームを生成する機能と、
      上記第1の中間周波信号が地上波アナログ放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、アナログ映像信号およびアナログ音声信号を生成する機能と
     を有し、
     上記第2の復調部は、
      デジタル復調機能と、
      上記第2のベースバンド信号の映像信号および音声信号を復調し、第3のトランスポートストリームを生成する機能と、
      上記第2の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第2の中間周波信号の映像信号および音声信号を復調し、第4のトランスポートストリームを生成する機能と
     を有する請求項21から24のいずれか1つに記載の受信装置。
  26.  上記第1の復調部で生成されるトランスポートストリームを出力するための第3の出力端子と、
     上記第2の復調部で生成されるトランスポートストリームを出力するための第4の出力端子と、
     上記第1の復調部で生成されるアナログ映像信号を出力するための第5の出力端子と、
     上記第1の復調部で生成されるアナログ音声信号を出力するための第6の出力端子と
     をさらに含み、
     上記第1の復調部は、
      生成した上記第1のトランスポートストリームまたは上記第2のトランスポートストリームを上記第3の出力端子に供給し、
      生成したアナログ映像信号を上記第5の出力端子に供給し、アナログ音声信号を上記第6の出力端子に供給する
     請求項25に記載の受信装置。
  27.  上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      上記第1の分配部および上記第2の分配部の分配出力に対して並列に配置され、
      上記地上波放送信号の周波数変換を行う上記第1の受信部および上記第2の受信部が並列配置の外側に配置され、
      上記第1の受信部の配置部と上記第2の受信部の配置部との間に、上記第1の中間配置受信部および上記第2の中間配置受信部が並列に配置されている
     請求項21から26のいずれか1つに記載の受信装置。
  28.  並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      一方の外側配置部から、上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の順に配置されている
     請求項27に記載の受信装置。
  29.  上記第1の復調部および上記第2の復調部は、
      上記並列配置された上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、
     上記第1の受信部および上記第1の中間配置受信部は、
      出力側が上記第1の復調部の入力側に対向するように並列に配置され、
     上記第2の中間配置受信部および上記第2の受信部は、
      出力側が上記第2の復調部の入力側に対向するように並列に配置されている
     請求項28に記載の受信装置。
  30.  並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      一方の外側配置部から、上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の順に配置されている
     請求項27に記載の受信装置。
  31.  上記第1の復調部および上記第2の復調部は、
      上記並列配置された上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、
     上記第1の受信部および上記第2の中間配置受信部は、
      出力側が上記第1の復調部の入力側に対向するように並列に配置され、
     上記第1の中間配置受信部および上記第2の受信部は、
      出力側が上記第2の復調部の入力側に対向するように並列に配置されている
     請求項30に記載の受信装置。
  32.  上記第1の分配部は、
      上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を増幅する第1の増幅器と、
      上記第1の増幅器の出力信号を上記第1の衛星波放送信号、上記第2の衛星波放送信号、および出力用衛星波デジタル放送信号に分配する分配器と
     を有し、
      上記分配器は、
       上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、
       上記第2の衛星波放送信号を上記第2の中間配置受信部に供給し、
       上記出力用衛星波デジタル放送信号を上記第1の出力端子に供給する
     請求項21から31のいずれか1つに記載の受信装置。
  33.  上記第1の分配部は、
      上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を2つの衛星波デジタル放送信号に分配する第1の分配器と、
      上記第1の分配器で分配された一方の衛星波デジタル放送信号を増幅する第1の増幅器と、
      上記第1の増幅器の出力信号を上記第1の衛星波放送信号、および上記第2の衛星波放送信号に分配する第2の分配器と
     を有し、
      上記第1の分配器は、
       分配した他方の衛星波デジタル放送信号を上記第1の出力端子に供給し、
      上記第2の分配器は、
       上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、
       上記第2の衛星波放送信号を上記第2の中間配置受信部に供給する
     請求項21から31のいずれか1つに記載の受信装置。
  34.  上記第2の分配部は、
      上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を増幅する第2の増幅器と、
      上記第2の増幅器の出力信号を上記第1の地上波放送信号、上記第2の地上波放送信号、および出力用地上波放送信号に分配する分配器と
     を有し、
      上記分配器は、
       上記第1の地上波放送信号を上記第1の受信部に供給し、
