WO2022255364A1 - 易重合性化合物の製造方法 - Google Patents

易重合性化合物の製造方法 Download PDF

Info

Publication number
WO2022255364A1
WO2022255364A1 PCT/JP2022/022139 JP2022022139W WO2022255364A1 WO 2022255364 A1 WO2022255364 A1 WO 2022255364A1 JP 2022022139 W JP2022022139 W JP 2022022139W WO 2022255364 A1 WO2022255364 A1 WO 2022255364A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable compound
easily polymerizable
line
tank
crystals
Prior art date
Application number
PCT/JP2022/022139
Other languages
English (en)
French (fr)
Inventor
敬幸 松田
真志 迎
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to EP22816110.5A priority Critical patent/EP4349807A1/en
Priority to US18/566,127 priority patent/US20240254070A1/en
Priority to CN202280039556.4A priority patent/CN117412946A/zh
Priority to JP2023525859A priority patent/JPWO2022255364A1/ja
Publication of WO2022255364A1 publication Critical patent/WO2022255364A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a method for producing an easily polymerizable compound. More specifically, the present invention relates to a method for producing an easily polymerizable compound, a method for purifying an easily polymerizable compound, and an apparatus for purifying an easily polymerizable compound.
  • Purifiers are widely used industrially, for example, to purify compounds that are used as raw materials for resins.
  • many fields of the chemical industry there is a demand for high-quality compounds with reduced impurities, and various investigations have been made for better purification apparatuses therefor.
  • a line that enables transportation between devices by connecting them with pipes ) and transports the liquid to be purified through the line.
  • the raw material gas is subjected to a catalytic gas-phase oxidation reaction, and the acrylic acid solution obtained by collection is supplied through a line to a crystallizer for purification, and the residual
  • the mother liquor is fed through a line to a reactive distillation apparatus to decompose the Michael adduct of acrylic acid and then returned through the line to a collection step (see, for example, Patent Document 1).
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method for efficiently obtaining a high-quality product.
  • the present inventors have investigated a method for efficiently obtaining a high-quality product, focused on a continuous purification apparatus capable of efficient purification, and obtained a solution containing an easily polymerizable compound or a crystal of an easily polymerizable compound.
  • Various investigations were made on a purification apparatus having a crystallization tank for forming crystals of an easily polymerizable compound from the mother liquor of the slurry containing the slurry and/or an aging tank for growing the crystals of the easily polymerizable compound, and a washing column. Then, when producing an easily polymerizable compound in such a refiner, when a slurry containing crystals is sent through a line, the concentration of impurities in the product increases depending on the conditions of the line. rice field.
  • the purification apparatus further comprises a crystallization tank, an aging tank, and a washing column.
  • the inventors have found that the problem can be prevented and the above problems can be solved, and have arrived at the present invention.
  • the reason why high-quality products can be obtained by the above-described manufacturing method is that the bending of the curved part of the line becomes gentle, which causes uneven crystal growth and crushing of crystals in the line. This is considered to be because the widening of the grain size distribution of the crystals can be sufficiently prevented, and a crystal bed having a substantially uniform crystal shape can be formed in the washing column, thereby improving the washability.
  • the present invention provides a crystallization tank for forming crystals of an easily polymerizable compound from a mother liquor of a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound and/or growing crystals of an easily polymerizable compound.
  • a method for producing an easily polymerizable compound comprising the step of feeding a slurry containing crystals of the compound.
  • Patent Document 2 discloses transportation of slurry, it only relates to transportation of slurry in which the solid matter is a resin (catalyst), and does not disclose anything about transportation of slurry containing crystals of an easily polymerizable compound. There is no disclosure of obtaining a high-quality target product.
  • FIG. 1 is a schematic diagram showing an example of a curved portion of a line used in the manufacturing method of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a line to which the present invention can be applied in the refiner of the present invention.
  • FIG. 3 is a schematic diagram showing another example of a line to which the present invention can be applied in the refiner of the present invention.
  • FIG. 4 is a schematic diagram showing another example of a line to which the present invention can be applied in the refiner of the present invention.
  • FIG. 5 is a schematic diagram showing another example of a line to which the present invention can be applied in the refiner of the present invention.
  • FIG. 6 is a schematic diagram showing another example of a line to which the present invention can be applied in the refiner of the present invention.
  • FIG. 7 is a schematic diagram showing another example of a line to which the present invention can be applied in the refiner of the present invention.
  • FIG. 8 is a schematic diagram showing another example of a line to which the present invention can be applied in the refiner of the present invention.
  • the production method of the present invention comprises a crystallization tank for forming crystals of an easily polymerizable compound from a mother liquor of a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound, and/or growing crystals of the easily polymerizable compound.
  • the liquid feeding step will be described, and then the other steps will be described in order.
  • each process is normally performed simultaneously when viewed as a whole refining apparatus.
  • the term "easily polymerizable compound” refers to an easily polymerizable compound obtained by the production method of the present invention, and does not refer to raw materials, by-products, or solvents in the production method of the present invention.
  • the "easily polymerizable compound” can be rephrased as a "target compound” or "object.”
  • impurities refer to components other than the “easily polymerizable compound", such as raw materials, by-products, and solvents.
  • forming crystals of an easily polymerizable compound from the mother liquor of a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound means In addition to generating crystals of the compound, crystals of the easily polymerizable compound are newly generated from the mother liquor of the slurry containing the crystals of the easily polymerizable compound, and are removed from the crystallizer before being supplied to the crystallizer. The latter means that the concentration of crystals in the slurry increases.
  • a solution containing an easily polymerizable compound is supplied to a crystallization tank, and the easily polymerized compound is
  • a method of supplying a slurry containing crystals of an easily polymerizable compound to a crystallization tank to obtain a slurry with a higher crystal concentration is also included.
  • the slurry containing crystals of the easily polymerizable compound supplied to the crystallization tank usually contains the easily polymerizable compound also in its mother liquor.
  • the curvature radius R is the reciprocal of the curvature of the curved portion of the line, and corresponds to the radius of the circle corresponding to the arc when the center line of the curved portion of the line is an arc, as shown in FIG. .
  • the ratio R/D of the curvature radius R to the line inner diameter D is preferably 4.5 or more, more preferably 5 or more. Further, in the manufacturing method of the present invention, the ratio R/D of the curvature radius R to the line inner diameter D is 10 or less.
  • the line can be suitably installed without increasing the scale of the refiner too much.
  • the ratio R/D of the curvature radius R to the line inner diameter D is preferably 9 or less, more preferably 8 or less.
  • the radius of curvature R is not particularly limited, it is preferably 50 to 5000 mm, more preferably 100 to 2500 mm, in an industrial-scale refiner.
  • the inner diameter D of the line is preferably, for example, 10 to 500 mm, more preferably 20 to 250 mm, in an industrial scale refiner.
  • the curved portion is not particularly limited, but the angle formed by the curved portion (the angle formed by the lines extending in the front and rear of the curved portion) is preferably 75 to 165°, more preferably 90 to 150°.
  • the line is connected to at least one selected from the group consisting of a crystallization tank, an aging tank, and a washing column.
  • Examples of the above-mentioned lines include a line connecting a crystallization tank and a crystallization tank, a line connecting a crystallization tank and a maturation tank, a line connecting a crystallization tank or a maturation tank and a washing column, and a washing column.
  • Examples include a line connecting a melting facility of a melt loop, which will be described later, and the like, and one of these may be used, or two or more may be used.
  • the line connecting the crystallization tanks may be a line connecting a slurry outlet and a slurry supply port in one crystallization tank.
  • the above line is preferably a line connecting a crystallization tank, a line connecting a crystallization tank and an aging tank, or a line connecting a crystallization tank or an aging tank and a washing column.
  • the line is a line that connects the crystallization tank or the maturation tank and the washing column, and the step of feeding the liquid contains crystals of the easily polymerizable compound through the line. More preferably, the slurry is sent from the crystallization tank or the aging tank to the washing column.
  • the last tank (crystallization tank or maturation tank) may be used.
  • the material of the line is not particularly limited, it is preferably made of a metal such as stainless steel or an alloy.
  • the linear velocity of the slurry in the step of feeding the slurry is 1.5 m/s or more and 4.0 m/s or less.
  • the linear velocity of the slurry is 1.5 m/s or more, uneven crystal growth can be further prevented when the slurry is fed through the line having the curved portion according to the present invention.
  • blockage of the line by crystals can be further prevented.
  • the linear velocity of the slurry is more preferably 1.8 m/s or more, still more preferably 2.0 m/s or more.
  • the linear velocity of the slurry is more preferably 3.5 m/s or less, still more preferably 3.0 m/s or less. That is, by setting the linear velocity of the slurry to be 1.5 m/s or more and 4.0 m/s or less, it is possible to further prevent uneven crystal growth in the line, clogging in the line, and crushing of crystals. and these remarkable effects can be obtained at the same time.
  • the linear velocity of the above slurry is obtained by directly measuring the volume flow rate in the straight pipe section with a flow meter, or by measuring the mass flow rate in the straight pipe section with a flow meter and dividing the measured value by the slurry density. It can be calculated by dividing the volumetric flow rate by the cross-sectional area through which the slurry flows in the curved portion.
  • the slurry has a crystal concentration of 1% by mass or more and 40% by mass or less in the step of feeding the liquid.
  • the crystal concentration of the slurry is more preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the slurry has a crystal concentration of 40% by mass or less, when the slurry is fed through a line having a curved portion according to the present invention, the fluidity of the slurry is sufficient and clogging of the line is prevented. sufficiently preventable.
  • the crystal concentration of the slurry is more preferably 38% by mass or less, and even more preferably 35% by mass or less.
  • the line preferably has a heating mechanism.
  • the heating mechanism includes a heat retention mechanism, and includes a jacket using a heat medium such as hot water, cooling water (CW), brine, steam trace, electric heater, etc. One or more of these are used. can.
  • the heating temperature by the heating mechanism may be appropriately set in consideration of the melting point of the easily polymerizable compound.
  • the temperature of the slurry is preferably 1° C. or higher and 50° C. or lower. Further, it is preferable that the temperature difference between the heating temperature by the heating mechanism and the slurry temperature is 1 to 40°C. When the temperature difference is 1° C.
  • the temperature difference is more preferably 2° C. or more, even more preferably 3° C. or more.
  • the temperature difference is more preferably 30° C. or less, still more preferably 20° C. or less, and particularly preferably 10° C. or less.
  • the pressure condition in the line in the step of feeding the liquid may be pressurized, normal pressure, or reduced pressure.
  • the step of feeding the liquid may be intermittent, but in the production method of the present invention, basically it is preferably continuously performed.
  • the washing column included in the purification apparatus of the present invention is not particularly limited as long as it can wash the crystals, but it is preferably one that forcibly transports the crystal bed.
  • Examples of the washing column for forcibly conveying the crystal bed include, specifically, a mechanical washing column in which crystals are compacted by a piston to form and convey the crystal bed; Examples include a hydraulic washing column (hydraulic washing column) in which a bed is formed/conveyed by extracting the mother liquor from a filter placed in the column.
  • the washing column is more preferably a hydraulic washing column in terms of high production capacity and fewer troubles caused by the device due to fewer driving parts in the washing column.
  • the wash column may, for example, have a mechanical mechanism for scraping the crystal bed.
  • the easily polymerizable compound is preferably an easily polymerizable compound having a reactive double bond.
  • the easily polymerizable compound is more preferably an unsaturated carboxylic acid, still more preferably (meth)acrylic acid, and particularly preferably acrylic acid.
  • (meth)acrylic acid is acrylic acid and/or methacrylic acid.
  • the solution containing the easily polymerizable compound is not limited to one synthesized by oneself, and may be one procured from another place.
  • the production method of the present invention may include a step of crystallizing a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound. Through the crystallization step, crystals of the easily polymerizable compound can be formed from the mother liquor of the solution containing the easily polymerizable compound or the slurry containing crystals of the easily polymerizable compound.
  • the temperature in the above crystallization step may be appropriately adjusted according to the type of easily polymerizable compound to be purified, but is generally in the range of -2 to -15°C with respect to the melting point of the pure substance.
  • the easily polymerizable compound to be purified is (meth)acrylic acid
  • the temperature is preferably 0 to 12°C. It is more preferably 1 to 11°C, still more preferably 2 to 10°C.
  • the temperature in the crystallization step is the temperature of the mother liquor in the solution containing the easily polymerizable compound or the slurry containing crystals of the easily polymerizable compound to be subjected to the crystallization step.
  • the pressure conditions in the above crystallization step may be pressurized, normal pressure, or reduced pressure.
  • the above crystallization step is not particularly limited as long as it produces crystals of the easily polymerizable compound, and may be continuous crystallization or batch crystallization, but continuous crystallization. is preferred.
  • the crystallization step can be performed using a crystallization tank and/or an aging tank, which will be described later.
  • the solution containing the easily polymerizable compound is preferably a crude (meth)acrylic acid aqueous solution or a crude (meth)acrylic acid solution.
  • the crude (meth)acrylic acid aqueous solution is a solution in which (meth)acrylic acid is dissolved in water and includes impurities such as by-products during the production of (meth)acrylic acid.
  • the crude (meth)acrylic acid solution is a solution composed of (meth)acrylic acid and includes impurities such as by-products during the production of (meth)acrylic acid.
  • impurities examples include propionic acid, acetic acid, maleic acid, benzoic acid, acids such as acrylic acid dimer, aldehydes such as acrolein, furfural, formaldehyde and glyoxal, acetone, methyl isobutyl ketone, toluene, and protoanemonin. etc.
  • acids such as acrylic acid dimer, aldehydes such as acrolein, furfural, formaldehyde and glyoxal, acetone, methyl isobutyl ketone, toluene, and protoanemonin. etc.
  • the term "high-quality product” means any product in which at least one of the impurities (for example, furfural) is sufficiently reduced.
  • the amount of furfural contained in the easily polymerizable compound product obtained by the present production method is preferably 10 ppm or less, more preferably 5 ppm or less, and particularly preferably 0.2 ppm or less.
  • the production method of the present invention may include a step of supplying a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound to a crystallization tank or an aging tank.
