WO2022054842A1 - 化合物の製造方法 - Google Patents

化合物の製造方法 Download PDF

Info

Publication number
WO2022054842A1
WO2022054842A1 PCT/JP2021/033038 JP2021033038W WO2022054842A1 WO 2022054842 A1 WO2022054842 A1 WO 2022054842A1 JP 2021033038 W JP2021033038 W JP 2021033038W WO 2022054842 A1 WO2022054842 A1 WO 2022054842A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning column
mother liquor
hydraulic cleaning
crystals
nozzle
Prior art date
Application number
PCT/JP2021/033038
Other languages
English (en)
French (fr)
Inventor
隼人 木村
真志 迎
敬幸 松田
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2022547630A priority Critical patent/JPWO2022054842A1/ja
Priority to KR1020237009491A priority patent/KR20230054423A/ko
Priority to CN202180061618.7A priority patent/CN116057033A/zh
Priority to US18/025,527 priority patent/US20240010598A1/en
Priority to EP21866801.0A priority patent/EP4212505A1/en
Publication of WO2022054842A1 publication Critical patent/WO2022054842A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/004Fractional crystallisation; Fractionating or rectifying columns
    • B01D9/0045Washing of crystals, e.g. in wash columns
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to a method for producing a compound. More specifically, the present invention relates to a method for producing a compound, a method for purifying a compound, and a purification apparatus.
  • a washing column such as a hydraulic washing column (HWC [Hydralic wash volume]) may be used.
  • HWC Hydraulic wash volume
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method for safely and stably obtaining a high-quality product.
  • the present inventors have studied a method for producing a compound and focused on using a hydraulic cleaning column having high cleaning efficiency in the purification of the compound. Then, the mother liquor is extracted from the slurry containing the crystals in the hydraulic cleaning column using a filter and recovered, and a liquid having a temperature higher than the temperature of the mother liquor immediately after the extraction is flowed to a nozzle provided in the hydraulic cleaning column.
  • the present invention has been reached by finding that the apparatus can be operated more safely and stably by preventing coagulation.
  • the present invention is a method for producing a compound, which is a step of supplying a slurry containing crystals of the compound to a hydraulic cleaning column, and extracting a circulating slurry containing crystals from the hydraulic cleaning column. , The step of melting the crystals contained in the extracted circulating slurry, the step of extracting the mother liquor from the slurry containing the crystals in the hydraulic cleaning column using a filter, and the step of extracting the mother liquor immediately after being extracted in the step of extracting the mother liquor.
  • a liquid containing a temperature or higher is supplied to the hydraulic cleaning column by a nozzle provided in the hydraulic cleaning column (a nozzle provided in the return port of the circulating liquid containing the molten liquid obtained in the melting step and a slurry containing crystals).
  • This is a method for producing a compound, which comprises a step of introducing a hydraulic cleaning column from the outside into a pipe).
  • FIG. 1 is a schematic diagram illustrating a usage state of the purification apparatus of the present invention.
  • the present invention is a method for producing a compound, wherein the production method is a step of supplying a slurry containing crystals of a compound to a hydraulic cleaning column, and a circulating slurry containing crystals is extracted from the hydraulic cleaning column and extracted.
  • a pipe provided with a nozzle provided in the hydraulic cleaning column (a nozzle provided at the return port of the circulating liquid containing the molten liquid obtained in the melting step and a pipe containing a slurry containing crystals) to supply the liquid of the above to the hydraulic cleaning column.
  • This is a method for producing a compound, which comprises a step of introducing from the outside of a hydraulic cleaning column (excluding).
  • the nozzle provided in the hydraulic cleaning column includes a nozzle for instrumentation equipment, a sampling nozzle, a nozzle for a pressure adjusting valve, a nozzle for inserting an internal tube, and a nozzle for emergency charging. It is preferably at least one selected from the group. For example, if the nozzle for instrumentation equipment is coagulated or blocked, an erroneous instruction may be given to the instrument, resulting in an unintended and dangerous operating state. Further, if the sampling nozzle or the like is solidified or blocked, the internal state cannot be accurately grasped, and the quality or the like of the obtained product (compound) may not be controlled.
  • the method for producing a compound of the present invention can sufficiently prevent coagulation / blockage of various nozzles, and by sufficiently preventing coagulation / blockage, the state (temperature, pressure, etc.) inside the hydraulic cleaning column can be correctly corrected. It can be grasped and safer driving becomes possible.
  • the supply step and the melting step are basically performed in this order for the purification target (for example, as shown in FIG. 1, crystals are formed.
  • the slurry 11a to be contained is supplied into the crystal chamber 15 of the hydraulic cleaning column 1 via the supply line 11 and the pipe 4, the crystals are contained from the extraction port 20 of the circulating slurry at the bottom of the hydraulic cleaning column 1.
  • the circulating slurry is extracted and is melted by the equipment 22 that melts the crystals contained in the circulating slurry through the extraction line 21 that connects the extraction port 20 of the circulating slurry and the equipment 22 that melts.
  • At least a part of the circulating fluid containing the melting fluid obtained by melting in 22 is withdrawn from the purification apparatus as the product 23a through the product extraction line 23.
  • the remaining circulating fluid is melted with the equipment 22 and the above-mentioned return. It may be returned into the hydraulic cleaning column 1 through the return line 24 connected to the port 25).
  • the slurry containing the crystals supplied in the crystal chamber 15 is filtered using the filter 2, the mother liquor (filtrate) is extracted using the pipe 3 connected to the filter 2, and the slurry is collected in the mother liquor collection chamber 14. After that, this mother liquor can be collected and reused.
  • each step is usually performed at the same time when viewed as a whole refining apparatus.
  • compound refers to a compound obtained by the production method of the present invention, and does not refer to a raw material, a by-product, or a solvent in the production method of the present invention.
  • the “compound” can be paraphrased as a "target compound” or a "target product”.
  • a liquid having a temperature higher than the temperature of the mother liquor immediately after being withdrawn in the step of extracting the mother liquor is collected by a nozzle provided in a hydraulic cleaning column (a circulating liquid containing the molten liquid obtained in the melting step). (Excluding the nozzle provided at the return port and the pipe for supplying the slurry containing crystals to the hydraulic cleaning column), the step of introducing the slurry from the outside of the hydraulic cleaning column is included.
  • a liquid having a temperature higher than the temperature of the mother liquor immediately after being withdrawn in the step of withdrawing the mother liquor is introduced into a nozzle provided in the hydraulic cleaning column to introduce the liquid in the nozzle or around the nozzle. It is possible to suppress the retention of the liquid and sufficiently prevent its coagulation.
  • the step of introducing the liquid can be rephrased as a step of introducing a liquid having a temperature higher than the temperature of the mother liquor into the hydraulic cleaning column from a nozzle provided in the hydraulic cleaning column.
  • the liquid having a temperature higher than the temperature of the mother liquor is preferably 1 ° C. or higher, more preferably 2 ° C. or higher, further preferably 3 ° C. or higher, and 5 ° C. or higher. It is particularly preferable to have.
  • the liquid having a temperature higher than the temperature of the mother liquor is preferably 40 ° C. or lower, more preferably 35 ° C. or lower, further preferably 30 ° C. or lower, and 20 ° C. or lower. It is particularly preferable to have.
  • the temperature of the liquid above the temperature of the mother liquor is higher than the temperature of the mother liquor, and the difference is preferably 40 ° C. or lower, more preferably 35 ° C. or lower, and 30 ° C. or lower.
  • the temperature is 20 ° C. or lower, and it is particularly preferable that the temperature is 20 ° C. or lower. If the temperature of the liquid introduced into the nozzle provided in the hydraulic cleaning column is lower than the temperature of the mother liquor, the effect of the present invention cannot be obtained, and if the temperature is higher than the temperature of the mother liquor by more than 40 ° C., the hydraulic pressure type is used. It may affect the operating conditions such as melting the crystals in the washing column.
  • the temperature of the liquid equal to or higher than the temperature of the mother liquor can be appropriately set according to the melting point of the compound, and can be, for example, in the range of 10 to 100 ° C.
  • the temperature of the liquid above the temperature of the mother liquor is preferably 5 ° C. or higher, more preferably 10 ° C. or higher.
  • the temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower.
  • the temperature of the mother liquor can be appropriately adjusted within the range of, for example, 0 to 80 ° C.
  • the temperature of the mother liquor is preferably 5 to 13 ° C, more preferably 7 to 11 ° C.
  • the temperature of the liquid equal to or higher than the temperature of the mother liquor is measured by measuring the temperature of the liquid immediately before being charged into the nozzle provided in the hydraulic cleaning column. Further, the temperature of the mother liquor immediately after being extracted in the step of extracting the mother liquor is measured by measuring the temperature of the mother liquor in the pipe connected to the filter.
  • the liquid having a temperature higher than the temperature of the mother liquor preferably contains the compound and / or water.
  • the content ratio of the compound in the liquid above the temperature of the mother liquor is preferably 85% by mass or more, more preferably 88% by mass or more, and further preferably 90% by mass or more.
  • the content ratio of the compound in the liquid above the temperature of the mother liquor is preferably 99% by mass or less, more preferably 98% by mass or less, and further preferably 97% by mass or less.
  • the amount of the liquid having a temperature higher than the temperature of the mother liquor to be introduced into the nozzle provided in the hydraulic cleaning column is not particularly limited, but in an industrial scale hydraulic cleaning column, for example, 3 ⁇ 10 1 per nozzle. ⁇ 1 ⁇ 10 3 kg / h.
  • the nozzles provided in the hydraulic cleaning column are instrumentation equipment nozzles, sampling nozzles, pressure adjustment valve nozzles, internal tube insertion nozzles, and emergency injection. It is preferably at least one selected from the group consisting of nozzles for use.
  • the nozzle for instrumentation equipment is a nozzle for attaching instrumentation equipment such as a thermometer (multi-point type, etc.), a pressure gauge, and an interface meter (optical type, etc.) in a hydraulic cleaning column.
  • the sampling nozzle is a nozzle used for collecting a slurry or the like in a hydraulic cleaning column.
  • the nozzle for the pressure adjusting valve is automatically or manually released when the pressure inside the hydraulic cleaning column rises, and the valve for adjusting the pressure, the safety valve, and the liquid in the hydraulic cleaning column are drained from the system.
  • the emergency charging nozzle is a nozzle for charging a polymerization inhibitor, a stabilizer, a solvent, etc. from the outside when abnormal polymerization or the like occurs inside the hydraulic cleaning column.
  • the emergency charging nozzle is, in other words, a nozzle for charging additives and / or a solvent.
  • the nozzle for inserting an intubation tube is used for inserting a pipe for transferring a slurry or the like into a hydraulic cleaning column, and has an inner diameter larger than the outer diameter of the pipe.
  • the liquid having a temperature higher than the temperature of the mother liquor contains at least a part of the mother liquor extracted in the step of extracting the mother liquor.
  • the liquid having a temperature higher than the temperature of the mother liquor preferably contains 70% by mass or more of the mother liquor extracted in the step of extracting the mother liquor, more preferably 80% by mass or more, and the mother liquor is used as it is (100% by mass). Is particularly preferred.
  • the liquid having a temperature higher than the temperature of the mother liquor preferably contains a liquid obtained by heating at least a part of the mother liquor extracted in the step of extracting the mother liquor.
  • the heating temperature may be appropriately set according to the melting point of the compound, but can be appropriately adjusted within the range of, for example, 10 to 100 ° C.
  • the heating temperature is preferably 15 ° C. or higher, more preferably 18 ° C. or higher.
  • the heating temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower.
  • the heating temperature is the temperature in the heater, and when heating using a heat medium, it is the temperature of the heat medium.
  • the heating time may be appropriately set according to the melting point of the compound. As shown in FIG. 1, at least a part of the mother liquor extracted in the step of extracting the mother liquor is transferred by the lines 16a and 16b for transferring the mother liquor, and the heaters 17a provided in the lines 16a and 16b for transferring the mother liquor. By heating with 17b, a liquid having a temperature higher than the temperature of the mother liquor can be easily obtained.
  • the nozzle provided in the hydraulic cleaning column penetrates the mother liquor collection chamber for collecting the mother liquor extracted in the step of extracting the mother liquor, and contains crystals in the hydraulic cleaning column.
  • the effect of the present invention becomes remarkable when it is connected to the crystal chamber to which the slurry is supplied.
  • the mother liquor collection chamber is usually provided at the top of the crystal chamber.
  • the nozzle provided in the hydraulic cleaning column penetrates the mother liquor collection chamber for collecting the mother liquor extracted in the process of extracting the mother liquor, and is connected to the crystal chamber to which the slurry containing crystals in the hydraulic cleaning column is supplied.
  • the mother liquor collection room is a part (room) for collecting the mother liquor extracted in the process of extracting the mother liquor.
  • the portion (room) in the hydraulic cleaning column to which the slurry containing the crystals of the compound is supplied is also referred to as a crystal chamber.
  • the pipe that supplies the slurry containing the crystals described later to the hydraulic cleaning column is, in other words, a pipe that supplies the slurry containing the crystals to the crystal chamber of the hydraulic cleaning column.
  • the slurry containing the crystals in the crystal chamber 15 of the hydraulic cleaning column 1 is filtered using the filter 2 and the pipe 3 connected to the filter 2 is used.
  • a part of the mother liquor is transferred by the lines 16a and 16b for transferring the mother liquor, heated by the heaters 17a and 17b, and then the nozzle 13a. , 13b can be introduced.
  • the nozzle 13a is a nozzle for instrumentation equipment
  • the nozzle 13b is a nozzle for a pressure adjusting valve.
  • the nozzle for the pressure adjusting valve is connected to the pressure adjusting line 19.
  • the pressure adjustment line 19 is, for example, a line in which the pressure adjustment valve opens and closes for internal pressure adjustment in conjunction with the pressure gauge, and when the pressure adjustment valve opens, the mother liquor in the column is drained. Further, the remaining mother liquor can be transferred by the line 18 and mixed with the slurry 11a containing crystals and supplied to the hydraulic washing column (in the present specification, the slurry 11a containing crystals and the remaining mother liquor are mixed. Those are also called slurries containing crystals).
  • the slurry containing the crystals of the compound is supplied to the hydraulic cleaning column.
  • the slurry containing the crystals is a suspension of the crystals of the compound and the mother liquor, in other words, the liquid portion of the slurry containing the crystals of the compound supplied to the hydraulic cleaning column is the mother liquor.
  • the slurry containing the crystals can be obtained by forming crystals in a compound-containing solution (for example, a (meth) acrylic acid aqueous solution or a crude (meth) acrylic acid solution), but the compound-containing solution is contained.
  • the solution may be prepared by itself or may be procured from another place.
  • the compound-containing solution referred to here also includes a crude compound.
  • the mass ratio of the crystals is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 5% by mass or more. More preferred.
  • the mass ratio of the crystals is preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, and particularly preferably 20% by mass or less.
  • the slurry containing crystals supplied to the hydraulic cleaning column is immediately before being supplied to the hydraulic cleaning column. Slurry containing crystals of, for example, a slurry containing crystals in a pipe that supplies the slurry containing crystals to a hydraulic cleaning column.
  • the slurry containing crystals supplied to the hydraulic cleaning column preferably contains the compound in the mother liquor.
  • the mother liquor include the above compound, an aqueous solution of the above compound, and the like.
  • the mother liquor usually contains impurities other than the above compounds and water.
  • the slurry containing crystals supplied to the hydraulic washing column preferably has a purity (mass ratio) of the compound in the mother liquor of 97% by mass or less.
  • the mass ratio of the compound in the mother liquor is more preferably 96% by mass or less.
  • the mass ratio of the compound in the mother liquor is preferably 85% by mass or more, more preferably 88% by mass or more, and further preferably 90% by mass or more.
