WO2011002028A1 - 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜 - Google Patents

圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜 Download PDF

Info

Publication number
WO2011002028A1
WO2011002028A1 PCT/JP2010/061162 JP2010061162W WO2011002028A1 WO 2011002028 A1 WO2011002028 A1 WO 2011002028A1 JP 2010061162 W JP2010061162 W JP 2010061162W WO 2011002028 A1 WO2011002028 A1 WO 2011002028A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
scandium
atomic
piezoelectric
content
Prior art date
Application number
PCT/JP2010/061162
Other languages
English (en)
French (fr)
Inventor
守人 秋山
一彦 加納
明彦 勅使河原
Original Assignee
独立行政法人産業技術総合研究所
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 株式会社デンソー filed Critical 独立行政法人産業技術総合研究所
Priority to US13/380,995 priority Critical patent/US9246461B2/en
Priority to DE112010002790.0T priority patent/DE112010002790B4/de
Priority to CN201080028605.1A priority patent/CN102474234B/zh
Priority to KR1020147017405A priority patent/KR20140099919A/ko
Priority to KR1020127000602A priority patent/KR101511349B1/ko
Publication of WO2011002028A1 publication Critical patent/WO2011002028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a method for manufacturing a piezoelectric thin film, and more particularly to a method for manufacturing a piezoelectric thin film including an aluminum nitride thin film to which scandium is added on a substrate.
  • IF and RF filters can be cited.
  • Specific examples of the IF and RF filters include a SAW filter that is a filter using surface acoustic wave resonators (Surface ⁇ ⁇ Acoustic Wave Resonator; SAWR).
  • SAW filter is a filter that uses a resonator that utilizes acoustic waves that travel on the surface of a solid, and responds to the strict demands of users through improvements in design and production technology.
  • the SAW filter is approaching the limit of improvement in characteristics as the frequency of use increases.
  • FBAR thin film bulk acoustic resonator
  • RF-MEMS is a technology that has been attracting attention in recent years.
  • MEMS which is a technology for manufacturing devices such as ultra-small actuators, sensors, and resonators by creating mechanical microstructures mainly on a semiconductor substrate, is an RF front. It is applied to the end.
  • An FBAR filter which is one of RF-MEMS devices is a filter using a resonator using a thin film thickness longitudinal vibration mode exhibiting piezoelectric response.
  • it is a filter using a resonator that uses a phenomenon in which a piezoelectric thin film causes a longitudinal vibration in the thickness of an input high-frequency electric signal, and the vibration resonates in the thickness direction of the thin film.
  • the FBAR filter having such characteristics has low loss and enables operation in a wide band, while realizing further downsizing and power saving of portable devices.
  • RF-MEMS capacitors and RF-MEMS switches which are RF-MEMS devices other than FBAR filters, also realize low loss, high isolation, and low distortion in the high frequency band by utilizing the piezoelectric phenomenon. Yes.
  • Patent Document 1 discloses that a piezoelectric thin film including an aluminum nitride thin film to which scandium is added as a third component can obtain good piezoelectric response.
  • JP 2009-010926 A Publication Date: January 15, 2009
  • the piezoelectric thin film described in Patent Document 1 when the total amount of scandium atoms and aluminum atoms in the aluminum nitride thin film is 100 atomic%, the number of scandium atoms is in the range of 35 to 40 atomic%. In this case, the piezoelectric response is reduced as compared with the case where no scandium is contained (see FIG. 1B). That is, the piezoelectric thin film described in Patent Document 1 still has room for improvement.
  • the present invention has been made in view of the above-mentioned problems, and its main purpose is that the number of scandium atoms is in the range of 35 to 40 atomic% in a piezoelectric thin film including an aluminum nitride thin film to which scandium is added.
  • an object of the present invention is to provide a manufacturing method capable of manufacturing a piezoelectric thin film in which the piezoelectric response does not decrease as compared with the case where no scandium is contained.
  • the inventors of the present invention have intensively studied a method for manufacturing a piezoelectric thin film in which the piezoelectric response does not decrease even when the number of scandium atoms is in the range of 35 to 40 atomic%.
  • a method for manufacturing a piezoelectric thin film in which the piezoelectric response does not decrease even when the number of scandium atoms is in the range of 35 to 40 atomic% As a result, when sputtering scandium and aluminum, By making the substrate temperature within a certain temperature range, it was found that the piezoelectric response in the piezoelectric thin film was not lowered, and the present invention was completed.
  • the present invention has been completed based on such novel findings, and includes the following inventions.
  • the piezoelectric thin film manufacturing method is a method for manufacturing a piezoelectric thin film including an aluminum nitride thin film containing scandium on a substrate, and includes an atmosphere containing at least nitrogen gas.
  • Aluminum and scandium so that the scandium content is in the range of 0.5 to 50 atomic% when the total amount of scandium atoms and aluminum atoms in the aluminum nitride thin film is 100 atomic%.
  • the substrate temperature in the sputtering step is in the range of 5 to 450 ° C.
  • the scandium content is 35 atomic% to 40 atomic%.
  • the total amount of scandium atoms and the number of aluminum atoms in the aluminum nitride thin film is obtained by using aluminum and scandium.
  • Sputtering is performed so that the scandium content is in the range of 0.5 to 50 atomic% when the content is 100 atomic%.
  • the temperature of the substrate during sputtering is set to a range of 5 to 450 ° C.
  • (c) is the case where the substrate temperature is 580 ° C. and the Sc content is 43 atomic%
  • (d) is the case where the substrate temperature is 400 ° C. This is a case where the content is 0 atomic%
  • (e) is a case where the Sc content is 36 atomic% at a substrate temperature of 400 ° C.
  • (f) is a case where the Sc content is 43 atomic% at a substrate temperature of 400 ° C.
  • (G) is a figure which shows the relationship between Sc content rate when the substrate temperature at the time of sputtering is set to 400 degreeC or 580 degreeC, and the particle size of Sc containing aluminum nitride.
  • the piezoelectric thin film according to the present invention is used for a piezoelectric element utilizing a piezoelectric phenomenon
  • its specific application is not particularly limited.
  • it can be used for a SAW device or an RF-MEMS device.
  • the “piezoelectric body” in this specification and the like means a substance having a property of generating a potential difference when a mechanical force is applied, that is, piezoelectricity (hereinafter also referred to as piezoelectric response).
  • the “piezoelectric thin film” means a thin film having the above properties.
  • atomic% in this specification and the like refers to atomic percentage, and in this specification and the like, the total amount of scandium atoms and aluminum atoms is 100 atomic% unless otherwise specified. It represents the number of scandium atoms or the number of aluminum atoms. In other words, it can be paraphrased as the concentration of scandium atoms and aluminum atoms in aluminum nitride containing scandium. In the present specification, the atomic percentage of scandium will be described below as the content of scandium with respect to aluminum nitride.
  • An aluminum nitride thin film containing scandium (hereinafter also referred to as an Sc-containing aluminum nitride thin film) uses a general formula, and Sc x Al 1-x N (wherein x represents a scandium content, 0.005 to (It is a range of 0.5).
  • an aluminum nitride thin film having a scandium content of 10 atomic% is expressed as “Sc 0.10 Al 0.90 N”.
  • the structure of the piezoelectric thin film according to the present invention will be described below.
  • an Sc-containing aluminum nitride thin film is formed on a substrate.