       上記第2の地上波放送信号を上記第2の受信部に供給し、
       上記出力用地上波放送信号を上記第2の出力端子に供給する
     請求項21から33のいずれか1つに記載の受信装置。
  35.  上記第2の分配部は、
      上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を2つの地上波放送信号に分配する第3の分配器と、
      上記第3の分配器で分配された一方の地上波放送信号を増幅する第2の増幅器と、
      上記第2の増幅器の出力信号を上記第1の地上波放送信号および上記第2の地上波放送信号に分配する第4の分配器と
     を有し、
      上記第3の分配器は、
       分配した他方の地上波放送信号を上記第2の出力端子に供給し、
      上記第4の分配器は、
       上記第1の地上波放送信号を上記第1の受信部に供給し、
       上記第2の地上波放送信号を上記第2の受信部に供給する
     請求項21から33のいずれか1つに記載の受信装置。
  36.  入力された放送信号を複数の放送信号に分配する分配部と、
     それぞれ上記分配部で分配された複数の放送信号を受けて周波数変換を行う前記第1乃至第3の受信部を有するチューナ部と、
     上記分配部で分配した放送信号を対応する受信部に伝播する複数の信号ラインのうちの少なくとも一つに配置されたアイソレーションアンプ部と
     を含み、
     上記アイソレーションアンプ部は、
      上記分配部で分配した放送信号が制御端子に入力されて、インピーダンス変換により低インピーダンス出力を行うトランジスタにより形成されるバッファアンプを有する
     請求項1に記載の受信装置。
  37.  上記アイソレーションアンプ部は、
      上記バッファアンプの入力側および出力側の少なくとも一方にアッテネータが配置されている
     請求項36に記載の受信装置。
  38.  衛星波デジタル放送信号が入力される第1の入力端子と、
     アナログまたはデジタルの地上波放送信号が入力される第2の入力端子と、
     上記第1の入力端子から入力された衛星波デジタル放送信号を出力するための第1の出力端子と、
     上記第2の入力端子から入力された地上波放送信号を出力するための第2の出力端子と
     をさらに含み、
     上記分配部は、
      上記第1の入力端子から入力された衛星波デジタル放送信号を第1の衛星波放送信号および第2の衛星波放送信号に分配し、かつ、当該入力された衛星波デジタル放送信号を上記第1の出力端子に供給する第1の分配部と、
      上記第2の入力端子から入力された地上波放送信号を第1の地上波放送信号および第2の地上波放送信号に分配し、かつ、当該入力された地上波放送信号を上記第2の出力端子に供給する第2の分配部と
     を有し、
     前記第3の受信部は、第1および第2の中間配置受信部により構成されており、
     上記チューナ部は、
      第1の信号ラインを介して、上記第1の分配部により分配された上記第1の衛星波放送信号を受信して第1のベースバンド信号に周波数変換する第1の中間配置受信部と、
      第2の信号ラインを介して、上記第1の分配部により分配された上記第2の衛星波放送信号を受信して第2のベースバンド信号に周波数変換する第2の中間配置受信部と、
      第3の信号ラインを介して、上記第2の分配部により分配された上記第1の地上波放送信号を受信して第1の中間周波信号に周波数変換する第1の受信部と、
      第4の信号ラインを介して、上記第2の分配部により分配された上記第2の地上波放送信号を受信して第2の中間周波信号に周波数変換する第2の受信部と
     を有し、
     上記アイソレーションアンプ部は、
      上記第1の分配部および上記第2の分配部のうち、少なくとも上記第2の分配部に接続された上記第3の信号ラインおよび上記第4の信号ラインのうちの少なくとも一方に配置されている
     請求項36または37に記載の受信装置。
  39.  上記第2の分配部は、
      上記第2の入力端子から入力した地上波放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を2つの地上波放送信号に分配する第1の分配器と、
      上記第1の分配器で分配された一方の地上波放送信号を増幅する増幅器と、
      上記増幅器の出力信号を上記第1の地上波放送信号および上記第2の地上波放送信号に分配する第2の分配器と
     を有し、
      上記第1の分配器は、
       分配した他方の地上波放送信号を上記第2の出力端子に供給し、
      上記第2の分配器は、
       上記第3の信号ラインを介して上記第1の地上波放送信号を上記第1の受信部に供給し、
       上記第4の信号ラインを介して上記第2の地上波放送信号を上記第2の受信部に供給する
     請求項38に記載の受信装置。
  40.  上記第1の分配部は、
      上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を増幅する増幅器と、
      上記増幅器の出力信号を上記第1の衛星波放送信号、上記第2の衛星波放送信号、および出力用衛星波デジタル放送信号に分配する分配器と
     を有し、
      上記分配器は、
       上記第1の信号ラインを介して上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、
       上記第2の信号ラインを介して上記第2の衛星波放送信号を上記第2の中間配置受信部に供給し、
       上記出力用衛星波デジタル放送信号を上記第1の出力端子に供給する
     請求項38または39に記載の受信装置。
  41.  上記第1の分配部は、
      上記第1の入力端子から入力した衛星波デジタル放送信号の不要成分を除去するフィルタと、
      上記フィルタの出力信号を2つの衛星波デジタル放送信号に分配する第3の分配器と、
      上記第3の分配器で分配された一方の衛星波デジタル放送信号を増幅する増幅器と、
      上記増幅器の出力信号を上記第1の衛星波放送信号、および上記第2の衛星波放送信号に分配する第4の分配器と
     を有し、
      上記第3の分配器は、
       分配した他方の衛星波デジタル放送信号を上記第1の出力端子に供給し、