  • the above compound preferably has a melting point of 0 to 80 ° C., more preferably 1 to 50 ° C., still more preferably 3 to 40 ° C., and particularly preferably 5 to 20 ° C. °C. Further, the above compound is preferably an easily polymerizable compound having a reactive double bond.
  • the compound is more preferably an unsaturated carboxylic acid, further preferably a (meth) acrylic acid, and particularly preferably acrylic acid.
  • (meth) acrylic acid is acrylic acid and / or methacrylic acid.
  • the mass ratio of water in the mother liquor is more preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the mass ratio of water in the mother liquor is preferably 8% by mass or less, more preferably 6% by mass or less, and further preferably 4% by mass or less.
  • the mass ratio of impurities other than the compound and water in the mother liquor is preferably 0.1% by mass or more, more preferably 0.4% by mass or more, and more preferably 0.8% by mass or more. Is more preferable.
  • the mass ratio of impurities other than the compound and water in the mother liquor is preferably 8% by mass or less, more preferably 6% by mass or less, and further preferably 4% by mass or less.
  • the mass ratio of acetic acid in the mother liquor is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.7% by mass or more. ..
  • the mass ratio of acetic acid in the mother liquor is preferably 8% by mass or less, more preferably 6% by mass or less, and further preferably 4% by mass or less.
  • the mass ratio of furfural in the mother liquor is more preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0. It is more preferably 1% by mass or more.
  • the mass ratio of furfural in the mother liquor is preferably 2% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less.
  • the feeding rate of the slurry containing crystals is not particularly limited, but in an industrial scale hydraulic cleaning column, for example, it is 0.2 ⁇ 10 3 to 4.0 ⁇ 10 5 kg / h. ..
  • the supply temperature of the slurry containing crystals can be appropriately set according to the melting point of the above-mentioned compound and the like, but can be appropriately adjusted within the range of, for example, 0 to 80 ° C.
  • the supply temperature of the slurry containing crystals is preferably 5 to 13 ° C, more preferably 6 to 12 ° C.
  • the supply temperature of the slurry containing the crystals is the temperature of the mother liquor in the slurry containing the crystals immediately before being supplied to the hydraulic cleaning column.
  • the circulating slurry containing the crystals is extracted from the hydraulic washing column, and the crystals contained in the extracted circulating slurry are melted.
  • the crystals are derived from the crystal bed formed at the bottom of the hydraulic cleaning column. Crystal extraction can be performed by using a mechanism described later for extracting crystals from the crystal bed in the hydraulic cleaning column.
  • the circulating liquid is also extracted together, and the circulating slurry is extracted as a circulating slurry containing the crystals and subjected to a step of melting.
  • the circulating liquid is extracted from the hydraulic cleaning column as a circulating slurry containing crystals, and then a part of the circulating liquid containing the melting liquid obtained in the melting step is returned to the hydraulic cleaning column. Therefore, it circulates through the hydraulic cleaning column, in other words, it flows through the circulation path passing through the hydraulic cleaning column.
  • the liquid component in the circulating slurry flowing through the circulation path is also referred to as a circulating liquid.
  • the circulating slurry is a suspension of a crystal of a compound and a circulating liquid, and flows through a circulating path.
  • the mass ratio of the crystals is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 3% by mass. % Or more is more preferable, and 5% by mass or more is particularly preferable.
  • the mass ratio of the crystals is preferably 40% by mass or less, more preferably 30% by mass or less, further preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the circulating slurry containing the crystals extracted from the hydraulic cleaning column refers to the circulating slurry containing the crystals immediately after being extracted from the hydraulic cleaning column, for example, the extraction port and melting of the circulating slurry.
  • the extraction line connecting the crystal extraction port and the melting equipment in the hydraulic cleaning column, and the return line connecting the melting equipment and the return port in the hydraulic cleaning column are a circulating slurry or a circulating liquid containing a molten liquid. Circulates. In the present specification, this circulation path is also referred to as a melt loop.
  • the extraction speed of the circulating slurry containing the crystals extracted from the hydraulic cleaning column is not particularly limited, but is, for example, 2 ⁇ 10 3 to 5 ⁇ 10 5 kg / h in an industrial scale hydraulic cleaning column.
  • the extracted crystals can be melted using a heater.
  • the heater has a structure that efficiently transfers heat to the slurry containing crystals, for example, a vertical multi-tube heat exchanger, a horizontal multi-tube heat exchanger, a double-tube heat exchanger, a spiral heat exchanger, and a plate. Examples include heat exchangers and electric heaters. It is preferable that the heater is provided in the melt loop and the circulating slurry (circulating liquid after melting) is a forced circulation type in which the circulating slurry (circulating liquid after melting) is circulated by a pump provided in the melt loop.
  • the heating temperature in the melting step may be appropriately set according to the melting point of the compound, but can be appropriately adjusted within the range of, for example, 10 to 100 ° C.
  • the heating temperature in the melting step is preferably 15 ° C. or higher, more preferably 18 ° C. or higher.
  • the heating temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower.
  • the heating temperature in the melting step is the supply temperature of the heat medium when the heat medium is supplied to the melting equipment for heating.
  • the temperature of the circulating liquid containing the melting liquid at the outlet of the melting step (melting equipment) is passed through the circulating liquid containing the melting liquid obtained by the melting step (for example, a heat exchanger or the like), and at that time. It is preferable to set the temperature to 1 to 10 ° C. higher than the melting point of the circulating liquid (circulating liquid containing the melting liquid obtained by melting the crystals in the slurry).
  • the melting time in the melting step may be appropriately determined to the extent that the crystals are sufficiently melted.
  • the production method of the present invention includes a step of extracting a mother liquor from a slurry containing crystals in the hydraulic cleaning column using a filter.
  • the production method of the present invention preferably includes a step of filtering a slurry containing crystals in a hydraulic cleaning column using a filter and extracting a mother liquor using a pipe connected to the filter.
  • the extracted mother liquor can be recycled and reused.
  • the extracted mother liquor can be used, for example, as a liquid having a temperature higher than the temperature of the mother liquor in the step of introducing the mother liquor after heating. Further, the quality of the compound can be further improved by reusing the extracted mother liquor as, for example, as at least a part of a slurry containing crystals to be supplied to a hydraulic washing column.
  • the mother liquor contained in the slurry supplied in the supply step flows downward from the top, collides with the cleaning liquid flowing upward from the bottom, is pushed back, and is extracted through the filter.
  • the material of the filter is not particularly limited, and the filter is made of a metal such as stainless steel, polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. It can be composed of a resin such as (PFA) or polyetherketone (PEK), and the latter is preferable.
  • the material of the pipe is not particularly limited, and it is preferable that the pipe is made of a metal or an alloy.
  • the mother liquor extracted in the step of extracting the mother liquor usually contains the above compound.
  • the mother liquor include a solution obtained by melting the above compound, an aqueous solution of the above compound, and the like.
  • the mother liquor usually contains impurities other than water.
  • the mother liquor extracted in the step of extracting the mother liquor means the mother liquor immediately after passing through the filter in the step of extracting the mother liquor.
  • the step of extracting the mother liquor can be appropriately performed using a pump or the like.
  • the production method of the present invention preferably includes a step of returning a part of the circulating liquid containing the melt obtained in the melting step to the hydraulic washing column.
  • the circulating fluid contains a melting fluid obtained in the melting step. That is, the crystals in the extracted circulating slurry are melted into a molten liquid, so that the suspended circulating slurry becomes a non-suspended circulating liquid.
  • the melting liquid obtained in the above melting step refers to a liquid obtained by melting in the step of melting the crystals contained in the circulating slurry extracted from the hydraulic washing column, and refers to the circulating liquid contained in the circulating slurry (the circulating liquid contained in the circulating slurry. Does not include those that were liquid components).
  • the cleaning liquid is a part of the circulating liquid returned to the hydraulic cleaning column, and after being returned to the hydraulic cleaning column, it is extracted from the outlet of the hydraulic cleaning column and recirculated in the circulation path.
  • the crystals flow in a countercurrent direction (preferably upward) in the direction of movement of the crystals through the gaps between the crystals in the crystal bed of the hydraulic cleaning column to wash the crystals in the hydraulic cleaning column.
  • the product extraction speed at which the product is extracted in the process of returning the product is 5 kg / h to 4.0 ⁇ 10 4 kg / h in an industrial-scale hydraulic cleaning column.
  • the outer wall surface of the hydraulic cleaning column may be heated by a heat medium or the like, and the temperature of the heat medium used for the heating is appropriately set depending on the substance to be handled, that is, the target compound. do it.
  • the heat medium any liquid or gas can be used, and examples thereof include water, antifreeze, methanol water (methanol aqueous solution), and gas.
  • the heat medium may be appropriately selected in consideration of the freezing point of the compound to be purified and the like.
  • the heating may be performed by heating a part of the hydraulic cleaning column with a heat medium or the like, but the heating is performed by heating substantially the entire hydraulic pressure cleaning column (jacket type). It is preferable to have.
  • the inside of the hydraulic cleaning column is basically operated under pressure (preferably within the range of 0.05 to 1.0 MPa).
  • the production method of the present invention preferably further includes a step of obtaining a slurry containing crystals of the compound from the compound-containing solution.
  • the compound-containing solution can be obtained by collecting the gas of the compound, which is a reaction product obtained by the chemical generator, by, for example, an absorption tower, and also a crude compound obtained by purifying the collected product. Included in compound-containing solutions.
  • the compound-containing solution is not limited to the one obtained by synthesizing by itself, and may be procured from another place.
  • the compound-containing solution can be cooled, for example, to obtain a slurry containing crystals of the compound.
  • the compound-containing solution contains impurities other than the compound and water.
  • the compound-containing solution is preferably a (meth) acrylic acid aqueous solution or a crude (meth) acrylic acid solution.
  • the (meth) acrylic acid aqueous solution means a solution in which (meth) acrylic acid is dissolved in water.
  • the crude (meth) acrylic acid solution is a solution composed of (meth) acrylic acid and contains impurities such as by-products during the production of (meth) acrylic acid.
  • impurities examples include acids such as propionic acid, acetic acid, maleic acid, benzoic acid and acrylic acid dimer, aldehydes such as acrolein, furfural, formaldehyde and glyoxal, acetone, methylisobutylketone, toluene and protoanemonin. And so on.
  • acids such as propionic acid, acetic acid, maleic acid, benzoic acid and acrylic acid dimer
  • aldehydes such as acrolein, furfural, formaldehyde and glyoxal
  • acetone methylisobutylketone
  • toluene and protoanemonin protoanemonin.
  • the production method further includes a step of obtaining a compound-containing solution from a raw material.
  • the step of obtaining the compound-containing solution is not particularly limited as long as the compound-containing solution can be obtained, but when the compound is (meth) acrylic acid, for example, it is described in JP-A-2007-182437 (Patent Document 1). It can be suitably carried out by a step of synthesizing acrylic acid, a step of collecting acrylic acid, or the like.
  • the raw material is selected from the group consisting of propane, propylene, acrolein, isobutene, methacrolein, acetic acid, lactic acid, isopropanol, 1,3 propanediol, glycerol, and 3-hydroxypropionic acid. It is preferable that it is at least one kind.
  • the (meth) acrylic acid and / or raw material may also be derived from a renewable raw material to produce bio-based (meth) acrylic acid.
  • impurities such as by-products are basically generated.
  • the above compound is (meth) acrylic acid, water, propionic acid, acetic acid, maleic acid, benzoic acid and the like, acrylic acid dimer acids, acrolein, furfural, formaldehyde, glyoxal and other aldehydes, acetone and methylisobutyl.
  • ketones, toluene, protoanemonin and the like are generated as impurities, high-quality products can be safely and stably obtained by purification using a hydraulic washing column according to the production method of the present invention.
  • the present invention is also a method for purifying a compound, which is a step of supplying a slurry containing crystals of a compound to a hydraulic cleaning column, extracting a circulating slurry containing crystals from the hydraulic cleaning column.
  • the above liquid is supplied to the hydraulic cleaning column by supplying a nozzle provided in the hydraulic cleaning column (a nozzle provided in the return port of the circulating liquid containing the molten liquid obtained in the melting step and a slurry containing crystals). It is also a method for purifying a compound, which comprises a step of introducing it from the outside of a hydraulic cleaning column (excluding a pipe). According to the purification method of the present invention, a slurry containing crystals can be purified safely and stably.
  • the preferred form in the purification method of the present invention is the same as the preferred form in the above-mentioned production method of the present invention.
  • the present invention is further a purification device for purifying crystals, which is a hydraulic cleaning column provided with an extraction port for a circulating slurry containing crystals and a return port for a circulating solution containing a melted solution of the extracted crystals.
  • a nozzle provided at the introduction port for introducing the liquid into the hydraulic cleaning column (a nozzle provided at the return port and a nozzle provided at the return port) are provided separately from the pipe for supplying the slurry containing crystals to the hydraulic cleaning column.
  • the nozzle provided at the introduction port is selected from the group consisting of a nozzle for instrumentation equipment, a sampling nozzle, a nozzle for a pressure adjusting valve, a nozzle for inserting an internal tube, and a nozzle for emergency charging. It is preferable that there is at least one.
  • the nozzle provided at the introduction port is preferably located on the upper surface of the hydraulic cleaning column.
  • the upper surface of the hydraulic cleaning column tends to be cold, but the nozzle provided at the introduction port is located on the upper surface of the hydraulic cleaning column, so that the liquid in the nozzle and the liquid around the nozzle stay. The effect that can be prevented and coagulation can be prevented becomes remarkable.
  • the upper surface is not particularly limited as long as it is the upper surface in the hydraulic cleaning column, and for example, in the hydraulic cleaning column, the surface facing the surface on which the crystal bed is formed can be the upper surface. Above all, it is more preferable that the nozzle provided at the introduction port is located on the uppermost surface of the hydraulic cleaning column.
  • the purification apparatus of the present invention further includes a mother liquor collection chamber for collecting the extracted mother liquor, and a nozzle provided at the introduction port penetrates the mother liquor collection chamber, and a slurry containing crystals in a hydraulic cleaning column is provided.
  • the effect of the present invention becomes remarkable when it is connected to the supplied crystal chamber.
  • the mother liquor collection chamber is usually located above the hydraulic cleaning column.
  • the nozzle provided at the introduction port penetrates the mother liquor collection chamber and is connected to the crystal chamber to which the slurry containing crystals in the hydraulic cleaning column is supplied, so that the nozzle penetrates the mother liquor collection chamber. It is difficult to keep the nozzle part warm or control the temperature. According to the embodiment of the present invention, the effect of preventing the liquid in the nozzle and the liquid around the nozzle from staying and preventing coagulation becomes remarkable.
  • the purification apparatus of the present invention further includes a line for transferring the extracted mother liquor, and the line is connected to a nozzle provided in the introduction port.
  • the front of the nozzle provided in the introduction port is the introduction port for introducing the liquid into the hydraulic cleaning column
  • the rear of the nozzle provided in the introduction port is the line for transferring the mother liquid. It is preferable that they are connected.
  • the line for transferring the mother liquor, together with the pipe for transferring the mother liquor constitutes a part of the circulation path of the extracted mother liquor.
  • the nozzle provided in the introduction port is connected to the circulation path of the extracted mother liquor.