  • the Sc-containing aluminum nitride thin film contains scandium atoms in the range of 0.5 to 50 atomic%, where the total amount of scandium atoms and aluminum atoms is 100 atomic%.
  • the substrate is not particularly limited as long as it can hold the Sc-containing aluminum nitride thin film without deformation.
  • a material of the substrate for example, silicon (Si) single crystal or a material in which silicon, diamond and other polycrystalline films are formed on the surface of a base material such as Si single crystal can be used.
  • the piezoelectric thin film according to the present invention preferably has an FWHM of an X-ray rocking curve of 3.2 degrees or less.
  • the scandium content at which the FWHM of the X-ray rocking curve is 3.2 degrees or less is 0.5 atomic% to 45 atomic%. Therefore, it can be said that the piezoelectric thin film according to the present invention preferably has a scandium content of 0.5 atomic% to 45 atomic%.
  • the details of the measurement conditions of the X-ray rocking curve in the piezoelectric thin film are shown below, and the description thereof is omitted here.
  • the piezoelectric thin film according to the present invention preferably has a surface roughness Ra of a value smaller than 1.2 nm.
  • the fact that the FWHM of the X-ray rocking curve is 3.2 degrees or less and the surface roughness Ra of the piezoelectric thin film is less than 1.2 nm means that the degree of crystal orientation is large. That is, by setting the FWHM of the X-ray rocking curve and the surface roughness of the piezoelectric thin film within the above range, the degree of crystal orientation is increased, so that the piezoelectricity of the piezoelectric thin film can be improved. it can.
  • the method for manufacturing a piezoelectric thin film according to the present invention includes an atmosphere containing nitrogen gas (N 2 ) (for example, a nitrogen gas (N 2 ) atmosphere or a mixed atmosphere of nitrogen gas (N 2 ) and argon gas (Ar).
  • N 2 nitrogen gas
  • Ar argon gas
  • a sputtering step of sputtering is included so as to be in the range of 0.5 to 50 atomic%.
  • the substrate temperature in the sputtering process is set to 5 to 450 ° C. Even within this temperature range, the substrate temperature in the sputtering step is preferably 200 to 400 ° C., and most preferably 400 ° C.
  • the substrate temperature in the sputtering step By setting the substrate temperature in the sputtering step to 5 to 450 ° C., it is possible to form a Sc-containing aluminum nitride thin film having excellent adhesion and high purity by forming a thin film by sputtering.
  • the substrate temperature in the sputtering process By setting the substrate temperature in the sputtering process to 5 to 450 ° C., the piezoelectric response within the scandium content of 35 to 40 atomic% is compared with the piezoelectric response of the aluminum nitride thin film with a scandium content of 0%. Can be improved.
  • the substrate temperature in the sputtering process is set to 200 to 400 ° C., it is possible to prevent a decrease in piezoelectric response in the range of scandium content of 35 to 40 atomic%, which has conventionally been reduced in piezoelectric response. it can. This can further reduce the incidence of defective products in the manufactured piezoelectric thin film, thereby improving the manufacturing quality of the piezoelectric thin film.
  • scandium and aluminum may be used, but it is preferable to simultaneously scan scandium and aluminum.
  • an evenly distributed Sc-containing aluminum nitride thin film can be formed without uneven distribution of scandium and aluminum.
  • the substrate temperature is set in the temperature range of room temperature to 450 ° C. during the sputtering process. As described above, the substrate temperature during the sputtering step is most preferably 400 ° C. in this temperature range.
  • FIG. 2A is a diagram showing the X-ray diffraction intensity when the substrate temperature is changed between 27 to 580 ° C. when forming the Sc 0.43 Al 0.57 N thin film on the silicon substrate. is there.
  • the X-ray diffraction intensity is measured using M03X-HF manufactured by Mac Science.
  • a single peak is observed at 37.00 ° when the substrate temperature is 27 to 400 ° C., and is maximum when the substrate temperature is 400 ° C.
  • the substrate temperature exceeds 500 ° C.
  • peaks are observed at two angles of 36.06 ° and 37.30 °, and the peak size also decreases.
  • the substrate temperature is 580 ° C.
  • a single peak is observed again at 37.30 °, but the peak size further decreases.
  • the peak is maximum when the substrate temperature is 400 ° C., and when it exceeds 500 ° C., the peak position shifts to a higher angle and the peak size decreases. It is shown.
  • the substrate temperature is 400 ° C.
  • the crystallinity of the Sc-containing aluminum nitride becomes the highest
  • the lattice constant c of the crystal becomes shorter.
  • normal temperature in this specification and the like is a temperature defined in the JIS standard (JIS Z 8703) and means a temperature in the range of 20 ° C. ⁇ 15 ° C. (ie, 5 to 35 ° C.). .
  • the scandium content in the Sc-containing aluminum nitride thin film may be in the range of 0.5 to 50 atomic%, more preferably in the range of 35 to 43 atomic%, and most preferably 43 atomic%.
  • the Sc-containing aluminum nitride thin film in the piezoelectric thin film according to the present invention has a scandium content of 0.5 to 50 atomic% so as to exceed the piezoelectric response when the scandium content is 0 atomic%.
  • FIG. 2B is a graph showing changes in X-ray diffraction intensity when the scandium content is changed between 0 and 55 atomic%. Note that the X-ray diffraction intensity was measured using M03X-HF manufactured by Mac Science, as before.
  • the X-ray diffraction intensity increases as the scandium content increases up to 41 atomic%. However, when the scandium content is 45 atomic% or more, the X-ray diffraction intensity sharply decreases. Thus, FIG. 2B shows that the peak is maximized when the scandium content is 43 atomic%.
  • FIG. 1 (a) shows that when the scandium content is increased from 0 to 43 atomic%, the piezoelectric response increases accordingly.
  • the piezoelectric response of the piezoelectric thin film becomes the maximum value (about 28 pC / N). This is larger than the piezoelectric response (about 25 pC / N) when the substrate temperature is 580 ° C.
  • the piezoelectric thin film according to the present invention differs from the conventional piezoelectric thin film including the Sc-containing aluminum nitride thin film in that the scandium content is between 35 and 40 atomic%. There is no reduction in responsiveness.
  • the target power density of aluminum is fixed within the range of 7.9 W / cm 2 in the sputtering step
  • the target power density of scandium is The range may be 0.05 to 10 W / cm 2 .
  • the “power density” in this specification and the like is a value obtained by dividing the sputtering power by the target area.
  • the term “target power density” simply refers to the target power density of scandium unless otherwise specified.
  • the case where the target power density is in the range of 0.05 to 10 W / cm 2 corresponds to the case where the scandium content is in the range of 0.5 to 50 atomic%.
  • the target power density may be in the range of 6.5 to 8.5 W / cm 2 .
  • the sputtering step other conditions are not particularly limited as long as the substrate temperature is in the range of room temperature to 450 ° C. and the target power density is in the above range.
  • the sputtering pressure and the sputtering time can be appropriately set according to the piezoelectric thin film to be produced.
  • the piezoelectric response in a piezoelectric thin film having a scandium content of 35 to 40 atomic% can be improved as compared with an aluminum nitride thin film not containing Sc.
  • the Sc-containing aluminum nitride thin film can be more easily improved in piezoelectric response.
  • the provided piezoelectric thin film can be manufactured.
  • the manufacturing quality of the piezoelectric thin film can be improved.
  • the temperature of the substrate in the sputtering step is in the range of 200 to 400 ° C.
  • the temperature of the substrate in the sputtering step is 400 ° C.
  • sputtering is performed so that the scandium content is in a range of 35 to 40 atomic%.