  • the solution containing the easily polymerizable compound or the slurry containing crystals of the easily polymerizable compound to be supplied into the tank includes the easily polymerizable compound, the aqueous solution of the easily polymerizable compound, or the crystals of the easily polymerizable compound.
  • the solution containing the easily polymerizable compound or the mother liquor of the slurry containing crystals of the easily polymerizable compound usually contains impurities other than the easily polymerizable compound and water.
  • the mother liquor of the solution containing the easily polymerizable compound or the slurry containing crystals of the easily polymerizable compound preferably has a purity (mass ratio) of the easily polymerizable compound of 99% by mass or less.
  • the mass ratio of the easily polymerizable compound in the mother liquor of the solution containing the easily polymerizable compound or the slurry containing crystals of the easily polymerizable compound is preferably 60% by mass or more.
  • the supply rate is not particularly limited, but an industrial-scale crystallization tank or aging tank. is, for example, 0.2 ⁇ 10 3 to 4.0 ⁇ 10 5 kg/h.
  • the production method of the present invention may further include a step of recovering the easily polymerizable compound from the mother liquor separated by the crystallization step.
  • the mother liquor used in the recovery step can be obtained, for example, by extracting from the supernatant liquid of the slurry containing the crystals of the easily polymerizable compound in the crystallization tank or the aging tank and separating the crystals.
  • the mother liquor usually contains an easily polymerizable compound (solution containing an easily polymerizable compound).
  • the extracted mother liquor can be recovered and reused in the recovering step.
  • the easily polymerizable compound contained in the mother liquor separated by the crystallization step can be reduced.
  • the recovery step is not particularly limited, but includes, for example, a step of distillation. A pump or the like may be used to extract the mother liquor.
  • the production method of the present invention may include a step of stirring the slurry containing crystals of the easily polymerizable compound in an aging tank.
  • the stirring step the slurry containing the crystals is usually stirred using a stirrer provided in the aging tank.
  • the production method of the present invention may include a step of withdrawing a slurry containing crystals of an easily polymerizable compound from a crystallization tank or an aging tank and supplying it to a washing column.
  • the line for feeding the slurry connects the crystallization tank or the aging tank and the washing column. This corresponds to the line to be connected.
  • the temperature at which the crystal-containing slurry is sent can be appropriately set according to the melting point of the easily polymerizable compound, and is adjusted appropriately within the range of, for example, 1 to 50°C. be able to.
  • the temperature at which the crystal-containing slurry is sent is preferably 5 to 13°C, more preferably 7 to 11.5°C.
  • the feeding temperature of the slurry containing the crystals is the slurry containing the crystals immediately before being fed to the washing column (for example, the slurry containing the crystals in the pipe or nozzle that feeds the slurry containing the crystals to the washing column). is the temperature of the mother liquor in
  • the production method preferably includes a step of obtaining a solution containing an easily polymerizable compound from raw materials.
  • the step of obtaining the solution containing the easily polymerizable compound from the raw material preferably includes the step of obtaining the easily polymerizable compound-containing gas from the raw material and the step of obtaining the solution containing the easily polymerizable compound from the easily polymerizable compound-containing gas. .
  • the step of obtaining the easily polymerizable compound-containing gas from the raw material is not particularly limited as long as the easily polymerizable compound-containing gas can be obtained.
  • Patent Document 1 can be suitably carried out by the synthesis process of acrylic acid (catalytic gas-phase oxidation reaction).
  • the step of obtaining a solution containing an easily polymerizable compound from the easily polymerizable compound-containing gas is not particularly limited as long as a solution containing the easily polymerizable compound is obtained, but the easily polymerizable compound is (meth)acrylic acid. In this case, for example, it can be preferably carried out by the acrylic acid collection step described in Patent Document 1, or the like.
  • the (meth)acrylic acid is selected from the group consisting of propane, propylene, acrolein, isobutene, methacrolein, acetic acid, lactic acid, isopropanol, 1,3-propanediol, glycerol and 3-hydroxypropionic acid. It is preferable to use at least one selected as a raw material.
  • the (meth)acrylic acid and/or raw materials may also be derived from renewable raw materials to produce bio-based (meth)acrylic acid.
  • impurities such as by-products are basically generated.
  • the easily polymerizable compound is (meth)acrylic acid, water, propionic acid, acetic acid, maleic acid, benzoic acid, acids such as acrylic acid dimer, aldehydes such as acrolein, furfural, formaldehyde and glyoxal, acetone , methyl isobutyl ketone, toluene, protoanemonin, etc.
  • the production method of the present invention makes it possible to efficiently obtain a product with excellent separation efficiency of impurities (especially furfural, etc.).
  • FIG. 1 is a schematic diagram showing an example of a curved portion of a line used in the manufacturing method of the present invention.
  • the curvature radius R described above corresponds to the radius of a circle corresponding to an arc when the center line of the curved portion of the line (a line passing through the center of the line inner diameter D) is an arc.
  • the line inner diameter D is the inner diameter of the curved portion of the line.
  • FIGS. 2 to 8 are schematic diagrams showing examples of lines to which the present invention can be applied in the refiner of the present invention.
  • the line connected to at least one selected from the group consisting of a crystallization tank, an aging tank, and a washing column to which a slurry containing crystals of an easily polymerizable compound is sent is the line of the present invention. is the applicable line.
  • lines with underlined numbers are the corresponding lines.
  • a curved portion of a line connected to at least one selected from the group consisting of a crystallization tank, a maturing tank, and a washing column, to which a slurry containing crystals of an easily polymerizable compound is fed.
  • any one of them may satisfy the ratio R/D between the curvature radius R and the line inner diameter D, but it is more preferable that all of the curved portions of the line satisfy the ratio R/D. .
  • the mode of use of the purifier of the present invention shown in FIGS. 2-8 will be described in detail.
  • FIG. 2 shows an apparatus having one crystallization tank and one maturation tank as a crystallizer, and a line for directly feeding the mother liquor from the maturation tank, which is one upstream tank to the crystallization tank, is installed, A line is installed to directly discharge the residue (mother liquor) from the crystallization tank, which is the most downstream tank.
  • a compound solution 1 to be supplied to a refiner is introduced into an aging tank 21 .
  • the slurry containing the precipitated crystals which are cooled in the crystallization tank 11 provided with a cooling mechanism is sent to the solid-liquid separator 31 through the line 51 .
  • the slurry is separated into a mother liquor and a concentrated crystal slurry, the concentrated crystal slurry is sent to the adjacent maturation tank 21 through a line 52, and the mother liquor is returned to the crystallization tank 11 through a line 61. . Further, the residue 2 is discharged from the crystallization tank 11 to the outside of the refiner through a line 71, and the liquid level in the crystallization tank 11 is adjusted. After growing the crystals in the maturing tank 21 , the crystal slurry is sent to the mechanical washing column 41 through the line 53 . In order to adjust the liquid level in the maturing tank 21 , the mother liquor is directly sent from the maturing tank 21 to the crystallization tank 11 through the line 72 .
  • the crystals are compacted by a piston to form a crystal bed.
  • the crystal bed is scraped off, suspended in a circulating liquid, and heated and melted.
  • a part of the circulating liquid containing the obtained melted liquid is carried out as a highly pure compound 3 .
  • a portion of the remaining circulating liquid (washing liquid) is returned to the mechanical washing column 41 and brought into countercurrent contact with the crystal bed to wash the crystals.
  • the mother liquor in the washing column is returned to the maturation tank 21 through the line 75 for returning the mother liquor to the crystallizer.
  • the compound is purified in this manner to obtain a highly pure compound.
  • FIG. 3 shows an apparatus having one crystallization tank and one maturation tank as a crystallization apparatus, and a line for directly feeding the mother liquor from the maturation tank, which is one upstream tank to the crystallization tank, is installed, A line is installed to directly discharge the residue (mother liquor) from the crystallization tank, which is the most downstream tank.
  • the crystallization tank a type in which the contents of the tank are cooled outside the tank is used. Only parts different from the refining apparatus of FIG. 2 will be described below.
  • the crystallization tank 11 is composed of a tank 11A and a cooling mechanism 11B outside the tank, which are connected by lines 111 and 121 .
  • the solution of the compound (or the slurry containing crystals of the compound) sent from tank 11A to cooling mechanism 11B via line 111 is cooled by cooling mechanism 11B, and the slurry containing precipitated crystals is sent via line 121 to tank 11A.
  • a part of the slurry containing crystals of the compound is sent from the tank 11A to the cooling mechanism 11B through the line 111, and the rest is sent to the solid-liquid separator 31 through the line 51.
  • FIG. 4 shows an apparatus having two crystallization tanks as a crystallization apparatus, in which a line for directly feeding the mother liquor from the crystallization tank 12, which is one tank upstream, is installed in the crystallization tank 11, and the most downstream A line for directly discharging the residue (mother liquor) from the crystallization tank 11, which is a tank, is installed. Also, the wash column is hydraulic and has a mechanical mechanism for scraping the crystal bed. Only parts different from the refining apparatus of FIG. 2 will be described below.
  • a solution 1 of compounds to be supplied to the refiner is introduced into a crystallization tank 12 .
  • the crystallization tank 11 is composed of a tank 11A and a cooling mechanism 11B outside the tank, which are connected by lines 111 and 121 .
  • the solution of the compound (or the slurry containing crystals of the compound) sent from tank 11A to cooling mechanism 11B via line 111 is cooled by cooling mechanism 11B, and the slurry containing precipitated crystals is sent via line 121 to tank 11A.
  • a part of the slurry containing crystals of the compound is sent from the tank 11A to the cooling mechanism 11B through the line 111, and the rest is sent to the solid-liquid separator 31 through the line 51.
  • the crystallization tank 12 is similarly composed of a tank 12A and a cooling mechanism 12B outside the tank, which are connected by lines 112 and 122 .
  • a portion of the slurry containing crystals of the compound from tank 12A is sent via line 112 to cooling mechanism 12B and via line 122 is returned to tank 12A.
  • the crystal slurry is conveyed from crystallizer 12 via line 53 to hydraulic wash column 42 .
  • the crystal bed is scraped off by a mechanical mechanism (scraper), extracted while being suspended in the circulation fluid, and melted by heating. is carried out as compound 3 of
  • a portion of the remaining circulating liquid (wash liquid) is returned to the hydraulic wash column 42 and is brought into countercurrent contact with the crystal bed to wash the crystals.
  • FIG. 5 shows an apparatus having two crystallization tanks and one maturation tank as a crystallizer, and a line for directly feeding the mother liquor from the tank one upstream is installed between the three tanks. A line is installed to directly discharge the residue (mother liquor) from the tank. Only parts different from the refining apparatus of FIG. 2 will be described below.
  • the slurry containing the precipitated crystals which are cooled in the crystallization tank 11 provided with a cooling mechanism is sent to the solid-liquid separator 31 through the line 51 .
  • the slurry is separated into a mother liquor and a concentrated crystal slurry, the concentrated crystal slurry is sent to the adjacent crystallizer 12 through a line 52, and the mother liquor is returned to the crystallizer 11 through a line 61.
  • the residue 2 is discharged from the crystallization tank 11 to the outside of the refiner through a line 71, and the liquid level in the crystallization tank 11 is adjusted.
  • the same operation as in the crystallization tank 11 is performed in the crystallization tank 12 , and slurry containing crystals is sent from the crystallization tank 12 to the solid-liquid separator 32 through the line 53 .
  • the slurry is separated into a mother liquor and a concentrated crystal slurry, the concentrated crystal slurry is sent to the adjacent maturation tank 21 through a line 54, and the mother liquor is returned to the crystallization tank 12 through a line 62. . Further, the mother liquor is directly sent from the crystallization tank 12 to the crystallization tank 11 through the line 72 for adjusting the liquid level in the crystallization tank 12 . After growing the crystals in the maturation tank 21 , the crystal slurry is sent to the mechanical washing column 41 through the line 55 . In order to adjust the liquid level in the maturing tank 21 , the mother liquor is directly sent from the maturing tank 21 to the crystallization tank 12 through a line 73 connecting the maturing tank 21 and the crystallization tank 12 .
  • Fig. 6 shows an apparatus having three crystallization tanks and one maturation tank as a crystallizer.
  • a line is installed to directly discharge the residue (mother liquor) from the tank.
  • the wash column is hydraulic and has a mechanical mechanism for scraping the crystal bed. Only parts different from the refining apparatus of FIG. 5 will be described below.
  • a compound solution 1 to be supplied to a refiner is introduced into a crystallization tank 13 .
  • a slurry containing crystals is sent to the solid-liquid separator 32 through a line 53 from the crystallization tank 12 which is the second tank from the most downstream.
  • the slurry is separated into a mother liquor and a concentrated crystal slurry, the concentrated crystal slurry is sent to the adjacent crystallizer 13 via a line 54, and the mother liquor is returned to the crystallizer 12 via a line 62.
  • the mother liquor is directly sent from the crystallization tank 12 to the crystallization tank 11 through the line 72 for adjusting the liquid level in the crystallization tank 12 .
  • the same operation as in the crystallization tank 12 is performed in the crystallization tank 13 , and slurry containing crystals is sent from the crystallization tank 13 to the solid-liquid separator 33 through the line 55 .
  • the slurry is separated into a mother liquor and a concentrated crystal slurry, the concentrated crystal slurry is sent to the adjacent maturation tank 21 through a line 56, and the mother liquor is returned to the crystallization tank 13 through a line 63. . Further, the mother liquor is directly sent from the crystallization tank 13 to the crystallization tank 12 through the line 73 for adjusting the liquid level in the crystallization tank 13 . After growing the crystals in the aging tank 21 , the crystal slurry is sent to the hydraulic washing column 42 via line 57 .
  • the mother liquor is directly sent from the maturing tank 21 to the crystallization tank 13 through a line 74 connecting the maturing tank 21 and the crystallization tank 13 .
  • the crystal bed is scraped off by a mechanical mechanism (scraper), extracted while being suspended in the circulation fluid, and melted by heating. is carried out as compound 3 of A portion of the remaining circulating liquid (wash liquid) is returned to the hydraulic wash column 42 and is brought into countercurrent contact with the crystal bed to wash the crystals.
  • FIG. 7 shows an apparatus having two crystallization tanks and one maturation tank as a crystallizer, and a line for feeding the mother liquor from the tank one upstream between the three tanks through the solid-liquid separator. is installed, and a line is installed to discharge the residue from the most downstream tank through a solid-liquid separator. Only parts different from the refining apparatus of FIG. 5 will be described below.
  • a solid-liquid separator 33 for separating the residue from the slurry in the crystallization tank and the residue is discharged through the solid-liquid separator 33.
  • the slurry taken out from the crystallization tank 11 is sent to the solid-liquid separator 33 through a line 81, and the residue 2 separated by the solid-liquid separator 33 is discharged out of the refiner through a line 91.
  • the remaining concentrated crystal slurry is returned to the crystallization tank 11 through a line 82, and the liquid level in the crystallization tank 11 is adjusted.