  • the line for transferring the mother liquor is provided with a heating mechanism.
  • a heating mechanism a mechanism provided with a heating device for passing the mother liquor to heat it in the path of the line for transferring the mother liquor, and directly heating the line for transferring the mother liquor and passing the mother liquor through the line.
  • a heating mechanism and a mechanism in which these mechanisms are used in combination are preferable.
  • the heating device include a vertical multi-tube heat exchanger, a horizontal multi-tube heat exchanger, a double-tube heat exchanger, a spiral heat exchanger, a plate heat exchanger and the like.
  • Examples of the mechanism for directly heating the line for transferring the mother liquor and heating the mother liquor passing through the line include a mechanism in which an electric heater, a steam trace, a hot water trace, a steam jacket, a hot water jacket, or the like is installed in the line.
  • the range for directly heating the line may be the whole or a part.
  • the heating temperature by the heating mechanism may be appropriately set according to the melting point of the compound, but can be appropriately adjusted within the range of, for example, 10 to 100 ° C.
  • the heating temperature by the heating mechanism is preferably 15 ° C. or higher, more preferably 18 ° C. or higher.
  • the heating temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower.
  • the heating temperature by the heating mechanism is the heating temperature in the heating mechanism, and is the temperature of the heat medium when a heat medium is supplied to the heating mechanism for heating.
  • the heating time by the heating mechanism may be appropriately determined.
  • the size of the hydraulic cleaning column included in the purification apparatus of the present invention is not particularly limited, but for example, the inner diameter inside the column (in the crystal chamber) is preferably 30 to 2000 mm. Further, the height is preferably 1000 to 15000 mm.
  • the size of the filter for filtering the slurry containing crystals in the hydraulic cleaning column of the present invention is not particularly limited, but for example, the inner diameter thereof is preferably 10 to 30 mm. Further, the height is preferably 20 to 300 mm.
  • Examples of the filter include those provided with a large number of circular holes, slits (cuts), and rectangular holes.
  • the shape thereof is not particularly limited, and examples thereof include a shape similar to that of a pipe, for example, a cylindrical shape. When the hole shape of the filter is circular, the diameter thereof may be appropriately adjusted depending on the size of the crystal, but is preferably 50 to 500 ⁇ m, for example.
  • the number of holes is not particularly limited, and may be adjusted according to, for example, pressure loss.
  • the pipe for transferring the mother liquor, which is connected to the filter, is usually arranged above the filter.
  • the pipe for transferring the mother liquor connected to the filter is not particularly limited.
  • 50 to 350 pipes are connected in parallel per 1 m 2 of the hydraulic cleaning column cross-sectional area. It is preferable that the product has been cleaned.
  • the above-mentioned filter and the pipe for transferring the mother liquor connected to the filter are as described above in the manufacturing method of the present invention.
  • the purification apparatus of the present invention may further include a mechanism for heating the outer wall surface of the hydraulic cleaning column.
  • the mechanism for heating the outer wall surface of the hydraulic cleaning column is not particularly limited, and examples thereof include a heat medium and a known heater.
  • a part of the hydraulic cleaning column is heated by a heat medium or the like. It may be carried out by heating substantially the entire hydraulic pressure type washing column (jacket type).
  • the heating mechanism is, for example, a jacket type
  • the material thereof is not particularly limited, and may be made of metal (for example, SUS, carbon steel) or resin. It is also possible to install a heat insulating material, a trace, or the like on the outside of the jacket.
  • the structure of the jacket is not particularly limited.
  • the inside of the jacket may be provided with a structure that promotes heat transfer, such as a baffle, without particular limitation.
  • the average thickness of the jacket (the width of the space where the heat medium flows) is preferably, for example, 5 to 200 mm.
  • the heat flux through the wall surface of the hydraulic cleaning column of the jacket is preferably more than 100 W / m 2 , more preferably more than 200 W / m 2 , and even more preferably more than 500 W / m 2 .
  • the upper limit of the heat flux through the wall surface of the hydraulic cleaning column of the jacket is not particularly limited, but is usually 4000 W / m 2 or less.
  • a sight glass (peephole) or a hand hole (a hole for putting a hand inside during maintenance) may be provided on the side wall of the jacket. In that case, these can be covered with a cover.
  • sight glasses and hand holes there is no limit to the number of installations.
  • the heat medium is not particularly limited, and examples thereof include water, antifreeze, methanol water (methanol aqueous solution), and gas.
  • the heat medium may be appropriately selected in consideration of the freezing point of the compound to be purified and the like.
  • the number of the pipe for supplying the slurry containing crystals to the hydraulic cleaning column and the supply nozzle (slurry supply port) which may be connected to the tip of the pipe is not particularly limited, and may be one or a plurality.
  • FIG. 1 shows a case where there is only one pipe for supplying the slurry containing crystals to the hydraulic cleaning column).
  • the supply nozzle may have a dispersion mechanism at its tip to disperse the slurry.
  • the hydraulic cleaning column may further include a dispersion chamber and a central pusher (see Japanese Patent Publication No. 2005-509010).
  • Instrumentation equipment such as a thermometer (multi-point type, etc.), a pressure gauge, and an interface meter (optical type, etc.) may be provided in or around the main body of the hydraulic cleaning column. Further, the hydraulic cleaning column itself may be inside a temperature-controlled casing (generally, in a building or the like).
  • the purification apparatus of the present invention further comprises an extraction line connecting the extraction port of the circulating slurry containing crystals in the hydraulic cleaning column and the melting equipment, and the return of the melting equipment and the hydraulic cleaning column. It is preferable to include a return line connecting to the mouth.
  • a circulating liquid containing a circulating slurry or a melting liquid circulates in the extraction line and the return line. As mentioned above, this circulation pathway is also referred to as a melt loop in the present specification.
  • the purification apparatus of the present invention preferably includes a mechanism for extracting crystals from the crystal bed in the hydraulic cleaning column.
  • the mechanism for extracting the crystal from the crystal bed is not particularly limited, and examples thereof include a rotor blade or scraper described in JP-A-2005-50909, a mechanism by hydraulic pressure described in European Patent No. 1469926, and the like. , One or more of these can be used.
  • the rotation speed is preferably 20 to 60 rpm
  • the material is preferably a metal such as stainless steel.
  • a heater is usually used as the melting equipment.
  • the heater has a structure that efficiently transfers heat to the slurry containing crystals, for example, a vertical multi-tube heat exchanger, a horizontal multi-tube heat exchanger, a double-tube heat exchanger, a spiral heat exchanger, and a plate. Examples include heat exchangers and electric heaters. It is preferable that the heater is provided in the melt loop and the circulating slurry (circulating liquid after melting) is a forced circulation type in which the circulating slurry (circulating liquid after melting) is circulated by a pump provided in the melt loop.
  • the purification apparatus of the present invention may include a mechanism (return mechanism) for returning a part of the circulating liquid containing the melt obtained in the facility for melting the crystals to the hydraulic cleaning column.
  • the return mechanism may be any mechanism used to separate a part of the circulating fluid from the other parts of the circulating fluid and return it to the hydraulic cleaning column, for example, the melting equipment and the return port. If there is a product extraction line that branches from the return line that connects to and is connected to the product extraction port, the branch path may be mentioned. Examples of the branch road include a T-junction (junction).
  • the return mechanism is a mechanism for returning a part of the circulating liquid containing the melt obtained in the equipment for melting the crystals to the hydraulic cleaning column so that at least a part of the circulating liquid is a cleaning liquid for cleaning the crystals. It is preferable to have.
  • the return port is preferably provided at the bottom of the hydraulic cleaning column so that the circulating fluid can be returned upward.
  • the return mechanism may be, for example, a combination of the branch path and a return port provided at the bottom of the hydraulic cleaning column.
  • the purification apparatus of the present invention may further include a mechanism for controlling the return amount of the circulating fluid.
  • the purification apparatus of the present invention can, for example, adjust the return amount of the circulating fluid by further including a mechanism (control mechanism) for controlling the returning amount of the circulating fluid, and can improve the separation efficiency of impurities as needed. As an excellent product, the product can be obtained efficiently.
  • the control mechanism include a valve attached to the line of the return mechanism (branch path) portion.
  • the control mechanism may be a mechanism that directly controls the return amount of the circulating fluid, or may be a mechanism that indirectly controls the return amount.
  • the control mechanism When the control mechanism is a mechanism that directly controls the return amount of the circulating fluid, the control mechanism includes, for example, a valve (not shown) attached to the return line 24 shown in FIG. Valves may be installed on both the product extraction line 23 and the return line 24. Further, by providing a flow meter on the supply line 11 (including the pipe 4), the product extraction line 23, and the return line 24 for supplying the slurry 11a containing crystals to the hydraulic cleaning column, the valve is controlled according to the flow rate. , The flow rate can be adjusted as appropriate. Further, the valve can be controlled according to the flow rate in the product extraction line 23 and the return line 24. It is also possible to install a multi-point thermometer on the hydraulic cleaning column to control the valve according to the internal temperature.
  • the purification apparatus of the present invention preferably further includes a product extraction port.
  • the purification apparatus of the present invention further includes a product extraction line branching from a return line connecting the melting equipment and the return port, and a product extraction port connected to the product extraction line. ..
  • FIG. 1 shows an example of the purification apparatus of the present invention.
  • the slurry 11a containing crystals is supplied into the crystal chamber 15 of the hydraulic cleaning column 1 via a supply line 11 (including a pipe 4) for supplying the slurry containing crystals to the hydraulic cleaning column, and is not shown.
  • crystals are deposited in the lower part of the crystal chamber 15 to form a crystal bed.
  • the slurry containing the crystals in the crystal chamber 15 of the hydraulic cleaning column 1 is filtered using the filter 2, the mother liquor (filtrate) is extracted using the pipe 3 connected to the filter 2, and the mother liquor (filtrate) is collected in the mother liquor collection chamber 14.
  • a part of the mother liquor is transferred by the lines 16a and 16b for transferring the mother liquor, heated by the heaters 17a and 17b, and then introduced into the nozzle 13a for instrumentation equipment and the nozzle 13b for the pressure adjusting valve. Further, the remaining mother liquor can be transferred by the line 18, mixed with the slurry containing crystals 11a, and supplied to the hydraulic cleaning column as a slurry containing crystals. Further, crystals are extracted from the bottom of the hydraulic cleaning column 1 together with the circulating liquid circulating in the melt loop passing through the bottom of the crystal chamber 15 of the hydraulic cleaning column 1, and the crystals are extracted from the bottom of the hydraulic cleaning column 1 together with the crystal extraction port 20 as a slurry containing the crystals.
  • the melting equipment 22 It is transferred to the melting equipment 22 through the extraction line 21 connecting to the melting equipment 22.
  • a part of the molten liquid obtained by melting in the melting equipment 22 passes through the return line 24 connecting the melting equipment 22 and the return port 25, and is inside the crystal chamber 15 of the hydraulic cleaning column 1. Will be returned to. Further, at least a part of the remaining portion of the molten liquid is withdrawn from the purification apparatus as a refined product 23a through a product extraction line 23 branched from the return line 24 and connected to the product extraction port.
  • the present invention is also a method of using a purification apparatus including a step of purifying a compound using the purification apparatus of the present invention.
  • aqueous acrylic acid solution was supplied to a crystallization tank having a heat transfer area of 1.4 m 2 .
  • a refrigerant supplied to the jacket provided on the peripheral wall of the crystallization tank and indirectly cooling it, the crystals adhering to the inner surface of the crystallization tank are scraped off by the scraper provided inside the crystallization tank to form crystals.
  • the slurry (supplied slurry) containing the above was prepared.
  • a flow control valve (not shown) was installed on the product extraction line 23 in the melt loop.
  • the purification equipment was operated as follows. A slurry (supplied slurry) containing acrylic acid crystals was supplied to the prepared hydraulic cleaning column under the conditions of a slurry concentration (crystal concentration) of 10%, a slurry temperature of 10.5 ° C., and a flow rate of 220 kg / h. The operating internal pressure of the hydraulic cleaning column was set to 0.4 MPa. In addition, a heat medium was introduced into the jacket.
  • a heater (double tube heat exchanger) that is a facility that uses a scraper provided at the bottom of the column to extract crystals from the extraction port 20 of the hydraulic cleaning column 1 together with the circulating liquid and melt them as a circulating slurry at a flow rate of 220 kg / h. Sent to.
  • the heat medium temperature of the double tube heat exchanger was set to 30 ° C., and the temperature of the liquid (circulating liquid) at the outlet of the heater was 20 ° C. A part of the circulating fluid was withdrawn from the product extraction line 23 as a product, and the rest of the circulating fluid was returned to the hydraulic cleaning column.
  • Example 1 The mother liquor was withdrawn from the hydraulic cleaning column through a mother liquor extraction pipe at a flow rate of 204.8 kg / h. The temperature of the mother liquor immediately after extraction was 10 ° C. After collecting the extracted mother liquor in the mother liquor collection chamber 14, a part of the extracted mother liquor is transferred by a line 16a for transferring the mother liquor, heated by a double-tube heater 17a, and then used for instrumentation equipment at 16 ° C. It was introduced into the nozzle 13a at 35 kg / h, and was introduced into the crystal chamber 15 of the hydraulic cleaning column 1 via the nozzle 13a for instrumentation equipment to which the pressure gauge was attached.
  • a part of the collected mother liquor is transferred by the line 16b for transferring the mother liquor, heated by the double tube type heater 17b, and then introduced into the nozzle 13b for the pressure adjusting valve at 16 ° C. at 35 kg / h. It was introduced into the crystal chamber 15 of the hydraulic cleaning column 1 via the nozzle 13b for the pressure adjusting valve. Further, the remaining mother liquor was transferred by the line 18, mixed with the slurry containing crystals 11a, and supplied to the hydraulic cleaning column as a slurry containing crystals. As a result, the nozzle portion did not solidify and could be operated stably.
  • the method for producing a compound is included in a step of supplying a slurry containing crystals of a compound to a hydraulic cleaning column, extracting a circulating slurry containing crystals from the hydraulic cleaning column, and including the extracted circulating slurry.
  • a hydraulic method is used to melt the crystals, to extract the mother liquor from the slurry containing the crystals in the hydraulic cleaning column using a filter, and to remove the liquid above the temperature of the mother liquor immediately after being extracted in the process of extracting the mother liquor.
  • Hydraulic type to the nozzle provided in the washing column (excluding the nozzle provided in the return port of the circulating liquid containing the molten liquid obtained in the melting step and the pipe for supplying the slurry containing crystals to the hydraulic type washing column). It was found that high quality products can be obtained safely and stably by including the step of introducing from the outside of the cleaning column.
  • Hydraulic cleaning column 2 Filter for filtering the slurry containing crystals in the crystal chamber of the hydraulic cleaning column 3 Pipe connected to the filter to transfer the mother liquor 4 Supply the slurry containing crystals to the crystal chamber of the hydraulic cleaning column Pipe 11 (Supplying the slurry containing crystals into the crystal chamber of the hydraulic cleaning column) Supply line 11a Slurry containing crystals 13a (for instrumentation equipment) Nozzle 13b (for pressure adjustment valve) Nozzle 14 Mother liquor collection chamber 15 Crystal chamber 16a, 16b Lines 17a, 17b for transferring mother liquor 18 Line 19 Pressure adjustment line 20 Extraction port for circulating slurry 21 Extraction line for connecting the extraction port for circulating slurry and equipment for melting 22 Equipment for melting 23 (Product extraction port) Product extraction line 23a (purified) Product 24 (connecting the melting equipment and the above return port) Return line 25 (of the circulating fluid containing the extracted crystal melt) Return ports P1, P2 pump

