CN107012422B - 沉积方法、含添加物的氮化铝膜及包括该膜的压电器件 - Google Patents

沉积方法、含添加物的氮化铝膜及包括该膜的压电器件 Download PDF

Info

Publication number
CN107012422B
CN107012422B CN201610884531.0A CN201610884531A CN107012422B CN 107012422 B CN107012422 B CN 107012422B CN 201610884531 A CN201610884531 A CN 201610884531A CN 107012422 B CN107012422 B CN 107012422B
Authority
CN
China
Prior art keywords
layer
aluminum nitride
film
additive
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610884531.0A
Other languages
English (en)
Other versions
CN107012422A (zh
Inventor
斯蒂芬·R·伯吉斯
R·辛德曼
阿米特·拉斯托吉
斯科特·海莫尔
康斯坦尼·弗拉戈斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPTS Technologies Ltd
Original Assignee
SPTS Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPTS Technologies Ltd filed Critical SPTS Technologies Ltd
Publication of CN107012422A publication Critical patent/CN107012422A/zh
Application granted granted Critical
Publication of CN107012422B publication Critical patent/CN107012422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02047Treatment of substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physical Vapour Deposition (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种通过脉冲DC反应溅射沉积含添加物的氮化铝膜的方法,该氮化铝膜含有选自Sc、Y、Ti、Cr、Mg和Hf中的至少一种添加元素,该方法包括以下步骤:利用施加至膜基底的电偏压功率,通过脉冲DC反应溅射在所述膜基底上沉积所述含添加物的氮化铝膜的第一层;以及未对所述膜基底施加电偏压功率或利用施加至所述膜基底的比在溅射沉积所述第一层期间所施加的电偏压功率低的电偏压功率,通过脉冲DC反应溅射在所述第一层上沉积所述含添加物的氮化铝膜的第二层,所述第二层与所述第一层具有相同的组成。