  • the crystallization tank 12 is provided with a solid-liquid separator 34 and a line for sending the mother liquor to the crystallization tank 11 via the solid-liquid separator 34 instead of a line for directly sending the mother liquor to the crystallization tank 11 .
  • Slurry taken out from the crystallization tank 12 is sent to the solid-liquid separator 34 via a line 83, and the mother liquor separated by the solid-liquid separator 34 is sent to the crystallization tank 11 via a line 92 for liquid level adjustment. , and the remaining concentrated crystal slurry is returned in line 84 to crystallizer 12 .
  • a solid-liquid separator 35 and a line for sending the mother liquor to the crystallization tank 12 via the solid-liquid separator 35 are provided.
  • the wash column 43 is hydraulic and has no mechanical mechanism for scraping the crystal bed.
  • FIG. 8 shows an apparatus having two crystallization tanks and one aging tank as a crystallization apparatus. From the second crystallization tank to the most downstream (first) crystallization tank, A line for sending the mother liquor and a line for discharging the residue from the most downstream tank via a solid-liquid separator are installed, and a line for directly sending the mother liquor from the maturation tank to the second crystallization tank is installed.
  • a solid-liquid separation device for separating the mother liquor from the slurry taken out from the second crystallization tank and sending it to the most downstream crystallization tank, and from the most downstream crystallization tank to the outside of the refiner
  • the solid-liquid separator for separating the residue to be discharged is shared (commonly used) with the solid-liquid separator provided in the line that feeds the slurry to the upstream tank.
  • the crystallization tank a type in which the contents of the tank are cooled outside the tank is used. Only parts different from the refining apparatus of FIG. 7 will be described below.
  • the crystallization tank 11 is composed of a tank 11A and a cooling mechanism 11B outside the tank, which are connected by lines 111 and 121 .
  • the solution of the compound (or the slurry containing crystals of the compound) sent from tank 11A to cooling mechanism 11B via line 111 is cooled by cooling mechanism 11B, and the slurry containing precipitated crystals is sent via line 121 to tank 11A.
  • a part of the slurry containing crystals of the compound is sent from the tank 11A to the cooling mechanism 11B through the line 111, and the rest is sent to the solid-liquid separator 31 through the line 51.
  • the crystallization tank 12 is similarly composed of a tank 12A and a cooling mechanism 12B outside the tank, which are connected by lines 112 and 122 .
  • a part of the slurry containing crystals of the compound is sent from the tank 12A to the cooling mechanism 12B through the line 112, and the rest is sent to the solid-liquid separator 32 through the line 53.
  • part of the slurry containing compound crystals is sent from tank 11A through line 51 to solid-liquid separation apparatus 31 .
  • the slurry is separated into a mother liquor and a concentrated crystal slurry, and the concentrated crystal slurry is sent through a line 52 to the adjacent tank 12A.
  • Part of the mother liquor separated by the solid-liquid separator 31 is returned to the tank 11A through the line 61, and the remainder is discharged out of the refiner through an additional line 101 connected to the line 61.
  • tank 12A part of the slurry containing crystals of the compound is sent through line 53 to solid-liquid separator 32 .
  • the solid-liquid separator 32 separates the slurry into a mother liquor and a concentrated crystal slurry, and the concentrated crystal slurry is sent to the next aging tank 21 through a line 54 .
  • a part of the mother liquor separated by the solid-liquid separator 32 is returned to the crystallization tank 12 through a line 62, and the remainder is sent to the tank 11A through an additional line 102 connected to the line 62.
  • line 51 ⁇ solid-liquid separator 31 ⁇ lines 61, 101 corresponds to line 81 ⁇ solid-liquid separator 33 ⁇ lines 82, 91 in the apparatus of FIG. 7, and solid-liquid separator 33 is installed.
  • the solid-liquid separation device 31 provided in the line that feeds the slurry to the upstream tank is shared (doubled).
  • line 53 ⁇ solid-liquid separator 32 ⁇ line 62, 102 corresponds to line 83 ⁇ solid-liquid separator 34 ⁇ line 84, 92 in the apparatus of FIG.
  • the solid-liquid separator 32 provided in the line that feeds the slurry to the upstream tank is shared (commonly used).
  • in place of the line that sends the mother liquor from the maturation tank 21 through the solid-liquid separator 35 to the crystallization tank 12 in the apparatus of FIG. have
  • the present invention also provides a crystallization tank for forming crystals of an easily polymerizable compound from a mother liquor of a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound, and/or aging for growing crystals of an easily polymerizable compound.
  • an easily polymerizable compound can be purified efficiently and with high quality.
  • Preferred forms of the purification method of the present invention are the same as the preferred forms of the production method of the present invention described above.
  • the present invention provides a crystallization tank for forming crystals of an easily polymerizable compound from a mother liquor of a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound and/or an aging tank for growing crystals of an easily polymerizable compound. and a washing column, the purification device being further connected to at least one selected from the group consisting of a crystallization tank, an aging tank, and a washing column.
  • the line has a curved portion in which the ratio R/D of the radius of curvature R to the line inner diameter D exceeds 4 and is 10 or less, and the line feeds a slurry containing crystals of an easily polymerizable compound. It is also a purification apparatus for easily polymerizable compounds, which is one of the
  • the line is not particularly limited as long as it has a curved portion in which the ratio R/D of the curvature radius R to the line inner diameter D exceeds 4 and is 10 or less.
  • the above line and other devices included in the purification apparatus of the present invention those described above can be preferably used.
  • the crystallization tank can be equipped with a cooling mechanism, and the solution containing the easily polymerizable compound or the slurry containing the crystals of the easily polymerizable compound can be cooled to deposit crystals to form crystals. It is not particularly limited as long as it is possible.
  • a cooling jacket is attached to the tank itself, and the inside of the tank is directly cooled to form crystals (see Figures 2, 5, 6, and 7). It is roughly classified into the method of connecting and cooling while circulating to generate crystals (see FIGS. 3, 4, and 8).
  • the cooling mechanism in which the cooling mechanism is separated from the tank is particularly limited as long as it can cool a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound to precipitate crystals.
  • a cooling disc crystallizer a scraped surface heat exchanger, a votator heat exchanger, etc. that can ensure a large heat transfer area. preferable.
  • the crystallization temperature in the crystallization tank can be the temperature in the crystallization step described above.
  • the refiner of the present invention has the above crystallization tank and/or maturation tank, and may have one or more tanks.
  • the purification apparatus of the present invention has a plurality of tanks (1 to N tanks with the 1st tank being downstream and the Nth tank being upstream), these multiple tanks are preferably connected in series.
  • the purification apparatus of the present invention usually has a line for feeding the slurry containing crystals of the easily polymerizable compound from tank to tank via a solid-liquid separator if desired.
  • the purification apparatus of the present invention has a line for supplying a solution containing an easily polymerizable compound or a slurry containing crystals of an easily polymerizable compound to at least one tank.
  • the purification apparatus of the present invention may have a crystallization tank and/or a maturation tank, and may or may not have a maturation tank. It is preferable to have
  • the aging tank is a tank for growing crystals of a compound. By growing the crystals so that the crystal shape is as uniform as possible and sending the liquid to the washing column, impurities can be efficiently removed in the washing column, and a higher purity compound can be obtained at a higher yield. becomes possible. Therefore, it is preferable that the tank feeding the washing column, that is, the N-th tank is the maturation tank.
  • the refiner of the present invention most preferably has a line for feeding the slurry containing crystals of the compound from the aging tank to the washing column.
  • the aging tank is not particularly limited as long as the crystals of the easily polymerizable compound can be kept in suspension in the tank. By holding crystals for a certain period of time, fine crystals are melted by Ostwald ripening, large crystals are further grown, and the crystal size distribution is narrowed. As a result, high-quality crystals can be obtained, and by subjecting such crystals to the subsequent purification step in a hydraulic washing column or the like, the purification efficiency in the hydraulic washing column can be further improved. .
  • the temperature in the aging tank can be the temperature in the above-described crystallization step.
  • the maturing tank usually has an extraction port near the bottom for extracting the slurry containing crystals of the easily polymerizable compound from the maturing tank.
  • the size of the crystallization tank or the maturing tank is not particularly limited, it is preferable that the inner diameter is, for example, 100 to 50000 mm. Moreover, it is preferable that the height is 1000 to 100000 mm.
  • the purification apparatus of the present invention comprises an absorption tower for collecting an easily polymerizable compound-containing gas to obtain a solution containing the easily polymerizable compound, and an easily polymerizable gas from the absorption tower to the crystallization tank or the aging tank. It may further have a line for feeding a solution containing a compound.
  • the absorption tower can obtain a solution containing the easily polymerizable compound by absorbing the easily polymerizable compound-containing gas, which is the reaction product obtained from the reactor, into water in which the polymerization inhibitor is dissolved. It is.
  • a line for sending a solution containing an easily polymerizable compound from the absorption tower to the crystallization tank or the aging tank includes an intermediate tank, a resin tank filled with an ion exchange resin, and a low-boiling distillation tank.
  • a distillation device or the like may be provided.
  • the easily polymerizable compound is (meth)acrylic acid
  • examples of low-boiling components removed by low-boiling distillation include acrolein, acetic acid, and water.
  • the purification apparatus of the present invention is preferably capable of performing a continuous purification process. ) further includes.
  • the purification apparatus of the present invention may also include a line for withdrawing the circulating slurry containing crystals from the washing column, and equipment for melting the crystals contained in the withdrawn circulating slurry.
  • the crystals originate from a bed of crystals formed at the bottom of the wash column. Withdrawal of the crystals can be performed, for example, using a mechanism for withdrawing the crystals from the crystal bed in the washing column.
  • the circulating liquid is usually also extracted together, and the circulating slurry containing the crystals is extracted and supplied to the melting step.
  • the purification apparatus of the present invention includes a line (withdrawal line) connecting the crystal extraction port in the washing column and the melting equipment, and a melt of the extracted crystals provided in the melting equipment and the washing column.
  • a return line may be included that connects the return port of the circulating fluid.
  • a circulating liquid circulates through the connection between these lines and the return port and the crystal withdrawal port in the washing column. This circulation path is also called a melt loop.
  • a heater can be used as the equipment for melting.
  • a structure that efficiently transfers heat to the slurry containing crystals such as a vertical shell-and-tube heat exchanger, a horizontal shell-and-tube heat exchanger, a double-tube heat exchanger, a spiral heat exchanger, and a plate heat exchangers, electric heaters, and the like.
  • the heater is preferably of a forced circulation type in which the circulating slurry (circulating liquid after melting) is circulated by a pump provided in the melt loop and provided in the melt loop.
  • the purifier of the present invention may further comprise a line for unloading product from the washing column, connected to the return line.
  • the purification apparatus of the present invention may further have a line for returning the mother liquor from the upstream (latter stage) tank or apparatus to the downstream (early stage) side tank or apparatus, as described above. do not have. Further, the purification apparatus of the present invention may further include a mechanism for controlling the amount of the slurry sent and the amount of the mother liquor returned. Examples of the control mechanism include valves attached to various lines. The purifier of the present invention may appropriately include equipment commonly used in other purifiers.
  • a hydraulic washing column was used as a washing column for purifying the above supply slurry.
  • the above supply slurry is sent through the following supply line and supplied to a washing column, and while extracting the mother liquor of the supply slurry from a filter installed in the washing column, the crystal bed formed in the column is moved to the bottom of the column by hydraulic pressure.
  • a product was obtained by moving and melting the crystals in a melt loop.
  • the crystallization tank and the washing column prepared above were connected by a supply line having an inner diameter of 25 mm.
  • the supply slurry prepared in the crystallization tank is supplied to the washing column through the supply line under the conditions of a slurry crystal concentration of 11.0% by mass and a slurry supply temperature of 10.5° C.,
  • the product was obtained from the feed slurry.
  • the supply line was provided with a jacket as a heating mechanism, and a heat medium set at 15° C. was introduced into the jacket.
  • Example 1 The ratio R/D of the radius of curvature R of all curved portions of the supply line to the line inner diameter D was set to 5, and the linear velocity of the supply slurry was set to 1.5 m/s to obtain acrylic acid as a product.
  • Table 1 shows the concentration of furfural in the product, the furfural ratio, and the clogging status of piping.
  • Example 4 Acrylic acid was used as a product in the same manner as in Example 1, except that the ratio R/D of the curvature radius R of all the curved portions in the supply line and the line inner diameter D was changed to 10, and the linear velocity of the supply slurry was changed to 1.8 m / s. got Table 1 shows the concentration of furfural in the product, the furfural ratio, and the clogging status of piping.
  • Example 5 Acrylic acid was obtained as a product in the same manner as in Example 1, except that the linear velocity of the supplied slurry was changed as shown in Table 1.
  • Table 1 shows the concentration of furfural in the product, the furfural ratio, and the clogging status of piping.
  • Example 6 Acrylic acid was obtained as a product in the same manner as in Example 1, except that the crystal concentration of the supplied slurry was changed as shown in Table 1. Table 1 shows the clogged status of the piping.
  • Example 7 Acrylic acid was obtained as a product in the same manner as in Example 1, except that the linear velocity of the supplied slurry was changed as shown in Table 1.
  • Table 1 shows the concentration of furfural in the product, the furfural ratio, and the clogging status of piping.
  • the ratio R/D between the curvature radius R and the line inner diameter D is preferably 10 or less. It can be seen that even if the R/D is 10 or more, the production of acrylic acid of higher quality cannot be expected while the scale of the refiner increases.
  • the method for producing an easily polymerizable compound uses a refiner having a tank such as a crystallization tank and a washing column, and the radius of curvature R and the inner diameter of the line connected to the tank and/or the washing column
  • a high-quality product can be obtained as long as it includes a step of feeding a slurry containing crystals of an easily polymerizable compound through a curved line having a D ratio R/D of more than 4 and not more than 10.
  • a high-quality product can be obtained efficiently.
  • Line 91 The residue (mother liquor) separated from the slurry removed from the tank by the solid-liquid separator is purified by the refiner.
  • Lines 92 and 93 for discharging to the outside Lines for sending the mother liquor separated from the slurry taken out from the tank by the solid-liquid separator to one downstream tank 101: From the slurry taken out from the most downstream tank to the solid-liquid separator Additional line for discharging part of the separated mother liquor out of the refiner 102: for sending part of the mother liquor separated by the solid-liquid separator from the slurry taken out of the second tank to the most downstream tank Additional lines 111, 112, 121, 122: Lines connecting the crystallization tank of the type in which the contents of the tank are cooled outside the tank and the cooling mechanism D: Line inner diameter R: Curvature radius

