CN111593332B - 柔性玻璃上溅射沉积压电薄膜的方法 - Google Patents

柔性玻璃上溅射沉积压电薄膜的方法 Download PDF

Info

Publication number
CN111593332B
CN111593332B CN202010585778.9A CN202010585778A CN111593332B CN 111593332 B CN111593332 B CN 111593332B CN 202010585778 A CN202010585778 A CN 202010585778A CN 111593332 B CN111593332 B CN 111593332B
Authority
CN
China
Prior art keywords
flexible glass
film
sputtering
piezoelectric film
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010585778.9A
Other languages
English (en)
Other versions
CN111593332A (zh
Inventor
尹小波
尹堃
肖斌
胡泽超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Zhongyun Technology Co ltd
Zhongda Intelligent Technology Co ltd
Original Assignee
Hunan Zhongyun Technology Co ltd
Hunan Zhongda Testing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Zhongyun Technology Co ltd, Hunan Zhongda Testing Co ltd filed Critical Hunan Zhongyun Technology Co ltd
Priority to CN202010585778.9A priority Critical patent/CN111593332B/zh
Publication of CN111593332A publication Critical patent/CN111593332A/zh
Application granted granted Critical
Publication of CN111593332B publication Critical patent/CN111593332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种柔性玻璃上溅射沉积压电薄膜的方法。该方法包括:S1、将清洗后的柔性玻璃紧贴在磁控溅射镀膜机的真空腔中的基片冷却装置的表面;S2、之后抽真空至真空度达到10‑7~10‑3Pa;S3、采用原子层沉积方法在所述柔性玻璃的表面沉积ZnO或者AlN纳米级别的薄膜得到镀膜柔性玻璃;S4、向所述真空腔中动态地通入工作气体,所述工作气体总压强为0.2~10Pa;S5、启动磁控溅射源,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜,之后向磁控溅射镀膜机真空腔中放入大气,取出样品。本发明实现了在柔性玻璃上溅射沉积压电薄膜。

Description

柔性玻璃上溅射沉积压电薄膜的方法
技术领域
本发明涉及电子材料技术领域,尤其涉及一种柔性玻璃上溅射沉积压电薄膜的方法。
背景技术
压电薄膜由于具有压电性能在声表面波(SAW)和体声波(FBAR)传感器以及滤波器领域具有广泛的应用场景。传统制备压电薄膜都是基于硬性衬底材料,如金刚石衬底、铝酸锂衬底、蓝宝石衬底硅片等。在硬质衬底上制备压电薄膜,然后制备声波器件,不能适用于柔性电子、曲面监测等需求。
近年来浙江大学提出在柔性聚合物衬底上制备ZnO压电薄膜,然后制备柔性SAW器件,并成功应用于柔性湿度、温度、紫外以及应力应变传感器。相较于传统硬质衬底的压电薄膜SAW器件,柔性衬底压电薄膜SAW器件重量更轻,并且可以贴于弯曲曲面传感。但是柔性聚合物衬底具有吸声效应,所以制备的柔性SAW器件传输信号(S21)幅度不大,只有25dB(Sci.Rep.3,2140(2013).https://doi.org/10.1038/srep02140),限制了高性能柔性传感和应用;另外由于信号幅度不够大,基于聚合物压电薄膜的柔性SAW很难驱动微流控,限制其在柔性片上实验室应用。为此迫切需要在既能柔性又不吸声的材料上沉积高性能高c轴取向压电薄膜,以满足SAW器件柔性传感和柔性微流控需求。
发明内容
本发明所要解决的技术问题是:如何在柔性玻璃上溅射沉积压电薄膜。
为解决上述技术问题,本发明提出了一种柔性玻璃上溅射沉积压电薄膜的方法。
一种柔性玻璃上溅射沉积压电薄膜的方法,包括以下步骤:
S1、将清洗后的柔性玻璃紧贴在磁控溅射镀膜机的真空腔中的基片冷却装置的表面;
S2、之后抽真空至真空度达到10-7~10-3Pa;
S3、采用原子层沉积方法在所述柔性玻璃的表面沉积ZnO或者AlN纳米级别的薄膜得到镀膜柔性玻璃;
S4、向所述真空腔中动态地通入工作气体,所述工作气体总压强为0.2~10Pa;
S5、启动磁控溅射源,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜,之后向磁控溅射镀膜机真空腔中放入大气,取出样品。
优选地,在步骤S4中,所述工作气体为反应气体和氩气的混合物,所述反应气体与氩气的质量摩尔比为0.3~2:1。
优选地,在步骤S4中,所述反应气体为氧气。
优选地,在步骤S3中,所述镀膜柔性玻璃中所镀膜的厚度为0-30nm。
优选地,在步骤S5中,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜的厚度为200nm-6um。
优选地,在步骤S5中,所述压电薄膜为ZnO薄膜、AlN薄膜、V掺杂ZnO薄膜、Sc掺杂AlN薄膜和Er掺杂AlN薄膜中的一种。
优选地,在步骤S5中,所述磁控溅射源为平面靶磁控溅射源、柱型靶磁控溅射源、S-枪磁控溅射源以及它们的孪生靶中的一种。
优选地,在步骤S5中,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜,具体采用直流溅射、射频溅射、中频溅射的一种磁控溅射方法制成,溅射的功率密度为2~25W/cm2,靶材到衬底的距离为5~10cm。
优选地,在步骤S1中,所述柔性玻璃通过以下步骤清洗:清洗柔性玻璃,将柔性玻璃用电子清洗剂擦洗,之后用水超声清洗,再用无水乙醇超声清洗,然后干燥。
本发明与现有技术对比的有益效果包括:在柔性玻璃上制备高c轴取向的压电薄膜;由于柔性玻璃既能柔性弯曲又不吸声,在制备柔性SAW器件时候,器件信号幅度将更大。另外由于柔性玻璃为非晶衬底,需要在非晶衬底上制备高c轴取向压电薄膜有挑战,本发明提出采用原子层沉积方法在所述柔性玻璃的表面沉积ZnO或者AlN纳米级别的薄膜作为柔性玻璃和压电薄膜的过渡层,提高后续压电薄膜的取向,结合其他特定的工艺参数,实现在柔性玻璃上溅射沉积压电薄膜。采用本方法在柔性玻璃上制备的ZnO压电薄膜再制备成SAW器件的传输信号(S21)高达45dB。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1为实施例1所得到的样品的SEM图。
图2为实施例1制备得到的ZnO压电薄膜在制成的SAW器件的频率响应图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
本具体实施方式提出一种柔性玻璃上溅射沉积压电薄膜的方法,包括以下步骤:
S1、清洗超薄柔性玻璃,将超薄柔性玻璃用电子清洗剂擦洗,之后用水超声清洗,再用无水乙醇超声清洗,然后干燥;将清洗后的柔性玻璃紧贴在磁控溅射镀膜机的真空腔中的基片冷却装置的表面;柔性玻璃的厚度在20μm-300μm之间;
S2、之后抽真空至真空度达到10-7~10-3Pa;
S3、采用原子层沉积方法在所述柔性玻璃的表面沉积ZnO或者AlN纳米级别的薄膜得到镀膜柔性玻璃;所述镀膜柔性玻璃中所镀膜的厚度为0-30nm;
S4、向所述真空腔中动态地通入工作气体,所述工作气体总压强为0.2~10Pa;所述工作气体为反应气体和氩气的混合物,所述反应气体与氩气的体积比为0.3~2:1;进一步地,所述工作气体为氧气。
S5、启动磁控溅射源,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜,之后向磁控溅射镀膜机真空腔中放入大气,取出样品。进一步地,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜的厚度为200nm-6um。进一步地,所述磁控溅射源为平面靶磁控溅射源、柱型靶磁控溅射源、S-枪磁控溅射源以及它们的孪生靶中的一种。进一步地,所述压电薄膜为ZnO薄膜、AlN薄膜、V掺杂ZnO薄膜、Sc掺杂AlN薄膜和Er掺杂AlN薄膜中的一种。
在本具体实施方式中,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜,具体采用直流溅射、射频溅射、中频溅射的一种磁控溅射方法制成,溅射的功率密度为2~25W/cm2,靶材到衬底的距离为5~10cm。
本发明提出的原子层沉积方法(ALD方法)是基于前驱体和清除(purge)气体交替地引入基板表面的一种气相化学反应的生长方法。交替地在反应室里引入前驱体气体和N2清除气体,实现单原子层的生长,每一层的生长具有自我停止的生长机理。通过控制前驱体的导入和清除的时间,可有效地控制生长速率和晶体质量。
(1)ZnO纳米级别的薄膜(ZnO纳米种子层)可以采用热分解ALD的方法来沉积,其ALD前驱体是Zn(C2H5)2和水,其化学反应如下:
Zn(C2H5)2+H2O→ZnO+2C2H6. (2)
控制生长温度在200-300℃之间时,可以获得具有良好的(002)晶向的ZnO薄膜,晶粒在40-50nm之间。
(2)AlN的ALD生长,前驱气体是Trimethylaluminum(TMA)和Ammonia(NH3),同时借助于等离子体辅助生长,通过调节温度和等离子体的功率等来获得比较好的纳米级AlN薄膜。
为进一步说明本发明提出的方法,下面列举详细的实施例进行说明。
实施例1
一种柔性玻璃上溅射沉积压电薄膜的方法,包括以下步骤:
1)将面积为2寸的超薄柔性玻璃用丙酮超声清洗后,用去离子水超声清洗2遍,再用无水乙醇超声清洗,然后用氮气吹干,将清洗后的柔性玻璃紧贴在磁控溅射镀膜机的真空腔中的基片冷却装置的表面;将清洗后的柔性超薄玻璃贴于磁控溅射设备真空腔中的平板衬底上;
2)之后抽真空至平板衬底的真空度为5×10-4Pa;
3)采用原子层沉积方法在所述柔性玻璃的表面沉积ZnO,具体地通入氩气,调节流量,使得氩气气压为5×10-1Pa;关闭衬底的挡板,接通直流磁控溅射电源,调节功率为300W,预溅金属锌靶10min,得到镀膜柔性玻璃;
4)向所述真空腔中动态地通入氩气和氧气,调节流量,使得氧氩的质量摩尔比保持为3:2,工作总压强为2Pa;
5)采用直流磁控溅射,调节功率为200W,在超薄柔性玻璃衬底上沉积氮化铝薄膜,溅射时间为5h,在所制备厚度为2.7μm的氧化锌(ZnO)压电薄膜。然后向真空腔内放入大气,取出样品。
图1是本实施例所得到样品的SEM图,由图可以看出ZnO薄膜厚度为2.7μm,膜层致密,晶粒程柱状生长,说明制备的压电薄膜性能良好。图2为采用本方法在柔性玻璃上制备ZnO压电薄膜再制备成SAW器件的频率响应图,S11为制得的SAW器件参数的反射特性,S12为制得的SAW器件参数的传输特性;可以看出S21有45dB,柔性聚合物衬底上ZnO压电薄膜SAW器件的S21只有25dB,本方法制备ZnO压电薄膜得到的信号幅度要大很多。说明柔性玻璃上制备ZnO压电薄膜有利于后续柔性SAW器件频率响应。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (2)

1.一种柔性玻璃上溅射沉积压电薄膜的方法,其特征在于,包括以下步骤:
S1、将柔性玻璃用电子清洗剂擦洗,之后用水超声清洗,再用乙醇超声清洗,然后干燥;将清洗后的柔性玻璃紧贴在磁控溅射镀膜机的真空腔中的基片冷却装置的表面;
S2、之后抽真空至真空度达到10-7~10-3Pa;
S3、采用原子层沉积方法在所述柔性玻璃的表面沉积ZnO纳米级别的薄膜得到镀膜柔性玻璃,采用热分解ALD的方法来沉积,前驱体是Zn(C2H5)2和水,控制生长温度在200-300℃之间,获得具有良好的(002)晶相的ZnO薄膜,晶粒在40-50nm之间;
S4、向所述真空腔中动态地通入工作气体,所述工作气体总压强为0.2~10Pa;其中,所述工作气体为反应气体和氩气的混合物,所述反应气体与氩气的体积比为0.3~2:1,所述反应气体为氧气;
S5、启动磁控溅射源,在所述镀膜柔性玻璃上反应溅射沉积压电薄膜,溅射源为平面靶磁控溅射源、柱型靶磁控溅射源、S-枪磁控溅射源以及它们的孪生靶中的一种,采用直流溅射、射频溅射、中频溅射中的一种磁控溅射方法制成;溅射的功率密度为2~25W/cm2,靶材到衬底的距离为 5~10cm;压电薄膜的厚度为200nm-6μm;之后向磁控溅射镀膜机真空腔中放入大气,取出样品。
2.根据权利要求1所述的方法,其特征在于,在步骤S5中,所述压电薄膜为ZnO薄膜、AlN薄膜、V掺杂ZnO薄膜、Sc掺杂AlN薄膜和Er掺杂AlN薄膜中的一种。
CN202010585778.9A 2020-06-24 2020-06-24 柔性玻璃上溅射沉积压电薄膜的方法 Active CN111593332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010585778.9A CN111593332B (zh) 2020-06-24 2020-06-24 柔性玻璃上溅射沉积压电薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010585778.9A CN111593332B (zh) 2020-06-24 2020-06-24 柔性玻璃上溅射沉积压电薄膜的方法

Publications (2)

Publication Number Publication Date
CN111593332A CN111593332A (zh) 2020-08-28
CN111593332B true CN111593332B (zh) 2021-06-11

Family

ID=72184357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010585778.9A Active CN111593332B (zh) 2020-06-24 2020-06-24 柔性玻璃上溅射沉积压电薄膜的方法

Country Status (1)

Country Link
CN (1) CN111593332B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099794A1 (en) * 2022-11-08 2024-05-16 Agc Glass Europe Method for the deposition of group iiia metal nitride films

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005432B (zh) * 2021-02-18 2022-05-20 西安交通大学 图形化沉积ZnO功能层的方法、应变传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256139A (ja) * 1996-03-22 1997-09-30 Fuji Electric Co Ltd 酸化亜鉛膜の製造方法
CN104195552A (zh) * 2014-07-16 2014-12-10 电子科技大学 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法
CN104498883A (zh) * 2014-11-27 2015-04-08 清华大学 在柔性衬底上沉积高c轴取向氮化铝薄膜的方法
CN104805405A (zh) * 2015-04-01 2015-07-29 电子科技大学 一种氮化铝压电薄膜及其制备方法
CN105296924A (zh) * 2015-11-18 2016-02-03 清华大学 高c轴取向氮化铝薄膜及其制备方法与应用
CN110658256A (zh) * 2019-10-11 2020-01-07 湖南大学 一种基于电极质量负载效应的超高灵敏度谐振式声表面波传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256139A (ja) * 1996-03-22 1997-09-30 Fuji Electric Co Ltd 酸化亜鉛膜の製造方法
CN104195552A (zh) * 2014-07-16 2014-12-10 电子科技大学 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法
CN104498883A (zh) * 2014-11-27 2015-04-08 清华大学 在柔性衬底上沉积高c轴取向氮化铝薄膜的方法
CN104805405A (zh) * 2015-04-01 2015-07-29 电子科技大学 一种氮化铝压电薄膜及其制备方法
CN105296924A (zh) * 2015-11-18 2016-02-03 清华大学 高c轴取向氮化铝薄膜及其制备方法与应用
CN110658256A (zh) * 2019-10-11 2020-01-07 湖南大学 一种基于电极质量负载效应的超高灵敏度谐振式声表面波传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099794A1 (en) * 2022-11-08 2024-05-16 Agc Glass Europe Method for the deposition of group iiia metal nitride films

Also Published As

Publication number Publication date
CN111593332A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
Chu et al. Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering
Okano et al. Preparation of c-axis oriented AlN thin films by low-temperature reactive sputtering
Water et al. Physical and structural properties of ZnO sputtered films
CN107012422B (zh) 沉积方法、含添加物的氮化铝膜及包括该膜的压电器件
EP1672091B1 (en) Laminate containing wurtzrite crystal layer, and method for production thereof
CN111593332B (zh) 柔性玻璃上溅射沉积压电薄膜的方法
Phan et al. The effect of post-annealing on surface acoustic wave devices based on ZnO thin films prepared by magnetron sputtering
WO2011002028A1 (ja) 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜
Ferblantier et al. Deposition of zinc oxide thin films for application in bulk acoustic wave resonator
CN104862659A (zh) 一种氮化铝薄膜的中频磁控反应溅射方法
Wang et al. Growth of preferentially-oriented AlN films on amorphous substrate by pulsed laser deposition
KR20090106112A (ko) 다결정 탄화규소 버퍼층위에 마이크로 또는 나노전자기계시스템용 질화알루미늄막 증착방법
CN108111142B (zh) 一种基于碳化硅衬底/氧化锌或掺杂氧化锌薄膜的声表面波器件及其制备方法
Ge et al. Characterization of Er-doped AlN films prepared by RF magnetron sputtering
Fawzy et al. Piezoelectric thin film materials for acoustic mems devices
Garcia-Gancedo et al. Ultrafast sputtered ZnO thin films with high k T for acoustic wave device applications
WO2022053038A1 (zh) AlN单晶薄膜生长方法及具有该薄膜的声表面波谐振器
Lin et al. Growth of highly c-axis oriented AlN films on 3C–SiC/Si substrate
CN112853318A (zh) 一种利用ALD生长籽晶层的高结晶AlN薄膜制备方法
Liu et al. RF reactive sputtering AlN thin film at room temperature for CMOS-compatible MEMS application
Ralib et al. Dependence of preferred c-axis orientation on RF magnetron sputtering power for AZO/Si acoustic wave devices
Fujii et al. Highly c-axis-oriented ScAlN thin films deposited using Sc-Al alloy target
JPH09256139A (ja) 酸化亜鉛膜の製造方法
Dow et al. 15 GHz SAW nano-transducers using ultrananocrystalline diamond/AlN thin films
Lin et al. Surface acoustic wave propagation properties in AlN/3C-SiC/Si composite structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 410000 Bachelor's Street, Yuelu District, Changsha City, Hunan Province, 755 Bachelor's Road

Patentee after: CUHK testing (Hunan) Co.,Ltd.

Patentee after: Hunan zhongyun Technology Co.,Ltd.

Address before: No.755, Xueshi street, Yuelu District, Changsha City, Hunan Province, 410205

Patentee before: HUNAN ZHONGDA TESTING Co.,Ltd.

Patentee before: Hunan zhongyun Technology Co.,Ltd.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No.755, Xueshi street, Yuelu District, Changsha City, Hunan Province, 410205

Patentee after: Zhongda Intelligent Technology Co.,Ltd.

Patentee after: Hunan zhongyun Technology Co.,Ltd.

Address before: 410000 Bachelor's Street, Yuelu District, Changsha City, Hunan Province, 755 Bachelor's Road

Patentee before: CUHK testing (Hunan) Co.,Ltd.

Patentee before: Hunan zhongyun Technology Co.,Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method of sputtering and depositing dielectric thin films on flexible glass

Effective date of registration: 20220728

Granted publication date: 20210611

Pledgee: Bank of Beijing Limited by Share Ltd. Changsha branch

Pledgor: Zhongda Intelligent Technology Co.,Ltd.|Hunan zhongyun Technology Co.,Ltd.

Registration number: Y2022430000063