  • the piezoelectric thin film manufactured by the manufacturing method according to the present invention is also included in the category of the present invention.
  • the manufactured piezoelectric thin film preferably has a full width at half maximum of the X-ray rocking curve of 3.2 degrees or less.
  • the manufactured piezoelectric thin film has a surface arithmetic average roughness smaller than 1.2 nm.
  • Example 1 Metal for producing scandium-added aluminum nitride thin film
  • Aluminum and scandium were sputtered onto the silicon substrate in a nitrogen atmosphere to produce a Sc-containing aluminum nitride thin film on the silicon substrate.
  • a dual RF magnetron reactive sputtering apparatus (ULVAC, MPS series) was used.
  • the sputtering conditions were a substrate temperature of 400 ° C., a nitrogen gas concentration of 40%, and a particle growth pressure of 0.25 Pa.
  • aluminum and scandium were sputtered onto a target having a diameter of 50.8 mm with a target power of 160 W, respectively.
  • the sputtering chamber was depressurized to 1.2 ⁇ 10 ⁇ 6 Pa or less, and 99.999% argon and 99.999% nitrogen gas were introduced.
  • the target was sputtered for 3 minutes under the same conditions as the vapor deposition conditions before vapor deposition.
  • the scandium content in the produced Sc-containing aluminum nitride thin film was calculated based on the result of analysis by an energy dispersive X-ray fluorescence analyzer (Horida, EX-320X).
  • piezoelectric response measurement method The piezoelectric response of the produced Sc-containing aluminum nitride thin film was measured at a weight of 0.25 N and a frequency of 110 Hz using a piezometer (PM100 manufactured by Piezoptest).
  • Crystal structure analysis by X-ray The crystal structure and orientation of the Sc-containing aluminum nitride in the prepared Sc-containing aluminum nitride thin film were measured by a fully automatic X-ray diffractometer (M03X-HF, manufactured by Mac Science) using CuK ⁇ rays as an X-ray source.
  • the length of the c axis in the crystal lattice was calculated based on the measured X-ray diffraction pattern. Further, the full width at half maximum (FWHM) of the X-ray rocking curve was measured.
  • Example 1 A Sc-containing aluminum nitride thin film was produced by the same production method as in Example 1 except that the temperature of the silicon substrate in sputtering was 580 ° C.
  • Example 2 the piezoelectric response of the Sc-containing aluminum nitride thin film produced by the same method as in Example 1 was measured. Furthermore, the length of the c-axis and the full width at half maximum (FWHM) of the X-ray rocking curve in the crystal lattice were also measured by the same method as in Example 1.
  • FWHM full width at half maximum
  • Example 1 [Measurement results of Example 1 and Comparative Example 1] The piezoelectric response measured in Example 1 is shown in FIG. 1 (a), and the piezoelectric response measured in Comparative Example 1 is shown in FIG. 1 (b).
  • the Sc-containing aluminum nitride thin film prepared at a substrate temperature of 400 ° C. not only prevents the decrease in piezoelectric response at a Sc content of 35 to 40 atomic%, but also contains scandium as shown in FIG. It was confirmed that the piezoelectric response was improved as compared with the case where the control was not performed.
  • FIGS. 3 (a) and 3 (b) parameters calculated based on the X-ray diffraction patterns of the Sc-containing aluminum nitride thin film produced in Example 1 and the Sc-containing aluminum nitride thin film produced in Comparative Example 1 are shown in FIGS. 3 (a) and 3 (b).
  • . 3A is a diagram showing the length of the c-axis in the crystal lattice of the produced Sc-containing aluminum nitride
  • FIG. 3B is the FWHM (half value) of the X-ray rocking curve of the produced Sc-containing aluminum nitride.
  • Example 1 substrate temperature 400 ° C.
  • Comparative Example 1 substrate temperature 580 ° C.
  • the Sc content exceeds 30 atomic%
  • the value of the lattice constant c is It dropped sharply.
  • Example 1 substrate temperature 400 ° C.
  • Comparative Example 1 substrate temperature 580 ° C.
  • the value of FWHM increased rapidly when the Sc content exceeded 30 atomic%, and decreased rapidly when it exceeded 35 atomic%.
  • Sc content rate exceeded 43 atomic%, it increased rapidly again.
  • the FWHM of the rocking curve was measured using a fully automatic X-ray diffractometer (MXP3VA-B type) manufactured by Mac Science Co., Ltd.
  • MXP3VA-B type fully automatic X-ray diffractometer
  • Cu—K ⁇ was used as the X-ray source
  • slits of D: 1 °, S: 1 °, and R: 0.3 ° were used.
  • Example 2 The surface roughness of the Sc-containing aluminum nitride thin film in which the substrate temperature during sputtering was 400 ° C. and the scandium content was 0 atomic%, 36 atomic%, and 43 atomic% was measured. The particle size (particle size) of the Sc-containing aluminum nitride was also measured.
  • surface roughness was measured using an atomic force microscope (AFM).
  • AFM atomic force microscope
  • surface roughness in this specification and the like means arithmetic average roughness (Ra).
  • 4 (a) to 4 (g) are diagrams in which the surface roughness and crystal grain size in Example 2 and Comparative Example 2 were measured using an atomic force microscope.
  • FIG. 4 (a) shows a substrate temperature of 580 ° C. The case where the Sc content is 0 atomic%, (b) is the case where the Sc content is 36 atomic% at the substrate temperature of 580 ° C., and (c) is the case where the Sc content is 43 atomic% at the substrate temperature of 580 ° C. , (D) is the case where the substrate temperature is 400 ° C.
  • FIG. 4G is a graph showing the relationship between the Sc content and the particle size of the Sc-containing aluminum nitride when the substrate temperature during sputtering is 400 ° C. or 580 ° C.
  • the substrate temperature is 400. There was almost no difference in the surface roughness at 580 ° C. or 580 ° C.
  • the surface roughness is 0.5 nm at a substrate temperature of 400 ° C.
  • the substrate temperature is At 580 ° C.
  • the surface roughness was 2.7 nm.
  • FIG. 4G when the substrate temperature was 580 ° C. and the scandium content was 36 atomic%, the size of the particles was non-uniform.
  • Example 3 The piezoelectric responsiveness of the Sc-containing aluminum nitride thin film with an Sc content of 37 atomic% when the substrate temperature during sputtering is normal temperature (20 ° C.), 200 ° C., 400 ° C., 450 ° C., 500 ° C. and 580 ° C. It was measured.
  • the conditions other than the substrate temperature and the piezoelectric response measurement conditions in the production of the Sc-containing aluminum nitride thin film are the same as those in Example 1.
  • FIG. 5 shows the piezoelectric response when the substrate temperature is normal temperature (20 ° C.), 200 ° C., 400 ° C., 450 ° C., 500 ° C. and 580 ° C.
  • the piezoelectric response increased with increasing substrate temperature from room temperature to 400 ° C., and showed a maximum value at 400 ° C.
  • the piezoelectric response decreased sharply, and at 500 ° C., the value became lower than the piezoelectric response of the aluminum nitride thin film having an Sc content of 0 atomic%.
  • the phenomenon that the piezoelectric response is lower at the Sc content of 35 to 40 atomic% than when the Sc content is 0 atomic% is that the substrate temperature during sputtering is from room temperature (20 ° C.) to It was shown that it can be prevented by setting the temperature to 450 ° C.
  • the piezoelectric thin film manufactured by the manufacturing method according to the present invention can be suitably used in a device using a piezoelectric phenomenon such as an RF-MEMS device.
  • the RF-MEMS device including the piezoelectric thin film manufactured by the manufacturing method according to the present invention can be suitably used for small and high-performance electronic equipment such as a mobile phone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Physical Vapour Deposition (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 本発明に係るスカンジウムを含有する窒化アルミニウム薄膜を備えた圧電体薄膜の製造方法は、少なくとも窒素ガスを含む雰囲気下において、アルミニウムとスカンジウムとでスパッタリングするスパッタリング工程を含む。本発明に係る製造方法におけるスパッタリング工程では、基板温度を5~450℃の範囲で、スカンジウムの含有率が0.5~50原子%の範囲となるようにスパッタリングする。