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、効率よく高品質な製品を得る方法を提供する。 本発明は、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する精製装置を用いた易重合性化合物の製造方法であって、該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、該製造方法は、該ラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含むことを特徴とする易重合性化合物の製造方法である。

Description

易重合性化合物の製造方法
 本発明は、易重合性化合物の製造方法に関する。より詳しくは、易重合性化合物の製造方法、易重合性化合物の精製方法、及び、易重合性化合物の精製装置に関する。
 精製装置は、例えば樹脂の原料等として用いられる化合物を精製するために、工業的に広く利用されている。化学工業の多くの分野において、不純物がより低減された高品質の化合物が求められており、そのためのより優れた精製装置が種々検討されている。
 工業上、化合物の精製前の粗製化合物の多くは、連続式の精製工程を経ることで精製されている。連続式の精製工程では、装置間を配管で繋ぐことで、装置間での輸送を可能とするライン(以下、「ライン」とは、接続された状態の配管、又は、配管で接続された状態を意味する)を構成し、ラインを通じて被精製液を輸送する。例えば、易重合性化合物であるアクリル酸の製造方法として、原料ガスを接触気相酸化反応させ、捕集して得たアクリル酸溶液を、ラインを経て晶析装置に供給して精製し、残留母液を、ラインを経て反応蒸留装置へと供給し、アクリル酸のマイケル付加物を分解したうえでラインを経て捕集工程に戻すことが開示されている(例えば、特許文献1参照)。
 なお、固形物を含むスラリーの輸送に関し、不飽和カルボン酸エステルの製造に用いるイオン交換樹脂等の触媒をリサイクルする際に、固形物として樹脂(触媒)を含むスラリーを輸送するための配管の形状や、スラリーの樹脂濃度、流速を特定することで、配管内のスラリーの滞留及び樹脂の破砕を防止できることが開示されている(例えば、特許文献2参照)。
特開2007-182437号公報 特開2002-338520号公報
 上記のように、易重合性化合物を製造するための、より優れた方法が求められており、効率よく高品質な製品(易重合性化合物)を得る方法が望まれていた。本発明は上記現状に鑑みてなされたものであり、効率よく高品質な製品を得る方法を提供することを目的とするものである。
 本発明者らは、効率よく高品質な製品を得る方法について検討し、効率的な精製が可能な連続式の精製装置に着目し、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する精製装置について種々検討した。そして、このような精製装置において易重合性化合物を製造する際に、ラインにより結晶を含むスラリーを送液すると、当該ラインの条件によっては製品中の不純物濃度が増加するという課題があることを見出した。ここで、本発明者らは、鋭意検討した結果、上記精製装置を用いた易重合性化合物の製造方法において、該精製装置が、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、該製造方法が、該ラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含む易重合性化合物の製造方法とすることで、高品質な製品を得ることができ、また、結晶によってラインが閉塞することも充分に防止でき、上記課題を解決できることを見出し、本発明に到達したものである。
 なお、上記の製造方法により高品質な製品を得ることができるのは、ラインの曲部の湾曲が緩やかになることで、ライン内において、偏った結晶成長が生じたり、結晶が破砕されたりして、結晶の粒度分布が広がることを充分に防止でき、洗浄カラムにおいて結晶形状が略均一な結晶床を形成でき、その洗浄性が向上するためであると考えられる。
 すなわち、本発明は、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する精製装置を用いた易重合性化合物の製造方法であって、該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、該製造方法は、該ラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含むことを特徴とする易重合性化合物の製造方法である。
 なお、特許文献2は、スラリーの輸送について開示するが、あくまで固形物が樹脂(触媒)であるスラリーの輸送に関するものであり、易重合性化合物の結晶を含むスラリーの輸送に関しては何ら開示されておらず、高品質な目的物が得られることについても何ら開示されていない。
 本発明の製造方法を用いることで、効率よく高品質な製品を得ることができる。
図1は、本発明の製造方法で用いられるラインが有する曲部の一例を示す模式図である。 図2は、本発明の精製装置において、本発明を適用可能なラインの例を示す模式図である。 図3は、本発明の精製装置において、本発明を適用可能なラインの他の例を示す模式図である。 図4は、本発明の精製装置において、本発明を適用可能なラインの他の例を示す模式図である。 図5は、本発明の精製装置において、本発明を適用可能なラインの他の例を示す模式図である。 図6は、本発明の精製装置において、本発明を適用可能なラインの他の例を示す模式図である。 図7は、本発明の精製装置において、本発明を適用可能なラインの他の例を示す模式図である。 図8は、本発明の精製装置において、本発明を適用可能なラインの他の例を示す模式図である。
 以下、本発明を詳細に説明する。
 なお、以下において記載する本発明の個々の好ましい特徴を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
 以下においては、先ず、本発明の易重合性化合物の製造方法について説明する。次いで、本発明の易重合性化合物の精製方法、本発明の精製装置について順に説明する。
(本発明の易重合性化合物の製造方法)
 本発明の製造方法は、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する精製装置を用いた易重合性化合物の製造方法であって、該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、該製造方法は、該ラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含む。
 以下では、先ず、上記送液する工程について説明し、次いで、その他の工程について順に説明する。なお、連続式の精製工程では、通常、精製装置全体として見たときに各工程が同時に行われることになる。
 本明細書中、「易重合性化合物」は、本発明の製造方法で得られる易重合性化合物をいい、本発明の製造方法における原料や副生成物、溶媒を言うものではない。「易重合性化合物」は、「目的化合物」又は「目的物」と言い換えることができる。本明細書中、「不純物」は、「易重合性化合物」以外の成分、例えば、原料や副生成物、溶媒を言う。
 なお、本明細書中、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させるとは、易重合性化合物を含む溶液から易重合性化合物の結晶を生成させるだけでなく、易重合性化合物の結晶を含むスラリーの母液から新たに易重合性化合物の結晶を生成させ、晶析槽に供給する前に対して晶析槽から取り出した後の方がスラリー中の結晶濃度が増加することを意味する。
 例えば、本発明の易重合性化合物の製造方法や、本発明の易重合性化合物の精製方法、本発明の精製装置には、晶析槽に易重合性化合物を含む溶液を供給し、易重合性化合物の結晶を含むスラリーを得るものの他、晶析槽に易重合性化合物の結晶を含むスラリーを供給し、より結晶濃度の高いスラリーを得るものが含まれる。なお、晶析槽に供給される易重合性化合物の結晶を含むスラリーは、通常、その母液にも易重合性化合物が含まれるものである。
 また本発明の晶析槽から結晶を取り出す際には、通常、易重合性化合物の結晶を含むスラリーとして取り出される。
<易重合性化合物の結晶を含むスラリーを送液する工程>
 本発明の製造方法における上記送液する工程では、上記精製装置が有する、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインにより、易重合性化合物の結晶を含むスラリーを送液する。
 上記曲率半径Rは、ラインの曲部における曲率の逆数であり、図1に示すように、ラインの曲部におけるその中心線を円弧としたときの、当該円弧に対応する円の半径に相当する。曲率半径Rが大きいほど曲部の湾曲は緩やかになる。
 上記曲率半径Rとライン内径Dの比R/Dを、4を超えるものとすることで、高品質な易重合性化合物を得ることが可能となる。これは、曲部の湾曲が緩やかになり、ライン内で結晶成長が偏ったり、結晶が破砕されたりして、結晶の粒度分布が広がることを充分に防止でき、洗浄カラムにおいて結晶形状が略均一な結晶床を形成することができるためであると考えられる。また、結晶によってラインが閉塞することも充分に防止できる。
 上記曲率半径Rとライン内径Dの比R/Dは、4.5以上であることが好ましく、5以上であることがより好ましい。
 また本発明の製造方法において、上記曲率半径Rとライン内径Dの比R/Dは、10以下である。これにより、精製装置の規模が大きくなり過ぎることなく、ラインを好適に設置することができる。精製装置の規模の観点からは、該曲率半径Rとライン内径Dの比R/Dは、9以下であることが好ましく、8以下であることがより好ましい。
 なお、上記曲率半径Rは、特に限定されないが、工業的規模の精製装置においては、例えば50~5000mmであることが好ましく、100~2500mmであることがより好ましい。
 上記ライン内径Dは、工業的規模の精製装置においては、例えば10~500mmであることが好ましく、20~250mmであることがより好ましい。
 上記曲部は、特に限定されないが、曲部がなす角度(曲部の前後に延びるラインがなす角度)が、75~165°であることが好ましく、90~150°であることがより好ましい。
 上記ラインは、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続されたものである。
 上記ラインとしては、例えば、晶析槽と晶析槽とを接続するライン、晶析槽と熟成槽とを接続するライン、晶析槽又は熟成槽と洗浄カラムとを接続するライン、洗浄カラムと後述するメルトループの融解する設備とを接続するライン等が挙げられ、これらの1種であってもよく、2種以上であってもよい。晶析槽と晶析槽とを接続するラインとは、ある1つの晶析槽におけるスラリーの抜き出し口とスラリーの供給口とを接続するラインでもよく、直列に接続された複数の槽(晶析槽)を用いる場合に、下流側の槽と上流側の槽とを接続するラインであってもよい。なお、これらのラインの途中に、他の装置が設置されていてもよく、例えば、上記スラリーの抜き出し口とスラリーの供給口とを接続するラインの途中に、晶析のための槽外冷却機構や固液分離装置が設置されていてもよい。
 上記ラインは、晶析槽と晶析槽とを接続するライン、晶析槽と熟成槽とを接続するライン、晶析槽又は熟成槽と洗浄カラムとを接続するラインが好ましい。
 中でも、本発明の製造方法において、上記ラインは、晶析槽又は熟成槽と、洗浄カラムとを接続するラインであり、上記送液する工程は、該ラインにより、易重合性化合物の結晶を含むスラリーを、晶析槽又は熟成槽から洗浄カラムに送液することがより好ましい。
 上記ラインの曲部における上記比R/Dが本発明に係るR/Dの範囲内となることで、洗浄カラムにおいてより結晶形状が略均一な結晶床を形成することができ、製品をより高品質で得ることができる。
 ラインと接続される晶析槽又は熟成槽としては、例えば、本発明の精製装置が直列に接続された複数の槽を含む場合は、その最後の槽(晶析槽又は熟成槽)を用いることができる。
 上記ラインは、その材質に特に限定はないが、例えばステンレス鋼などの金属又は合金から構成されるものとすることが好ましい。
 本発明の製造方法において、上記送液する工程は、スラリーの線速が1.5m/s以上、4.0m/s以下であることが好ましい。
 上記スラリーの線速が1.5m/s以上であることにより、本発明に係る曲部を有するラインでスラリーを送液した際に、偏った結晶成長をより一層防止することができる。また、結晶によるラインの閉塞をより一層防止することができる。
 該スラリーの線速は、1.8m/s以上であることがより好ましく、2.0m/s以上であることが更に好ましい。
 上記スラリーの線速が4.0m/s以下であることにより、本発明に係る曲部を有するラインでスラリーを送液した際に、該スラリーが含む結晶の破砕をより一層防止することができる。該スラリーの線速は、3.5m/s以下であることがより好ましく、3.0m/s以下であることが更に好ましい。
 すなわち、スラリーの線速が1.5m/s以上、4.0m/s以下であることにより、ライン内での偏った結晶成長と、ライン内における閉塞と結晶の破砕とをより一層防止することができ、これらの顕著な効果を同時に得ることができる。
 上記スラリーの線速は、直管部での体積流量を流量計で直接測定する、もしくは直管部での質量流量を流量計で測定し、測定値をスラリー密度で除することで体積流量を算出し、体積流量を上記曲部においてスラリーが流れる断面積で除することで算出することができる。
 本発明の製造方法において、上記送液する工程は、スラリーの結晶濃度が1質量%以上、40質量%以下であることが好ましい。
 上記スラリーの結晶濃度が1質量%以上であることにより、スラリーの流量が適度なものとなり、ポンプ等の設備が大型化することなく、効率的に製品を得ることができる。該スラリーの結晶濃度は、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。