Description

沉积方法、含添加物的氮化铝膜及包括该膜的压电器件
技术领域
本发明涉及通过脉冲DC反应溅射沉积含添加物的氮化铝膜的方法。本发明还涉及该膜自身及包括这些膜的压电器件。
背景技术
AIN薄膜的生产是令人感兴趣的,这尤其归因于它们的压电特性。一个重要的潜在应用是用于体声波(BAW)谐振器中。BAW器件由夹在两个电极之间的谐振压电层(通常为氮化铝)组成。由于它们可用来制造高抑制、低损耗、温度漂移非常低的低成本小型精密滤波器,所以其是移动通信工业的技术推动者。主要由于溅射的氮化铝具有常见的四面体结合的二元半导体中最高的压电常数,故其广泛用于BAW滤波器的制造中。然而,存在的不足为:氮化铝膜本身的机电耦合系数相当低,导致含氮化铝的滤波器可实现的带宽受到限制。
为了改进氮化铝薄膜的压电特性,已设想并入金属添加物(如Sc、Y、Ti、Cr、Mg和Hf)。例如,可以钪并入到合金中来替代铝。Sc-N键为0.35A,比Al-N键长1.9A要长,由此键长的差异使得膜中产生了应力。可变化的键长带来的结果是合金材料变得更软。然而,较大的晶胞会显著改善机电耦合系数。这可由图1看出,图1显示了Al93.9Sc6.1N与纯氮化铝膜相比的机电耦合系数(以应力的百分比表示)。当膜应力为零时,Al93.9Sc6.1N膜的机电耦合系数约为8%,相比之下,纯氮化铝膜的机电耦合系数为6.2%。这表明机电耦合系数相对提高了约30%。应当知晓的是,当用Al100-xScxN的形式来表示组合物时,值100-xx用百分比来表示,并且,x作为百分比与计量化学术语中的0.0x等同。
从图1中还可看出:较高的机电耦合系数通过拉伸性更强的膜来实现。然而高应力的膜易于裂开和脱落,而不适合BAW的大规模制造。这会对后续制造过程中的可靠性带来问题。据观察,对于厚度超过约300mm的AlScN膜的另一个问题是:随着钪含量的增加其构建质量随之劣化。这表现为从膜表面突出的无序晶粒的形成而导致的粗糙表面。三元氮化物Al100-xScxN中,存在几种竞争的稳定相。然而,纤锌矿Al100–xScxN形式处于非平衡状态。因此,(例如在晶界上)应力或钪浓度的微小变化可以可替代的晶体取向相对容易地成核。例如,在图2中我们示出了一个典型的1.5微米氮化铝薄膜的SEM图像(a)以及使用相同PVD沉积参数沉积的1.5微米Al94Sc6N膜的SEM图像。尽管,图2(a)中示出的氮化铝膜是光滑、无缺陷且相对无特点的,但是图2(b)示出的三元钪合金形成的膜具有嵌入在膜中的高密度棱锥形微晶。这些缺陷降低膜的耦合系数和品质因子。此外,这些缺陷会给后续下游处理(例如膜光刻/蚀刻及膜顶层上沉积后续层)带来问题。尽管存在显著的缺陷水平,AlScN膜展示出良好的c轴取向并且低于1.5°测量的XRD(0002)FWHM(半高宽)可与纯氮化铝膜的结果相媲美。这证实了若是能够找到一种能够降低缺陷水平的方法,则该溅射的AlScN薄膜可为用于制造高性能BAW滤波器的优秀候选。为了实现高容量、商业化BAW的生产,需要每100平方微米小于20的缺陷水平。最终商业化的更进一步的条件是该方法能以经济上可实现的方式来进行。
发明内容
在至少一些实施方式中,本发明解决了上述问题中的一个或多个。
根据本发明的第一个方面,提供了一种通过脉冲DC反应溅射沉积含添加物的氮化铝膜的方法,所述氮化铝膜含有选自Sc、Y、Ti、Cr、Mg和Hf中的至少一种添加元素,所述方法包括以下步骤:
利用施加至膜基底的电偏压功率,通过脉冲DC反应溅射,在所述膜基底上沉积所述含添加物的氮化铝膜的第一层;以及
未对所述膜基底施加电偏压功率或利用施加至所述膜基底的比在溅射沉积所述第一层期间所施加的电偏压功率低的电偏压功率,通过脉冲DC反应溅射,在所述第一层上沉积所述含添加物的氮化铝膜的第二层,所述第二层与所述第一层具有相同的组成。