Description

圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜
 本発明は、圧電体薄膜の製造方法に関するものであり、特に、基板上にスカンジウムを添加した窒化アルミニウム薄膜を備えた圧電体薄膜の製造方法に関するものである。
 圧電現象を利用するデバイスは、幅広い分野において用いられており、小型化および省電力化が強く求められている携帯電話機などの携帯用機器において、その使用が拡大している。その一例として、IF(Intermediate Frequency)およびRF(Radio Frequency)用フィルタなどを挙げることができる。IFおよびRF用フィルタの具体例としては、弾性表面波共振子(Surface Acoustic Wave Resonator;SAWR)を用いたフィルタであるSAWフィルタなどがある。
 SAWフィルタは、固体表面を伝わる音響波を利用する共振子を用いたフィルタであり、設計および生産技術の向上により、ユーザーの厳しい要求に対応している。しかし、SAWフィルタは、利用周波数の高周波数化とともに、特性向上の限界に近づいている。
 そこで、SAWフィルタに代わる新たなフィルタとして、RF-MEMS(Radio Frequency-Micro Electro Mechanical System)デバイスの一つである、薄膜バルク音響波共振子(Film Bulk Acoustic Resonator;FBAR)を用いた、FBARフィルタの開発が進められている。
 RF-MEMSは、近年注目を集めている技術であり、機械的な微小構造を主に半導体基板上に作り付け、極小のアクチュエータおよびセンサー、共振器などのデバイスを作製する技術であるMEMSをRFフロントエンドに適用したものである。
 RF-MEMSデバイスの一つであるFBARフィルタは、圧電応答性を示す薄膜の厚み縦振動モードを用いた共振子によるフィルタである。すなわち、入力される高周波電気信号に対して、圧電体薄膜が厚み縦振動を起こし、その振動が薄膜の厚さ方向において共振を起こす現象を用いた共振子によるフィルタであり、ギガヘルツ帯における共振が可能である。このような特性を有するFBARフィルタは、低損失であり、かつ広帯域における動作を可能としつつ、携帯用機器のさらなる小型化および省電力化を実現している。
 また、FBARフィルタ以外のRF-MEMSデバイスであるRF-MEMSキャパシタおよびRF-MEMSスイッチなどにおいても、圧電現象を利用することによって、高周波数帯における低損失、高アイソレーションおよび低ひずみを実現している。
 特許文献1には、第3成分としてスカンジウムを添加した窒化アルミニウム薄膜を備えた圧電体薄膜において、良好な圧電応答性が得られることが開示されている。
日本国公開特許公報「特開2009-010926号公報(公開日:2009年1月15日)」
 しかし、特許文献1に記載の圧電体薄膜では、スカンジウムの原子数と窒化アルミニウム薄膜におけるアルミニウムの原子数との総量を100原子%としたとき、スカンジウムの原子数が35~40原子%の範囲の場合には、スカンジウムを含有させない場合と比較して、圧電応答性が低下している(図1(b)参照)。すなわち、特許文献1に記載の圧電体薄膜には、未だ改良の余地が残されている。
 本発明は、上記の課題に鑑みてなされたものであり、その主たる目的は、スカンジウムを添加した窒化アルミニウム薄膜を備えた圧電体薄膜において、スカンジウムの原子数が35~40原子%の範囲であっても、スカンジウムを含有させない場合と比較して圧電応答性が低下しない、圧電体薄膜を作製することができる製造方法を提供することにある。
 本発明の発明者らは、スカンジウムの原子数が35~40原子%の範囲であっても圧電応答性が低下しない、圧電体薄膜の製造方法について鋭意検討した結果、スカンジウムおよびアルミニウムをスパッタリングする際の基板温度をある温度範囲とすることにより、圧電体薄膜における圧電応答性の低下が生じないことを見出し、本発明を完成させるに至った。本発明は、係る新規な知見に基づいて完成されたものであり、以下の発明を包含する。
 本発明に係る圧電体薄膜の製造方法では、上記課題を解決するために、基板上にスカンジウムを含有する窒化アルミニウム薄膜を備えた圧電体薄膜の製造方法であって、少なくとも窒素ガスを含む雰囲気下において、スカンジウムの原子数と上記窒化アルミニウム薄膜におけるアルミニウムの原子数との総量を100原子%としたときのスカンジウムの含有率が0.5~50原子%の範囲となるように、アルミニウムとスカンジウムとでスパッタリングするスパッタリング工程を含み、上記スパッタリング工程における上記基板の温度が、5~450℃の範囲であることを特徴としている。
 上記の構成によれば、スカンジウムの原子数と窒化アルミニウム薄膜におけるアルミニウムの原子数との総量を100原子%としたとき、スカンジウムの含有率が、35原子%~40原子%である場合であっても、圧電体薄膜における圧電応答性が低下することを防止することができる。また、スカンジウムの含有率が35原子%~40原子%の場合であっても、スカンジウムを含有させていない窒化アルミニウム薄膜と比べて向上させることができる。
 これによって、圧電体薄膜の製造におけるスカンジウムの含有率の緻密な設定を不要にすることができるため、スカンジウムを含有する窒化アルミニウム薄膜を備えた圧電体薄膜を容易に製造することができる効果を奏する。すなわち、製造される圧電体薄膜における不良品の発生率を低減することができる。
 以上説明したように、本発明に係る圧電体薄膜の製造方法では、少なくとも窒素ガスを含む雰囲気下において、アルミニウムとスカンジウムとで、スカンジウムの原子数と窒化アルミニウム薄膜におけるアルミニウムの原子数との総量を100原子%としたときのスカンジウムの含有率が0.5~50原子%の範囲となるように、スパッタリングする。そして、スパッタリング時における基板の温度を5~450℃の範囲とする。
 これによって、スカンジウムの含有率が、35~40原子%である場合であっても、スカンジウムを含有させない場合と比較して圧電応答性が低下することを防止することができる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
本発明に係る圧電体薄膜におけるスカンジウム含有率と圧電応答性との関係を示す図であり、(a)はスパッタリング工程時の基板温度が400℃の場合であり、(b)はスパッタリング工程時の基板温度が580℃の場合である。 本発明に係る圧電体薄膜のX線回折強度を示す図であり、(a)はスパッタリング工程時の基板温度を変化させた場合であり、(b)はスカンジウム含有率を変化させた場合である。 実施例1において作製した圧電体薄膜および比較例1において作製した圧電体薄膜のX線回折パターンに基づいて算出したパラメータを示す図であり、(a)はSc含有窒化アルミニウムの結晶格子におけるc軸の長さを示す図であり、(b)はSc含有窒化アルミニウムのX線ロッキングカーブのFWHMを示す図である。 実施例2および比較例2における表面粗さおよび結晶の粒径を原子間力顕微鏡を用いて測定した図であり、(a)は基板温度580℃でSc含有率0原子%の場合であり、(b)は基板温度580℃でSc含有率36原子%の場合であり、(c)は基板温度580℃でSc含有率43原子%の場合であり、(d)は基板温度400℃でSc含有率0原子%の場合であり、(e)は基板温度400℃でSc含有率36原子%の場合であり、(f)は基板温度400℃でSc含有率43原子%の場合であり、(g)はスパッタリング時の基板温度を400℃または580℃としたときのSc含有率とSc含有窒化アルミニウムの粒径との関係を示す図である。 基板温度を常温(20℃)、200℃、400℃、450℃、500℃および580℃としたときのスカンジウム含有率42%のスカンジウム含有窒化アルミニウム薄膜の圧電応答性を示す図である。
 本発明に係る圧電体薄膜について、図1(a)および(b)~図2(a)および(b)を参照して以下に説明する。本発明に係る圧電体薄膜について説明するに先立って、本明細書等において用いる用語等について以下に説明する。
 本発明に係る圧電体薄膜は、圧電現象を利用した圧電素子に用いる場合、その具体的な用途は特に限定されるものではない。例えば、SAWデバイスまたはRF-MEMSデバイスに利用することができる。ここで、本明細書等における「圧電体」とは、力学的な力が印加されることにより電位差を生じる性質、すなわち圧電性(以下、圧電応答性とも称する)を有する物質を意味する。また、「圧電体薄膜」とは、上記性質を有する薄膜を意味する。
 また、本明細書等における「原子%」とは、原子百分率を指しており、本明細書等においては、特に断りのない限り、スカンジウム原子数とアルミニウム原子数との総量を100原子%としたときのスカンジウム原子の数またはアルミニウム原子の数を表す。すなわち、スカンジウムを含有した窒化アルミニウムにおけるスカンジウム原子およびアルミニウム原子の濃度と言い換えることもできる。また、本明細書においては、スカンジウムの原子%を、窒化アルミニウムに対するスカンジウムの含有率として以下に説明する。
 スカンジウムを含有した窒化アルミニウム薄膜(以下、Sc含有窒化アルミニウム薄膜とも称する)は、一般式を用いて、ScAl1-xN(式中、xはスカンジウムの含有率を示し、0.005~0.5の範囲である)と表すこともある。例えば、スカンジウムの含有率が10原子%である窒化アルミニウム薄膜は、「Sc0.10Al0.90N」と表す。
 (圧電体薄膜の構成)
 以下に、本発明に係る圧電体薄膜の構成について説明する。本発明に係る圧電体薄膜は、基板上にSc含有窒化アルミニウム薄膜が形成されている。Sc含有窒化アルミニウム薄膜は、スカンジウムの原子数とアルミニウムの原子数との総量を100原子%としたとき、0.5~50原子%の範囲のスカンジウム原子を含有している。
 基板は、Sc含有窒化アルミニウム薄膜を変形することなく保持することができるものであれば特に限定されるものではない。基板の材質としては、例えば、シリコン(Si)単結晶、またはSi単結晶などの基材の表面にシリコン、ダイヤモンドおよびその他の多結晶膜を形成したものを用いることができる。