 上記スラリーの結晶濃度が40質量%以下であることにより、本発明に係る曲部を有するラインでスラリーを送液した際に、該スラリーの流動性を充分なものとするとともに、ラインの閉塞を充分に防止できる。該スラリーの結晶濃度は、38質量%以下であることがより好ましく、35質量%以下であることが更に好ましい。
 本発明の製造方法において、上記ラインは、加温機構を備えることが好ましい。
 上記加温機構としては、保温機構を含み、温水、冷却水(CW)、ブライン等の熱媒を用いたジャケット、蒸気トレース、電気ヒーター等が挙げられ、これらの1種又は2種以上を使用できる。
 上記加温機構による加熱温度は、上記易重合性化合物の融点等を考慮して適宜設定すればよいが、例えば、本発明の製造方法において、上記ラインは、加温機構を備え、上記送液する工程は、スラリーの温度が1℃以上、50℃以下であることが好ましい。
 また上記加温機構による加熱温度とスラリー温度との温度差が1~40℃であることが好ましい。
 上記温度差が1℃以上であることにより、本発明に係る曲部を有するラインでスラリーを送液した際に、ライン内での偏った結晶成長、凍結によるラインの閉塞をより一層防止できる。該温度差は、2℃以上であることがより好ましく、3℃以上であることが更に好ましい。
 上記温度差が40℃以下であることにより、本発明に係る曲部を有するラインでスラリーを送液した際に、該スラリー中の結晶が一部融解して粒度分布が広がることをより一層防止できる。該温度差は、30℃以下であることがより好ましく、20℃以下であることが更に好ましく、10℃以下であることが特に好ましい。
 上記送液する工程におけるライン内の圧力条件は、加圧下であってもよく、常圧下であってもよく、減圧下であってもよい。
 上記送液する工程は、断続的なものであってもよいが、本発明の製造方法において、基本的に継続して行われるものであることが好ましい。
 本発明の精製装置が含む洗浄カラムは、結晶を洗浄することができるものである限り特に制限されないが、結晶ベッドを強制的に搬送するものであることが好ましい。結晶ベッドを強制的に搬送する洗浄カラムとしては、具体的には、ピストンにて結晶を押し固めて結晶ベッドの形成/搬送を行う機械式洗浄カラム、ポンプにてカラムにスラリーを送液し、カラム内に配置されたフィルターから母液を抜き出すことでベッドの形成/搬送を行う液圧式洗浄カラム(水圧式洗浄カラム)などが挙げられる。
 上記洗浄カラムは、生産能力が高いこと、洗浄カラム内の駆動部が少なく装置に起因するトラブルが少ないという点から、液圧式洗浄カラムであることがより好ましい。
 上記洗浄カラムは、例えば、結晶ベッドを削り取るための機械的機構を有していてもよい。
 本発明の製造方法において、上記易重合性化合物は、反応性の二重結合を有する易重合性化合物であることが好ましい。
 中でも、本発明の製造方法において、上記易重合性化合物は、不飽和カルボン酸であることがより好ましく、(メタ)アクリル酸であることが更に好ましく、アクリル酸であることが特に好ましい。本明細書中、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸である。
 なお、上記易重合性化合物を含む溶液は、自ら合成して得たものに限定されず、他所から調達されたものであってもよい。
<晶析する工程>
 本発明の製造方法は、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーを晶析する工程を含んでいてもよい。該晶析する工程により、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させることができる。
 上記晶析する工程における温度は、精製される易重合性化合物の種類に合わせて適宜調整すればよいが、概ね純物質の融点に対して-2~-15℃の範囲である。また、精製される易重合性化合物が(メタ)アクリル酸の場合、0~12℃であることが好ましい。より好ましくは、1~11℃、更に好ましくは2~10℃である。
 上記晶析する工程における温度は、晶析する工程に供される易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリー中の母液の温度である。
 上記晶析する工程における圧力条件は、加圧下であってもよく、常圧下であってもよく、減圧下であってもよい。
 上記晶析する工程は、易重合性化合物の結晶を生成するものである限り特に限定されず、連続式の晶析でもよいし、バッチ式の晶析でもよいが、連続式の晶析であることが好ましい。
 上記晶析する工程は、後述する晶析槽及び/又は熟成槽を使用しておこなうことができる。
 なお、易重合性化合物の結晶を含むスラリーを抜き出す際には、槽の底面付近から抜き出すことが好ましい。
 本発明の製造方法において、上記易重合性化合物を含む溶液は、粗(メタ)アクリル酸水溶液又は粗(メタ)アクリル酸溶液であることが好ましい。
 粗(メタ)アクリル酸水溶液は、(メタ)アクリル酸が水に溶解した溶液であって、(メタ)アクリル酸製造時の副生成物等の不純物を含むものを言う。粗(メタ)アクリル酸溶液は、(メタ)アクリル酸からなる溶液であって、(メタ)アクリル酸製造時の副生成物等の不純物を含むものを言う。
 なお、上記不純物としては、例えば、プロピオン酸、酢酸、マレイン酸、安息香酸、アクリル酸ダイマー等の酸類、アクロレイン、フルフラール、ホルムアルデヒド、グリオキサール等のアルデヒド類、アセトン、メチルイソブチルケトン、トルエン、プロトアネモニン等が挙げられる。
 本発明の製造方法により、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーに含まれる不純物(特に、フルフラール等)を充分に除去することができ、高品質な製品を得ることができる。なお、本明細書中、高品質な製品とは、上述した不純物の少なくとも1種(例えば、フルフラール)が充分に低減された製品であればよい。
 例えば、本製造方法により得られる易重合性化合物の製品中に含まれるフルフラールの量としては、10ppm以下が好ましく、5ppm以下がより好ましく、0.2ppm以下が特に好ましい。
<易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーを晶析槽又は熟成槽に供給する工程>
 本発明の製造方法は、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーを晶析槽又は熟成槽に供給する工程を含んでいてもよい。
 上記槽内に供給される易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーとしては、上記易重合性化合物からなるもの、上記易重合性化合物の水溶液又は易重合性化合物の結晶を含む水性スラリー等が挙げられる。なお、上記易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液は、通常、上記易重合性化合物、水以外の不純物を含むものである。
 本発明の製造方法において、上記易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液は、上記易重合性化合物の純度(質量割合)が99質量%以下であることが好ましい。
 上記易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液中の易重合性化合物の質量割合は、60質量%以上であることが好ましい。
 上記易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーを晶析槽又は熟成槽に供給する場合、その供給速度は、特に限定されないが、工業的規模の晶析槽又は熟成槽においては、例えば0.2×10~4.0×10kg/hである。
<晶析する工程により分離された母液から易重合性化合物を回収する工程>
 本発明の製造方法は、上記晶析する工程により分離された母液から易重合性化合物を回収する工程を更に含んでいても良い。
 上記回収する工程で用いる母液は、例えば、晶析槽や熟成槽内の易重合性化合物の結晶を含むスラリーの上澄液から抜き出して結晶から分離することで得ることができる。母液は、通常、易重合性化合物を含むもの(易重合性化合物を含む溶液)である。
 抜き出した母液は、回収する工程で回収して再利用することができる。回収された易重合性化合物を、例えば下流(前段)側の槽又は装置に供給して再利用することで、上記晶析する工程により分離された母液に含まれる易重合性化合物を減らすことができる。
 上記回収する工程としては、特に限定されないが、例えば蒸留する工程が挙げられる。上記母液の抜き出しは、ポンプ等を用いて行っても構わない。
<熟成槽内で撹拌する工程>
 本発明の製造方法は、易重合性化合物の結晶を含むスラリーを、熟成槽内で撹拌する工程を含んでいても良い。
 上記撹拌する工程では、通常、熟成槽が備える撹拌機を用いて結晶を含むスラリーを撹拌する。
<洗浄カラムに供給する工程>
 本発明の製造方法は、易重合性化合物の結晶を含むスラリーを、晶析槽又は熟成槽から抜き出し、洗浄カラムに供給する工程を含んでいてもよい。
 なお、上記洗浄カラムに供給する工程は、上述した易重合性化合物の結晶を含むスラリーを送液する工程において、スラリーを送液するためのラインが、晶析槽又は熟成槽と洗浄カラムとを接続するラインである場合に相当する。
 上記洗浄カラムに供給する工程において、結晶を含むスラリーの送液温度は、上記易重合性化合物の融点等に応じて適宜設定することができるが、例えば1~50℃の範囲内で適宜調整することができる。
 例えば上記易重合性化合物が(メタ)アクリル酸である場合は、結晶を含むスラリーの送液温度は、5~13℃であることが好ましく、7~11.5℃であることがより好ましい。
 上記結晶を含むスラリーの送液温度は、上記洗浄カラムに送液される直前の結晶を含むスラリー(例えば、結晶を含むスラリーを洗浄カラムに送液するパイプ又はノズル内の、結晶を含むスラリー)中の母液の温度である。
<原料から易重合性化合物を含む溶液を得る工程>
 本発明の製造方法において、上記製造方法は、原料から易重合性化合物を含む溶液を得る工程を含むことが好ましい。
 原料から易重合性化合物を含む溶液を得る工程は、原料から易重合性化合物含有ガスを得る工程、及び、易重合性化合物含有ガスから易重合性化合物を含む溶液を得る工程を含むことが好ましい。
 上記原料から易重合性化合物含有ガスを得る工程については、易重合性化合物含有ガスが得られる限り特に限定されないが、上記易重合性化合物が(メタ)アクリル酸である場合、例えば、特開2007-182437号公報(特許文献1)に記載のアクリル酸の合成工程(接触気相酸化反応)により好適に行うことができる。
 上記易重合性化合物含有ガスから易重合性化合物を含む溶液を得る工程については、易重合性化合物を含む溶液が得られる限り特に限定されないが、上記易重合性化合物が(メタ)アクリル酸である場合、例えば、特許文献1に記載のアクリル酸の捕集工程等により好適に行うことができる。
 本発明の製造方法において、上記(メタ)アクリル酸は、プロパン、プロピレン、アクロレイン、イソブテン、メタクロレイン、酢酸、乳酸、イソプロパノール、1,3-プロパンジオール、グリセロール及び3-ヒドロキシプロピオン酸からなる群より選択される少なくとも1種を原料とすることが好ましい。また、上記(メタ)アクリル酸及び/又は原料は、再生可能な原料から誘導され、バイオベースの(メタ)アクリル酸を生成しても良い。
 なお、上記易重合性化合物含有ガスを得る工程では、基本的に、副生成物等の不純物が生じる。例えば、上記易重合性化合物が(メタ)アクリル酸である場合、水やプロピオン酸、酢酸、マレイン酸、安息香酸、アクリル酸ダイマー等の酸類、アクロレイン、フルフラール、ホルムアルデヒド、グリオキサール等のアルデヒド類、アセトン、メチルイソブチルケトン、トルエン、プロトアネモニン等が不純物として生じるが、本発明の製造方法により、不純物(特に、フルフラール等)の分離効率を優れたものとして、製品を効率よく得ることができる。
 図1は、本発明の製造方法で用いられるラインが有する曲部の一例を示す模式図である。
 図1に示すように、上述した曲率半径Rは、ラインの曲部におけるその中心線(ライン内径Dの中心を通る線)を円弧としたときの、当該円弧に対応する円の半径に相当する。
 上記ライン内径Dは、ラインの曲部における内径である。
 本発明の製造方法で用いられるラインの曲部において、上記曲率半径Rとライン内径Dの比R/Dを4を超えるものとすることで、曲部の湾曲が緩やかになり、効率よく高品質な製品を製造できる本発明の効果を発揮できる。また、当該比R/Dを10以下とすることで、精製装置の規模が大きくなり過ぎることなく、ラインを好適に設置することができる。
 図2~図8は、本発明の精製装置において、本発明を適用可能なラインの例を示す模式図である。
 図2~8中、易重合性化合物の結晶を含むスラリーが送液される、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続されたラインが本発明を適用可能なラインである。なお、図2~8において、下線が付された番号のラインが該当するラインである。
 本発明では、易重合性化合物の結晶を含むスラリーが送液される、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続されたラインが有する曲部のいずれかが、上記曲率半径Rとライン内径Dの比R/Dを満たすものであればよいが、上記ラインが有する曲部のすべてが、当該比R/Dを満たすものであることがより好ましい。
 以下では、図2~8に示す本発明の精製装置の使用態様を詳しく説明する。
 図2は、晶析装置として1つの晶析槽と1つの熟成槽とを有する装置であり、晶析槽に1つ上流の槽である熟成槽から直接母液を送液するラインが設置され、最下流の槽である晶析槽から残渣(母液)を直接排出するラインが設置されている。