在该方式下,能够得到具有较低缺陷水平的改进膜。
所述至少一种添加元素可以0.5At%至40At%范围的量存在,优选可以2At%至15At%范围的量存在,最优选可以3At%至10At%范围的量存在。在这些浓度下,该化合物可被认为是合金而不是掺杂的AIN。
所述含添加物的氮化铝膜可含有选自Sc、Y、Ti、Cr、Mg和Hf中的一种添加元素。在这些实施方式中,所述含添加物的氮化铝膜可为三元合金。优选地,所述含添加物的氮化铝膜为Al1-xScxN。
沉积所述第一层时,使用的电偏压功率可大于70W。沉积所述第一层时,使用的电偏压功率可小于250W。沉积所述第一层时,使用的电偏压功率可以在75W至200W范围内。
沉积所述第二层时,使用的电偏压功率可以小于125W。
施加到所述膜基底的电偏压功率可为RF功率。
所述反应溅射可以使用磁控管来进行。
所述反应溅射可以使用单靶来进行。通常,靶为铝和至少一种添加元素所形成的复合靶。也可使用多个靶,但是其在经济方面不太具有吸引力。
所述反应溅射可以在含氮气的气体气氛中进行。气体气氛可包括含有氮气及惰性气体(如氩气)的混合物。
通常来说,所述第一层的拉伸性小于所述第二层的拉伸性。不希望受到任何特定理论或推测的限制,认为,在沉积第一层期间,使用较高的电偏压功率将使得第一层的拉伸性小于第二层的拉伸性。再次不希望受到任何特定理论或推测的限制,认为,所述第一层有助于调整所述第二层的生长,从而使膜具有相对低的缺陷水平。
所述第一层可具有小于250nm的厚度。所述第一层可具有在20nm至150nm范围内的厚度。
所述含添加物的氮化铝膜可具有0.3微米或更高的厚度。优选地,所述含添加物的氮化铝膜可具有0.6微米或更高的厚度。更优选地,所述含添加物的氮化铝膜可具有1.0微米或更高的厚度。所述含添加物的氮化铝膜可具有2.0微米或更高的厚度。尽管如此,更厚的膜也在本发明的范围之内。
在一些实施方式中,在所述第二层上,没有沉积含添加物的氮化铝膜的额外层。换言之,所述含添加物的氮化铝膜基本上由所述第一层和所述第二层组成。
在其他实施方式中,循环进行所述第一层的沉积步骤和所述第二层的沉积步骤,从而所述含添加物的氮化铝膜包括四层或更多层。例如,所述步骤可循环进行两次以产生包括四层的含添加物的氮化铝膜;或者所述步骤循环进行三次以产生包括六层的含添加物的氮化铝膜。其他变型也在本发明的范围之内。
根据本发明的第二个方面,提供了根据本发明第一个方面的方法制造的含添加物的氮化铝膜。
根据本发明的第三个方面,提供一种含添加物的氮化铝膜,该氮化铝膜含有选自Sc、Y、Ti、Cr、Mg和Hf中的至少一种添加元素,所述氮化铝膜包括组成相同的第一层和第二层,其中,所述第一层和所述第二层都具有相关联的应力,其中,所述第一层的应力弱于所述第二层的应力。
根据本发明的第四个方面,提供了一种压电器件,该压电器件包括根据本发明第二个方面或第三个方面的含添加物的氮化铝膜。压电器件可为BAW器件。一般来说,所述BAW器件包括第一电极、第二电极以及沉积在所述第一电极和所述第二电极之间的含添加物的氮化铝膜。
尽管上文已经对本发明进行了描述,但是本发明延伸至上述特征,或后续说明书、附图或权利要求中示出的特征的任意的创造性结合。例如,相对于本发明的一个方面所描述的特征可被认为同样在涉及本发明的其它方面中对其进行了公开。
附图说明
下面将参照附图,描述根据本发明的膜、器件和方法的实施方式,其中:
图1示出了对于Al93.9Sc6.1N和纯AlN膜的耦合系数与膜应力具有的函数关系;
图2示出了在相同的工艺条件下沉积的典型1.3微米厚(a)氮化铝膜和(b)Al94Sc6N膜表面的SEM图像;
图3示出了对于连续沉积和两步沉积Al94Sc6N膜,作为压板RF偏压的函数的缺陷密度和膜应力;
图4示出了最初步骤为高偏压下,AlScN膜表面在膜中心的SEM图像(a)和膜边缘处的SEM图像(b);
