WO2015133422A1 - 窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法 - Google Patents

窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法 Download PDF

Info

Publication number
WO2015133422A1
WO2015133422A1 PCT/JP2015/056045 JP2015056045W WO2015133422A1 WO 2015133422 A1 WO2015133422 A1 WO 2015133422A1 JP 2015056045 W JP2015056045 W JP 2015056045W WO 2015133422 A1 WO2015133422 A1 WO 2015133422A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
aluminum nitride
piezoelectric thin
piezoelectric
nitride piezoelectric
Prior art date
Application number
PCT/JP2015/056045
Other languages
English (en)
French (fr)
Inventor
圭一 梅田
秋山 守人
長瀬 智美
桂子 西久保
淳史 本多
Original Assignee
株式会社村田製作所
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 独立行政法人産業技術総合研究所 filed Critical 株式会社村田製作所
Priority to CN201580011354.9A priority Critical patent/CN106062238B/zh
Priority to JP2016506475A priority patent/JP6123019B2/ja
Publication of WO2015133422A1 publication Critical patent/WO2015133422A1/ja
Priority to US15/251,221 priority patent/US10475984B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • G10K9/125Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means with a plurality of active elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/588Membranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/501Piezoelectric or electrostrictive devices having a stacked or multilayer structure with non-rectangular cross-section in stacking direction, e.g. polygonal, trapezoidal
    • H10N30/704
    • H10N30/706
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type