 精製装置に供される化合物の溶液1は熟成槽21に導入される。冷却機構が設置された晶析槽11で冷却され、析出した結晶を含むスラリーはライン51で固液分離装置31に送られる。固液分離装置31ではスラリーが母液と濃縮された結晶スラリーとに分離され、濃縮された結晶スラリーはライン52で隣の熟成槽21に送られ、母液はライン61で晶析槽11に戻される。また晶析槽11からライン71で精製装置外へ残渣2が排出され、晶析槽11の液面が調整される。熟成槽21で結晶を成長させた後、結晶スラリーはライン53で機械式洗浄カラム41に送液される。また熟成槽21の液面調整のため、熟成槽21から晶析槽11へライン72を通して母液が直接送られる。
 機械式洗浄カラム41内では、ピストンにより結晶が押し固められて結晶ベッドが形成される。そしてカラムの下部で結晶ベッドの削り取り、循環液への懸濁、加熱融解が行われる。得られた融解液を含む循環液の一部は高純度の化合物3として搬出される。残りの循環液の一部(洗浄液)は機械式洗浄カラム41に戻され、結晶ベッドと向流接触させて結晶が洗浄される。また、母液を晶析装置に返送するライン75を通して洗浄カラム内の母液は熟成槽21に返送される。このようにして化合物の精製が行われ、高純度の化合物が得られる。
 図3は、晶析装置として1つの晶析槽と1つの熟成槽とを有する装置であり、晶析槽に1つ上流の槽である熟成槽から直接母液を送液するラインが設置され、最下流の槽である晶析槽から残渣(母液)を直接排出するラインが設置されている。また、晶析槽として、槽の内容物を槽外で冷却する形式のものを使用している。以下に、図2の精製装置と異なる部分のみ説明する。
 晶析槽11は、槽11Aと槽外の冷却機構11Bとで構成され、ライン111、121で繋がっている。槽11Aからライン111で冷却機構11Bに送られた化合物の溶液(又は化合物の結晶を含むスラリー)は、冷却機構11Bで冷却され、析出した結晶を含むスラリーはライン121で槽11Aに送られる。槽11Aから化合物の結晶を含むスラリーの一部はライン111で冷却機構11Bに送られ、残りはライン51で固液分離装置31に送液される。
 図4は、晶析装置として2つの晶析槽を有する装置であり、晶析槽11に1つ上流の槽である晶析槽12から直接母液を送液するラインが設置され、最下流の槽である晶析槽11から残渣(母液)を直接排出するラインが設置されている。また、洗浄カラムが液圧式であり、結晶ベッドを削り取るための機械的機構を有する。以下に、図2の精製装置と異なる部分のみ説明する。
 精製装置に供される化合物の溶液1は晶析槽12に導入される。晶析槽11は、槽11Aと槽外の冷却機構11Bとで構成され、ライン111、121で繋がっている。槽11Aからライン111で冷却機構11Bに送られた化合物の溶液(又は化合物の結晶を含むスラリー)は、冷却機構11Bで冷却され、析出した結晶を含むスラリーはライン121で槽11Aに送られる。槽11Aから化合物の結晶を含むスラリーの一部はライン111で冷却機構11Bに送られ、残りはライン51で固液分離装置31に送液される。
 晶析槽12も同様に槽12Aと槽外の冷却機構12Bとで構成され、ライン112、122で繋がっている。槽12Aから化合物の結晶を含むスラリーの一部はライン112で冷却機構12Bに送られ、ライン122で槽12Aに返送される。
 結晶スラリーは晶析槽12からライン53で液圧式洗浄カラム42に送液される。液圧式洗浄カラム42下部では機械的機構(スクレーパー)により結晶ベッドが削り取られ、循環液に懸濁させながら抜き出されて加熱融解され、得られた融解液を含む循環液の一部は高純度の化合物3として搬出される。残りの循環液の一部(洗浄液)は液圧式洗浄カラム42に戻され、結晶ベッドと向流接触させて結晶が洗浄される。
 図5は、晶析装置として2つの晶析槽と1つの熟成槽とを有する装置であり、3つの槽の間に1つ上流の槽から直接母液を送液するラインが設置され、最下流の槽から残渣(母液)を直接排出するラインが設置されている。以下に、図2の精製装置と異なる部分のみ説明する。
 冷却機構が設置された晶析槽11で冷却され、析出した結晶を含むスラリーはライン51で固液分離装置31に送られる。固液分離装置31ではスラリーが母液と濃縮された結晶スラリーとに分離され、濃縮された結晶スラリーはライン52で隣の晶析槽12に送られ、母液はライン61で晶析槽11に戻される。また、晶析槽11からライン71で精製装置外へ残渣2が排出され、晶析槽11の液面が調整される。晶析槽12においても晶析槽11と同様の操作が行われ、晶析槽12からライン53で結晶を含むスラリーが固液分離装置32に送液される。固液分離装置32ではスラリーが母液と濃縮された結晶スラリーとに分離され、濃縮された結晶スラリーはライン54で隣の熟成槽21に送られ、母液はライン62で晶析槽12に戻される。また晶析槽12の液面調整のため、晶析槽12から晶析槽11へライン72を通して母液が直接送られる。熟成槽21で結晶を成長させた後、結晶スラリーはライン55で機械式洗浄カラム41に送液される。また熟成槽21の液面調整のため、熟成槽21と晶析槽12とをつなぐライン73を通して母液が直接熟成槽21から晶析槽12に送液される。
 図6は、晶析装置として3つの晶析槽と1つの熟成槽とを有する装置であり、4つの槽の間に1つ上流の槽から直接母液を送液するラインが設置され、最下流の槽から残渣(母液)を直接排出するラインが設置されている。また、洗浄カラムが液圧式であり、結晶ベッドを削り取るための機械的機構を有する。以下に、図5の精製装置と異なる部分のみ説明する。
 精製装置に供される化合物の溶液1は晶析槽13に導入される。最下流から2番目の槽である晶析槽12からライン53で結晶を含むスラリーが固液分離装置32に送液される。固液分離装置32ではスラリーが母液と濃縮された結晶スラリーとに分離され、濃縮された結晶スラリーはライン54で隣の晶析槽13に送られ、母液はライン62で晶析槽12に戻される。また晶析槽12の液面調整のため、晶析槽12から晶析槽11へライン72を通して母液が直接送られる。晶析槽13においても晶析槽12と同様の操作が行われ、晶析槽13からライン55で結晶を含むスラリーが固液分離装置33に送液される。固液分離装置33ではスラリーが母液と濃縮された結晶スラリーとに分離され、濃縮された結晶スラリーはライン56で隣の熟成槽21に送られ、母液はライン63で晶析槽13に戻される。また晶析槽13の液面調整のため、晶析槽13から晶析槽12へライン73を通して母液が直接送られる。熟成槽21で結晶を成長させた後、結晶スラリーはライン57で液圧式洗浄カラム42に送液される。また熟成槽21の液面調整のため、熟成槽21と晶析槽13とをつなぐライン74を通して母液が直接熟成槽21から晶析槽13に送液される。
 液圧式洗浄カラム42下部では機械的機構(スクレーパー)により結晶ベッドが削り取られ、循環液に懸濁させながら抜き出されて加熱融解され、得られた融解液を含む循環液の一部は高純度の化合物3として搬出される。残りの循環液の一部(洗浄液)は液圧式洗浄カラム42に戻され、結晶ベッドと向流接触させて結晶が洗浄される。
 図7は、晶析装置として2つの晶析槽と1つの熟成槽とを有する装置であり、3つの槽の間に1つ上流の槽から固液分離装置を介して母液を送液するラインが設置され、最下流の槽から固液分離装置を介して残渣を排出するラインが設置されている。以下に、図5の精製装置と異なる部分のみ説明する。
 図7の晶析槽11には、直接残渣を排出するラインに代えて、晶析槽内のスラリーから残渣を分離するための固液分離装置33及び固液分離装置33を介して残渣を排出等するためのラインが設置され、晶析槽11から取り出したスラリーがライン81で固液分離装置33に送られ、固液分離装置33で分離された残渣2がライン91で精製装置外へ排出され、残りの濃縮された結晶スラリーはライン82で晶析槽11に戻され、晶析槽11の液面が調整される。
 晶析槽12には、晶析槽11に直接母液を送液するラインに代えて、固液分離装置34及び固液分離装置34を介して晶析槽11に母液を送液等するためのラインが設置され、晶析槽12から取り出したスラリーがライン83で固液分離装置34に送られ、固液分離装置34で分離された母液が液面調整のためにライン92で晶析槽11へ送られ、残りの濃縮された結晶スラリーはライン84で晶析槽12に戻される。
 熟成槽21には、晶析槽12に直接母液を送液するラインに代えて、固液分離装置35及び固液分離装置35を介して晶析槽12に母液を送液等するためのラインが設置され、熟成槽21から取り出したスラリーがライン85で固液分離装置35に送られ、固液分離装置35で分離された母液が液面調整のためにライン93で晶析槽12へ送られ、残りの濃縮された結晶スラリーはライン86で熟成槽21に戻される。
 洗浄カラム43は液圧式であり、結晶ベッドを削り取るための機械的機構を有さないものである。
 図8は、晶析装置として2つの晶析槽と1つの熟成槽とを有する装置であり、2番目の晶析槽から最下流(1番目)の晶析槽に固液分離装置を介して母液を送液するラインと、最下流の槽から固液分離装置を介して残渣を排出するラインが設置され、熟成槽から2番目の晶析槽へ直接母液を送液するラインが設置されている装置であって、2番目の晶析槽から取り出したスラリーから母液を分離して最下流の晶析槽へ送るための固液分離装置、及び、最下流の晶析槽から精製装置外に排出する残渣を分離するための固液分離装置を、それぞれ、1つ上流の槽へスラリーを送液するラインに設けられている固液分離装置と共用(兼用)したものである。また、晶析槽として、槽の内容物を槽外で冷却する形式のものを使用している。以下に、図7の精製装置と異なる部分のみ説明する。
 図8の装置では、晶析槽11は、槽11Aと槽外の冷却機構11Bとで構成され、ライン111、121で繋がっている。槽11Aからライン111で冷却機構11Bに送られた化合物の溶液(又は化合物の結晶を含むスラリー)は、冷却機構11Bで冷却され、析出した結晶を含むスラリーはライン121で槽11Aに送られる。槽11Aから化合物の結晶を含むスラリーの一部はライン111で冷却機構11Bに送られ、残りはライン51で固液分離装置31に送液される。晶析槽12も同様に槽12Aと槽外の冷却機構12Bとで構成され、ライン112、122で繋がっている。槽12Aから化合物の結晶を含むスラリーの一部はライン112で冷却機構12Bに送られ、残りはライン53で固液分離装置32に送液される。
 また図8の装置では、槽11Aから化合物の結晶を含むスラリーの一部はライン51で固液分離装置31に送られる。固液分離装置31ではスラリーが母液と濃縮された結晶スラリーとに分離され、濃縮された結晶スラリーはライン52で隣の槽12Aに送られる。固液分離装置31で分離された母液のうち一部はライン61で槽11Aに戻され、残部はライン61に接続された追加ライン101で精製装置外へ排出される。槽12Aでも同様に、化合物の結晶を含むスラリーの一部はライン53で固液分離装置32に送られる。固液分離装置32ではスラリーが母液と濃縮された結晶スラリーとに分離され、濃縮された結晶スラリーはライン54で隣の熟成槽21に送られる。固液分離装置32で分離された母液のうち一部はライン62で晶析槽12に戻され、残部はライン62に接続された追加ライン102で槽11Aに送られる。
 図8の精製装置では、ライン51→固液分離装置31→ライン61、101が図7の装置におけるライン81→固液分離装置33→ライン82、91に対応し、固液分離装置33を設置する代わりに、上流の槽へスラリーを送液するラインに設けられている固液分離装置31を共用(兼用)している。同様に、ライン53→固液分離装置32→ライン62、102が図7の装置におけるライン83→固液分離装置34→ライン84、92に対応し、固液分離装置34を設置する代わりに、上流の槽へスラリーを送液するラインに設けられている固液分離装置32を共用(兼用)している。
 図8の装置では、図7の装置の、熟成槽21から固液分離装置35を介して母液を晶析槽12へ送るラインに代えて、熟成槽21から母液を直接槽12Aに送るライン73を有する。
(易重合性化合物の精製方法)
 本発明はまた、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する精製装置を用いた易重合性化合物の精製方法であって、該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、該精製方法は、該ラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含むことを特徴とする易重合性化合物の精製方法でもある。
 本発明の精製方法により、易重合性化合物を効率よくかつ高品質で精製することができる。
 本発明の精製方法における好ましい形態は、上述した本発明の製造方法における好ましい形態と同様である。
(本発明の精製装置)
 本発明は、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する、易重合性化合物の精製装置であって、該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、該ラインは、易重合性化合物の結晶を含むスラリーを送液するためのものである易重合性化合物の精製装置でもある。
 上記ラインは、上記曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するものであれば特に限定されないが、晶析槽又は熟成槽と、洗浄カラムとを接続するラインであることが好ましい。
 すなわち、本発明の精製装置において、上記ラインは、晶析槽又は熟成槽と、洗浄カラムとを接続するラインであり、易重合性化合物の結晶を含むスラリーを、晶析槽又は熟成槽から洗浄カラムに送液するためのものであることが好ましい。
 上記ラインや、本発明の精製装置が含むその他の装置としては、上述したものを好適に使用できる。