      上記第2の分配器は、
       上記第1の信号ラインを介して上記第1の衛星波放送信号を上記第1の中間配置受信部に供給し、
       上記第2の信号ラインを介して上記第2の衛星波放送信号を上記第2の中間配置受信部に供給する
     請求項38または39に記載の受信装置。
  42.  上記チューナ部は、
      上記第1の中間配置受信部による上記第1のベースバンド信号および上記第1の受信部による上記第1の中間周波信号の復調機能を有する第1の復調部と、
      上記第2の中間配置受信部による上記第2のベースバンド信号および上記第2の受信部による上記第2の中間周波信号の復調機能を有する第2の復調部と
     を有し、
      上記第1の復調部は、
       デジタル復調およびアナログ復調機能と、
       上記第1のベースバンド信号の映像信号および音声信号を復調し、第1のトランスポートストリームを生成する機能と、
       上記第1の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、第2のトランスポートストリームを生成する機能と、
       上記第1の中間周波信号が地上波アナログ放送信号を周波数変換した信号である場合、当該第1の中間周波信号の映像信号および音声信号を復調し、アナログ映像信号およびアナログ音声信号を生成する機能と
     を有し、
      上記第2の復調部は、
       デジタル復調機能と、
       上記第2のベースバンド信号の映像信号および音声信号を復調し、第3のトランスポートストリームを生成する機能と、
       上記第2の中間周波信号が地上波デジタル放送信号を周波数変換した信号である場合、当該第2の中間周波信号の映像信号および音声信号を復調し、第4のトランスポートストリームを生成する機能と
     を有する請求項38から41のいずれか1つに記載の受信装置。
  43.  上記第1の復調部で生成されるトランスポートストリームを出力するための第3の出力端子と、
     上記第2の復調部で生成されるトランスポートストリームを出力するための第4の出力端子と、
     上記第1の復調部で生成されるアナログ映像信号を出力するための第5の出力端子と、
     上記第1の復調部で生成されるアナログ音声信号を出力するための第6の出力端子と
     をさらに含み、
     上記第1の復調部は、
      生成した上記第1のトランスポートストリームまたは上記第2のトランスポートストリームを上記第3の出力端子に供給し、
      生成したアナログ映像信号を上記第5の出力端子に供給し、アナログ音声信号を上記第6の出力端子に供給する
     請求項42に記載の受信装置。
  44.  上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      上記第1の分配部および上記第2の分配部の分配出力に対して並列に配置され、
      上記地上波放送信号の周波数変換を行う上記第1の受信部および上記第2の受信部が並列配置の外側に配置され、
      上記第1の受信部の配置部と上記第2の受信部の配置部との間に、上記第1の中間配置受信部および上記第2の中間配置受信部が並列に配置されている
     請求項38から43のいずれか1つに記載の受信装置。
  45.  並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      一方の外側配置部から、上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の順に配置されている
     請求項44に記載の受信装置。
  46.  上記第1の復調部および上記第2の復調部は、
      上記並列配置された上記第1の受信部、上記第1の中間配置受信部、上記第2の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、
     上記第1の受信部および上記第1の中間配置受信部は、
      出力側が上記第1の復調部の入力側に対向するように並列に配置され、
     上記第2の中間配置受信部および上記第2の受信部は、
      出力側が上記第2の復調部の入力側に対向するように並列に配置されている
     請求項45に記載の受信装置。
  47.  並列配置される上記第1の中間配置受信部、上記第2の中間配置受信部、上記第1の受信部、および上記第2の受信部は、
      一方の外側配置部から、上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の順に配置されている
     請求項44に記載の受信装置。
  48.  上記第1の復調部および上記第2の復調部は、
      上記並列配置された上記第1の受信部、上記第2の中間配置受信部、上記第1の中間配置受信部、および上記第2の受信部の出力に対して並列に配置され、
     上記第1の受信部および上記第2の中間配置受信部は、
      出力側が上記第1の復調部の入力側に対向するように並列に配置され、
     上記第1の中間配置受信部および上記第2の受信部は、
      出力側が上記第2の復調部の入力側に対向するように並列に配置されている
     請求項47に記載の受信装置。
PCT/JP2010/061657 2009-07-13 2010-07-09 受信装置 WO2011007718A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011522790A JP5828764B2 (ja) 2009-07-13 2010-07-09 受信装置
KR1020127000313A KR101737651B1 (ko) 2009-07-13 2010-07-09 수신 장치
RU2011153298/07A RU2539880C2 (ru) 2009-07-13 2010-07-09 Приемник
CN201080030501.4A CN102474660B (zh) 2009-07-13 2010-07-09 接收机
EP10799776.9A EP2456197A4 (en) 2009-07-13 2010-07-09 RECEIVER
US13/382,691 US8587729B2 (en) 2009-07-13 2010-07-09 Receiver

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009165150 2009-07-13
JP2009165148 2009-07-13
JP2009-165150 2009-07-13
JP2009-165148 2009-07-13
JP2009165149 2009-07-13
JP2009-165149 2009-07-13

Publications (1)

Publication Number Publication Date
WO2011007718A1 true WO2011007718A1 (ja) 2011-01-20

Family

ID=43449327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061657 WO2011007718A1 (ja) 2009-07-13 2010-07-09 受信装置

Country Status (7)

Country Link
US (1) US8587729B2 (ja)
EP (1) EP2456197A4 (ja)
JP (1) JP5828764B2 (ja)
KR (1) KR101737651B1 (ja)
CN (1) CN102474660B (ja)
RU (1) RU2539880C2 (ja)
WO (1) WO2011007718A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132557A1 (ja) 2013-03-01 2014-09-04 ソニー株式会社 受信装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252468A (ja) 2009-04-14 2010-11-04 Sony Corp 送電装置および方法、受電装置および方法、並びに、電力伝送システム
KR101443982B1 (ko) * 2012-11-29 2014-09-23 삼성전기주식회사 듀얼 튜너를 구비한 방송 수신기 및 그 제어 방법
JP5761232B2 (ja) 2013-03-01 2015-08-12 ソニー株式会社 受信装置および電子機器
EP3010240B1 (en) 2013-06-13 2020-04-29 Sony Corporation Television reception apparatus and television reception method
JP6323753B2 (ja) 2013-06-14 2018-05-16 サン パテント トラスト 送信方法
TW201611552A (zh) 2014-09-09 2016-03-16 鴻海精密工業股份有限公司 訊號分離電路及前端電路
CN105472275B (zh) * 2014-09-09 2018-09-28 国基电子(上海)有限公司 信号分离电路及前端电路
US10033421B2 (en) * 2016-05-31 2018-07-24 Silicon Laboratories Inc. Multi-standard, multi-channel expandable TV/satellite receiver
CN107202998B (zh) * 2017-06-19 2023-09-29 北京航天长征飞行器研究所 一种电力线通信的实时卫星信号模拟器及模拟方法
JP7173472B2 (ja) * 2017-10-27 2022-11-16 ソニーセミコンダクタソリューションズ株式会社 チューナ装置
JP2019197943A (ja) * 2018-05-07 2019-11-14 ソニーセミコンダクタソリューションズ株式会社 チューナ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109477A1 (ja) 2005-04-08 2006-10-19 Matsushita Electric Industrial Co., Ltd. デジタル放送受信装置
JP2007116358A (ja) 2005-10-19 2007-05-10 Sony Corp フロントエンドモジュール及びテレビジョン受像機
JP2008061112A (ja) * 2006-09-01 2008-03-13 Sharp Corp 放送受信装置
JP2008278099A (ja) * 2007-04-27 2008-11-13 Alps Electric Co Ltd テレビジョンチューナ装置
JP2009111889A (ja) * 2007-10-31 2009-05-21 Sharp Corp チューナ

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227863A (en) * 1989-11-14 1993-07-13 Intelligent Resources Integrated Systems, Inc. Programmable digital video processing system
JP2661499B2 (ja) * 1993-03-08 1997-10-08 関西日本電気株式会社 チューナユニット
US6177964B1 (en) * 1997-08-01 2001-01-23 Microtune, Inc. Broadband integrated television tuner
US6040851A (en) * 1998-01-20 2000-03-21 Conexant Systems, Inc. Small-format subsystem for broadband communication services
US6377316B1 (en) * 1998-02-23 2002-04-23 Zenith Electronics Corporation Tuner with switched analog and digital modulators
US6760079B2 (en) * 1998-09-22 2004-07-06 Funai Electric Co., Ltd. TV tuner unit having a resonance network
JP2000332632A (ja) * 1999-05-20 2000-11-30 Toyota Motor Corp 移動体用放送受信装置
DE19932563A1 (de) * 1999-07-13 2001-01-18 Philips Corp Intellectual Pty Tuner mit wenigstens einem ersten und einem zweiten Frequenzband
JP3583963B2 (ja) * 1999-10-29 2004-11-04 三洋電機株式会社 テレビジョン受信機
JP2002044557A (ja) * 2000-07-19 2002-02-08 Sony Corp テレビジョン受信装置
JP2002152063A (ja) * 2000-11-15 2002-05-24 Murata Mfg Co Ltd デジタル放送受信部
GB0117591D0 (en) * 2001-07-18 2001-09-12 Zarlink Semiconductor Ltd Television tuner
US6657491B2 (en) * 2001-08-15 2003-12-02 Broadcom Corporation System and method for activating gain stages in an amplification module
JP2005534203A (ja) * 2001-10-16 2005-11-10 株式会社RfStream モノリシック集積回路上に受信機を実施するための方法および装置
JP2003309776A (ja) * 2002-04-15 2003-10-31 Sharp Corp 地上波デジタル放送受信用チューナ
JP4009941B2 (ja) * 2002-04-16 2007-11-21 ソニー株式会社 衛星放送受信用フロントエンド
JP3773873B2 (ja) * 2002-05-24 2006-05-10 三洋電機株式会社 放送受信装置
US7304689B2 (en) * 2002-06-06 2007-12-04 Microtune (Texas), L.P. Single chip tuner for multi receiver applications
US7414676B2 (en) * 2002-07-31 2008-08-19 Conexant Systems, Inc. Integrated programmable tuner
US6925291B2 (en) * 2002-09-27 2005-08-02 Thomson Licensing S.A. Electronic alignment system for a television signal tuner
JP3096172U (ja) * 2003-02-27 2003-09-05 アルプス電気株式会社 テレビジョンチューナ
JP2004282214A (ja) * 2003-03-13 2004-10-07 Matsushita Electric Ind Co Ltd 複数チューナ搭載av機器
US7526245B2 (en) * 2003-07-11 2009-04-28 Broadcom Corporation Method and system for single chip satellite set-top box system
JP2005109799A (ja) * 2003-09-30 2005-04-21 Sharp Corp 受信装置
JP4397205B2 (ja) * 2003-10-02 2010-01-13 三洋電機株式会社 放送受信装置
KR100555915B1 (ko) * 2003-12-22 2006-03-03 삼성전자주식회사 자동채널탐색을 병렬적으로 수행하는 디지털 방송수신장치및 그 채널탐색방법
JP3102998U (ja) * 2004-01-26 2004-07-22 アルプス電気株式会社 テレビジョンチューナ
US7250987B2 (en) * 2004-02-06 2007-07-31 Broadcom Corporation Method and system for an integrated VSB/QAM/NTSC/OOB plug-and-play DTV receiver
US7701515B2 (en) * 2004-02-13 2010-04-20 Broadcom Corporation Multi-input multi-output tuner front ends
KR100744055B1 (ko) * 2004-06-23 2007-07-30 삼성전자주식회사 수신 성능 및 등화 성능이 향상된 디지털 방송 송수신 시스템 및 그의 신호처리방법
US8239914B2 (en) * 2004-07-22 2012-08-07 Broadcom Corporation Highly integrated single chip set-top box
ATE531131T1 (de) * 2005-05-04 2011-11-15 Rf Magic Inc Verfahren und vorrichtung zum verteilen mehrerer signaleingänge an mehrere integrierte schaltungen
KR100793965B1 (ko) * 2005-11-07 2008-01-16 삼성전자주식회사 방송 신호를 캡쳐하는 방송수신장치 및 그 방법
US8457574B2 (en) * 2007-02-16 2013-06-04 Broadcom Corporation Front-end integrated circuit for television receivers
JP2009105648A (ja) * 2007-10-23 2009-05-14 Sharp Corp 分配器と、それを用いたtv放送受信機、地上波tv放送受信機、衛星tv放送受信機、および地上波tvおよび衛星tv放送受信機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109477A1 (ja) 2005-04-08 2006-10-19 Matsushita Electric Industrial Co., Ltd. デジタル放送受信装置
JP2007116358A (ja) 2005-10-19 2007-05-10 Sony Corp フロントエンドモジュール及びテレビジョン受像機
JP2008061112A (ja) * 2006-09-01 2008-03-13 Sharp Corp 放送受信装置
JP2008278099A (ja) * 2007-04-27 2008-11-13 Alps Electric Co Ltd テレビジョンチューナ装置
JP2009111889A (ja) * 2007-10-31 2009-05-21 Sharp Corp チューナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2456197A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132557A1 (ja) 2013-03-01 2014-09-04 ソニー株式会社 受信装置
US10142672B2 (en) 2013-03-01 2018-11-27 Sony Semiconductor Solutions Corporation Receiver device

Also Published As

Publication number Publication date
US8587729B2 (en) 2013-11-19
CN102474660A (zh) 2012-05-23
EP2456197A1 (en) 2012-05-23
KR20120046713A (ko) 2012-05-10
RU2539880C2 (ru) 2015-01-27
JPWO2011007718A1 (ja) 2012-12-27
CN102474660B (zh) 2015-04-29
EP2456197A4 (en) 2013-07-17
US20120113324A1 (en) 2012-05-10
KR101737651B1 (ko) 2017-05-18
JP5828764B2 (ja) 2015-12-09
RU2011153298A (ru) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5828764B2 (ja) 受信装置
US20220353564A1 (en) System and method for receiving a television signal
US9036091B2 (en) Receiver and method of receiving analog and digital television signals
CN100562080C (zh) 广播接收装置
US7050119B2 (en) Digital/analog common tuner
WO2012008315A1 (ja) フロントエンドモジュールおよび受信装置
US20220209797A1 (en) Semiconductor chip and receiving apparatus
KR100862519B1 (ko) 불요파 배제성능을 개선한 위성방송 수신기 및 멀티 방송수신 시스템
JP2009038563A (ja) デジタル放送受信用チューナ及びそれを有するデジタル放送受信システム
KR20100127355A (ko) 디지털/아날로그 방송 수신장치
JP2010041320A (ja) チューナ集積回路および放送受信装置
JP2009296310A (ja) アナログ/デジタル共用チューナおよび信号復調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030501.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011153298

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011522790

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127000313

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13382691

Country of ref document: US

Ref document number: 174/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010799776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012000386

Country of ref document: BR

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012000386

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112012000386

Country of ref document: BR