WO2011001894A1 - (メタ)アクリル酸の晶析装置および(メタ)アクリル酸の晶析方法 - Google Patents

(メタ)アクリル酸の晶析装置および(メタ)アクリル酸の晶析方法 Download PDF

Info

Publication number
WO2011001894A1
WO2011001894A1 PCT/JP2010/060755 JP2010060755W WO2011001894A1 WO 2011001894 A1 WO2011001894 A1 WO 2011001894A1 JP 2010060755 W JP2010060755 W JP 2010060755W WO 2011001894 A1 WO2011001894 A1 WO 2011001894A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic acid
meth
crystallization
crude
acid solution
Prior art date
Application number
PCT/JP2010/060755
Other languages
English (en)
French (fr)
Inventor
坂元 一彦
上野 晃嗣
良武 石井
北浦 正次
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2011520888A priority Critical patent/JP5722771B2/ja
Priority to EP10794063.7A priority patent/EP2450340B1/en
Priority to CN201080027824.8A priority patent/CN102471213B/zh
Priority to US13/381,449 priority patent/US8859809B2/en
Publication of WO2011001894A1 publication Critical patent/WO2011001894A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation

Definitions

  • the present invention relates to an apparatus for purifying (meth) acrylic acid by crystallization and a method for crystallizing (meth) acrylic acid.
  • (Meth) acrylic acid is generally obtained by conducting a (meth) acrylic acid-containing gas obtained by a gas phase catalytic oxidation reaction to a condensation tower or collection tower to obtain a crude (meth) acrylic acid solution, and further purifying it. Manufactured. As such a purification method, crystallization is used in addition to distillation, diffusion, extraction and the like.
  • Crystallization may be performed simply by cooling the crude (meth) acrylic acid solution, but in industrial mass production, a film-like coarse (meta) is formed on the heat transfer surface where the opposite side is in contact with the refrigerant. ) Dynamic crystallization in which an acrylic acid solution is allowed to flow down and cooled is mainly used.
  • crystallization apparatuses for performing such dynamic crystallization.
  • some have a crystallization tube, a heat medium flows outside the crystallization tube, and a crude (meth) acrylic acid solution is repeatedly circulated and supplied to the crystallization tube.
  • Such a crystallization apparatus is usually provided with a large number of crystallization tubes having a small diameter. This is because the surface area of the heat transfer surface is increased by reducing the diameter, and the heat of the heating medium is efficiently transferred to the crude (meth) acrylic acid solution.
  • Patent Document 1 discloses a technique for producing (meth) acrylic acid, in which heat of a gas obtained by a catalytic gas phase oxidation reaction is recovered by a heat exchanger and then introduced into an absorption tower.
  • a technique is disclosed in which when the heat exchanger is closed and the pressure in the reactor rises, the gas is not passed through the heat exchanger but introduced from the bypass into the absorption tower.
  • the problem of pressure increase in the reactor and the problem of clogging in the crystallizer are completely different, and the problem remains that this technology cannot suppress clogging in the heat exchanger.
  • the present invention has an object to provide a crystallization apparatus and a crystallization method in which complete blockage in a crystallization tube is suppressed and a higher purity (meth) acrylic acid can be obtained without leakage of a crude solution.
  • a pressure gauge is installed in a pipe that circulates the crude (meth) acrylic acid solution in the crystallizer from the storage section to the supply section, and the circulating flow rate is increased when the pressure measured by the pressure gauge exceeds the reference value. It has been found that if it is reduced, crystallization in the upper part of the crystallization tube can be promoted, and in particular, complete blockage in the lower part can be prevented in advance, and the present invention has been completed.
  • the crystallizer for (meth) acrylic acid comprises: a crude (meth) acrylic acid solution supply unit, a crystallization tube, a heat medium supply tube, a heat medium discharge tube, and a crude (meth) acryl after passing through the crystallization tube. It has an acid solution storage section, a pipe for circulating and supplying the crude (meth) acrylic acid solution from the storage section to the supply section, and a pump for circulating and supplying the crude (meth) acrylic acid solution from the storage section to the supply section. In addition, it has a pressure gauge in the circulation supply pipe; it circulates the crude (meth) acrylic acid solution, and performs dynamic crystallization in a batch manner while flowing down on the inner wall of the crystallization pipe. It is characterized by being.
  • the method for crystallizing (meth) acrylic acid according to the present invention uses the above (meth) acrylic acid crystallization apparatus; when the pressure value measured by a pressure gauge exceeds a reference value, the crude (meth) acrylic acid solution The circulation flow rate is reduced.
  • FIG. 1 is a schematic diagram showing a crystallization system for carrying out the crystallization method of the present invention, including the crystallization apparatus of the present invention.
  • 1 indicates a crystallization apparatus
  • 2 indicates a crystallization tube
  • 3 indicates a heat medium supply unit
  • 4 indicates a heat medium discharge unit
  • 5 indicates a valve
  • 6 indicates a pump
  • 7 indicates a valve
  • 8 indicates a circulation supply pipe
  • 9 indicates a pressure gauge
  • 10 indicates a crude (meth) acrylic acid solution tank
  • 11 indicates a heat exchanger
  • 12 indicates a valve
  • 13 indicates A pump is shown
  • 14 is a valve
  • 15 is a crude (meth) acrylic acid solution supply section
  • 16 is a storage section
  • 17 is a (meth) acrylic acid solution circulation supply section.
  • the crystallization apparatus of the present invention is a batch type for introducing a predetermined amount of a crude (meth) acrylic acid solution and circulating it into a film on the inner wall of the crystallization tube while circulating it. is there. More specifically, a batch crystallization apparatus described in JP-A-2005-15478, a layer crystallization apparatus manufactured by Sulzer Chemtech (Switzerland), or the like can be used.
  • the crystallization tube is made of a material with excellent corrosion resistance and heat transfer to (meth) acrylic acid, such as stainless steel and copper, and the heat or heat of the heat medium is efficiently converted to crude (meth) acrylic acid via the heat transfer surface. It is devised to be transmitted to. Generally, it is a relatively thin and long tube having a diameter of 50 mm or more and 100 mm or less and a length of 5 m or more and 25 m or less, and has a large surface area.
  • the number of crystallization tubes depends on the scale and manufacturing scale of the crystallizer, but is preferably about 1000 or more and 2000 or less in industrial mass production.
  • the supply unit of the crude (meth) acrylic acid solution is configured so that the crude solution can be supplied to the crystallization tube as evenly as possible.
  • the crystallizer is provided with a heat medium supply pipe and a discharge pipe, supplies the heat medium to the outer wall of the crystallizer, and cools or heats the heat medium into the crude (meth) acrylic acid solution on the inner wall of the crystallizer.
  • the crystallizer is provided with a storage unit, and after the crude (meth) acrylic acid solution that has passed through the crystallization tube from the supply unit is temporarily stored, the crude solution is extracted from the storage unit through the circulation supply tube and supplied to the supply unit again.
  • Circulate by The pump for circulating and supplying the crude (meth) acrylic acid solution to the supply unit is preferably installed at the lowest position of the circulation supply pipe.
  • a pressure gauge is installed in the circulation supply pipe.
  • the pressure gauge include a Bourdon tube pressure gauge, a bellows pressure gauge, a diaphragm pressure gauge, and the like.
  • the diaphragm pressure gauge is suitable.
  • the installation location of the pressure gauge may be adjusted as appropriate, but if possible, the highest portion of the circulation supply pipe so that the pressure in the crude (meth) acrylic acid supply section in the crystallizer can be reflected, Or it is preferable to install in the part from the highest position part to a crystallizer.
  • the crystallizer preferably has means for controlling the amount of the crude (meth) acrylic acid solution to be circulated based on the pressure value measured by the pressure gauge.
  • the means include a valve capable of controlling the amount of solution passing through and a pump capable of controlling the discharge amount.
  • the crude (meth) acrylic acid solution that is a raw material for crystallization is not particularly limited as long as it contains impurities in addition to the target compound (meth) acrylic acid.
  • a crude (meth) acrylic acid solution obtained by contacting or condensing a (meth) acrylic acid-containing gas obtained by a catalytic gas phase oxidation reaction with a collected liquid, or the crude (meth) acrylic acid examples include those obtained by distilling low-boiling impurities such as acrolein from the solution.
  • the (meth) acrylic acid once purified by crystallization is melted and then supplied to the crystallizer instead of the crude (meth) acrylic acid solution.
  • the purification may be repeated twice or more.
  • the crude (meth) acrylic acid solution obtained through the catalytic gas phase oxidation reaction is at a high temperature, and in the present invention, (meth) acrylic acid is crystallized and purified by batch rather than continuous. Therefore, it is preferable to store the crude (meth) acrylic acid solution in the tank 10 once.
  • the supply amount of the crude (meth) acrylic acid solution to the crystallizer 1 may be determined according to the scale of the crystallizer 1 or the like.
  • the crude (meth) acrylic acid solution is usually supplied from the crude (meth) acrylic acid solution supply unit 15 of the crystallizer 1 to the storage unit 16.
  • the pump 5 is used with the valve 5 closed and the valve 7 opened, and the supplied crude (meth) acrylic acid solution is circulated and supplied from the (meth) acrylic acid solution circulation supply section of the crystallizer 1 through the circulation supply pipe 8. Circulating supply to 17 and crystallization is started.
  • the cooling medium is circulated to cool the crude (meth) acrylic acid solution circulated and supplied to the crystallization apparatus 1 through the circulation supply pipe 8, and (meth) is added to the inner surface of the crystallization pipe 2. Crystallize acrylic acid.
  • the pressure in the pipe is constantly monitored by a pressure gauge 9 provided on the circulation supply pipe 8, the circulation amount of the crude (meth) acrylic acid solution is adjusted according to the measured pressure value, and the pressure in the circulation supply pipe 8 is adjusted. Keep in the predetermined range.
  • the appropriate circulation flow rate varies depending on the scale of the crystallizer and the like.
  • the circulation flow rate is adjusted so that the pressure value measured by the pressure gauge 9 installed in the circulation supply pipe is 0.01 MPa or more. If the said pressure value is 0.01 Mpa or more, favorable crystallization will be attained, without the crystallization efficiency falling excessively.
  • the upper limit is not particularly limited, but it is usually preferable to adjust the circulation flow rate so that the pressure value in the circulation supply pipe is 0.5 MPa or less.
  • the pressure of the circulation supply pipe refers to a pressure excluding atmospheric pressure, that is, a gauge pressure.
  • the pressure value measured by the pressure gauge 9 provided in the circulation supply pipe 8 becomes high.
  • the circulating flow rate of the crude (meth) acrylic acid solution is reduced, the crystallization in the upper part of the crystallization tube 2 is advanced and the crystallization in the lower part is suppressed, Suppresses complete blockage of the crystallization tube.
  • the crystallization in the crystallization tube is likely to proceed uniformly, and the crude (meth) acrylic acid solution is not left in the crystallization tube, so that a crystal with higher purity can be obtained.
  • crude (meth) acrylic acid is used so that the difference between the maximum value and the minimum value of the measured pressure value is within 100%, more preferably within 50% of the minimum value. Adjust the circulation rate of the solution. If the change in pressure in the circulation supply pipe is within the above range, it becomes possible to stably perform crystallization purification of (meth) acrylic acid more reliably, and further improve the purity of the (meth) acrylic acid obtained. Can be improved.
  • the minimum value of the measured pressure value in the method of the present invention refers to the measured pressure value at the time when the circulating supply amount first reaches the set value after the circulation supply of the crude (meth) acrylic acid solution is started.
  • the circulating supply is continued after the circulating supply amount of the crude (meth) acrylic acid solution reaches the set value, it gradually increases as the crystallization of (meth) acrylic acid in the crystallization tube proceeds. Therefore, in this embodiment, when the measured pressure value is about to reach the minimum value, that is, 100% of the initial value, more preferably 50%, the circulating flow rate of the crude (meth) acrylic acid is reduced, and the measured pressure value Is adjusted to be within the above range.
  • the means for adjusting the pressure in the circulation supply pipe can be selected as appropriate.
  • the valve 7 of the circulation supply pipe can be simply opened and closed, that is, the circulation supply of the solution can only be stopped or the amount corresponding to the discharge amount of the pump can be passed, and the degree of opening and closing is adjusted stepwise or continuously. It is possible to use one that can control the amount of the passing solution.
  • the pump 6 for circulation supply a pump capable of controlling the discharge amount may be used.
  • the pressure is reduced by, for example, reducing the opening of the valve or reducing the discharge amount of the pump. Adjust within the specified range.
  • the opening degree of the valve or the discharge amount of the pump may be increased.
  • the heating medium supplied to the crystallizer 1 is switched from the cold medium to the hot medium, and the surface of the (meth) acrylic acid crystal in the crystallization tube 2 is partially melted. It is preferable to perform the perspiration process.
  • the amount of impurities present in the solution relatively increases as crystallization of (meth) acrylic acid proceeds, and thus impurities may adhere to the surface of (meth) acrylic acid crystals. . Therefore, the purity of the crystal can be increased by partially melting the surface of the (meth) acrylic acid crystal and discharging the melted portion. Such a partial melting process is called a sweating process.
  • the mother liquor of the above crystallization process is stored in the storage unit 16 at the bottom of the crystallizer 1. Further, the partial melt obtained in the sweating process also accumulates in the storage unit 16. These mother liquor and partial melt are transferred through the valve 5.
  • a crystal melting step is performed. Specifically, the heating medium is switched to one having a relatively high temperature to melt the crystals in the crystallization tube, and the melt obtained from the crystallization tube 2 is supplied to the (meta) of the crystallization apparatus 1 through the circulation supply tube 8. Circulation and supply to the acrylic acid solution circulation supply unit 17 and flow down on the (meth) acrylic acid crystals in the crystallization tube 2 promote the melting.
  • a polymerization inhibitor or a concentrated solution thereof may be introduced into the storage unit 16 of the crystallizer 1.
  • the resulting (meth) acrylic acid melt has a high concentration and is heated in the melting step, which may generate impurities such as dimers.
  • impurities such as dimers.
  • the use of a polymerization inhibitor suppresses such impurities. be able to.
  • the type of the polymerization inhibitor is not particularly limited.
  • N-oxyl compounds such as 2,2,6,6-tetramethylpiperidino-1-oxyl; phenol compounds such as p-methoxyphenol; manganese acetate and the like
  • manganese salt compounds include manganese salt compounds; dialkyldithiocarbamate compounds such as copper dibutyldithiocarbamate; nitroso compounds; amine compounds; phenothiazine compounds.
  • a polymerization initiator may use only 1 type and may use 2 or more types together.
  • (meth) acrylic acid As a solvent in the case of using a concentrated solution of a polymerization inhibitor, (meth) acrylic acid, water, acetic acid and the like can be used, and (meth) acrylic acid is preferably used.
  • the obtained (meth) acrylic acid melt may further repeat the crystallization step, the sweating step and the melting step in order to further increase the purity.
  • the obtained high-purity (meth) acrylic acid melt is transferred through the valve 5.
  • the crude (meth) acrylic acid solution was not accompanied by leakage of the crude solution.
  • High-purity (meth) acrylic acid in which mixing is suppressed can be produced.
  • efficient production is possible, for example, the number of crystallizations for obtaining (meth) acrylic acid having a predetermined purity can be reduced.
  • Example 1 Production of crude acrylic acid solution Propylene is subjected to a catalytic gas phase oxidation reaction in a reactor, and the resulting reaction gas is introduced into a collection tower and brought into contact with the collection liquid. The bottom of the collection tower A crude acrylic acid solution was obtained.
  • the obtained crude acrylic acid solution was analyzed, 90.0% by mass of acrylic acid, 3.2% by mass of water, 1.9% by mass of acetic acid, 0.6% by mass of maleic acid, 1.5% of acrylic acid dimer It contained 0.07% by mass of furfural, 0.07% by mass of furfural, 0.06% by mass of formaldehyde, 0.1% by mass of hydroquinone, and 2.3% by mass of other impurities.
  • the temperature of the collection tower bottom liquid at this time ie, the temperature of the crude acrylic acid solution taken out from the collection tower, was 91 ° C.
  • the obtained crude acrylic acid solution was purified by crystallization using a crystallization system schematically shown in FIG. However, the scale of the crystallization system used is a laboratory level, and the number of crystallization tubes in the crystallization apparatus is three.
  • the temperature of the crude acrylic acid solution was adjusted to within ⁇ 5 ° C. of the crystallization start temperature by the heat exchanger 11, and then supplied to the storage unit 16 of the crystallizer 1. More specifically, the crystallizer 1 can supply the crude acrylic acid solution from the storage unit 16 to the circulation supply unit 17 through the circulation supply pipe 8 by the circulation pump 6.
  • the crystallization tube 2 is a metal tube having a length of 6 m and an inner diameter of 70 mm.
  • the crude acrylic acid solution supplied to the upper part flows down in the form of a film on the inner wall of the crystallization tube 2.
  • the surface of the crystallization tube 2 is composed of a double jacket, and the temperature is controlled by the heat medium supplied from the heat medium supply unit 3 and discharged from the heat medium discharge unit 4.
  • the crude acrylic acid that has passed through the crystallization tube 2 is once stored in the storage unit 16 and then continuously supplied to the circulation supply unit 17.
  • the pressure in the pipe is constantly monitored by a pressure gauge 9 provided at the highest position in the circulation supply pipe 8, and the degree of opening of the valve 7 capable of controlling the amount of the passing solution is varied between 30 and 40%.
  • the circulation supply amount of the acrylic acid solution was adjusted, and the pressure of the circulation supply pipe 8 was maintained in the range of 0.10 MPa to 0.14 MPa. In this case, the difference between the maximum value and the minimum value of the measured pressure value is 0.04 MPa within 50% of the minimum value.
  • the purity of acrylic acid was 99.94% by mass, and in addition, 92 mass ppm of water, 440 mass ppm of acetic acid, 2 mass ppm of maleic acid, 45 mass of acrylic acid dimer. It contained ppm, furfural 0.2 mass ppm, benzaldehyde 0.1 mass ppm, and no formaldehyde was detected.
  • the production efficiency through the above was 10.02 kg / hour.
  • Example 2 In the crystallization step, acrylic acid was produced in the same manner as in Example 1 except that the pressure of the circulation supply pipe 8 was maintained in the range of 0.10 MPa to 0.16 MPa. In this case, the difference between the maximum value and the minimum value of the measured pressure value is 0.06 MPa within 100% of the minimum value.
  • the purity of acrylic acid was 99.89% by mass, and in addition, water 153 mass ppm, acetic acid 710 mass ppm, maleic acid 4 mass ppm, and acrylic acid dimer 100 mass. It contained ppm, furfural 0.5 mass ppm, benzaldehyde 0.4 mass ppm, and no formaldehyde was detected. Further, the production efficiency through the above was 9.98 kg / hour.
  • Comparative Example 1 In the crystallization step, the opening degree of the valve 7 is fixed at 40%, and the pressure adjustment according to the measured pressure value of the pressure gauge 9 provided on the circulation supply pipe 8 is not performed. Acrylic acid was produced. The measured pressure value at this time rose to 0.21 MPa. In this case, the difference between the maximum value and the minimum value of the measured pressure value is 0.11 MPa, which exceeds 0.10 MPa, which is 100% of the minimum value.
  • the purity of acrylic acid was 99.86% by mass, and in addition, 171 mass ppm of water, 860 mass ppm of acetic acid, 5 mass ppm of maleic acid, 120 mass of acrylic acid dimer. It contained ppm, furfural 0.7 mass ppm, and benzaldehyde 0.6 mass ppm, and no formaldehyde was detected. Further, the production efficiency through the above was 9.98 kg / hour. Furthermore, under the above conditions, there was a problem that leakage of the crude acrylic acid solution was observed from the crystallizer during crystallization purification.
  • the crystallizer tube of the crystallizer since the crude (meth) acrylic acid solution is gradually cooled in the crystallizer tube of the crystallizer, the crystal tends to segregate in the lower part of the crystallizer tube, and the crystal grows uniformly on the surface of the heat transfer surface. It is not easy to make it happen. If this state is left as it is, the crystallization tube will eventually be completely blocked. Nevertheless, the crystallizer is equipped with a large number of crystallization tubes, and since all the crystallization tubes are not completely blocked, crystallization can proceed, and crystallization is blocked in the crystallization process. The tube has been reopened during the sweating and melting processes, and so far has not been particularly problematic.
  • the present invention it is possible to prevent complete blockage of the crystallization tube by adjusting the circulation flow rate according to the pressure of the crude (meth) acrylic acid solution in the circulation supply tube of the crystallization apparatus. Higher purity (meth) acrylic acid can be obtained without leakage of the crude solution. Therefore, this invention is very useful industrially as what can manufacture a high quality (meth) acrylic acid efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、晶析管における完全閉塞を未然に抑制し、粗溶液の漏れを伴うことなくより高純度の(メタ)アクリル酸が得られる晶析装置と晶析方法を提供することを目的とする。本発明に係る(メタ)アクリル酸の晶析装置は;粗(メタ)アクリル酸溶液の供給部、晶析管、熱媒供給管、熱媒排出管、晶析管を経た粗(メタ)アクリル酸溶液の貯留部、粗(メタ)アクリル酸溶液を貯留部から供給部へ循環供給するための管、および粗(メタ)アクリル酸溶液を貯留部から供給部へ循環供給するためのポンプを有し;さらに、循環供給管に圧力計を有し;粗(メタ)アクリル酸を循環させ、晶析管の内壁に被膜状に流下させながら回分式に動的晶析を行うためのものであることを特徴とする。

Description

(メタ)アクリル酸の晶析装置および(メタ)アクリル酸の晶析方法
 本発明は、(メタ)アクリル酸を晶析により精製するための装置、および(メタ)アクリル酸を晶析するための方法に関するものである。
 (メタ)アクリル酸は、一般的に、気相接触酸化反応により得られる(メタ)アクリル酸含有ガスを凝縮塔または捕集塔に導いて粗(メタ)アクリル酸溶液とし、さらに精製することにより製造される。かかる精製方法としては、蒸留や放散、抽出などの他に晶析が用いられる。
 晶析は、単に粗(メタ)アクリル酸溶液を冷却することにより行うこともあるが、工業的な大量生産においては、反対側が冷媒と接触している伝熱面上で被膜状の粗(メタ)アクリル酸溶液を流下させて冷却する動的結晶化が主に用いられる。
 かかる動的結晶化を行うための晶析装置としては様々なものがある。例えば、晶析管を有し、当該晶析管の外側を熱媒が流れ、且つ粗(メタ)アクリル酸溶液が晶析管に繰り返し循環供給されるようになっているものがある。かかる晶析装置においては、通常、直径の細い晶析管が多数備えられている。直径を細くすることにより伝熱面の表面積を大きなものとし、熱媒の熱を粗(メタ)アクリル酸溶液へ効率的に伝えるためである。
 しかし、細長い晶析管の伝熱面で結晶を均一に成長させることは容易ではなく、特に晶析管の下部で結晶が偏析し、ついには晶析管が完全閉塞する場合がある。晶析管が完全に閉塞すると、閉塞した箇所から上部には粗(メタ)アクリル酸溶液が残存する。得られた(メタ)アクリル酸結晶は、発汗工程と融解工程を経て融解液として得られるが、その際に残存した粗(メタ)アクリル酸溶液が混入するので、(メタ)アクリル酸の純度が低下するという問題がある。さらには、閉塞による系内の圧力上昇が顕著である場合には、晶析装置から(メタ)アクリル酸の漏れが発生する場合もある。
 ところで特許文献1には、(メタ)アクリル酸を製造する技術であって、接触気相酸化反応により得られたガスの熱を熱交換器により回収してから吸収塔へ導入して粗(メタ)アクリル酸溶液を得るに当たり、熱交換器が閉塞して反応器における圧力が上昇した場合にはガスを熱交換器に通さずバイパスから吸収塔へ導入する技術が開示されている。しかし、反応器における圧力上昇の問題と晶析装置における閉塞の問題は全く異なるものであり、また、当該技術では熱交換器での閉塞を抑制できないという問題が残る。
特開2005-336142号公報
 上述したように、従来、(メタ)アクリル酸の製造において、接触気相酸化反応により得られたガスから熱を回収する熱交換器が閉塞した場合であっても、反応器へ導入する原料ガスの流量を一定にする技術はあった。
 それに対して、おそらく晶析装置には多数の晶析管があり、一部の晶析管が閉塞しても結晶化を進められることによると考えられるが、晶析管における閉塞を問題視し、その解決を図った技術はこれまでなかった。しかし完全に閉塞した晶析管には粗(メタ)アクリル酸溶液が残留することになるので、得られる(メタ)アクリル酸の純度が低下してしまうという問題がある。また、晶析装置から(メタ)アクリル酸の漏れが発生する場合もある。
 そこで本発明は、晶析管における完全閉塞を未然に抑制し、粗溶液の漏れを伴うことなくより高純度の(メタ)アクリル酸が得られる晶析装置と晶析方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を進めた。その結果、晶析装置における粗(メタ)アクリル酸溶液を貯留部から供給部へ循環する管に圧力計を設置し、当該圧力計で測定された圧力が基準値を超えた場合に循環流量を低減すれば、晶析管の上部における晶析を促進することができ、特に下部における完全閉塞を未然に防止できることを見出して、本発明を完成した。
 本発明に係る(メタ)アクリル酸の晶析装置は;粗(メタ)アクリル酸溶液の供給部、晶析管、熱媒供給管、熱媒排出管、晶析管を経た粗(メタ)アクリル酸溶液の貯留部、粗(メタ)アクリル酸溶液を貯留部から供給部へ循環供給するための管、および粗(メタ)アクリル酸溶液を貯留部から供給部へ循環供給するためのポンプを有し;さらに、循環供給管に圧力計を有し;粗(メタ)アクリル酸溶液を循環させ、晶析管の内壁に被膜状に流下させながら回分式に動的晶析を行うためのものであることを特徴とする。
 本発明に係る(メタ)アクリル酸の晶析方法は;上記(メタ)アクリル酸の晶析装置を用い;圧力計による測定圧力値が基準値を超えた場合、粗(メタ)アクリル酸溶液の循環流量を低減することを特徴とする。
図1は、本発明の晶析装置を含み、本発明の晶析方法を実施するための晶析システムを表す模式図である。図1中、1は晶析装置を示し、2は晶析管を示し、3は熱媒供給部を示し、4は熱媒排出部を示し、5はバルブを示し、6はポンプを示し、7はバルブを示し、8は循環供給管を示し、9は圧力計を示し、10は粗(メタ)アクリル酸溶液タンクを示し、11は熱交換器を示し、12はバルブを示し、13はポンプを示し、14はバルブを示し、15は粗(メタ)アクリル酸溶液供給部を示し、16は貯留部を示し、17は(メタ)アクリル酸溶液循環供給部を示す。
 先ず、本発明に係る晶析装置につき説明する。
 本発明の晶析装置は、所定量の粗(メタ)アクリル酸溶液を導入し、循環させつつ晶析管の内壁に被膜状に流下させながら動的晶析を行うための回分式のものである。より具体的には、特開2005-15478号公報に記載されている回分式の晶析装置や、Sulzer Chemtech社(スイス)の層結晶化装置などを用いることができる。
 晶析管は、ステンレス鋼や銅など(メタ)アクリル酸などに対する耐食性と伝熱性に優れた材質よりなり、熱媒の冷熱または温熱が伝熱面を介して粗(メタ)アクリル酸へ効率的に伝わるように工夫されている。一般的には、直径50mm以上、100mm以下程度、長さ5m以上、25m以下程度と比較的細く長い管であり、表面積が大きいものとなっている。
 晶析管の本数は、晶析装置の規模や製造規模などにもよるが、工業的な大量生産においては、1000本以上、2000本以下程度とすることが好ましい。
 晶析装置において、粗(メタ)アクリル酸溶液の供給部は、粗溶液を晶析管へ極力均等に供給できるように構成することが好ましい。
 晶析装置には、熱媒の供給管と排出管を設け、晶析管の外壁部へ熱媒を供給し、熱媒の冷熱または温熱を晶析管内壁の粗(メタ)アクリル酸溶液に付与する。
 晶析装置には貯留部を設け、供給部から晶析管を経た粗(メタ)アクリル酸溶液をいったん貯留した後、循環供給管により当該貯留部から粗溶液を抜き出して再び供給部へ供給することにより循環させる。粗(メタ)アクリル酸溶液を供給部へ循環供給するためのポンプは、循環供給管のうち最も低位置の部分に設置することが好ましい。
 本発明の晶析装置は、上記循環供給管に圧力計を設置する。圧力計としては、ブルドン管圧力計、ベローズ式圧力計、ダイアフラム式圧力計などがあり、これらの中ではダイアフラム式圧力計が好適である。
 圧力計の設置箇所は適宜調整すればよいが、可能であれば、晶析装置内の粗(メタ)アクリル酸供給部における圧力を反映できるように、循環供給管のうち最も高位置の部分、または最も高位置の部分から晶析装置にかけての部分に設置することが好ましい。
 上記晶析装置においては、上記圧力計の測定圧力値に基づいて循環供給する粗(メタ)アクリル酸溶液の量を制御する手段を有するものが好ましい。かかる晶析装置であれば、後述する本発明に係る(メタ)アクリル酸の晶析方法の実施を容易にできる。当該手段としては、例えば、通過溶液量を制御できるバルブや、吐出量を制御できるポンプを挙げることができる。
 次に、本発明に係る(メタ)アクリル酸の晶析方法を、図1に従って説明する。
 晶析の原料である粗(メタ)アクリル酸溶液は、目的化合物である(メタ)アクリル酸に加えて不純物を含むものであれば、特に制限されない。例えば、接触気相酸化反応により得られた(メタ)アクリル酸含有ガスを捕集液に接触させるか或いは凝縮することにより得られる粗(メタ)アクリル酸溶液や、さらに当該粗(メタ)アクリル酸溶液からアクロレインなどの低沸点不純物を留去したものを挙げることができる。
 また、より高純度の(メタ)アクリル酸を得るために、いったん晶析精製した(メタ)アクリル酸を溶融した上で粗(メタ)アクリル酸溶液の代わりに晶析装置へ供給し、晶析精製を2回以上繰り返してもよい。
 接触気相酸化反応を経て得られる粗(メタ)アクリル酸溶液は高温であり、また、本発明では連続式ではなく回分式で(メタ)アクリル酸を晶析精製する。よって、粗(メタ)アクリル酸溶液はいったんタンク10に貯蔵することが好ましい。
 晶析を行うに当たり、粗(メタ)アクリル酸溶液の温度が高い場合は、熱交換器11で熱を回収して利用することが好ましい。粗(メタ)アクリル酸溶液を晶析装置1へ供給する前に熱を回収するか否かは、バルブ12およびバルブ14により容易に決定することができる。
 粗(メタ)アクリル酸溶液の晶析装置1への供給量は、晶析装置1の規模などに応じて決定すればよい。粗(メタ)アクリル酸溶液は、通常、晶析装置1の粗(メタ)アクリル酸溶液供給部15から貯留部16へ供給する。
 次に、バルブ5を閉め且つバルブ7を開けた状態でポンプ6を用い、供給された粗(メタ)アクリル酸溶液を循環供給管8により晶析装置1の(メタ)アクリル酸溶液循環供給部17へ循環供給し、晶析を開始する。
 結晶化においては、冷熱媒を循環させることにより、循環供給管8を経て晶析装置1へ循環供給される粗(メタ)アクリル酸溶液を冷却し、晶析管2の内表面に(メタ)アクリル酸を結晶化させる。この際、循環供給管8上に設けた圧力計9により管内圧力を常に監視し、測定圧力値に応じて粗(メタ)アクリル酸溶液の循環量を調整し、循環供給管8内の圧力を所定範囲に保つ。
 粗(メタ)アクリル酸溶液の循環流量に関しては、適切な循環流量は晶析装置の規模などにより異なるので、適宜調整すればよい。通常は、循環供給管に設置した圧力計9による測定圧力値が0.01MPa以上となるように循環流量を調整する。当該圧力値が0.01MPa以上であれば、晶析効率が過度に低下することもなく良好な晶析が可能となる。一方、上限は特に制限されないが、通常、循環供給管における圧力値が0.5MPa以下となるように循環流量を調整することが好ましい。なお、本発明における循環供給管の圧力とは、大気圧を除いた圧力、即ちゲージ圧をいう。
 上述したとおり、晶析管の伝熱面で結晶を均一に成長させることは容易ではなく、特に晶析管2の下部で結晶の偏析が起こりがちである。結晶が偏析して粗(メタ)アクリル酸溶液が通過し難くなると、循環供給管8に設けた圧力計9で測定される圧力値が高くなる。本発明では、当該測定圧力値が基準値を超えた場合、粗(メタ)アクリル酸溶液の循環流量を低減し、晶析管2の上部における結晶化を進めると共に下部における結晶化を抑制し、晶析管の完全閉塞を抑制する。結果として、晶析管における結晶化が均一に進行し易くなり、また、晶析管における粗(メタ)アクリル酸溶液の残留も無くなるので、より高純度の結晶が得られることとなる。
 より具体的には、本発明の晶析方法では、測定圧力値の最大値と最小値の差が当該最小値の100%以内、より好ましくは50%以内となるように粗(メタ)アクリル酸溶液の循環流量を調整する。循環供給管における圧力の変化が当該範囲内であれば、より確実に(メタ)アクリル酸の晶析精製を安定的に行うことが可能になり、得られる(メタ)アクリル酸の純度をより一層向上させることができる。なお、本発明方法における測定圧力値の最小値とは、粗(メタ)アクリル酸溶液の循環供給開始後、当該循環供給量が設定値に最初に達した時点の測定圧力値をいう。粗(メタ)アクリル酸溶液の循環供給量が設定値に達した後、循環供給を継続すると、晶析管における(メタ)アクリル酸の結晶化が進むにつれ徐々に上昇する。よって、この態様においては、測定圧力値が最小値、即ち初期値の100%、より好ましくは50%を超えそうになった場合に粗(メタ)アクリル酸の循環流量を低減し、測定圧力値が上記範囲内となるように調整する。
 循環供給管における圧力を調節する手段は、適宜選択することができる。例えば、循環供給管のバルブ7として、単なる開閉、即ち溶液の循環供給を止めるか或いはポンプの吐出量に応じた量を通過させることしかできないものではなく、開閉程度を段階的または連続的に調整でき、通過溶液量を制御できるものを用いることが考えられる。また、循環供給のためのポンプ6として、吐出量を制御できるポンプを用いてもよい。本発明方法では、これら調節手段などにより、循環供給管における測定圧力値が規定範囲を超えた場合には、例えばバルブの開度を絞ったり、ポンプの吐出量を低減するなどして、圧力を規定範囲内に調節する。逆に、測定圧力値が規定範囲未満となった場合には、例えば、バルブの開度やポンプの吐出量を上げればよい。
 次に、(メタ)アクリル酸結晶の純度を高めるため、晶析装置1に供給する熱媒を冷熱媒から温熱媒に切り替え、晶析管2内の(メタ)アクリル酸結晶の表面を部分融解する発汗工程を行うことが好ましい。
 結晶化工程においては、(メタ)アクリル酸の結晶化が進行するにつれて溶液中に存在する不純物の量が相対的に増えるため、(メタ)アクリル酸結晶の表面には不純物が付着する場合がある。そこで、(メタ)アクリル酸結晶の表面を部分的に融解し、融解部分を排出することにより、結晶の純度を高めることが可能になる。かかる部分的な融解処理を発汗工程という。
 上記結晶化工程の母液は、晶析装置1の下部の貯留部16に貯留されている。また、発汗工程で得られた部分融解液も、貯留部16にたまることになる。これら母液と部分融解液は、バルブ5を通じて移送される。
 次に、結晶の融解工程を行う。具体的には、熱媒を比較的温度の高いものに切り替えて晶析管内の結晶を融解し、晶析管2から得られた融解液を循環供給管8により晶析装置1の(メタ)アクリル酸溶液循環供給部17へ循環供給し、晶析管2内の(メタ)アクリル酸結晶上を流下させることにより、融解を促進する。
 融解工程においては、晶析装置1の貯留部16に重合防止剤またはその濃厚溶液を投入しておいてもよい。得られる(メタ)アクリル酸の融解液は高濃度である上に、融解工程では加熱されるため二量体などの不純物が生成するおそれがあるが、重合防止剤の使用によりかかる不純物を抑制することができる。
 重合防止剤の種類は特に制限されないが、例えば、2,2,6,6-テトラメチルピペリジノ-1-オキシルなどのN-オキシル化合物;p-メトキシフェノールなどのフェノール化合物;酢酸マンガンなどのマンガン塩化合物;ジブチルジチオカルバミン酸銅などのジアルキルジチオカルバミン酸塩化合物;ニトロソ化合物;アミン化合物;フェノチアジン化合物などを挙げることができる。上記のうち、N-オキシル化合物、フェノール化合物およびマンガン塩化合物よりなる群から選択される一種以上の重合開始剤を用いた場合には、色調がより優れた十分に高品質の(メタ)アクリル酸を得ることができる。なお、重合開始剤は、一種のみ用いてもよいし、二種以上を併用してもよい。
 重合防止剤の濃厚溶液を用いる場合における溶媒としては、(メタ)アクリル酸、水、酢酸などを用いることができ、好適には(メタ)アクリル酸を用いる。
 得られた(メタ)アクリル酸融解液は、純度をさらに高めるため、さらに結晶化工程、発汗工程および融解工程を繰り返してもよい。高純度の(メタ)アクリル酸を得るには、かかる晶析精製を3回以上、5回以下程度繰り返すのが一般的である。
 得られた高純度の(メタ)アクリル酸融解液は、バルブ5を通じて移送される。
 従来、(メタ)アクリル酸を回分式で晶析精製する場合には、予め定められた量の粗(メタ)アクリル酸溶液を晶析装置へ導入し、当該溶液を特別な制御をすることなく循環供給するのみであり、晶析管の上部から下部にかけての結晶の偏在や晶析管の閉塞などを把握したり、或いはこれらを予防するための手段は講じられていなかった。そのため、長期にわたる晶析精製では、得られる(メタ)アクリル酸の純度が低下するなど、安定した品質の製品を得ることができなかった。また、閉塞による系内の圧力上昇が顕著である場合には、粗溶液の漏れが発生し、晶析操作をいったん停止しなければならないなど、生産性に悪影響が及ぼされることもあった。
 それに対して、本発明の晶析装置を用い、また、本発明に係る晶析方法に従えば、従来技術に比して、粗溶液の漏れを伴うことなく、粗(メタ)アクリル酸溶液の混入が抑制されている高純度な(メタ)アクリル酸を製造することができる。また、所定の純度の(メタ)アクリル酸を得るための晶析回数を低減できるなど、効率的な製造が可能になる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1
 (1) 粗アクリル酸溶液の製造
 反応器内でプロピレンを接触気相酸化反応に付し、得られた反応ガスを捕集塔に導入し、捕集液と接触させ、捕集塔の塔底より粗アクリル酸溶液を得た。得られた粗アクリル酸溶液を分析したところ、アクリル酸90.0質量%、水3.2質量%、酢酸1.9質量%、マレイン酸0.6質量%、アクリル酸二量体1.5質量%、フルフラール0.07質量%、ベンズアルデヒド0.27質量%、ホルムアルデヒド0.06質量%、ハイドロキノン0.1質量%、その他の不純物2.3質量%を含んでいた。なお、このときの捕集塔塔底液の温度、即ち捕集塔より取り出される粗アクリル酸溶液の温度は91℃であった。得られた粗アクリル酸溶液を、図1に模式的に示す晶析システムを用いて晶析精製した。但し、使用した晶析システムの規模は実験室レベルのものであり、晶析装置内における晶析管の本数は3本である。
 粗アクリル酸溶液の温度を熱交換器11により結晶化開始温度の±5℃以内に調節した後、晶析装置1の貯留部16へ供給した。晶析装置1は、より具体的には、粗アクリル酸溶液を循環ポンプ6により循環供給管8を通じて貯留部16から循環供給部17へ循環供給できるようになっている。晶析管2は、長さ6m、内径70mmの金属管である。上部に供給された粗アクリル酸溶液は、晶析管2の内壁を被膜状に流下する。晶析管2の表面は二重ジャケットから構成され、熱媒供給部3から供給され熱媒排出部4から排出される熱媒により温度制御される。晶析管2を経た粗アクリル酸は、貯留部16でいったん貯留されてから連続的に循環供給部17へ循環供給される。
 (2) 結晶化工程
 上記晶析装置1への冷熱媒の供給を開始した後、粗アクリル酸溶液の循環供給を開始した。貯留部16における粗アクリル酸溶液量から晶析管2の内壁に晶析した結晶の量を推定し、原料粗アクリル酸溶液に含まれる粗アクリル酸の約60~90質量%が結晶化するまで循環を継続した。
 この際、循環供給管8のうち最も高い位置に設けた圧力計9により管内圧力を常に監視し、通過溶液量を制御できるバルブ7の開度を30~40%の間で変化させることにより粗アクリル酸溶液の循環供給量を調整し、循環供給管8の圧力を0.10MPa以上、0.14MPa以下の範囲に維持した。この場合、測定圧力値の最大値と最小値の差は、当該最小値の50%以内の0.04MPaである。
 (3) 発汗工程
 次いで、循環ポンプ6を停止させ、熱媒温度を粗アクリル酸溶液の凝固点付近まで上昇させることにより、結晶の約2~5質量%を発汗させた。発汗量は、貯留部16における粗アクリル酸溶液の増分から推定した。その後、バルブ5を開け、結晶化工程の母液と部分融解液を母液タンクへ移送した。
 (4) 融解工程
 熱媒の温度を37℃に上げ、晶析管内壁表面の結晶を融解した。融解液は晶析装置1の循環供給部17に循環供給し、晶析管2内のアクリル酸結晶上を流下させた。結晶が完全に融解した後、ポンプ6を停止させ且つバルブ7を閉め、アクリル酸融解液を晶析装置1の貯留部16にためた。
 (5) 結晶化工程から融解工程の反復
 上記(2)~(4)の結晶化工程から融解工程を繰り返し、晶析精製を計4回行った。
 但し、第3回目および第4回目の融解工程においては、重合防止剤であるp-メトキシフェノールの5質量%アクリル酸溶液を晶析装置1の貯留部16に投入した。
 得られた精製アクリル酸を分析したところ、アクリル酸の純度は99.94質量%であり、その他に、水92質量ppm、酢酸440質量ppm、マレイン酸2質量ppm、アクリル酸二量体45質量ppm、フルフラール0.2質量ppm、ベンズアルデヒド0.1質量ppmを含み、ホルムアルデヒドは検出されなかった。また、以上を通じての製造効率は10.02kg/時であった。
 実施例2
 結晶化工程において、循環供給管8の圧力を0.10MPa以上、0.16MPa以下の範囲に維持した以外は上記実施例1と同様にして、アクリル酸を製造した。この場合、測定圧力値の最大値と最小値の差は、当該最小値の100%以内の0.06MPaである。
 得られた精製アクリル酸を分析したところ、アクリル酸の純度は99.89質量%であり、その他に、水153質量ppm、酢酸710質量ppm、マレイン酸4質量ppm、アクリル酸二量体100質量ppm、フルフラール0.5質量ppm、ベンズアルデヒド0.4質量ppmを含み、ホルムアルデヒドは検出されなかった。また、以上を通じての製造効率は9.98kg/時であった。
 比較例1
 結晶化工程において、バルブ7の開度を40%に固定し、循環供給管8上に設けた圧力計9の測定圧力値に応じた圧力調整を行わなかった以外は上記実施例1と同様にして、アクリル酸を製造した。この際における測定圧力値は、0.21MPaまで上昇した。この場合、測定圧力値の最大値と最小値の差は0.11MPaであり、当該最小値の100%である0.10MPaを超えている。
 得られた精製アクリル酸を分析したところ、アクリル酸の純度は99.86質量%であり、その他に、水171質量ppm、酢酸860質量ppm、マレイン酸5質量ppm、アクリル酸二量体120質量ppm、フルフラール0.7質量ppm、ベンズアルデヒド0.6質量ppmを含み、ホルムアルデヒドは検出されなかった。また、以上を通じての製造効率は9.98kg/時であった。さらに、上記の条件では、晶析精製途中に晶析装置から粗アクリル酸溶液の漏れが認められるという問題が生じた。
 以上のとおり、結晶化工程において、晶析装置の循環供給管の圧力に応じて(メタ)アクリル酸溶液の循環供給量の調整を行わなかった場合には、得られる(メタ)アクリル酸の純度が低下し、また、晶析装置から粗(メタ)アクリル酸溶液の漏れが発生することが明らかとなった。
 それに対して、当該圧力に応じて循環供給量を調整し、当該圧力を所定範囲に維持した場合には、得られる(メタ)アクリル酸の純度は高いものとなった。また、当該圧力をより好ましい範囲に維持した場合(実施例1)には、得られる(メタ)アクリル酸の純度はより高いものとなった。
 従って、本発明によれば、より高純度の(メタ)アクリル酸が得られることが実証された。
 通常、晶析装置の晶析管内において粗(メタ)アクリル酸溶液は徐々に冷却されるため、結晶は晶析管の下部に偏析する傾向があり、伝熱面の表面で均一に結晶を成長させることは容易ではない。その状態を放置すると、ついには晶析管が完全に閉塞することとなる。それでも、晶析装置には多数の晶析管が設けられおり、全ての晶析管が完全に閉塞することはないので、結晶化を進めることはでき、また、晶析工程で閉塞した晶析管は発汗工程や融解工程で再び開通するので、これまで特に問題にされることはなかった。しかし、完全に閉塞した晶析管には粗(メタ)アクリル酸溶液が残存するため、得られる(メタ)アクリル酸の純度は低下してしまうので、所定の純度の(メタ)アクリル酸を得るには晶析回数を増やさなければならず、製造効率が低下するという問題があった。
 それに対して本発明によれば、晶析装置の循環供給管における粗(メタ)アクリル酸溶液の圧力に応じて循環流量を調節することにより、晶析管の完全閉塞を未然に防ぐことができ、粗溶液の漏れを伴うことなくより高純度の(メタ)アクリル酸が得られる。よって本発明は、高品質の(メタ)アクリル酸を効率的に製造できるものとして、産業上極めて有用である。

Claims (4)

  1.  (メタ)アクリル酸を晶析するための装置であって;
     粗(メタ)アクリル酸溶液の供給部、晶析管、熱媒供給管、熱媒排出管、晶析管を経た粗(メタ)アクリル酸溶液の貯留部、粗(メタ)アクリル酸溶液を貯留部から供給部へ循環供給するための管、および粗(メタ)アクリル酸溶液を貯留部から供給部へ循環供給するためのポンプを有し;
     さらに、循環供給管に圧力計を有し;
     粗(メタ)アクリル酸溶液を循環させ、晶析管の内壁に被膜状に流下させながら回分式に動的晶析を行うためのものであることを特徴とする(メタ)アクリル酸の晶析装置。
  2.  上記圧力計の測定圧力値に基づいて循環供給する粗(メタ)アクリル酸溶液の量を制御する手段を有する請求項1に記載の(メタ)アクリル酸の晶析装置。
  3.  (メタ)アクリル酸を晶析するための方法であって;
     請求項1または2に記載の(メタ)アクリル酸の晶析装置を用い;
     圧力計による測定圧力値が基準値を超えた場合、粗(メタ)アクリル酸溶液の循環流量を低減することを特徴とする晶析方法。
  4.  測定圧力値の最大値と最小値の差が当該最小値の100%以内となるように粗(メタ)アクリル酸溶液の循環流量を調整する請求項3に記載の晶析方法。
PCT/JP2010/060755 2009-07-03 2010-06-24 (メタ)アクリル酸の晶析装置および(メタ)アクリル酸の晶析方法 WO2011001894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011520888A JP5722771B2 (ja) 2009-07-03 2010-06-24 (メタ)アクリル酸の晶析方法
EP10794063.7A EP2450340B1 (en) 2009-07-03 2010-06-24 Device and method for crystallizing (meth)acrylic acid
CN201080027824.8A CN102471213B (zh) 2009-07-03 2010-06-24 (甲基)丙烯酸的结晶装置和(甲基)丙烯酸的结晶方法
US13/381,449 US8859809B2 (en) 2009-07-03 2010-06-24 Device and process for crystallizing (meth)acrylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-158971 2009-07-03
JP2009158971 2009-07-03

Publications (1)

Publication Number Publication Date
WO2011001894A1 true WO2011001894A1 (ja) 2011-01-06

Family

ID=43410969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060755 WO2011001894A1 (ja) 2009-07-03 2010-06-24 (メタ)アクリル酸の晶析装置および(メタ)アクリル酸の晶析方法

Country Status (5)

Country Link
US (1) US8859809B2 (ja)
EP (1) EP2450340B1 (ja)
JP (1) JP5722771B2 (ja)
CN (1) CN102471213B (ja)
WO (1) WO2011001894A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507427A (ja) * 2009-10-16 2013-03-04 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
CN114681996A (zh) * 2020-12-29 2022-07-01 中国石油化工股份有限公司 一种分离饱和脂肪酸制备柴油抗磨剂的装置和方法
WO2022255364A1 (ja) * 2021-06-02 2022-12-08 株式会社日本触媒 易重合性化合物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448923B (zh) * 2009-06-01 2015-06-17 株式会社日本触媒 (甲基)丙烯酸的析晶方法及产品(甲基)丙烯酸的阻聚剂含量的调整方法
JP6097181B2 (ja) * 2012-09-06 2017-03-15 株式会社日本触媒 (メタ)アクリル酸の製造方法
CN104028002B (zh) * 2014-07-02 2016-04-27 岳阳市钾盐科学研究所 外循环空气冷却结晶工艺设备
EP3012244A1 (en) 2014-10-24 2016-04-27 Sulzer Chemtech AG Process and apparatus for purification of acrylic acid
CN110559681B (zh) * 2019-09-02 2022-05-13 湘潭大学 制备高纯对甲酚的装置及制备高纯对甲酚的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748311A (ja) * 1993-03-26 1995-02-21 Sulzer Chemtech Ag アクリル酸の精製方法と装置、およびその方法により精製されたアクリル酸
JP2005015478A (ja) 2003-06-05 2005-01-20 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2005336142A (ja) 2004-05-31 2005-12-08 Mitsubishi Chemicals Corp (メタ)アクリル酸の製造装置及び(メタ)アクリル酸の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB784520A (en) * 1953-08-24 1957-10-09 Phillips Petroleum Co Improvements in purification of crystals and concentration of solutions
US2827366A (en) * 1954-03-04 1958-03-18 Olin Mathieson Crystallization apparatus
JP3724864B2 (ja) * 1995-12-01 2005-12-07 日揮株式会社 晶析方法
US7183428B2 (en) 2003-06-05 2007-02-27 Nippon Shokubai Co., Inc. Method for production of acrylic acid
US8530699B2 (en) * 2009-05-19 2013-09-10 Nippon Shokubai Co., Ltd. Process for production of (meth) acrylic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748311A (ja) * 1993-03-26 1995-02-21 Sulzer Chemtech Ag アクリル酸の精製方法と装置、およびその方法により精製されたアクリル酸
JP2005015478A (ja) 2003-06-05 2005-01-20 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2005336142A (ja) 2004-05-31 2005-12-08 Mitsubishi Chemicals Corp (メタ)アクリル酸の製造装置及び(メタ)アクリル酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450340A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507427A (ja) * 2009-10-16 2013-03-04 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
CN114681996A (zh) * 2020-12-29 2022-07-01 中国石油化工股份有限公司 一种分离饱和脂肪酸制备柴油抗磨剂的装置和方法
WO2022255364A1 (ja) * 2021-06-02 2022-12-08 株式会社日本触媒 易重合性化合物の製造方法

Also Published As

Publication number Publication date
EP2450340B1 (en) 2020-10-21
EP2450340A4 (en) 2015-08-05
EP2450340A1 (en) 2012-05-09
US8859809B2 (en) 2014-10-14
JP5722771B2 (ja) 2015-05-27
CN102471213A (zh) 2012-05-23
CN102471213B (zh) 2014-06-04
US20120108847A1 (en) 2012-05-03
JPWO2011001894A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5722771B2 (ja) (メタ)アクリル酸の晶析方法
JP5112898B2 (ja) (メタ)アクリル酸の晶析方法およびその晶析システム
US8846977B2 (en) Crystallization unit for acrylic acid and method for crystallization of acrylic acid using the same
WO2010090143A1 (ja) (メタ)アクリル酸の製造方法
EP2450338B1 (en) Process for production of (meth)acrylic acid
JP5336794B2 (ja) 原料粗結晶の精製方法
JP6097181B2 (ja) (メタ)アクリル酸の製造方法
JP5606692B2 (ja) (メタ)アクリル酸の製造方法
JP5581316B2 (ja) (メタ)アクリル酸の製造方法
JP5318602B2 (ja) アクリル酸結晶の融解方法
JP6214156B2 (ja) メタクリル酸の精製方法
US20230373897A1 (en) Purification device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027824.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520888

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13381449

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010794063

Country of ref document: EP