 上記晶析槽は、冷却機構を備えたものとすることができ、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーを冷却して結晶を析出させ、結晶を生成させることができるものである限り特に制限されない。なお、槽自体に冷却ジャケットが付属しており、槽内を直接冷却して結晶を生成する方式(図2、5、6、7参照)や、冷却機構が槽と分離されており、配管により接続して循環しながら冷却し、結晶を生成する方式(図3、4、8参照)に大別される。
 冷却機構が槽と分離されている形式での冷却機構は、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーを冷却して結晶を析出させることができるものである限り特に制限されるものではないが、伝熱面積を大きく確保できる冷却円板型晶析器(Cooling Disc Crystallizer)、掻取式熱交換器(Scraped Surface Heat Exchanger)、Votator型熱交換器等を用いることが好ましい。
 上記晶析槽での晶析温度は、上述した晶析する工程における温度とすることができる。
 本発明の精製装置は、上記晶析槽及び/熟成槽を有するものであり、1つ又は複数の槽を有することができる。本発明の精製装置が複数の槽(1番目の槽を下流、N番目の槽を上流として1~N番の槽)を有する場合、これら複数の槽は、直列に接続されていることが好ましい。この場合、本発明の精製装置は、通常、所望により固液分離装置を介して、槽から槽へと易重合性化合物の結晶を含むスラリーを送液するためのラインを有する。また、この場合、本発明の精製装置は、少なくとも1つの槽に、易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーを供給するためのラインを有する。
 また本発明の精製装置は、上述したように、晶析槽及び/熟成槽を有するものであればよく、熟成槽を有していてもよく、有していなくてもよいが、熟成槽を有することが好ましい。本発明において熟成槽は、化合物の結晶を成長させる槽である。結晶を成長させてなるべく結晶形状が略均一な結晶としたうえで洗浄カラムに送液することで、洗浄カラムで効率的に不純物を除くことができ、より高純度の化合物を高い収率で得ることが可能となる。したがって、洗浄カラムに送液する槽、すなわち、N番目の槽が熟成槽であることが好ましい。
 本発明の精製装置は、熟成槽から化合物の結晶を含むスラリーを洗浄カラムに送液するためのラインを有することが最も好ましい。
 上記熟成槽は、槽内で易重合性化合物の結晶を懸濁状態で保持できるものであれば特に制限されない。一定時間結晶を保持することで、オストワルド熟成により細かな結晶が融解し、大きな結晶が更に成長し、結晶径分布が狭くなる。これにより、高品質の結晶を得ることができ、このような結晶を次工程の液圧式洗浄カラム等での精製工程に供することで、液圧式洗浄カラムでの精製効率をより向上させることができる。
 上記熟成槽内の温度は、上述した晶析する工程における温度とすることができる。
 上記熟成槽は、通常、底面付近に、易重合性化合物の結晶を含むスラリーを熟成槽から抜き出すための抜き出し口を備える。
 上記晶析槽又は熟成槽は、その大きさは特に限定されないが、例えば、その内径が100~50000mmであることが好ましい。またその高さが1000~100000mmであることが好ましい。
 本発明の精製装置は、易重合性化合物含有ガスを捕集して易重合性化合物を含む溶液を得るための吸収塔、及び、該吸収塔から上記晶析槽又は上記熟成槽へ易重合性化合物を含む溶液を送液するためのラインを更に有していても良い。
 上記吸収塔は、反応器により得られた反応生成物である易重合性化合物含有ガスを、重合防止剤を溶解させた水中に吸収させることで、易重合性化合物を含む溶液を得ることができるものである。
 上記吸収塔から上記晶析槽又は熟成槽へ易重合性化合物を含む溶液を送液するためのラインは、その途中に、中間タンク、イオン交換樹脂を充填した樹脂槽、軽沸蒸留のための蒸留装置等が備えられていても構わない。なお、上述したように、易重合性化合物が(メタ)アクリル酸である場合、軽沸蒸留で除去される軽沸成分としては、例えば、アクロレイン、酢酸、水等が挙げられる。
 本発明の精製装置は、連続式の精製工程を行うことができるものであることが好ましく、例えば、本発明に係る槽の後段としての洗浄カラム(好ましくは、結晶を強制的に搬送する洗浄カラム)を更に含む。
 また本発明の精製装置は、洗浄カラムから、結晶を含む循環スラリーを抜き出すためのライン、及び、抜き出した循環スラリーに含まれる結晶を融解する設備を含んでいても良い。
 結晶は、洗浄カラムの下部に形成された結晶床由来である。結晶の抜き出しは、例えば、洗浄カラム内の結晶床から結晶を抜き出す機構を用いて行うことができる。
 なお、結晶の抜き出しでは、通常、循環液も共に抜き出されることになり、結晶を含む循環スラリーとして抜き出され、融解する工程に供給される。
 本発明の精製装置は、上記洗浄カラムにおける結晶抜き出し口と融解する設備とを接続するライン(抜き出しライン)、及び、融解する設備と上記洗浄カラムに設けられた、抜き出した結晶の融解液を含む循環液の返送口とを接続する返送ラインを含んでいても良い。これらのラインと、上記洗浄カラム内の上記返送口と上記結晶抜き出し口とを接続する箇所は、循環液が循環している。この循環経路をメルトループとも言う。
 上記融解する設備としては、加熱器を使用できる。加熱器としては、結晶を含むスラリーに効率的に熱を伝える構造、例えば、垂直多管式熱交換器、水平多管式熱交換器、二重管式熱交換器、スパイラル熱交換器、プレート熱交換器、電気ヒーター等が挙げられる。当該加熱器は、メルトループ中に設けられ、循環スラリー(融解後は循環液)はメルトループ中に設けられたポンプによって循環する強制循環式であることが好ましい。
 本発明の精製装置は、更に、上記返送ラインと接続された、上記洗浄カラムから製品を搬出するためのラインを有するものであってもよい。
 本発明の精製装置は、更に、上述したように、母液を、上流(後段)側の槽又は装置から、下流(前段)側の槽又は装置に返送するためのラインを有していても構わない。
 また本発明の精製装置は、上記スラリーの送液量や、上記母液の返送量を制御する機構を更に含んでいてもよい。該制御機構としては、例えば、各種ラインに取り付けたバルブ等が挙げられる。
 本発明の精製装置は、その他の精製装置に一般的に用いられる装置を適宜含んでいてもよい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記の実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 なお、以下ことわりのない場合、「%」は「質量%」を、「部」は「質量部」をそれぞれ示すものとする。
(ガスクロマトグラフィー・液体クロマトグラフィーの測定機器)
 ガスクロマトグラフィー:島津製作所製GC-2014
 高速液体クロマトグラフィー:島津製作所製LC-20AD HPLCユニット
を用いて、フルフラールの測定を行った。
(アクリル酸水溶液の入手方法)
 国際公開第2010/032665号に記載の方法に従って、プロピレンを接触気相酸化してアクリル酸含有ガスを得、得られたアクリル酸含有ガスを吸収塔で処理することにより、アクリル酸水溶液を得た。
(供給スラリーの入手方法)
 内径650mmの晶析槽に、アクリル酸水溶液を供給した。晶析槽の周壁に備えられたジャケットに冷媒を供給し、間接的に冷却することによって、晶析槽の内面に付着した結晶を、晶析槽の内部に備えられたスクレーパーで掻き取り、結晶を含むスラリー(供給スラリー)を調製した。
(スラリーの精製方法)
 上記供給スラリーを精製する洗浄カラムとして、液圧式洗浄カラムを用いた。上記供給スラリーを下記供給ラインにより送液して洗浄カラムに供給し、該供給スラリーの母液を洗浄カラムに設置されたフィルターから抜き出しつつ、カラム内に形成された結晶床を液圧によりカラム下部に移動させ、メルトループにて該結晶を融解させることで、製品を得た。
<精製装置・実施条件>
 用意した上記晶析槽と上記洗浄カラムをライン内径25mmの供給ラインで接続し、該供給ラインは3つの曲部を有し、該曲部がなす角度はいずれも90°とした。該晶析槽にて調製した供給スラリーを、スラリーの結晶濃度11.0質量%、スラリーの送液温度10.5℃の条件で該供給ラインにより送液して該洗浄カラムに供給し、該供給スラリーから製品を得た。また、該供給ラインは加温機構としてジャケットを備えており、該ジャケットには15℃に設定した熱媒を導入した。
<実施例1>
 供給ラインにおける全ての曲部の曲率半径Rとライン内径Dの比R/Dを5、供給スラリーの線速を1.5m/sに設定し、製品としてアクリル酸を得た。製品中のフルフラールの濃度、フルフラール比、及び配管の閉塞状況を表1に示す。
<実施例2、3>
 供給スラリーの線速を表1に記載のように変更した以外は、実施例1と同様に製品としてアクリル酸を得た。製品中のフルフラールの濃度、フルフラール比、及び配管の閉塞状況を表1に示す。
<実施例4>
 供給ラインにおける全ての曲部の曲率半径Rとライン内径Dの比R/Dを10、供給スラリーの線速を1.8m/sに変更した以外は、実施例1と同様に製品としてアクリル酸を得た。製品中のフルフラールの濃度、フルフラール比、及び配管の閉塞状況を表1に示す。
<実施例5>
 供給スラリーの線速を表1に記載のように変更した以外は、実施例1と同様に製品としてアクリル酸を得た。製品中のフルフラールの濃度、フルフラール比、及び配管の閉塞状況を表1に示す。
<実施例6>
 供給スラリーの結晶濃度を表1に記載のように変更した以外は、実施例1と同様に製品としてアクリル酸を得た。配管の閉塞状況を表1に示す。
<比較例1>
 供給ラインにおける全ての曲部の曲率半径Rとライン内径Dの比R/Dを3、供給スラリーの線速を1.8m/sに変更した以外は、実施例1と同様に製品としてアクリル酸を得た。製品中のフルフラールの濃度、フルフラール比、及び配管の閉塞状況を表1に示す。
<実施例7>
 供給スラリーの線速を表1に記載のように変更した以外は、実施例1と同様に製品としてアクリル酸を得た。製品中のフルフラールの濃度、フルフラール比、及び配管の閉塞状況を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1(実施例2、4、比較例1)に示したように、R/Dが小さく(4以下に)なると、製品中のフルフラール濃度が上昇し、製品の純度が低下することが分かる。また、R/Dを大きくしても5以上であれば製品中のフルフラール濃度は、ほぼ一定となることが分かる。したがって、上述したように、曲率半径Rとライン内径Dの比R/Dは10以下であることが好ましい。R/Dを10以上としても、精製装置の規模が大きくなる一方で更なる高品質のアクリル酸の製造は望めないことが分かる。
 なお、表1(実施例1、3、5、7)の結果から、少なくとも供給スラリーの線速が特定の範囲内(1.5m/s以上、4.0m/s以下)で、フルフラール濃度が低い高品質な製品を効率よく得ることができることが分かる。
 また表1(実施例1、6)の結果から、少なくとも供給スラリーの結晶濃度が特定の範囲内(1質量%以上、40質量%以下)で、精製装置の配管の曲部における閉塞を充分に防止できることが分かる。なお、一般的にスラリーの結晶濃度が低くなれば閉塞し難くなるため、実施例1で示した供給スラリーの結晶濃度11.0質量%以下では、配管の閉塞に関して問題がないことが分かる。
 上記の結果より、易重合性化合物の製造方法が、晶析槽等の槽と、洗浄カラムとを有する精製装置を用い、当該槽及び/又は洗浄カラムと接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含むものであれば、高品質な製品を得ることができ、また、結晶によってラインが閉塞することも充分に防止でき、効率よく高品質な製品を得ることができることが分かった。なお、上記の製造方法により高品質な製品を得ることができるのは、上記ライン内において、偏った結晶成長が生じたり、結晶が破砕されたりして、結晶の粒度分布が広がることを充分に防止でき、洗浄カラムにおいて結晶形状が略均一な結晶床を形成でき、その洗浄性が向上するためであると考えられる。
 1:易重合性化合物を含む溶液
 2:残渣
 3:高純度の易重合性化合物
 11、12:冷却機構を有する晶析槽
 11A:(最下流の晶析槽〔1番目の晶析槽〕を構成する)槽
 11B、12B:(槽外の)冷却機構
 12A:(2番目の晶析槽を構成する)槽
 21:熟成槽
 31~35:固液分離装置
 41:機械式洗浄カラム
 42:液圧式洗浄カラム(結晶ベッドを削り取るための機械的機構を有するもの)
43:液圧式洗浄カラム(結晶ベッドを削り取るための機械的機構を有さないもの)
51~57:下流の槽から上流の槽又は洗浄カラムへスラリーを送液するライン
 61~63:スラリーから固液分離装置で分離した母液を元の槽へ戻すライン
 71:最下流の槽から残渣(母液)を直接精製装置外へ排出するライン
72~74:上流の槽から1つ下流の槽へ母液を直接送液するライン
 75:洗浄カラムから母液を熟成槽に返送するライン
 81~86:槽から取り出したスラリーから固液分離装置で濃縮された結晶を含むスラリーに分離し、元の槽に戻すライン
 91:槽から取り出したスラリーから固液分離装置で分離した残渣(母液)を精製装置外へ排出するライン
 92、93:槽から取り出したスラリーから固液分離装置で分離した母液を1つ下流の槽へ送液するライン
 101:最下流の槽から取り出したスラリーから固液分離装置で分離した母液の一部を精製装置外へ排出するための追加ライン
 102:2番目の槽から取り出したスラリーから固液分離装置で分離した母液の一部を最下流の槽へ送液するための追加ライン
 111、112、121、122:槽の内容物を槽外で冷却する形式の晶析槽の槽と冷却機構とをつなぐライン
 D:ライン内径
 R:曲率半径

 

Claims (12)

  1.  易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する精製装置を用いた易重合性化合物の製造方法であって、
     該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、
     該製造方法は、該ラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含むことを特徴とする易重合性化合物の製造方法。
  2.  前記ラインは、晶析槽又は熟成槽と、洗浄カラムとを接続するラインであり、
     前記送液する工程は、該ラインにより、易重合性化合物の結晶を含むスラリーを、晶析槽又は熟成槽から洗浄カラムに送液することを特徴とする請求項1に記載の易重合性化合物の製造方法。
  3.  前記送液する工程は、スラリーの線速が1.5m/s以上、4.0m/s以下であることを特徴とする請求項1又は2に記載の易重合性化合物の製造方法。
  4.  前記送液する工程は、スラリーの結晶濃度が1質量%以上、40質量%以下であることを特徴とする請求項1~3のいずれかに記載の易重合性化合物の製造方法。
  5.  前記洗浄カラムは、液圧式洗浄カラムであることを特徴とする請求項1~4のいずれかに記載の易重合性化合物の製造方法。
  6.  前記ラインは、加温機構を備え、
     前記送液する工程は、スラリーの温度が1℃以上、50℃以下であることを特徴とする請求項1~5のいずれかに記載の易重合性化合物の製造方法。
  7.  前記製造方法は、原料から易重合性化合物含有ガスを得る工程、及び、
     易重合性化合物含有ガスから易重合性化合物を含む溶液を得る工程を含むことを特徴とする請求項1~6のいずれかに記載の易重合性化合物の製造方法。
  8.  前記易重合性化合物は、(メタ)アクリル酸であることを特徴とする請求項1~7のいずれかに記載の易重合性化合物の製造方法。
  9.  前記(メタ)アクリル酸は、プロパン、プロピレン、アクロレイン、イソブテン、メタクロレイン、酢酸、乳酸、イソプロパノール、1,3-プロパンジオール、グリセロール及び3-ヒドロキシプロピオン酸からなる群より選択される少なくとも1種を原料とすることを特徴とする請求項8に記載の易重合性化合物の製造方法。
  10.  易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する精製装置を用いた易重合性化合物の精製方法であって、
     該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、
     該精製方法は、該ラインにより、易重合性化合物の結晶を含むスラリーを送液する工程を含むことを特徴とする易重合性化合物の精製方法。
  11.  易重合性化合物を含む溶液又は易重合性化合物の結晶を含むスラリーの母液から易重合性化合物の結晶を生成させる晶析槽及び/又は易重合性化合物の結晶を成長させる熟成槽と、洗浄カラムとを有する、易重合性化合物の精製装置であって、
     該精製装置は、更に、晶析槽、熟成槽、及び、洗浄カラムからなる群より選択される少なくとも1種と接続された、曲率半径Rとライン内径Dの比R/Dが4を超え、10以下である曲部を有するラインを有し、
     該ラインは、易重合性化合物の結晶を含むスラリーを送液するためのものであることを特徴とする易重合性化合物の精製装置。
  12.  前記ラインは、晶析槽又は熟成槽と、洗浄カラムとを接続するラインであり、易重合性化合物の結晶を含むスラリーを、晶析槽又は熟成槽から洗浄カラムに送液するためのものであることを特徴とする請求項11に記載の易重合性化合物の精製装置。

     
PCT/JP2022/022139 2021-06-02 2022-05-31 易重合性化合物の製造方法 WO2022255364A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22816110.5A EP4349807A1 (en) 2021-06-02 2022-05-31 Method for producing easily polymerizable compound
US18/566,127 US20240254070A1 (en) 2021-06-02 2022-05-31 Method for producing easily polymerizable compound
CN202280039556.4A CN117412946A (zh) 2021-06-02 2022-05-31 易聚合性化合物的制造方法
JP2023525859A JPWO2022255364A1 (ja) 2021-06-02 2022-05-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-093027 2021-06-02
JP2021093027 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255364A1 true WO2022255364A1 (ja) 2022-12-08

Family

ID=84323424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022139 WO2022255364A1 (ja) 2021-06-02 2022-05-31 易重合性化合物の製造方法

Country Status (6)

Country Link
US (1) US20240254070A1 (ja)
EP (1) EP4349807A1 (ja)
JP (1) JPWO2022255364A1 (ja)
CN (1) CN117412946A (ja)
TW (1) TW202313167A (ja)
WO (1) WO2022255364A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338520A (ja) 2001-05-14 2002-11-27 Nippon Shokubai Co Ltd 不飽和カルボン酸エステルの製造方法
JP2005509009A (ja) * 2001-11-15 2005-04-07 ビーエーエスエフ アクチェンゲゼルシャフト 結晶を母液中の結晶の懸濁液から精製分離する方法
JP2007182437A (ja) 2005-12-06 2007-07-19 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2008536893A (ja) * 2005-04-21 2008-09-11 ビーエーエスエフ ソシエタス・ヨーロピア 水圧洗浄カラムを調節する方法
WO2010032665A1 (ja) 2008-09-22 2010-03-25 株式会社日本触媒 固定床反応器、およびそれを用いたアクリル酸の製造方法
WO2011001894A1 (ja) * 2009-07-03 2011-01-06 株式会社日本触媒 (メタ)アクリル酸の晶析装置および(メタ)アクリル酸の晶析方法
WO2011001887A1 (ja) * 2009-06-30 2011-01-06 株式会社日本触媒 アクリル酸の晶析装置およびこれを用いたアクリル酸の晶析方法
JP2011213735A (ja) * 2011-07-19 2011-10-27 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2013507427A (ja) * 2009-10-16 2013-03-04 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
JP2014065705A (ja) * 2012-09-06 2014-04-17 Nippon Shokubai Co Ltd (メタ)アクリル酸の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338520A (ja) 2001-05-14 2002-11-27 Nippon Shokubai Co Ltd 不飽和カルボン酸エステルの製造方法
JP2005509009A (ja) * 2001-11-15 2005-04-07 ビーエーエスエフ アクチェンゲゼルシャフト 結晶を母液中の結晶の懸濁液から精製分離する方法
JP2008536893A (ja) * 2005-04-21 2008-09-11 ビーエーエスエフ ソシエタス・ヨーロピア 水圧洗浄カラムを調節する方法
JP2007182437A (ja) 2005-12-06 2007-07-19 Nippon Shokubai Co Ltd アクリル酸の製造方法
WO2010032665A1 (ja) 2008-09-22 2010-03-25 株式会社日本触媒 固定床反応器、およびそれを用いたアクリル酸の製造方法
WO2011001887A1 (ja) * 2009-06-30 2011-01-06 株式会社日本触媒 アクリル酸の晶析装置およびこれを用いたアクリル酸の晶析方法
WO2011001894A1 (ja) * 2009-07-03 2011-01-06 株式会社日本触媒 (メタ)アクリル酸の晶析装置および(メタ)アクリル酸の晶析方法
JP2013507427A (ja) * 2009-10-16 2013-03-04 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
JP2011213735A (ja) * 2011-07-19 2011-10-27 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2014065705A (ja) * 2012-09-06 2014-04-17 Nippon Shokubai Co Ltd (メタ)アクリル酸の製造方法

Also Published As

Publication number Publication date
US20240254070A1 (en) 2024-08-01
JPWO2022255364A1 (ja) 2022-12-08
EP4349807A1 (en) 2024-04-10
CN117412946A (zh) 2024-01-16
TW202313167A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
WO2022255364A1 (ja) 易重合性化合物の製造方法
WO2022255373A1 (ja) 精製装置に用いられる槽
EP4249096A1 (en) Method for purifying compound
US20240025835A1 (en) Method for producing compound
WO2022255371A1 (ja) 易重合性化合物の製造方法
EP3183228B1 (en) Process for the purification of acrylic acid
EP2725006A1 (en) Process for producing (meth)acrylic acid
EP4349444A1 (en) Purification apparatus
US20040250746A1 (en) Ring crystallizer method and apparatus
US20240254071A1 (en) Tank used in refining device
US20230373897A1 (en) Purification device
US20240010600A1 (en) Purification device
WO2024128153A1 (ja) 結晶粒を含むスラリーを容器から排出する方法
WO2022054842A1 (ja) 化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525859

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039556.4

Country of ref document: CN

Ref document number: 18566127

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347088662

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022816110

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022816110

Country of ref document: EP

Effective date: 20240102