Definitions

  • the present invention relates to a Ge-containing aluminum nitride piezoelectric thin film that can be used as a piezoelectric body, a manufacturing method thereof, a piezoelectric material having the piezoelectric thin film, and a piezoelectric component.
  • Patent Document 1 discloses a reactive sputtering method in which aluminum, gallium, indium or scandium, and nitrogen are reacted in an inert gas atmosphere.
  • Patent Document 1 it is described that the polarization direction is reversed by supplying oxygen together with nitrogen at a ratio of 0.8 mol% or more and 3.2 mol% or less.
  • Patent Document 2 discloses an aluminum nitride piezoelectric thin film having a Sc content of 0.5 to 50 atomic%.
  • the polarization direction is a polarization direction of aluminum polarity (Al polarity) which is a thin film growth direction, and a piezoelectric thin film having a polarization direction of nitrogen polarity (N polarity) having a polarization direction opposite to the thin film growth direction. Is not obtained.
  • the aluminum nitride piezoelectric thin film according to the present invention is characterized by containing germanium.
  • the concentration of germanium is in the range of 3 to 28 atomic% when the total concentration of germanium and aluminum is 100 atomic%.
  • an aluminum nitride piezoelectric thin film whose polarization direction is nitrogen polarity (N polarity) can be obtained more easily.
  • the germanium concentration is in the range of 4 to 21 atomic percent. In this case, the piezoelectric characteristics can be improved more effectively.
  • the germanium concentration is in the range of 5 to 16 atomic percent. In this case, the piezoelectric characteristics can be further effectively improved.
  • the polarization direction is nitrogen polarity (N polarity).
  • the polarization direction is opposite to the thin film growth direction.
  • a piezoelectric material according to the present invention includes an aluminum nitride piezoelectric thin film including a base material and an aluminum nitride piezoelectric thin film formed on the base material by a deposition method, and the aluminum nitride piezoelectric thin film is configured according to the present invention. is there.
  • a piezoelectric component according to the present invention includes an aluminum nitride piezoelectric thin film configured according to the present invention.
  • the method for producing an aluminum nitride piezoelectric thin film according to the present invention is characterized in that the aluminum nitride piezoelectric thin film is grown on a substrate by sputtering.
  • sputtering is performed while supplying a nitrogen gas using a target made of Al and a target made of Ge, or an AlGe alloy target.
  • the aluminum nitride piezoelectric thin film and the manufacturing method thereof according to the present invention it is possible to easily provide an aluminum nitride piezoelectric thin film whose polarization direction is nitrogen polarity (N polarity).
  • the piezoelectric material and the piezoelectric component according to the present invention have the Ge-containing aluminum nitride piezoelectric thin film configured according to the present invention, for example, a configuration in which a plurality of piezoelectric thin films having different polarization directions are stacked can be easily provided.
  • FIG. 1 is a graph showing the germanium concentration in the aluminum nitride piezoelectric thin film, the relationship between the piezoelectric constant d 33.
  • FIG. 2 is a schematic configuration diagram of an apparatus used in the method for producing a Ge-containing aluminum nitride piezoelectric thin film according to the first embodiment of the present invention.
  • FIG. 3 is a schematic front view showing a piezoelectric component having an aluminum nitride piezoelectric thin film whose polarization direction is aluminum polarity (Al polarity).
  • FIG. 4 is a schematic front view showing a piezoelectric component as an embodiment of the piezoelectric component of the present invention.
  • FIG. 5 is a diagram showing the relationship between the input power to the germanium target and the atomic concentration of each element.
  • FIG. 6 is a schematic configuration diagram of an apparatus used in the method for producing a Ge-containing aluminum nitride piezoelectric thin film according to the second embodiment of the present invention.
  • FIG. 7 is a partially cutaway front sectional view showing a structural example of the piezoelectric component of the present invention.
  • FIG. 8 is a front sectional view showing another structural example of the piezoelectric component of the present invention.
  • FIG. 4 shows a schematic front view of the piezoelectric component obtained in the first embodiment of the present invention.
  • the piezoelectric component 1 has a substrate 2 made of Si.
  • a Ge-containing aluminum nitride piezoelectric thin film 3 is formed on the substrate 2.
  • the Ge-containing aluminum nitride piezoelectric thin film 3 is formed by sputtering as described later.
  • the polarization direction of the Ge-containing aluminum nitride piezoelectric thin film 3 is an arrow-Z direction shown in the figure. That is, the polarization direction is a nitrogen polarity (N polarity) opposite to the thin film growth direction.
  • N polarity nitrogen polarity
  • An electrode 4 is formed on the Ge-containing aluminum nitride piezoelectric thin film 3.
  • one or more electrodes are provided for applying a voltage to the Ge-containing aluminum nitride piezoelectric thin film.
  • silicone which is a semiconductor may be used as one electrode, and the electrode 4 may be used as the other electrode.
  • the base material 2 is also used as a base material when the Ge-containing aluminum nitride piezoelectric thin film 3 is formed by sputtering. Therefore, the base material 2 can be formed of an appropriate material.
  • the substrate 2 is made of low-resistance Si and functions as an electrode, but may be formed of a semiconductor other than Si.
  • the base material 2 may be comprised with the insulator, the metal, and the organic resin film.
  • an electrode thin film may be formed between the Ge-containing aluminum nitride piezoelectric thin film 3 and the base material 2.
  • the electrode 4 is made of an appropriate metal or alloy such as Ag, Al, Cu, Mo, W, Ta, Pt, Ru, Rh, Ir.
  • the polarization direction of the Ge-containing aluminum nitride piezoelectric thin film 3 is nitrogen polarity (N polarity).
  • the polarization direction becomes the Z direction as in the aluminum nitride piezoelectric thin film 103 in the piezoelectric component 101 shown in FIG. That is, the polarization direction is the same as the thin film growth direction. That is, it is aluminum polarity (Al polarity).
  • the inventors of the present application have found that when germanium is contained in forming an aluminum nitride piezoelectric thin film by sputtering, a piezoelectric thin film having a polarization direction reversed as in this embodiment can be obtained. That led to As will be described later, when such a piezoelectric thin film having a reversed polarization direction is obtained, a laminated body of a plurality of piezoelectric thin films having different polarization directions can be easily obtained.
  • FIG. 2 is a schematic configuration diagram of an apparatus used in the method for producing a Ge-containing aluminum nitride piezoelectric thin film according to the first embodiment of the present invention.
  • the manufacturing apparatus 21 is a sputtering apparatus.
  • the manufacturing apparatus 21 has a chamber 22.
  • a heating device 24 is disposed in the chamber 22.
  • the base material 12 is attached to the lower surface of the heating device 24.
  • high-frequency power sources 25 and 26 are provided below the substrate 12.
  • An Al target 27 is provided on the high-frequency power source 25.
  • a Ge target 28 is provided on the high-frequency power source 26.
  • High frequency power can be applied to the Al target 27 and Ge target 28 from the high frequency power sources 25 and 26.
  • a mixed gas of Ar gas and N 2 gas is supplied to the chamber 22 from the outside through a valve 29.
  • shutters 31 to 33 are disposed below the base material 12, directly above the Al target 27, and directly above the Ge target 28, respectively.
  • a Ge-containing aluminum nitride piezoelectric thin film can be formed on the substrate 12 by sputtering using the manufacturing apparatus 21 described above. More specifically, the base material 12 is heated by the heating device 24, and in this state, a mixed gas of Ar and N 2 is supplied to the Al target 27 and the Ge target 28 from the high frequency power sources 25 and 26. Apply power. Thereby, a Ge-containing aluminum nitride piezoelectric thin film can be formed on the substrate 12.
  • the heating temperature of the substrate 12 is not particularly limited, but may be non-heated to about 500 ° C. More preferably, the temperature may be 200 to 450 ° C.
  • the mixing ratio of Ar and N 2 may be about 2: 8 to 8: 2 in terms of flow ratio, although it depends on the composition of the target Ge-containing aluminum nitride piezoelectric thin film.
  • the flow ratio of Ar: N 2 is more desirably in the range of 7: 3 to 5: 5. Thereby, even better piezoelectricity can be expressed.
  • the gas pressure is not particularly limited, but may be about 0.1 Pa to 0.5 Pa.
  • the Ge-containing aluminum nitride piezoelectric thin film of Example 1 was formed under the following conditions.
  • the Ge-containing aluminum nitride piezoelectric thin film of Example 1 was obtained under the above conditions.
  • the piezoelectric constant d 33 was ⁇ 5.8 pC / N. That is, it can be seen that the piezoelectric constant d 33 is a negative value, i.e. obtained with Ge-containing aluminum nitride piezoelectric film polarization direction is reversed.
  • the atomic concentration of Ge can be adjusted by changing the input power to the Ge target.
  • the atomic concentrations of Al, Ge, and N are determined by RBS or NRA.
  • the RBS is Rutherford backscattering spectroscopy (RBS).
  • RBS Rutherford backscattering spectroscopy
  • a sample is irradiated with high-speed ions.
  • Some of the incident ions undergo Rutherford scattering (elastic scattering) by the nuclei in the sample.
  • the energy of the scattered ions varies depending on the mass and position of the target atom.
  • the elemental composition in the depth direction of the sample can be obtained from the energy and yield of the scattered ions.
  • NRA nuclear reaction analysis
  • the concentrations of Ge, Al, and Si were determined by RBS using high-speed H ions. Further, the N concentration was measured by NRA using high-speed H ions.
  • Figure 1 is a Ge concentration is a diagram showing the relationship between the piezoelectric constant d 33.
  • the piezoelectric constant d 33 is about 7 pC / N, which is a positive value.
  • the piezoelectric constant d 33 when Ge is contained, the piezoelectric constant d 33 rapidly shifts to a negative value. As can be seen from FIG. 1, when the Ge concentration is in the range of 3 atomic% to 28 atomic%, the piezoelectric constant d 33 is a negative value. That is, as shown in FIG. 4, it can be seen that a Ge-containing aluminum nitride piezoelectric thin film 3 having a polarization direction opposite to the thin film growth direction can be obtained. Therefore, the Ge concentration is preferably in the range of 3 to 28 atomic%.
  • the absolute value of the piezoelectric constant d 33 is larger than 2 pC / N when the Ge concentration is in the range of 4 to 21 atomic%, and therefore the piezoelectric characteristics can be effectively improved. More preferably, it can be seen that when the Ge concentration is in the range of 5 to 16 atomic%, the piezoelectric characteristics can be improved more effectively.
  • Ge can easily form a tetravalent tetracoordinate structure, and when charge compensation is performed by an Al defect, it takes a stable structure, and experimentally obtained piezoelectric constants and crystals. It was found that something very close to the structure was obtained.
  • the Al target 27 and the Ge target 28 are used as shown in FIG. 2, but a GeAl alloy target 42 may be used as in the second embodiment shown in FIG. .
  • a high frequency power source 44 is disposed in the chamber 43.
  • the GeAl alloy target 42 is placed on the high frequency power source 44.
  • Heating devices 45 and 46 and a shutter 47 are arranged in the chamber 43.
  • the base materials 12 and 12 are disposed above the shutter 47.
  • a mixed gas of Ar and N 2 is supplied into the chamber 43 through a valve 48 outside the chamber 43.
  • a GeAl alloy target that is a single target may be used as the target.
  • Ge pellets may be placed on the Al target, or Ge pellets may be embedded by making holes in the Al target.
  • a Ge-containing aluminum nitride piezoelectric thin film can be easily and uniformly formed on a large wafer such as a 6-inch size or an 8-inch size. Therefore, a Ge-containing aluminum nitride piezoelectric thin film having a relatively large area can be easily provided.
  • the Ge-containing aluminum nitride piezoelectric thin film whose polarization direction is reversed is obtained by setting the Ge concentration in the specific range as in the manufacturing method of the first embodiment. Can be provided easily.
  • the method for producing an aluminum nitride piezoelectric thin film of the present invention does not require a complicated process such as supply of such a small amount of gas. . Therefore, the Ge-containing aluminum nitride piezoelectric thin film whose polarization direction is reversed can be easily mass-produced.
  • FIG. 7 is a partially cutaway front sectional view showing an example of the structure of a piezoelectric component in which the Ge-containing aluminum nitride piezoelectric thin film of the present invention is suitably used.
  • the piezoelectric thin film filter 51 has a substrate 52.
  • the substrate 52 is provided with a cavity 52a.
  • the support film 53, the first piezoelectric thin film 54, and the second piezoelectric thin film 55 are laminated in this order.
  • a lower electrode 56 is disposed on the lower surface of the first piezoelectric thin film 54.
  • An upper electrode 57 is provided above the second piezoelectric thin film 55.
  • An electrode 58 is provided between the first piezoelectric thin film 54 and the second piezoelectric thin film 55.
  • the polarization direction of the first piezoelectric thin film 54 is the arrow Z direction
  • the polarization direction of the second piezoelectric thin film 55 is the arrow -Z direction.
  • the Ge-containing aluminum nitride piezoelectric thin film can be suitably used as the second piezoelectric thin film 55.
  • the first piezoelectric thin film 54 an aluminum nitride piezoelectric thin film not containing Ge may be formed by sputtering. Accordingly, the first and second piezoelectric thin films 54 and 55 having different polarization directions can be easily formed.
  • FIG. 8 is a front sectional view showing another example of the structure of a piezoelectric component that can suitably use the Ge-containing aluminum nitride piezoelectric thin film of the present invention.
  • the acoustic element 61 shown in FIG. 8 has a case 62.
  • Case 62 has an opening opened downward. The opening opened downward is closed by the base plate 63.
  • a plurality of sound emitting holes 62 a are provided on the upper surface of the case 62.
  • the laminated piezoelectric element 70 is attached via support portions 64 and 65.
  • the laminated piezoelectric element 70 is arranged in order from the top, the first laminated portion formed by laminating the electrode 71, the vibration film 72, the piezoelectric layer 73, and the electrode 74, and the lower part thereof, and the electrode 75, And a second laminated portion in which the piezoelectric layer 76, the vibration film 77, and the electrode 78 are laminated.
  • the polarization direction of the piezoelectric layer 73 and the polarization direction of the piezoelectric layer 76 are opposite to each other in the thickness direction.
  • the present invention is not limited to the structural examples shown in FIG. 7 and FIG. Can be widely used.
  • upper electrode 58 ... electrode 61 ... acoustic element 62 ... case 62a ... sound emitting hole 63 ... base plate 64, 65 ... support part 70 ... Laminated piezoelectric element 71 ... electrodes 72, 77 ... vibrating membranes 73,76 ... piezoelectric layers 74, 75, 78 ... electrode 103 ... aluminum nitride pressure Thin film

Abstract

 窒素極性(N polarity)であり、量産性に優れた窒化アルミニウム圧電薄膜を得る。 ゲルマニウムを含有する窒化アルミニウム圧電薄膜3、並びに基材2上においてスパッタリングによりゲルマニウムを含有する窒化アルミニウム圧電薄膜を成長させる、窒化アルミニウム圧電薄膜の製造方法。

Description

窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法
 本発明は、圧電体として用いることができる、Ge含有窒化アルミニウム圧電薄膜及びその製造方法、該圧電薄膜を有する圧電材及び圧電部品に関する。
 従来、窒化アルミニウムに微量の他の元素をドープしてなる圧電薄膜の製造方法が種々提案されている。例えば下記の特許文献1では、アルミニウムと、ガリウム、インジウムもしくはスカンジウムと、窒素とを不活性ガス雰囲気下で反応させる反応スパッタリング法が開示されている。特許文献1では、窒素と共に酸素を0.8モル%以上、3.2モル%以下の割合で供給することにより、分極方向が反転することが記載されている。
 また、下記の特許文献2には、Scの含有率が0.5~50原子%である窒化アルミニウム圧電薄膜が開示されている。
特開2009-149953号公報 特開2011-15148号公報
 特許文献1に記載の製造方法によれば、分極方向が薄膜成長方向と反転した窒化アルミニウム圧電薄膜が得られる。しかしながら、微量の酸素を高精度に供給することが非常に困難であった。従って、量産性が十分でなかった。
 他方、特許文献2では、スカンジウムをドープすることにより圧電性が得られているが、スカンジウムは非常に高価である。また、安定に入手することも困難であった。加えて、特許文献2では、分極方向は薄膜成長方向であるアルミニウム極性(Al polarity)の分極方向であり、薄膜成長方向と逆の分極方向を有する窒素極性(N polarity)の分極方向の圧電薄膜は得られていない。
 本発明の目的は、分極方向が窒素極性(N polarity)であり、量産性に優れた窒化アルミニウム圧電薄膜及びその製造方法を提供することにある。本発明の他の目的は、上記窒化アルミニウム圧電薄膜を有する圧電材及び圧電部品を提供することにある。
 本発明に係る窒化アルミニウム圧電薄膜は、ゲルマニウムを含有することを特徴とする。
 本発明に係る窒化アルミニウム圧電薄膜では、好ましくは、ゲルマニウムとアルミニウムの濃度の合計を100原子%としたとき、ゲルマニウムの濃度が3~28原子%の範囲にある。この場合には、分極方向が窒素極性(N polarity)である窒化アルミニウム圧電薄膜をより一層容易に得ることができる。より好ましくは、ゲルマニウムの濃度は、4~21原子%の範囲である。この場合には、圧電特性をより効果的に高めることができる。さらに好ましくは、ゲルマニウムの濃度は、5~16原子%の範囲である。この場合には、圧電特性をさらに効果的に高めることができる。
 本発明に係る窒化アルミニウム圧電薄膜では、好ましくは、分極方向が窒素極性(N polarity)とされている。
 本発明に係る窒化アルミニウム圧電薄膜の他の局面では、好ましくは、分極方向が薄膜成長方向と逆方向とされている。
 本発明に係る圧電材は、基材と、基材上に堆積法により形成された窒化アルミニウム圧電薄膜とを備え、該窒化アルミニウム圧電薄膜が、本発明に従って構成されている、窒化アルミニウム圧電薄膜である。
 本発明に係る圧電部品は、本発明に従って構成された、窒化アルミニウム圧電薄膜を備えることを特徴としている。
 本発明に係る窒化アルミニウム圧電薄膜の製造方法は、基材上において、スパッタリングにより上記窒化アルミニウム圧電薄膜を成長させることを特徴とする。
 本発明に係る窒化アルミニウム圧電薄膜の製造方法では、好ましくは、Alからなるターゲット及びGeからなるターゲット、またはAlGe合金ターゲットを用い、窒素ガスを供給しつつスパッタリングが行われる。
 本発明に係る窒化アルミニウム圧電薄膜及びその製造方法によれば、分極方向が窒素極性(N polarity)である、窒化アルミニウム圧電薄膜を容易に提供することが可能となる。
 本発明に係る圧電材及び圧電部品では、本発明に従って構成されたGe含有窒化アルミニウム圧電薄膜を有するため、例えば分極方向が異なる複数の圧電薄膜を積層した構成などを容易に提供することができる。
図1は、窒化アルミニウム圧電薄膜中のゲルマニウム濃度と、圧電定数d33との関係を示す図である。 図2は、本発明の第1の実施形態におけるGe含有窒化アルミニウム圧電薄膜の製造方法に用いられる装置の概略構成図である。 図3は、分極方向がアルミニウム極性(Al polarity)の窒化アルミニウム圧電薄膜を有する圧電部品を示す略図的正面図である。 図4は、本発明の圧電部品の一実施形態としての圧電部品を示す略図的正面図である。 図5は、ゲルマニウムターゲットへの投入電力と、各元素の原子濃度との関係を示す図である。 図6は、本発明の第2の実施形態のGe含有窒化アルミニウム圧電薄膜の製造方法に用いられる装置の概略構成図である。 図7は、本発明の圧電部品の一構造例を示す部分切欠き正面断面図である。 図8は、本発明の圧電部品の他の構造例を示す正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図4に、本発明の第1の実施形態で得られる圧電部品を略図的正面図で示す。圧電部品1は、Siからなる基材2を有する。この基材2上に、Ge含有窒化アルミニウム圧電薄膜3が形成されている。Ge含有窒化アルミニウム圧電薄膜3は、後述するようにスパッタリング法により成膜されている。このGe含有窒化アルミニウム圧電薄膜3の分極方向は、図示の矢印-Z方向である。すなわち、分極方向は、薄膜成長方向と逆方向な窒素極性(N polarity)とされている。
 上記Ge含有窒化アルミニウム圧電薄膜3上に、電極4が形成されている。なお、特に使用されていないが、電極4の他に、さらに1以上の電極がGe含有窒化アルミニウム圧電薄膜に電圧を印加するために設けられる。あるいは、半導体であるシリコンからなる基材2を一方の電極として用いて、他方の電極として電極4を用いてもよい。
 基材2は、Ge含有窒化アルミニウム圧電薄膜3をスパッタリングにより成膜する際の基材としても用いられている。従って、基材2は、適宜の材料により形成することができる。本実施形態では、基材2は低抵抗なSiからなり、電極としても作用するが、Si以外の他の半導体により形成されてもよい。また、基材2は、絶縁体や金属や有機樹脂フィルムにより構成されていてもよい。基材2が高抵抗な材料の場合はGe含有窒化アルミニウム圧電薄膜3と基材2の間に電極薄膜を形成してもよい。
 電極4は、Ag、Al、Cu、Mo、W、Ta、Pt、Ru、Rh、Irなどの適宜の金属もしくは合金からなる。
 前述したように、本実施形態の圧電部品1においては、Ge含有窒化アルミニウム圧電薄膜3の分極方向が窒素極性(N polarity)である。
 一般に、窒化アルミニウム薄膜をスパッタリングにより成膜すると、図3に示す圧電部品101における窒化アルミニウム圧電薄膜103のように、分極方向はZ方向となる。すなわち分極方向は薄膜成長方向と同一方向となる。すなわちアルミニウム極性(Al polarity)である。
 本願発明者らは、スパッタリング法により窒化アルミニウム圧電薄膜を形成するにあたり、ゲルマニウムを含有させれば、本実施形態のように、分極方向が反転している圧電薄膜を得られることを見出し、本発明をなすに至ったものである。後述するように、このような分極方向が反転している圧電薄膜が得られると、分極方向が異なる複数の圧電薄膜の積層体などを容易に得ることができる。
 以下、上記Ge含有窒化アルミニウム圧電薄膜3の具体的な製造方法の実施形態を説明する。
 図2は、本発明の第1の実施形態に係るGe含有窒化アルミニウム圧電薄膜の製造方法に用いられる装置の概略構成図である。製造装置21は、スパッタリング装置である。製造装置21はチャンバー22を有する。チャンバー22内には、加熱装置24が配置されている。この加熱装置24の下面に基材12を取り付ける。
 他方、基材12の下方には高周波電力源25,26が設けられている。高周波電力源25上に、Alターゲット27が設けられている。高周波電力源26上には、Geターゲット28が設けられている。
 高周波電力源25,26から高周波電力をAlターゲット27及びGeターゲット28に印加することができる。
 他方、チャンバー22には、バルブ29を介して外部からArガスとNガスの混合ガスが供給される。
 なお、基材12の下方、Alターゲット27の直上及びGeターゲット28の直上には、それぞれシャッター31~33が配置されている。
 基材12上に、上記製造装置21を用い、Ge含有窒化アルミニウム圧電薄膜をスパッタリングにより成膜することができる。より具体的には、加熱装置24により基材12を加熱し、その状態で、ArとNとの混合ガスを供給しつつ、高周波電力源25,26からAlターゲット27及びGeターゲット28に高周波電力を印加する。それによって、基材12上にGe含有窒化アルミニウム圧電薄膜を形成することができる。
 上記基材12の加熱温度は、特に限定されないが、非加熱~500℃程度とすればよい。より好ましくは200~450℃とすればよい。
 また、ArとNとの混合比は、目標とするGe含有窒化アルミニウム圧電薄膜の組成にもよるが、流量比で2:8~8:2程度とすればよい。好ましくは、Ar:Nの流量比は、7:3~5:5の範囲とすることがより一層望ましい。それによって、より一層良好な圧電性を発現させることができる。
 また、ガス圧については、特に限定されないが、0.1Pa~0.5Pa程度とすればよい。本実施形態の実施例として、以下の条件で実施例1のGe含有窒化アルミニウム圧電薄膜を成膜した。
 基材温度=400℃
 Ar:Nの流量比=7:3
 ガス圧=0.18Pa
 目標組成:Ge0.1Al0.9
 上記条件で実施例1のGe含有窒化アルミニウム圧電薄膜を得た。圧電定数d33は、-5.8pC/Nであった。すなわち、圧電定数d33が負の値である、すなわち分極方向が反転しているGe含有窒化アルミニウム圧電薄膜の得られていることがわかる。
 上記実施例1と同様にして、ただし、Geターゲットへの投入電力を変化させて、Ge含有窒化アルミニウム圧電薄膜を得た。結果を図5に示す。
 図5から明らかなように、Geターゲットへの投入電力を5Wから15Wまで変化させた場合、Geターゲットへの投入電力が高くなるとGeの原子濃度が高くなり、Alの原子濃度が低くなっていくことがわかる。他方、Nの濃度は一定であることがわかる。従って、Alの一部が、Geによって置換されているように組成が変化することがわかる。
 上記のように、Geターゲットへの投入電力を変化させることにより、Geの原子濃度を調整し得ることがわかる。
 なお、上記Al、Ge及びNの原子濃度は、RBSまたはNRAにより求めたものである。
 上記RBSとは、ラザフォード後方散乱分光法(RBS)である。RBS法では、試料に高速のイオンを照射する。入射したイオンのうちの一部が試料中の原子核によって、ラザフォード散乱(弾性散乱)を受ける。散乱したイオンのエネルギーは、対象としている原子の質量及び位置により異なる。この散乱イオンのエネルギーと収量とから、試料の深さ方向の元素組成を得ることができる。
 他方、上記NRAすなわち核反応解析では、高速イオンの照射により、試料中の軽い元素と核反応を引き起こす。この核反応により発生したα線やγ線を検出することにより、軽い元素の定量を行うことができる。
 図5における各原子濃度の測定に際しては、高速のHイオンを用いたRBSにより、上記Ge、Al及びSiの濃度を求めた。また、高速のHイオンを用いたNRAにより、Nの含有濃度を測定した。
 本願発明者らは、Ge濃度を変化させ、種々のGe含有窒化アルミニウム圧電薄膜を上記実施例1と同様にして作製した。図1は、Ge濃度と、圧電定数d33との関係を示す図である。
 図1から明らかなように、Ge濃度が0、すなわちGeを含有していない窒化アルミニウム圧電薄膜では、圧電定数d33は、約7pC/Nであり、正の値である。
 Geが含有されると、圧電定数d33は、急速にマイナスの値に移行することがわかる。図1より、Ge濃度が、3原子%~28原子%の範囲内であれば、圧電定数d33が負の値であることがわかる。すなわち、図4に示したように、分極方向が薄膜成長方向と逆方向であるGe含有窒化アルミニウム圧電薄膜3を得られることがわかる。よって、Ge濃度は、好ましくは、3~28原子%の範囲である。また、図1より、Ge濃度が4~21原子%の範囲であれば、圧電定数d33の絶対値が2pC/Nよりも大きく、従って圧電特性を効果的に高め得ることがわかる。さらに好ましくは、Ge濃度が5~16原子%の範囲であれば、圧電特性をより一層効果的に高め得ることがわかる。
 Geが含有されるとGeとAlとが置換されていることがRBS/NRA分析より分かり、文献(R. D. Shannon, Acta Crystallogr., A 32 (1976) 751.)より、3価4配位のAlと4価4配位のGeはイオン半径がともに0.39オングストロームと近似しており、置換しやすいことも分かる。
 また第一原理計算よりGeは4価4配位の構造を安定的に取りやすく、その際の電荷補償はAl欠陥によって行われると安定構造をとり、かつ実験的で取得された圧電定数や結晶構造に非常に近いものが得られることが分かった。
 これらの実験データと理論解析より、Al欠損を安定して実現できるGeドープのような方法がN polarityな窒化アルミニウム薄膜を形成するのに有効であることが分かった。
 上記第1の実施形態では、図2に示したようにAlターゲット27と、Geターゲット28を用いたが、図6に示す第2の実施形態のように、GeAl合金ターゲット42を用いてもよい。図6に示す製造装置41では、チャンバー43内に、高周波電力源44が配置されている。この高周波電力源44上に上記GeAl合金ターゲット42が載置されている。
 チャンバー43内に加熱装置45,46及びシャッター47が配置されている。シャッター47の上方に、基材12,12が配置されている。また、チャンバー43外のバルブ48を介してチャンバー43内に、ArとNとの混合ガスが供給されるように構成されている。
 本実施形態のように、ターゲットとして、単一のターゲットであるGeAl合金ターゲットを用いてもよい。またAlターゲット上にGeペレットを置いても良いし、Alターゲットに穴をあけてGeペレットを埋め込んでも良い。このような構成では、例えば6インチサイズや8インチサイズのような大型のウエハ上に、Ge含有窒化アルミニウム圧電薄膜を容易にかつ均一に成膜することができる。従って、比較的大きな面積のGe含有窒化アルミニウム圧電薄膜を容易に提供することができる。
 第2の実施形態においても、上記のように、Ge濃度を上記特定の範囲とすることにより、第1の実施形態の製造方法と同様に、分極方向が反転されたGe含有窒化アルミニウム圧電薄膜を容易に提供することができる。
 前述した特許文献1の製造方法では、微量の酸素を高精度に供給することが困難であった。これに対して、上記第1及び第2の実施形態から明らかなように、本発明の窒化アルミニウム圧電薄膜の製造方法では、このような微量のガスの供給のような煩雑な工程を必要としない。従って、分極方向が反転されたGe含有窒化アルミニウム圧電薄膜を容易に量産することができる。
 図7は、本発明のGe含有窒化アルミニウム圧電薄膜が好適に用いられる圧電部品の一構造例を示す部分切欠き正面断面図である。圧電薄膜フィルタ51は、基板52を有する。基板52には、空洞部52aが設けられている。この空洞部52a上において、支持膜53、第1の圧電薄膜54及び第2の圧電薄膜55がこの順序で積層されている。また、第1の圧電薄膜54の下面に下部電極56が配置されている。第2の圧電薄膜55の上方には、上部電極57が設けられている。第1の圧電薄膜54と第2の圧電薄膜55との間には、電極58が設けられている。そして、第1の圧電薄膜54の分極方向は、矢印Z方向であるのに対し、第2の圧電薄膜55の分極方向は矢印-Z方向である。このような圧電薄膜フィルタ51を得るに際し、上記Ge含有窒化アルミニウム圧電薄膜を第2の圧電薄膜55として好適に用いることができる。
 第1の圧電薄膜54としては、Geを含有していない窒化アルミニウム圧電薄膜をスパッタリングにより形成すればよい。従って、分極方向が異なる第1,第2の圧電薄膜54,55を容易に形成することができる。
 図8は、本発明のGe含有窒化アルミニウム圧電薄膜を好適に用いることができる圧電部品の他の構造例を示す正面断面図である。図8に示す音響素子61は、ケース62を有する。ケース62は、下方に開いた開口を有する。下方に開いた開口は、ベースプレート63により閉成されている。上記ケース62の上面には、複数の放音孔62aが設けられている。
 また、ケース62内には、積層圧電素子70が支持部64,65を介して取り付けられている。積層圧電素子70は、上から順に、電極71、振動膜72、圧電層73、電極74を積層してなる第1の積層部分と、その下方に配置されており、上から順に、電極75、圧電層76、振動膜77及び電極78が積層されている第2の積層部分とを有する。圧電層73の分極方向と、圧電層76の分極方向とは、厚み方向において互いに逆向きとされている。上記圧電層73,76として、本発明のGe含有窒化アルミニウム圧電薄膜と、分極方向が薄膜成長方向である窒化アルミニウム圧電薄膜とを用いることにより、このような音響素子61を容易に作製することができる。
 なお、図7及び図8に示した構造例に限らず、本発明は、様々な圧電振動子、圧電共振子、圧電アクチュエータ、圧電センサなどの分極方向が逆方向の圧電薄膜を用いた圧電部品に広く用いることができる。
1,101…圧電部品
2…基材
3…Ge含有窒化アルミニウム圧電薄膜
4…電極
12…基材
21…製造装置
22…チャンバー
24…加熱装置
25,26…高周波電力源
27…Alターゲット
28…Geターゲット
29…バルブ
31~33…シャッター
41…製造装置
42…GeAl合金ターゲット
43…チャンバー
44…高周波電力源
45,46…加熱装置
47…シャッター
48…バルブ
51…圧電薄膜フィルタ
52…基板
52a…空洞部
53…支持膜
54,55…第1,第2の圧電薄膜
56…下部電極
57…上部電極
58…電極
61…音響素子
62…ケース
62a…放音孔
63…ベースプレート
64,65…支持部
70…積層圧電素子
71…電極
72,77…振動膜
73,76…圧電層
74,75,78…電極
103…窒化アルミニウム圧電薄膜

Claims (10)

  1.  ゲルマニウムを含有することを特徴とする窒化アルミニウム圧電薄膜。
  2.  前記ゲルマニウムと、アルミニウムの濃度の合計を100原子%としたとき、ゲルマニウムの濃度が3~28原子%の範囲にある、請求項1に記載の窒化アルミニウム圧電薄膜。
  3.  前記ゲルマニウムの濃度が、4~21原子%の範囲にある、請求項2に記載の窒化アルミニウム圧電薄膜。
  4.  前記ゲルマニウムの濃度が、5~16原子%の範囲にある、請求項3に記載の窒化アルミニウム圧電薄膜。
  5.  分極方向が窒素極性である、請求項1~4のいずれか1項に記載の窒化アルミニウム圧電薄膜。
  6.  前記分極方向が薄膜成長方向と逆方向である、請求項1~4のいずれか1項に記載の窒化アルミニウム圧電薄膜。
  7.  基材と、前記基材上に堆積法により形成された窒化アルミニウム圧電薄膜とを備え、該窒化アルミニウム圧電薄膜が、請求項1~6のいずれか1項に記載の窒化アルミニウム圧電薄膜である、圧電材。
  8.  請求項1~6のいずれか1項に記載の窒化アルミニウム圧電薄膜を備える圧電部品。
  9.  請求項1~6のいずれか1項に記載の窒化アルミニウム圧電薄膜の製造方法であって、基材上において、スパッタリングにより前記窒化アルミニウム圧電薄膜を成長させる、窒化アルミニウム圧電薄膜の製造方法。
  10.  Alからなるターゲット及びGeからなるターゲット、またはAlGe合金ターゲットを用い、窒素ガスを供給しつつスパッタリングする、請求項9に記載の窒化アルミニウム圧電薄膜の製造方法。
PCT/JP2015/056045 2014-03-03 2015-03-02 窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法 WO2015133422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580011354.9A CN106062238B (zh) 2014-03-03 2015-03-02 氮化铝压电薄膜及其制造方法、压电材、压电部件
JP2016506475A JP6123019B2 (ja) 2014-03-03 2015-03-02 窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法
US15/251,221 US10475984B2 (en) 2014-03-03 2016-08-30 Aluminum nitride piezoelectric thin film, piezoelectric material, piezoelectric component, and method for manufacturing aluminum nitride piezoelectric thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014040195 2014-03-03
JP2014-040195 2014-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/251,221 Continuation US10475984B2 (en) 2014-03-03 2016-08-30 Aluminum nitride piezoelectric thin film, piezoelectric material, piezoelectric component, and method for manufacturing aluminum nitride piezoelectric thin film

Publications (1)

Publication Number Publication Date
WO2015133422A1 true WO2015133422A1 (ja) 2015-09-11

Family

ID=54055228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056045 WO2015133422A1 (ja) 2014-03-03 2015-03-02 窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法

Country Status (4)

Country Link
US (1) US10475984B2 (ja)
JP (1) JP6123019B2 (ja)
CN (1) CN106062238B (ja)
WO (1) WO2015133422A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094520A1 (ja) * 2015-12-02 2017-06-08 株式会社村田製作所 圧電素子、圧電マイクロフォン、圧電共振子及び圧電素子の製造方法
US20170288121A1 (en) * 2016-03-31 2017-10-05 Avago Technologies General Ip (Singapore) Pte. Ltd Acoustic resonator including composite polarity piezoelectric layer having opposite polarities
US11103179B2 (en) 2016-05-13 2021-08-31 Murata Manufacturing Co., Ltd. Swallowing sensor and swallowing ability diagnosis system provided with the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2532106B (en) 2014-11-04 2017-06-28 Xaar Technology Ltd A piezoelectric thin film element
JP6882722B2 (ja) * 2017-01-19 2021-06-02 株式会社村田製作所 圧電素子、及び圧電素子を用いた共振子
JP6621567B2 (ja) * 2017-12-28 2019-12-18 日本碍子株式会社 圧電性材料基板と支持基板との接合体および弾性波素子
CN113308742A (zh) * 2020-12-28 2021-08-27 中国科学院福建物质结构研究所 一种氮化铝单晶材料在压电材料中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149953A (ja) * 2007-12-21 2009-07-09 National Institute Of Advanced Industrial & Technology 窒化物半導体の製造方法および窒化物半導体デバイス
JP2009228131A (ja) * 2008-02-27 2009-10-08 Sumitomo Electric Ind Ltd 窒化アルミニウム薄膜およびその製造方法
US7682709B1 (en) * 1995-10-30 2010-03-23 North Carolina State University Germanium doped n-type aluminum nitride epitaxial layers
JP2011015148A (ja) * 2009-07-01 2011-01-20 National Institute Of Advanced Industrial Science & Technology 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004005216A1 (ja) 2002-07-09 2005-11-04 宮原 健一郎 薄膜形成用基板、薄膜基板、光導波路、発光素子、及び発光素子搭載用基板
AU2003296063A1 (en) * 2002-12-25 2004-07-22 Matsushita Electric Industrial Co., Ltd. Magnetic switching device and magnetic memory
WO2005003414A1 (ja) 2003-06-30 2005-01-13 Kenichiro Miyahara 薄膜形成用基板、薄膜基板、及び発光素子
JP2009246205A (ja) 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法
JP5905677B2 (ja) * 2011-08-02 2016-04-20 太陽誘電株式会社 圧電薄膜共振器およびその製造方法
WO2016205562A1 (en) * 2015-06-16 2016-12-22 Georgia Tech Research Corporation System and method for increasing iii-nitride semiconductor growth rate and reducing damaging ion flux
WO2017094520A1 (ja) * 2015-12-02 2017-06-08 株式会社村田製作所 圧電素子、圧電マイクロフォン、圧電共振子及び圧電素子の製造方法
KR102461739B1 (ko) * 2017-07-07 2022-10-31 스카이워크스 솔루션즈, 인코포레이티드 개선된 음향파 필터들을 위해 치환된 알루미늄 질화물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682709B1 (en) * 1995-10-30 2010-03-23 North Carolina State University Germanium doped n-type aluminum nitride epitaxial layers
JP2009149953A (ja) * 2007-12-21 2009-07-09 National Institute Of Advanced Industrial & Technology 窒化物半導体の製造方法および窒化物半導体デバイス
JP2009228131A (ja) * 2008-02-27 2009-10-08 Sumitomo Electric Ind Ltd 窒化アルミニウム薄膜およびその製造方法
JP2011015148A (ja) * 2009-07-01 2011-01-20 National Institute Of Advanced Industrial Science & Technology 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094520A1 (ja) * 2015-12-02 2017-06-08 株式会社村田製作所 圧電素子、圧電マイクロフォン、圧電共振子及び圧電素子の製造方法
CN108140723A (zh) * 2015-12-02 2018-06-08 株式会社村田制作所 压电元件、压电传声器、压电谐振子以及压电元件的制造方法
JPWO2017094520A1 (ja) * 2015-12-02 2018-06-14 株式会社村田製作所 圧電素子、圧電マイクロフォン、圧電共振子及び圧電素子の製造方法
US10397708B2 (en) 2015-12-02 2019-08-27 Murata Manufacturing Co., Ltd. Piezoelectric element, piezoelectric microphone, piezoelectric resonator and method for manufacturing piezoelectric element
US11012787B2 (en) 2015-12-02 2021-05-18 Murata Manufacturing Co., Ltd. Piezoelectric element, piezoelectric microphone, piezoelectric resonator and method for manufacturing piezoelectric element
CN108140723B (zh) * 2015-12-02 2021-08-06 株式会社村田制作所 压电元件、压电传声器、压电谐振子以及压电元件的制造方法
US20170288121A1 (en) * 2016-03-31 2017-10-05 Avago Technologies General Ip (Singapore) Pte. Ltd Acoustic resonator including composite polarity piezoelectric layer having opposite polarities
US11103179B2 (en) 2016-05-13 2021-08-31 Murata Manufacturing Co., Ltd. Swallowing sensor and swallowing ability diagnosis system provided with the same

Also Published As

Publication number Publication date
US10475984B2 (en) 2019-11-12
CN106062238A (zh) 2016-10-26
CN106062238B (zh) 2018-09-04
US20160372653A1 (en) 2016-12-22
JP6123019B2 (ja) 2017-04-26
JPWO2015133422A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6123019B2 (ja) 窒化アルミニウム圧電薄膜、圧電材、圧電部品及び窒化アルミニウム圧電薄膜の製造方法
JP6565118B2 (ja) 窒化アルミニウム圧電薄膜及びその製造方法、並びに圧電材及び圧電部品及び窒化アルミニウム圧電薄膜の製造方法
Damodaran et al. Three‐state ferroelastic switching and large electromechanical responses in PbTiO3 thin films
Rhyee et al. High‐mobility transistors based on large‐area and highly crystalline CVD‐grown MoSe2 films on insulating substrates
Lu et al. Surface morphology and microstructure of pulsed DC magnetron sputtered piezoelectric AlN and AlScN thin films
Kennedy et al. Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment
Lappalainen et al. Microstructure dependent switching properties of VO2 thin films
Yu et al. Effect of Pyrolysis Temperature on Sol–Gel Synthesis of Lead‐free Piezoelectric (K, Na) NbO 3 Films on Nb: SrTiO 3 Substrates
Fu et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire
TW200816498A (en) Method of fabricating buffer layer on substrate
Yang et al. Solid‐state electrochemical thermal transistors
Hou et al. Photoluminescence of monolayer MoS 2 modulated by water/O 2/laser irradiation
Wan et al. Strain-directed layer-by-layer epitaxy toward van der Waals homo-and heterostructures
Roy et al. Effect of thermochemical synthetic conditions on the structure and dielectric properties of Ga1. 9Fe0. 1O3 compounds
Choi et al. Large-scale self-limiting synthesis of monolayer MoS2 via proximity evaporation from Mo films
Paldi et al. Nanocomposite‐Seeded Epitaxial Growth of Single‐Domain Lithium Niobate Thin Films for Surface Acoustic Wave Devices
JP2009091217A (ja) ガリウム‐アルミニウム酸化物結晶膜及びその製造方法並びにそれを用いた半導体素子
Vlasov et al. Suppression of growth domains in epitaxial ZnO films on structured (0001) sapphire surface
TWI486466B (zh) An oxide thin film, a thin film transistor, and a display device for a semiconductor layer of a thin film transistor
TW202140824A (zh) 二維材料之製造方法
JP4939037B2 (ja) シリコン薄膜の製造方法
CN108183165A (zh) 有机晶体管、阵列基板、显示装置及相关制备方法
JP4165305B2 (ja) 結晶質半導体材料の製造方法および半導体装置の製造方法
Schuler et al. Comparison of DC and RF sputtered zinc oxide films with post-annealing and dry etching and effect on crystal composition
JP6477315B2 (ja) ホスフォレン膜の形成方法及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759348

Country of ref document: EP

Kind code of ref document: A1