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、高品質の製品を安全かつ安定的に得る方法を提供する。本発明は、化合物の製造方法であって、該製造方法は、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する工程、該液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する工程、該液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程、及び、該母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含む化合物の製造方法である。

Description

化合物の製造方法
本発明は、化合物の製造方法に関する。より詳しくは、化合物の製造方法、化合物の精製方法、及び、精製装置に関する。
化合物、例えば(メタ)アクリル酸等の易重合性化合物は、樹脂の原料等として工業的に広く利用されている。このような中、高品質の化合物を安全かつ安定して得ることが求められており、そのためのより優れた精製技術が種々検討されている。
工業上、化合物の精製前の粗製化合物の多くは、連続式の精製工程を経て精製されている。例えば、原料ガスを接触気相酸化反応させて得られたアクリル酸含有ガスを、捕集、晶析精製し、残留母液に含まれるアクリル酸のマイケル付加物を分解して捕集工程に戻すアクリル酸の製造方法が開示されている(例えば、特許文献1参照)。このような精製工程では、装置を安全かつ安定して運転することが求められている。
上記精製工程では、液圧式洗浄カラム(HWC〔Hydraulic wash column〕)等の洗浄カラムが用いられることがある。従来の洗浄カラムを用いた精製方法が、特許文献2、3に開示されている。
特開2007-182437号公報 特表2013-507427号公報 特表2005-509010号公報
上記のように、化合物を製造する際に、より優れた精製技術が求められており、装置を安全かつ安定して運転しながら高品質の製品(化合物)を得ることが望まれていた。本発明は上記現状に鑑みてなされたものであり、高品質の製品を安全かつ安定的に得る方法を提供することを目的とするものである。
本発明者らは、化合物の製造方法について検討し、化合物の精製において、洗浄効率が高い液圧式洗浄カラムを用いることに着目した。そして、液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出し、回収し、抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズルに流すことで、凝固を防止し、より安全に安定して装置を運転できることを見出し、本発明に到達したものである。
すなわち、本発明は、化合物の製造方法であって、該製造方法は、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する工程、該液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する工程、該液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程、及び、該母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含む化合物の製造方法である。
なお、上述した特許文献2、3に記載の発明には、液圧式洗浄カラムにおけるノズル内液やノズル周りの液の凝固予防について、記載も示唆もされていない。なお、計装機器の設置部分(計装機器の液圧式洗浄カラム内外の接続部であって、通常、ノズルが設けられている)を、ジャケット又は間接トレースにより外部から保温するだけでは、当該設置部における、ノズル内液やノズル周りの液の滞留を抑制することができず、その凝固を充分に防止することができなかった。
本発明の精製装置によれば、高品質の製品を安全かつ安定して得ることができる。
図1は、本発明の精製装置の使用状態を例示する模式図である。
以下、本発明を詳細に説明する。
なお、以下において記載する本発明の個々の好ましい特徴を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
以下においては、先ず、本発明の化合物の製造方法について記載する。次いで、本発明の化合物の精製方法、本発明の精製装置について順に説明する。
(本発明の化合物の製造方法)
本発明は、化合物の製造方法であって、該製造方法は、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する工程、該液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する工程、該液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程、及び、該母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含む化合物の製造方法である。
本発明の化合物の製造方法において、上記液圧式洗浄カラムに設けられたノズルは、計装機器用ノズル、サンプリングノズル、圧力調整バルブ用ノズル、内挿管挿入用ノズル、及び、緊急投入用ノズルからなる群より選択される少なくとも一つであることが好ましい。
例えば、計装機器用のノズルが凝固・閉塞してしまうと、計器の誤指示を起こし、意図せぬ危険な運転状態となる虞がある。また、サンプリングノズル等が凝固・閉塞すると、内部の状態が正確に把握できなくなり、得られる製品(化合物)の品質等がコントロールできなくなる虞がある。そして、圧力調整バルブ用ノズルや緊急投入用ノズルが凝固、閉塞していれば、緊急時の安全装置としての役割を果たさない虞がある。各ノズルについては、後に詳述する。
本発明の化合物の製造方法は、各種ノズルの凝固・閉塞を充分に防止できるものであり、凝固・閉塞を充分に防止することで、液圧式洗浄カラム内部の状態(温度、圧力など)を正しく把握でき、より安全な運転が可能となるものである。
なお、上記各工程のうち、上記供給する工程、及び、上記融解する工程は、基本的には精製対象に対してこの順で行われるものである(例えば、図1に示すように、結晶を含むスラリー11aが、液圧式洗浄カラム1の結晶室15内に、供給ライン11・パイプ4を介して供給された後、液圧式洗浄カラム1の底部の循環スラリーの抜き出し口20から、結晶を含む循環スラリーが抜き出され、循環スラリーの抜き出し口20と融解する設備22とを接続する抜き出しライン21を通って、循環スラリーに含まれる結晶を融解する設備22で融解される。なお、融解する設備22で融解して得られた融解液を含む循環液の少なくとも一部は、製品抜き出しライン23を通って製品23aとして精製装置から抜き出される。残りの循環液が、融解する設備22と上記返送口25とを接続する返送ライン24を通って、液圧式洗浄カラム1内に返送されてもよい。)。また、結晶室15内に供給された結晶を含むスラリーは、フィルター2を用いて濾過され、フィルター2に接続されるパイプ3を用いて母液(濾液)を抜き出し、母液捕集室14で捕集した後、この母液を回収・再利用することができる。以下では先ず、抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられた所定のノズルに導入する工程について説明し、次いで、上記供給する工程、上記融解する工程、上記母液を抜き出す工程、その他の工程について順に説明する。なお、連続式の精製工程では、通常、精製装置全体として見たときに各工程が同時に行われることになる。
本明細書中、「化合物」は、本発明の製造方法で得られる化合物をいい、本発明の製造方法における原料や副生成物、溶媒をいうものではない。「化合物」は、「目的化合物」又は「目的物」と言い換えることができる。
<導入する工程>
本発明の化合物の製造方法は、母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含む。
本発明の化合物の製造方法では、上記母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、上記液圧式洗浄カラムに設けられたノズルに導入することで、ノズル内液やノズル周りの液の滞留を抑制し、その凝固を充分に防止できる。
上記導入する工程は、母液の温度以上の液体を、上記液圧式洗浄カラムに設けられたノズルから、液圧式洗浄カラムに導入する工程と言い換えることができる。
上記母液の温度以上の液体は、該母液よりも1℃以上高温であることが好ましく、2℃以上高温であることがより好ましく、3℃以上高温であることが更に好ましく、5℃以上高温であることが特に好ましい。
上記母液の温度以上の液体は、該母液よりも40℃以下高温であることが好ましく、35℃以下高温であることがより好ましく、30℃以下高温であることが更に好ましく、20℃以下高温であることが特に好ましい。言い換えれば、上記母液の温度以上の液体の温度は、上記母液の温度よりも高いところ、その差は、40℃以下であることが好ましく、35℃以下であることがより好ましく、30℃以下であることが更に好ましく、20℃以下であることが特に好ましい。
上記液圧式洗浄カラムに設けられたノズルに導入する液体の温度が、上記母液の温度より低いと、本発明の効果が得られず、上記母液の温度より40℃を超えて高くなると、液圧式洗浄カラム内の結晶を融解するなど運転条件に影響を及ぼす可能性がある。
また上記母液の温度以上の液体の温度は、上記化合物の融点に応じて適宜設定することができ、例えば10~100℃の範囲内とすることができる。
例えば上記化合物が(メタ)アクリル酸である場合は、上記母液の温度以上の液体の温度は、5℃以上であることが好ましく、10℃以上であることがより好ましい。また、該温度は、50℃以下であることが好ましく、40℃以下であることがより好ましい。
なお、上記母液の温度は、例えば0~80℃の範囲内で適宜調整することができる。
例えば上記化合物が(メタ)アクリル酸である場合は、上記母液の温度は、5~13℃であることが好ましく、7~11℃であることがより好ましい。
なお、上記母液の温度以上の液体の温度等は、上記液圧式洗浄カラムに設けられたノズルに投入する直前の液体の温度等を測定することで測定されるものである。また、上記母液を抜き出す工程で抜き出した直後の母液の温度等は、上記フィルターに接続されるパイプ内の母液の温度等を測定することで測定されるものである。
本発明の化合物の製造方法において、上記母液の温度以上の液体は、上記化合物及び/又は水を含むことが好ましい。
上記母液の温度以上の液体中、上記化合物の含有割合は、85質量%以上であることが好ましく、88質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
上記母液の温度以上の液体中、上記化合物の含有割合は、99質量%以下であることが好ましく、98質量%以下であることがより好ましく、97質量%以下であることが更に好ましい。
上記母液の温度以上の液体を、上記液圧式洗浄カラムに設けられたノズルに導入する量は、特に限定されないが、工業的規模の液圧式洗浄カラムにおいては、例えばノズル1本あたり3×10~1×10kg/hである。
上述したように、本発明の化合物の製造方法において、液圧式洗浄カラムに設けられたノズルは、計装機器用ノズル、サンプリングノズル、圧力調整バルブ用ノズル、内挿管挿入用ノズル、及び、緊急投入用ノズルからなる群より選択される少なくとも一つであることが好ましい。
上記計装機器用ノズルは、液圧式洗浄カラムにおける温度計(多点式等)、圧力計、界面計(光学式等)等の計装機器類を取り付けるためのノズルである。
上記サンプリングノズルは、液圧式洗浄カラム内のスラリー等を採取するために使用するノズルである。
上記圧力調整バルブ用ノズルは、液圧式洗浄カラム内部の圧力が上昇した際に自動又は手動で解放され、圧力を調整するためのバルブ、安全弁、液圧式洗浄カラム内液を抜き出す際に系内を大気開放するためのバルブなどの、液圧式洗浄カラム内部の圧力を調整可能なバルブが取り付けられるノズルである。
上記緊急投入用ノズルは、液圧式洗浄カラム内部にて異常重合等が発生した際に、外部より重合防止剤、安定剤、溶媒等を投入するためのノズルである。上記緊急投入用ノズルは、言い換えれば、添加剤及び/又は溶媒の投入用ノズルである。
上記内挿管挿入用ノズルは、液圧式洗浄カラム内部にスラリー等を移送するパイプを内挿するために使用され、該パイプの外径よりも大きい内径を有するノズルである。
本発明の化合物の製造方法において、上記母液の温度以上の液体は、上記母液を抜き出す工程で抜き出した母液の少なくとも一部を含むことが好ましい。
例えば、上記母液の温度以上の液体は、上記母液を抜き出す工程で抜き出した母液を70質量%以上含むことがより好ましく、80質量%以上含むことが更に好ましく、母液をそのまま用いる(100質量%)ことが特に好ましい。
本発明の化合物の製造方法において、上記母液の温度以上の液体は、上記母液を抜き出す工程で抜き出した母液の少なくとも一部を加熱したものを含むことが好ましい。
上記加熱温度は、上記化合物の融点に応じて適宜設定すればよいが、例えば10~100℃の範囲内で適宜調整することができる。
例えば上記化合物が(メタ)アクリル酸である場合は、上記加熱温度は、15℃以上であることが好ましく、18℃以上であることがより好ましい。また、該加熱温度は、50℃以下であることが好ましく、40℃以下であることがより好ましい。