 また、本発明に係る圧電体薄膜は、X線ロッキングカーブのFWHMが3.2度以下であることが好ましい。X線ロッキングカーブのFWHMが3.2度以下となるスカンジウム含有率は、0.5原子%~45原子%である。したがって、本発明に係る圧電体薄膜は、スカンジウム含有率が0.5原子%~45原子%であることが好ましいと換言することもできる。なお、圧電体薄膜におけるX線ロッキングカーブの測定条件などの詳細については下記に示すため、ここではその説明を省略する。
 さらに、本発明に係る圧電体薄膜は、表面粗さRaが1.2nmより小さい値であることが好ましい。
 X線ロッキングカーブのFWHMが3.2度以下であり、圧電体薄膜の表面粗さRaが1.2nmより小さい値であるということは、結晶配向度が大きいことを意味している。すなわち、X線ロッキングカーブのFWHMおよび圧電体薄膜の表面粗さを上記の範囲内とすることにより、結晶が同じ方向を向いている度合いを大きくなるため、圧電体薄膜の圧電性を高めることができる。
 (圧電体薄膜の製造方法)
 次に、本発明に係る圧電体薄膜の製造方法について、以下に説明する。本発明に係る圧電体薄膜の製造方法は、窒素ガス(N)を含む雰囲気下(例えば、窒素ガス(N)雰囲気下、または、窒素ガス(N)およびアルゴンガス(Ar)混合雰囲気下)において、基板(例えばシリコン(Si)基板)に、アルミニウムとスカンジウムとで、スカンジウムの原子数と窒化アルミニウム薄膜におけるアルミニウムの原子数との総量を100原子%としたときのスカンジウムの含有率が0.5~50原子%の範囲内となるように、スパッタリングするスパッタリング工程を含む。また、本発明に係る圧電体薄膜の製造方法では、スパッタリング工程における基板温度を5~450℃とする。この温度範囲内においても、スパッタリング工程における基板温度は、200~400℃であることが好ましく、400℃であることが最も好ましい。
 スパッタリング工程における基板温度を5~450℃とすることにより、スパッタリングにより薄膜を形成することによって、密着性に優れ、純度の高いSc含有窒化アルミニウム薄膜を形成することができる。スパッタリング工程における基板温度を5~450℃とすることにより、スカンジウムの含有率が35~40原子%の範囲内の圧電応答性を、スカンジウム含有率が0%の窒化アルミニウム薄膜の圧電応答性と比べて向上することができる。
 また、スパッタリング工程における基板温度を、200~400℃とすることにより、従来では圧電応答性に低下が生じていたスカンジウム含有率35~40原子%における範囲における圧電応答性の低下を防止することができる。これによって、製造される圧電体薄膜における不良品の発生率をより一層低減することができるため、圧電体薄膜の製造品質を向上することができる。
 なお、スパッタリング工程は、スカンジウムとアルミニウムとを用いればよいが、スカンジウムとアルミニウムとを同時にスパッタリングすることが好ましい。スカンジウムとアルミニウムとを同時にスパッタリングすることによって、スカンジウムおよびアルミニウムが一部に偏在することなく、均一に分布したSc含有窒化アルミニウム薄膜を形成することができる。
 (スパッタリング工程の詳細:基板温度)
 続いて、スパッタリング工程における基板温度の範囲について以下に説明する。本発明に係る圧電体薄膜の製造において、スパッタリング工程時には、基板温度を常温~450℃の温度範囲とする。上述したように、この温度範囲の中でも、スパッタリング工程時の基板温度を400℃とすることが最も好ましい。
 以下には、基板温度を400℃することが最も好ましいことを導出した理由について簡単に説明する。図2(a)は、シリコン基板上にSc0.43Al0.57N薄膜を形成する際の基板温度を27~580℃までの間で変化させた時のX線回折強度を示す図である。なお、X線回折強度は、マックサイエンス社製のM03X-HFを用いて測定している。
 図2(a)に示すように、基板温度が27~400℃の間は、単一のピークが37.00°に観測され、400℃のときに最大となる。基板温度が500℃を超えると、ピークは、36.06°および37.30°の2つの角度において観測され、ピークの大きさも減少する。そして、基板温度が580℃では、再度単一のピークが37.30°に観測されるものの、ピークの大きさはさらに減少する。
 このように、図2(a)には、基板温度が400℃のときにピークが最大となり、500℃を超えると、ピーク位置が高い角度にシフトすると共に、ピークの大きさが減少することが示されている。これは、基板温度が400℃の場合に、Sc含有窒化アルミニウムの結晶性が最も高くなり、基板温度が500℃を超えると、結晶の格子定数cが短くなると換言することもできる。
 なお、本明細書等における「常温」とは、JIS規格(JIS Z 8703)において規定された温度であり、20℃±15℃(すなわち、5~35℃)の範囲の温度を意味している。
 (スパッタリング工程の詳細:スカンジウム含有率)
 続いて、Sc含有窒化アルミニウム薄膜におけるスカンジウムの含有率について以下に説明する。
 Sc含有窒化アルミニウム薄膜におけるスカンジウムの含有率は、0.5~50原子%の範囲であればよく、35~43原子%の範囲であることがより好ましく、43原子%であることが最も好ましい。
 ここで、スカンジウムを含有しない(すなわち、Sc含有率0原子%)の窒化アルミニウムであっても、ある程度の圧電応答性を示す(図1(a))。そのため、本発明に係る圧電体薄膜におけるSc含有窒化アルミニウム薄膜は、スカンジウム含有率0原子%である場合の圧電応答性を超えるように、スカンジウム含有率を0.5~50原子%とする。
 以下には、43原子%が好ましいことを導出した理由について簡単に説明する。図2(b)は、スカンジウム含有率を0~55原子%の間で変化させたときのX線回折強度の変化を示す図である。なお、X線回折強度は、先と同様に、マックサイエンス社製のM03X-HFを用いて測定している。
 図2(b)に示すように、スカンジウム含有率が41原子%まではスカンジウム含有率の増加と共にX線回折強度も増加している。しかし、スカンジウム含有率が45原子%以上となるとX線回折強度は急激に低下する。このように、図2(b)には、スカンジウム含有率が43原子%のときにピークが最大となることが示されている。
 なお、ピーク位置は、スカンジウム含有率の増加と共に、角度2θが小さくなるようにシフトした後、スカンジウム含有率が37%以上になると角度2θが大きくするようにシフトする。これらのことは、Sc含有窒化アルミニウム薄膜の結晶がウルツ鉱型構造であり、c軸配向を有していることを示している。
 次に、スパッタリング工程時の基板温度を400℃とし、スカンジウム含有率を0~55原子%の間で変化させたときの圧電応答性について図1(a)を参照しつつ以下に説明する。図1(a)に示すデータの測定方法については、下記の実施例1において詳述するため、ここではその詳細な説明は省略する。
 図1(a)には、スカンジウム含有率を0~43原子%まで増加すると、それに伴って圧電応答性が増加することが示されている。そして、スカンジウム含有率が43原子%のときに、圧電体薄膜の圧電応答性を最大値(約28pC/N)となる。これは、従来の基板温度580℃の場合の圧電応答性(約25pC/N)よりも大きい。
 また、図1(a)に示すように、本発明に係る圧電体薄膜では、従来のSc含有窒化アルミニウム薄膜を備えた圧電体薄膜と異なり、スカンジウム含有率が35~40原子%の間で圧電応答性の低下が生じていない。
 続いて、スカンジウム含有率を0.5~50原子%の範囲とするための手法について、以下に説明する。スカンジウム含有率を0.5~50原子%の範囲とするためには、スパッタリング工程において、アルミニウムのターゲット電力密度を7.9W/cmの範囲内と固定した場合、スカンジウムのターゲット電力密度を、0.05~10W/cmの範囲内とするようにすればよい。
 なお、本明細書等における「電力密度」とは、スパッタリング電力をターゲット面積で割った値である。また、本発明に係る圧電体薄膜の製造方法では、スカンジウムとアルミニウムとを同時にスパッタリングするため、スカンジウムのターゲット電力密度と、アルミニウムのターゲット電力密度との2種類のターゲット電力密度がある。本明細書等において、単に「ターゲット電力密度」と称する場合には、特に断りのない限り、スカンジウムのターゲット電力密度のことを指すものとする。
 ターゲット電力密度が0.05~10W/cmの範囲内である場合には、スカンジウム含有率が0.5~50原子%の範囲内である場合に対応する。
 スカンジウム含有率を35~40原子%とする場合には、ターゲット電力密度を6.5~8.5W/cmの範囲とすればよい。
 なお、スパッタリング工程において、基板温度が常温~450℃の範囲であり、ターゲット電力密度が上記の範囲内であれば、その他の条件は、特に限定されるものではない。例えば、スパッタリング圧力およびスパッタリング時間は作製する圧電体薄膜に応じて、適宜設定することができる。
 (本発明に係る製造方法により作製された圧電体薄膜の利点)
 以上説明したように、Sc含有窒化アルミニウム薄膜を備えた圧電体薄膜におけるスパッタリング工程時の基板温度を常温~450℃の範囲とすることにより、スカンジウム含有率が35~40原子%の際に生じる圧電応答性の低下を防止するだけでなく、Scを含有させていない窒化アルミニウム薄膜と比べて、スカンジウム含有率が35~40原子%の圧電体薄膜における圧電応答性を向上させることができる。
 これによって、Sc含有窒化アルミニウム薄膜を備えた圧電体薄膜の製造におけるScの含有率の緻密な設定を不要にすることができるため、より一層容易に圧電応答性の向上したSc含有窒化アルミニウム薄膜を備えた圧電体薄膜を製造することができる。
 また、Sc含有窒化アルミニウム薄膜を備えた圧電体薄膜の工業的な生産の際には、緻密なスカンジウム含有率を設定する必要がないため、圧電体薄膜の製造に要するコストを低減することができる。また、製造される圧電体薄膜における不良品の発生率を低減することができるため、圧電体薄膜の製造品質を向上することもできる。
