WO2018056210A1 - 複合基板,その製法及び電子デバイス - Google Patents

複合基板,その製法及び電子デバイス Download PDF

Info

Publication number
WO2018056210A1
WO2018056210A1 PCT/JP2017/033454 JP2017033454W WO2018056210A1 WO 2018056210 A1 WO2018056210 A1 WO 2018056210A1 JP 2017033454 W JP2017033454 W JP 2017033454W WO 2018056210 A1 WO2018056210 A1 WO 2018056210A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support substrate
composite
bonding
sialon
Prior art date
Application number
PCT/JP2017/033454
Other languages
English (en)
French (fr)
Inventor
祐輝 野本
啓 田中
勝弘 井上
勝田 祐司
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112017004718.8T priority Critical patent/DE112017004718T5/de
Priority to CN201780055823.6A priority patent/CN109690943B/zh
Priority to JP2018502194A priority patent/JP6681461B2/ja
Priority to KR1020197007042A priority patent/KR102257664B1/ko
Publication of WO2018056210A1 publication Critical patent/WO2018056210A1/ja
Priority to US16/296,812 priority patent/US10998881B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02566Characteristics of substrate, e.g. cutting angles of semiconductor substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/08Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
    • B28B11/0845Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads for smoothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • H03H9/02622Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves of the surface, including back surface
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/80Sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0875Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers

Definitions

  • the present invention relates to a composite substrate, a manufacturing method thereof, and an electronic device.
  • acoustic wave elements are used as band-pass filters in communication devices such as mobile phones.
  • a piezoelectric substrate which is a surface acoustic wave element is required to have a high sound speed and a large electromechanical coupling coefficient. Therefore, lithium niobate (LN) and lithium tantalate (LT) satisfying the requirements are widely used. Yes.
  • LN lithium niobate
  • LT lithium tantalate
  • LT and LN have a large coefficient of thermal expansion and a large amount of expansion and contraction due to environmental temperature changes. As a result, the center frequency of the filter is shifted, so that the passing frequency is reduced and the characteristics are deteriorated. For this reason, it has become necessary that the surface acoustic wave device hardly expands and contracts due to environmental temperature changes.
  • Patent Document 1 discloses a composite substrate in which a piezoelectric substrate and a support substrate are bonded via an adhesive layer. Further, sapphire, silicon, alumina and the like are exemplified as the material of the support substrate. Since these materials have a smaller thermal expansion coefficient than that of the piezoelectric substrate, the frequency temperature dependency can be lowered, and since the sound speed is high, they are suitable for high-frequency surface acoustic wave elements.
  • Patent Document 2 a 0.1 to 10 ⁇ m amorphous layer is formed on a supporting substrate by a CVD method or the like, and then the supporting substrate and the single crystal semiconductor substrate are connected via the amorphous layer. A method of obtaining a composite substrate by bonding is illustrated. Examples of the material of the support substrate include sialon.
  • sapphire and alumina of Patent Document 1 have a problem that the frequency temperature dependency cannot be significantly reduced because the coefficient of thermal expansion is about 7 ppm / K even though the coefficient of thermal expansion is smaller than that of the piezoelectric substrate. .
  • sapphire has a problem of poor workability because its Young's modulus is too high at 450 GPa or more.
  • silicon has a sufficiently small coefficient of thermal expansion compared to a piezoelectric substrate, but its Young's modulus is as low as about 180 to 190 GPa, so warping and cracking occur, and even a high resistivity is in the order of 10 4 ⁇ cm. There is a problem that the resonance characteristics of the filter deteriorate due to lack of insulation.
  • Patent Document 2 exemplifies sialon as a material for the support substrate.
  • the composite substrate of Patent Document 2 has an amorphous layer having a low Young's modulus of 0.1 to 10 ⁇ m between the support substrate and the single crystal semiconductor substrate, the Young's modulus of the entire composite substrate is still too low.
  • the restraining force of the piezoelectric substrate by the support substrate cannot be sufficiently expressed.
  • the present invention has been made to solve such a problem, and has as its main object to provide a composite substrate suitable as a material for a high-frequency acoustic wave device.
  • the composite substrate of the present invention is a composite substrate in which a support substrate and a functional substrate are directly bonded, and the support substrate is a sialon sintered body. Since the sialon sintered body has a high sound speed, the acoustic wave device using the composite substrate of the present invention can be used at a higher frequency. In addition, since the Young's modulus is an appropriate value for the sialon sintered body, the composite substrate of the present invention is less likely to warp or crack, but the workability is good. Furthermore, the sialon sintered body has a high resistivity. Since the insulating property is high, the acoustic wave device using the composite substrate of the present invention has good resonance characteristics.
  • the acoustic wave device using the composite substrate of the present invention can sufficiently reduce the frequency temperature dependency.
  • the support substrate and the functional substrate are integrated by direct bonding, the Young's modulus of the entire composite substrate may not be too low compared to the case where both substrates are integrated by an adhesive layer or the like. The restraining force of the functional substrate by the support substrate can be sufficiently expressed.
  • the method for producing a composite substrate of the present invention is a method for manufacturing the composite substrate described above, and includes a bonding step of directly bonding the surface of the support substrate and the surface of the functional substrate, and before the bonding step, (A) Polishing the surface so that the number of pores existing on the surface of the support substrate is 30 or less per 100 ⁇ m ⁇ 100 ⁇ m area, or (b) 100 ⁇ m ⁇ 140 ⁇ m of the surface of the support substrate The surface is polished so that the center line average roughness (Ra) in the measurement range is 1 nm or less, or (c) the maximum peak height of the cross-sectional curve in the measurement range of 100 ⁇ m ⁇ 140 ⁇ m of the surface of the support substrate The surface is polished so that the height difference (Pt) from the maximum valley depth is 30 nm or less.
  • the sialon sintered body since the sialon sintered body is used as the support substrate, the surface obtained by polishing the support substrate has high surface flatness. Therefore, it is suitable for directly bonding
  • the electronic device of the present invention uses the above-described composite substrate of the present invention.
  • the sialon sintered body that is the support substrate of this electronic device has a high sound speed, an appropriate Young's modulus, a high resistivity, and a sufficiently low thermal expansion coefficient. For this reason, this electronic device can be used at a higher frequency and is less likely to warp or crack, but has good workability, good resonance characteristics, and sufficiently low frequency temperature dependency.
  • FIG. 1 is a perspective view of a composite substrate 10.
  • the composite substrate of the present embodiment is a composite substrate in which a support substrate and a functional substrate are directly bonded, and the support substrate is a sialon sintered body.
  • the sialon sintered body is represented by the general formula: Si 6-z Al z O z N 8-z (0 ⁇ z ⁇ 4.2), but it dissolves a metal oxide such as magnesium oxide or yttrium oxide. It may be.
  • the functional substrate is not particularly limited, and examples thereof include LT, LN, gallium nitride, and silicon. Of these, LT and LN are preferred.
  • An amorphous layer having a thickness of 5 nm or less may exist at the interface between the support substrate and the functional substrate.
  • the elastic wave device using the composite substrate of this embodiment can be used at a higher frequency.
  • the sound speed of the sialon sintered body is preferably 5000 m / s or more, and more preferably 5500 m / s or more.
  • the speed of sound is determined by the rigidity, density, Young's modulus, and Poisson's ratio, but Sialon can control these characteristics by adjusting the value of z in the above equation.
  • the Sialon sintered body has an appropriate Young's modulus. That is, since the composite substrate of the present embodiment is reasonably hard, warpage and cracking hardly occur and workability is also good.
  • the Young's modulus of the sialon sintered body is preferably 200 GPa or more and 350 GPa or less.
  • Sialon sintered bodies have high resistivity and high insulation. For this reason, the acoustic wave device using the composite substrate of the present embodiment has good resonance characteristics.
  • the resistivity of the sialon sintered body is preferably 10 14 ⁇ cm or more.
  • the thermal expansion coefficient (40 to 400 ° C.) of the sialon sintered body is preferably 3.0 ppm / K or less, and more preferably 2.7 ppm / K or less.
  • the sialon sintered body preferably has an open porosity of 0.1% or less and a relative density of 99.9% or more.
  • the sintered sialon preferably has a ratio of the sum of the maximum peak intensities of components other than sialon to the maximum peak intensity of sialon in the X-ray diffraction diagram of 0.005 or less.
  • the manufacturing flow of the sialon sintered body includes a step of producing a sialon raw material powder and a step of producing a sialon sintered body.
  • each powder is more preferably fine, and an average particle size is preferably 1.5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the mixing method of the raw material powder is not particularly limited, and for example, a ball mill, an attritor, a bead mill, a jet mill or the like can be used, and either a dry method or a wet method may be used. However, a wet method using a solvent is preferable to obtain a homogeneously mixed raw material powder. In that case, the solvent used for mixing is removed by drying to obtain a raw material powder.
  • the raw material powder may contain an additive. Examples of the additive include magnesium oxide and yttrium oxide.
  • the obtained slurry is dried, and the dried product is passed through a sieve to obtain sialon raw material powder.
  • a composition suitably etc. to make raw material powder when a composition shifts by mixing of a media component etc. at the time of mixing.
  • the mixture may be used as the sialon raw material powder as it is by adjusting the mass of each component of the mixed powder in advance so that the mass of each component contained in the mixture has a desired sialon composition.
  • the obtained sialon raw material powder is formed into a predetermined shape.
  • molding method can be used.
  • the sialon raw material powder as described above may be press-molded with a mold as it is. In the case of press molding, if the sialon raw material powder is granulated by spray drying, the moldability is improved.
  • an organic binder can be added to produce clay and extrusion molding, or a slurry can be produced and sheet molded. In these processes, it is necessary to remove the organic binder component before or during the firing step. Further, high pressure molding may be performed by CIP (cold isostatic pressing).
  • the obtained compact is fired to produce a sialon sintered body.
  • a hot press method is very effective as the method. By using the hot press method, densification progresses in a fine grain state at a low temperature compared to normal pressure sintering, and the residual coarse pores often seen in normal pressure sintering can be suppressed.
  • the firing temperature during hot pressing is preferably 1725 to 1900 ° C, more preferably 1750 to 1900 ° C. Further, it is preferable that the press pressure during hot pressing and 100 ⁇ 300kgf / cm 2, more preferably 150 ⁇ 250kgf / cm 2.
  • the holding time at the firing temperature can be appropriately selected in consideration of the shape and size of the molded body and the characteristics of the heating furnace.
  • a specific preferable holding time is, for example, 1 to 12 hours, and more preferably 2 to 8 hours.
  • the firing atmosphere during hot pressing is preferably a nitrogen atmosphere in order to avoid decomposition of sialon.
  • This manufacturing method preferably includes a step of directly bonding the surface of the support substrate made of the sialon sintered body and the surface of the functional substrate.
  • the ratio of the actual bonded area (bonded area ratio) in the bonding interface is preferably 80% or more, and more preferably 90% or more. When the bonding area ratio is large as described above, a good composite substrate in which the functional substrate and the support substrate are firmly bonded is obtained.
  • the two substrates are pressed with the bonding surfaces facing each other.
  • the bonding surface is activated by, for example, irradiation of a neutral atom beam of an inert gas (such as argon) to the bonding surface, or irradiation of plasma or ion beam.
  • a neutral atom beam of an inert gas such as argon
  • irradiations can be performed using, for example, an ion gun or a FAB gun.
  • a FAB gun has a higher energy per particle than an ion gun, and has a high ability to remove an oxide film and an adsorption layer on the substrate surface that interfere with room temperature bonding.
  • the FAB gun is more preferable because it is easy to make a free joint necessary for joining.
  • the surface is polished and finished so that the number of pores existing on the surface of the support substrate is 30 or less per 100 ⁇ m ⁇ 100 ⁇ m area, or (b 1) Polish the surface so that the center line average roughness (Ra) in the measurement range of 100 ⁇ m ⁇ 140 ⁇ m of the support substrate surface is 1 nm or less, or (c) In the measurement range of 100 ⁇ m ⁇ 140 ⁇ m of the support substrate surface.
  • the surface is preferably polished so that the difference in height (Pt) between the maximum peak height and the maximum valley depth of the cross-sectional curve is 30 nm or less.
  • the bonding area ratio can be 80% or more (preferably 90% or more).
  • the number of pores in (a) described above is more preferably 10 or less, Ra in (b) described above is more preferably 0.9 nm or less, and Pt in (c) described above is more preferably 27 nm or less.
  • the polishing finish on the surface of the support substrate is preferably performed so as to satisfy at least one of (a) to (c). Further, the surface of the functional substrate is preferably polished so as to satisfy at least one of (a) to (c) similarly to the surface of the support substrate.
  • FIG. 1 shows an example of a composite substrate.
  • the composite substrate 10 is obtained by bonding a piezoelectric substrate 12 which is a functional substrate and a support substrate 14 by direct bonding.
  • the composite substrate produced in this way is directly bonded, the Young's modulus of the entire composite substrate does not become too low compared to the case of bonding via an adhesive layer, and the functionality of the support substrate Since the binding force of the substrate is strong, the frequency temperature dependency can be reduced.
  • the composite substrate manufactured in this manner may have an amorphous layer having a thickness of 5 nm or less at the interface between the support substrate and the functional substrate. Even if such an extremely thin amorphous layer exists between the support substrate and the functional substrate, the Young's modulus of the entire composite substrate does not become too low, and the binding force of the functional substrate by the support substrate is not reduced. It can be fully expressed.
  • the electronic device uses the composite substrate described above.
  • the composite substrate used for the electronic device preferably has a ratio of the thickness of the functional substrate to the support substrate (the thickness of the functional substrate / the thickness of the support substrate) of 0.1 or less.
  • Examples of such electronic devices include acoustic wave devices (surface acoustic wave devices, Lamb wave elements, thin film resonators (FBAR), etc.), LED devices, optical waveguide devices, switch devices, and the like.
  • FIG. 2 shows an example of an electronic device 30 manufactured using the composite substrate 10.
  • the electronic device 30 is a 1-port SAW resonator, that is, a surface acoustic wave device.
  • a pattern of a large number of electronic devices 30 is formed on the piezoelectric substrate 12 of the composite substrate 10 using a general photolithography technique, and then cut into individual electronic devices 30 by dicing.
  • the electronic device 30 is a device in which comb-shaped IDT (Interdigital Transducer) electrodes 32 and 34 and a reflective electrode 36 are formed on the surface of the piezoelectric substrate 12 by a photolithography technique.
  • IDT Interdigital Transducer
  • the raw material powder includes commercially available silicon nitride powder (oxygen content 1.3 mass%, impurity metal element content 0.2 mass% or less, average particle size 0.6 ⁇ m), aluminum nitride (oxygen content) 0.8 mass%, impurity metal element content 0.1 mass% or less, average particle diameter 1.1 ⁇ m), alumina (purity 99.9 mass%, average particle diameter 0.5 ⁇ m), silica (purity 99.9 mass) %, Average particle size 0.5 ⁇ m).
  • the sialon raw material powders A to K were produced as follows. That is, first, each powder of aluminum nitride, alumina, silicon nitride, and silica was weighed so as to have a sialon composition (Si 6 -z Al z O z N 8 -z ) having the value of z shown in Table 1. These powders were mixed with alumina cobblestone ( ⁇ 5 mm) in a ball mill using isopropyl alcohol as a solvent for 4 hours to prepare a sialon mixture (slurry mixed with powder). The obtained slurry was dried at 110 ° C. under a nitrogen gas flow, and the dried product was passed through a sieve to obtain sialon raw material powders A to K.
  • magnesium oxide (purity 99.9%, average particle size 1.8 ⁇ m) is used for sialon raw material powders D, H, and K, and yttrium oxide (purity 99.9 is used for sialon raw material powders E, F, G, I, and J). % And average particle diameter of 1.1 ⁇ m).
  • the properties of the sintered body surface were evaluated by polishing one surface of a test piece of about 4 mm ⁇ 3 mm ⁇ 10 mm into a mirror surface by polishing.
  • the polishing was performed by lapping 3 ⁇ m diamond abrasive grains and finally 0.5 ⁇ m diamond abrasive grains.
  • Relative density was calculated as bulk density / apparent density.
  • the sialon sintered body was pulverized, and sialon and heterophase were identified and the maximum peak intensity of each phase was calculated using an X-ray diffractometer. Since the alumina mortar is used for pulverization of the sintered body, there is a possibility that alumina will be mixed from the alumina mortar, and caution is required for pulverization for a long time.
  • sialon sintered grains on the fracture surface were observed with a SEM in a 127 ⁇ m ⁇ 88 ⁇ m field of view, and the particle diameters of 10 or more sialon sintered grains in the field of view were obtained. It was set as the average particle diameter of the sialon sintered grain. In addition, the particle size of one sialon sintered grain was the average value of the major axis and minor axis of the sintered grain.
  • Number of pores Observe the mirror-finished surface as described above with a 3D measurement laser microscope, and count the count value per unit area of pores with a maximum length of 0.5 ⁇ m or more and a depth of 0.08 ⁇ m or more. The average value was taken as the number of pores.
  • the unit area was an area of 100 ⁇ m square.
  • Ra and Pt in the present specification correspond to the arithmetic mean roughness Ra of the cross-sectional curve and the maximum cross-sectional height Pt of the cross-sectional curve defined by JIS B 0601: 2013.
  • the above Ra and Pt were defined as surface flatness.
  • the measurement range was 100 ⁇ m ⁇ 140 ⁇ m.
  • test piece was a 3 mm ⁇ 4 mm ⁇ 40 mm bending rod.
  • CTE 40-400 ° C
  • the sound velocity c was calculated by the following formula.
  • the Poisson's ratio was measured by attaching a strain gauge to the test piece.
  • c (G / ⁇ ) 1/2
  • G E / 2 (1 + ⁇ )
  • G rigidity
  • density
  • E Young's modulus
  • Poisson's ratio
  • the sialon sintered body of Experimental Example 1 had excellent characteristics. Specifically, the bulk density of the sialon sintered body of Experimental Example 1 was 3.160 g / cm 3 , the open pores were 0.00%, and the relative density was 100.00%. In addition to sialon, slight alumina and silicon oxynitride were detected in the crystal phase. The ratio (peak intensity ratio) Ix of the sum of the maximum peak intensities of the respective components other than sialon to the maximum peak intensity of sialon was 0.0012, which was extremely small. In the 100 ⁇ m ⁇ 100 ⁇ m range of the polished surface, the number of pores having a maximum length of 0.5 ⁇ m or more was one and very small.
  • the centerline average roughness Ra was as small as 0.4 nm, and the difference Pt between the maximum peak height and the maximum valley depth of the cross-sectional curve was as small as 15 nm.
  • the Young's modulus was 307 GPa, the thermal expansion coefficient (40 to 400 ° C.) was 2.7 ppm / K, and the sound velocity was 6200 m / s.
  • the resistivity of the sialon sintered body of Experimental Example 1 exceeded 10 14 ⁇ cm, and the insulation was high.
  • the number of pores is 10 or less, the center line average roughness Ra is 1.0 nm or less, the height difference Pt between the maximum peak height and the maximum valley depth is 30 nm or less, the Young's modulus is 210 GPa or more, and the CTE is 3.0 ppm / K.
  • the sound speed was 5000 m / s or more, and excellent characteristics were provided.
  • the resistivity of the sialon sintered bodies of Experimental Examples 2 to 11 exceeded 10 14 ⁇ cm.
  • the sialon sintered bodies of Experimental Examples 4 to 11 are those in which magnesium oxide or yttrium oxide is dissolved in sialon, and all of them have the same characteristics as the sialon sintered bodies of Experimental Examples 1 to 3. I understood it.
  • an LT substrate having a diameter of about 100 mm and a thickness of about 250 ⁇ m is directly applied to a support substrate having a diameter of about 100 mm and a thickness of about 230 ⁇ m cut out from the sintered bodies of Experimental Examples 1 to 11, respectively.
  • the composite substrate was obtained by bonding.
  • the activation process of the surface before joining was performed. Specifically, after evacuating to the 10 ⁇ 6 Pa level, both substrates were irradiated with a neutral atom beam of argon (acceleration voltage: 1 kV, current: 100 mA, Ar flow rate: 50 sccm) using a FAB gun for 120 sec. Thereafter, the two substrates were bonded together and pressed with a bonding load of 0.1 ton for 1 minute, and the support substrate and the LT substrate were directly bonded at room temperature.
  • the composite substrates of Experimental Examples 12 to 22 use a support substrate with small Ra and Pt, and almost no bubbles are observed at the bonding interface between the support substrate and the LT substrate, and the actual bonding area of the bonding interface.
  • the ratio (bonded area ratio) was 92% or more as shown in Table 3, and was well bonded.
  • the bonding area is the area of the portion without bubbles
  • the bonding area ratio is the ratio of the bonding area to the area of the entire bonding interface.
  • the composite substrate bonded well in Experimental Examples 12 to 22 does not peel off even when the LT substrate side is polished to a thickness of several ⁇ m to 20 ⁇ m, and the bonded area is maintained at 92% or more.
  • the support substrate and the LT substrate were bonded very firmly. Further, the cross section of the bonding interface was observed with a transmission electron microscope (TEM). There was no gap at the bonding interface, and there was a very thin amorphous layer that was firmly bonded even at the atomic level.
  • the thickness of the amorphous layer was measured using Experimental Examples 7 to 9 as representative examples, which were 3.6 nm, 3.8 nm, and 4.1 nm, respectively. The thickness of the amorphous layer was an average value measured at three different locations of the amorphous layer.
  • the conventional silicon support substrate (Young's modulus: 190 GPa, thermal expansion coefficient: about 4 ppm / K, resistivity 10 4 ⁇ cm level) has a lower Young's modulus than the sialon support substrate, so the binding force of the functional substrate is low.
  • the functional substrate is easily expanded and contracted because it is small and has a large thermal expansion coefficient, and the resonance characteristics are likely to deteriorate because the resistivity is low.
  • the conventional alumina support substrate (Young's modulus: 370 GPa, thermal expansion coefficient: about 7 ppm / K) and sapphire support substrate (Young's modulus: 490 GPa, thermal expansion coefficient: about 7 ppm / K) have a thermal expansion coefficient of sialon.
  • the functional substrate tends to expand and contract.
  • TCF frequency-temperature characteristics
  • experimental examples 12 to 22 described above correspond to examples of the composite substrate and the manufacturing method thereof according to the present invention.
  • the present invention is applicable to electronic devices such as Lamb wave elements and thin film resonators (FBARs) in addition to surface acoustic wave elements.
  • FBARs thin film resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本発明の複合基板は、支持基板と機能性基板とが直接接合された複合基板であって、支持基板は、サイアロン焼結体であるものである。支持基板の音速は5000m/s以上が好ましい。支持基板の40~400℃の熱膨張係数は3.0ppm/K以下が好ましい。

Description

複合基板,その製法及び電子デバイス
 本発明は、複合基板、その製法及び電子デバイスに関する。
 表面弾性波素子は、例えば、携帯電話などの通信機器におけるバンドパスフィルタとして使用されている。表面弾性波素子である圧電基板には、高音速で電気機械結合係数が大きい特性が要求されるため、その要求を満足するニオブ酸リチウム(LN)やタンタル酸リチウム(LT)が広く用いられている。しかし、LTやLNは熱膨張係数が大きく、環境温度変化による膨張収縮量が大きい。これにより、フィルタの中心周波数がずれるため通過する周波数が減少し、特性が悪化する。そのため、環境温度変化によって、表面弾性波素子が膨張収縮し難いことが必要になってきている。この点を克服するために、ヤング率が高く熱膨張係数が比較的小さな支持基板上に、薄い圧電基板を接合することで、支持基板によって圧電基板を拘束し、圧電基板が膨張収縮しない複合基板が開発されている。例えば、特許文献1には、圧電基板と支持基板とを接着層を介して接合した複合基板が開示されている。また、支持基板の材料として、サファイアやシリコン、アルミナなどが例示されている。これらの材料は、圧電基板に比べて熱膨張係数が小さいため周波数温度依存性を低くすることができるし、音速が速い材料のため高周波用の表面弾性波素子に適している。
 一方、特許文献2には、支持基板の上にCVD法などでコーティング処理を施して0.1~10μmのアモルファス層を形成した後、そのアモルファス層を介して支持基板と単結晶半導体基板とを貼り合わせることにより複合基板を得る方法が例示されている。支持基板の材料としては、サイアロン等が例示されている。
特開2012-85286号公報 国際公開第2016/052597号パンフレット
 しかしながら、特許文献1のサファイア及びアルミナは、圧電基板に比べて熱膨張係数が小さいとはいっても7ppm/K程度であるため、周波数温度依存性を大幅に低くすることはできないという問題があった。また、サファイアは、ヤング率が450GPa以上と高すぎるため、加工性が悪いという問題もあった。一方、シリコンは、圧電基板に比べて熱膨張係数が十分小さいものの、ヤング率が180~190GPa程度と低いため反りや割れが発生したり、抵抗率は高いものでも104Ωcm台であり十分な絶縁性がないためフィルタの共振特性が悪化するという問題があった。そのため、支持基板として、音速が速く、絶縁性が高く、ヤング率が適正な値であり、熱膨張係数が十分小さいものが求められていた。また、特許文献1の複合基板は、圧電基板と支持基板との間に有機接着剤層などの接着層を有しているため、複合基板全体のヤング率が低くなりすぎたり、支持基板による圧電基板の拘束力を十分に発現できなかったりするという問題もあった。
 一方、特許文献2には、支持基板の材料としてサイアロンが例示されている。しかしながら、特許文献2の複合基板は、支持基板と単結晶半導体基板との間に0.1~10μmのヤング率が低いアモルファス層が介在するため、やはり、複合基板全体のヤング率が低くなりすぎたり、支持基板による圧電基板の拘束力を十分に発現できなかったりするという問題があった。
 本発明はこのような課題を解決するためになされたものであり、高周波用弾性波デバイスの材料として適している複合基板を提供することを主目的とする。
 本発明の複合基板は、支持基板と機能性基板とが直接接合された複合基板であって、前記支持基板は、サイアロン焼結体であるものである。サイアロン焼結体は音速が速いため、本発明の複合基板を用いた弾性波デバイスはより高周波で使用することができる。また、サイアロン焼結体はヤング率が適正な値であるため、本発明の複合基板は反りや割れが発生しにくい反面、加工性は良好である、更に、サイアロン焼結体は抵抗率が高く絶縁性が高いため、本発明の複合基板を用いた弾性波デバイスは共振特性が良好になる。更にまた、サイアロン焼結体は熱膨張係数が十分低いため、本発明の複合基板を用いた弾性波デバイスは周波数温度依存性を十分低くすることができる。また、支持基板と機能性基板とは直接接合により一体化されているため、両基板が接着層などにより一体化されている場合に比べて、複合基板全体のヤング率が低くなりすぎることがないし、支持基板による機能性基板の拘束力を十分に発現できる。
 本発明の複合基板の製法は、上述した複合基板を製造する方法であって、前記支持基板の表面と前記機能性基板の表面とを直接接合する接合工程を含み、前記接合工程の前に、(a)前記支持基板の前記表面に存在する気孔の数が100μm×100μmの面積当たり30個以下となるように前記表面を研磨仕上げするか、(b)前記支持基板の前記表面の100μm×140μmの測定範囲における中心線平均粗さ(Ra)が1nm以下となるように前記表面を研磨仕上げするか、(c)前記支持基板の前記表面の100μm×140μmの測定範囲における断面曲線の最大山高さと最大谷深さとの高さの差(Pt)が30nm以下となるように前記表面を研磨仕上げするものである。この製法では、支持基板としてサイアロン焼結体を用いているため、支持基板を研磨仕上げした表面は表面平坦性が高い。そのため、機能性基板と支持基板とを直接接合するのに適している。
 本発明の電子デバイスは、上述した本発明の複合基板を利用したものである。この電子デバイスの支持基板であるサイアロン焼結体は、音速が速く、ヤング率が適正な値であり、抵抗率が高く、熱膨張係数が十分低い。そのため、この電子デバイスは、より高周波で使用することができ、反りや割れが発生しにくい反面、加工性はよく、共振特性が良好であり、周波数温度依存性を十分低くすることができる。
複合基板10の斜視図。 複合基板10を用いて作製した電子デバイス30の斜視図。
 以下、本発明の実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜変更、改良等が加えられることが理解されるべきである。
 本実施形態の複合基板は、支持基板と機能性基板とが直接接合された複合基板であって、支持基板は、サイアロン焼結体であるものである。サイアロン焼結体は、一般式:Si6-zAlzz8-z(0<z≦4.2)で表されるが、酸化マグネシウムや酸化イットリウムなどの金属酸化物を固溶していてもよい。機能性基板としては、特に限定されないが、例えばLT、LN、窒化ガリウム、シリコンなどが挙げられる。このうちLTやLNが好ましい。支持基板と機能性基板との界面に厚さが5nm以下のアモルファス層が存在していてもよい。
 サイアロン焼結体は音速が速い。そのため、本実施形態の複合基板を用いた弾性波デバイスはより高周波で使用することができる。サイアロン焼結体の音速は、5000m/s以上が好ましく、5500m/s以上がより好ましい。この音速は、剛性率、密度、ヤング率、ポアソン比によって決まるが、サイアロンは前出の式のzの値を調整することにより、これらの特性を制御することができる。
 サイアロン焼結体はヤング率が適正な値である。つまり、本実施形態の複合基板は適度に硬いため、反りや割れが発生しにくいし加工性も良好である。サイアロン焼結体のヤング率は、200GPa以上350GPa以下が好ましい。
 サイアロン焼結体は抵抗率が高く絶縁性が高い。そのため、本実施形態の複合基板を用いた弾性波デバイスは共振特性が良好になる。サイアロン焼結体の抵抗率は、1014Ωcm以上が好ましい。
 サイアロン焼結体は機能性基板に比べて熱膨張係数が十分低い。そのため、実施形態の複合基板を用いた弾性波デバイスは周波数温度依存性を十分低くすることができる。サイアロン焼結体の熱膨張係数(40~400℃)は3.0ppm/K以下が好ましく、2.7ppm/K以下がより好ましい。
 サイアロン焼結体は、開気孔率が0.1%以下であることが好ましく、相対密度が99.9%以上であることが好ましい。また、サイアロン焼結体は、X線回折図において、サイアロンの最大ピークの強度に対する、サイアロン以外の各成分の最大ピークの強度の総和の比が0.005以下のものが好ましい。なお、X線回折図の測定条件はCuKα、40kV、40mA、2θ=10-70°である。
 次に、サイアロン焼結体の製造方法について説明する。サイアロン焼結体の製造フローは、サイアロン原料粉末を作製する工程と、サイアロン焼結体を作製する工程とを含む。
(サイアロン原料粉末の作製)