上記加熱温度は、加熱器における温度であり、熱媒を用いて加熱する場合は、該熱媒の温度である。
上記加熱時間は、上記化合物の融点に応じて適宜設定すればよい。
図1に示すように、上記母液を抜き出す工程で抜き出した母液の少なくとも一部を、母液を移送するライン16a、16bにより移送し、母液を移送するライン16a、16bに備えられた加熱器17a、17bにより加熱することで、上記母液の温度以上の液体を容易に得ることができる。
本発明の化合物の製造方法において、上記液圧式洗浄カラムに設けられたノズルは、上記母液を抜き出す工程で抜き出した母液を捕集する母液捕集室を貫通し、液圧式洗浄カラムにおける結晶を含むスラリーが供給される結晶室に接続されている場合に本発明の効果が顕著になる。
母液捕集室は、通常、結晶室の上部に設けられている。上記液圧式洗浄カラムに設けられたノズルが、上記母液を抜き出す工程で抜き出した母液を捕集する母液捕集室を貫通し、液圧式洗浄カラムにおける結晶を含むスラリーが供給される結晶室に接続されている場合、母液捕集室を貫通しているノズル部位の保温あるいは温度制御が困難であり、ノズル内液やノズル周りの液が滞留しやすく、凝固しやすい。本発明の形態であれば、ノズル内液やノズル周りの液の滞留を防止でき、このような凝固を充分に防止し、安定的に化合物を製造することが可能となる。
上記母液捕集室は、上記母液を抜き出す工程で抜き出した母液を捕集する部位(部屋)である。
上記液圧式洗浄カラムが、上記母液捕集室を含む場合、液圧式洗浄カラム内の、化合物の結晶を含むスラリーが供給される部位(部屋)を、結晶室ともいう。なお、この場合、後述する結晶を含むスラリーを液圧式洗浄カラムに供給するパイプは、言い換えれば、結晶を含むスラリーを液圧式洗浄カラムの結晶室に供給するパイプである。
上記導入する工程では、例えば、図1に示すように、液圧式洗浄カラム1の結晶室15内の結晶を含むスラリーを、フィルター2を用いて濾過し、フィルター2に接続されるパイプ3を用いて母液(濾液)を抜き出し、母液捕集室14で捕集した後、この母液の一部を、母液を移送するライン16a、16bにより移送し、加熱器17a、17bで加熱した後、ノズル13a、13bに導入することができる。なお、図1では、ノズル13aは、計装機器用ノズルであり、ノズル13bは、圧力調整バルブ用ノズルである。圧力調整バルブ用ノズルは、圧力調整ライン19と接続されている。圧力調整ライン19は、例えば、圧力計と連動して内圧調整のため圧力調整バルブが開閉し、圧力調整バルブが開いた際にカラム内の母液を抜くラインである。また、残りの母液を、ライン18により移送し、結晶を含むスラリー11aと混合し、液圧式洗浄カラムに供給することができる(本明細書中、結晶を含むスラリー11aと残りの母液を混合したものも結晶を含むスラリーという。)。
<供給する工程>
上記供給する工程において、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する。該結晶を含むスラリーは、化合物の結晶と母液の懸濁液であり、言い換えると、液圧式洗浄カラムに供給する化合物の結晶を含むスラリーの液部分が母液である。なお、該結晶を含むスラリーは、後述するように、化合物含有溶液(例えば、(メタ)アクリル酸水溶液又は粗(メタ)アクリル酸溶液)において結晶を生成させて得ることができるが、当該化合物含有溶液は、自ら調製したものであってもよく、他所から調達したものであってもよい。なお、ここで言う化合物含有溶液には、粗製化合物も含まれる。
上記液圧式洗浄カラムに供給される結晶を含むスラリー中、結晶の質量割合は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。
上記結晶の質量割合は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましく、20質量%以下であることが特に好ましい。
なお、本明細書中、単に「液圧式洗浄カラムに供給される結晶を含むスラリー」という場合、当該液圧式洗浄カラムに供給される結晶を含むスラリーとは、液圧式洗浄カラムに供給される直前の結晶を含むスラリーをいい、例えば、結晶を含むスラリーを液圧式洗浄カラムに供給するパイプ内の結晶を含むスラリーをいう。
上記液圧式洗浄カラムに供給される結晶を含むスラリーは、その母液中に上記化合物を含むことが好ましい。上記母液としては、上記化合物、上記化合物の水溶液等が挙げられる。なお、上記母液は、通常、上記化合物、水以外の不純物を含むものである。
本発明の化合物の製造方法において、上記液圧式洗浄カラムに供給される結晶を含むスラリーは、その母液中の上記化合物の純度(質量割合)が97質量%以下であることが好ましい。
上記母液中の化合物の質量割合は、96質量%以下であることがより好ましい。
上記母液中の化合物の質量割合は、85質量%以上であることが好ましく、88質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
本発明の製造方法において、上記化合物は、融点が0~80℃であることが好ましく、1~50℃であることがより好ましく、更に好ましくは3~40℃であり、特に好ましくは5~20℃である。
また上記化合物は、反応性の二重結合を有する易重合性化合物であることが好ましい。
中でも、本発明の製造方法において、上記化合物は、不飽和カルボン酸であることがより好ましく、(メタ)アクリル酸であることが更に好ましく、アクリル酸であることが特に好ましい。本明細書中、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸である。
上記母液中、水の質量割合は、0.1質量%以上であることがより好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。
上記母液中、水の質量割合は、8質量%以下であることが好ましく、6質量%以下であることがより好ましく、4質量%以下であることが更に好ましい。
上記母液中、上記化合物、水以外の不純物の質量割合は、0.1質量%以上であることが好ましく、0.4質量%以上であることがより好ましく、0.8質量%以上であることが更に好ましい。
上記母液中、上記化合物、水以外の不純物の質量割合は、8質量%以下であることが好ましく、6質量%以下であることがより好ましく、4質量%以下であることが更に好ましい。
上記化合物が(メタ)アクリル酸である場合、上記化合物、水以外の不純物としては、例えば酢酸、フルフラール等が挙げられる。
この場合、上記母液中、酢酸の質量割合は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.7質量%以上であることが更に好ましい。
上記母液中、酢酸の質量割合は、8質量%以下であることが好ましく、6質量%以下であることがより好ましく、4質量%以下であることが更に好ましい。
上記化合物が(メタ)アクリル酸である場合、上記母液中、フルフラールの質量割合は、0.01質量%以上であることがより好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることが更に好ましい。
上記母液中、フルフラールの質量割合は、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましい。
上記供給する工程において、結晶を含むスラリーの供給速度は、特に限定されないが、工業的規模の液圧式洗浄カラムにおいては、例えば0.2×10~4.0×10kg/hである。
上記供給する工程において、結晶を含むスラリーの供給温度は、上記化合物の融点等に応じて適宜設定することができるが、例えば0~80℃の範囲内で適宜調整することができる。
例えば上記化合物が(メタ)アクリル酸である場合は、結晶を含むスラリーの供給温度は、5~13℃であることが好ましく、6~12℃であることがより好ましい。
上記結晶を含むスラリーの供給温度は、上記液圧式洗浄カラムに供給される直前の結晶を含むスラリー中の母液の温度である。
<融解する工程>
上記融解する工程において、液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する。
結晶は、液圧式洗浄カラムの下部に形成された結晶床由来である。結晶の抜き出しは、後述する、液圧式洗浄カラム内の結晶床から結晶を抜き出す機構を用いて行うことができる。
結晶の抜き出しでは、通常、循環液も共に抜き出されることになり、結晶を含む循環スラリーとして抜き出され、融解する工程に供される。
上記循環液は、液圧式洗浄カラムから、結晶を含む循環スラリーとして抜き出され、その後、融解する工程で得られた融解液を含む循環液として、その一部が液圧式洗浄カラムに返送されることで、液圧式洗浄カラム内を通過して循環するものであり、言い換えれば、液圧式洗浄カラム内を通過する循環経路を流れるものである。なお、本明細書中、循環経路を流れる循環スラリー中の液状成分のことも循環液という。
ここで、循環スラリーとは、化合物の結晶と循環液の懸濁液であり、循環経路を流れるものである。
例えば、上記液圧式洗浄カラムから抜き出された結晶を含む循環スラリー中、結晶の質量割合は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることが更に好ましく、5質量%以上であることが特に好ましい。
上記結晶の質量割合は、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。
なお、本明細書中、上記液圧式洗浄カラムから抜き出された結晶を含む循環スラリーは、液圧式洗浄カラムから抜き出した直後の結晶を含む循環スラリーをいい、例えば、循環スラリーの抜き出し口と融解する設備とを接続する抜き出しライン(パイプ)内の結晶を含む循環スラリーをいう。
上記液圧式洗浄カラムにおける結晶抜き出し口と融解する設備とを接続する抜き出しライン、融解する設備と上記液圧式洗浄カラムにおける上記返送口とを接続する返送ラインは、循環スラリー又は融解液を含む循環液が循環する。本明細書中、この循環経路をメルトループとも言う。
液圧式洗浄カラムから抜き出される結晶を含む循環スラリーの抜き出し速度は、特に限定されないが、工業的規模の液圧式洗浄カラムにおいては、例えば2×10~5×10kg/hである。
抜き出した結晶の融解は、加熱器を用いて行うことができる。加熱器としては、結晶を含むスラリーに効率的に熱を伝える構造、例えば、垂直多管式熱交換器、水平多管式熱交換器、二重管式熱交換器、スパイラル熱交換器、プレート熱交換器、電気ヒーター等が挙げられる。当該加熱器は、メルトループ中に設けられ、循環スラリー(融解後は循環液)はメルトループ中に設けられたポンプによって循環する強制循環式であることが好ましい。
上記融解する工程における加熱温度は、上記化合物の融点に応じて適宜設定すればよいが、例えば10~100℃の範囲内で適宜調整することができる。
例えば上記化合物が(メタ)アクリル酸である場合は、上記融解する工程における加熱温度は、15℃以上であることが好ましく、18℃以上であることがより好ましい。また、該加熱温度は、50℃以下であることが好ましく、40℃以下であることがより好ましい。
上記融解する工程における加熱温度は、該融解する設備に熱媒を供給して加熱する場合は、該熱媒の供給温度である。
また上記融解する工程(融解する設備)出口の、融解液を含む循環液の温度を、該融解する工程により得られた融解液を含む循環液(例えば熱交換器等を通過し、その際にスラリー中の結晶が融解して得られた融解液を含む循環液)の融点よりも、1~10℃高い温度に設定することが好ましい。
上記融解する工程における融解時間は、結晶が充分融解される程度に適宜決定すればよい。
<母液を抜き出す工程>
本発明の製造方法は、上記液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程を含む。例えば、本発明の製造方法は、液圧式洗浄カラム内の結晶を含むスラリーを、フィルターを用いて濾過し、該フィルターに接続されるパイプを用いて母液を抜き出す工程を含むことが好ましい。また、上記母液を抜き出す工程では、後述する洗浄液の一部も母液とともに抜き出すことが好ましい。そのため、抜き出した母液は洗浄液の一部を含むことが好ましい。
抜き出した母液は、リサイクルして再利用することができる。抜き出した母液を、例えば加熱したうえで、上記導入する工程における上記母液の温度以上の液体として用いることができる。また、抜き出した母液を、例えば液圧式洗浄カラムに供給する結晶を含むスラリーの少なくとも一部として再利用することで、上記化合物の品質を更に向上させることもできる。
なお、母液よりも結晶の密度が大きい場合、供給する工程で供給するスラリー中に含まれる母液は、上から下向きに流れ、下から上向きに流れる洗浄液とぶつかり押し返され、フィルターを通して抜き出される。
上記フィルターは、その材質に特に限定はなく、例えばステンレス等の金属から構成されるもの、ポリテトラフルオロエチレン(PTFE)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリエーテルケトン(PEK)等の樹脂から構成されるものとすることができ、後者が好ましい。また、上記パイプは、その材質に特に限定はなく、金属又は合金から構成されていることが好ましい。
上記母液を抜き出す工程において抜き出した母液は、通常、上記化合物を含む。上記母液としては、上記化合物が融解した液、上記化合物の水溶液等が挙げられる。なお、上記母液は、通常、水以外の不純物を含むものである。