 また、本発明に係る圧電体薄膜の製造方法では、さらに、上記スパッタリング工程における上記基板の温度が200~400℃の範囲であることが好ましい。
 上記の構成によれば、従来のスカンジウムを含有する窒化アルミニウム薄膜を備えた圧電体薄膜において生じていた、スカンジウム含有率35原子%~40原子%の範囲における圧電応答性の低下を防止することができる。
 これによって、製造される圧電体薄膜における不良品の発生率をより一層低減することができるため、圧電体薄膜の製造品質を向上することができる効果を奏する。
 本発明に係る圧電体薄膜の製造方法では、さらに、上記スパッタリング工程における上記基板の温度が400℃であることが好ましい。
 上記の構成によれば、スカンジウムを含有する窒化アルミニウム薄膜を備えた圧電体薄膜における圧電応答性の最大値をより一層向上することができる効果を奏する。
 本発明に係る圧電体薄膜の製造方法では、さらに、上記スパッタリング工程では、上記スカンジウムの含有率が35~40原子%の範囲となるようにスパッタリングすることが好ましい。
 なお、本発明に係る製造方法により製造される圧電体薄膜についても本発明の範疇に含まれる。
 また、製造された圧電体薄膜は、X線ロッキングカーブの半値全幅が3.2度以下であることが好ましい。
 また、製造された圧電体薄膜は、表面の算術平均粗さが1.2nmより小さい値であることが好ましい。
 〔実施例1〕
 (スカンジウムを添加した窒化アルミニウム薄膜の作製方法)
 シリコン基板に対して、窒素雰囲気下でアルミニウムおよびスカンジウムをスパッタリングし、シリコン基板上にSc含有窒化アルミニウム薄膜を作製した。
 スパッタリングには、デュアルRFマグネトロン反応性スパッタリング装置(ULVAC社製、MPSシリーズ)を用いた。スパッタリング条件は、基板温度400℃、窒素ガス濃度40%、粒子成長圧力0.25Paとした。このとき、アルミニウムおよびスカンジウムは、直径50.8mmのターゲットに、それぞれ160Wのターゲット電力でスパッタリングした。
 また、スパッタリングチャンバーは、1.2×10-6Pa以下に減圧し、99.999%のアルゴンおよび99.999%の窒素ガスを導入した。なお、ターゲットは、蒸着前に、蒸着条件と同条件で3分間スパッタリングした。
 なお、作製したSc含有窒化アルミニウム薄膜中のスカンジウム含有率は、エネルギー分散型蛍光X線分析装置(Horida社製、EX-320X)により分析した結果に基づいて算出した。
 (圧電応答性測定方法)
 作製したSc含有窒化アルミニウム薄膜の圧電応答性は、ピエゾメーター(Piezoptest社製 PM100)を用いて、加重0.25N、周波数110Hzで測定した。
 (X線による結晶構造解析)
 作製したSc含有窒化アルミニウム薄膜におけるSc含有窒化アルミニウムの結晶構造および配向は、X線源としてCuKα線を使用した全自動X線回折装置(マックサイエンス社製、M03X-HF)により測定した。
 測定されたX線回折パターンに基づいて結晶格子におけるc軸の長さを算出した。また、X線ロッキングカーブの半値全幅(FWHM)を測定した。
 〔比較例1〕
 スパッタリングにおけるシリコン基板の温度を580℃とした以外は、実施例1と同様の製造方法によりSc含有窒化アルミニウム薄膜を作製した。
 また、実施例1と同様の方法により作製したSc含有窒化アルミニウム薄膜の圧電応答性を測定した。さらに、実施例1と同様の方法で、結晶格子におけるc軸の長さおよびX線ロッキングカーブの半値全幅(FWHM)についても測定した。
 〔実施例1および比較例1の測定結果〕
 実施例1において測定された圧電応答性を図1(a)に示し、比較例1において測定された圧電応答性を図1(b)に示す。
 図1(a)に示すように、スパッタリング工程時の基板温度を400℃とすることにより、基板温度を580℃とした際にみられたSc含有率35~40原子%における圧電応答性の低下を防止することができることが示された。
 また、基板温度を400℃として作製したSc含有窒化アルミニウム薄膜では、図1(a)に示すように、Sc含有率35~40原子%における圧電応答性の低下を防ぐだけでなく、スカンジウムを含有させないときと比べて、圧電応答性の向上を確認することができた。
 次に、実施例1において作製したSc含有窒化アルミニウム薄膜と比較例1において作製したSc含有窒化アルミニウム薄膜とのX線回折パターンに基づいて算出したパラメータについて図3(a)および(b)に示す。図3(a)は、作製したSc含有窒化アルミニウムの結晶格子におけるc軸の長さを示す図であり、図3(b)は、作製したSc含有窒化アルミニウムのX線ロッキングカーブのFWHM(半値全幅)を示す図である。
 図3(a)に示すように、実施例1(基板温度400℃)および比較例1(基板温度580℃)とのいずれも、Sc含有率が30原子%を超えると格子定数cの値は急激に低下していた。しかし、実施例1と比較例1との間には、Sc含有率の増加に伴う格子定数cの値の増減にほとんど違いはみられなかった。
 しかし、X線ロッキングカーブのFWHMは、図3(b)に示すように、実施例1と比較例1との間で大きく異なっていた。実施例1(基板温度400℃)では、Sc含有率の増加と共にFWHMが徐々に低下し、Sc含有率43原子%を超えると、急激にFWHMの値が増加していた。一方で、比較例1(基板温度580℃)では、FWHMの値が、Sc含有率30原子%を超えると急激に増加し、35原子%を超えると急激に減少していた。そして、実施例1と同様に、Sc含有率が43原子%を超えると、再度急激に増加していた。
 なお、ロッキングカーブのFWHMは、株式会社マックサイエンス製の全自動X線回折装置(MXP3VA-B型)を使用して測定した。X線回折装置において、X線源としてはCu-Kα使用し、スリットはD:1°、S:1°、R:0.3°を使用した。
 〔実施例2〕
 スパッタリング時における基板温度を400℃とし、スカンジウム含有率が0原子%、36原子%、43原子%であるSc含有窒化アルミニウム薄膜における表面粗さを測定した。また、Sc含有窒化アルミニウムの粒子サイズ(粒径)についても測定した。
 表面粗さは、原子間力顕微鏡(AFM)を用いて測定した。なお、本明細書等における「表面粗さ」とは、算術平均粗さ(Ra)を意味している。
 なお、表面粗さの測定には、株式会社SII製のSPI3800Nを使用し、カンチレバーにオリンパスのSN-AF-01(長さ100ミクロン、周波数34kHz、Spring constant:0.08N/m)を使用した。
 〔比較例2〕
 スパッタリング時における基板温度を580℃とした以外は、実施例2と同様にしてSc含有窒化アルミニウム薄膜における表面粗さおよび粒径を測定した。
 〔実施例2および比較例2の測定結果〕
 実施例2および比較例2において測定した表面粗さの結果を図4(a)~(g)に示す。図4(a)~(g)は、実施例2および比較例2における表面粗さおよび結晶の粒径を原子間力顕微鏡を用いて測定した図であり、(a)は基板温度580℃でSc含有率0原子%の場合であり、(b)は基板温度580℃でSc含有率36原子%の場合であり、(c)は基板温度580℃でSc含有率43原子%の場合であり、(d)は基板温度400℃でSc含有率0原子%の場合であり、(e)は基板温度400℃でSc含有率36原子%の場合であり、(f)は基板温度400℃でSc含有率43原子%の場合である。また、図4(g)はスパッタリング時の基板温度を400℃または580℃としたときのSc含有率とSc含有窒化アルミニウムの粒径との関係を示す図である。
 図4(g)に示すように、基板温度が高い方が、粒径も大きくなることが示された。また、基板温度に関わらず、スカンジウム含有率が増加するにつれて粒径が大きくなることが示された。
 また、図4(a)および図4(d)ならびに図4(c)および図4(f)に示すように、スカンジウム含有率が0原子%および43原子%である場合は、基板温度が400℃であっても580℃であっても、表面粗さにほとんど差異はみられなかった。しかし、図4(b)および図4(e)に示すように、スカンジウム含有率が36原子%の場合には、基板温度400℃では表面粗さが0.5nmであるのに対し、基板温度580℃では表面粗さが2.7nmであった。また、図4(g)に示すように、基板温度が580℃であって、スカンジウム含有率が36原子%である場合には、粒子のサイズが不均一となっていた。
 図4(a)~(g)から、基板温度を580℃としたときのスカンジウム含有率35~40原子%におけるSc含有窒化アルミニウム薄膜における圧電応答性の低下が、粒子成長の不均一性に起因するものであることが示された。
 〔実施例3〕
 スパッタリング時の基板温度を、常温(20℃)、200℃、400℃、450℃、500℃および580℃としたときのSc含有率が37原子%であるSc含有窒化アルミニウム薄膜の圧電応答性を測定した。なお、Sc含有窒化アルミニウム薄膜の製造における基板温度以外の条件および圧電応答性の測定条件は、実施例1と同様である。
 基板温度を常温(20℃)、200℃、400℃、450℃、500℃および580℃としたときの圧電応答性を示す図を図5に示す。
 図5に示すように、圧電応答性は、常温から400℃までは基板温度の増加と共に増加し、400℃において最大値を示した。基板温度が400℃を超えると、圧電応答性は急激に減少し、500℃ではSc含有率が0原子%の窒化アルニウム薄膜の圧電応答性を下回る値となった。図5に示す結果から、Sc含有率35~40原子%において、Sc含有率が0原子%の場合よりも圧電応答性が低下するという現象は、スパッタリング時の基板温度を常温(20℃)~450℃の範囲とすることにより防止できることが示された。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、様々に変更して実施することができるものである。
 本発明に係る製造方法により製造された圧電体薄膜は、例えば、RF-MEMSデバイスなどの圧電現象を利用したデバイスにおいて好適に用いることができる。また、本発明に係る製造方法により製造された圧電体薄膜を備えたRF-MEMSデバイスは、携帯電話などの小型かつ高性能な電子機器類に好適に用いることができる。

Claims (7)

  1.  基板上にスカンジウムを含有する窒化アルミニウム薄膜を備えた圧電体薄膜の製造方法であって、
     少なくとも窒素ガスを含む雰囲気下において、スカンジウムの原子数と上記窒化アルミニウム薄膜におけるアルミニウムの原子数との総量を100原子%としたときのスカンジウムの含有率が0.5~50原子%の範囲となるように、アルミニウムとスカンジウムとでスパッタリングするスパッタリング工程を含み、
     上記スパッタリング工程における上記基板の温度が、5~450℃の範囲であることを特徴とする製造方法。
  2.  上記スパッタリング工程における上記基板の温度が200~400℃の範囲であることを特徴とする請求項1に記載の製造方法。
  3.  上記スパッタリング工程における上記基板の温度が400℃であることを特徴とする請求項1または2に記載の製造方法。
  4.  上記スパッタリング工程では、上記スカンジウムの含有率が35~40原子%の範囲となるようにスパッタリングすることを特徴とする請求項1から3のいずれか1項に記載の製造方法。
  5.  請求項1から4のいずれか1項に記載の製造方法により製造される圧電体薄膜。
  6.  X線ロッキングカーブの半値全幅が3.2度以下であることを特徴とする請求項5に記載の圧電体薄膜。
  7.  表面の算術平均粗さが1.2nmより小さい値であることを特徴とする請求項5または6に記載の圧電体薄膜。
PCT/JP2010/061162 2009-07-01 2010-06-30 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜 WO2011002028A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/380,995 US9246461B2 (en) 2009-07-01 2010-06-30 Manufacturing method of piezoelectric-body film, and piezoelectric-body film manufactured by the manufacturing method
DE112010002790.0T DE112010002790B4 (de) 2009-07-01 2010-06-30 HERSTELLUNGSVERFAHREN FüR EINE PIEZOELEKTRISCHE SCHICHT SOWIE MITDEM HERSTELLUNGSVERFAHREN HERGESTELLTE PIEZOELEKTRISCHE SCHICHT
CN201080028605.1A CN102474234B (zh) 2009-07-01 2010-06-30 压电体薄膜的制造方法以及经该制造方法所制造的压电体薄膜
KR1020147017405A KR20140099919A (ko) 2009-07-01 2010-06-30 압전체 박막의 제조 방법 및 당해 제조 방법에 의해 제조되는 압전체 박막
KR1020127000602A KR101511349B1 (ko) 2009-07-01 2010-06-30 압전체 박막의 제조 방법 및 당해 제조 방법에 의해 제조되는 압전체 박막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-157031 2009-07-01
JP2009157031A JP5598948B2 (ja) 2009-07-01 2009-07-01 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜

Publications (1)

Publication Number Publication Date
WO2011002028A1 true WO2011002028A1 (ja) 2011-01-06

Family

ID=43411098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061162 WO2011002028A1 (ja) 2009-07-01 2010-06-30 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜

Country Status (6)

Country Link
US (1) US9246461B2 (ja)
JP (1) JP5598948B2 (ja)
KR (2) KR20140099919A (ja)
CN (1) CN102474234B (ja)
DE (1) DE112010002790B4 (ja)
WO (1) WO2011002028A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160082940A (ko) 2013-11-13 2016-07-11 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료, 및 액정 표시 소자
KR20160085700A (ko) 2013-11-13 2016-07-18 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료, 및 액정 표시 소자
KR20160094929A (ko) 2013-12-05 2016-08-10 세키스이가가쿠 고교가부시키가이샤 중합성 단량체, 고분자 화합물, 광경화성 수지 조성물, 액정 표시 소자용 시일제, 상하 도통 재료, 및 액정 표시 소자
WO2016136475A1 (ja) * 2015-02-27 2016-09-01 株式会社村田製作所 窒化インジウム圧電薄膜及びその製造方法、並びに圧電素子
KR20180015106A (ko) 2015-06-02 2018-02-12 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료 및 액정 표시 소자

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154111B2 (en) 2011-05-20 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Double bulk acoustic resonator comprising aluminum scandium nitride
US9917567B2 (en) 2011-05-20 2018-03-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising aluminum scandium nitride
WO2013065488A1 (ja) * 2011-10-31 2013-05-10 株式会社村田製作所 圧電薄膜共振子、フィルタ装置及びデュプレクサ
JP5817673B2 (ja) * 2011-11-18 2015-11-18 株式会社村田製作所 圧電薄膜共振子及び圧電薄膜の製造方法
US9667220B2 (en) * 2012-01-30 2017-05-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Temperature controlled acoustic resonator comprising heater and sense resistors
US9154103B2 (en) 2012-01-30 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Temperature controlled acoustic resonator
WO2013125371A1 (ja) * 2012-02-20 2013-08-29 株式会社村田製作所 圧電バルク弾性波素子の製造方法及び圧電バルク弾性波素子
CN104321965B (zh) 2012-05-22 2017-04-12 株式会社村田制作所 体波谐振器
JP6105084B2 (ja) 2012-12-21 2017-03-29 エプコス アクチエンゲゼルシャフトEpcos Ag 窒化アルミニウム及びスカンジウムを有したmems部品の製造方法
JP6023351B2 (ja) * 2012-12-21 2016-11-09 エプコス アクチエンゲゼルシャフトEpcos Ag Baw部品及びbaw部品の製造方法
CN104854793B (zh) * 2012-12-21 2018-08-21 快速追踪有限公司 Baw部件、baw部件的叠层和用于制造baw部件的方法,所述baw部件包括两个不同的堆叠压电材料
JP6123019B2 (ja) * 2014-03-03 2017-04-26 株式会社村田製作所 窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法
CN105483615B (zh) * 2014-09-18 2018-10-16 清华大学 具有闪锌矿结构的磁性氮化铝薄膜材料及其制备方法与应用
US11581866B2 (en) 2016-03-11 2023-02-14 Akoustis, Inc. RF acoustic wave resonators integrated with high electron mobility transistors including a shared piezoelectric/buffer layer and methods of forming the same
CN109312449B (zh) 2016-06-07 2022-04-12 Jx金属株式会社 溅射靶及其制造方法
KR102066960B1 (ko) * 2016-08-03 2020-01-16 삼성전기주식회사 박막 벌크 음향 공진기 및 이를 포함하는 필터
US10886887B2 (en) 2017-06-23 2021-01-05 Taiyo Yuden Co., Ltd. Aluminum nitride film, acoustic wave device, filter, and multiplexer
JP7038795B2 (ja) 2017-07-07 2022-03-18 スカイワークス ソリューションズ,インコーポレイテッド 圧電材料、弾性波共振器、フィルタ、電子デバイスモジュール及び電子デバイス
JP7081981B2 (ja) 2018-05-28 2022-06-07 太陽誘電株式会社 窒化アルミニウム膜、圧電デバイス、共振器、フィルタおよびマルチプレクサ
JP7269719B2 (ja) * 2018-12-05 2023-05-09 太陽誘電株式会社 圧電膜およびその製造方法、圧電デバイス、共振器、フィルタ並びにマルチプレクサ
KR102276515B1 (ko) * 2019-02-15 2021-07-14 삼성전기주식회사 체적 음향 공진기
JP7143824B2 (ja) * 2019-08-22 2022-09-29 株式会社村田製作所 圧電素子
WO2021150496A1 (en) * 2020-01-21 2021-07-29 Akoustis, Inc. Rf acoustic wave resonators integrated with high electron mobility transistors including a shared piezoelectric/buffer layer and methods of forming the same
JP2023513163A (ja) * 2020-02-06 2023-03-30 アプライド マテリアルズ インコーポレイテッド 薄膜堆積中に膜特性を調整するための方法及び装置
JP7485079B2 (ja) 2020-11-13 2024-05-16 株式会社村田製作所 圧電薄膜共振子
WO2022202616A1 (ja) * 2021-03-24 2022-09-29 株式会社村田製作所 弾性波装置
IL283142A (en) * 2021-05-12 2022-12-01 Yeda Res & Dev A process for making a film of oriented aluminum scandium nitride
WO2022259932A1 (ja) * 2021-06-08 2022-12-15 株式会社村田製作所 弾性波装置
CN117223216A (zh) * 2021-06-08 2023-12-12 株式会社村田制作所 弹性波装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344279A (ja) * 2001-05-11 2002-11-29 Ube Electronics Ltd 圧電薄膜共振子
JP2002372974A (ja) * 2001-06-15 2002-12-26 Ube Electronics Ltd 薄膜音響共振器及びその製造方法
JP2004312611A (ja) * 2003-04-10 2004-11-04 Ube Ind Ltd 窒化アルミニウム薄膜及びそれを用いた圧電薄膜共振子
JP2005236337A (ja) * 2001-05-11 2005-09-02 Ube Ind Ltd 薄膜音響共振器及びその製造方法
JP2006050021A (ja) * 2004-07-30 2006-02-16 Toshiba Corp 薄膜圧電共振器及びその製造方法
JP2009010926A (ja) * 2007-05-31 2009-01-15 National Institute Of Advanced Industrial & Technology 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865652B1 (ko) 2001-05-11 2008-10-29 우베 고산 가부시키가이샤 압전 박막 공진자
US7758979B2 (en) * 2007-05-31 2010-07-20 National Institute Of Advanced Industrial Science And Technology Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344279A (ja) * 2001-05-11 2002-11-29 Ube Electronics Ltd 圧電薄膜共振子
JP2005236337A (ja) * 2001-05-11 2005-09-02 Ube Ind Ltd 薄膜音響共振器及びその製造方法
JP2002372974A (ja) * 2001-06-15 2002-12-26 Ube Electronics Ltd 薄膜音響共振器及びその製造方法
JP2004312611A (ja) * 2003-04-10 2004-11-04 Ube Ind Ltd 窒化アルミニウム薄膜及びそれを用いた圧電薄膜共振子
JP2006050021A (ja) * 2004-07-30 2006-02-16 Toshiba Corp 薄膜圧電共振器及びその製造方法
JP2009010926A (ja) * 2007-05-31 2009-01-15 National Institute Of Advanced Industrial & Technology 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160082940A (ko) 2013-11-13 2016-07-11 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료, 및 액정 표시 소자
KR20160085700A (ko) 2013-11-13 2016-07-18 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료, 및 액정 표시 소자
KR20160094929A (ko) 2013-12-05 2016-08-10 세키스이가가쿠 고교가부시키가이샤 중합성 단량체, 고분자 화합물, 광경화성 수지 조성물, 액정 표시 소자용 시일제, 상하 도통 재료, 및 액정 표시 소자
WO2016136475A1 (ja) * 2015-02-27 2016-09-01 株式会社村田製作所 窒化インジウム圧電薄膜及びその製造方法、並びに圧電素子
KR20180015106A (ko) 2015-06-02 2018-02-12 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료 및 액정 표시 소자

Also Published As

Publication number Publication date
JP2011015148A (ja) 2011-01-20
JP5598948B2 (ja) 2014-10-01
KR20140099919A (ko) 2014-08-13
DE112010002790T5 (de) 2012-11-08
US20120107557A1 (en) 2012-05-03
CN102474234A (zh) 2012-05-23
CN102474234B (zh) 2015-06-17
US9246461B2 (en) 2016-01-26
KR101511349B1 (ko) 2015-04-10
KR20120017089A (ko) 2012-02-27
DE112010002790B4 (de) 2016-09-15

Similar Documents

Publication Publication Date Title
JP5598948B2 (ja) 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜
JP7075180B2 (ja) 堆積方法
Srinivasan et al. Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems
CN111244263B (zh) 压电薄膜元件
US10965270B2 (en) Piezoelectric thin film and piezoelectric vibrator
EP1672091B1 (en) Laminate containing wurtzrite crystal layer, and method for production thereof
Artieda et al. Effect of substrate roughness on c-oriented AlN thin films
Luo et al. Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters
JP2001524296A (ja) Zn▲下(1−X)▼Y▲下X▼O圧電体層デバイスを使用する表面弾性波デバイス及びバルク音波デバイス
Mertin et al. Enhanced piezoelectric properties of c-axis textured aluminium scandium nitride thin films with high scandium content: Influence of intrinsic stress and sputtering parameters
JP2009201101A (ja) Baw共振装置およびその製造方法
Liauh et al. Microstructure and piezoelectric properties of reactively sputtered highly C-axis ScxAl1-xN thin films on diamond-like carbon/Si substrate
CN111593332B (zh) 柔性玻璃上溅射沉积压电薄膜的方法
KR101082201B1 (ko) 표면탄성파 소자
JP4117376B2 (ja) ウルツ鉱型結晶層を含む積層体及びその製造方法
Lin et al. Growth of highly c-axis oriented AlN films on 3C–SiC/Si substrate
Heinz et al. Sputter deposition technology for Al (1− x) Sc x N films with high Sc concentration
Ralib et al. Dependence of preferred c-axis orientation on RF magnetron sputtering power for AZO/Si acoustic wave devices
JP7128515B2 (ja) 圧電体薄膜、その製造方法およびその利用
Dow et al. Nanocrystalline diamond/AlN structures for high efficient SAW nano-resonators
JP2018056866A (ja) 弾性表面波素子用圧電体複合基板およびその製造方法
Han et al. Sputter-deposited low loss Mg2SiO4 thin films for multilayer hybrids
Prasad et al. Optimization of AlN deposition parameters for a high frequency 1D pMUT Array
Yang et al. A review of oriented wurtzite-structure aluminum nitride films
KR101324832B1 (ko) 표면 탄성파 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028605.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13380995

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100027900

Country of ref document: DE

Ref document number: 112010002790

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20127000602

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10794196

Country of ref document: EP

Kind code of ref document: A1