图5示出了使用连续沉积的AlScN膜表面在膜中心的SEM图像(a)和膜边缘处的SEM图像(b);
图6示出了使用连续沉积和两步沉积(其中,第一沉积膜具有变化的厚度)生产的1200nmAl94Sc6N膜的缺陷密度;
图7示出了沉积AlScN薄膜的缺陷水平,其中,(a)使用单一连续沉积的现有技术,(b)使用高和低RF偏压进行的三次循环沉积,以及(c)使用第一步为高RF偏压第一层的两步沉积。
具体实施方式
发明人已发现了溅射沉积含添加物的氮化铝膜的有利工艺。含添加物的氮化铝膜含有选自Sc、Y、Ti、Cr、Mg和Hf中的至少一种添加元素。以下示出了与Al100-xScxN(其中X=6)膜相关的结果。然而,该方法广泛用于前述提及的其他添加元素及膜内的其它添加浓度。使用脉冲直流反应沉积Al100-xXx靶(其中X代表添加元素)来生产含添加物的氮化铝膜。在第一步中,将含添加物的氮化铝膜的第一层溅射沉积至膜基底(如压板)上。在沉积第一层期间,将RF电偏压功率施加于压板上。随后,将含添加物的氮化铝膜的第二层沉积至第一层之上。在沉积第二层期间,施加至基底的RF偏压功率低于在沉积第一层期间所施加的RF偏压功率。可替代地,可在未向压板施加RF偏压功率下,沉积第二层。
通过脉冲DC反应溅射来沉积该膜。复合铝钪靶可在氮气及氩气气氛中用于溅射。可用于或适用于本发明的相关装置的一般细节是技术读者所熟知的,例如申请人欧洲专利申请EP2871259中所描述的装置,其全部内容通过引用的方式并入本文。
据发现,利用本发明能够显著地降低单一的微晶面缺陷。这可使沉积的膜表面光滑且具有足够低的缺陷水平,从而能够成功地量产含添加物的氮化铝合金膜。这也为相关压电设备(例如BAW滤波器)的成功量产打下基础。以这种方式能够沉积相对厚的含添加物的氮化铝薄膜,例如该膜具有在1微米至2微米范围内的厚度。然而,同样能够沉积厚度更薄或更厚的膜。通常,第一层的厚度相对较小。第一层的具代表性但非限制性的厚度为约20nm至100nm。
通过该方法,使用单靶溅射沉积1200nm Al0.94Sc0.06N膜。这些膜包括:利用压板上的高RF偏压生产的90nm的第一层,和利用压板上的低RF偏压生产的1110nm的第二层。还使用现有技术中已知的方法连续单溅射沉积来沉积该组成的膜。表1中示出了在150mm晶片上进行实验所使用的典型沉积参数。典型的工艺压力为4毫托至12毫托。利用这些条件实现了超过60nm/min的沉积速率。
表1:用于Al94%Sc6%N两步工艺的典型工艺参数
AlScN–高偏压步骤 AlScN–低偏压体步骤
膜厚度nm 25-100nm 1300
脉冲DC功率KW 6 6
脉冲频率KHz 100 100
脉冲宽度us 4 4
Ar流sccm 10 10
N<sub>2</sub>流sccm 50 50
压板RF偏压功率瓦特 80-150 根据所需要的应力调整
压板温度℃ 200 200
图3示出了对于连续单沉积法与本发明的两步沉积法,膜的缺陷密度(每100平方微米中的缺陷)和应力(以MPa来表示)。示出的数据作为施加至压板上的RF偏压(80W、100W、120W)的函数。在图3中,用阴影柱来表示通过连续单沉积生产的膜的相关数据。可以看出虽然缺陷密度仍高于20个缺陷/100平方微米,但增加RF偏压改善了缺陷率。然而,还可以看出:在高RF偏压下,改进的缺陷率导致压缩性膜(连续单沉积薄膜的应力数据以黑色方块来表示)。相比之下,对于所有的RF偏压功率(未填充柱),本发明的两步溅射沉积工艺产生小于20个缺陷/100平方微米的优异缺陷率。通过两步法生产的膜的总应力是可变的,可以认为在很强的拉伸值到很强的压缩值之间变化(未填充方块)。这使得使用者在获得优异缺陷率的同时可以选择沉积膜的应力。
由图4和图5可以清楚地看出膜质量的改善。图4示出了使用本发明的两步法沉积的Al0.94Sc0.06N膜的中心和边缘处的SEM图像。图5示出了使用连续溅射沉积的Al0.94Sc0.06N膜的中心和边缘处的SEM图像。图3中所示的缺陷密度数据是在膜的中心测量的。膜的中心和边缘之间的缺陷水平可具有相当大的差异。这很可能与磁控溅射系统沉积的膜固有的从中心到边缘的应力变化相关。这可归因于由DC磁控导致的膜上等离子体密度的变化以及压板上从中心到边缘的任何温度变化。表2示出了通过单一连续沉积和本发明的两步沉积法生产的膜从中心到边缘的缺陷密度的变化。表2表明:对于两步法,在膜的整个区域中,缺陷密度维持在20个缺陷/100平方微米以下。此外,这些膜的应力可从高度压缩调节至高度拉伸。事实上,在生产的最大拉伸膜中,观察到最低的缺陷密度。该膜同样很可能呈现出最高的耦合系数。此外,所有的膜均展示出优异的c轴取向,其中FWHM 1.5°。这满足在高量产制造环境下生产BAW的进一步需求。表2还表明通过单一连续沉积生产的膜中观察到的缺陷密度均劣于使用本发明的两步法生产的膜。
表2:使用(a)单一连续沉积和(b)用90nm高RF偏压初始步骤生产的1200nmAlSCN膜的缺陷密度、应力及XRD结构
Figure BDA0001128102290000071
还进行实验来验证使用两步法生产的膜中,第一层的厚度对缺陷密度的影响。使用相同的工艺条件来产生中度拉伸(约200MPa)Al0.94Sc0.06N膜,在该膜中,第一层厚度的变化范围为25nm至90nm。图6还示出了使用连续单一沉积技术沉积的相同组成和相同厚度的膜上的缺陷密度。所研究的膜厚为1200nm。使用本发明的两步法工艺生产的所有的膜表明对于所有厚度的第一层,膜质量均有显著的改善。与使用单一连续溅射沉积技术生产的膜相比,其缺陷密度降低约10:1。当第一层(向压板施加高RF偏压来生产)仅为25nm厚时,得到优异的数据,进一步增加第一层的厚度并不会使缺陷密度产生统计学上的改善。
上述实验涉及由两层含添加物的氮化铝膜组成的膜,其中,第一层利用施加至压板上高RF偏压功率来溅射沉积,随后使用相对较低的RF偏压功率来溅射沉积第二层。沉积的含添加物的氮化铝膜的额外层同样在本发明范围之内。特别是能够以循环方式进行第一层和第二层的溅射沉积。
还进行了实验以验证通过采用使用相对高RF偏压和较低RF偏压的交替步骤能否改进膜的缺陷密度。AlScN膜被沉积为通过第一步骤(RF偏压功率为200W)和第二步骤(RF偏压功率为80W)的三次连续循环来生产的叠体。进行高RF功率步骤以产生50nm厚的层,并且进行较低RF功率步骤以产生400nm厚的层。进行三次循环,从而膜包括6层,在这6层中,相对薄的3层使用高RF偏压来产生,而相对厚的3层使用较低的RF偏压来产生。测量膜的中心、中间部分以及边缘处的缺陷密度,并且结果示出于图7(b)中。作为对照,图7(a)示出了由使用单一连续沉积得到的相同组成和相似厚度的膜所得到的缺陷密度数据。图7(c)示出了由根据本发明的两步法(其中,50nm厚的第一层利用150W的RF偏压功率来沉积)生产的同样组成的相似厚度的膜所得到的缺陷密度。就缺陷密度而言,利用两步法获得的结果最佳。然而,在六层叠体中观察到的缺陷密度同样十分优异,并且相对于通过单一连续沉积所得到膜表现出相当大的改进。认为,循环方法可尤其用于生产相对较厚的含添加物的氮化铝膜,例如,膜的总厚度大于1.5微米。
不希望受任何特定理论或推测的限制,认为,在沉积第一层期间,使用较高的电偏压功率将使得第一层的拉伸性小于第二层的拉伸性。再次不希望受到任何特定理论或推测的限制,认为,在溅射沉积第二层的过程中,第一层可有助于调整膜生长。使用者可以改变各层的工艺参数以优化薄膜一个或多个特性(例如膜的应力或机电耦合系数)。本发明的含添加物的氮化铝膜可广泛用于终端应用中,BAW就是一个实例。

Claims (19)

1.一种通过脉冲DC反应溅射沉积压电器件的含添加物的氮化铝膜的方法,所述含添加物的氮化铝膜含有选自Sc和Y的至少一种添加元素,所述方法包括以下步骤:
利用施加至膜基底的电偏压功率,通过脉冲DC反应溅射,在所述压电器件的膜基底上沉积所述含添加物的氮化铝膜的第一层;以及
未对所述压电器件的膜基底施加电偏压功率,或者利用施加至所述压电器件的膜基底的比在溅射沉积所述第一层期间所施加的电偏压功率低的电偏压功率,通过脉冲DC反应溅射,在所述第一层上沉积所述含添加物的氮化铝膜的第二层,所述第二层与所述第一层具有相同的组成。
2.根据权利要求1所述的方法,其中,所述至少一种添加元素以0.5a t%至40a t%范围的量存在。
3.根据权利要求2所述的方法,其中,所述至少一种添加元素以2a t%至15a t%范围的量存在。
4.根据权利要求3所述的方法,其中,所述至少一种添加元素以3a t%至10a t%范围的量存在。
5.根据权利要求1或2所述的方法,其中,使用大于70W的电偏压功率沉积所述第一层。
6.根据权利要求5所述的方法,其中,使用小于250W的电偏压功率沉积所述第一层。
7.根据权利要求1或2所述的方法,其中,使用小于125W的电偏压功率沉积所述第二层。
8.根据权利要求1或2所述的方法,其中,施加到所述膜基底的电偏压功率是RF功率。
9.根据权利要求1或2所述的方法,其中,所述反应溅射使用单靶来进行。
10.根据权利要求1或2所述的方法,其中,所述第一层的拉伸性小于所述第二层的拉伸性。
11.根据权利要求1或2所述的方法,其中,所述第一层具有在20nm至150nm范围内的厚度。
12.根据权利要求1所述的方法,其中,所述含添加物的氮化铝膜具有0.3微米或更高的厚度。
13.根据权利要求12所述的方法,其中,所述含添加物的氮化铝膜具有0.6微米或更高的厚度。
14.根据权利要求12或13所述的方法,其中,所述含添加物的氮化铝膜具有2.0微米或更低的厚度。
15.根据权利要求1或2所述的方法,其中,在所述第二层上没有沉积所述含添加物的氮化铝膜的额外层。
16.根据权利要求1或2所述的方法,其中,循环进行所述第一层的沉积步骤和所述第二层的沉积步骤,从而所述含添加物的氮化铝膜包括四层或更多层。
17.一种含添加物的氮化铝膜,所述含添加物的氮化铝膜根据权利要求1所述的方法而制造。
18.一种压电器件,包括根据权利要求1所述的方法而制造的含添加物的氮化铝膜。
19.根据权利要求18所述的压电器件,所述压电器件为BAW器件的形式。
CN201610884531.0A 2015-10-09 2016-10-10 沉积方法、含添加物的氮化铝膜及包括该膜的压电器件 Active CN107012422B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1517879.1 2015-10-09
GBGB1517879.1A GB201517879D0 (en) 2015-10-09 2015-10-09 Method of deposition

Publications (2)

Publication Number Publication Date
CN107012422A CN107012422A (zh) 2017-08-04
CN107012422B true CN107012422B (zh) 2021-06-25

Family

ID=55130814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610884531.0A Active CN107012422B (zh) 2015-10-09 2016-10-10 沉积方法、含添加物的氮化铝膜及包括该膜的压电器件

Country Status (7)

Country Link
US (1) US10601388B2 (zh)
EP (1) EP3153603B1 (zh)
JP (1) JP7075180B2 (zh)
KR (1) KR102637432B1 (zh)
CN (1) CN107012422B (zh)
GB (1) GB201517879D0 (zh)
TW (1) TWI778944B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6869831B2 (ja) 2017-07-03 2021-05-12 太陽誘電株式会社 圧電薄膜共振器およびその製造方法、フィルタ並びにマルチプレクサ
CN110998886B (zh) * 2017-07-07 2023-09-26 天工方案公司 用于改进的声波滤波器的取代氮化铝
JP6660603B2 (ja) * 2017-12-05 2020-03-11 パナソニックIpマネジメント株式会社 スパッタリング方法
FR3079668B1 (fr) * 2018-03-29 2020-03-27 Frec'n'sys Dispositif d'onde acoustique de surface sur substrat composite
CN111342808B (zh) * 2018-12-18 2023-08-15 天津大学 基于元素掺杂缩小有效面积的谐振器、滤波器和电子设备
DE102019104452B4 (de) * 2019-02-21 2021-01-07 RF360 Europe GmbH Funktionaler Wafer und Herstellungsverfahren
GB201906840D0 (en) * 2019-05-15 2019-06-26 Spts Technologies Ltd Method of deposition
EP4000109A1 (en) * 2019-07-19 2022-05-25 Evatec AG Piezoelectric coating and deposition process
WO2021080701A1 (en) * 2019-10-25 2021-04-29 Applied Materials, Inc. Method for depositing high quality pvd films
US11575081B2 (en) 2019-11-26 2023-02-07 Vanguard International Semiconductor Singapore Pte. Ltd. MEMS structures and methods of forming MEMS structures
CN110931629A (zh) * 2019-12-11 2020-03-27 重庆大学 一种用于高掺钪浓度氮化铝生长的结构
KR20220137718A (ko) * 2020-02-06 2022-10-12 어플라이드 머티어리얼스, 인코포레이티드 박막 증착 동안에 막 특성들을 조정하기 위한 방법 및 장치
GB202014592D0 (en) 2020-09-16 2020-10-28 Spts Technologies Ltd Deposition method
CN113285014A (zh) * 2021-05-14 2021-08-20 中国科学技术大学 单晶掺杂薄膜、声波谐振器用压电薄膜及其制备方法
CN113755792B (zh) * 2021-06-30 2022-04-29 武汉大学 一种智能紧固件用AlScCrN纳米复合压电涂层及其制备方法
EP4224543A1 (en) * 2022-02-08 2023-08-09 Lam Research Corporation Method for depositing highly doped aluminum nitride piezoelectric material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100509224C (zh) * 2004-07-23 2009-07-08 住友电工硬质合金株式会社 具有压缩应力的强度分布的有涂膜的表面涂敷切削工具
CN101824592A (zh) * 2010-05-26 2010-09-08 湖南大学 一种增强AlN薄膜择优取向生长的沉积方法
WO2014122667A1 (en) * 2013-02-08 2014-08-14 Council Of Scientific & Industrial Research A hybrid multilayer solar selective coating for high temperature solar thermal applications and a process for the preparation thereof
CN104428441A (zh) * 2012-07-02 2015-03-18 应用材料公司 由物理气相沉积形成的氮化铝缓冲层和活性层
CN104883153A (zh) * 2014-02-27 2015-09-02 安华高科技通用Ip(新加坡)公司 具有掺杂压电层的体声波谐振器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976327A (en) * 1997-12-12 1999-11-02 Applied Materials, Inc. Step coverage and overhang improvement by pedestal bias voltage modulation
JP4902051B2 (ja) * 2001-03-30 2012-03-21 キヤノンアネルバ株式会社 バイアススパッタリング装置
US6936837B2 (en) 2001-05-11 2005-08-30 Ube Industries, Ltd. Film bulk acoustic resonator
KR101035223B1 (ko) * 2004-07-23 2011-05-18 스미토모 덴키 고교 가부시키가이샤 압축 응력의 강도 분포를 갖는 피막을 구비한 표면 피복절삭공구
JP2007181185A (ja) 2005-12-01 2007-07-12 Sony Corp 音響共振器およびその製造方法
US7758979B2 (en) 2007-05-31 2010-07-20 National Institute Of Advanced Industrial Science And Technology Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
US20090246385A1 (en) * 2008-03-25 2009-10-01 Tegal Corporation Control of crystal orientation and stress in sputter deposited thin films
TW201018738A (en) * 2008-11-05 2010-05-16 Ya Han Electronic Co Ltd Multilayer composite plating film, manufacturing method and substrate having the same
US9602073B2 (en) 2013-05-31 2017-03-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator having piezoelectric layer with varying amounts of dopant
US20140246305A1 (en) 2010-01-22 2014-09-04 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating rare-earth element doped piezoelectric material with various amounts of dopants and a selected c-axis orientation
US8409702B2 (en) * 2011-02-07 2013-04-02 Kennametal Inc. Cubic aluminum titanium nitride coating and method of making same
EP2761050B1 (en) * 2011-09-30 2021-08-25 CemeCon AG Coating of substrates using hipims
JP5957376B2 (ja) 2012-12-18 2016-07-27 太陽誘電株式会社 圧電薄膜共振子
JP6212132B2 (ja) 2012-12-21 2017-10-11 スナップトラック・インコーポレーテッド 積層された2種の異なる圧電材料を備えるbaw部品、当該baw部品用の積層体、及び当該baw部品の製造方法
US20150247232A1 (en) * 2014-02-28 2015-09-03 Avago Technologies General Ip (Singapore) Pte. Ltd Tuning the Piezoelectric Coefficient of a Doped Piezoelectric Material Using Multiple Noble Gases
US20150311046A1 (en) * 2014-04-27 2015-10-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Fabricating low-defect rare-earth doped piezoelectric layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100509224C (zh) * 2004-07-23 2009-07-08 住友电工硬质合金株式会社 具有压缩应力的强度分布的有涂膜的表面涂敷切削工具
CN101824592A (zh) * 2010-05-26 2010-09-08 湖南大学 一种增强AlN薄膜择优取向生长的沉积方法
CN104428441A (zh) * 2012-07-02 2015-03-18 应用材料公司 由物理气相沉积形成的氮化铝缓冲层和活性层
WO2014122667A1 (en) * 2013-02-08 2014-08-14 Council Of Scientific & Industrial Research A hybrid multilayer solar selective coating for high temperature solar thermal applications and a process for the preparation thereof
CN104883153A (zh) * 2014-02-27 2015-09-02 安华高科技通用Ip(新加坡)公司 具有掺杂压电层的体声波谐振器

Also Published As

Publication number Publication date
KR102637432B1 (ko) 2024-02-15
GB201517879D0 (en) 2015-11-25
EP3153603B1 (en) 2020-06-24
EP3153603A1 (en) 2017-04-12
US20170104465A1 (en) 2017-04-13
TW201726952A (zh) 2017-08-01
KR20170044035A (ko) 2017-04-24
CN107012422A (zh) 2017-08-04
US10601388B2 (en) 2020-03-24
TWI778944B (zh) 2022-10-01
JP7075180B2 (ja) 2022-05-25
JP2017095797A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
CN107012422B (zh) 沉积方法、含添加物的氮化铝膜及包括该膜的压电器件
Iriarte et al. Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni
KR101511349B1 (ko) 압전체 박막의 제조 방법 및 당해 제조 방법에 의해 제조되는 압전체 박막
JP4917711B2 (ja) 金属層の上にピエゾ電子材料層が堆積された電子デバイスを製造する方法
US7642693B2 (en) Wurtzite thin film, laminate containing wurtzite crystalline layer and their manufacturing methods
KR20040087676A (ko) Fbar 소자 및 그 제조방법
Mertin et al. Enhanced piezoelectric properties of c-axis textured aluminium scandium nitride thin films with high scandium content: Influence of intrinsic stress and sputtering parameters
Shao et al. High quality co-sputtering alscn thin films for piezoelectric lamb-wave resonators
CN114631261A (zh) 具有倾斜c轴取向的压电体层及其制造方法
Felmetsger Sputter technique for deposition of AlN, ScAlN, and Bragg reflector thin films in mass production
Lobl et al. Piezo-electric AlN and PZT films for micro-electronic applications
Lee et al. Relationships between material properties of piezo-electric thin films and device characteristics of film bulk acoustic resonators
EP3971318A1 (en) Deposition method
Felmetsger et al. Crystal orientation and stress in ac reactively sputtered AlN films on Mo electrodes for electro-acoustic devices
TW202108789A (zh) 用於控制經鍍濺之AlXSc1-XN膜中之缺陷密度及組織之方法
Iriarte et al. Synthesis of c-axis oriented AlN thin films on metal layers: Al, Mo, Ti, TiN and Ni
JP7128515B2 (ja) 圧電体薄膜、その製造方法およびその利用
Heinz et al. Sputter deposition technology for Al (1− x) Sc x N films with high Sc concentration
JP2018056866A (ja) 弾性表面波素子用圧電体複合基板およびその製造方法
Prasad et al. Optimization of AlN deposition parameters for a high frequency 1D pMUT Array
Llorens Balada Study of HfN as seed layer for next generation of BAW RF filters: synthesis, characterization, and investigation of piezoelectric performance
Lin et al. The characteristics and residual stress of aluminum nitride films grown by two-stage sputtering of mid-frequency power
Suharyadi The influence of substrate bias and sputtering pressure on the deposited aluminium nitride for magnetoelectric sensors
Mazzalai et al. Developing production process for high performance piezoelectrics in MEMS applications
US20210234527A1 (en) Manufacturing Method for Piezoelectric Resonator and Piezoelectric Resonator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant