WO2011007637A1 - 窒化物系半導体発光素子 - Google Patents

窒化物系半導体発光素子 Download PDF

Info

Publication number
WO2011007637A1
WO2011007637A1 PCT/JP2010/060054 JP2010060054W WO2011007637A1 WO 2011007637 A1 WO2011007637 A1 WO 2011007637A1 JP 2010060054 W JP2010060054 W JP 2010060054W WO 2011007637 A1 WO2011007637 A1 WO 2011007637A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
axis
based semiconductor
gallium nitride
nitride
Prior art date
Application number
PCT/JP2010/060054
Other languages
English (en)
French (fr)
Inventor
孝史 京野
陽平 塩谷
祐介 善積
秋田 勝史
隆道 住友
上野 昌紀
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2010800018062A priority Critical patent/CN102099935B/zh
Priority to EP10787665.8A priority patent/EP2455988A4/en
Priority to US12/999,987 priority patent/US8405066B2/en
Publication of WO2011007637A1 publication Critical patent/WO2011007637A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present invention relates to a nitride semiconductor light emitting device.
  • Patent Documents 1 and 2 and Non-Patent Document 1 two nitride semiconductor layers and an active layer having a single quantum well structure of InGaN provided between the two nitride semiconductor layers are formed on a GaN substrate.
  • Provided nitride semiconductor light emitting devices are disclosed.
  • a nitride semiconductor light emitting device described in Patent Document 1 includes an n-type cladding layer made of an n-type nitride semiconductor, a p-type cladding layer made of a p-type nitride semiconductor, and the n-type cladding layer and the p-type cladding.
  • the LED described in Patent Document 2 has an InGaN single quantum well structure on the ⁇ 11-22 ⁇ plane of a GaN substrate.
  • the nitride semiconductor laser element described in Patent Document 3 includes a nitride semiconductor layer including a layer made of AlGaN, and an active layer including a layer made of InGaN formed on the nitride semiconductor layer. It has a single quantum well structure (or multiple quantum well structure), and the growth surface of the nitride semiconductor layer is inclined from the c-plane of the GaN substrate.
  • an object of the present invention is to provide a nitride-based semiconductor light-emitting device with improved carrier injection efficiency into a well layer.
  • One aspect of the present invention is a nitride-based semiconductor light-emitting device, which is a substrate made of a hexagonal gallium nitride-based semiconductor, an n-type gallium nitride-based semiconductor region provided on a main surface of the substrate, and the n-type A light emitting layer having a single quantum well structure provided on the gallium nitride based semiconductor region; and a p-type gallium nitride based semiconductor region provided on the light emitting layer, wherein the light emitting layer comprises the n-type gallium nitride based Provided between a semiconductor region and the p-type gallium nitride semiconductor region, the light emitting layer includes a well layer and a barrier layer, the well layer is InGaN, and the main surface is the hexagonal crystal And extending from a plane perpendicular to the c-axis direction of the gallium nitride-based semiconductor along a reference plane inclined at an inclination angle in
  • the direction of piezo polarization generated in the well layer should coincide with the direction from the p-type gallium nitride semiconductor region to the n-type gallium nitride semiconductor region. .
  • the main surface of the substrate is a reference plane inclined at an inclination angle in the range of 63 degrees to 80 degrees or 100 degrees to 117 degrees from the plane orthogonal to the c-axis of the hexagonal gallium nitride semiconductor of the substrate. Therefore, the piezoelectric polarization generated in the well layer can be reduced as compared with the case where the main surface is orthogonal to the c-axis. In addition, since this tilt angle range is excellent in In incorporation, it is advantageous for a light-emitting element having a long emission wavelength in the visible range.
  • the well structure of the light emitting layer is distorted in the direction in which carriers (especially electrons) are difficult to escape from the well, and the efficiency of injecting carriers (especially electrons) into the well decreases as the number of wells increases.
  • the efficiency of injecting carriers (particularly electrons) into the well layer is improved as compared with the case of the multiple quantum well structure.
  • the difference between the band gap energy of the barrier layer and the band gap energy of the well layer may be 0.7 eV or more, and the light emitting layer has a thickness of 450 nm. It is preferable to emit light having a peak wavelength in the range of 600 nm or less.
  • the barrier layer is made of, for example, GaN, InGaN, AlGaN, or InAlGaN.
  • the improvement in the efficiency of electron carrier (especially electron) injection in the light emitting layer compared to the multiple quantum well structure is that the difference between the band gap energy of the well layer and the band gap energy of the barrier layer is 0.7 eV or more, Since the difference in band gap energy is relatively large, it becomes more prominent. Further, the efficiency of injection of electron carriers (especially electrons) in the light emitting layer as compared with the multiple quantum well structure is improved when the peak wavelength of light emitted from the light emitting layer is in the range of 450 nm to 600 nm. The difference between the band gap energy and the band gap energy of the barrier layer becomes relatively large and becomes more remarkable.
  • the nitride-based semiconductor light-emitting device further includes an InGaN layer, and the InGaN layer is provided between the n-type gallium nitride-based semiconductor region and the light-emitting layer, and the InGaN layer includes the InGaN layer.
  • the lattice constant of the InGaN layer along the direction of the first axis that is orthogonal to the first interface on the substrate side and that is shared by the surface including the c-axis and the first interface is orthogonal to the main surface and
  • the direction of the third axis that is larger than the lattice constant of the substrate along the direction of the second axis shared by the plane including the c-axis and the main surface, and is orthogonal to the first axis and the c-axis
  • the lattice constant of the InGaN layer along the line may be equal to the lattice constant of the substrate along the direction of the fourth axis perpendicular to the second axis and the c-axis.
  • the light emitting layer is provided on the InGaN layer after the lattice relaxation of the InGaN layer provided on the main surface only in the direction along the first axis (the direction parallel to OFF).
  • the strain in the well layer is relaxed, and the piezo polarization can be reduced.
  • the strain applied to the well layer tends to be larger than that in the multiple quantum well structure, but the direction of the InGaN layer along the first axis (the direction parallel to the off-direction) ), And the strain of the well layer of the light emitting layer is relaxed. Therefore, even in a single quantum well structure, generation of defects due to lattice mismatch can be reduced in the well layer.
  • the InGaN layer includes misfit dislocations generated in the first interface, and the misfit dislocations extend in the direction of the third axis.
  • the density of the misfit dislocation is preferably in the range of 5 ⁇ 10 3 cm ⁇ 1 to 1 ⁇ 10 5 cm ⁇ 1 . Within this range, the strain of the InGaN layer and the layers provided on the InGaN layer can be effectively alleviated. Since misfit dislocations exist at the first interface away from the light emitting layer, the influence of the misfit dislocations on the characteristics of the nitride-based semiconductor light emitting device is relatively small.
  • the n-type gallium nitride-based semiconductor region includes an n-type InAlGaN layer, and is orthogonal to the second interface on the substrate side of the InAlGaN layer and the c-axis.
  • the lattice constant of the InAlGaN layer along the direction of the fifth axis shared by the surface containing the second interface and the second interface is larger than the lattice constant of the substrate along the direction of the second axis
  • the lattice constant of the InAlGaN layer along the direction of the sixth axis orthogonal to the fifth axis and the c-axis may be equal to the lattice constant of the substrate along the direction of the fourth axis. Therefore, the light emitting layer is provided on the InAlGaN layer after the lattice relaxation of the InAlGaN layer provided on the main surface only in the direction along the fifth axis (the direction parallel to the off-axis).
  • the strain in the well layer is relaxed, and the piezo polarization can be reduced. Further, when the light emitting layer has a single quantum well structure, the strain applied to the well layer tends to be larger than that in the multiple quantum well structure, but the InAlGaN layer is in the direction along the fifth axis (the direction parallel to the off-direction). ), And the strain of the well layer of the light emitting layer is relaxed. Therefore, even in a single quantum well structure, generation of defects due to lattice mismatch can be reduced in the well layer.
  • the InAlGaN layer includes misfit dislocations generated in the second interface, and the misfit dislocations extend in the direction of the sixth axis.
  • the density of the misfit dislocation is preferably in the range of 5 ⁇ 10 3 cm ⁇ 1 to 1 ⁇ 10 5 cm ⁇ 1 . Within this range, distortion of the InAlGaN layer and the layers provided on the InAlGaN layer can be effectively alleviated. Since misfit dislocations exist at the second interface away from the light emitting layer, the influence of the misfit dislocations on the characteristics of the nitride-based semiconductor light emitting device is relatively small.
  • the LED 1 is a light-emitting diode (nitride-based semiconductor light-emitting element), and includes an n-electrode 29, a substrate 5, an n-type gallium nitride-based semiconductor region 7, a buffer layer 9, and a light-emitting layer that are sequentially provided along a predetermined z-axis direction. 11, a p-type gallium nitride based semiconductor region 19, a p-electrode 25, and a pad electrode 27.
  • the substrate 5, the n-type gallium nitride semiconductor region 7, the buffer layer 9, the light emitting layer 11, and the p-type gallium nitride semiconductor region 19 are made of a hexagonal gallium nitride semiconductor.
  • the main surface S1 of the substrate 5 extends along a surface perpendicular to the z axis (a surface including the x axis and the y axis).
  • the main surface S1 is a reference plane S5 inclined at an inclination angle ⁇ within a range of 63 degrees to 80 degrees or 100 degrees to 117 degrees from a plane orthogonal to the c-axis of the hexagonal gallium nitride semiconductor of the substrate 5. It is a semipolar surface extending along.
  • FIG. 1 shows a case where the c-axis is inclined in the m-axis direction as an example.
  • the n-type gallium nitride based semiconductor region 7 is provided on the main surface S1, and is in contact with the substrate 5 through the main surface S1.
  • the buffer layer 9 is provided between the n-type gallium nitride semiconductor region 7 and the light emitting layer 11 and is in contact with the n-type gallium nitride semiconductor region 7 and the light emitting layer 11 (particularly the barrier layer 13).
  • the buffer layer 9 extends along a first axis direction (substantially x-axis direction) that is orthogonal to the interface S3 on the substrate 5 side of the buffer layer 9 and that is shared by the surface including the c-axis and the interface S3. Is larger than the lattice constant of the substrate 5 along the direction of the second axis (substantially x-axis direction) which is perpendicular to the main surface S1 of the substrate 5 and is shared by the surface including the c-axis and the main surface S1. can do.
  • the lattice constant of the buffer layer 9 along the direction of the third axis (substantially y-axis direction) orthogonal to the first axis and the c-axis is that of the fourth axis orthogonal to the second axis and the c-axis.
  • the lattice constant here is not specific to the substance, but is the lattice constant of the substrate 5 and the buffer layer 9 provided in the LED 1) is there.).
  • the buffer layer 9 includes misfit dislocations generated at the interface S3, the misfit dislocations extend in the direction of the third axis, and the density of the misfit dislocations is 5 ⁇ 10 3 cm ⁇ 1 or more and 1 X10 5 cm -1 or less.
  • the light emitting layer 11 is provided between the buffer layer 9 and the electron blocking layer 21 between the n-type gallium nitride semiconductor region 7 and the p-type gallium nitride semiconductor region 19. It is in contact with the electron block layer 21.
  • the light emitting layer 11 has a single quantum well structure, and includes a barrier layer 13, a well layer 15, and a barrier layer 17 that are sequentially provided on the buffer layer 9 along the z-axis direction.
  • the light emitting layer 11 emits light having a peak wavelength in the range of 450 nm to 600 nm.
  • the barrier layer 13 is provided between the buffer layer 9 and the well layer 15 and is in contact with the buffer layer 9 and the well layer 15.
  • the well layer 15 is provided between the barrier layer 13 and the barrier layer 17 and is in contact with the barrier layer 13 and the barrier layer 17.
  • the barrier layer 17 is provided between the well layer 15 and the electron block layer 21 and is in contact with the well layer 15 and the electron block layer 21.
  • the difference between the band gap energy of the barrier layers 13 and 17 and the band gap energy of the well layer 15 is 0.7 eV or more.
  • the piezoelectric polarization generated in the layer 15 is negative, and the direction of piezoelectric polarization in this case coincides with the direction from the p-type gallium nitride semiconductor region 19 toward the n-type gallium nitride semiconductor region 7.
  • the piezo polarization in the well layer 15 is negative, as shown in FIG.
  • the height of the barrier with respect to the well layer 15 on the p-type gallium nitride based semiconductor region 19 side is such that the piezo polarization in the well layer 15 is positive. Compared to the case (well structure shown in FIG. 4A) and the case where the piezoelectric polarization in the well layer 15 is zero (well structure shown in FIG. 4B), it is higher. Therefore, in the case of the multiple quantum well structure having a plurality of such wells, the electron injection efficiency into the well layer is lower than in the case of the LED 1 having a single well structure. This effect becomes more remarkable as the height of the barrier with respect to the well on the p-type gallium nitride based semiconductor region 19 side is higher (the emission wavelength is longer).
  • the p-type gallium nitride based semiconductor region 19 has an electron block layer 21 and a contact layer 23 that are sequentially provided on the light emitting layer 11 along the z-axis direction.
  • the electron blocking layer 21 is provided between the barrier layer 17 and the contact layer 23, and is in contact with the barrier layer 17 and the contact layer 23.
  • the p electrode 25 is provided on the p-type gallium nitride based semiconductor region 19 (in particular, the surface of the contact layer 23) and is in contact with the contact layer 23.
  • the p electrode 25 is provided with a contact hole penetrating from the surface of the p electrode 25 to the surface of the contact layer 23.
  • the pad electrode 27 is provided on the p electrode 25 and is in contact with the p electrode 25.
  • the pad electrode 27 is in contact with the contact layer 23 through the contact hole of the p electrode 25.
  • the n electrode 29 is provided on the surface of the substrate 5 on the opposite side of the main surface S ⁇ b> 1 and is in contact with
  • the substrate 5 is made of GaN having a semipolar main surface S1
  • the n-type gallium nitride based semiconductor region 7 is made of n-type doped GaN.
  • the thickness of the n-type gallium nitride based semiconductor region 7 is about 2 ⁇ m.
  • the buffer layer 9 is made of n-type doped InGaN.
  • the In composition ratio of the buffer layer 9 is 0.02, and the Ga composition ratio of the buffer layer 9 is 0.98.
  • the thickness of the buffer layer 9 is about 100 nm.