 原料粉末には、不純物金属元素含有量が0.2質量%以下、平均粒径が2μm以下の市販の窒化珪素、窒化アルミニウム、アルミナ及びシリカ粉末を用いた。これら原料を用いて、Si:Al:O:N=(6-z):z:z:(8-z)(但し0<z≦4.2)が所定組成となるように質量割合を決定して各成分を混合してサイアロン原料粉末を作製する。zの値は0.5≦z≦4.0が好ましい。各粉末は、緻密に焼結するためには細かいものがより好ましく、平均粒径が1.5μm以下、更には1μm以下のものが好ましい。原料粉末の混合方法に特に制限はなく、例えばボールミル、アトライター、ビーズミル、ジェットミル等を利用することができ、乾式、湿式どちらの混合方法でもよい。但し、均質に混合された原料粉末を得るには溶媒を用いた湿式法が好ましい。その場合、混合に用いた溶媒等は乾燥除去されることで原料粉末を得る。原料粉末には添加物が含まれていてもよい。添加物としては、酸化マグネシウムや酸化イットリウムなどが挙げられる。得られたスラリーを乾燥し、乾燥物を篩に通してサイアロン原料粉末とする。なお、混合時にメディア成分等の混入によって組成がずれた場合は、適宜組成調整するなどして原料粉末とすればよい。あるいは、混合物に含まれる各成分の質量が所望のサイアロン組成になるように、予め混合粉末の各成分の質量を調整しておくことにより、混合物をそのままサイアロン原料粉末としてもよい。
(サイアロン焼結体の作製)
 得られたサイアロン原料粉末を所定形状に成形する。成形の方法に特に制限はなく、一般的な成形法を用いることができる。例えば、上記のようなサイアロン原料粉末をそのまま金型によってプレス成形してもよい。プレス成形の場合は、サイアロン原料粉末をスプレードライによって顆粒状にしておくと、成形性が良好になる。他に、有機バインダーを加えて坏土を作製し押出し成形したり、スラリーを作製しシート成形することができる。これらのプロセスでは焼成工程前あるいは焼成工程中に有機バインダー成分を除去することが必要になる。また、CIP(冷間静水圧プレス)にて高圧成形をしてもよい。
 次に、得られた成形体を焼成してサイアロン焼結体を作製する。この際、焼結粒子を微細に維持し、焼結中に気孔を排出することがサイアロン焼結体の表面平坦性を高めるために好ましい。その手法として、ホットプレス法が非常に有効である。ホットプレス法を用いることで常圧焼結に比べて低温で微細粒の状態で緻密化が進み、常圧焼結でよく見られる粗大な気孔の残留を抑制することができる。ホットプレス時の焼成温度は1725~1900℃とすることが好ましく、1750~1900℃とすることがより好ましい。また、ホットプレス時のプレス圧力は100~300kgf/cm2とすることが好ましく、150~250kgf/cm2がより好ましい。焼成温度(最高温度)での保持時間は、成形体の形状や大きさ、加熱炉の特性などを考慮し、適宜、適当な時間を選択することができる。具体的な好ましい保持時間は、例えば1~12時間、更に好ましくは2~8時間である。ホットプレス時の焼成雰囲気は、サイアロンの分解を避けるため、窒素雰囲気が好ましい。
 次に、複合基板の製法について説明する。この製法は、上述したサイアロン焼結体製の支持基板の表面と機能性基板との表面とを直接接合によって接合する工程を含むことが好ましい。接合界面のうち実際に接合している面積の割合(接合面積割合)が80%以上であることが好ましく、90%以上であることがより好ましい。このように接合面積割合が大きいと、機能性基板と支持基板とが強固に接合された良好な複合基板になる。
 直接接合では、機能性基板と支持基板とのそれぞれの接合面を活性化した後、両接合面を向かい合わせにした状態で両基板を押圧する。接合面の活性化は、例えば、接合面への不活性ガス(アルゴンなど)の中性原子ビームの照射のほか、プラズマやイオンビームの照射などで行う。これらの照射には、例えばイオンガンやFABガンなどを用いて行うことができる。FABガンはイオンガンに比べて1粒子当たりのエネルギーが大きく常温接合の妨げとなるような基板表面の酸化膜や吸着層を除去する能力が高い。すなわち、接合に必要なフリーな結合の手を造り易いため、FABガンの方がより好ましい。機能性基板と支持基板とを直接接合する前に、(a)支持基板の表面に存在する気孔の数が100μm×100μmの面積当たり30個以下となるように表面を研磨仕上げするか、(b)支持基板の表面の100μm×140μmの測定範囲における中心線平均粗さ(Ra)が1nm以下となるように表面を研磨仕上げするか、(c)支持基板の表面の100μm×140μmの測定範囲における断面曲線の最大山高さと最大谷深さとの高さの差(Pt)が30nm以下となるように表面を研磨仕上げするのが好ましい。こうすれば、機能性基板と支持基板とのナノレベルでの接触面積が高まり、良好に直接接合することができる。例えば、接合面積割合を80%以上(好ましくは90%以上)にすることができる。上述した(a)の気孔の数は10個以下がより好ましく、上述した(b)のRaは0.9nm以下がより好ましく、上述した(c)のPtは27nm以下がより好ましい。なお、支持基板の表面の研磨仕上げは(a)~(c)の少なくとも1つを満たすように行うのが好ましい。また、機能性基板の表面も、支持基板の表面と同様、(a)~(c)の少なくとも1つを満たすように研磨仕上げすることが好ましい。図1に複合基板の一例を示す。複合基板10は、機能性基板である圧電基板12と支持基板14とが直接接合により接合されたものである。
 このようにして作製した複合基板は、直接接合されているため、接着層を介して接合されている場合に比べて、複合基板全体のヤング率が低くなりすぎることがないし、支持基板による機能性基板の拘束力が強いため周波数温度依存性を低くすることができる。また、このようにして作製した複合基板は、支持基板と機能性基板との界面に厚さが5nm以下のアモルファス層が存在していてもよい。このように極く薄いアモルファス層が支持基板と機能性基板との間に存在していたとしても、複合基板全体のヤング率が低くなりすぎることがないし、支持基板による機能性基板の拘束力を十分に発現できる。
 次に、電子デバイスの実施の形態について説明する。電子デバイスは、上述した複合基板を利用したものである。電子デバイスに用いられる複合基板は、機能性基板と支持基板の厚さの比(機能性基板の厚さ/支持基板の厚さ)が0.1以下であることが好ましい。こうした電子デバイスとしては、弾性波デバイス(表面弾性波デバイスやラム波素子、薄膜共振子(FBAR)など)のほか、LEDデバイス、光導波路デバイス、スイッチデバイスなどが挙げられる。弾性波デバイスに上述した複合基板を利用する場合には、支持基板であるサイアロン焼結体の熱膨張係数が非常に小さく、且つ、ヤング率が高いため、支持基板が機能性基板を拘束する力が高まる。その結果、デバイスの周波数温度依存性が大きく改善される。図2に複合基板10を用いて作製した電子デバイス30の一例を示す。電子デバイス30は、1ポートSAW共振子つまり表面弾性波デバイスである。まず、複合基板10の圧電基板12に一般的なフォトリソグラフィ技術を用いて多数の電子デバイス30のパターンを形成し、その後、ダイシングにより1つ1つの電子デバイス30に切り出す。電子デバイス30は、フォトリソグラフィ技術により、圧電基板12の表面に櫛形のIDT(Interdigital Transducer)電極32,34と反射電極36とが形成されたものである。
 以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。
1.原料粉末の作製
 原料粉末には、市販の窒化珪素粉末(酸素含有量1.3質量%、不純物金属元素含有量0.2質量%以下、平均粒径0.6μm)、窒化アルミニウム(酸素含有量0.8質量%、不純物金属元素含有量0.1質量%以下、平均粒径1.1μm)、アルミナ(純度99.9質量%、平均粒径0.5μm)、シリカ(純度99.9質量%、平均粒径0.5μm)の粉末を用いた。
 サイアロン原料粉末A~Kは、以下のようにして作製した。すなわち、まず、窒化アルミニウム、アルミナ、窒化珪素、シリカの各粉末を、表1に示すzの値を持つサイアロン組成(Si6-zAlzz8-z)になるように秤量した。これら各粉末を、アルミナを玉石(φ5mm)とし、溶媒にイソプロピルアルコールを用いてボールミルにて4時間混合し、サイアロン混合物(粉末が混合されたスラリー)を作製した。得られたスラリーを窒素ガスフロー下、110℃で乾燥し、乾燥物を篩に通してサイアロン原料粉末A~Kとした。なお、サイアロン原料粉末D,H,Kには酸化マグネシウム(純度99.9%、平均粒径1.8μm)、サイアロン原料粉末E,F,G,I,Jには酸化イットリウム(純度99.9%、平均粒径1.1μm)を用いて前述と同様にして作製した。
Figure JPOXMLDOC01-appb-T000001
2.焼結体の作製及び評価
(1)実験例1
 実験例1のサイアロン焼結体は、サイアロン原料粉末Aを金型を用いて直径125mm、厚さ約20mmに成形した後、黒鉛型にて、プレス圧力200kgf/cm2下、最高温度1800℃で4時間、ホットプレス焼成したものである。焼成雰囲気は、窒素雰囲気とした。得られた焼結体は直径125mmで厚さは約8mmであった。この焼結体から4mm×3mm×40mmサイズの抗折棒などを切り出し、各種特性を評価した。各種特性の評価方法を以下に示す。また、結果を表2に示す。なお、焼結体表面の性状は、4mm×3mm×10mm程度の試験片の一面を研磨によって鏡面状に仕上げて評価した。研磨は3μmのダイヤモンド砥粒、最終的に0.5μmのダイヤモンド砥粒のラップ研磨を行った。
・嵩密度、開気孔率
 蒸留水を用いたアルキメデス法により測定した。
・相対密度
 相対密度は嵩密度÷見掛け密度で算出した。
・結晶相及びピーク強度比Ix
 サイアロン焼結体を粉砕し、X線回折装置により、サイアロン、異相の同定と各相の最大ピークの強度の算出を行った。焼結体の粉砕は、アルミナ乳鉢を用いているためアルミナ乳鉢からアルミナが混合される可能性があり、長時間の粉砕には注意が必要である。XRD装置には、全自動多目的X線解析装置D8 ADVANCEを用い、CuKα、40kV、40mA、2θ=10-70°を測定条件とした。X線回折図から、サイアロンの最大ピーク(2θ=32.8~33.5°)の強度(Ic)に対する、検出された各異相(P、Q、R、・・・)の最大ピークの強度(Ip、Iq、Ir、・・・)の総和の比(ピーク強度比Ix)を下記式から求めた。なお、最大ピークが他のピークと重なる場合は、最大ピークの代わりに2番目にピーク強度の大きなピークを採用した。
 Ix=(Ip+Iq+Ir・・・)/Ic
・サイアロン焼結粒の平均粒径
 破断面におけるサイアロン焼結粒をSEMにて127μm×88μmの視野で観察し、視野内の10個以上のサイアロン焼結粒の粒径を求め、その平均値をサイアロン焼結粒の平均粒径とした。なお、1つのサイアロン焼結粒の粒径は、その焼結粒の長径と短径の平均値とした。
・気孔数
 上記のように鏡面状に仕上げた面を3D測定レーザー顕微鏡で観察し、最大長さが0.5μm以上、深さが0.08μm以上の気孔の単位面積当たりの計数値を4箇所で計測し、その平均値を気孔数とした。単位面積は100μm四方の面積とした。
・表面平坦性
 上記のように鏡面状に仕上げた面に対し、3次元光学プロファイラー(Zygo)を用いて中心線平均粗さRaと、最大山高さと最大谷深さとの高さの差Ptを測定した。本明細書中のRaとPtは、JIS B 0601:2013で規定される、断面曲線の算術平均粗さRaと断面曲線の最大断面高さPtに対応する。上記のRa、Ptを表面平坦性とした。測定範囲は、100μm×140μmとした。
・ヤング率
 JIS R1602に準じた、静的撓み法で測定した。試験片形状は3mm×4mm×40mm抗折棒とした。
・熱膨張係数(CTE,40~400℃)
 JIS R1618に準じて、押し棒示差式で測定した。試験片形状は3mm×4mm×20mmとした。
・音速
 音速cは、下記式により算出した。なお、ポアソン比は試験片にひずみゲージを貼付して測定した。
 c=(G/ρ)1/2 ,G=E/2(1+ν)
(G:剛性率、ρ:密度、E:ヤング率、ν:ポアソン比)
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実験例1のサイアロン焼結体は優れた特性を備えていた。具体的には、実験例1のサイアロン焼結体の嵩密度は3.160g/cm3、開気孔は0.00%、相対密度は100.00%であった。結晶相は、サイアロン以外に僅かにアルミナや酸窒化ケイ素が検出された。サイアロンの最大ピークの強度に対する、サイアロン以外の各成分の最大ピークの強度の総和の比(ピーク強度比)Ixは0.0012であり、極めて小さかった。研磨面の100μm×100μm範囲において、最大長さが0.5μm以上の気孔数は1個で非常に少なかった。研磨面の表面平坦性は、中心線平均粗さRaが0.4nmと小さく、断面曲線の最大山高さと最大谷深さとの高さの差Ptは15nmと小さいことがわかった。ヤング率は307GPa、熱膨張係数(40~400℃)は2.7ppm/K、音速は6200m/sであった。また、実験例1のサイアロン焼結体の抵抗率は1014Ωcmを超えており、絶縁性が高かった。
(2)実験例2~11
 実験例2~11のサイアロン焼結体は、サイアロン原料粉末Aの代わりに表1に示すサイアロン原料粉末B~Kを用いて、実験例1と同様にしてホットプレス焼成したものである。各サイアロン焼結体の特性を表2に示す。いずれのサイアロン焼結体も、開気孔率は0.01%以下、相対密度は99.9%以上、サイアロン以外の相とのピーク強度比Ixは0.005以下、サイアロン平均粒径は20μm以下、気孔数は10個以下、中心線平均粗さRaは1.0nm以下、最大山高さと最大谷深さとの高さの差Ptは30nm以下、ヤング率は210GPa以上、CTEは3.0ppm/K以下、音速は5000m/s以上であり、優れた特性を備えていた。また、実験例2~11のサイアロン焼結体の抵抗率はいずれも1014Ωcmを超えていた。なお、実験例4~11のサイアロン焼結体は、酸化マグネシウムあるいは酸化イットリウムがサイアロン中に固溶したものであるが、いずれも実験例1~3のサイアロン焼結体と同等の特性が得られることがわかった。
3.複合基板の作製及び評価
 実験例12~22では、実験例1~11の焼結体からそれぞれ切り出した直径100mm、厚さ230μm程度の支持基板に、直径100mm、厚さ250μm程度のLT基板を直接接合して複合基板を得た。まず、接合前の表面の活性化処理を行った。具体的には、10-6Pa台まで真空引きした後、FABガンを用いてアルゴンの中性原子ビーム(加速電圧:1kV、電流:100mA、Ar流量:50sccm)を120sec両基板に照射した。その後、両基板を貼り合わせ、接合荷重0.1tonで1分間プレスし、支持基板とLT基板を室温で直接接合した。
 実験例12~22の複合基板は、Ra、Ptが小さい支持基板を用いており、支持基板とLT基板との接合界面に気泡は殆ど観察されず、接合界面のうち実際に接合している面積の割合(接合面積割合)が表3に示すように92%以上であり、良好に接合されていた。ここで、接合面積は、気泡のない部分の面積であり、接合面積割合は、接合界面全体の面積に対する接合面積の割合である。更に、実験例12~22で良好に接合された複合基板は、LT基板側を数μmから20μmの厚さとなるまで研磨処理しても、剥離することなく、接合面積は92%以上が維持されており、支持基板とLT基板が非常に強固に接合されていることが確認された。また、接合界面を透過型電子顕微鏡(TEM)にて断面を観察した。接合界面は隙間がなく、原子レベルにおいても強固に接合、且つ、非常に薄いアモルファス層があった。実験例7~9を代表例としてアモルファス層の厚さを測定したところ、それぞれ3.6nm、3.8nm、4.1nmであった。アモルファス層の厚さは、アモルファス層の異なる3箇所で測定した平均値とした。
Figure JPOXMLDOC01-appb-T000003
 従来技術であるシリコン支持基板(ヤング率:190GPa、熱膨張係数:4ppm/K程度、抵抗率104Ωcm台)は、サイアロン支持基板に比べて、ヤング率が低いため機能性基板の拘束力が小さく、熱膨張係数が大きいため機能性基板の膨張収縮が生じ易く、さらに抵抗率が低いため共振特性が悪化しやすい。また、従来技術であるアルミナ支持基板(ヤング率:370GPa、熱膨張係数:7ppm/K程度)やサファイア支持基板(ヤング率:490GPa、熱膨張係数:7ppm/K程度)は、熱膨張係数がサイアロン支持基板の倍以上と大幅に大きいため、機能性基板の膨張収縮が生じ易い。以上より、シリコン支持基板、アルミナ支持基板及びサファイア支持基板と比べて、実験例サイアロン支持基板に用いた方が、膨張収縮が生じにくいため表面弾性波素子の周波数温度特性(TCF)を大幅に改善することができ、共振特性の面でも優れていると期待される。なかでも、実験例1、6に用いたサイアロン基板は高ヤング率の特徴を有しており、よりTCFの改善率が高いと期待される。
 なお、上述した実験例12~22が本発明の複合基板及びその製法の実施例に相当する。
 本出願は、2016年9月20日に出願された国際出願PCT/JP2016/77628を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、表面弾性波素子の他にラム波素子、薄膜共振子(FBAR)などの電子デバイスに利用可能である。
10 複合基板、12 圧電基板、14 支持基板、30 電子デバイス、32,34 IDT電極、36 反射電極。

Claims (10)

  1.  支持基板と機能性基板とが直接接合された複合基板であって、
     前記支持基板は、サイアロン焼結体である、
     複合基板。
  2.  前記支持基板と前記機能性基板との界面にアモルファス層があり、前記アモルファス層の厚さが5nm以下である、
     請求項1に記載の複合基板。
  3.  支持基板と機能性基板とがアモルファス層を介して接合された複合基板であって、
     前記アモルファス層の厚さが5nm以下である、
     複合基板。
  4.  前記機能性基板は、圧電基板である、
     請求項1~3のいずれか1項に記載の複合基板。
  5.  前記支持基板の音速が5000m/s以上である、
     請求項1~4のいずれか1項に記載の複合基板。
  6.  前記支持基板の40~400℃の熱膨張係数が3.0ppm/K以下である、
     請求項1~5のいずれか1項に記載の複合基板。
  7.  請求項1~6のいずれか1項に記載の複合基板を製造する方法であって、
     前記支持基板の前記表面と前記機能性基板の表面とを直接接合によって接合する接合工程
     を含み、
     前記接合工程の前に、前記支持基板の表面に存在する気孔の数が100μm×100μmの面積当たり30個以下となるように前記表面を研磨仕上げする、
     複合基板の製法。
  8.  請求項1~6のいずれか1項に記載の複合基板を製造する方法であって、
     前記支持基板の表面と前記機能性基板の表面とを直接接合によって接合する接合工程
     を含み、
     前記接合工程の前に、前記支持基板の前記表面の100μm×140μmの測定範囲における中心線平均粗さ(Ra)が1nm以下となるように前記表面を研磨仕上げする、
     複合基板の製法。
  9.  請求項1~6のいずれか1項に記載の複合基板を製造する方法であって、
     前記支持基板の表面と前記機能性基板の表面とを直接接合によって接合する接合工程
     を含み、
     前記接合工程の前に、前記支持基板の前記表面の100μm×140μmの測定範囲における断面曲線の最大山高さと最大谷深さとの高さの差(Pt)が30nm以下となるように前記表面を研磨仕上げする、
     複合基板の製法。
  10.  請求項1~6のいずれか1項に記載の複合基板を利用した電子デバイス。
PCT/JP2017/033454 2016-09-20 2017-09-15 複合基板,その製法及び電子デバイス WO2018056210A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112017004718.8T DE112017004718T5 (de) 2016-09-20 2017-09-15 Verbundsubstrat, Verfahren zu seiner Herstellung und elektronische Vorrichtung
CN201780055823.6A CN109690943B (zh) 2016-09-20 2017-09-15 复合基板及其制法以及电子器件
JP2018502194A JP6681461B2 (ja) 2016-09-20 2017-09-15 複合基板,その製法及び電子デバイス
KR1020197007042A KR102257664B1 (ko) 2016-09-20 2017-09-15 복합 기판, 그 제조법 및 전자 디바이스
US16/296,812 US10998881B2 (en) 2016-09-20 2019-03-08 Composite substrate, method for producing the same, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016077628 2016-09-20
JPPCT/JP2016/077628 2016-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/296,812 Continuation US10998881B2 (en) 2016-09-20 2019-03-08 Composite substrate, method for producing the same, and electronic device

Publications (1)

Publication Number Publication Date
WO2018056210A1 true WO2018056210A1 (ja) 2018-03-29

Family

ID=61690384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033454 WO2018056210A1 (ja) 2016-09-20 2017-09-15 複合基板,その製法及び電子デバイス

Country Status (7)

Country Link
US (1) US10998881B2 (ja)
JP (1) JP6681461B2 (ja)
KR (1) KR102257664B1 (ja)
CN (1) CN109690943B (ja)
DE (1) DE112017004718T5 (ja)
TW (1) TWI773688B (ja)
WO (1) WO2018056210A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098345A (ja) * 2020-01-20 2020-06-25 日本碍子株式会社 電気光学素子のための複合基板とその製造方法
US11281032B2 (en) 2018-05-22 2022-03-22 Ngk Insulators, Ltd. Composite substrate for electro-optic element and method for manufacturing the same
JP2022126844A (ja) * 2020-01-20 2022-08-30 日本碍子株式会社 電気光学素子のための複合基板とその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138356B (zh) * 2019-06-28 2020-11-06 中国科学院上海微系统与信息技术研究所 一种高频声表面波谐振器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187177A (ja) * 1989-01-17 1990-07-23 Natl Res Inst For Metals セラミックホーンを用いた超音波発振装置
JPH08130439A (ja) * 1994-11-01 1996-05-21 Agency Of Ind Science & Technol 高速表面弾性波素子
JP2004241670A (ja) * 2003-02-07 2004-08-26 Nikon Corp 組立構造体、ステージ装置および露光装置
WO2014027538A1 (ja) * 2012-08-17 2014-02-20 日本碍子株式会社 複合基板,弾性表面波デバイス及び複合基板の製造方法
JP2015023193A (ja) * 2013-07-19 2015-02-02 ヤマハ株式会社 圧電素子
WO2016052597A1 (ja) * 2014-09-30 2016-04-07 信越化学工業株式会社 貼り合わせ基板とその製造方法、および貼り合わせ用支持基板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124867A (ja) * 1991-11-01 1993-05-21 Sumitomo Electric Ind Ltd 窒化ケイ素系焼結体
JP3929983B2 (ja) * 2004-03-03 2007-06-13 富士通メディアデバイス株式会社 接合基板、弾性表面波素子および弾性表面波デバイス並びにその製造方法
JP2007214902A (ja) * 2006-02-09 2007-08-23 Shin Etsu Chem Co Ltd 弾性表面波素子
WO2008078481A1 (ja) * 2006-12-25 2008-07-03 Murata Manufacturing Co., Ltd. 弾性境界波装置
JP4316632B2 (ja) * 2007-04-16 2009-08-19 富士通メディアデバイス株式会社 弾性表面波装置及び分波器
JP5117911B2 (ja) * 2008-04-03 2013-01-16 新日鉄住金マテリアルズ株式会社 セラミックスおよび炭素繊維強化プラスチックを含む構造体
EP3078393B1 (en) 2009-12-23 2017-11-22 C. R. Bard, Inc. Catheter assembly/package utilizing a hydrating/hydrogel sleeve
KR101661361B1 (ko) * 2010-01-14 2016-09-29 엔지케이 인슐레이터 엘티디 복합 기판, 및 그것을 이용한 탄성 표면파 필터와 탄성 표면파 공진기
CN102624352B (zh) 2010-10-06 2015-12-09 日本碍子株式会社 复合基板的制造方法以及复合基板
JP5874738B2 (ja) * 2011-12-01 2016-03-02 株式会社村田製作所 弾性表面波装置
US9425248B2 (en) * 2011-12-22 2016-08-23 Shin-Etsu Chemical Co., Ltd. Composite substrate
KR20160013518A (ko) * 2013-05-21 2016-02-04 엔지케이 인슐레이터 엘티디 압전 디바이스의 제조 방법, 압전 디바이스, 및 압전 자립 기판
WO2016077628A1 (en) 2014-11-12 2016-05-19 Munchkin, Inc. Cassette for dispensing pleated tubing
JP2016144827A (ja) * 2015-01-29 2016-08-12 京セラ株式会社 溶接用エンドタブ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187177A (ja) * 1989-01-17 1990-07-23 Natl Res Inst For Metals セラミックホーンを用いた超音波発振装置
JPH08130439A (ja) * 1994-11-01 1996-05-21 Agency Of Ind Science & Technol 高速表面弾性波素子
JP2004241670A (ja) * 2003-02-07 2004-08-26 Nikon Corp 組立構造体、ステージ装置および露光装置
WO2014027538A1 (ja) * 2012-08-17 2014-02-20 日本碍子株式会社 複合基板,弾性表面波デバイス及び複合基板の製造方法
JP2015023193A (ja) * 2013-07-19 2015-02-02 ヤマハ株式会社 圧電素子
WO2016052597A1 (ja) * 2014-09-30 2016-04-07 信越化学工業株式会社 貼り合わせ基板とその製造方法、および貼り合わせ用支持基板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11281032B2 (en) 2018-05-22 2022-03-22 Ngk Insulators, Ltd. Composite substrate for electro-optic element and method for manufacturing the same
US11573435B2 (en) 2018-05-22 2023-02-07 Ngk Insulators, Ltd. Composite substrate for electro-optic element and method for manufacturing the same
US11815751B2 (en) 2018-05-22 2023-11-14 Ngk Insulators, Ltd. Composite substrate for electro-optic element and method for manufacturing the same
JP2020098345A (ja) * 2020-01-20 2020-06-25 日本碍子株式会社 電気光学素子のための複合基板とその製造方法
JP7098666B2 (ja) 2020-01-20 2022-07-11 日本碍子株式会社 電気光学素子のための複合基板とその製造方法
JP2022126844A (ja) * 2020-01-20 2022-08-30 日本碍子株式会社 電気光学素子のための複合基板とその製造方法
JP7331208B2 (ja) 2020-01-20 2023-08-22 日本碍子株式会社 電気光学素子のための複合基板とその製造方法

Also Published As

Publication number Publication date
TW201826578A (zh) 2018-07-16
KR102257664B1 (ko) 2021-05-31
CN109690943B (zh) 2023-10-13
TWI773688B (zh) 2022-08-11
US10998881B2 (en) 2021-05-04
CN109690943A (zh) 2019-04-26
JPWO2018056210A1 (ja) 2018-09-20
US20190207585A1 (en) 2019-07-04
JP6681461B2 (ja) 2020-04-15
DE112017004718T5 (de) 2019-06-13
KR20190039557A (ko) 2019-04-12

Similar Documents

Publication Publication Date Title
US10998881B2 (en) Composite substrate, method for producing the same, and electronic device
TWI570091B (zh) Modular stone sintered body, its preparation method and composite substrate
JP5890945B1 (ja) コージェライト焼結体、その製法、複合基板及び電子デバイス
KR102377658B1 (ko) 코디어라이트질 소결체, 그 제법 및 복합 기판
JP7018267B2 (ja) サイアロン焼結体、その製法、複合基板及び電子デバイス
JP6940959B2 (ja) コージェライト質焼結体、その製法及び複合基板
KR102395407B1 (ko) 사이알론 소결체, 그 제조법, 복합 기판 및 전자 디바이스
KR102377657B1 (ko) 멀라이트 함유 소결체, 그 제법 및 복합 기판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018502194

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007042

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17852983

Country of ref document: EP

Kind code of ref document: A1