なお、上記母液を抜き出す工程において抜き出した母液とは、上記母液を抜き出す工程においてフィルターを通過直後の母液をいう。
上記母液を抜き出す工程は、ポンプ等を用いて適宜行うことができる。
<返送する工程>
本発明の製造方法は、上記融解する工程で得られた融解液を含む循環液の一部を液圧式洗浄カラムに返送する工程を含むことが好ましい。
上記循環液は、上記融解する工程で得られた融解液を含む。すなわち、抜き出した循環スラリー中の結晶が融解されて融解液となることで、懸濁している循環スラリーが懸濁していない循環液となったものである。
上記融解する工程で得られた融解液は、液圧式洗浄カラムから抜き出された循環スラリーに含まれる結晶が融解する工程で融解して得られた液を言い、循環スラリーに含まれる循環液(液状成分)であったものを含まない。
上記融解する工程で得られた融解液を含む循環液の一部を液圧式洗浄カラムに返送することで、返送した循環液の一部は液圧式洗浄カラム内の結晶を洗浄する洗浄液となる。
上記洗浄液とは、液圧式洗浄カラムに返送される循環液の一部であって、液圧式洗浄カラムに返送された後、液圧式洗浄カラムの抜き出し口から抜き出されて循環経路を再循環せず、例えば、液圧式洗浄カラムの結晶床の結晶の隙間を通って、結晶の移動方向に対して向流となるように(好ましくは、上向きに)流れ、液圧式洗浄カラム内の結晶を洗浄するものを言う。
なお、上記返送する工程に伴って、製品が抜き出される製品抜き出し速度は、工業的規模の液圧式洗浄カラムにおいては、5kg/h~4.0×10kg/hである。
本発明の製造方法において、上記液圧式洗浄カラムは、その外壁面が熱媒等により加熱されていてもよく、その加熱に用いる熱媒の温度としては取り扱う物質、すなわち目的とする化合物により適宜設定すればよい。
上記熱媒としては、任意の液体又は気体を使用でき、例えば水、不凍液、メタノール水(メタノール水溶液)、ガス等が挙げられる。上記熱媒は、精製する化合物の凝固点等を加味して適宜選択すればよい。
上記液圧式洗浄カラムの外壁面が加熱されていることで、凝固をより充分に防止でき、上記化合物をより安定的に製造できる。
上記加熱は、熱媒等により上記液圧式洗浄カラムの一部を加熱して行うものであってもよいが、上記液圧式洗浄カラムの実質的に全体を加熱して行うもの(ジャケット式)であることが好ましい。
なお、上記液圧式洗浄カラム内は、基本的に加圧下(好ましくは、0.05~1.0MPaの範囲内)で運転される。
<結晶を含むスラリーを得る工程>
本発明の製造方法は、化合物含有溶液から化合物の結晶を含むスラリーを得る工程を更に含むことが好ましい。
化合物含有溶液は、化成器により得られた反応生成物である化合物のガスを、例えば吸収塔で捕集して得ることができ、また、捕集して得られたものを精製した粗製化合物も化合物含有溶液に含まれる。化合物含有溶液は、自ら合成して得たものに限定されず、他所から調達されたものであってもよい。
化合物含有溶液に対して、例えば冷却を行い、化合物の結晶を含むスラリーを得ることができる。
上記化合物含有溶液は、上記化合物、水以外の不純物を含むものである。
本発明の製造方法において、上記化合物含有溶液は、(メタ)アクリル酸水溶液又は粗(メタ)アクリル酸溶液であることが好ましい。
(メタ)アクリル酸水溶液は、(メタ)アクリル酸が水に溶解した溶液をいう。粗(メタ)アクリル酸溶液は、(メタ)アクリル酸からなる溶液であって、(メタ)アクリル酸製造時の副生成物等の不純物を含むものをいう。
なお、上記不純物としては、例えば、プロピオン酸、酢酸、マレイン酸、安息香酸、アクリル酸ダイマー等の酸類、アクロレイン、フルフラール、ホルムアルデヒド、グリオキサール等のアルデヒド類、アセトン、メチルイソブチルケトン、トルエン、プロトアネモニン等が挙げられる。
<化合物含有溶液を得る工程>
本発明の製造方法において、上記製造方法は、原料から化合物含有溶液を得る工程を更に含むことが好ましい。
上記化合物含有溶液を得る工程については、化合物含有溶液が得られる限り特に限定されないが、上記化合物が(メタ)アクリル酸である場合、例えば、特開2007-182437号公報(特許文献1)に記載のアクリル酸の合成工程、アクリル酸の捕集工程等により好適に行うことができる。
本発明の化合物の製造方法において、上記原料は、プロパン、プロピレン、アクロレイン、イソブテン、メタクロレイン、酢酸、乳酸、イソプロパノール、1,3プロパンジオール、グリセロール、及び、3-ヒドロキシプロピオン酸からなる群より選択される少なくとも1種であることが好ましい。また上記(メタ)アクリル酸及び/又は原料は、再生可能な原料から誘導され、バイオベースの(メタ)アクリル酸を生成しても良い。
なお、上記化合物含有溶液を得る工程では、基本的に、副生成物等の不純物が生じる。例えば、上記化合物が(メタ)アクリル酸である場合、水やプロピオン酸、酢酸、マレイン酸、安息香酸等、アクリル酸ダイマーの酸類、アクロレイン、フルフラール、ホルムアルデヒド、グリオキサール等のアルデヒド類、アセトン、メチルイソブチルケトン、トルエン、プロトアネモニン等が不純物として生じるが、本発明の製造方法に係る液圧式洗浄カラムによる精製等により、高品質な製品を安全かつ安定的に得ることができる。
(化合物の精製方法)
本発明はまた、化合物の精製方法であって、該精製方法は、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する工程、該液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する工程、該液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程、及び、該母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含む化合物の精製方法でもある。
本発明の精製方法により、結晶を含むスラリーを安全かつ安定的に精製することができる。
本発明の精製方法における好ましい形態は、上述した本発明の製造方法における好ましい形態と同様である。
(精製装置)
本発明は更に、結晶を精製する精製装置であって、該精製装置は、結晶を含む循環スラリーの抜き出し口及び抜き出した結晶の融解液を含む循環液の返送口が設けられた液圧式洗浄カラム、結晶を含むスラリーを液圧式洗浄カラムに供給するパイプ、液圧式洗浄カラム内の結晶を含むスラリーから母液を抜き出すフィルター、該フィルターに接続される、母液を移送するパイプ、液を液圧式洗浄カラムに導入する導入口に設けられたノズル(該返送口に設けられたノズル及び該結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)、及び、該抜き出し口から抜き出した循環スラリーに含まれる結晶を融解する設備を含んで構成される精製装置でもある。
本発明の精製装置は、結晶を含むスラリーを液圧式洗浄カラムに供給するパイプとは別に、液を液圧式洗浄カラムに導入する導入口に設けられたノズル(該返送口に設けられたノズル及び該結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)を含むことで、ノズル内液やノズル周りの液の滞留を防止でき、凝固を防ぐことができるものである。
本発明の精製装置において、上記導入口に設けられたノズルは、計装機器用ノズル、サンプリングノズル、圧力調整バルブ用ノズル、内挿管挿入用ノズル、及び、緊急投入用ノズルからなる群より選択される少なくとも一つであることが好ましい。
本発明の精製装置において、上記導入口に設けられたノズルは、上記液圧式洗浄カラムの上面に位置していることが好ましい。
上記液圧式洗浄カラムの上面は、低温になりやすいところ、上記導入口に設けられたノズルが、液圧式洗浄カラムの上面に位置していることで、ノズル内液やノズル周りの液の滞留を防止でき、凝固を防ぐことができる効果が顕著なものとなる。
上記上面は、液圧式洗浄カラム内の上面であれば特に限定されず、例えば、液圧式洗浄カラム内において、結晶床が形成される面に対向する面を上面とすることができる。
中でも、上記導入口に設けられたノズルは、上記液圧式洗浄カラムの最上面に位置していることがより好ましい。
本発明の精製装置は、抜き出した母液を捕集する母液捕集室を更に含み、上記導入口に設けられたノズルは、母液捕集室を貫通し、液圧式洗浄カラムにおける結晶を含むスラリーが供給される結晶室に接続されている場合に本発明の効果が顕著になる。
上述したように、上記母液捕集室は、通常は液圧式洗浄カラムの上部に位置する。上記導入口に設けられたノズルが、母液捕集室を貫通し、液圧式洗浄カラムにおける結晶を含むスラリーが供給される結晶室に接続されていることで、母液捕集室を貫通しているノズル部位の保温あるいは温度制御が困難である。本発明の形態であれば、ノズル内液やノズル周りの液の滞留を防止でき、凝固を防ぐことができる効果が顕著なものとなる。
本発明の精製装置は、抜き出した母液を移送するラインを更に含み、該ラインが上記導入口に設けられたノズルに接続していることが好ましい。具体的には、上記導入口に設けられたノズルの前方が、液を液圧式洗浄カラムに導入する導入口であり、上記導入口に設けられたノズルの後方が、上記母液を移送するラインと接続していることが好ましい。これにより、抜き出した母液を有効に利用して、本発明の効果を発揮できる。
上記母液を移送するラインは、上記母液を移送するパイプとともに、抜き出した母液の循環経路の一部を構成している。言い換えれば、上記導入口に設けられたノズルは、抜き出した母液の循環経路と接続していることが好ましい。
本発明の精製装置において、上記母液を移送するラインは、加熱機構を備えることが好ましい。
上記加熱機構としては、上記母液を移送するラインの経路中に、母液を通過させて加熱する加熱機器が設けられた機構、上記母液を移送するラインを直接加熱し、該ラインを通過する母液を加熱する機構、これら機構を併用した機構が好適なものとして挙げられる。上記加熱機器としては、例えば、垂直多管式熱交換器、水平多管式熱交換器、二重管式熱交換器、スパイラル熱交換器、プレート熱交換器等が挙げられる。上記母液を移送するラインを直接加熱し、該ラインを通過する母液を加熱する機構としては、該ラインに例えば、電気ヒーター、蒸気トレース、温水トレース、蒸気ジャケット、温水ジャケット等を設置した機構が挙げられ、該ラインを直接加熱する範囲は全部であってもよいし、一部であってもよい。
上記加熱機構による加熱温度は、上記化合物の融点に応じて適宜設定すればよいが、例えば10~100℃の範囲内で適宜調整することができる。
例えば上記化合物が(メタ)アクリル酸である場合は、上記加熱機構による加熱温度は、15℃以上であることが好ましく、18℃以上であることがより好ましい。また、該加熱温度は、50℃以下であることが好ましく、40℃以下であることがより好ましい。
上記加熱機構による加熱温度は、上記加熱機構における加熱温度であり、該加熱機構に熱媒を供給して加熱する場合は、該熱媒の温度である。
上記加熱機構による加熱時間は、適宜決定すればよい。
本発明の精製装置が含む液圧式洗浄カラムは、その大きさは特に限定されないが、例えば、そのカラム内(結晶室内)の内径が30~2000mmであることが好ましい。またその高さが1000~15000mmであることが好ましい。
本発明の液圧式洗浄カラム内の結晶を含むスラリーを濾過するフィルターは、その大きさは特に限定されないが、例えば、その内径が10~30mmであることが好ましい。またその高さが20~300mmであることが好ましい。
上記フィルターは、例えば、円形の孔やスリット(切り込み)、矩形の孔が多数設けられたものが挙げられる。また、その形状は特に限定されないが、パイプと同様の形状、例えば円柱形状等が挙げられる。
フィルターの孔形状が円形である場合、その径は、結晶のサイズにより適宜調整すればよいが、例えば50~500μmであることが好ましい。また、その孔数としては特に限定はなく、例えば圧力損失等に応じて調整すればよい。
上記フィルターに接続される、母液を移送するパイプは、通常、フィルターの上側に配置される。
上記フィルターに接続される、母液を移送するパイプは、特に限定されないが、例えば工業的規模の液圧式洗浄カラムにおいては、液圧式洗浄カラム断面積1m当たり50~350本のパイプが並列に接続されたものであることが好ましい。
上記フィルターと、該フィルターに接続される、母液を移送するパイプについては、本発明の製造方法において上述した通りである。
本発明の精製装置は、上記液圧式洗浄カラムの外壁面を加熱する機構を更に含んでいてもよい。
上記液圧式洗浄カラムの外壁面を加熱する機構としては、特に限定されないが、例えば熱媒や、公知の加熱器が挙げられ、例えば、熱媒等により上記液圧式洗浄カラムの一部を加熱して行うものであってもよいし、上記液圧式洗浄カラムの実質的に全体を加熱して行うもの(ジャケット式)であってもよい。
上記加熱する機構が、例えばジャケット式である場合、その材質は、特に限定されず、金属(例えば、SUS、炭素鋼〔Carbon steel〕)製であってもよく、樹脂製であってもよい。
上記ジャケットの外側には、更に、保温材やトレースなどを設置することも可能である。
上記ジャケットの構造は、特に限定されない。
上記ジャケット内部には、特に限定されないが、バッフル等、熱伝達を促進する構造が設けられていてもよい。
上記ジャケットの平均厚み(熱媒が流れる部分の空間の幅)は、例えば5~200mmであることが好ましい。
上記ジャケットの液圧式洗浄カラムの壁面を介した熱流束は、100W/m超が好ましく、200W/m超がより好ましく、500W/m超が更に好ましい。
上記ジャケットの液圧式洗浄カラムの壁面を介した熱流束は、その上限値は特に限定されないが、通常は4000W/m以下である。
上記ジャケットの側面壁に、サイトグラス(のぞき窓)やハンドホール(メンテナンス時に内部に手を入れるための穴)を設けてもよい。その場合は、これらをカバーで覆うことができる。サイトグラスやハンドホールを設ける場合、その設置数に限定はない。
なお、上記熱媒としては、特に限定されず、水、不凍液、メタノール水(メタノール水溶液)、ガス等が挙げられる。上記熱媒は、精製する化合物の凝固点等を考慮して適宜選択すればよい。
結晶を含むスラリーを液圧式洗浄カラムに供給するパイプや、パイプの先端に接続されていてもよい供給ノズル(スラリー供給口)は、その数は特に限定されず、1つでもよく、複数でもよい(図1では、結晶を含むスラリーを液圧式洗浄カラムに供給するパイプが、1つの場合を示している。)。
上記供給ノズルは、その先端に、スラリーを分散させる分散機構を有していてもよい。
上記液圧式洗浄カラムは、分散室や、中央押しのけ体(特表2005-509010号公報参照。)を更に含んでいてもよい。
上記液圧式洗浄カラムの本体又は周辺には、温度計(多点式等)、圧力計、界面計(光学式等)等の計装機器類を設けていてもよい。
また上記液圧式洗浄カラム自体が、温調されたケーシング(大きくは建屋内など)の中にあってもよい。
本発明の精製装置は、更に、上記液圧式洗浄カラムにおける結晶を含む循環スラリーの抜き出し口と上記融解する設備とを接続する抜き出しライン、及び、当該融解する設備と上記液圧式洗浄カラムにおける上記返送口とを接続する返送ラインを含むことが好ましい。本発明の精製装置の使用時において、該抜き出しライン、該返送ラインは、循環スラリー又は融解液を含む循環液が循環する。上述したように、本明細書中、この循環経路をメルトループとも言う。
本発明の精製装置は、液圧式洗浄カラム内の結晶床から結晶を抜き出す機構を含むことが好ましい。
結晶床から結晶を抜き出す機構は、特に限定されず、特表2005-509009号公報に記載されるローターブレード又はスクレーパ、欧州特許第1469926号明細書に記載される液動圧による機構等が挙げられ、これらの1種又は2種以上を使用できる。上記ローターブレード又はスクレーパを用いる場合は、回転数20~60rpmが好ましく、材質としてはステンレス等の金属であることが好ましい。
上記融解する設備としては、通常は加熱器が用いられる。加熱器としては、結晶を含むスラリーに効率的に熱を伝える構造、例えば、垂直多管式熱交換器、水平多管式熱交換器、二重管式熱交換器、スパイラル熱交換器、プレート熱交換器、電気ヒーター等が挙げられる。当該加熱器は、メルトループ中に設けられ、循環スラリー(融解後は循環液)はメルトループ中に設けられたポンプによって循環する強制循環式であることが好ましい。
本発明の精製装置は、上記結晶を融解する設備で得られる融解液を含む循環液の一部を液圧式洗浄カラムに返送する機構(返送機構)を含んでいてもよい。
上記返送機構は、上記循環液の一部を、循環液の他の部分と分けて、液圧式洗浄カラムに返送するために用いられる機構であればよく、例えば、上記融解する設備と上記返送口とを接続する返送ラインから分岐して、製品抜き出し口に接続される製品抜き出しラインがある場合に、該分岐路が挙げられる。該分岐路としては、例えばT字路(丁字路)が挙げられる。
上記返送機構は、中でも、結晶を融解する設備で得られる融解液を含む循環液の一部を、その少なくとも一部が結晶を洗浄する洗浄液となるように、液圧式洗浄カラムに返送する機構であることが好ましい。
上記返送口は、循環液を上向きに返送できるように、液圧式洗浄カラムの底部に設けられたものであることが好ましい。上記返送機構は、例えば、上記分岐路と、液圧式洗浄カラムの底部に設けられた返送口との組合せであってもよい。
本発明の精製装置は、上記循環液の返送量を制御する機構を更に含んでいてもよい。
本発明の精製装置は、上記循環液の返送量を制御する機構(制御機構)を更に含むことにより、例えば上記循環液の返送量を調整することができ、必要に応じて不純物の分離効率を優れたものとして、製品を効率よく得ることができる。
上記制御機構としては、例えば、上記返送機構(分岐路)部分のラインに取り付けたバルブ等が挙げられる。
上記制御機構は、循環液の返送量を直接的に制御する機構であってもよく、間接的に制御する機構であってもよい。
上記制御機構が、循環液の返送量を直接的に制御する機構である場合、当該制御機構としては、例えば、図1に示した返送ライン24に取り付けたバルブ(図示せず)が挙げられる。
なお、製品抜き出しライン23及び返送ライン24の両方にバルブを設置してもよい。
更に、結晶を含むスラリー11aを液圧式洗浄カラムに供給する供給ライン11(パイプ4を含む)、製品抜き出しライン23、返送ライン24に流量計を設け、流量に応じて上記バルブを制御することで、流量を適宜調整できる。また、製品抜き出しライン23や返送ライン24における流量に応じて上記バルブを制御することができる。また、液圧式洗浄カラムに多点式温度計を設置して、内温に応じて上記バルブを制御することもできる。
本発明の精製装置は、更に、製品抜き出し口を含むことが好ましい。例えば、本発明の精製装置は、上記融解する設備と上記返送口とを接続する返送ラインから分岐する製品抜き出しライン、及び、製品抜き出しラインと接続している製品抜き出し口を更に含むことがより好ましい。
図1に、本発明の精製装置の一例を示す。結晶を含むスラリー11aは、液圧式洗浄カラム1の結晶室15内に、結晶を含むスラリーを液圧式洗浄カラムに供給する供給ライン11(パイプ4を含む)を介して供給され、図示していないが、結晶が結晶室15の下部に堆積し、結晶床を形成する。液圧式洗浄カラム1の結晶室15内の結晶を含むスラリーを、フィルター2を用いて濾過し、フィルター2に接続されるパイプ3を用いて母液(濾液)を抜き出し、母液捕集室14で捕集した後、この母液の一部を、母液を移送するライン16a、16bにより移送し、加熱器17a、17bで加熱した後、計装機器用ノズル13a、圧力調整バルブ用ノズル13bに導入する。また、残りの母液を、ライン18により移送し、結晶を含むスラリー11aと混合し、結晶を含むスラリーとして液圧式洗浄カラムに供給することができる。
また液圧式洗浄カラム1の底部から、液圧式洗浄カラム1の結晶室15の底部を通るメルトループを循環している循環液とともに結晶が抜き出され、結晶を含むスラリーとして、結晶抜き出し口20と融解する設備22とを接続する抜き出しライン21を通って融解する設備22に移送される。融解する設備22で融解して得られた融解液は、その一部が、融解する設備22と上記返送口25とを接続する返送ライン24を通って、液圧式洗浄カラム1の結晶室15内に返送される。また、該融解液の残りの少なくとも一部は、精製された製品23aとして、返送ライン24から分岐して、製品抜き出し口に接続される製品抜き出しライン23を通って精製装置から抜き出される。
(精製装置の使用方法)
本発明は、本発明の精製装置を用いて化合物を精製する工程を含む精製装置の使用方法でもある。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記の実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
なお、以下ことわりのない場合、「%」は「質量%」を、「部」は「質量部」をそれぞれ示すものとする。
(アクリル酸水溶液の入手方法)
国際公開第2010/032665号に記載の方法に従って、プロピレンを接触気相酸化してアクリル酸含有ガスを得、得られたアクリル酸含有ガスを吸収塔で処理することにより、アクリル酸水溶液を得た。
(供給スラリーの入手方法)
伝熱面積1.4mの晶析槽に、アクリル酸水溶液を供給した。晶析槽の周壁に備えられたジャケットに冷媒を供給し、間接的に冷却することによって、晶析槽の内面に付着した結晶を、晶析槽の内部に備えられたスクレーパで掻き取り、結晶を含むスラリー(供給スラリー)を調整した。
(精製装置)
精製装置として、以下の設備を含んで構成される、フィルター2及び母液抜き出しパイプ3の本数が異なる以外は図1で示した精製装置と同様の精製装置を用いた。
液圧式洗浄カラム1:内径60mm、高さ2000mm
フィルター2:内径25mm、長さ(高さ)200mm、本数1本、材質PEEK、フィルター部構造250μm径の円形孔
フィルター2に接続される母液を移送するパイプ3:内径25mm、長さ1600mm、本数1本、材質SUS
液圧式洗浄カラム1内への循環液返送:返送口25による、カラム底部からの上向き返送
ジャケット構造:装置全体(図示なし)
結晶を含むスラリー11aを液圧式洗浄カラム1内に供給するパイプ4:内径25mm、本数1本
結晶の抜き出しライン等のメルトループライン(抜き出し口20、抜き出しライン21、製品抜き出しライン23、返送ライン24、返送口25)の内径:25mm
融解する設備22:二重管式熱交換器
メルトループにおける製品抜き出しライン23に流量制御バルブ(図示せず)を設置した。
(精製装置の運転方法)
以下の通り、精製装置の運転を行った。
用意した上記液圧式洗浄カラムに、アクリル酸の結晶を含むスラリー(供給スラリー)を、スラリー濃度(結晶濃度)10%、スラリー温度10.5℃、流量220kg/hの条件で供給した。液圧式洗浄カラムの運転内圧は0.4MPaに設定した。また、ジャケットに熱媒を導入した。
カラム底部に設けたスクレーパにより、液圧式洗浄カラム1の抜き出し口20から結晶を循環液とともに抜き出し、循環スラリーとして流量220kg/hで、融解する設備である加熱器(二重管式熱交換器)に送った。
二重管式熱交換器の熱媒温度を30℃に設定し、加熱器の出口の液体(循環液)の温度は20℃であった。上記循環液の一部を製品として製品抜き出しライン23より抜き出しつつ、上記循環液の残りを液圧式洗浄カラムに返送した。
<実施例1>
上記液圧式洗浄カラムから母液抜き出しパイプを通じて流量204.8kg/hで母液を抜き出した。抜き出した直後の母液の温度は10℃であった。
抜き出した母液を、母液捕集室14で捕集した後、その一部を、母液を移送するライン16aにより移送し、二重管式加熱器17aで加熱した後、16℃で計装機器用ノズル13aに35kg/hで導入し、圧力計が取り付けられた計装機器用ノズル13aを介して液圧式洗浄カラム1の結晶室15内に導入した。また、捕集した母液の一部を、母液を移送するライン16bにより移送し、二重管式加熱器17bで加熱した後、16℃で圧力調整バルブ用ノズル13bに35kg/hで導入し、圧力調整バルブ用ノズル13bを介して液圧式洗浄カラム1の結晶室15内に導入した。また、残りの母液を、ライン18により移送し、結晶を含むスラリー11aと混合し、結晶を含むスラリーとして液圧式洗浄カラムに供給した。
結果、ノズル部分は凝固することなく、安定して運転することができた。
<比較例1>
抜き出した母液を、計装機器用ノズル13a、圧力調整バルブ用ノズル13bに返送することなく、そのすべてを供給スラリーの一部として再循環した以外は、実施例1と同様に製品としてのアクリル酸を得た。
結果、ノズルにて凝固が発生し、圧力計計器が誤指示を起こし運転状態が正しく監視できなくなったことにより、凝固解消の為に装置を停止した。
<比較例2>
抜き出した母液を、計装機器用ノズル13aおよび圧力調整バルブ用ノズル13bを介して液圧式洗浄カラム1の結晶室15内に導入する際、二重管式加熱器にて加熱しなかったこと以外は、実施例1と同様に製品としてのアクリル酸を得た。各ノズルに導入する前の母液の温度は、いずれも8℃であった。
結果、ノズルにて凝固が発生し、圧力計計器が誤指示を起こし運転状態が正しく監視できなくなったことにより、凝固解消の為に装置を停止した。
以上の結果から、化合物の製造方法が、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する工程、該液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する工程、該液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程、及び、該母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含むことで、高品質の製品を安全かつ安定的に得ることができることが分かった。
1 液圧式洗浄カラム
2 液圧式洗浄カラムの結晶室内の結晶を含むスラリーを濾過するフィルター
3 フィルターに接続される、母液を移送するパイプ
4 結晶を含むスラリーを液圧式洗浄カラムの結晶室内に供給するパイプ
11 (結晶を含むスラリーを液圧式洗浄カラムの結晶室内に供給する)供給ライン
11a 結晶を含むスラリー
13a (計装機器用)ノズル
13b (圧力調整バルブ用)ノズル
14 母液捕集室
15 結晶室
16a、16b 母液を移送するライン
17a、17b 加熱器
18 ライン
19 圧力調整ライン
20 循環スラリーの抜き出し口
21 循環スラリーの抜き出し口と融解する設備とを接続する抜き出しライン
22 融解する設備
23 (製品抜き出し口に接続される)製品抜き出しライン
23a (精製された)製品
24 (融解する設備と上記返送口とを接続する)返送ライン
25 (抜き出した結晶の融解液を含む循環液の)返送口
P1、P2 ポンプ

Claims (17)

  1. 化合物の製造方法であって、
    該製造方法は、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する工程、
    該液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する工程、
    該液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程、及び、
    該母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含む
    ことを特徴とする化合物の製造方法。
  2. 前記液圧式洗浄カラムに設けられたノズルは、計装機器用ノズル、サンプリングノズル、圧力調整バルブ用ノズル、内挿管挿入用ノズル、及び、緊急投入用ノズルからなる群より選択される少なくとも一つである
    ことを特徴とする請求項1に記載の化合物の製造方法。
  3. 前記母液の温度以上の液体は、前記化合物及び/又は水を含む
    ことを特徴とする請求項1又は2に記載の化合物の製造方法。
  4. 前記母液の温度以上の液体は、前記母液を抜き出す工程で抜き出した母液の少なくとも一部を含む
    ことを特徴とする請求項1~3のいずれかに記載の化合物の製造方法。
  5. 前記母液の温度以上の液体は、前記母液を抜き出す工程で抜き出した母液の少なくとも一部を加熱したものを含む
    ことを特徴とする請求項1~4のいずれかに記載の化合物の製造方法。
  6. 前記液圧式洗浄カラムに設けられたノズルは、前記母液を抜き出す工程で抜き出した母液を捕集する母液捕集室を貫通し、液圧式洗浄カラムにおける結晶を含むスラリーが供給される結晶室に接続されている
    ことを特徴とする請求項1~5のいずれかに記載の化合物の製造方法。
  7. 前記製造方法は、化合物含有溶液から化合物の結晶を含むスラリーを得る工程を更に含む
    ことを特徴とする請求項1~6のいずれかに記載の化合物の製造方法。
  8. 前記化合物含有溶液は、(メタ)アクリル酸水溶液又は粗(メタ)アクリル酸溶液である
    ことを特徴とする請求項7に記載の化合物の製造方法。
  9. 前記製造方法は、原料から化合物含有溶液を得る工程を更に含む
    ことを特徴とする請求項1~8のいずれかに記載の化合物の製造方法。
  10. 前記原料は、プロパン、プロピレン、アクロレイン、イソブテン、メタクロレイン、酢酸、乳酸、イソプロパノール、1,3プロパンジオール、グリセロール、及び、3-ヒドロキシプロピオン酸からなる群より選択される少なくとも1種であることを特徴とする請求項9に記載の化合物の製造方法。
  11. 化合物の精製方法であって、
    該精製方法は、化合物の結晶を含むスラリーを、液圧式洗浄カラムに供給する工程、
    該液圧式洗浄カラムから、結晶を含む循環スラリーを抜き出し、抜き出した循環スラリーに含まれる結晶を融解する工程、
    該液圧式洗浄カラム内の結晶を含むスラリーから、フィルターを用いて母液を抜き出す工程、及び、
    該母液を抜き出す工程で抜き出した直後の母液の温度以上の液体を、液圧式洗浄カラムに設けられたノズル(該融解する工程で得られた融解液を含む循環液の返送口に設けられたノズル及び結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)に液圧式洗浄カラムの外部から導入する工程を含む
    ことを特徴とする化合物の精製方法。
  12. 結晶を精製する精製装置であって、
    該精製装置は、結晶を含む循環スラリーの抜き出し口及び抜き出した結晶の融解液を含む循環液の返送口が設けられた液圧式洗浄カラム、
    結晶を含むスラリーを液圧式洗浄カラムに供給するパイプ、
    液圧式洗浄カラム内の結晶を含むスラリーから母液を抜き出すフィルター、
    該フィルターに接続される、母液を移送するパイプ、
    液を液圧式洗浄カラムに導入する導入口に設けられたノズル(該返送口に設けられたノズル及び該結晶を含むスラリーを液圧式洗浄カラムに供給するパイプを除く)、及び、
    該抜き出し口から抜き出した循環スラリーに含まれる結晶を融解する設備を含んで構成される
    ことを特徴とする精製装置。
  13. 前記導入口に設けられたノズルは、計装機器用ノズル、サンプリングノズル、圧力調整バルブ用ノズル、内挿管挿入用ノズル、及び、緊急投入用ノズルからなる群より選択される少なくとも一つである
    ことを特徴とする請求項12に記載の精製装置。
  14. 前記導入口に設けられたノズルは、前記液圧式洗浄カラムの上面に位置している
    ことを特徴とする請求項12又は13に記載の精製装置。
  15. 前記精製装置は、抜き出した母液を捕集する母液捕集室を更に含み、
    前記導入口に設けられたノズルは、母液捕集室を貫通し、液圧式洗浄カラムにおける結晶を含むスラリーが供給される結晶室に接続されている
    ことを特徴とする請求項12~14のいずれかに記載の精製装置。
  16. 前記精製装置は、抜き出した母液を移送するラインを更に含み、該ラインが前記導入口に設けられたノズルに接続している
    ことを特徴とする請求項12~15のいずれかに記載の精製装置。
  17. 前記母液を移送するラインは、加熱機構を備える
    ことを特徴とする請求項16に記載の精製装置。
PCT/JP2021/033038 2020-09-11 2021-09-08 化合物の製造方法 WO2022054842A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022547630A JPWO2022054842A1 (ja) 2020-09-11 2021-09-08
KR1020237009491A KR20230054423A (ko) 2020-09-11 2021-09-08 화합물의 제조 방법
CN202180061618.7A CN116057033A (zh) 2020-09-11 2021-09-08 化合物的制造方法
US18/025,527 US20240010598A1 (en) 2020-09-11 2021-09-08 Method for producing compound
EP21866801.0A EP4212505A1 (en) 2020-09-11 2021-09-08 Method for producing compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020153288 2020-09-11
JP2020-153288 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022054842A1 true WO2022054842A1 (ja) 2022-03-17

Family

ID=80631866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033038 WO2022054842A1 (ja) 2020-09-11 2021-09-08 化合物の製造方法

Country Status (7)

Country Link
US (1) US20240010598A1 (ja)
EP (1) EP4212505A1 (ja)
JP (1) JPWO2022054842A1 (ja)
KR (1) KR20230054423A (ja)
CN (1) CN116057033A (ja)
TW (1) TW202216651A (ja)
WO (1) WO2022054842A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123302A (ja) * 1997-10-22 1999-05-11 Tsukishima Kikai Co Ltd 結晶の溶融精製方法および装置
EP1469926A1 (en) 2002-01-30 2004-10-27 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Method and apparatus for processing a suspension
JP2005509009A (ja) 2001-11-15 2005-04-07 ビーエーエスエフ アクチェンゲゼルシャフト 結晶を母液中の結晶の懸濁液から精製分離する方法
JP2005509010A (ja) 2001-11-15 2005-04-07 ビーエーエスエフ アクチェンゲゼルシャフト 不純化された結晶溶融液中の結晶の懸濁液から結晶を精製分離するための装置
JP2006069959A (ja) * 2004-09-02 2006-03-16 Kureha Engineering Co Ltd 結晶精製方法及びそのための装置
JP2007182437A (ja) 2005-12-06 2007-07-19 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2010059107A (ja) * 2008-09-04 2010-03-18 Mitsubishi Rayon Co Ltd 原料粗結晶の精製方法
WO2010032665A1 (ja) 2008-09-22 2010-03-25 株式会社日本触媒 固定床反応器、およびそれを用いたアクリル酸の製造方法
JP2011514311A (ja) * 2008-01-30 2011-05-06 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 高純度メタクリル酸の製造方法
JP2013507427A (ja) 2009-10-16 2013-03-04 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
WO2018216699A1 (ja) * 2017-05-25 2018-11-29 株式会社日本触媒 (メタ)アクリル酸の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123302A (ja) * 1997-10-22 1999-05-11 Tsukishima Kikai Co Ltd 結晶の溶融精製方法および装置
JP2005509009A (ja) 2001-11-15 2005-04-07 ビーエーエスエフ アクチェンゲゼルシャフト 結晶を母液中の結晶の懸濁液から精製分離する方法
JP2005509010A (ja) 2001-11-15 2005-04-07 ビーエーエスエフ アクチェンゲゼルシャフト 不純化された結晶溶融液中の結晶の懸濁液から結晶を精製分離するための装置
EP1469926A1 (en) 2002-01-30 2004-10-27 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Method and apparatus for processing a suspension
JP2006069959A (ja) * 2004-09-02 2006-03-16 Kureha Engineering Co Ltd 結晶精製方法及びそのための装置
JP2007182437A (ja) 2005-12-06 2007-07-19 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2011514311A (ja) * 2008-01-30 2011-05-06 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 高純度メタクリル酸の製造方法
JP2010059107A (ja) * 2008-09-04 2010-03-18 Mitsubishi Rayon Co Ltd 原料粗結晶の精製方法
WO2010032665A1 (ja) 2008-09-22 2010-03-25 株式会社日本触媒 固定床反応器、およびそれを用いたアクリル酸の製造方法
JP2013507427A (ja) 2009-10-16 2013-03-04 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
WO2018216699A1 (ja) * 2017-05-25 2018-11-29 株式会社日本触媒 (メタ)アクリル酸の製造方法

Also Published As

Publication number Publication date
JPWO2022054842A1 (ja) 2022-03-17
EP4212505A1 (en) 2023-07-19
TW202216651A (zh) 2022-05-01
CN116057033A (zh) 2023-05-02
KR20230054423A (ko) 2023-04-24
US20240010598A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP5722771B2 (ja) (メタ)アクリル酸の晶析方法
JP5112898B2 (ja) (メタ)アクリル酸の晶析方法およびその晶析システム
JP2013507427A (ja) アクリル酸結晶を母液中の該アクリル酸結晶の懸濁液sから精製分離するための分離法のスタートアップ方法
WO2010122304A1 (en) Methods, processes, and systems for treating and purifying crude terephthalic acid and associated process streams
WO2022054842A1 (ja) 化合物の製造方法
WO2010090143A1 (ja) (メタ)アクリル酸の製造方法
WO2022054841A1 (ja) 化合物の製造方法
WO2022054840A1 (ja) 精製装置
WO2022255372A1 (ja) 精製装置
JP4517656B2 (ja) ビスフェノールaの製造方法
WO2022255373A1 (ja) 精製装置に用いられる槽
KR102157488B1 (ko) 메타크릴산의 정제 방법 및 제조 방법
EP4349807A1 (en) Method for producing easily polymerizable compound
CN107073357A (zh) 纯化丙烯酸的方法和装置
EP4349443A1 (en) Heat exchanger
EP4353708A1 (en) Method for producing easily polymerizable compound
BR112020010153B1 (pt) Método para desidrogenação oxidativa de etano a etileno compreendendo remover ou impedir o acúmulo de incrustações substancialmente solúveis em água na tubulação a jusante de um reator de odh
US3910997A (en) Process for cleaning slurry coolers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547630

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18025527

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237009491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866801

Country of ref document: EP

Effective date: 20230411