  • the barrier layer 13 and the barrier layer 17 are both made of GaN, and the thickness of the barrier layer 13 and the thickness of the barrier layer 17 are both about 15 nm.
  • the well layer 15 is made of InGaN, the In composition ratio of the well layer 15 is 0.30, and the Ga composition ratio of the well layer 15 is 0.70.
  • the thickness of the well layer 15 is about 3 nm.
  • the difference between the band gap energy of the well layer 15 and the band gap energy of the barrier layer 13 and the barrier layer 17 is about 1 eV.
  • the electron block layer 21 is made of p-type doped AlGaN, the Al composition ratio of the electron block layer 21 is 0.18, and the Ga composition ratio of the electron block layer 21 is 0.82.
  • the thickness of the electron block layer 21 is about 20 nm.
  • the contact layer 23 is made of p-type doped GaN, and the contact layer 23 has a thickness of about 50 nm.
  • the p electrode 25 is made of Ni / Au
  • the pad electrode 27 is made of Ti / Au
  • the n electrode 29 is made of Ti / Al.
  • a 520 nm band LED structure was fabricated on the substrate 5 having the (20-21) plane corresponding to the plane off by 75 degrees in the m-axis direction as the main surface S1.
  • the substrate 5 is held in an atmosphere of NH 3 and H 2 at about 1050 degrees Celsius for about 10 minutes, and after pretreatment (thermal cleaning), the n-type gallium nitride based semiconductor region 7 is set at 1100 degrees Celsius. About 2 ⁇ m was grown.
  • the atmospheric temperature was lowered to about 840 degrees Celsius, the buffer layer 9 was grown by about 100 nm, and then the light emitting layer 11 was grown.
  • Both the barrier layer 13 and the barrier layer 17 of the light emitting layer 11 were grown by about 15 nm at a growth temperature of about 840 degrees Celsius, and the well layer 15 was grown by about 3 nm at a growth temperature of about 740 degrees Celsius.
  • the ambient temperature was raised to about 1000 degrees Celsius, the electron blocking layer 21 was grown about 20 nm, and then the contact layer 23 was grown about 50 nm.
  • a p-electrode 25 made of Ni / Au, a pad electrode 27 made of Ti / Au, and an n-electrode 29 made of Ti / Al were deposited.
  • FIG. 2 is a diagram for explaining the operation of the LED 1.
  • the graph indicated by reference symbol G1 in FIG. 2A indicates the light emission output with respect to the drive current in the case of the LED 1 according to the embodiment
  • the graph indicated by reference symbol G2 in the drawing indicates light emission with respect to the drive current in the case of other LEDs. Indicates the output.
  • the other LED is different from the LED 1 according to the embodiment in the configuration of the light emitting layer and has a multiple quantum well structure including three wells, but the other configuration of the other LED is the embodiment. It is the same as LED1 which concerns on. According to the graphs G1 and G2, it can be seen that the LED 1 according to the example having the single quantum well structure has a higher light emission output than the other LEDs having the multiple quantum well structure.
  • the graph indicated by reference sign G3 in FIG. 2B shows the drive current with respect to the drive voltage in the case of the LED 1 according to the embodiment
  • the graph indicated by reference sign G4 in the drawing indicates the drive in the case of the other LEDs.
  • the drive current with respect to voltage is shown. According to the graphs G3 and G4, it can be seen that the driving voltage of the LED 1 according to the example having the single quantum well structure is lower than that of the other LED having the multiple quantum well structure.
  • the main surface S1 of the substrate 5 is in a range of 63 degrees to 80 degrees or 100 degrees to 117 degrees from the plane orthogonal to the c-axis of the hexagonal gallium nitride semiconductor of the substrate 5 Since it extends along the reference plane S5 inclined at the inner inclination angle ⁇ , the piezoelectric polarization generated in the well layer 15 can be reduced as compared with the case where the main surface S1 is orthogonal to the c-axis.
  • the well structure of the light emitting layer 11 is distorted in a direction in which carriers (especially electrons) are difficult to escape from the well, and the more wells, the more efficient the injection of carriers (especially electrons) into the wells.
  • the well structure of the light emitting layer 11 is a single quantum well structure, the efficiency of carrier (particularly electron) injection into the well layer is improved as compared with the case of the multiple quantum well structure.
  • the improvement of the carrier (particularly electron) injection efficiency in the light emitting layer 11 compared with the multiple quantum well structure is that the difference between the band gap energy of the well layer 15 and the band gap energy of the barrier layer 13 and the barrier layer 17 is 0. Since it is 7 eV or more and the difference in band gap energy is relatively large, it becomes more prominent.
  • FIG. 3 shows an outline of the configuration of the LD 31 according to the second embodiment.
  • the LD 31 is a laser diode (nitride-based semiconductor light-emitting element), and includes an n-electrode 65, a substrate 33, an n-type gallium nitride-based semiconductor region 35, a guide layer 41, and a light-emitting layer that are sequentially provided along a predetermined z-axis direction. 43, a guide layer 51, a p-type gallium nitride based semiconductor region 53, an insulating film 61, and a p-electrode 63.
  • the substrate 33, the n-type gallium nitride semiconductor region 35, the guide layer 41, the light emitting layer 43, the guide layer 51, and the p-type gallium nitride semiconductor region 53 are made of a hexagonal gallium nitride semiconductor.
  • the main surface S7 of the substrate 33 extends along a surface perpendicular to the z axis (a surface including the x axis and the y axis).
  • the main surface S7 is a reference plane S5 inclined at an inclination angle ⁇ in the range of 63 degrees to 80 degrees or 100 degrees to 117 degrees from the plane orthogonal to the c-axis of the hexagonal gallium nitride semiconductor of the substrate 33. It is a semipolar surface extending along.
  • FIG. 3 shows a case where the c-axis is inclined in the m-axis direction as an example.
  • the n-type gallium nitride based semiconductor region 35 (particularly, the n-type semiconductor layer 37) is provided on the main surface S7 and is in contact with the substrate 33 through the main surface S7.
  • the n-type gallium nitride based semiconductor region 35 includes an n-type semiconductor layer 37 and a cladding layer 39 that are sequentially provided on the main surface S7 of the substrate 33 along the z-axis direction.
  • the n-type semiconductor layer 37 is provided between the substrate 33 and the cladding layer 39 and is in contact with the substrate 33 and the cladding layer 39.
  • the cladding layer 39 is provided between the n-type semiconductor layer 37 and the guide layer 41, and is in contact with the n-type semiconductor layer 37 and the guide layer 41.
  • the relationship between the lattice constant of the cladding layer 39 and the lattice constant of the substrate 33 can be made the same as the relationship between the lattice constant of the buffer layer 9 and the lattice constant of the substrate 5 of the LED 1 according to the first embodiment.
  • the cladding layer 39 extends along the direction of the fifth axis (substantially the x-axis direction) that is orthogonal to the interface S9 on the substrate 33 side of the cladding layer 39 and that is shared by the surface including the c-axis and the interface S9.
  • the lattice constant is a direction of an axis (this axis is referred to as a second axis as in the first embodiment) shared by a surface that is orthogonal to the main surface S7 of the substrate 33 and includes the c-axis and the main surface S7. It can be made larger than the lattice constant of the substrate 33 along the substantially x-axis direction).
  • the lattice constant of the cladding layer 39 along the direction of the sixth axis (substantially y-axis direction) perpendicular to the fifth axis and the c-axis is the axis perpendicular to the second axis and the c-axis (this axis is , which is equal to the lattice constant of the substrate 33 along the direction (substantially the y-axis direction) in the same manner as in the first embodiment (the lattice constant here is not intrinsic to the substance, It is the lattice constant of the substrate 33 and the clad layer 39 in the provided state.)
  • the lattice constant since the lattice of the cladding layer 39 is relaxed, the strain is released in the cladding layer 39, and thus the strain generated in the well layer 47 is reduced.
  • the clad layer 39 includes misfit dislocations generated at the interface S9, the misfit dislocations extend in the direction of the sixth axis, and the density of the misfit dislocations is 5 ⁇ 10 3 cm ⁇ 1 or more and 1 X10 5 cm -1 or less.
  • the guide layer 41 is provided between the n-type gallium nitride based semiconductor region 35 (particularly the clad layer 39) and the light emitting layer 43 (particularly the barrier layer 45), and is in contact with the clad layer 39 and the light emitting layer 43. .
  • the relationship between the lattice constant of the guide layer 41 and the lattice constant of the substrate 33 is the same as the relationship between the lattice constant of the buffer layer 9 of the LED 1 and the lattice constant of the substrate 5 according to the first embodiment.
  • the light emitting layer 43 has a single quantum well structure, and includes a barrier layer 45, a well layer 47, and a barrier layer 49 that are sequentially provided on the guide layer 41 along the z-axis direction.
  • the light emitting layer 43 emits light having a peak wavelength in the range of 450 nm to 600 nm.
  • the barrier layer 45 is provided between the guide layer 41 and the well layer 47 and is in contact with the guide layer 41 and the well layer 47.
  • the well layer 47 is provided between the barrier layer 45 and the barrier layer 49 and is in contact with the barrier layer 45 and the barrier layer 49.
  • the barrier layer 49 is provided between the well layer 47 and the guide layer 51 and is in contact with the well layer 47 and the guide layer 51.
  • the guide layer 51 is provided between the light emitting layer 43 (particularly the barrier layer 49) and the p-type gallium nitride based semiconductor region 53 (particularly the electron block layer 55), and is in contact with the barrier layer 49 and the electron block layer 55. ing.
  • the difference between the band gap energy of the barrier layer 45 and the barrier layer 49 and the band gap energy of the well layer 47 is 0.7 eV or more.
  • the barrier layer 45 and the guide layer 41, and the barrier layer 49 and the guide layer 51 may be under the same conditions, and the guide layer and the barrier layer may be integrated.
  • the piezoelectric polarization generated in the layer 47 is negative, and the direction of the piezoelectric polarization in this case coincides with the direction from the p-type gallium nitride semiconductor region 53 toward the n-type gallium nitride semiconductor region 35.
  • the piezoelectric polarization in the well layer 47 is negative, as shown in FIG.
  • the height of the barrier with respect to the well of the well layer 47 on the p-type gallium nitride based semiconductor region 53 side is the piezoelectric polarization in the well layer 47.
  • the piezoelectric polarization in the well layer 47 is higher. Therefore, in the case of the multiple quantum well structure having a plurality of such wells, the electron injection efficiency into the well layer is lower than in the case of the LD 31 having a single well structure. This effect becomes more remarkable as the height of the barrier with respect to the well on the p-type gallium nitride based semiconductor region 53 side is higher (the emission wavelength is longer).
  • the p-type gallium nitride based semiconductor region 53 has an electron block layer 55, a cladding layer 57, and a contact layer 59 that are sequentially provided on the guide layer 51 along the z-axis direction.
  • the electron blocking layer 55 is provided between the guide layer 51 and the contact layer 59 and is in contact with the guide layer 51 and the contact layer 59.
  • the cladding layer 57 is provided between the electron block layer 55 and the contact layer 59 and is in contact with the electron block layer 55 and the contact layer 59.
  • the insulating film 61 is provided on the p-type gallium nitride based semiconductor region 53 (particularly, the contact layer 59) and is in contact with the contact layer 59.
  • the insulating film 61 is provided with a contact hole penetrating from the surface of the insulating film 61 to the surface of the contact layer 59.
  • the p electrode 63 is provided on the insulating film 61 and is in contact with the insulating film 61.
  • the p-electrode 63 is in contact with the contact layer 59 through the contact hole of the insulating film 61.
  • the n-electrode 65 is provided on the surface of the substrate 33 on the opposite side of the main surface S ⁇ b> 7 and is in contact with the substrate 33.
  • the substrate 33 is made of GaN having a semipolar main surface S7, and the n-type semiconductor layer 37 is made of n-type doped GaN.
  • the n-type semiconductor layer 37 has a thickness of about 500 nm.
  • the clad layer 39 is made of n-type doped InAlGaN.
  • the cladding layer 39 has an In composition ratio of 0.02, the cladding layer 39 has an Al composition ratio of 0.09, and the cladding layer 39 has a Ga composition ratio of 0.89.
  • the thickness of the cladding layer 39 is about 1.5 ⁇ m.
  • the guide layer 41 and the guide layer 51 are both made of InGaN, and the thickness of the guide layer 41 and the thickness of the guide layer 51 are both about 200 nm.
  • the In composition ratio of the guide layer 41 and the guide layer 51 is both 0.03, and the Ga composition ratio of the guide layer 41 and the guide layer 51 is 0.97.
  • the barrier layer 45 and the barrier layer 49 are both made of GaN, and the thickness of the barrier layer 45 and the thickness of the barrier layer 49 are both about 15 nm.
  • the well layer 47 is made of InGaN, and the thickness of the well layer 47 is about 3 nm.
  • the In composition ratio of the well layer 47 is 0.30, and the Ga composition ratio of the well layer 47 is 0.70.
  • the difference between the band gap energy of the well layer 47 and the band gap energy of the barrier layer 45 and the barrier layer 49 is about 1 eV.
  • the electron block layer 55 is made of p-type doped AlGaN.
  • the electron block layer 55 has an Al composition ratio of 0.12, and the electron block layer 55 has a Ga composition ratio of 0.88.
  • the thickness of the electron block layer 55 is about 20 nm.
  • the clad layer 57 is made of p-type doped InAlGaN.
  • the In composition ratio of the cladding layer 57 is 0.02, the Al composition ratio of the cladding layer 57 is 0.09, and the Ga composition ratio of the cladding layer 57 is 0.89.
  • the thickness of the cladding layer 57 is about 400 nm.
  • the contact layer 59 is made of p-type doped GaN.
  • the contact layer 59 has a thickness of about 50 nm.
  • the insulating film 61 is made of, for example, SiO 2 .
  • the p-electrode 63 is composed of Ni / Au and a pad electrode made of Ti / Au provided on the Ni / Au surface.
  • the n-electrode 65 is composed of Ti / Al and a pad electrode made of Ti / Au provided on the Ti / Al surface.
  • An LD structure of a 520 nm band was fabricated on the substrate 33 having a (20-21) plane corresponding to a plane off by 75 degrees in the m-axis direction as a main surface S7.
  • the substrate 33 is held in an atmosphere of NH 3 and H 2 at about 1050 degrees Celsius for about 10 minutes, and after pretreatment (thermal cleaning), the n-type semiconductor layer 37 is 500 nm at about 1050 degrees Celsius. It was grown only to the extent.
  • the ambient temperature was lowered to about 840 degrees Celsius, and the cladding layer 39 was grown by about 1.5 ⁇ m.
  • the guide layer 41, the light emitting layer 43, and the guide layer 51 were sequentially grown.
  • the guide layer 41 and the guide layer 51 are both grown by about 200 nm at a growth temperature of about 840 degrees Celsius, and the barrier layer 45 and the barrier layer 49 are both grown by about 15 nm at a growth temperature of about 840 degrees Celsius,
  • the well layer 47 was grown by about 3 nm at a growth temperature of about 740 degrees Celsius.
  • the ambient temperature was raised to about 1000 degrees Celsius
  • the electron block layer 55 was grown by about 20 nm.
  • the atmospheric temperature was lowered again to about 840 degrees Celsius, and the cladding layer 57 was grown by about 400 nm. Further, at this temperature, the contact layer 59 was also grown by about 50 nm.
  • an insulating film 61 was formed, and a stripe window having a width of about 10 ⁇ m was formed by wet etching. Thereafter, a p-electrode 63 made of Ni / Au and Ti / Au pad electrodes and an n-electrode 65 made of Ti / Al and Ti / Au pad electrodes were deposited.
  • the substrate 33 and the n-type gallium nitride based semiconductor region 35, the guide layer 41, the light emitting layer 43, the guide layer 51, and the p-type gallium nitride based semiconductor region 53 grown on the substrate 33 are about 800 ⁇ m. Cleavage was performed at intervals, and a dielectric multilayer film composed of SiO 2 / TiO 2 was formed on the cleaved surface, thereby producing a gain guide type laser.
  • a comparative example of the LD 31 according to the example another LD (referred to as a first comparative example LD) having a light emitting layer having a multiple quantum well structure including three wells was manufactured.
  • Other configurations of the first comparative example LD are the same as the configurations of the LD 31 according to the example except for the configuration of the light emitting layer.
  • the first comparative example LD was energized with a pulse width of 500 nsec and a duty of 0.1%.
  • the threshold current of the LD 31 according to the example was 800 mA, but the threshold current of the first comparative example LD was 1100 mA.
  • the oscillation wavelength of both the LD 31 according to the example and the first comparative example LD was 520 nm.
  • the LD 31 according to the example has only one InGaN well layer (well layer 47) having a high refractive index, light confinement is slightly disadvantageous as compared with the first comparative example LD, but the luminous efficiency is improved. It is considered that the improvement of the carrier density per unit well contributed to the lower threshold.
  • a single well structure LD in which the guide layer is InGaN (the composition ratio of In is 0.01 and the composition ratio of Ga is 0.99) ( 2nd comparative example LD) was produced.
  • Other configurations of the second comparative example LD are the same as those of the LD 31 according to the example except for the configuration of the guide layer.
  • a misfit dislocation of 2 ⁇ 10 4 cm ⁇ 1 was observed at the interface S11 between the guide layer 41 and the cladding layer 39 on the n side. Misfit dislocations were not observed in the well layer 47.
  • the n-side guide layer (made of InGaN having an In composition ratio of 0.01 and Ga composition ratio of 0.99) and a cladding layer (similar to the cladding layer 39)
  • the light emitting layer (same structure as the light emitting layer 43)
  • no well layer (same structure as the well layer 47)
  • barrier layer (similar to the barrier layers 45 and 49) were found.
  • the defects penetrating from the interface to the surface of the contact layer occurred at a density of 1 ⁇ 10 8 cm ⁇ 2 .
  • the guide layer 41 relaxes the strain, it is considered that the generation of defects in the light emitting layer 43 is suppressed even in the well layer 47 having a long wavelength and a high In composition ratio. It is done. Further, when the second comparative example LD was energized, it did not oscillate. The reason for this is considered that the light confinement efficiency is lowered due to a decrease in light emission efficiency due to generation of defects in the light emitting layer and a low In composition ratio in the guide layer.
  • the main surface S7 of the substrate 33 is in a range of 63 degrees to 80 degrees or 100 degrees to 117 degrees from the plane orthogonal to the c-axis of the hexagonal gallium nitride semiconductor of the substrate 33. Since it extends along the reference plane S5 inclined at the inner inclination angle ⁇ , the piezoelectric polarization generated in the well layer 47 can be reduced as compared with the case where the main surface S7 is orthogonal to the c-axis.
  • the well structure of the light emitting layer 43 is distorted in a direction in which carriers (especially electrons) are difficult to escape from the well, and the more wells, the more efficient the injection of carriers (especially electrons) into the wells.
  • the well structure of the light emitting layer 43 is a single quantum well structure, the efficiency of injecting carriers (particularly electrons) into the well layer is improved as compared with the case of the multiple quantum well structure.
  • the improvement in the injection efficiency of electron carriers (especially electrons) in the light emitting layer 43 compared with the multiple quantum well structure is that the difference between the band gap energy of the well layer 47 and the band gap energy of the barrier layer 45 and the barrier layer 49 is as follows.
  • the light emitting layer 43 is provided on the guide layer 41 in a coherent manner after lattice relaxation of the guide layer 41 provided on the main surface S7 only in a direction along the first axis (a direction parallel to the off-state). Therefore, the distortion of the well layer 47 of the light emitting layer 43 is alleviated, and the piezo polarization can be further reduced. In addition, even in a situation where the In composition of the well layer 47 is high and the lattice mismatch between the barrier layer 45 and the barrier layer 49 is large, generation of defects in the well layer can be suppressed. Since misfit dislocations exist at the interface S11 of the guide layer 41, the influence of the misfit dislocations on the characteristics of the LD 31 is relatively small.
  • the LED 1 according to the example of the first embodiment (the LED 1 according to the example is referred to as an example LED in the following for the sake of simplicity) will be further described.
  • This example LED has a single quantum well structure as described above.
  • a comparative example of the example LED another LED (referred to as a first comparative example LED) having a light emitting layer having a multiple quantum well structure including three wells was produced.
  • the configuration of the first comparative example LED was the same as that of the example LED except that it had a light emitting layer having a multiple quantum well structure.
  • the first comparative example LED had a configuration in which an epitaxial layer including a light emitting layer was provided on a surface of a hexagonal gallium nitride semiconductor that was turned off by 75 degrees in the m-axis direction.
  • a single quantum well structure having a single quantum well layer is referred to as SQW
  • a multiple quantum well structure including three quantum well layers is referred to as 3QW.
  • the evaluation results are shown in FIG.
  • the graph indicated by reference sign G5 in FIG. 5 shows the measurement results for the example LED
  • the graph indicated by reference sign G6 in FIG. 5 shows the measurement results for the first comparative example LED.
  • the PL characteristics shown in FIG. 5 were excited by an ArSHG laser (wavelength 244 nm), and carriers were excited throughout the epitaxial layer. That is, regardless of the number of well layers included in the light-emitting layer (whether it is a single quantum well layer of SQW or three quantum well layers of 3QW), the excited carrier density is considered to be substantially the same. .
  • the temperature when the temperature is lowered, the non-luminescent process is suppressed and the PL intensity is improved.
  • the PL intensity of both the example LED and the first comparative example LED was substantially equal. This means that the luminous efficiency of the light emitting layers of both the example LED and the first comparative example LED is equal.
  • the temperature dependence of the EL characteristics of the example LED (SQW) and the first comparative example LED (3QW) was also evaluated.
  • the evaluation results are shown in FIG.
  • the graph indicated by reference numeral G7 in FIG. 6 shows the measurement results for the example LED
  • the graph indicated by reference numeral G8 in FIG. 6 shows the measurement results for the first comparative example LED.
  • the EL characteristics shown in FIG. 6 are measurement results measured at a current value of 2 mA.
  • the EL intensity of the example LED (SQW) exceeded the EL intensity of the first comparative example LED over the entire temperature range (temperature range of 500 K or less) shown in FIG.
  • the example LED and the first comparative example LED had substantially the same PL intensity, but a difference was observed in the EL intensity of the example LED and the first comparative example LED.
  • the difference in EL intensity between the example LED and the first comparative example LED indicates that the carrier injection efficiency of the example LED and the first comparative example LED is different. Yes. From the above, it was found that the injection of carriers was improved in the SQW example LED compared to the 3QW first comparative example LED.
  • a comparative example of the example LED another LED (referred to as a second comparative example LED) having a 3QW light emitting layer provided on the c-plane of a hexagonal gallium nitride semiconductor GaN substrate was further prepared.
  • the configuration of the second comparative example LED is the same as that of the first comparative example LED except that an epi layer including a light emitting layer is provided on the c-plane of a GaN substrate of a hexagonal gallium nitride semiconductor.
  • the PL of each of the example LED, the first comparative example LED, and the second comparative example LED due to bias application was evaluated at a temperature of 100 K, and the relationship between the direction of piezoelectric polarization and carrier injection was measured.
  • FIG. 7 shows measurement results of the applied voltage dependence of the PL wavelength of each of the example LED, the first comparative example LED, and the second comparative example LED.
  • the graph indicated by reference numeral G9 in FIG. 7 shows the measurement results for the example LED
  • the graph indicated by reference numeral G10 in FIG. 7 indicates the measurement results for the first comparative example LED
  • the graph indicated by reference numeral G11 in FIG. Shows the measurement results for the second comparative LED.
  • the PL wavelength is red-shifted in the case of the second comparative example LED, whereas in the case of the example LED and the first comparative example LED. It can be seen that the PL wavelength is blue shifted.
  • the PL wavelength measurement result corresponds to the fact that the piezo polarization of the well layer is “positive” in the case of the second comparative example LED and “negative” in the case of the example LED and the first comparative example LED. is doing.
  • FIG. 8 also shows the measurement results of the applied voltage dependence of the PL intensity of each of the example LED, the first comparative example LED, and the second comparative example LED.
  • the graph indicated by reference sign G12 in FIG. 8 shows the measurement results for the example LED
  • the graph indicated by reference sign G13 in FIG. 8 indicates the measurement result for the first comparative example LED
  • the graph indicated by reference sign G14 in FIG. Shows the measurement results for the second comparative LED.
  • the height of the n-side wall with respect to the electron E1 (the height of the n-side wall of the well layer Q1 is a relative value V2 with respect to the energy level V1 in the well layer Q1.
  • V2 the height of the p-side wall relative to the electron E1
  • V3 the relative value V3 to the energy level V1 in the well layer Q1
  • the piezoelectric polarization of the well layer is “negative” and the band is bent as shown in FIG. 9B, the electrons E1 trapped in the well layer Q2 included in this band are likely to escape to the n side.
  • the height of the n-side wall with respect to the electron E1 (the height of the n-side wall of the well layer Q2 is a relative value V5 with respect to the energy level V4 in the well layer Q2.
  • the PL intensity decreased when the applied voltage was relatively small.
  • the PL intensity was extremely lowered because the electrons that once escaped to the n side are not trapped again in the next well layer adjacent thereto.
  • the first comparative example LED has a configuration in which an epitaxial layer including a light emitting layer is provided on a surface of a hexagonal gallium nitride semiconductor that is off by 75 degrees in the m-axis direction, and there are a plurality of well layers. Therefore, the injection electron density of each well layer becomes non-uniform. Therefore, the SQW example LED is more effective in improving the light emission efficiency and voltage than the first comparative example LED.
  • the direction of piezo polarization in the well layer was determined using the bias application PL.
  • the bias application PL is a measurement in which PL is detected by irradiating excitation light from above the Ni / Au electrode (p electrode 25, etc.) while applying an external voltage to the example LED and the first and second comparative example LEDs. .
  • the piezoelectric polarization of the well layer is strong to “positive”, the energy gap V7 shown in FIG. 10 (A) is smaller than the energy gap V7 as shown in FIG.
  • the energy gap V8 (energy gap V7> energy gap V8) is reduced, and a red shift is observed. Therefore, when a red shift is observed by applying a forward bias, it can be determined that the piezo polarization of the well layer is “positive”.
  • the piezo polarization of the well layer is strong “negative”, the energy gap V9 shown in FIG. 11A becomes larger than the energy gap V9 as shown in FIG. Since the energy gap V10 increases to a large value (energy gap V9 ⁇ energy gap V10), a blue shift is observed. Therefore, when a blue shift is observed by applying a forward bias, the piezo polarization of the well layer can be determined to be “negative”.
  • an LED including an SQW light-emitting layer provided on the c-plane of the sapphire substrate (emitting light of a wavelength of 470 nm band and referred to as a third comparative LED) and an epitaxial including a 3QW light-emitting layer A layer is produced with an LED (emitting light having a wavelength of 470 nm band and called a fourth comparative example LED) provided on the c-plane of the sapphire substrate, and for each of the third and fourth comparative example LEDs and the example LED CL observation (CL: cathode luminescence) was performed.
  • FIG. 12 shows the observation results of the CL observation performed on the third comparative example LED
  • FIG. 13 shows the observation results of the CL observation performed on the fourth comparative example LED.
  • FIG. 14 shows the observation results of the CL observation performed on the example LED.
  • the light emission is relatively uniform.
  • the CL observation for the third comparative example LED of the SQW In the observation results observation results shown in FIG. 12
  • a non-light-emitting region was observed.
  • the strain distribution in the c-plane becomes non-uniform, and the non-light emitting region increases. For this reason, it is considered that a non-light emitting region was observed in the third comparative example LED of SQW.
  • the embodiment LED is an LED having a configuration in which an epitaxial layer including a light emitting layer of SQW is provided on a surface of a hexagonal gallium nitride semiconductor, which is off 75 degrees in the m-axis direction, as described above.
  • the light emission is relatively uniform because the crystal structure of the InGaN well layer formed on the surface of the crystalline gallium nitride semiconductor that is 75 degrees off in the m-axis direction is relatively high. It is thought that there was.
  • the effect of SQW according to the example of the first embodiment is particularly great in the plane orientation and the growth conditions that enable uniform growth of the InGaN well layer.
  • the substrate main surface is inclined from the plane orthogonal to the c-axis in the range of 63 ° to 80 ° or 100 ° to 117 °, In is easily taken in, and the uniformity of the InGaN well layer is excellent. Become.
  • an object of the present embodiment is to provide a nitride-based semiconductor light-emitting device with improved carrier injection efficiency into a well layer.

Abstract

 井戸層へのキャリアの注入効率が向上された窒化物系半導体発光素子を提供する。六方晶系窒化ガリウム系半導体からなる基板5と、基板5の主面S1に設けられたn型窒化ガリウム系半導体領域7と、このn型窒化ガリウム系半導体領域7上に設けられた単一量子井戸構造の発光層11と、発光層11上に設けられたp型窒化ガリウム系半導体領域19とを備える。発光層11は、n型窒化ガリウム系半導体領域7とp型窒化ガリウム系半導体領域19との間に設けられており、発光層11は、井戸層15とバリア層13及びバリア層17とを含み、井戸層15は、InGaNであり、主面S1は、六方晶系窒化ガリウム系半導体のc軸方向に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角で傾斜した基準平面S5に沿って延びている。

Description

窒化物系半導体発光素子
 本発明は、窒化物系半導体発光素子に関する。
 特許文献1,2及び非特許文献1には、二つの窒化物半導体層と、この二つの窒化物半導体層の間に設けられInGaNの単一量子井戸構造を有する活性層とがGaN基板上に設けられた窒化物系半導体発光素子が開示されている。特許文献1に記載の窒化物半導体発光素子は、n型の窒化物半導体よりなるn型クラッド層と、p型の窒化物半導体よりなるp型クラッド層と、このn型クラッド層とp型クラッド層との間に設けられ少なくともInを含む窒化物半導体よりなる活性層とを有し、n型クラッド層とp型クラッド層とはいずれも活性層より小さい熱膨張係数を有し、活性層は単一量子井戸構造(または多重量子井戸構造)を有し、活性層を構成する窒化物半導体の本来のバンドギャップエネルギーよりも低いエネルギーの光を発光する。特許文献2に記載のLEDは、GaN基板の{11-22}面上にInGaNの単一量子井戸構造を有する。特許文献3に記載の窒化物半導体レーザ素子は、AlGaNからなる層を含む窒化物半導体層と、この窒化物半導体層上に形成されたInGaNからなる層を含む活性層とを備え、活性層が単一量子井戸構造(または多重量子井戸構造)を有し、窒化物半導体層の成長面がGaN基板のc面から傾いている。
特開平8-316528号公報 特開2009-71127号公報
"Japanese Journal of Applied Physics", Vol. 45, No. 26, 2006, pp. L659-L662
 上記従来の窒化物半導体発光素子における発光波長の長波長化は、GaN基板上に設けられたInGaN井戸層のIn組成比を増加させることによって実現されるが、このIn組成比の増加によってInGaN井戸層の歪みも増大する。そして、このInGaN井戸層の歪みによって生じるピエゾ電界によって、InGaN井戸層へのキャリアの注入効率が影響を受ける。そこで本発明の目的は、井戸層へのキャリアの注入効率が向上された窒化物系半導体発光素子を提供することである。
 本発明の一側面は、窒化物系半導体発光素子であって、六方晶系窒化ガリウム系半導体からなる基板と、前記基板の主面に設けられたn型窒化ガリウム系半導体領域と、前記n型窒化ガリウム系半導体領域上に設けられた単一量子井戸構造の発光層と、前記発光層上に設けられたp型窒化ガリウム系半導体領域とを備え、前記発光層は、前記n型窒化ガリウム系半導体領域と前記p型窒化ガリウム系半導体領域との間に設けられており、前記発光層は、井戸層及び障壁層を含み、前記井戸層は、InGaNであり、前記主面は、前記六方晶系窒化ガリウム系半導体のc軸方向に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角で傾斜した基準平面に沿って延びている、ことを特徴とする。更に、本発明の窒化物系半導体発光素子は、前記井戸層に生じるピエゾ分極の向きは、前記p型窒化ガリウム系半導体領域から前記n型窒化ガリウム系半導体領域に向かう方向と一致するのが良い。
 従って、基板の主面が、基板の六方晶系窒化ガリウム系半導体のc軸に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角で傾斜した基準平面に沿って延びているので、主面がc軸に直交する場合に比較して井戸層に生じるピエゾ分極を低減できる。また、この傾斜角の範囲はIn取り込みに優れるため、可視域で発光波長が長い発光素子に有利である。そして、井戸層に生じるピエゾ分極が小さいと、井戸からキャリア(特に電子)が抜け出にくい方向に発光層の井戸構造が歪み、井戸が多いほど井戸へのキャリア(特に電子)の注入効率が低下するが、発光層の井戸構造が単一量子井戸構造なので、井戸層へのキャリア(特に電子)の注入効率が多重量子井戸構造の場合に比較して向上される。
 本発明の一側面に係る窒化物系半導体発光素子では、前記障壁層のバンドギャップエネルギーと前記井戸層のバンドギャップエネルギーとの差は0.7eV以上であるのが良く、前記発光層は、450nm以上600nm以下の範囲内にあるピーク波長の光を発光するのが良い。前記障壁層は、例えばGaN、InGaN、AlGaN、InAlGaNのいずれかからなる。多重量子井戸構造と比較した場合の発光層における電子のキャリア(特に電子)の注入効率の向上は、井戸層のバンドギャップエネルギーとバリア層のバンドギャップエネルギーとの差が0.7eV以上であり、バンドギャップエネルギーの差が比較的大きいので、より顕著となる。また、多重量子井戸構造と比較した場合の発光層における電子のキャリア(特に電子)の注入効率の向上は、発光層が発する光のピーク波長が450nm以上600nm以下の範囲にあるとき、井戸層のバンドギャップエネルギーとバリア層のバンドギャップエネルギーとの差が比較的大きくなり、より顕著となる。
 本発明の一側面に係る窒化物系半導体発光素子では、InGaN層を更に備え、前記InGaN層は、前記n型窒化ガリウム系半導体領域と前記発光層との間に設けられ、前記InGaN層の前記基板側の第1の界面に直交し前記c軸を含む面と前記第1の界面とが共有する第1の軸の方向に沿った前記InGaN層の格子定数は、前記主面に直交し前記c軸を含む面と前記主面とが共有する第2の軸の方向に沿った前記基板の格子定数よりも大きく、前記第1の軸と前記c軸とに直交する第3の軸の方向に沿った前記InGaN層の格子定数は、前記第2の軸と前記c軸とに直交する第4の軸の方向に沿った前記基板の格子定数に等しいのが良い。従って、発光層が、主面上に設けられたInGaN層を第1の軸に沿った方向(オフと平行方向)にのみ格子緩和させた上でInGaN層上において設けられているので、発光層の井戸層の歪みが緩和され、更に、ピエゾ分極を低減できる。また、発光層が単一量子井戸構造の場合、多重量子井戸構造と比較して井戸層にかかる歪みが大きくなる傾向にあるが、InGaN層が第1の軸に沿った方向(オフと平行方向)にのみ格子緩和し発光層の井戸層の歪みが緩和されているので、単一量子井戸構造においても井戸層で格子不整合に起因する欠陥発生を低減することができる。
 本発明の一側面に係る窒化物系半導体発光素子では、前記InGaN層は前記第1の界面に生じたミスフィット転位を含み、当該ミスフィット転位は前記第3の軸の方向に延びており、当該ミスフィット転位の密度は5×103cm-1以上1×105cm-1以下の範囲内にあるのが良い。この範囲内であれば、InGaN層とInGaN層上に設けられた層の歪みを効果的に緩和できる。ミスフィット転位は発光層から離れた第1の界面に存在するので、このミスフィット転位が窒化物系半導体発光素子の特性に及ぼす影響は比較的小さい。
 本発明の一側面に係る窒化物系半導体発光素子では、前記n型窒化ガリウム系半導体領域はn型のInAlGaN層を含み、前記InAlGaN層の前記基板側の第2の界面に直交し前記c軸を含む面と前記第2の界面とが共有する第5の軸の方向に沿った前記InAlGaN層の格子定数は、前記第2の軸の方向に沿った前記基板の格子定数よりも大きく、前記第5の軸と前記c軸とに直交する第6の軸の方向に沿った前記InAlGaN層の格子定数は、前記第4の軸の方向に沿った前記基板の格子定数に等しいのが良い。従って、発光層が、主面上に設けられたInAlGaN層を第5の軸に沿った方向(オフと平行方向)にのみ格子緩和させた上でInAlGaN層上において設けられているので、発光層の井戸層の歪みが緩和され、更に、ピエゾ分極を低減できる。また、発光層が単一量子井戸構造の場合、多重量子井戸構造と比較して井戸層にかかる歪みが大きくなる傾向にあるが、InAlGaN層が第5の軸に沿った方向(オフと平行方向)にのみ格子緩和し発光層の井戸層の歪みが緩和されているので、単一量子井戸構造においても井戸層で格子不整合に起因する欠陥発生を低減することができる。
 本発明の一側面に係る窒化物系半導体発光素子では、前記InAlGaN層は前記第2の界面に生じたミスフィット転位を含み、当該ミスフィット転位は前記第6の軸の方向に延びており、当該ミスフィット転位の密度は5×103cm-1以上1×105cm-1以下の範囲内にあるのが良い。この範囲内であれば、InAlGaN層とInAlGaN層上に設けられた層の歪みを効果的に緩和できる。ミスフィット転位は発光層から離れた第2の界面に存在するので、このミスフィット転位が窒化物系半導体発光素子の特性に及ぼす影響は比較的小さい。
 本発明によれば、井戸層へのキャリアの注入効率が向上された窒化物系半導体発光素子を提供できる。
実施形態に係るLEDの構成を説明するための図である。 実施形態に係るLEDの効果を説明するための図である。 実施形態に係るLDの構成を説明するための図である。 ピエゾ分極に応じた井戸構造を説明するための図である。 PL特性の温度依存性のグラフを示す図である。 EL特性の温度依存性のグラフを示す図である。 PL波長の印加電圧依存性のグラフを示す図である。 PL強度の印加電圧依存性のグラフを示す図である。 図7及び図8のグラフに示す結果を説明するための図である。 井戸層におけるピエゾ分極の向きの決定方法を説明するための図である。 井戸層におけるピエゾ分極の向きの決定方法を説明するための図である。 CL観察の観察結果を示す図である。 CL観察の観察結果を示す図である。 CL観察の観察結果を示す図である。
 図面を参照して、本発明に係る実施形態について詳細に説明する。なお、図面の説明において、可能な場合には、同一要素には同一符号を付し、重複する説明を省略する。
(第1の実施形態)
 図1に、第1の実施形態に係るLED1の構成の概略を示す。LED1は、発光ダイオード(窒化物系半導体発光素子)であり、所定のz軸方向に沿って順次設けられたn電極29、基板5、n型窒化ガリウム系半導体領域7、緩衝層9、発光層11、p型窒化ガリウム系半導体領域19、p電極25及びパッド電極27を備える。基板5、n型窒化ガリウム系半導体領域7、緩衝層9、発光層11及びp型窒化ガリウム系半導体領域19は、六方晶系窒化ガリウム系半導体からなる。基板5の主面S1は、z軸に垂直な面(x軸及びy軸を含む面)に沿って延びている。主面S1は、基板5の六方晶系窒化ガリウム系半導体のc軸に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角θで傾斜した基準平面S5に沿って延びている半極性面である。図1には、一例としてc軸がm軸方向に傾斜した場合を示してある。
 n型窒化ガリウム系半導体領域7は、主面S1に設けられており、主面S1を介して基板5に接している。緩衝層9は、n型窒化ガリウム系半導体領域7と発光層11との間に設けられており、n型窒化ガリウム系半導体領域7と発光層11(特にバリア層13)とに接している。
 本発明の一側面では、緩衝層9の基板5側の界面S3に直交しc軸を含む面と界面S3とが共有する第1の軸の方向(略x軸方向)に沿った緩衝層9の格子定数は、基板5の主面S1に直交しc軸を含む面と主面S1とが共有する第2の軸の方向(略x軸方向)に沿った基板5の格子定数よりも大きくすることができる。第1の軸とc軸とに直交する第3の軸の方向(略y軸方向)に沿った緩衝層9の格子定数は、第2の軸とc軸とに直交する第4の軸の方向(略y軸方向)に沿った基板5の格子定数に等しい(ここでの格子定数は、物質固有のものではなく、LED1に設けられた状態の基板5や緩衝層9の有する格子定数である。)。このように、緩衝層9が格子緩和されているので、緩衝層9において歪みが開放され、よって、井戸層15において生じる歪みが低減される。この場合、緩衝層9は界面S3に生じたミスフィット転位を含み、当該ミスフィット転位は第3の軸の方向に延びており、当該ミスフィット転位の密度は5×103cm-1以上1×105cm-1以下の範囲内にある。
 発光層11は、n型窒化ガリウム系半導体領域7とp型窒化ガリウム系半導体領域19との間であって、緩衝層9と電子ブロック層21との間に設けられており、緩衝層9と電子ブロック層21とに接している。発光層11は、単一量子井戸構造を有しており、緩衝層9上においてz軸方向に沿って順次設けられたバリア層13、井戸層15及びバリア層17を含む。発光層11は、450nm以上600nm以下の範囲内にあるピーク波長の光を発光する。
 バリア層13は、緩衝層9と井戸層15との間に設けられており、緩衝層9と井戸層15とに接している。井戸層15は、バリア層13とバリア層17との間に設けられており、バリア層13とバリア層17とに接している。バリア層17は、井戸層15と電子ブロック層21との間に設けられており、井戸層15と電子ブロック層21とに接している。バリア層13及びバリア層17のバンドギャップエネルギーと井戸層15のバンドギャップエネルギーとの差は、0.7eV以上である。
 主面S1が、基板5の六方晶系窒化ガリウム系半導体のc軸に直交する面から63度以上80度以下の範囲内の傾斜角で傾斜した基準平面S5に沿って延びている場合、井戸層15に生じるピエゾ分極は負となり、この場合のピエゾ分極の向きは、p型窒化ガリウム系半導体領域19からn型窒化ガリウム系半導体領域7に向かう方向と一致する。井戸層15におけるピエゾ分極が負の場合、図4(C)に示すように、p型窒化ガリウム系半導体領域19側における井戸層15に対する障壁の高さは、井戸層15におけるピエゾ分極が正の場合(図4(A)に示す井戸構造)及び井戸層15におけるピエゾ分極がゼロの場合(図4(B)に示す井戸構造)に比較して、高い。したがって、このような井戸を複数有する多重量子井戸構造の場合、単一井戸構造を有するLED1の場合に比較して、井戸層に対する電子の注入効率は低下する。この効果は、p型窒化ガリウム系半導体領域19側における井戸に対する障壁の高さが高い(発光波長が長い)ほど顕著となる。
 p型窒化ガリウム系半導体領域19は、発光層11上においてz軸方向に沿って順次設けられた電子ブロック層21及びコンタクト層23を有する。電子ブロック層21は、バリア層17とコンタクト層23との間に設けられており、バリア層17とコンタクト層23とに接している。p電極25は、p型窒化ガリウム系半導体領域19上(特に、コンタクト層23の表面)に設けられており、コンタクト層23に接している。p電極25には、p電極25の表面からコンタクト層23の表面に貫通するコンタクトホールが設けられている。パッド電極27は、p電極25上に設けられており、p電極25に接している。パッド電極27は、p電極25のコンタクトホールを介してコンタクト層23に接している。n電極29は、主面S1の反対側にある基板5の表面に設けられており、基板5に接している。
 次に、第1の実施形態に係るLED1の実施例について説明する。基板5は、半極性の主面S1を有するGaNからなり、n型窒化ガリウム系半導体領域7は、n型ドープされたGaNからなる。n型窒化ガリウム系半導体領域7の厚みは2μm程度である。緩衝層9は、n型ドープされたInGaNからなる。緩衝層9のInの組成比は0.02であり、緩衝層9のGaの組成比は0.98である。緩衝層9の厚みは100nm程度である。
 バリア層13及びバリア層17は、何れも、GaNからなり、バリア層13の厚み及びバリア層17の厚みは、何れも、15nm程度である。井戸層15は、InGaNからなり、井戸層15のInの組成比は0.30であり、井戸層15のGaの組成比は0.70である。井戸層15の厚みは、3nm程度である。井戸層15のバンドギャップエネルギーとバリア層13及びバリア層17のバンドギャップエネルギーとの差は1eV程度である。
 電子ブロック層21は、p型ドープされたAlGaNからなり、電子ブロック層21のAlの組成比は0.18であり、電子ブロック層21のGaの組成比は0.82である。電子ブロック層21の厚みは、20nm程度である。コンタクト層23は、p型ドープされたGaNからなり、コンタクト層23の厚みは50nm程度である。p電極25はNi/Auからなり、パッド電極27はTi/Auからなり、n電極29はTi/Alからなる。
 次にLED1の作製方法を説明する。m軸方向に75度オフした面に相当する(20-21)面を主面S1とする基板5に520nm帯のLED構造を作製した。まず、基板5を摂氏1050度程度のNH3及びH2の雰囲気中において10分程度の間保持し、前処理(サーマルクリーニング)を行った後に、n型窒化ガリウム系半導体領域7を摂氏1100度程度において2μm程度だけ成長させた。次に、雰囲気温度を摂氏840度程度に下げ、緩衝層9を100nm程度だけ成長させ、この後、発光層11を成長させた。発光層11のバリア層13及びバリア層17は、何れも、摂氏840度程度の成長温度で15nm程度成長させ、井戸層15は摂氏740度程度の成長温度で3nm程度だけ成長させた。次に、雰囲気温度を摂氏1000度程度に上昇させ、電子ブロック層21を20nm程度成長させ、更にこの後に、コンタクト層23を50nm程度成長させた。次に、Ni/Auからなるp電極25、Ti/Auからなるパッド電極27、及び、Ti/Alからなるn電極29の蒸着を行った。
 図2は、LED1の動作を説明するための図である。図2(A)の図中符号G1に示すグラフは、実施例に係るLED1の場合の駆動電流に対する発光出力を示し、図中符号G2に示すグラフは、他のLEDの場合の駆動電流に対する発光出力を示す。上記他のLEDは、発光層の構成が実施例に係るLED1と異なっており、三つの井戸を含む多重量子井戸構造を有するものとなっているが、上記他のLEDの他の構成は実施例に係るLED1と同様である。グラフG1,G2によれば、単一量子井戸構造を有する実施例に係るLED1のほうが、多重量子井戸構造を有する上記他のLEDに比較して、高い発光出力を有することがわかる。また、図2(B)の図中符号G3に示すグラフは、実施例に係るLED1の場合の駆動電圧に対する駆動電流を示し、図中符号G4に示すグラフは、上記他のLEDの場合の駆動電圧に対する駆動電流を示す。グラフG3,G4によれば、単一量子井戸構造を有する実施例に係るLED1のほうが、多重量子井戸構造を有する上記他のLEDに比較して、駆動電圧が低いことがわかる。
 以上説明した構成を有するLED1において、基板5の主面S1が、基板5の六方晶系窒化ガリウム系半導体のc軸に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角θで傾斜した基準平面S5に沿って延びているので、主面S1がc軸に直交する場合に比較して井戸層15に生じるピエゾ分極を低減できる。そして、井戸層15に生じるピエゾ分極が小さいと、井戸からキャリア(特に電子)が抜け出にくい方向に発光層11の井戸構造が歪み、井戸が多いほど井戸へのキャリア(特に電子)の注入効率が低下するが、発光層11の井戸構造が単一量子井戸構造なので、井戸層へのキャリア(特に電子)の注入効率が多重量子井戸構造の場合に比較して向上される。多重量子井戸構造と比較した場合の発光層11におけるキャリア(特に電子)の注入効率の向上は、井戸層15のバンドギャップエネルギーとバリア層13及びバリア層17のバンドギャップエネルギーとの差が0.7eV以上であり、バンドギャップエネルギーの差が比較的大きいので、より顕著となる。
(第2の実施形態)
 図3に、第2の実施形態に係るLD31の構成の概略を示す。LD31は、レーザダイオード(窒化物系半導体発光素子)であり、所定のz軸方向に沿って順次設けられたn電極65、基板33、n型窒化ガリウム系半導体領域35、ガイド層41、発光層43、ガイド層51、p型窒化ガリウム系半導体領域53、絶縁膜61及びp電極63を備える。基板33、n型窒化ガリウム系半導体領域35、ガイド層41、発光層43、ガイド層51、p型窒化ガリウム系半導体領域53は、六方晶系窒化ガリウム系半導体からなる。基板33の主面S7は、z軸に垂直な面(x軸及びy軸を含む面)に沿って延びている。主面S7は、基板33の六方晶系窒化ガリウム系半導体のc軸に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角θで傾斜した基準平面S5に沿って延びている半極性面である。図3には、一例としてc軸がm軸方向に傾斜した場合を示してある。
 n型窒化ガリウム系半導体領域35(特に、n型半導体層37)は、主面S7に設けられており、主面S7を介して基板33に接している。n型窒化ガリウム系半導体領域35は、基板33の主面S7上においてz軸方向に沿って順次設けられたn型半導体層37及びクラッド層39を含む。n型半導体層37は、基板33とクラッド層39との間に設けられており、基板33とクラッド層39とに接している。
 クラッド層39は、n型半導体層37とガイド層41との間に設けられており、n型半導体層37とガイド層41とに接している。クラッド層39の格子定数と基板33の格子定数との関係を、上記した第1の実施形態に係るLED1の緩衝層9の格子定数と基板5の格子定数との関係と同様にすることができる。本発明の一側面では、クラッド層39の基板33側の界面S9に直交しc軸を含む面と界面S9とが共有する第5の軸の方向(略x軸方向)に沿ったクラッド層39の格子定数は、基板33の主面S7に直交しc軸を含む面と主面S7とが共有する軸(この軸を、第1の実施形態と同様に第2の軸という)の方向(略x軸方向)に沿った基板33の格子定数よりも大きくすることができる。第5の軸とc軸とに直交する第6の軸の方向(略y軸方向)に沿ったクラッド層39の格子定数は、第2の軸とc軸とに直交する軸(この軸を、第1の実施形態と同様に第4の軸という)の方向(略y軸方向)に沿った基板33の格子定数に等しい(ここでの格子定数は、物質固有のものではなく、LD31に設けられた状態の基板33やクラッド層39の有する格子定数である。)。このように、クラッド層39が格子緩和されているので、クラッド層39において歪みが開放され、よって、井戸層47において生じる歪みが低減される。この場合、クラッド層39は界面S9に生じたミスフィット転位を含み、当該ミスフィット転位は第6の軸の方向に延びており、当該ミスフィット転位の密度は5×103cm-1以上1×105cm-1以下の範囲内にある。
 ガイド層41は、n型窒化ガリウム系半導体領域35(特にクラッド層39)と発光層43(特にバリア層45)との間に設けられており、クラッド層39と発光層43とに接している。ガイド層41の格子定数と基板33の格子定数との関係は、上記した第1の実施形態に係るLED1の緩衝層9の格子定数と基板5の格子定数との関係と同様である。発光層43は、単一量子井戸構造を有しており、ガイド層41上においてz軸方向に沿って順次設けられたバリア層45、井戸層47及びバリア層49を有する。発光層43は、450nm以上600nm以下の範囲内にあるピーク波長の光を発光する。
 バリア層45は、ガイド層41と井戸層47との間に設けられており、ガイド層41と井戸層47とに接している。井戸層47は、バリア層45とバリア層49との間に設けられており、バリア層45とバリア層49とに接している。バリア層49は、井戸層47とガイド層51との間に設けられており、井戸層47とガイド層51とに接している。ガイド層51は、発光層43(特にバリア層49)とp型窒化ガリウム系半導体領域53(特に電子ブロック層55)との間に設けられており、バリア層49と電子ブロック層55とに接している。バリア層45及びバリア層49のバンドギャップエネルギーと井戸層47のバンドギャップエネルギーとの差は、0.7eV以上である。バリア層45とガイド層41、およびバリア層49とガイド層51を同じ条件にし、ガイド層とバリア層を一体化しても良い。
 主面S7が、基板33の六方晶系窒化ガリウム系半導体のc軸に直交する面から63度以上80度以下の範囲内の傾斜角で傾斜した基準平面S5に沿って延びている場合、井戸層47に生じるピエゾ分極は負となり、この場合のピエゾ分極の向きは、p型窒化ガリウム系半導体領域53からn型窒化ガリウム系半導体領域35に向かう方向と一致する。井戸層47におけるピエゾ分極が負の場合、図4(C)に示すように、p型窒化ガリウム系半導体領域53側における井戸層47の井戸に対する障壁の高さは、井戸層47におけるピエゾ分極が正の場合(図4(A)に示す井戸構造)及び井戸層47におけるピエゾ分極がゼロの場合(図4(B)に示す井戸構造)に比較して、高い。したがって、このような井戸を複数有する多重量子井戸構造の場合、単一井戸構造を有するLD31の場合に比較して、井戸層に対する電子の注入効率は低下する。この効果は、p型窒化ガリウム系半導体領域53側における井戸に対する障壁の高さが高い(発光波長が長い)ほど顕著となる。
 p型窒化ガリウム系半導体領域53は、ガイド層51上においてz軸方向に沿って順次設けられた電子ブロック層55、クラッド層57及びコンタクト層59を有する。電子ブロック層55は、ガイド層51とコンタクト層59との間に設けられており、ガイド層51とコンタクト層59とに接している。クラッド層57は、電子ブロック層55とコンタクト層59との間に設けられており、電子ブロック層55とコンタクト層59とに接している。
 絶縁膜61は、p型窒化ガリウム系半導体領域53(特にコンタクト層59)上に設けられており、コンタクト層59に接している。絶縁膜61には、絶縁膜61の表面からコンタクト層59の表面に貫通するコンタクトホールが設けられている。p電極63は、絶縁膜61上に設けられており、絶縁膜61に接している。p電極63は、絶縁膜61のコンタクトホールを介してコンタクト層59に接している。n電極65は、主面S7の反対側にある基板33の表面に設けられており、基板33に接している。
 次に、第2の実施形態に係るLD31の実施例について説明する。基板33は、半極性の主面S7を有するGaNからなり、n型半導体層37は、n型ドープされたGaNからなる。n型半導体層37の厚みは、500nm程度である。クラッド層39は、n型ドープされたInAlGaNからなる。クラッド層39のInの組成比は0.02であり、クラッド層39のAlの組成比は0.09であり、クラッド層39のGaの組成比は0.89である。クラッド層39の厚みは、1.5μm程度である。
 ガイド層41及びガイド層51は、何れもInGaNからなり、ガイド層41の厚み及びガイド層51の厚みは、何れも200nm程度である。ガイド層41及びガイド層51のInの組成比は何れも0.03であり、ガイド層41及びガイド層51のGaの組成比は何れも0.97である。バリア層45及びバリア層49は、何れも、GaNからなり、バリア層45の厚み及びバリア層49の厚みは、何れも、15nm程度である。井戸層47は、InGaNからなり、井戸層47の厚みは3nm程度である。井戸層47のInの組成比は0.30であり、井戸層47のGaの組成比は0.70である。井戸層47のバンドギャップエネルギーとバリア層45及びバリア層49のバンドギャップエネルギーとの差は1eV程度である。
 電子ブロック層55は、p型ドープされたAlGaNからなる。電子ブロック層55のAlの組成比は0.12であり、電子ブロック層55のGaの組成比は0.88である。電子ブロック層55の厚みは20nm程度である。クラッド層57は、p型ドープされたInAlGaNからなる。クラッド層57のInの組成比は0.02であり、クラッド層57のAlの組成比は0.09であり、クラッド層57のGaの組成比は0.89である。クラッド層57の厚みは400nm程度である。
 コンタクト層59は、p型ドープされたGaNからなる。コンタクト層59の厚みは50nm程度である。絶縁膜61は、例えばSiO2からなる。p電極63は、Ni/AuとNi/Au表面に設けられたTi/Auからなるパッド電極とで構成されている。n電極65は、Ti/AlとTi/Al表面に設けられたTi/Auからなるパッド電極とで構成されている。
 次にLD31の作製方法を説明する。m軸方向に75度オフした面に相当する(20-21)面を主面S7とする基板33に520nm帯のLD構造を作製した。まず、基板33を摂氏1050度程度のNH3及びH2の雰囲気中において10分程度の間保持し、前処理(サーマルクリーニング)を行った後に、n型半導体層37を摂氏1050度程度において500nm程度だけ成長させた。次に、雰囲気温度を摂氏840度程度に下げ、クラッド層39を1.5μm程度だけ成長させた。
 次に、ガイド層41、発光層43及びガイド層51を順次成長させた。ガイド層41及びガイド層51は、何れも摂氏840度程度の成長温度で200nm程度だけ成長させ、バリア層45及びバリア層49は、何れも摂氏840度程度の成長温度で15nm程度だけ成長させ、井戸層47は、摂氏740度程度の成長温度で3nm程度だけ成長させた。次に、雰囲気温度を摂氏1000度程度に上昇させ、電子ブロック層55を20nm程度だけ成長させた。
 更にこの後に、雰囲気温度を再び摂氏840度程度に下げて、クラッド層57を400nm程度だけ成長させ、更に、この温度でコンタクト層59も50nm程度だけ成長させた。次に、絶縁膜61を成膜し、幅10μm程度のストライプ窓をウェットエッチングにより形成した。この後、Ni/AuおよびTi/Auパッド電極からなるp電極63と、Ti/AlおよびTi/Auパッド電極からなるn電極65との蒸着を行った。
 そして、この後、基板33とこの基板33上に成長させたn型窒化ガリウム系半導体領域35、ガイド層41、発光層43、ガイド層51及びp型窒化ガリウム系半導体領域53とを800μm程度の間隔でへき開し、へき開面にSiO2/TiO2からなる誘電体多層膜を形成し、ゲインガイド型レーザが作製された。
 なお、実施例に係るLD31の比較例として、三つの井戸を含む多重量子井戸構造の発光層を有する他のLD(第1比較例LDという)を作製した。第1比較例LDの他の構成は、このような発光層の構成を除き、実施例に係るLD31の構成と同様である。第1比較例LDにパルス幅500nsec、duty0.1%でパルス通電を行った。実施例に係るLD31の閾値電流は800mAであったが、第1比較例LDの閾値1100mAであった。発振波長は、実施例に係るLD31及び第1比較例LDの何れも520nmであった。また、実施例に係るLD31は、屈折率の高いInGaN井戸層(井戸層47)が一本しかないので、光閉じ込めは第1比較例LDに比較して若干不利ではあるが、発光効率の向上と単位井戸あたりのキャリア密度の向上とが低閾値化に寄与したものと考えられる。
 また、実施例に係るLD31の他の比較例として、ガイド層をInGaN(Inの組成比は0.01であり、Gaの組成比は0.99である)とした単一井戸構造のLD(第2比較例LDという)を作製した。第2比較例LDの他の構成は、このようなガイド層の構成を除き、実施例に係るLD31と同様である。断面TEM観察によれば、実施例に係るLD31においては、n側にあるガイド層41とクラッド層39との界面S11に2×104cm-1のミスフィット転位が認められた。井戸層47にはミスフィット転位は認められなかった。第2比較例LDにおいては、n側にあるガイド層(Inの組成比が0.01であり、Gaの組成比が0.99であるInGaNからなる)とクラッド層(クラッド層39と同様の構成)との界面には欠陥は認められなかったが、発光層(発光層43と同様の構成)において、井戸層(井戸層47と同様の構成)とバリア層(バリア層45,49と同様の構成)との界面からコンタクト層(コンタクト層59と同様の構成)の表面に貫通する欠陥が1×108cm-2の密度で発生していた。実施例に係るLD31の場合には、ガイド層41が歪みを緩和していたために、波長が長くInの組成比の高い井戸層47においても発光層43での欠陥発生が抑制されたものと考えられる。また、第2比較例LDに通電したところ、発振しなかった。この理由としては、発光層での欠陥発生による発光効率の低下とガイド層のInの組成比が低いことに起因して光閉じ込め効率が低下したと考えられる。
 以上説明した構成を有するLD31において、基板33の主面S7が、基板33の六方晶系窒化ガリウム系半導体のc軸に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角θで傾斜した基準平面S5に沿って延びているので、主面S7がc軸に直交する場合に比較して井戸層47に生じるピエゾ分極を低減できる。そして、井戸層47に生じるピエゾ分極が小さいと、井戸からキャリア(特に電子)が抜け出にくい方向に発光層43の井戸構造が歪み、井戸が多いほど井戸へのキャリア(特に電子)の注入効率が低下するが、発光層43の井戸構造が単一量子井戸構造なので、井戸層へのキャリア(特に電子)の注入効率が多重量子井戸構造の場合に比較して向上される。多重量子井戸構造と比較した場合の発光層43における電子のキャリア(特に電子)の注入効率の向上は、井戸層47のバンドギャップエネルギーとバリア層45及びバリア層49のバンドギャップエネルギーとの差が0.7eV以上であり、バンドギャップエネルギーの差が比較的大きいので、より顕著となる。発光層43が、主面S7上に設けられたガイド層41を第1の軸に沿った方向(オフと平行方向)にのみ格子緩和させた上でガイド層41上においてコヒーレントに設けられているので、発光層43の井戸層47の歪みが緩和され、更に、ピエゾ分極を低減できる。加えて、井戸層47のIn組成が高くバリア層45及びバリア層49との格子不整合が大きい状況においても、井戸層での欠陥発生を抑制することができる。ミスフィット転位はガイド層41の界面S11に存在するので、このミスフィット転位がLD31の特性に及ぼす影響は比較的小さい。
 次に、第1の実施形態の実施例に係るLED1(実施例に係るLED1を、簡単のため、以下では特に、実施例LED、という)の効果について更に述べる。この実施例LEDは上述のように単一量子井戸構造を有する。実施例LEDの比較例として、三つの井戸を含む多重量子井戸構造の発光層を有する他のLED(第1比較例LEDという)を作製した。第1比較例LEDの構成は、多重量子井戸構造の発光層を有している、という点を除いて、実施例LEDと同様であった。第1比較例LEDは、実施例LEDと同様に、六方晶系窒化ガリウム系半導体のm軸方向に75度オフした面上に発光層を含むエピタキシャル層が設けられた構成を有していた。なお、以下において、単一の量子井戸層を有する単一量子井戸構造をSQWといい、三つの量子井戸層を含む多重量子井戸構造を3QWという。
 まず、実施例LED(SQW)と第1比較例LED(3QW)のPL特性の温度依存性を評価した。この評価結果を図5に示す。図5の符号G5に示すグラフは実施例LEDに対する測定結果を示しており、図5の符号G6に示すグラフは第1比較例LEDに対する測定結果を示している。図5に示すPL特性はArSHGレーザ(波長244nm)で励起しており、エピタキシャル層全体でキャリアが励起された。すなわち、発光層に含まれる井戸層の数(SQWの単一の量子井戸層であるか、又は、3QWの三つの量子井戸層であるか)にかかわらず、励起キャリア密度はほぼ同等と考えられる。温度を低下させると非発光プロセスが抑制されPL強度が向上していることがわかる。例えば温度が150K以下の場合、実施例LED及び第1比較例LEDの両者のPL強度はほぼ同等であった。これは、実施例LED及び第1比較例LEDの両者の発光層の発光効率が同等であることを意味している。
 また、実施例LED(SQW)と第1比較例LED(3QW)のEL特性の温度依存性も評価した。この評価結果を図6に示す。図6の符号G7に示すグラフは実施例LEDに対する測定結果を示しており、図6の符号G8に示すグラフは第1比較例LEDに対する測定結果を示している。図6に示すEL特性は電流値2mAで測定した測定結果である。図6に示す全温度域(500K以下の温度範囲)にわたって実施例LED(SQW)のEL強度の方が第1比較例LEDのEL強度を上回っていた。比較的低温では、実施例LED及び第1比較例LEDは、ほぼ同等のPL強度を有していたが、実施例LED及び第1比較例LEDのEL強度では差異が見られた。このような実施例LED及び第1比較例LEDのEL強度に差異が見られた、ということは、実施例LED及び第1比較例LEDのキャリアの注入効率が異なっている、ことを示唆している。以上により、SQWの実施例LEDの方が、3QWの第1比較例LEDよりも、キャリアの注入が改善されている、ことがわかった。
 また、実施例LEDの比較例として、六方晶系窒化ガリウム系半導体のGaN基板のc面上に設けられた3QWの発光層を有する他のLED(第2比較例LEDという)を更に作製した。この第2比較例LEDの構成は、発光層を含むエピ層が六方晶系窒化ガリウム系半導体のGaN基板のc面上に設けれれている、という点を除いて、第1比較例LEDと同様であった。実施例LED、第1比較例LED及び第2比較例LEDそれぞれのバイアス印加によるPLを、温度100Kにおいて評価し、ピエゾ分極の向きとキャリア注入との関連を測定した。図7には、実施例LED、第1比較例LED及び第2比較例LEDそれぞれのPL波長の印加電圧依存性の測定結果が示されている。図7の符号G9に示すグラフは実施例LEDに対する測定結果を示しており、図7の符号G10に示すグラフは第1比較例LEDに対する測定結果を示しており、図7の符号G11に示すグラフは第2比較例LEDに対する測定結果を示している。
 図7に示す測定結果によれば、印加電圧の増加に伴い、第2比較例LEDの場合にはPL波長がレッドシフトしているのに対し、実施例LED及び第1比較例LEDの場合には何れもPL波長がブルーシフトしていることがわかる。このようなPL波長の測定結果は、井戸層のピエゾ分極が、第2比較例LEDの場合「正」であり、実施例LED及び第1比較例LEDの場合「負」である、ことに対応している。
 また、図8には、実施例LED、第1比較例LED及び第2比較例LEDそれぞれのPL強度の印加電圧依存性の測定結果が示されている。図8の符号G12に示すグラフは実施例LEDに対する測定結果を示しており、図8の符号G13に示すグラフは第1比較例LEDに対する測定結果を示しており、図8の符号G14に示すグラフは第2比較例LEDに対する測定結果を示している。図8に示すPL強度の測定結果を見ると、比較的低い印加電圧において、第2比較例LEDのPL強度の変化は比較的小さいが、実施例LED及び第1比較例LEDのPL強度は比較的大きく低下していることがわかる。このようなPL強度と印加電圧との相関は、3QWの第1比較例LEDよりもSQWの実施例LEDの方が、特に顕著であった。
 図7及び図8に示す測定結果が得られた理由を、図9を参照して以下のように説明する。井戸層内の電子は、印加電圧が小さいほどn側へ引っ張られる。第2比較例LEDのように六方晶系窒化ガリウム系半導体のGaN基板のc面上に発光層を含むエピタキシャル層が設けられた構成のLEDは、井戸層のピエゾ分極が「正」となっており、バンドが図9(A)に示すように曲がるので、このバンドに含まれている井戸層Q1にトラップされた電子E1はn側に抜けにくいことがわかる。図9(A)に示す井戸層Q1において、電子E1に対するn側の壁の高さ(井戸層Q1のn側の壁の高さは、井戸層Q1内のエネルギー準位V1に対する相対値V2である。)は、電子E1に対するp側の壁の高さ(井戸層Q1のp側の壁の高さは、井戸層Q1内のエネルギー準位V1に対する相対値V3である。)よりも高い。このような理由によって、第2比較例LEDの場合には、印加電圧が比較的小さい場合でもPL強度が強かった、と考えられる。
 これに対し、実施例LED及び第1比較例LEDのように六方晶系窒化ガリウム系半導体のm軸方向に75度オフした面上に発光層を含むエピタキシャル層が設けられた構成のLEDでは、井戸層のピエゾ分極が「負」であり、バンドが図9(B)に示すように曲がるので、このバンドに含まれている井戸層Q2にトラップされた電子E1はn側に抜けやすい。図9(B)に示す井戸層Q2において、電子E1に対するn側の壁の高さ(井戸層Q2のn側の壁の高さは、井戸層Q2内のエネルギー準位V4に対する相対値V5である。)は、電子E1に対するp側の壁の高さ(井戸層Q2のp側の壁の高さは、井戸層Q2内のエネルギー準位V4に対する相対値V6である。)よりも高い。このような理由によって、実施例LED及び第1比較例LEDの場合は、印加電圧を比較的小さくするとPL強度が減少した、と考えられる。特にSQWの実施例LEDの場合は、n側に一度抜け出た電子が隣接する次の井戸層で再びトラップされることがないので、PL強度が極端に低下した、と考えられる。
 なお、順バイアスを印加してEL発光させる場合には、電子をp側に向けて移動させることになるので、上記したような印加電圧が比較的小さい場合に生じた現象とは異なる下記のような現象が生じる。すなわち、六方晶系窒化ガリウム系半導体のm軸方向に75度オフした面上に発光層を含むエピタキシャル層が設けられた構成のLEDでは、電子がp側に抜けにくくなる。従って、第1比較例LEDにおいては、六方晶系窒化ガリウム系半導体のm軸方向に75度オフした面上に発光層を含むエピタキシャル層が設けられた構成を有しており井戸層が複数存在するので、各井戸層の注入電子密度が不均一になる。よって、SQWの実施例LEDのほうが、第1比較例LEDよりも、発光効率向上や電圧低減に有効となる。
 ここで、井戸層におけるピエゾ分極(厳密には自発分極を加えた内部電界)の向きの決定方法を図10及び図11を用いて説明する。第1の実施形態の実施例及び比較例に対し、バイアス印加PLを用いて、井戸層におけるピエゾ分極の向きを決定した。バイアス印加PLは、実施例LEDや第1及び第2比較例LEDに外部電圧を加えながら、Ni/Au電極(p電極25等)の上から励起光を照射し、PLを検出する測定である。井戸層のピエゾ分極が「正」に強い場合には、順バイアスの印加によって、図10(A)に示すエネルギーギャップV7が、図10(B)に示すように、エネルギーギャップV7よりも小さい値のエネルギーギャップV8(エネルギーギャップV7>エネルギーギャップV8)に減少するので、レッドシフトが観測される。従って、順バイアスの印加によってレッドシフトが観測された場合には、井戸層のピエゾ分極は「正」である、と決定できる。また、井戸層のピエゾ分極が「負」に強い場合には、順バイアスの印加によって、図11(A)に示すエネルギーギャップV9が、図11(B)に示すように、エネルギーギャップV9よりも大きい値のエネルギーギャップV10(エネルギーギャップV9<エネルギーギャップV10)に増加するので、ブルーシフトが観測される。従って、順バイアスの印加によってブルーシフトが観測された場合には、井戸層のピエゾ分極は「負」である、と決定できる。
 次に、SQWの発光層を含むエピタキシャル層がサファイア基板のc面上に設けられたLED(470nm帯の波長の光を発光し、第3比較例LEDという)と、3QWの発光層を含むエピタキシャル層がサファイア基板のc面上に設けられたLED(470nm帯の波長の光を発光し、第4比較例LEDという)と作製し、第3及び第4比較例LEDと実施例LEDのそれぞれに対するCL観察(CL:カソードルミネッセンス)を行った。図12には、第3比較例LEDに対して行われたCL観察の観察結果が示され、図13には、第4比較例LEDに対して行われたCL観察の観察結果が示され、図14には、実施例LEDに対して行われたCL観察の観察結果が示される。
 3QWの第4比較例LEDに対するCL観察の観察結果(図13に示す観察結果)によれば、発光は比較的均一となっているが、これに対し、SQWの第3比較例LEDに対するCL観察の観察結果(図12に示す観察結果)には、非発光領域が認められた。c面上ではInGaN井戸層のIn組成や膜厚の均一成長が難しく、よって、このc面内の歪み分布が不均一となるので、非発光領域が増加する。このような理由から、SQWの第3比較例LEDでは、非発光領域が認めれれた、と考えられる。
 これに対し、3QWの第4比較例LEDの場合には、第3比較例LEDと同様にc面上に発光層を含むエピタキシャル層が設けられているが、複数の井戸層が互いに緩衝効果を発揮するので、発光の不均一性が改善され、従って、発光が比較的均一となる。このような理由から、3QWの第4比較例LEDでは、発光が比較的均一であった、と考えられる。
 一方、SQWの実施例LEDに対するCL観察の観察結果(図14に示す観察結果)によれば、発光の均一性が高い、ということがわかった。実施例LEDは、上述したように六方晶系窒化ガリウム系半導体のm軸方向に75度オフした面上にSQWの発光層を含むエピタキシャル層が設けられた構成のLEDであり、このような六方晶系窒化ガリウム系半導体のm軸方向に75度オフした面上に形成されたInGaN井戸層の結晶構造の均一性は比較的高い、という理由によって、実施例LEDでは、発光が比較的均一であった、と考えられる。よって、第1の実施形態の実施例に係るSQWの効果は、InGaN井戸層の均一成長が可能となる面方位や成長条件において特に大きいと言える。基板主面がc軸に直交する面から63度以上80度以下または100度以上117度以下の範囲で傾斜している場合Inが取り込まれやすくなり、InGaN井戸層の均一性が優れたものになる。
 以上、好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
 以上説明したように、本実施の形態によれば、井戸層へのキャリアの注入効率が向上された窒化物系半導体発光素子を提供することを目的とする。
1…LED、11,43…発光層、13,17,45,49…バリア層、15,47…井戸層、19…p型窒化ガリウム系半導体領域、21,55…電子ブロック層、23,59…コンタクト層、25,63…p電極、27…パッド電極、29,65…n電極、31…LD、33,5…基板、35…n型窒化ガリウム系半導体領域、37…n型半導体層、39,57…クラッド層、41,51…ガイド層、53…p型窒化ガリウム系半導体領域、61…絶縁膜、7…n型窒化ガリウム系半導体領域、9…緩衝層、S1,S7…主面、S11,S3,S9…界面、S5…基準平面

Claims (8)

  1.  窒化物系半導体発光素子であって、
     六方晶系窒化ガリウム系半導体からなる基板と、
     前記基板の主面に設けられたn型窒化ガリウム系半導体領域と、
     前記n型窒化ガリウム系半導体領域上に設けられた単一量子井戸構造の発光層と、
     前記発光層上に設けられたp型窒化ガリウム系半導体領域と
     を備え、
     前記発光層は、前記n型窒化ガリウム系半導体領域と前記p型窒化ガリウム系半導体領域との間に設けられており、
     前記発光層は、井戸層及び障壁層を含み、
     前記井戸層は、InGaNであり、
     前記主面は、前記六方晶系窒化ガリウム系半導体のc軸方向に直交する面から63度以上80度以下または100度以上117度以下の範囲内の傾斜角で傾斜した基準平面に沿って延びている、
     ことを特徴とする窒化物系半導体発光素子。
  2.  前記井戸層に生じるピエゾ分極の向きは、前記p型窒化ガリウム系半導体領域から前記n型窒化ガリウム系半導体領域に向かう方向と一致する、ことを特徴とする請求項1に記載の窒化物系半導体発光素子。
  3.  前記障壁層のバンドギャップエネルギーと前記井戸層のバンドギャップエネルギーとの差は0.7eV以上である、ことを特徴とする請求項1又は請求項2に記載の窒化物系半導体発光素子。
  4.  前記発光層は、450nm以上600nm以下の範囲内にあるピーク波長の光を発光する、ことを特徴とする請求項1~請求項3の何れか一項に記載の窒化物系半導体発光素子。
  5.  InGaN層を更に備え、
     前記InGaN層は、前記n型窒化ガリウム系半導体領域と前記発光層との間に設けられ、
     前記InGaN層の前記基板側の第1の界面に直交し前記c軸を含む面と前記第1の界面とが共有する第1の軸の方向に沿った前記InGaN層の格子定数は、前記主面に直交し前記c軸を含む面と前記主面とが共有する第2の軸の方向に沿った前記基板の格子定数よりも大きく、前記第1の軸と前記c軸とに直交する第3の軸の方向に沿った前記InGaN層の格子定数は、前記第2の軸と前記c軸とに直交する第4の軸の方向に沿った前記基板の格子定数に等しい、ことを特徴とする請求項1~請求項4の何れか一項に記載の窒化物系半導体発光素子。
  6.  前記InGaN層は前記第1の界面に生じたミスフィット転位を含み、当該ミスフィット転位は前記第3の軸の方向に延びており、当該ミスフィット転位の密度は5×103cm-1以上1×105cm-1以下の範囲内にある、ことを特徴とする請求項5に記載の窒化物系半導体発光素子。
  7.  前記n型窒化ガリウム系半導体領域はn型のInAlGaN層を含み、
     前記InAlGaN層の前記基板側の第2の界面に直交し前記c軸を含む面と前記第2の界面とが共有する第5の軸の方向に沿った前記InAlGaN層の格子定数は、前記第2の軸の方向に沿った前記基板の格子定数よりも大きく、前記第5の軸と前記c軸とに直交する第6の軸の方向に沿った前記InAlGaN層の格子定数は、前記第4の軸の方向に沿った前記基板の格子定数に等しい、ことを特徴とする請求項1~請求項5の何れか一項に記載の窒化物系半導体発光素子。
  8.  前記InAlGaN層は前記第2の界面に生じたミスフィット転位を含み、当該ミスフィット転位は前記第6の軸の方向に延びており、当該ミスフィット転位の密度は5×103cm-1以上1×105cm-1以下の範囲内にある、ことを特徴とする請求項7に記載の窒化物系半導体発光素子。
PCT/JP2010/060054 2009-07-15 2010-06-14 窒化物系半導体発光素子 WO2011007637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800018062A CN102099935B (zh) 2009-07-15 2010-06-14 氮化物类半导体发光元件
EP10787665.8A EP2455988A4 (en) 2009-07-15 2010-06-14 NITRIDE-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT
US12/999,987 US8405066B2 (en) 2009-07-15 2010-06-14 Nitride-based semiconductor light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-166923 2009-07-15
JP2009166923 2009-07-15
JP2010-021307 2010-02-02
JP2010021307A JP5234022B2 (ja) 2009-07-15 2010-02-02 窒化物系半導体発光素子

Publications (1)

Publication Number Publication Date
WO2011007637A1 true WO2011007637A1 (ja) 2011-01-20

Family

ID=43449247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060054 WO2011007637A1 (ja) 2009-07-15 2010-06-14 窒化物系半導体発光素子

Country Status (7)

Country Link
US (1) US8405066B2 (ja)
EP (1) EP2455988A4 (ja)
JP (1) JP5234022B2 (ja)
KR (1) KR101213860B1 (ja)
CN (1) CN102099935B (ja)
TW (1) TW201121095A (ja)
WO (1) WO2011007637A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185056A (zh) * 2011-05-05 2011-09-14 中国科学院半导体研究所 提高电子注入效率的氮化镓基发光二极管
US20120230359A1 (en) * 2011-03-07 2012-09-13 Sumitomo Electric Industries, Ltd. Quantum cascade laser
WO2013128894A1 (ja) * 2012-02-27 2013-09-06 国立大学法人山口大学 半導体発光素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438542B1 (ja) * 2017-07-27 2018-12-12 日機装株式会社 半導体発光素子
CN114497303B (zh) * 2022-04-14 2022-06-24 江苏第三代半导体研究院有限公司 长波长led同质外延结构、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347585A (ja) * 2002-03-19 2003-12-05 Nobuhiko Sawaki 半導体発光素子およびその製造方法
JP2007134507A (ja) * 2005-11-10 2007-05-31 Sumitomo Electric Ind Ltd 半導体発光素子、および半導体発光素子を作製する方法
JP2008060375A (ja) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd 窒化物系半導体発光素子の製造方法および窒化物系半導体発光素子
JP2009088230A (ja) * 2007-09-28 2009-04-23 Furukawa Electric Co Ltd:The 半導体発光素子およびその製造方法
JP4475358B1 (ja) * 2008-08-04 2010-06-09 住友電気工業株式会社 GaN系半導体光素子、GaN系半導体光素子を作製する方法、及びエピタキシャルウエハ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780691B2 (ja) 1994-12-02 1998-07-30 日亜化学工業株式会社 窒化物半導体発光素子
US6072197A (en) * 1996-02-23 2000-06-06 Fujitsu Limited Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy
JP4010318B2 (ja) * 1996-03-22 2007-11-21 住友化学株式会社 発光素子
WO2000016455A1 (fr) * 1998-09-10 2000-03-23 Rohm Co., Ltd. Element lumineux semi-conducteur et laser a semi-conducteur
US7315050B2 (en) * 2001-05-28 2008-01-01 Showa Denko K.K. Semiconductor device, semiconductor layer and production method thereof
US7045808B2 (en) * 2003-12-26 2006-05-16 Hitachi Cable, Ltd. III-V nitride semiconductor substrate and its production lot, and III-V nitride semiconductor device and its production method
KR100568299B1 (ko) * 2004-03-31 2006-04-05 삼성전기주식회사 질화갈륨계 반도체 발광소자
US20070221932A1 (en) * 2006-03-22 2007-09-27 Sanyo Electric Co., Ltd. Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device
JP5286723B2 (ja) 2007-09-14 2013-09-11 国立大学法人京都大学 窒化物半導体レーザ素子
JP5003527B2 (ja) * 2008-02-22 2012-08-15 住友電気工業株式会社 Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
US20090310640A1 (en) * 2008-04-04 2009-12-17 The Regents Of The University Of California MOCVD GROWTH TECHNIQUE FOR PLANAR SEMIPOLAR (Al, In, Ga, B)N BASED LIGHT EMITTING DIODES
US7919764B2 (en) * 2008-05-06 2011-04-05 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for enhanced terahertz radiation from high stacking fault density
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法
EP2543119B1 (en) * 2010-03-04 2020-02-12 The Regents of The University of California Semi-polar iii-nitride optoelectronic devices on m-plane gan substrates with miscuts in the ranges 1 to 15 degrees or -1 to -15 degrees in the c-direction
US8761218B2 (en) * 2010-04-05 2014-06-24 The Regents Of The University Of California Aluminum gallium nitride barriers and separate confinement heterostructure (SCH) layers for semipolar plane III-nitride semiconductor-based light emitting diodes and laser diodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347585A (ja) * 2002-03-19 2003-12-05 Nobuhiko Sawaki 半導体発光素子およびその製造方法
JP2007134507A (ja) * 2005-11-10 2007-05-31 Sumitomo Electric Ind Ltd 半導体発光素子、および半導体発光素子を作製する方法
JP2008060375A (ja) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd 窒化物系半導体発光素子の製造方法および窒化物系半導体発光素子
JP2009088230A (ja) * 2007-09-28 2009-04-23 Furukawa Electric Co Ltd:The 半導体発光素子およびその製造方法
JP4475358B1 (ja) * 2008-08-04 2010-06-09 住友電気工業株式会社 GaN系半導体光素子、GaN系半導体光素子を作製する方法、及びエピタキシャルウエハ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2455988A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230359A1 (en) * 2011-03-07 2012-09-13 Sumitomo Electric Industries, Ltd. Quantum cascade laser
US8817835B2 (en) * 2011-03-07 2014-08-26 Sumitomo Electric Industries, Ltd. Quantum cascade laser
CN102185056A (zh) * 2011-05-05 2011-09-14 中国科学院半导体研究所 提高电子注入效率的氮化镓基发光二极管
CN102185056B (zh) * 2011-05-05 2012-10-03 中国科学院半导体研究所 提高电子注入效率的氮化镓基发光二极管
WO2013128894A1 (ja) * 2012-02-27 2013-09-06 国立大学法人山口大学 半導体発光素子
JPWO2013128894A1 (ja) * 2012-02-27 2015-07-30 国立大学法人山口大学 半導体発光素子

Also Published As

Publication number Publication date
CN102099935B (zh) 2013-06-26
EP2455988A1 (en) 2012-05-23
JP5234022B2 (ja) 2013-07-10
US20110227035A1 (en) 2011-09-22
KR101213860B1 (ko) 2012-12-18
JP2011040709A (ja) 2011-02-24
CN102099935A (zh) 2011-06-15
KR20110020246A (ko) 2011-03-02
EP2455988A4 (en) 2014-03-12
US8405066B2 (en) 2013-03-26
TW201121095A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP4924185B2 (ja) 窒化物半導体発光素子
WO2013084926A1 (ja) 窒化物半導体発光素子およびその製造方法
JP5087540B2 (ja) 窒化物半導体発光素子
JP4775455B2 (ja) Iii族窒化物半導体レーザ、及びiii族窒化物半導体レーザを作製する方法
WO2011077473A1 (ja) 窒化物半導体発光素子およびその製造方法
US20110212560A1 (en) Method for fabricating nitride semiconductor light emitting device and method for fabricating epitaxial wafer
JP4074290B2 (ja) 半導体発光素子及びその製造方法
US8803274B2 (en) Nitride-based semiconductor light-emitting element
JPWO2007138658A1 (ja) 窒化物半導体発光素子
WO2013002389A1 (ja) Iii族窒化物半導体素子、及び、iii族窒化物半導体素子の製造方法
JP5234022B2 (ja) 窒化物系半導体発光素子
JP5522147B2 (ja) 窒化物半導体発光素子、及び、窒化物半導体発光素子の作製方法
JP5252042B2 (ja) Iii族窒化物半導体発光素子、及びiii族窒化物半導体発光素子を作製する方法
JP2009245982A (ja) 窒化物発光素子
JP2009259864A (ja) Iii族窒化物半導体レーザ
JP5733295B2 (ja) 窒化物半導体発光素子、窒化物半導体発光素子を作製する方法
JP6115092B2 (ja) 半導体発光装置及び半導体発光装置の製造方法
KR101161970B1 (ko) Ⅲ족 질화물 반도체 레이저 다이오드
JP5379216B2 (ja) Iii族窒化物半導体レーザ
WO2014127136A1 (en) High power blue-violet iii-nitride semipolar laser diodes
JP2011188000A (ja) Iii族窒化物半導体レーザ、及びiii族窒化物半導体レーザを作製する方法
JPWO2005022711A1 (ja) 窒化物半導体発光素子およびその製造方法
JP2014078763A (ja) 窒化物半導体発光素子、及び、窒化物半導体発光素子の作製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001806.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107027739

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12999987

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010787665

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE