WO2011001570A1 - 光学フィルム用ドープの製造方法、光学フィルムの製造方法、光学フィルム、偏光板、及び液晶表示装置 - Google Patents

光学フィルム用ドープの製造方法、光学フィルムの製造方法、光学フィルム、偏光板、及び液晶表示装置 Download PDF

Info

Publication number
WO2011001570A1
WO2011001570A1 PCT/JP2010/001999 JP2010001999W WO2011001570A1 WO 2011001570 A1 WO2011001570 A1 WO 2011001570A1 JP 2010001999 W JP2010001999 W JP 2010001999W WO 2011001570 A1 WO2011001570 A1 WO 2011001570A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
dope
fine particles
film
organic additive
Prior art date
Application number
PCT/JP2010/001999
Other languages
English (en)
French (fr)
Inventor
杉谷彰一
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to KR1020127001976A priority Critical patent/KR20120058505A/ko
Priority to JP2011520738A priority patent/JPWO2011001570A1/ja
Publication of WO2011001570A1 publication Critical patent/WO2011001570A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention provides a method for producing a dope for an optical film, a method for producing an optical film using the dope for an optical film produced by the method for producing an optical film dope, an optical film obtained by the method for producing the optical film,
  • the present invention relates to a polarizing plate using the optical film as a transparent protective film, and a liquid crystal display device including the polarizing plate.
  • various optical films for example, a transparent protective film for protecting the polarizing element of the polarizing plate, and the like are arranged.
  • a resin film excellent in transparency such as a cellulose ester film is used.
  • the solution casting film forming method is a method in which a resin solution (dope) in which a transparent resin as a raw material resin is dissolved in a solvent is cast on a traveling support and dried to a peelable extent.
  • a long resin film is produced by peeling the film obtained from the support from the support, and performing drying, stretching and the like while carrying the peeled film with a carrying roller.
  • Such a long resin film is generally used for storage and transportation in a state of being wound in a roll shape around a winding core. For this reason, the optical film is required to have a certain degree of slipperiness in order to keep the shape of the long resin film in the roll state, that is, the winding shape good.
  • an optical film used for a liquid crystal display device is required to have a low internal haze and a high sliding property.
  • an optical film excellent in both internal haze and sliding property can be obtained by reducing the content of fine particles to the minimum amount that can achieve the required sliding property.
  • the fine particles as the matting agent are slightly agglomerated, the number of fine particles is reduced and the slipping property is lowered, so that the desired slipping property cannot be achieved.
  • the fine particles as the matting agent are aggregated, it becomes a foreign substance, which may cause a problem that the internal haze increases.
  • the fine particles contained in the optical film that is, the fine particles contained in the dope for producing the optical film, include the fine particles described in Patent Documents 1 to 3 below.
  • Patent Document 1 describes fine particles having a methyl group on the surface as fine particles contained in a cellulose triacetate film (optical film).
  • Patent Document 2 describes fine particles having an alkyl group or aryl group having 2 to 20 carbon atoms on the surface as fine particles contained in a cellulose ester film (optical film).
  • Patent Document 2 fine particles having an alkyl group or aryl group having 2 to 20 carbon atoms on the surface are less likely to aggregate when added to the dope, and by containing these fine particles, excellent dispersibility is obtained. It is disclosed that a cellulose ester film can be obtained.
  • Patent Document 3 describes fine particles having a positive charge on the surface as fine particles contained in a cellulose acylate solution (dope for optical film).
  • Patent Document 3 it is disclosed that aggregation of fine particles is suppressed by having a positive charge on the surface.
  • the present invention is an optical film dope that can produce an optical film excellent in transparency with sufficiently low internal haze, even when fine particles and an organic additive are contained. It aims at providing the manufacturing method of. Moreover, the manufacturing method of the optical film using the dope for optical films manufactured by the manufacturing method of such a dope for optical films, the optical film obtained by the manufacturing method of the said optical film, The said optical film as a transparent protective film It is an object to provide a polarizing plate used and a liquid crystal display device including the polarizing plate.
  • One aspect of the present invention is a method for producing a dope for an optical film containing a transparent resin, fine particles, an organic additive, and a solvent, and the transparent resin and the solvent are charged into a container while stirring.
  • the step of adding the organic additive to the liquid in the container before or during dissolution, and the organic additive to the viscosity of the liquid in the container when the fine particles are added A method for producing a dope for an optical film, wherein the ratio of the viscosity of the liquid in the container when adding is 1 to 100.
  • Another aspect of the present invention includes a casting step of casting a dope on a traveling support to form a film, and a peeling step of peeling the film from the support.
  • a method for producing an optical film which is a dope for an optical film produced by the method for producing an optical film dope.
  • another aspect of the present invention is an optical film obtained by the method for producing an optical film.
  • the polarizing plate according to another aspect of the present invention is a polarizing plate including a polarizing element and a transparent protective film disposed on at least one surface of the polarizing element, wherein the transparent protective film is A polarizing plate characterized by being the optical film.
  • Another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates.
  • a liquid crystal display device characterized by being the polarizing plate.
  • the inventor of the present invention as described above, agglomerates the fine particles when the organic additive is added to the liquid in the container prior to the fine particles when the optical film dope is produced. It was inferred that the organic additive tends to occur when it acts like an adhesive.
  • the present inventor has arrived at the present invention in which the timing of adding the fine particles and the organic additive is adjusted. That is, the present invention has been made based on the above examination results.
  • the method for producing an optical film dope according to the present embodiment is a method for producing an optical film dope containing a transparent resin, fine particles, an organic additive, and a solvent, wherein the transparent resin and the solvent are used.
  • the ratio of the viscosity of the liquid in the container when the organic additive is added is 1 to 100.
  • the transparent resin By stirring the transparent resin and the solvent in the container at a temperature equal to or higher than the boiling point of the solvent, the transparent resin is gradually dissolved in the solvent, and the viscosity of the liquid in the container is gradually increased. Then, when the viscosity of the liquid in the container is relatively low, the fine particles are added to the liquid in the container and stirred. By doing so, it is considered that the fine particles are easily dispersed in the liquid in the container. Thereafter, when the viscosity of the liquid in the container increases within the above range from the viscosity of the liquid in the container when adding the fine particles, that is, when the dissolution of the transparent resin proceeds to some extent, the organic additive And stir.
  • the optical film dope (hereinafter, also simply referred to as “dope”) manufactured by the optical film dope manufacturing method according to the present embodiment, for example, by a solution casting film forming method or the like, the optical film. Can be manufactured.
  • a method for producing a dope for an optical film by the method for producing an optical film dope according to this embodiment and producing an optical film using the dope is, for example, a so-called solution casting film formation as shown in FIG. It is carried out by an optical film manufacturing apparatus by the method.
  • the dope for optical films obtained by this embodiment is not only used for the solution casting film forming method, but can also be used for other methods for producing an optical film.
  • FIG. 1 is a schematic view showing a configuration of an optical film manufacturing apparatus 11 using the method for manufacturing an optical film dope according to the present embodiment.
  • the optical film manufacturing apparatus 11 includes a dope manufacturing apparatus 21, a dope filtering apparatus 22, and a film forming apparatus 23.
  • the dope manufacturing apparatus 21 manufactures a dope.
  • the dope filtering device 22 filters the manufactured dope.
  • the film forming apparatus 23 manufactures an optical film using the filtered dope.
  • the dope manufacturing apparatus 21 includes a dope charging pot 1, a discharge valve 6, a dope feed pump 2, and the like.
  • the dope charging pot 1 is a container for preparing a dope by mixing a raw material for an optical film such as a transparent resin, fine particles and organic additives and a solvent.
  • the dope charging pot 1 is connected to a pipe through which the dope is circulated through the discharge valve 6 and sent to another device, for example, the dope filtering device 22.
  • the pipe is provided with a dope feed pump 2 for allowing the dope to flow efficiently through the pipe, immediately below the discharge valve 6.
  • the dope feed pump 2 may be appropriately arranged not only directly under the discharge valve 6 but also for smooth circulation of the dope in the pipe.
  • the dope charging pot 1 is not particularly limited as long as it can heat the liquid charged therein to a predetermined temperature and stir in the heated state. Specifically, the thing provided with the stirring blade, the heating apparatus, etc. is mentioned, for example.
  • the heating device for heating the liquid in the dope charging pot 1 is not particularly limited, but is preferably performed from the outside. For example, a jacket type is preferable from the viewpoint of easy temperature control.
  • the stirring is performed in a state where the dope raw material is charged to the boiling point or higher of the solvent that is the dope raw material, the dope charging kettle 1 is hermetically sealed in order to suppress the weight loss of the solvent. It is preferable that the container be a container.
  • the dope charging kettle 1 is preferably a container that can withstand a predetermined pressure, specifically, a pressure equal to or higher than the vapor pressure of the solvent at the temperature at the time of stirring. Further, the pressurization in the dope charging pot 1 may be performed by increasing the vapor pressure of the solvent by heating as described above, or a method of press-fitting an inert gas such as nitrogen gas may be used.
  • the dope charging pot 1 may be appropriately provided with instruments such as a pressure gauge, a thermometer, and a viscometer.
  • a transparent resin and a solvent are added to the dope charging pot 1 while stirring, and the mixture is heated to a boiling point or higher of the solvent and stirred. By doing so, the transparent resin is gradually dissolved in the solvent. At that time, the viscosity of the liquid in the dope charging pot 1 gradually increases as the transparent resin dissolves.
  • the viscosity of the liquid in the dope charging pot 1 can be measured using a viscometer disposed in the dope charging pot 1, for example, FVM-80A-EXHT manufactured by CBC Corporation.
  • the temperature of the liquid in the dope charging kettle 1 is equal to or higher than the boiling point of the solvent, and among them, it is preferably 20 to 50 ° C. higher than the boiling point of the solvent. If the temperature of the liquid at the time of stirring is too low, the time required for the transparent resin to dissolve becomes longer and the productivity tends to decrease. Moreover, when the temperature of the liquid at the time of stirring is too high, bubbles generated by boiling of the solvent tend to remain in the obtained dope, and foreign substances due to bubbles tend to be easily generated in the obtained optical film.
  • the temperature of the liquid in the dope charging pot 1 can be measured using a thermometer or the like disposed in the dope charging pot 1. Further, for example, the temperature of the liquid in the dope charging vessel 1 may be measured by using FVM-80A-EXHT manufactured by CBC Co., Ltd. given as an example of the above viscometer.
  • the capacity of the dope charging pot 1 is preferably 2 to 50 m 3 , more preferably 5 to 20 m 3 . If the capacity is too small, it may be necessary to increase the number of dope charging pots or increase the number of treatments depending on the amount of dope produced. On the other hand, if it is too large, the time required for dissolving the transparent resin in the solvent becomes longer and the productivity tends to decrease.
  • fine particles are added to the dope charging vessel 1. throw into. Thereafter, an organic additive is introduced into the dope charging pot 1.
  • the timing of adding the fine particles and the organic additive is the dope charging pot 1 when the organic additive is added to the viscosity A of the liquid in the dope charging pot 1 when the fine particles are added.
  • the ratio B (B / A) of the viscosity B of the liquid is 1 to 100, there is no particular limitation. That is, the fine particles may be added before the stirring of the transparent resin and the solvent is started, or may be performed while the transparent resin and the solvent are being stirred.
  • the organic additive stirs the transparent resin and the solvent to increase the viscosity of the liquid in the dope charging vessel 1, so that the viscosity of the liquid in the dope charging vessel 1 satisfies the above relationship. You only need to insert it when you meet.
  • the B / A may be 1 to 100, but is preferably 1.5 to 80, and more preferably 2 to 70. If the B / A is too small, the dispersibility of the fine particles tends to decrease. If the B / A is smaller than 1, the organic additive is added before the fine particles, and the dispersibility of the fine particles is not good. It will be enough. On the other hand, if the B / A is too large, the organic additive is not easily dissolved in the dope, and tends to be difficult to be uniformly dispersed in the dope.
  • the dope is obtained by dissolving the transparent resin in the solvent, and the dope further includes fine particles and a solvent. Even if it is contained, a dope in which fine particles are uniformly dispersed is obtained. That is, by producing the dope as described above, when the viscosity of the liquid in the dope charging vessel 1 is relatively low, the fine particles are added to the liquid in the dope charging vessel 1 and stirred. By doing so, it is considered that the fine particles are easily dispersed in the liquid in the dope charging pot 1.
  • the viscosity of the liquid in the dope charging vessel 1 is increased within the above range from the viscosity of the liquid in the dope charging vessel 1 when the fine particles are added, that is, the dissolution of the transparent resin proceeds to some extent.
  • the organic additive is added and stirred.
  • the dope prepared in the dope charging pot 1 is sent to the dope filtering device 22 through the pipe connected to the dope charging pot 1 by opening the discharge valve 6.
  • the dope raw material used in the method for producing a dope for an optical film according to this embodiment will be described.
  • the transparent resin used in the present embodiment is not particularly limited as long as it is a resin having transparency when formed into a film using the obtained dope, and is manufactured by a solution casting film forming method or the like. It is preferable that the film is easy to bond, has excellent adhesion to a hard coat layer, and is optically isotropic. In addition, transparency here is that the transmittance
  • the transparent resin examples include cellulose ester resins such as cellulose diacetate resin, cellulose triacetate resin, cellulose acetate butyrate resin, and cellulose acetate propionate resin; polyethylene terephthalate resin, polyethylene naphthalate resin, and the like.
  • Polyester resin acrylic resin such as polymethyl methacrylate resin; polysulfone (including polyethersulfone) resin, polyethylene resin, polypropylene resin, cellophane, polyvinylidene chloride resin, polyvinyl alcohol resin, ethylene vinyl alcohol resin, syndiotactic Polyvinyl resins such as polystyrene resins, cycloolefin resins and polymethylpentene resins; polycarbonate resins; polyarylate resins; Ketone resins; polyether ketone imide resin; can be mentioned fluorine-based resin or the like; a polyamide resin.
  • a cellulose ester resin is preferable.
  • cellulose ester resins cellulose acetate resin, cellulose propionate resin, cellulose butyrate resin, cellulose acetate butyrate resin, and cellulose acetate propionate resin are preferable.
  • the cellulose ester resin has a mixed fatty acid ester of cellulose where X and Y satisfy the following formulas (I) and (II), where X is the substitution degree of acetyl group and Y is the substitution degree of propionyl group or butyryl group.
  • a cellulose ester resin is preferred.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group.
  • These cellulose ester resins can be synthesized by a known method. The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
  • the cellulose that is the raw material of the cellulose ester-based resin is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from coniferous tree, derived from broadleaf tree), kenaf and the like. Moreover, the cellulose ester-type resin obtained from them can be mixed and used in arbitrary ratios, respectively.
  • the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride)
  • these cellulose ester resins use an organic acid such as acetic acid or an organic solvent such as methylene chloride, It can be obtained by reacting with a cellulose raw material using such a protic catalyst.
  • the reaction is performed using a basic compound such as an amine as a catalyst.
  • a basic compound such as an amine as a catalyst.
  • the cellulose ester-based resin is obtained by adjusting the amount of the acylating agent in accordance with the degree of substitution, and the cellulose ester-based resin reacts with the hydroxyl group of the cellulose molecule.
  • Cellulose molecules are composed of many glucose units linked together, and the glucose unit has three hydroxyl groups. The number of acyl groups derived from these three hydroxyl groups is called the degree of substitution (mol%).
  • cellulose triacetate has acetyl groups bonded to all three hydroxyl groups of the glucose unit (actually 2.6 to 3.0).
  • a propionate group or a butyrate group is bonded to the cellulose ester resin in addition to an acetyl group such as cellulose acetate propionate resin, cellulose acetate butyrate resin, and cellulose acetate propionate butyrate resin.
  • a mixed fatty acid ester of cellulose is preferably used.
  • a cellulose acetate propionate resin containing a propionate group as a substituent is excellent in water resistance and is particularly useful as a film for a liquid crystal image display device.
  • the number average molecular weight of the cellulose ester-based resin is preferably 40,000 to 200,000, since it has a high mechanical strength when molded into an optical film and has an appropriate dope viscosity in the solution casting film forming method. More preferably, it is 50,000 to 150,000.
  • the weight average molecular weight (Mw) / number average molecular weight (Mn) is preferably in the range of 1.4 to 4.5.
  • the transparent resin the above exemplified transparent resins may be used alone or in combination of two or more.
  • the fine particles used in the present embodiment are appropriately selected according to the purpose of use, and are not particularly limited as long as they improve the slipperiness of the obtained optical film.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • the inorganic fine particles include silicon oxide (silica), titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, calcium carbonate, strontium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and water.
  • Fine particles such as Japanese calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate can be mentioned. Among these, silica fine particles are preferably used.
  • silica fine particles include, for example, Aerosil-200, 200V, 300, R972, R972V, R974, R976, R976S, R202, R812, R805, OX50, TT600, RY50, RX50 manufactured by Nippon Aerosil Co., Ltd. , NY50, NAX50, NA50H, NA50Y, NX90, RY200S, RY200, RX200, R8200, RA200H, RA200HS, NA200Y, R816, R104, RY300, RX300, R106, and the like.
  • Aerosil-R972V is preferred in terms of controlling dispersibility and particle size.
  • organic fine particles include acrylic resins such as polymethyl methacrylate resin, acrylic styrene resins, silicone resins, polystyrene resins, polycarbonate resins, benzoguanamine resins, melamine resins, and polyolefins. Fine particles composed of a resin, a polyester resin, a polyamide resin, a polyimide resin, a polyfluorinated ethylene resin, and the like.
  • the fine particles may be used alone, or two or more kinds may be used in combination.
  • the dope produced by the method for producing an optical film dope according to the present embodiment is used, and the optical film obtained is measured from a cross-sectional photograph taken with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average particle diameter of the secondary particles of the fine particles has an average particle diameter of 50 to 300 nm. If the equivalent circle average particle size of the secondary particles of the fine particles contained in the obtained optical film is too small, the slipping property tends not to be sufficiently improved. Moreover, when too large, there exists a tendency for an internal haze to become high. Accordingly, when the equivalent-circle average particle diameter of the secondary particles of the fine particles is within the above range, an optical film having a sufficiently high sliding property and a lower internal haze can be obtained.
  • the obtained optical film is excellent in slipperiness. This is presumably because the high dispersibility of the fine particles can sufficiently exert the effect of improving the slipperiness of the fine particles.
  • the average particle diameter of the fine particles in the dope is preferably within the above range, but more specifically, for example, 80 to 200 ⁇ m is preferable.
  • the internal haze of the optical film can be measured, for example, in accordance with ASTM-D1003-52.
  • the said fine particle measured from the cross-sectional photograph which image
  • the number of secondary particles is 0.7 to 6 particles / ⁇ m 2 .
  • the slip property cannot be sufficiently improved.
  • an internal haze to become high. Therefore, when the number of secondary particles of the fine particles is within the above range, an optical film having a sufficiently high slip property and a lower internal haze can be obtained.
  • the obtained optical film is excellent in slipperiness.
  • the content of the fine particles in the dope is preferably within the above range, but more specifically, for example, 0.05 to 0.5% by mass is preferable. .
  • the shape of the fine particles is not particularly limited, and examples thereof include a spherical shape, a flat plate shape, and a needle shape, and a spherical shape is preferable.
  • the fine particles when producing the dope, may be added alone to the liquid in the container, or may be added as a dispersion dispersed in a solvent.
  • the dispersion include those obtained by dispersing the fine particles with a solvent described later.
  • Organic additives used in the present embodiment is appropriately selected depending on the purpose of use, but is added to adjust the chemical properties, mechanical properties, electrical properties, and the like of the obtained optical film.
  • organic type additive a plasticizer, antioxidant, a ultraviolet absorber etc. are mentioned, for example.
  • the molecular weight of the organic additive is preferably 500 to 5000, and more preferably 700 to 4000.
  • the organic additive contained in the optical film dope as described above has a relatively high molecular weight, the dispersibility of the fine particles generally decreases, and the internal haze of the obtained optical film.
  • the manufacturing method according to this embodiment the generation of foreign matter is suppressed, and an optical film excellent in transparency with sufficiently low internal haze can be manufactured.
  • An optical film dope can be obtained.
  • the molecular weight refers to the weight average molecular weight particularly when the molecular weight is high, and can be measured by GPC (GPC system manufactured by Shimadzu Corporation).
  • the viscosity of the organic additive is preferably 10 to 10000 mPa ⁇ s, more preferably 100 to 5000 mPa ⁇ s.
  • an organic additive contained in the optical film dope has a high viscosity, generally, the dispersibility of the fine particles is reduced, and the internal haze of the obtained optical film is sufficiently low.
  • the manufacturing method according to the present embodiment even when an organic additive selected from a wide viscosity range as described above is contained, the generation of foreign matters is suppressed and the internal haze is sufficiently low.
  • An optical film dope capable of producing an optical film excellent in transparency can be obtained.
  • the viscosity of the organic additive is a viscosity at the time of addition, and is based on viscosity data measured by a viscometer (B-type viscometer manufactured by Brookfield).
  • a viscometer B-type viscometer manufactured by Brookfield.
  • the viscosity of the organic additive may be added as it is.
  • a solvent described later for example, methylene chloride, etc. It may be diluted to adjust the viscosity.
  • the plasticizer is not particularly limited, but the melt viscosity of a transparent resin such as a cellulose ester resin and the glass transition temperature are lowered to increase the productivity of the optical film, or the flexibility suitable for the obtained optical film. What is added in order to provide is mentioned.
  • carboxylate ester plasticizer, phosphate ester plasticizer, phthalate ester plasticizer, trimellitic acid ester plasticizer, pyromellitic acid plasticizer, glycolic acid ester plasticizer examples thereof include citrate plasticizers, glycol plasticizers, and polyester plasticizers.
  • carboxylic acid ester plasticizers are preferable.
  • carboxylic ester plasticizer examples include polybasic acids such as aliphatic dibasic acids, alicyclic dibasic acids, and aromatic dibasic acids, and polyhydric alcohols such as glycols. And the like formed from The aliphatic dibasic acid can be used without any particular limitation, and specific examples include adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid, and the like.
  • examples include those represented by the following general formulas (1) to (5).
  • a compound having a molecular weight of 874 having q of 3 is preferably used.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, and butyl benzyl phthalate.
  • trimellitic acid plasticizer examples include tributyl trimellitate, triphenyl trimellitate, triethyl trimellitate, and the like.
  • pyromellitic acid ester plasticizer examples include tetrabutyl pyromellitate, tetraphenyl pyromellitate, tetraethyl pyromellitate, and the like.
  • glycolic acid ester plasticizer examples include triacetin, tributyrin, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate, and butyl phthalyl butyl glycolate.
  • citrate plasticizer examples include triethyl citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2 -Ethylhexyl) citrate and the like.
  • glycol plasticizer examples include ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like. Is mentioned.
  • the polyester plasticizer is not particularly limited, but a polyester plasticizer having an aromatic ring or a cycloalkyl ring in the molecule is preferable.
  • polyester plasticizer for example, an aromatic terminal ester plasticizer represented by the following general formula (6) is preferable.
  • B represents a benzene monocarboxylic acid residue
  • G represents an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or 4 to 4 carbon atoms
  • 12 represents an oxyalkylene glycol residue
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms
  • n represents 1 or more.
  • the aromatic terminal ester plasticizer represented by the general formula (6) includes a benzene monocarboxylic acid residue represented by B and an alkylene glycol residue, oxyalkylene glycol residue or aryl glycol residue represented by G. And an alkylene dicarboxylic acid residue or an aryl dicarboxylic acid residue represented by A, and can be obtained by a reaction similar to that of a normal polyester plasticizer.
  • benzene monocarboxylic acid component of the polyester plasticizer include, for example, benzoic acid, paratertiary butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, and normalpropyl.
  • examples include benzoic acid, aminobenzoic acid, and acetoxybenzoic acid.
  • the benzene monocarboxylic acid component may be used alone or in combination of two or more.
  • alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, , 3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol ( Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane) ), 3-methyl-1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl 1,3-penta Diol, 2-ethyl-1
  • oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester of the polyester plasticizer include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. Can be mentioned.
  • the oxyalkylene glycol component may be used alone or in combination of two or more.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester of the polyester plasticizer include, for example, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, and sebacin. An acid, dodecanedicarboxylic acid, etc. are mentioned.
  • the said alkylene dicarboxylic acid component may be used independently and may be used in combination of 2 or more type.
  • arylene dicarboxylic acid component having 6 to 12 carbon atoms of the aromatic terminal ester of the polyester plasticizer include, for example, phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalenedicarboxylic acid, 1,4 And naphthalenedicarboxylic acid.
  • the said arylene dicarboxylic acid component may be used independently and may be used in combination of 2 or more type.
  • the number average molecular weight of the polyester plasticizer is preferably 300 to 1500, and more preferably 400 to 1000.
  • the acid value of the polyester plasticizer is preferably 0.5 mgKOH / g or less, and more preferably 0.3 mgKOH / g or less.
  • the hydroxyl value of the polyester plasticizer is preferably 25 mgKOH / g or less, and more preferably 15 mgKOH / g or less.
  • Example No. 1 (Aromatic terminal ester sample)> A reaction vessel was charged with 410 parts by weight of phthalic acid, 610 parts by weight of benzoic acid, 737 parts by weight of dipropylene glycol, and 0.40 part by weight of tetraisopropyl titanate as a catalyst. Then, while refluxing excess monohydric alcohol, heating was continued at 130 to 250 ° C. until the acid value became 2 or less, and water produced was continuously removed. Next, the distillate was removed at 200 to 230 ° C. under reduced pressure of 100 to finally 4 ⁇ 10 2 Pa or less, and then filtered. By doing so, an aromatic terminal ester plasticizer having a viscosity (25 ° C.) of 43400 mPa ⁇ s and an acid value of 0.2 mgKOH / g was obtained.
  • Sample No. 1 was used except that 410 parts by mass of phthalic acid, 610 parts by mass of benzoic acid, 341 parts by mass of ethylene glycol, and 0.35 parts by mass of tetraisopropyl titanate as a catalyst were used in the reaction vessel.
  • an aromatic terminal ester plasticizer having a viscosity (25 ° C.) of 31000 mPa ⁇ s and an acid value of 0.1 mgKOH / g was obtained.
  • Sample No. 1 was used except that 410 parts by weight of phthalic acid, 610 parts by weight of benzoic acid, 418 parts by weight of 1,2-propanediol, and 0.35 parts by weight of tetraisopropyl titanate as a catalyst were used in the reaction vessel.
  • an aromatic terminal ester plasticizer having a viscosity (25 ° C.) of 38000 mPa ⁇ s and an acid value of 0.05 mgKOH / g was obtained.
  • Sample No. 1 was used except that 410 parts by weight of phthalic acid, 610 parts by weight of benzoic acid, 418 parts by weight of 1,3-propanediol, and 0.35 parts by weight of tetraisopropyl titanate as a catalyst were used in the reaction vessel.
  • an aromatic terminal ester plasticizer having a viscosity (25 ° C.) of 37000 mPa ⁇ s and an acid value of 0.05 mgKOH / g was obtained.
  • aromatic terminal ester plasticizer examples include compounds represented by formulas (7) to (16).
  • the above plasticizers may be used alone or in combination of two or more.
  • the content thereof is preferably 1 to 40% by mass, preferably 3 to 20% by mass with respect to the transparent resin in consideration of dimensional stability and processability. More preferably, it is 4 to 15% by mass. If the content of the plasticizer is too small, a smooth cut surface cannot be obtained when slitting or punching, and there is a tendency for generation of chips. That is, the effect of including a plasticizer cannot be sufficiently exhibited.
  • antioxidant for example, hindered phenol compounds are preferably used.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
  • the content of the antioxidant is preferably 1 ppm to 1.0%, more preferably 10 to 1000 ppm in terms of mass ratio with respect to the transparent resin.
  • the optical film manufactured using the dope obtained by the manufacturing method according to the present embodiment can be used for a protective film for a polarizing plate, and in this case, for preventing deterioration of the polarizing plate or liquid crystal.
  • An ultraviolet absorber is preferably used.
  • the ultraviolet absorber those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
  • the transmittance at 380 nm is preferably less than 10%, more preferably less than 5%.
  • UV absorber examples include oxybenzophenone compounds, benzotriazole compounds (benzotriazole UV absorbers), salicylic acid ester compounds, benzophenone compounds (benzophenone UV absorbers), and cyanoacrylates. Compounds, nickel complex compounds, triazine compounds, and the like. Further, if an example of a suitable one as the ultraviolet absorber is mentioned, for example, the ultraviolet absorber described in JP-A-10-182621, JP-A-8-337574, JP-A-6-148430, Examples thereof include a polymer ultraviolet absorber described in JP-A-12-273437 and an ultraviolet absorber described in JP-A-10-152568.
  • the content of the ultraviolet absorber is preferably from 0.1% by mass to 2.5% by mass, considering the effect as an ultraviolet absorber, transparency, etc., and from 0.8% by mass to 2.0% by mass. % Is more preferable.
  • benzotriazole UV absorbers and benzophenone UV absorbers are preferable.
  • Specific examples of the benzotriazole-based UV absorber and the benzophenone-based UV absorber are given below, but the present invention is not limited thereto.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-). tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert- Butylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2, 2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- 2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazo
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis ( 2-methoxy-4-hydroxy-5-benzoylphenylmethane) and the like.
  • a solvent containing a good solvent for the transparent resin can be used.
  • the good solvent varies depending on the transparent resin used.
  • the good solvent and the poor solvent change depending on the acyl group substitution degree of the cellulose ester.
  • the cellulose ester acetate ester acetyl group substitution degree 2.4
  • cellulose Acetate propionate is a good solvent
  • cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent. Therefore, since the good solvent and the poor solvent differ depending on the transparent resin used, the case of a cellulose ester resin will be described as an example.
  • Examples of good solvents for cellulose ester resins include organic halogen compounds such as methylene chloride, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dioxolane derivatives, cyclohexanone, Ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3- Hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • organic halogen compounds such as methylene chloride, methyl acetate, ethyl acetate, amyl acetate,
  • organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone and the like are preferable. These good solvents may be used alone or in combination of two or more.
  • the dope may contain a poor solvent as long as the transparent resin does not precipitate.
  • poor solvents for cellulose ester resins include alcohols having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, methyl ethyl ketone, and methyl isobutyl.
  • Examples include ketones, propyl acetate, monochlorobenzene, benzene, cyclohexane, tetrahydrofuran, methyl cellosolve, and ethylene glycol monomethyl ether. These poor solvents may be used alone or in combination of two or more.
  • the dope filtration device 22 includes a dope stationary pot 3, filters 4, 5, a dope feed pump 2, and the like.
  • the dope filtering device 22 may not be installed, but the generation of foreign matters in the obtained optical film is reduced. Therefore, it is preferable to install the dope filtering device 22.
  • the dope stationary pot 3 is a container for temporarily storing the dope.
  • the filter is a filter for filtering undissolved substances and precipitates from the dope stored in the dope stationary pot 3.
  • the said filter is equipped with the said 1st filter 4 and the said 2nd filter 5, and is each arrange
  • the dope filtering device 22 includes a plurality of filters of the first filter 4 and the second filter 5 connected in series. Alternatively, three or more types may be connected in series, or one type may be used alone.
  • the material of the filter material used for the filter with which the said dope filtration apparatus 22 is equipped has no restriction
  • a plastic filter material such as polypropylene, a filter paper using cellulose or rayon, or a metal filter material such as stainless steel is preferable because fibers do not fall off. It is preferable from the viewpoint of removing and reducing impurities, particularly bright spot foreign matter, contained in the raw material transparent resin solution by filtration.
  • the filtration accuracy is preferably 0.03 mm or less, and more preferably 0.001 to 0.015 mm.
  • the dope feeding pump 2 may be appropriately disposed in a pipe or the like connecting the dope stationary pot 3 and the filter so as to smoothly feed the dope in the pipe.
  • the dope liquid feeding pump 2 is arranged immediately before the filters such as the first filter 4 and the second filter 5 in order to increase the filtration pressure.
  • the dope prepared by the dope manufacturing apparatus 21 is filtered by the dope filtering apparatus 22 and then sent to the film forming apparatus 23.
  • the film forming apparatus 23 includes an endless belt support 12, a casting die 13, a peeling roller 14, a stretching device 15, a drying device 17, a winding device 18, and the like.
  • the casting die 13 casts the dope 19 on the surface of the endless belt support 12.
  • the endless belt support 12 is formed into a film by forming a web made of the dope 19 cast from the casting die 13 and drying it while being conveyed.
  • the peeling roller 14 peels the film from the endless belt support 12.
  • the stretching device 15 stretches the peeled film.
  • the drying device 17 dries the stretched film while being transported by a transport roller.
  • the said winding apparatus 18 winds up the dried film in roll shape, and makes it a film roll.
  • a dope prepared by the dope manufacturing apparatus 21, filtered by the dope filtering apparatus 22 and sent to the film forming apparatus 23 as necessary is used.
  • the casting die 13 is supplied with a dope 19 from a dope supply pipe connected to the upper end of the casting die 13. Then, the supplied dope is discharged from the casting die 13 to the endless belt support 12, and a web is formed on the endless belt support 12.
  • the endless belt support 12 is a metal endless belt having a mirror surface and traveling infinitely.
  • a belt made of stainless steel or the like is preferably used from the viewpoint of peelability of the film.
  • the width of the casting film cast by the casting die 13 is not particularly limited. However, from the viewpoint of effectively utilizing the width of the endless belt support 12, the width of the endless belt support 12 is 80 to 99%. It is preferable that In order to finally obtain an optical film having a width of 1000 to 4000 mm, the width of the endless belt support 12 is preferably 1500 mm or more. Further, instead of the endless belt support, a rotating metal drum (endless drum support) having a mirror surface may be used.
  • the endless belt support 12 dries the solvent in the dope while transporting a cast film (web) formed on the surface thereof.
  • the drying is performed, for example, by heating the endless belt support 12 or blowing heated air on the web.
  • the temperature of the web varies depending on the dope solution, the range of ⁇ 5 to 70 ° C. is preferable and the range of 0 to 60 ° C. is preferable in consideration of the conveyance speed and productivity accompanying the evaporation time of the solvent. More preferred.
  • the higher the temperature of the web the higher the drying speed of the solvent, which is preferable. However, when the web temperature is too high, foaming and flatness tend to deteriorate.
  • a method of heating the web on the endless belt support 12 with an infrared heater for example, a method of heating the back of the endless belt support 12 with an infrared heater, the back of the endless belt support 12 And a method of heating by blowing heated air, and the like can be selected as needed.
  • the wind pressure of the heated air is preferably 50 to 5000 Pa in consideration of the uniformity of solvent evaporation and the like.
  • the temperature of the heating air may be dried at a constant temperature, or may be supplied in several steps in the running direction of the endless belt support 12.
  • the time from casting the dope on the endless belt support 12 to peeling the web from the endless belt support 12 varies depending on the film thickness of the optical film to be produced and the solvent used. In consideration of the peelability from the belt support 12, it is preferably in the range of 0.5 to 5 minutes.
  • the traveling speed of the endless belt support 12 is not particularly limited, but is preferably about 50 to 200 m / min, for example, from the viewpoint of productivity.
  • the ratio (draft ratio) of the traveling speed of the endless belt support 12 to the flow rate of the dope discharged from the casting die 13 is preferably about 0.8 to 2.
  • the draft ratio is within this range, the cast film can be stably formed.
  • the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the cast film is reduced in the width direction, and if so, a wide film cannot be formed.
  • the peeling roller 14 is disposed in the vicinity of the surface of the endless belt support 12 on the side where the dope 19 is cast, and the distance between the endless belt support 12 and the peeling roller 14 is 1 to 100 mm. It is preferable. Using the peeling roller 14 as a fulcrum, the dried web (film) is peeled by pulling the dried web (film) with tension. When the film is peeled from the endless belt support 12, the film is stretched in the film transport direction (machine direction: MD direction) by the peeling tension and the subsequent transport tension. For this reason, it is preferable that the peeling tension and the conveying tension when peeling the film from the endless belt support 12 are, for example, 50 to 400 N / m.
  • the total residual solvent ratio of the film when the film is peeled off from the endless belt support 12 is the peelability from the endless belt support 12, the residual solvent ratio at the time of peeling, the transportability after peeling, and the result after transporting and drying.
  • the content is preferably 30 to 200% by mass.
  • the residual solvent rate of a film is defined by following formula (17).
  • Residual solvent ratio (mass%) ⁇ (M 1 ⁇ M 2 ) / M 2 ⁇ ⁇ 100 (17)
  • M 1 is shows the mass at any point in the film
  • M 2 shows the mass after drying for 1 hour at 115 ° C. The film was measured M 1.
  • the stretching device 15 stretches the film peeled from the endless belt support 12 in a direction perpendicular to the web conveyance direction (Transverse Direction: TD direction). Specifically, both ends in a direction perpendicular to the film transport direction are gripped with a clip or the like, and the distance between the opposing clips is increased to extend in the TD direction. In addition, in 1st Embodiment, although the extending
  • Stretch rate (%) ⁇ (length in the width direction after stretching ⁇ length in the width direction before stretching) / length in the width direction before stretching ⁇ ⁇ 100 (18)
  • the stretch ratio is too low, there is a tendency that a desired retardation value cannot be obtained, and it is difficult to widen the optical film.
  • the stretching ratio is too high, the haze of the film increases and the transparency tends to decrease.
  • the film may tear and break from the portion gripped by the gripping means (clip).
  • the film when the film is stretched, the film is usually heated.
  • This film may be heated, for example, by blowing heated air on the film, or may be heated by a heating device such as an infrared heater.
  • the temperature at which the stretching is performed is preferably 150 to 200 ° C, more preferably 155 to 190 ° C. If the stretching temperature is too low, excessive stress is applied to the film, so that the haze of the film increases and the transparency tends to decrease. For this reason, when the obtained resin film is used as a retardation film provided in a liquid crystal display device such as a liquid crystal panel, the contrast tends to decrease, which is not preferable. In some cases, the film may tear and break from the portion gripped by the gripping means (clip). On the other hand, if the stretching temperature is too high, a desired retardation value cannot be obtained or the film is melted, and the surface state and film thickness of the film tend to be non-uniform.
  • the stretching device 15 may include a device that cuts an area where the clip has been held. Moreover, in this embodiment, although the extending
  • the total residual solvent ratio of the film stretched by the stretching device 15 is not particularly limited, but is preferably 1 to 20% by mass from the viewpoint of workability by the drying device 17 and the like. When the stretching device 15 is not provided, it is preferable that the total residual solvent ratio of the film is 1 to 20% by mass before the film is supplied to the drying device 17.
  • the drying device 17 includes a plurality of transport rollers, and dries the film while transporting the film between the rollers. In that case, you may dry using heating air, infrared rays, etc. independently, and you may dry using heating air and infrared rays together. It is preferable to use heated air from the viewpoint of simplicity.
  • the drying temperature varies depending on the residual solvent ratio of the film, but the temperature is suitably selected depending on the residual solvent ratio in the range of 30 to 180 ° C. in consideration of drying time, shrinkage unevenness, stability of expansion and contraction, and the like. That's fine. Further, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and may be divided into several stages of temperature.
  • the film can be stretched in the MD direction while being conveyed in the drying device 17.
  • the residual solvent ratio of the film after the drying treatment in the drying device 17 is preferably 0.01 to 15% by mass in consideration of the load of the drying process, the dimensional stability expansion / contraction ratio during storage, and the like.
  • the winding device 18 winds the film having a predetermined residual solvent ratio in the drying device 17 on both ends of the width direction by a hot embossing mechanism, and then winds it on a winding core.
  • the temperature at the time of winding is preferably cooled to room temperature in order to prevent scratches and loosening due to shrinkage after winding.
  • the winder to be used can be used without particular limitation, and may be a commonly used one, such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method with a constant internal stress. Can be wound up.
  • the film forming apparatus 23 includes the stretching apparatus 15 and the drying apparatus 17, the film forming apparatus 23 may not include the stretching apparatus 15 and may include two or more locations.
  • optical film Further, according to the optical film manufacturing apparatus 11, since the dope having a high fine particle dispersibility manufactured by the dope manufacturing apparatus 21 is used, the optical material having a small amount of foreign matter and a sufficiently low internal haze is excellent. A film is obtained.
  • the internal haze of the optical film is preferably 0.1 or less per sheet.
  • the optical film has less foreign matter.
  • the foreign matter recognized in the polarization crossed Nicol state is a thing measured by placing two polarizing plates in a direct (crossed Nicol) state and placing an optical film between them.
  • a foreign substance is observed by shining only the part of the foreign substance in the dark field, so that the size and number can be easily identified.
  • the number of foreign matters it is preferable that there are not more than 200 foreign matters having a size of 5 to 50 ⁇ m recognized in the polarization crossed Nicol state and substantially zero foreign matters having a size of 50 ⁇ m or more per 250 mm 2 area. More preferably, the number of foreign matters of 5 to 50 ⁇ m is 100 or less, more preferably 50 or less.
  • the optical film preferably has a circle-equivalent average particle diameter of secondary particles of the fine particles of 50 to 300 nm, preferably 80 to 200 nm, as measured from a cross-sectional photograph taken with a TEM. More preferably. If the circle-equivalent average particle diameter of the secondary particles of the fine particles is too small, the slipping property tends not to be sufficiently improved. Moreover, when too large, there exists a tendency for an internal haze to become high. Therefore, when the equivalent-circle average particle diameter of the secondary particles of the fine particles is within the above range, an optical film having a sufficiently high slip and a lower internal haze can be obtained.
  • the optical film preferably has a number of secondary particles of the fine particles of 0.7 to 6 / ⁇ m 2 as measured from a cross-sectional photograph taken with a TEM. It is more preferable that the number is 5.5 / ⁇ m 2 .
  • the number of secondary particles of the fine particles is too small, there is a tendency that the slip property cannot be sufficiently improved.
  • too large there exists a tendency for an internal haze to become high. Therefore, when the number of secondary particles of the fine particles is within the above range, an optical film having a sufficiently high sliding property and a lower internal haze can be obtained.
  • the width of the optical film is preferably 1000 to 4000 mm from the viewpoint of use in a large liquid crystal display device, use efficiency of the film during polarizing plate processing, and production efficiency.
  • the film thickness is preferably 30 to 90 ⁇ m from the viewpoint of thinning the liquid crystal display device and stabilizing the production of the film.
  • the film thickness is an average film thickness. The thickness is measured at 20 to 200 locations in the width direction of the film with a contact-type film thickness meter manufactured by Mitutoyo Corporation, and the average value of the measured values is calculated. Shown as film thickness.
  • the polarizing plate which concerns on this embodiment is equipped with a polarizing element and the transparent protective film arrange
  • the polarizing element is an optical element that emits incident light converted to polarized light.
  • the polarizing plate for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution, and the resin film or What laminated
  • the said optical film may be laminated
  • the transparent protective film for the polarizing plate for example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (above, manufactured by Konica Minolta Opto) Is preferably used.
  • resin films such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate uses the optical film as a protective film laminated on at least one surface side of the polarizing element.
  • the said optical film functions as a phase difference film, it is preferable to arrange
  • polarizing element examples include, for example, a polyvinyl alcohol polarizing film.
  • Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes.
  • a modified polyvinyl alcohol film modified with ethylene is preferably used as the polyvinyl alcohol film.
  • the polarizing element is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
  • the film thickness of the polarizing element is preferably 5 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 5 to 20 ⁇ m.
  • a cellulose ester resin film When a cellulose ester resin film is laminated on the surface of the polarizing element, it is preferably bonded with a water-based adhesive mainly composed of completely saponified polyvinyl alcohol. Moreover, in the case of resin films other than a cellulose ester-based resin film, it is preferable to perform adhesion processing on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate as described above can be applied to a liquid crystal display device having a large screen by using the wide resin film according to the present embodiment as a transparent protective film.
  • the liquid crystal display device includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate.
  • the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled.
  • Such a liquid crystal display device can have a large screen by using the optical film according to the present embodiment as a transparent protective film for a polarizing plate.
  • Example 1 (Preparation of dope) First, in a container (dissolution tank) of an optical film manufacturing apparatus as shown in FIG. 1, as a solvent, 300 parts by mass of methylene chloride and 52 parts by mass of methanol, and a cellulose ester resin (acetyl group substitution degree: 1 as a transparent resin). 2, Propionyl group substitution degree: 1.2) 100 parts by mass were added simultaneously with stirring. During the addition of the solvent and the transparent resin while stirring, 10 parts by mass of silica fine particles (Aerosil 972V manufactured by Nippon Aerosil Co., Ltd.) were added as fine particles.
  • an organic additive represented by the above general formula (1) and having n of 2 (molecular weight: 696) was added.
  • said organic type additive what was previously adjusted with the methylene chloride so that solid content concentration might be 70 mass%, and the viscosity is 100 mPa * s were used.
  • the addition of the fine particles was performed when the viscosity A of the liquid in the container when adding the fine particles was 500 mPa ⁇ s.
  • the addition of the organic additive is 15 minutes after the addition of the fine particles, and the viscosity B of the liquid in the container when adding the organic additive is 500 mPa ⁇ s. Sometimes went.
  • the obtained dope resin solution was cooled to 35 ° C. and filtered using a filtration apparatus equipped with a filter paper having a filtration accuracy of 0.005 mm.
  • an optical film was produced as follows.
  • the temperature of the obtained dope was adjusted to 35 ° C., and the temperature of the endless belt support was adjusted to 25 ° C. Then, using an optical film manufacturing apparatus as shown in FIG. 1, a dope was cast from a casting die (coat hanger die) onto an endless belt support made of stainless steel and polished to a super mirror surface. By doing so, a web was formed on the endless belt support and conveyed while drying. Then, the web is peeled off from the endless belt support as a film, dried while being conveyed in a roll at 50 ° C., and when the residual solvent ratio is 10%, the film is drawn at 160 ° C. using a stretching device (tenter).
  • a stretching device tenter
  • the film was stretched 1.40 times in the width direction while holding both ends of the film with clips. Then, the area
  • Example 2 The timing of adding the organic additive is 20 minutes after the addition of the fine particles is finished, and the viscosity B of the liquid in the container when the organic additive is added is 1000 mPa ⁇ s.
  • Example 1 is the same as Example 1 except that the change was made when
  • Example 3 The timing of adding the organic additive is 40 minutes after the addition of the fine particles is finished, and the viscosity B of the liquid in the container when the organic additive is added is 10000 mPa ⁇ s.
  • Example 1 is the same as Example 1 except that the change was made when
  • Example 4 The timing of adding the organic additive is 60 minutes after the addition of the fine particles is finished, and the viscosity B of the liquid in the container when the organic additive is added is 50000 mPa ⁇ s.
  • Example 1 is the same as Example 1 except that the change was made when
  • Example 5 As the organic additive, a methyl acrylate polymer (molecular weight: 1400, viscosity: 100 mPa ⁇ s) represented by the general formula (1) and having a molecular weight of 696 (viscosity: 100 mPa ⁇ s) where n is 2 is used. ) Is the same as in Example 2.
  • Example 6 As the organic additive, a mass ratio of methyl methacrylate and hydroxyethyl acrylate represented by the above general formula (1), where n is 2 and having a molecular weight of 696 (viscosity: 100 mPa ⁇ s) is 80:20.
  • a copolymer having a molecular weight of 4500 obtained by changing the addition amount of mercaptopropionic acid which is a chain transfer agent used for synthesizing the copolymer and the addition rate of tolyl to azobisisobutyro Polymer) (See the example of International Publication No. 2006/132105)
  • the solid content concentration was previously adjusted with methylene chloride so as to be 65% by mass, and the viscosity was 100 mPa ⁇ s. Same as 2.
  • Example 7 As the organic additive, triphenyl phosphate (molecular weight: 330) and ethylphthalylethyl represented by the general formula (1), where n is 2 and the molecular weight is 696 (viscosity: 100 mPa ⁇ s) This is the same as Example 2 except that a mixture (viscosity: 100 mPa ⁇ s) with a mass ratio (5: 5) to glycol (molecular weight: 280) was used and the stretch ratio was 1.55 times.
  • Example 8 The organic additive is represented by the general formula (1), and n is 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • n 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • Example 9 The organic additive is represented by the general formula (1), and n is 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • n 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • Example 10 As the organic additive, a mass ratio of methyl methacrylate and hydroxyethyl acrylate represented by the above general formula (1), where n is 2 and having a molecular weight of 696 (viscosity: 100 mPa ⁇ s) is 80:20.
  • the solid content concentration was adjusted in advance with methylene chloride so as to be 60% by mass, and the viscosity was 100 mPa ⁇ s. Same as 2.
  • Example 11 The organic additive is represented by the general formula (1), and n is 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • n 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • Example 12 The organic additive is represented by the general formula (1), and n is 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • n 2 instead of the one having a molecular weight of 696 (viscosity: 100 mPa ⁇ s).
  • Example 13 As the fine particles, instead of adding 10 parts by mass of silica fine particles (Aerosil 972V manufactured by Nippon Aerosil Co., Ltd.), 0.05 mass parts of PMMA (polymethyl methacrylate resin) particles having a primary particle size of 300 nm were added. Similar to Example 2.
  • Example 3 The timing of adding the organic additive is 80 minutes after the addition of the fine particles is finished, and the viscosity B of the liquid in the container when the organic additive is added is 60000 mPa ⁇ s.
  • Example 1 is the same as Example 1 except that the change was made when
  • the internal haze of the obtained optical film was measured using a haze meter (NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.). Specifically, glycerin was applied to both surfaces of the optical film, the optical film coated with glycerin was sandwiched between glass plates, and haze was measured using the haze meter. Then, the haze of the glass plate measured beforehand was subtracted from the measured haze, and it was set as the internal haze of the optical film.
  • NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the ratio (B / A) of the viscosity B of the liquid in the container when the organic additive is added to the viscosity A of the liquid in the container when the fine particles are added. 1 to 100 (Examples 1 to 13) compared to the case where B / A is less than 1 (Comparative Examples 1 and 2) and the case where B / A exceeds 100 (Comparative Example 3).
  • the resulting optical film has a low internal haze and less foreign matter.
  • the molecular weight of the organic additive to be added is less than 500 (Example 7) or when the molecular weight of the organic additive to be added exceeds 5000 (Example 10), the molecular weight of the organic additive to be added
  • the internal haze was higher than that in the case of 500 to 5000 (Example 1 and Example 2).
  • the number of foreign matters was also large.
  • the stretch ratio was changed from 1.40 times to 1.55 times.
  • the internal haze increased. From these facts, it is understood that the molecular weight of the organic additive added to the dope is preferably 500 to 5,000.
  • the viscosity of the organic additive to be added is less than 10 mPa ⁇ s (Example 11) or the viscosity of the organic additive to be added exceeds 10,000 mPa ⁇ s (Example 12), the organic system to be added Compared with the case where the viscosity of the additive is 10 to 10,000 mPa ⁇ s (Example 1 and Example 2), the internal haze was high and the number of foreign matters was large. From these, it can be seen that the viscosity of the organic additive added to the dope is preferably 10 to 10,000 mPa ⁇ s.
  • the fine particles to be added are PMMA particles other than silica particles (Example 13)
  • the internal haze is smaller than that when the fine particles to be added are silica particles (Example 1 or Example 2).
  • the fine particles to be added are preferably silica particles. This means that since the used PMMA particles are monodisperse particles, the average particle size of secondary separation of fine particles in the optical film tends to increase. And even if it reduces an addition amount, since the difference of refractive index with the transparent resin which comprises an optical film is large, it is thought that internal haze increases.
  • One aspect of the present invention is a method for producing a dope for an optical film containing a transparent resin, fine particles, an organic additive, and a solvent, and the transparent resin and the solvent are charged into a container while stirring.
  • the step of adding the organic additive to the liquid in the container before or during dissolution, and the organic additive to the viscosity of the liquid in the container when the fine particles are added A method for producing a dope for an optical film, wherein the ratio of the viscosity of the liquid in the container when adding is 1 to 100.
  • the transparent resin By stirring the transparent resin and the solvent in the container at a temperature equal to or higher than the boiling point of the solvent, the transparent resin is gradually dissolved in the solvent, and the viscosity of the liquid in the container is gradually increased. Then, when the viscosity of the liquid in the container is relatively low, the fine particles are added to the liquid in the container and stirred. By doing so, it is considered that the fine particles are easily dispersed in the liquid in the container. Thereafter, when the viscosity of the liquid in the container increases within the above range from the viscosity of the liquid in the container when adding the fine particles, that is, when the dissolution of the transparent resin proceeds to some extent, the organic additive And stir.
  • the molecular weight of the organic additive is preferably 500 to 5,000.
  • the optical properties, particularly the retardation can be adjusted to a desired value by using a relatively high molecular weight as described above. There is a tendency that the dispersibility of the fine particles is lowered and the internal haze of the obtained optical film is not sufficiently low, but according to the above production method, the generation of foreign matter is suppressed, and the internal haze is sufficiently reduced.
  • An optical film dope that can produce an optical film with low transparency can be obtained.
  • the organic additive preferably has a viscosity of 10 to 10,000 mPa ⁇ s.
  • an organic additive contained in the optical film dope has a high viscosity, generally, the dispersibility of the fine particles is reduced, and the internal haze of the obtained optical film is sufficiently low.
  • an organic additive selected from the wide viscosity range as described above is contained, the generation of foreign matters is suppressed, and the transparency with sufficiently low internal haze is achieved.
  • An optical film dope capable of producing an excellent optical film can be obtained.
  • the fine particles are preferably silica particles.
  • the transparent resin is preferably a cellulose ester resin.
  • a dope for an optical film that can produce an optical film with better transparency can be obtained.
  • Another aspect of the present invention includes a casting step of casting a dope on a traveling support to form a film, and a peeling step of peeling the film from the support.
  • a method for producing an optical film which is a dope for an optical film produced by the method for producing an optical film dope.
  • another aspect of the present invention is an optical film obtained by the method for producing an optical film.
  • the circle equivalent average particle diameter of secondary particles of the fine particles measured from a cross-sectional photograph taken with a transmission electron microscope is 50 to 300 nm.
  • an optical film having a lower internal haze can be obtained.
  • the obtained optical film is excellent in slipperiness. This is presumably because the high dispersibility of the fine particles can sufficiently exert the effect of improving the slipperiness of the fine particles.
  • the number of secondary particles of the fine particles measured from a cross-sectional photograph taken with a transmission electron microscope is preferably 0.7 to 6 / ⁇ m 2 .
  • an optical film having a lower internal haze can be obtained.
  • the obtained optical film is excellent in slipperiness. This is presumably because the high dispersibility of the fine particles can sufficiently exert the effect of improving the slipperiness of the fine particles.
  • a polarizing plate including a polarizing element and a transparent protective film disposed on at least one surface of the polarizing element, wherein the transparent protective film is the optical film. It is a polarizing plate characterized by being.
  • the optical film excellent in transparency with low internal haze is applied as the transparent protective film of the polarizing plate, for example, when applied to a liquid crystal display device, the contrast is improved.
  • a polarizing plate capable of realizing high image quality of the liquid crystal display device is obtained.
  • Another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates.
  • a liquid crystal display device characterized by being the polarizing plate.
  • a polarizing plate provided with an optical film with low internal haze and excellent transparency can be used, so that a high-quality liquid crystal display device with improved contrast and the like can be provided.
  • an optical film capable of producing an optical film excellent in transparency with sufficiently low internal haze is suppressed even when fine particles and an organic additive are contained.
  • a method for manufacturing a dope is provided. Moreover, the manufacturing method of the optical film using the dope for optical films manufactured by the manufacturing method of such a dope for optical films, the optical film obtained by the manufacturing method of the said optical film, The said optical film as a transparent protective film.
  • the polarizing plate used and a liquid crystal display device provided with the polarizing plate are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明の一局面は、透明性樹脂、微粒子、有機系添加剤、及び溶媒を含有する光学フィルム用ドープの製造方法であって、前記透明性樹脂と前記溶媒とを攪拌しながら容器に投入する工程と、前記透明性樹脂と前記溶媒とを前記容器内で前記溶媒の沸点以上で攪拌して溶解する工程と、溶解する前又は溶解中に、前記容器内の液体に前記微粒子を添加する工程と、溶解する前又は溶解中に、前記容器内の液体に前記有機系添加剤を添加する工程とを備え、前記微粒子を添加する際の前記容器内の液体の粘度に対する、前記有機系添加剤を添加する際の前記容器内の液体の粘度の比が、1~100であることを特徴とする光学フィルム用ドープの製造方法である。

Description

光学フィルム用ドープの製造方法、光学フィルムの製造方法、光学フィルム、偏光板、及び液晶表示装置
 本発明は、光学フィルム用ドープの製造方法、前記光学フィルム用ドープの製造方法によって製造された光学フィルム用ドープを用いた光学フィルムの製造方法、前記光学フィルムの製造方法によって得られた光学フィルム、前記光学フィルムを透明保護フィルムとして用いた偏光板、及び前記偏光板を備えた液晶表示装置に関する。
 液晶表示装置の画像表示領域には、種々の光学フィルム、例えば、偏光板の偏光素子を保護するための透明保護フィルム等が配置されている。このような光学フィルムとしては、例えば、セルロースエステルフィルム等の透明性に優れた樹脂フィルムが用いられている。そして、液晶表示装置のコントラストを向上させるためには、光学フィルムの透明性を高め、特に内部ヘイズを低くする必要がある。
 また、このような光学フィルムは、例えば、溶液流延製膜法等により、長尺状の樹脂フィルムとして製造されることが多い。溶液流延製膜法とは、具体的には、原料樹脂である透明性樹脂を溶媒に溶解した樹脂溶液(ドープ)を、走行する支持体上に流延し、剥離可能な程度まで乾燥させて得られたフィルムを支持体から剥離し、そして、剥離したフィルムを搬送ローラで搬送しながら、乾燥や延伸等を施すことによって、長尺状の樹脂フィルムを製造する方法である。このような長尺状の樹脂フィルムは、一般的には、巻取コアにロール状に巻き取られた状態で、保存及び輸送に供されている。このため、光学フィルムは、長尺状の樹脂フィルムのロール状態の形状、すなわち巻き形状を良好に保つために、すべり性がある程度高いことが要求されている。
 したがって、液晶表示装置に用いられる光学フィルムは、内部ヘイズが低く、かつすべり性が高いことが求められている。
 すべり性の優れた光学フィルムを製造するためには、マット剤として微粒子が含有されたドープを用いることが知られている。しかしながら、マット剤である微粒子の含有量を増加させることによって、得られる光学フィルムのすべり性を高めると、内部ヘイズが高まり、透明性が低下する傾向がある。すなわち、内部ヘイズとすべり性とは、トレードオフの関係にあり、内部ヘイズとすべり性とがともに優れた光学フィルムを得ることは困難であった。
 そこで、微粒子の含有量を、要求されるすべり性を達成可能な最少量まで減らすことによって、内部ヘイズとすべり性とがともに優れた光学フィルムが得られると考えられる。しかしながら、このような場合、マット剤である微粒子がわずかに凝集しただけで、微粒子の個数が低減してすべり性が低下し、所望のすべり性を達成できなくなるという問題があった。また、マット剤である微粒子が凝集すると、それが異物になり、内部ヘイズが上昇してしまうという問題が発生することもあった。
 光学フィルムに含有される微粒子、すなわち、光学フィルムを製造するためのドープに含有される微粒子としては、具体的には、例えば、下記特許文献1~3に記載の微粒子が挙げられる。
 特許文献1には、セルローストリアセテートフィルム(光学フィルム)に含有される微粒子としては、表面にメチル基を有する微粒子が記載されている。
 特許文献1によれば、表面にメチル基を有する微粒子は、分散安定性に優れ、この微粒子を含有させることによって、すべり性を向上させるだけではなく、光透過性に優れたセルロースアセテートフィルムが得られることが開示されている。
 特許文献2には、セルロースエステルフィルム(光学フィルム)に含有される微粒子としては、表面に炭素数2~20のアルキル基又はアリール基を有する微粒子が記載されている。
 特許文献2によれば、表面に炭素数2~20のアルキル基又はアリール基を有する微粒子は、ドープへ添加したときに凝集の発生が少なく、この微粒子を含有させることによって、分散性に優れたセルロースエステルフィルムを得られることが開示されている。
 特許文献3には、セルロースアシレート溶液(光学フィルム用ドープ)に含有される微粒子としては、表面に正の荷電を有する微粒子が記載されている。
 特許文献3によれば、表面に正の荷電を有することによって、微粒子の凝集が抑制されることが開示されている。
特開平7-11055号公報 特開2001-2799号公報 特許第4136794号公報
 本発明は、微粒子及び有機系添加剤を含有させた場合であっても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープの製造方法を提供することを目的とする。また、このような光学フィルム用ドープの製造方法によって製造された光学フィルム用ドープを用いた光学フィルムの製造方法、前記光学フィルムの製造方法によって得られた光学フィルム、前記光学フィルムを透明保護フィルムとして用いた偏光板、及び前記偏光板を備えた液晶表示装置を提供することを目的とする。
 本発明の一局面は、透明性樹脂、微粒子、有機系添加剤、及び溶媒を含有する光学フィルム用ドープの製造方法であって、前記透明性樹脂と前記溶媒とを攪拌しながら容器に投入する工程と、前記透明性樹脂と前記溶媒とを前記容器内で前記溶媒の沸点以上で攪拌して溶解する工程と、溶解する前又は溶解中に、前記容器内の液体に前記微粒子を添加する工程と、溶解する前又は溶解中に、前記容器内の液体に前記有機系添加剤を添加する工程とを備え、前記微粒子を添加する際の前記容器内の液体の粘度に対する、前記有機系添加剤を添加する際の前記容器内の液体の粘度の比が、1~100であることを特徴とする光学フィルム用ドープの製造方法である。
 また、本発明の他の一局面は、走行する支持体上にドープを流延してフィルムを形成する流延工程と、前記フィルムを前記支持体から剥離する剥離工程とを備え、前記ドープが、前記光学フィルム用ドープの製造方法により製造された光学フィルム用ドープであることを特徴とする光学フィルムの製造方法である。
 また、本発明の他の一局面は、前記光学フィルムの製造方法によって得られることを特徴とする光学フィルムである。
 また、本発明の他の一局面態様に係る偏光板は、偏光素子と、前記偏光素子の少なくとも一方の表面上に配置された透明保護フィルムとを備える偏光板であって、前記透明保護フィルムが、前記光学フィルムであることを特徴とする偏光板である。
 また、本発明の他の一局面は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備える液晶表示装置であって、前記2枚の偏光板のうち少なくとも一方が、前記偏光板であることを特徴とする液晶表示装置である。
 本発明の目的、特徴、局面及び利点は、以下の詳細な記載と添付図面によって、より明白となる。
本発明の一実施形態における溶液流延製膜法による光学フィルムの製造装置11の構成を示す概略図である。
 本発明者の検討によれば、特許文献1~3に記載の微粒子を用いた場合であっても、耐熱耐湿性等の機能を付与するために、可塑剤等の有機系添加剤をドープに含有させると、微粒子の分散性が不充分になり、異物の発生を充分に抑制できず、内部ヘイズを充分に低くすることができなかった。
 本発明者は、上記のような、微粒子の凝集は、光学フィルム用ドープを製造する際、有機系添加剤を微粒子より先に容器内の液体に添加すると、容器内の液体に拡散又は溶解した有機系添加剤が粘着剤のように働くことによって、発生しやすくなると推察した。
 そこで、本発明者は、種々検討した結果、微粒子と有機系添加剤とを添加する時期を調節した、本発明に想到するに到った。すなわち、本発明は、上記のような検討結果に基づいてなされたものである。
 以下、本発明の光学フィルム用ドープの製造方法に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
 本実施形態に係る光学フィルム用ドープの製造方法は、透明性樹脂、微粒子、有機系添加剤、及び溶媒を含有する光学フィルム用ドープの製造方法であって、前記透明性樹脂と前記溶媒とを攪拌しながら容器に投入する工程と、前記透明性樹脂と前記溶媒とを前記容器内で前記溶媒の沸点以上で攪拌して溶解する工程と、溶解する前又は溶解中に、前記容器内の液体に前記微粒子を添加する工程と、溶解する前又は溶解中に、前記容器内の液体に前記有機系添加剤を添加する工程とを備え、前記微粒子を添加する際の前記容器内の液体の粘度に対する、前記有機系添加剤を添加する際の前記容器内の液体の粘度の比が、1~100であるものである。
 上記の構成によれば、微粒子及び有機系添加剤を含有させた場合であっても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。
 このことは、以下のことによると推察される。
 透明性樹脂と溶媒とを容器内で溶媒の沸点以上で攪拌することによって、前記透明性樹脂が前記溶媒に徐々に溶解し、容器内の液体の粘度が徐々に高まる。そして、容器内の液体の粘度が比較的低いときに、微粒子を容器内の液体に添加して、攪拌する。そうすることによって、微粒子が容器内の液体に分散されやすいと考えられる。その後、容器内の液体の粘度が、微粒子を添加する際の容器内の液体の粘度より上記範囲内で高まったとき、すなわち、前記透明性樹脂の溶解がある程度進んだときに、有機系添加剤を添加して、攪拌する。そうすることによって、前記有機系添加剤を添加した際には、前記透明性樹脂の溶解が進んでいるだけではなく、前記微粒子の分散もある程度進んでいるので、前記微粒子の分散性を維持しつつ、前記有機系添加剤も容器内の液体に溶解されると考えられる。よって、有機系添加剤を含有させた場合であっても、微粒子が均一に分散された光学フィルム用ドープを製造することができると考えられる。このようなドープを用いて光学フィルムを製造することによって、微粒子及び有機系添加剤を含有させた場合であっても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムが得られると考えられる。
 また、本実施形態に係る光学フィルム用ドープの製造方法により製造された光学フィルム用ドープ(以後、単に「ドープ」とも言う。)を用いて、例えば、溶液流延製膜法等によって、光学フィルムを製造することができる。
 本実施形態に係る光学フィルム用ドープの製造方法により、光学フィルム用ドープを製造し、そのドープを用いて光学フィルムを製造する方法は、例えば、図1に示すような、いわゆる溶液流延製膜法による光学フィルムの製造装置によって行われる。なお、本実施形態で得られた光学フィルム用ドープは、溶液流延製膜法にのみ用いられるものではなく、光学フィルムを製造する他の方法にも用いることができる。
 図1は、本実施形態に係る光学フィルム用ドープの製造方法を用いた光学フィルムの製造装置11の構成を示す概略図である。光学フィルムの製造装置11は、ドープ製造装置21と、ドープろ過装置22と、製膜装置23とを備える。前記ドープ製造装置21は、ドープを製造する。前記ドープろ過装置22は、製造されたドープを濾過する。前記製膜装置23は、濾過されたドープを用いて光学フィルムを製造する。
 [ドープ製造装置]
 前記ドープ製造装置21は、図1に示すように、ドープ仕込み釜1、排出用バルブ6、及びドープ送液ポンプ2等を備える。前記ドープ仕込み釜1は、透明性樹脂、微粒子及び有機系添加剤等の光学フィルムの原料と溶媒とを含むドープ原料を混合して、ドープを調製するための容器である。また、前記ドープ仕込み釜1は、前記排出用バルブ6を介して、ドープを流通させて、他の装置、例えば、前記ドープろ過装置22等に送液させるための配管が接続されている。そして、その配管には、前記排出用バルブ6の直下等に、配管内をドープが効率的に流通できるようにするためのドープ送液ポンプ2が備えられている。前記ドープ送液ポンプ2は、前記排出用バルブ6の直下だけではなく、配管内のドープの流通を円滑にするために、適宜配置されていてもよい。
 前記ドープ仕込み釜1は、内部に投入した液体を、所定の温度まで加熱して、加熱した状態で攪拌することができるものであれば、特に限定されない。具体的には、例えば、攪拌羽根や加熱装置等を備えたもの等が挙げられる。前記ドープ仕込み釜1内の液体を加熱する加熱装置としては、特に限定されないが、外部から行うものが好ましく、例えば、ジャケットタイプのものが、温度コントロールが容易な点から好ましい。本実施形態では、前記ドープ仕込み釜1内に投入する、ドープ原料である溶媒の沸点以上まで加熱した状態で攪拌するので、溶媒の減量を抑制するために、前記ドープ仕込み釜1は、密閉された容器であることが好ましい。このような場合、前記ドープ仕込み釜1としては、所定の圧力、具体的には、前記溶媒の、攪拌時の温度における蒸気圧以上の圧力に耐えられる容器であることが好ましい。また、前記ドープ仕込み釜1内の加圧は、上記のような加熱による溶媒の蒸気圧の上昇によって行ってもよいが、窒素ガス等の不活性気体を圧入する方法等を用いてもよい。なお、前記ドープ仕込み釜1には、圧力計、温度計及び粘度計等の計器類を適宜配設してもよい。
 次に、本実施形態に係る光学フィルム用ドープの製造方法について説明する。
 まず、前記ドープ仕込み釜1に、透明性樹脂及び溶媒を攪拌しながら投入し、前記溶媒の沸点以上に加熱して攪拌する。そうすることによって、前記透明性樹脂が前記溶媒に徐々に溶解する。その際、前記透明性樹脂の溶解に伴って、前記ドープ仕込み釜1内の液体の粘度が徐々に高まる。なお、前記ドープ仕込み釜1内の液体の粘度は、前記ドープ仕込み釜1に配置した粘度計、例えば、CBC株式会社製のFVM-80A-EXHTを用いて測定することができる。
 また、前記ドープ仕込み釜1内の液体の温度は、前記溶媒の沸点以上であるが、その中でも、前記溶媒の沸点より20~50℃高い温度であることが好ましい。この攪拌時の液体の温度が低すぎると、前記透明性樹脂が溶解するのに必要な時間が長時間化し、生産性が低下する傾向がある。また、攪拌時の液体の温度が高すぎると、前記溶媒の沸騰により発生した気泡が得られたドープに残存しやすくなり、得られた光学フィルムに気泡による異物が発生しやすくなる傾向がある。なお、前記ドープ仕込み釜1内の液体の温度は、前記ドープ仕込み釜1に配置した温度計等を用いて測定することができる。また、例えば、上記の粘度計の例示として挙げたCBC株式会社製のFVM-80A-EXHTを用いて、前記ドープ仕込み釜1内の液体の温度を測定してもよい。
 また、前記ドープ仕込み釜1の容量としては、2~50mであることが好ましく、5~20mであることがより好ましい。容量が小さすぎると、ドープの製造量によっては、ドープ仕込み釜の設置数を増やすか、処理回数を増やすことが必要になるおそれがある。また、大きすぎると、透明性樹脂を溶媒に溶解させるために必要な時間が長時間化し、生産性が低下する傾向がある。
 そして、前記透明性樹脂と前記溶媒とを前記ドープ仕込み釜1に投入中又は投入後、すなわち、前記透明性樹脂が前記溶媒に溶解する前又は溶解中に、前記ドープ仕込み釜1に、微粒子を投入する。その後、前記ドープ仕込み釜1に、有機系添加剤を投入する。前記微粒子及び前記有機系添加剤を投入するタイミングとしては、前記微粒子を添加する際の前記ドープ仕込み釜1内の液体の粘度Aに対する、前記有機系添加剤を添加する際の前記ドープ仕込み釜1内の液体の粘度Bの比(B/A)が、1~100であることを満たせば、特に限定されない。すなわち、前記微粒子は、透明性樹脂と溶媒との攪拌を開始する前に投入してもよいし、透明性樹脂と溶媒とを攪拌している最中に投入してもよい。また、前記有機系添加剤は、透明性樹脂と溶媒とを攪拌して、前記ドープ仕込み釜1内の液体の粘度が上昇することにより、前記ドープ仕込み釜1内の液体の粘度が上記関係を満たすときに投入すればよい。
 また、前記B/Aは、1~100であればよいが、1.5~80であることが好ましく、2~70であることがより好ましい。前記B/Aが小さすぎると、前記微粒子の分散性が低下する傾向があり、1より小さいと、前記有機系添加剤を前記微粒子より先に添加することになり、前記微粒子の分散性が不充分となる。また、前記B/Aが大きすぎると、前記有機系添加剤がドープ中に溶解されにくくなり、ドープ中に均一に分散されにくくなる傾向がある。
 上記のように、前記微粒子と前記有機系添加剤とを投入し、混合することによって、前記透明性樹脂を前記溶媒に溶解させて得られるドープであって、さらに、そのドープに微粒子及び溶媒が含有される場合であっても、微粒子が均一に分散されたドープが得られる。すなわち、上記のようにしてドープを製造することによって、前記ドープ仕込み釜1内の液体の粘度が比較的低いときに、前記微粒子をドープ仕込み釜1内の液体に添加して、攪拌する。そうすることによって、前記微粒子がドープ仕込み釜1内の液体に分散されやすいと考えられる。その後、前記ドープ仕込み釜1内の液体の粘度が、前記微粒子を添加する際のドープ仕込み釜1内の液体の粘度より上記範囲内で高まったとき、すなわち、前記透明性樹脂の溶解がある程度進んだときに、前記有機系添加剤を添加して、攪拌する。そうすることによって、前記有機系添加剤を添加した際には、前記透明性樹脂の溶解が進んでいるだけではなく、前記微粒子の分散もある程度進んでいるので、前記微粒子の分散性を維持しつつ、前記有機系添加剤もドープ仕込み釜1内の液体に溶解されると考えられる。よって、前記有機系添加剤を含有させた場合であっても、前記微粒子が均一に分散された光学フィルム用ドープを製造することができると考えられる。
 前記ドープ仕込み釜1で調製されたドープは、前記排出バルブ6が開放されることによって、前記ドープ仕込み釜1に接続された配管内を前記ドープろ過装置22まで送液される。
 本実施形態に係る光学フィルム用ドープの製造方法に用いる、ドープ原料について説明する。
 (透明性樹脂)
 本実施形態で使用される透明性樹脂は、得られたドープを用いてフィルム状に成形したときに透明性を有する樹脂であればよく、特に制限されないが、溶液流延製膜法等による製造が容易であること、ハードコート層等との接着性に優れていること、光学的に等方性であること等が好ましい。なお、ここで透明性とは、可視光の透過率が60%以上であることであり、好ましくは80%以上、より好ましくは90%以上である。透明性樹脂は、具体的には、例えば、セルロースジアセテート樹脂、セルローストリアセテート樹脂、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂等のセルロースエステル系樹脂;ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル系樹脂;ポリメチルメタクリレート樹脂等のアクリル系樹脂;ポリスルホン(ポリエーテルスルホンも含む)系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、セロファン、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール樹脂、シンジオタクティックポリスチレン系樹脂、シクロオレフィン系樹脂、ポリメチルペンテン樹脂等のビニル系樹脂;ポリカーボネート系樹脂;ポリアリレート系樹脂;ポリエーテルケトン樹脂;ポリエーテルケトンイミド樹脂;ポリアミド系樹脂;フッ素系樹脂等を挙げることができる。これらの中でも、セルロースエステル系樹脂が好ましい。セルロースエステル系樹脂の中でも、セルロースアセテート樹脂、セルロースプロピオネート樹脂、セルロースブチレート樹脂、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂が好ましい。
 次に、前記セルロースエステル系樹脂について説明する。
 セルロースエステル系樹脂は、アセチル基の置換度をX、プロピオニル基又はブチリル基の置換度をYとした時、XとYが下記式(I)及び(II)を満たすセルロースの混合脂肪酸エステルを有するセルロースエステル系樹脂が好ましい。
   2.0≦X+Y≦2.6   (I)
   0.1≦Y≦1.2     (II)
 また、上記式(I)及び(II)に加えて、下記式(III)及び(IV)を満たすセルロースの混合脂肪酸エステルを有するセルロースエステル系樹脂(総アシル基置換度=X+Y)がより好ましい。
   2.4≦X+Y≦2.6   (III)
   1.4≦X≦2.3     (IV)
 さらに、上記式(I)~(IV)に加えて、下記式(V)及び(VI)を満たすセルロースアセテートプロピオネート樹脂又はセルロースアセテートブチレート樹脂(総アシル基置換度=X+Y)が特に好ましい。
   1.7≦X≦2.3     (V)
   0.1≦Y≦0.9     (VI)
 また、アシル基で置換されていない部分は通常水酸基として存在している。これらのセルロースエステル系樹脂は、公知の方法で合成することができる。アシル基の置換度の測定方法は、ASTM-D817-96の規定に準じて測定することができる。
 前記セルロースエステル系樹脂の原料であるセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。また、それらから得られたセルロースエステル系樹脂はそれぞれ任意の割合で混合使用することができる。これらのセルロースエステル系樹脂は、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることができる。
 前記アシル化剤が、酸クロライド(CHCOCl、CCOCl、CCOCl)である場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。アシル化剤を用いたセルロースエステル系樹脂の合成方法の一例をあえて挙げるとすれば、具体的には、特開平10-45804号公報に記載の方法が挙げられる。また、セルロースエステル系樹脂は、各置換度に合わせて上記アシル化剤量を調整して反応させたものであり、セルロースエステル系樹脂はこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)と言う。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6~3.0である)。
 また、セルロースエステル系樹脂としては、前述のようにセルロースアセテートプロピオネート樹脂、セルロースアセテートブチレート樹脂、及びセルロースアセテートプロピオネートブチレート樹脂のようなアセチル基の他にプロピオネート基又はブチレート基が結合したセルロースの混合脂肪酸エステルが好ましく用いられる。なお、プロピオネート基を置換基として含むセルロースアセテートプロピオネート樹脂は、耐水性に優れ、液晶画像表示装置用のフィルムとして特に有用である。
 セルロースエステル系樹脂の数平均分子量は、40000~200000であることが、光学フィルムに成型した場合の機械的強度が強く、かつ、溶液流延製膜法において適度なドープ粘度となる点で好ましく、50000~150000であることがより好ましい。また、重量平均分子量(Mw)/数平均分子量(Mn)が、1.4~4.5の範囲であることが好ましい。
 また、前記透明性樹脂は、上記例示した透明性樹脂を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 (微粒子)
 本実施形態で使用される微粒子は、使用目的に応じて適宜選択されるが、得られた光学フィルムのすべり性を高めるものであればよく、特に限定されない。また、前記微粒子としては、無機微粒子であってもよいし、有機微粒子であってもよい。
 前記無機微粒子としては、具体的には、例えば、酸化珪素(シリカ)、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等の微粒子が挙げられる。この中でも、シリカ微粒子が好ましく用いられる。
 前記シリカ微粒子としては、具体的には、例えば、日本アエロジル株式会社製のアエロジル-200、200V、300、R972、R972V、R974、R976、R976S、R202、R812,R805、OX50、TT600、RY50、RX50、NY50、NAX50、NA50H、NA50Y、NX90、RY200S、RY200、RX200、R8200、RA200H、RA200HS、NA200Y、R816、R104、RY300、RX300、R106等が挙げられる。これらのうち、分散性や粒径を制御する点では、アエロジル-R972Vが好ましい。
 また、前記有機微粒子としては、具体的には、例えば、ポリメチルメタクリレート樹脂等のアクリル系樹脂、アクリルスチレン系樹脂、シリコーン系樹脂、ポリスチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、及びポリフッ化エチレン系樹脂等からなる微粒子が挙げられる。
 また、前記微粒子は、上記例示した微粒子を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 前記微粒子としては、本実施形態に係る光学フィルム用ドープの製造方法により製造されたドープを用いて、得られた光学フィルムを透過型電子顕微鏡(TEM)で撮影した断面写真から測定される、前記微粒子の2次粒子の円相当平均粒径が、50~300nmとなるような平均粒径を有するものが好ましい。得られた光学フィルムに含有されている微粒子の2次粒子の円相当平均粒径が小さすぎると、すべり性を充分に高めることができないという傾向がある。また、大きすぎると、内部ヘイズが高くなる傾向がある。したがって、微粒子の2次粒子の円相当平均粒径が上記範囲内であると、すべり性を充分に高め、内部ヘイズのより低い光学フィルムが得られる。また、得られた光学フィルムは、すべり性に優れたものである。このことは、前記微粒子の分散性が高いことにより、前記微粒子のすべり性を高める作用を充分に発揮できるためであると考えられる。そして、前記ドープ中の前記微粒子の平均粒径としては、上記範囲内となるようなものであれば好ましいが、より具体的には、例えば、80~200μmであることが好ましい。なお、光学フィルムの内部ヘイズは、例えば、ASTM-D1003-52の規定に準拠して測定することができる。
 また、前記微粒子の含有量としては、本実施形態に係る光学フィルム用ドープの製造方法により製造されたドープを用いて、得られた光学フィルムをTEMで撮影した断面写真から測定される、前記微粒子の2次粒子の個数が、0.7~6個/μmであるような含有量であることが好ましい。得られた光学フィルムに含有されている微粒子の2次粒子の個数が少なすぎると、すべり性を充分に高めることができないという傾向がある。また、多すぎると、内部ヘイズが高くなる傾向がある。したがって、微粒子の2次粒子の個数が上記範囲内であると、すべり性を充分に高め、内部ヘイズのより低い光学フィルムが得られる。また、得られた光学フィルムは、すべり性に優れたものである。このことは、前記微粒子の分散性が高いことにより、前記微粒子のすべり性を高める作用を充分に発揮できるためであると考えられる。そして、前記ドープ中の前記微粒子の含有量としては、上記範囲内となるようなものであれば好ましいが、より具体的には、例えば、0.05~0.5質量%であることが好ましい。
 また、前記微粒子の形状は、特に限定されず、球状、平板状、針状等が挙げられ、球状であることが好ましい。
 また、ドープを製造する際、前記微粒子は、単独で前記容器内の液体に添加してもよいが、溶媒に分散させた分散液として添加してもよい。前記分散液としては、例えば、上記微粒子を、後述する溶媒で分散させたもの等が挙げられる。
 (有機系添加剤)
 本実施形態で使用される有機系添加剤は、使用目的に応じて適宜選択されるが、得られた光学フィルムの化学的特性、機械的特性及び電気的特性等を調整するために添加される。前記有機系添加剤としては、例えば、可塑剤、酸化防止剤、紫外線吸収剤等が挙げられる。
 また、前記有機系添加剤の分子量としては、500~5000であることが好ましく、700~4000であることがより好ましい。光学フィルム用ドープに含有する有機系添加剤として、上記のような、比較的高分子量のものを用いた場合、一般的に、前記微粒子の分散性が低下し、得られた光学フィルムの内部ヘイズが充分に低いものとはならない傾向があるが、本実施形態に係る製造方法によれば、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。なお、分子量は、特に分子量が高い場合には、重量平均分子量のことを指し、GPC(株式会社島津製作所製のGPCシステム)等によって測定することができる。
 また、前記有機系添加剤の粘度としては、10~10000mPa・sであることが好ましく、100~5000mPa・sであることがより好ましい。光学フィルム用ドープに含有する有機系添加剤として、粘度の高いものを用いた場合、一般的に、前記微粒子の分散性が低下し、得られた光学フィルムの内部ヘイズが充分に低いものとはならない傾向があるが、本実施形態に係る製造方法によれば、上記のような幅広い粘度範囲から選ばれる有機系添加剤を含有させても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。なお、前記有機系添加剤の粘度は、添加時の粘度であり、粘度計(ブルックフィールド社製のB型粘度計)によって測定された粘度のデータによるものである。なお、前記有機系添加剤の粘度が、添加時に所望の粘度であれば、そのまま添加すればよいが、前記有機系添加剤単独では粘度が高すぎる場合、後述する溶媒、例えば、メチレンクロライド等で希釈して、粘度を調整してもよい。
 前記可塑剤としては、特に限定されないが、セルロースエステル樹脂等の透明性樹脂の溶融粘度やガラス転移温度を低下させて、光学フィルムの生産性を高めたり、得られた光学フィルムに適切な柔軟性を付与するため等に添加されるものが挙げられる。具体的には、例えば、カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコール酸エステル系可塑剤、クエン酸エステル系可塑剤、前記グリコール系可塑剤、及びポリエステル系可塑剤等が挙げられる。これらの中でも、カルボン酸エステル系可塑剤が好ましい。
 前記カルボン酸エステル系可塑剤としては、具体的には、例えば、脂肪族二塩基酸、脂環式二塩基酸、及び芳香族二塩基酸等の多価塩基酸とグリコール等の多価アルコールとから形成されるもの等が挙げられる。また、前記脂肪族二塩基酸としては、特に限定なく使用できるが、具体的には、例えば、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4-シクロヘキシルジカルボン酸等が挙げられる。
 より具体的には、例えば、下記一般式(1)~(5)で表されるもの等が挙げられる。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
 また、前記一般式(1)で表される化合物としては、nが2の分子量696のもの(粘度:100mPa・s)や、nが3の分子量886のもの等が好ましく用いられる。前記一般式(2)で表される化合物としては、mが2の分子量746のもの等が好ましく用いられる。前記一般式(3)で表される化合物としては、oが2の分子量830のもの等が好ましく用いられる。前記一般式(4)で表される化合物としては、pが1の分子量462のもの等が好ましく用いられる。前記一般式(5)で表される化合物としては、qが3の分子量874のもの等が好ましく用いられる。
 前記リン酸エステル系可塑剤としては、具体的には、例えば、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
 前記フタル酸エステル系可塑剤としては、具体的には、例えば、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ブチルベンジルフタレート等が挙げられる。
 前記トリメリット酸系可塑剤としては、具体的には、例えば、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等が挙げられる。
 前記ピロメリット酸エステル系可塑剤としては、具体的には、例えば、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等が挙げられる。
 前記グリコール酸エステル系可塑剤としては、具体的には、例えば、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等が挙げられる。
 前記クエン酸エステル系可塑剤としては、具体的には、例えば、トリエチルシトレート、トリ-n-ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ-n-ブチルシトレート、アセチルトリ-n-(2-エチルヘキシル)シトレート等が挙げられる。
 前記グリコール系可塑剤としては、例えば、エチレングリコール、ジエチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール等が挙げられる。
 前記ポリエステル系可塑剤は、特に限定されないが、分子内に芳香環又はシクロアルキル環を有するポリエステル系可塑剤を好ましい。
 また、ポリエステル系可塑剤としては、例えば、下記一般式(6)で表される芳香族末端エステル系可塑剤が好ましいものとして挙げられる。
  B-(G-A)-G-B  (6)
 前記一般式(6)中、Bは、ベンゼンモノカルボン酸残基を示し、Gは、炭素数2~12のアルキレングリコール残基、炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基を示し、Aは、炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を示し、nは、1以上を示す。
 前記一般式(6)で表される芳香族末端エステル系可塑剤は、Bで示されるベンゼンモノカルボン酸残基と、Gで示されるアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基と、Aで示されるアルキレンジカルボン酸残基又はアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。
 前記ポリエステル系可塑剤のベンゼンモノカルボン酸成分としては、具体的には、例えば、安息香酸、パラターシャリーブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、及びアセトキシ安息香酸等が挙げられる。前記ベンゼンモノカルボン酸成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記ポリエステル系可塑剤の炭素数2~12のアルキレングリコール成分としては、具体的には、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロ-ルペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、及び1,12-オクタデカンジオール等が挙げられる。この中でも、炭素数2~12のアルキレングリコールが、セルロースエステル系樹脂との相溶性に優れている点から、好ましい。また、前記アルキレングリコール成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記ポリエステル系可塑剤の芳香族末端エステルの炭素数4~12のオキシアルキレングリコール成分としては、具体的には、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等が挙げられる。前記オキシアルキレングリコール成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記ポリエステル系可塑剤の芳香族末端エステルの炭素数4~12のアルキレンジカルボン酸成分としては、具体的には、例えば、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が挙げられる。前記アルキレンジカルボン酸成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記ポリエステル系可塑剤の芳香族末端エステルの炭素数6~12のアリーレンジカルボン酸成分としては、具体的には、例えば、フタル酸、テレフタル酸、イソフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等が挙げられる。前記アリーレンジカルボン酸成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、前記ポリエステル系可塑剤の数平均分子量は、300~1500であることが好ましく、400~1000であることが好ましい。
 また、前記ポリエステル系可塑剤の酸価は、0.5mgKOH/g以下であることが好ましく、0.3mgKOH/g以下であることがより好ましい。また、前記ポリエステル系可塑剤の水酸基価は25mgKOH/g以下であることが好ましく、15mgKOH/g以下であることがより好ましい。
 以下、前記芳香族末端エステル系可塑剤の好ましい例示化合物の合成例を示す。
 〈サンプルNo.1(芳香族末端エステルサンプル)〉
 反応容器にフタル酸410質量部、安息香酸610質量部、ジプロピレングリコール737質量部、及び触媒としてテトライソプロピルチタネート0.40質量部を一括して仕込み窒素気流中で攪拌下、還流凝縮器を付して過剰の1価アルコールを還流させながら、酸価が2以下になるまで130~250℃で加熱を続け生成する水を連続的に除去した。次いで200~230℃で100~最終的に4×10Pa以下の減圧下、留出分を除去し、この後濾過した。そうすることによって、粘度(25℃)が43400mPa・s、酸価が0.2mgKOH/gの芳香族末端エステル系可塑剤を得た。
 〈サンプルNo.2(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸410質量部、安息香酸610質量部、エチレングリコール341質量部、及び触媒としてテトライソプロピルチタネート0.35質量部を用いる以外はサンプルNo.1と同様にすることによって、粘度(25℃)が31000mPa・s、酸価が0.1mgKOH/gの芳香族末端エステル系可塑剤を得た。
 〈サンプルNo.3(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸410質量部、安息香酸610質量部、1,2-プロパンジオール418質量部、及び触媒としてテトライソプロピルチタネート0.35質量部を用いる以外はサンプルNo.1と同様にすることによって、粘度(25℃)が38000mPa・s、酸価が0.05mgKOH/gの芳香族末端エステル系可塑剤を得た。
 〈サンプルNo.4(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸410質量部、安息香酸610質量部、1,3-プロパンジオール418質量部、及び触媒としてテトライソプロピルチタネート0.35質量部を用いる以外はサンプルNo.1と同様にすることによって、粘度(25℃)が37000mPa・s、酸価が0.05mgKOH/gの芳香族末端エステル系可塑剤を得た。
 前記芳香族末端エステル系可塑剤としては、より具体的には、例えば、式(7)~(16)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 前記可塑剤は、上記各可塑剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記可塑剤を含有させる場合、その含有量は、寸法安定性、加工性の点を考慮すると、前記透明性樹脂に対して、1~40質量%であることが好ましく、3~20質量%であることがより好ましく、4~15質量%であることがさらに好ましい。可塑剤の含有量が少なすぎると、スリット加工や打ち抜き加工した際、滑らかな切断面を得ることができず、切り屑の発生が多くなる傾向がある。すなわち、可塑剤を含有させる効果が充分に発揮できない。
 前記酸化防止剤としては、例えば、ヒンダードフェノール系の化合物が好ましく用いられ、具体的には、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等が挙げられる。特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕等が挙げられる。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。また、前記酸化防止剤の含有量は、前記透明性樹脂に対して質量割合で1ppm~1.0%であることが好ましく、10~1000ppmであることがより好ましい。
 本実施形態に係る製造方法により得られたドープを用いて製造された光学フィルムは、偏光板用保護フィルム等に使用することが可能であり、この場合、偏光板又は液晶等の劣化防止のため、紫外線吸収剤が好ましく用いられる。
 前記紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、且つ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。具体的には380nmの透過率が10%未満であることが好ましく、特に5%未満であることがより好ましい。
 前記紫外線吸収剤としては、具体的には、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物(ベンゾトリアゾール系紫外線吸収剤)、サリチル酸エステル系化合物、ベンゾフェノン系化合物(ベンゾフェノン系紫外線吸収剤)、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等が挙げられる。また、前記紫外線吸収剤として好適なものの一例をあえて挙げるとすれば、例えば、特開平10-182621号公報、特開平8-337574号公報に記載の紫外線吸収剤、特開平6-148430号公報、特開平12-273437号公報に記載の高分子紫外線吸収剤、特開平10-152568号公報に記載の紫外線吸収剤が挙げられる。
 前記紫外線吸収剤の含有量は、紫外線吸収剤としての効果、透明性等を考慮し、0.1質量%~2.5質量%であることが好ましく、0.8質量%~2.0質量%であることがより好ましい。
 上記の紫外線吸収剤の中では、ベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましい。以下に、ベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤の具体例を挙げるが、本発明はこれらに限定されない。
 前記ベンゾトリアゾール系紫外線吸収剤としては、具体的には、例えば、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール(TINUVIN171、チバスペシャルティケミカルズ(株)製)、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートとの混合物(TINUVIN109、チバスペシャルティケミカルズ(株)製)等が挙げられる。
 前記ベンゾフェノン系紫外線吸収剤としては、具体的には、例えば、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等が挙げられる。
 (溶媒)
 本実施形態で使用される溶媒は、前記透明性樹脂に対する良溶媒を含有する溶媒を用いることができる。前記良溶媒は、使用する透明性樹脂によって異なる。例えばセルロースエステル系樹脂の場合、セルロースエステルのアシル基置換度によって、良溶媒と貧溶媒とが変わり、例えばアセトンを溶媒として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶媒になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶媒となる。したがって、使用する透明性樹脂により、良溶媒及び貧溶媒が異なってくるので、一例としてセルロースエステル系樹脂の場合について説明する。
 セルロースエステル系樹脂に対する良溶媒としては、例えば、メチレンクロライド等の有機ハロゲン化合物、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジオキソラン誘導体、シクロヘキサノン、蟻酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等が挙げられる。これらの中でも、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン等が好ましい。これらの良溶媒は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 また、ドープには、透明性樹脂が析出してこない範囲で、貧溶媒を含有させてもよい。セルロースエステル系樹脂に対する貧溶媒としては、例えば、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等の炭素原子数1~8のアルコール、メチルエチルケトン、メチルイソブチルケトン、酢酸プロピル、モノクロルベンゼン、ベンゼン、シクロヘキサン、テトラヒドロフラン、メチルセルソルブ、エチレングリコールモノメチルエーテル等が挙げられる。これらの貧溶媒は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 (ドープろ過装置)
 前記ドープろ過装置22は、図1に示すように、ドープ静置釜3、ろ過器4,5、及びドープ送液ポンプ2等を備える。前記ドープ製造装置21で製造されたドープに、未溶解物や析出物等がほとんど発生しない場合等は、前記ドープろ過装置22を設置しなくてもよいが、得られる光学フィルムにおける異物発生を低減させるために、前記ドープろ過装置22を設置するのが好ましい。
 前記ドープ静置釜3は、ドープを一旦貯留するための容器である。前記ろ過器は、前記ドープ静置釜3に貯留されていたドープから未溶解物や析出物をろ別するためのろ過器である。そして、前記ろ過器は、前記第1ろ過器4と前記第2ろ過器5とを備え、それぞれ直列に配置されている。前記ドープろ過装置22に備えられているろ過器は、図1に示すように、前記第1ろ過器4及び前記第2ろ過器5の2種のろ過器を複数直列に接続されたものであっても、3種以上を直列に接続したものであってもよいし、また、1種を単独で用いる場合であってもよい。また、前記ドープろ過装置22に備えられているろ過器に用いられるろ過材の材質は、特に制限はなく、通常のろ過材を使用することができる。例えば、ポリプロピレン等のプラスチック製のろ過材や、セルロースやレーヨンを用いたろ紙、ステンレス鋼等の金属製の濾過材が繊維の脱落等がなく好ましい。ろ過により、原料の透明性樹脂の溶液に含まれていた不純物、特に輝点異物を除去、低減する点から好ましい。ろ過精度は、0.03mm以下が好ましく、0.001~0.015mmがより好ましい。また、上述のように複数のろ過器を用いる場合、0.002~0.005mmのろ過器を一箇所設けることが好ましい。
 そして、前記ドープ送液ポンプ2は、前記ドープ静置釜3と前記ろ過器とを接続する配管等に、配管内のドープの送液を円滑にするために、適宜配置されていてもよい。特に、前記第1ろ過器4及び前記第2ろ過器5等のろ過器の直前には、ろ圧を高めるために、前記ドープ送液ポンプ2が配置されていることが好ましい。
 したがって、前記ドープ製造装置21で調製されたドープは、前記ドープろ過装置22でろ過された後、前記製膜装置23まで送液される。
 (製膜装置)
 前記製膜装置23は、図1に示すように、無端ベルト支持体12、流延ダイ13、剥離ローラ14、延伸装置15、乾燥装置17及び巻取装置18等を備える。前記流延ダイ13は、ドープ19を無端ベルト支持体12の表面上に流延する。前記無端ベルト支持体12は、前記流延ダイ13から流延されたドープ19からなるウェブを形成し、搬送させながら乾燥させることによってフィルムとする。前記剥離ローラ14は、フィルムを無端ベルト支持体12から剥離する。前記延伸装置15は、剥離されたフィルムを延伸する。前記乾燥装置17は、延伸されたフィルムを搬送ローラで搬送させながら、乾燥させる。前記巻取装置18は、乾燥したフィルムをロール状に巻き取って、フィルムロールとする。ここで、前記ドープ19として、前記ドープ製造装置21で調製され、必要に応じて、前記ドープろ過装置22でろ過され、前記製膜装置23まで送液されたドープを用いる。
 前記流延ダイ13は、図1に示すように、前記流延ダイ13の上端部に接続されたドープ供給管からドープ19が供給される。そして、その供給されたドープが前記流延ダイ13から前記無端ベルト支持体12に吐出され、前記無端ベルト支持体12上にウェブが形成される。
 前記無端ベルト支持体12は、図1に示すように、表面が鏡面の、無限に走行する金属製の無端ベルトである。前記ベルトとしては、フィルムの剥離性の点から、例えば、ステンレス鋼等からなるベルトが好ましく用いられる。前記流延ダイ13によって流延する流延膜の幅は、特に限定されないが、無端ベルト支持体12の幅を有効活用する観点から、無端ベルト支持体12の幅に対して、80~99%とすることが好ましい。そして、最終的に1000~4000mmの幅の光学フィルムを得るためには、無端ベルト支持体12の幅は、1500mm以上であることが好ましい。また、無端ベルト支持体の代わりに、表面が鏡面の、回転する金属製のドラム(無端ドラム支持体)を用いてもよい。
 そして、前記無端ベルト支持体12は、その表面上に形成された流延膜(ウェブ)を搬送しながら、ドープ中の溶媒を乾燥させる。前記乾燥は、例えば、無端ベルト支持体12を加熱したり、加熱風をウェブに吹き付けることによって行う。その際、ウェブの温度が、ドープの溶液によっても異なるが、溶媒の蒸発時間に伴う搬送速度や生産性等を考慮して、-5~70℃の範囲が好ましく、0~60℃の範囲がより好ましい。ウェブの温度は、高いほど溶媒の乾燥速度を速くできるので好ましいが、高すぎると、発泡したり、平面性が劣化する傾向がある。
 無端ベルト支持体12を加熱する場合、例えば、無端ベルト支持体12上のウェブを赤外線ヒータで加熱する方法、無端ベルト支持体12の裏面を赤外線ヒータで加熱する方法、無端ベルト支持体12の裏面に加熱風を吹き付けて加熱する方法等が挙げられ、必要に応じて適宜選択することが可能である。
 また、加熱風を吹き付ける場合、その加熱風の風圧は、溶媒蒸発の均一性等を考慮し、50~5000Paであることが好ましい。加熱風の温度は、一定の温度で乾燥してもよいし、無端ベルト支持体12の走行方向で数段階の温度に分けて供給してもよい。
 無端ベルト支持体12の上にドープを流延した後、無端ベルト支持体12からウェブを剥離するまでの間での時間は、作製する光学フィルムの膜厚、使用する溶媒によっても異なるが、無端ベルト支持体12からの剥離性を考慮し、0.5~5分間の範囲であることが好ましい。
 前記無端ベルト支持体12の走行速度は、特に限定されないが、生産性の観点等から、例えば、50~200m/分程度であることが好ましい。また、前記流延ダイ13から吐出されるドープの流速に対する、前記無端ベルト支持体12の走行速度の比(ドラフト比)は、0.8~2程度であることが好ましい。前記ドラフト比がこの範囲内であると、安定して流延膜を形成させることができる。例えば、ドラフト比が大きすぎると、流延膜が幅方向に縮小されるネックインという現象を発生させる傾向があり、そうなると、広幅のフィルムを形成できなくなる。
 前記剥離ローラ14は、無端ベルト支持体12のドープ19が流延される側の表面近傍に配置されており、前記無端ベルト支持体12と前記剥離ローラ14との距離は、1~100mmであることが好ましい。前記剥離ローラ14を支点として、乾燥されたウェブ(フィルム)に張力をかけて引っ張ることによって、乾燥されたウェブ(フィルム)が剥離される。無端ベルト支持体12からフィルムを剥離する際に、剥離張力及びその後の搬送張力によってフィルムは、フィルムの搬送方向(Machine Direction:MD方向)に延伸する。このため、無端ベルト支持体12からフィルムを剥離する際の剥離張力及び搬送張力は、例えば、50~400N/mにすることが好ましい。
 また、フィルムを無端ベルト支持体12から剥離する時のフィルムの全残留溶媒率は、無端ベルト支持体12からの剥離性、剥離時の残留溶媒率、剥離後の搬送性、搬送・乾燥後にできあがる光学フィルムの物理特性等を考慮し、30~200質量%であることが好ましい。なお、フィルムの残留溶媒率は、下記式(17)で定義される。
  残留溶媒率(質量%)={(M-M)/M}×100  (17)
 ここで、Mは、フィルムの任意時点での質量を示し、Mは、Mを測定したフィルムを115℃で1時間乾燥させた後の質量を示す。
 前記延伸装置15は、無端ベルト支持体12から剥離されたフィルムを、ウェブの搬送方向と直交する方向(Transverse Direction:TD方向)に延伸させる。具体的には、フィルムの搬送方向に垂直な方向の両端部をクリップ等で把持して、対向するクリップ間の距離を大きくすることによって、TD方向に延伸する。なお、第1実施形態では、延伸装置15を備えていたが、備えていなくてもよい。その際、下記式(18)で求められる延伸率が20~50%となるように延伸する。また、その延伸率としては、22~48%であることが好ましく、25~45%であることがより好ましい。
 延伸率(%)={(延伸後の幅方向の長さ-延伸前の幅方向の長さ)/延伸前の幅方向の長さ}×100 (18)
 延伸率が低すぎると、所望のリタデーション値を得ることができない傾向や、光学フィルムの広幅化が困難になるという傾向がある。また、延伸率が高すぎると、フィルムのヘイズが高くなり、透明性が低下する傾向がある。このため、得られた光学フィルムを液晶パネル等の液晶表示装置に備えられる位相差フィルムとして用いた場合、コントラストが低下する傾向があり、好ましくない。また、場合によっては、把持手段(クリップ)で把持した箇所から、フィルムが裂けて破断するおそれがある。
 また、フィルムを延伸させる際、通常、フィルムを加熱して行う。このフィルムの加熱は、例えば、加熱風をフィルムに吹きつけることによって行ってもよいし、赤外線ヒータ等の加熱装置で加熱してもよい。また、その延伸をさせる際の温度(延伸温度)としては、150~200℃であることが好ましく、155~190℃であることがより好ましい。延伸温度が低すぎると、フィルムに余分な応力がかかるため、フィルムのヘイズが高くなり、透明性が低下する傾向がある。このため、得られた樹脂フィルムを液晶パネル等の液晶表示装置に備えられる位相差フィルムとして用いた場合、コントラストが低下する傾向があり、好ましくない。また、場合によっては、把持手段(クリップ)で把持した箇所から、フィルムが裂けて破断するおそれがある。また、延伸温度が高すぎると、所望のリタデーション値が得られなかったり、フィルムが溶融したりして、フィルムの表面状態や膜厚等が不均一になる傾向がある。
 そして、前記延伸装置15は、クリップを把持していた領域を切断する装置を備えていてもよい。また、本実施形態では、延伸装置15を備えていたが、備えていなくてもよい。
 また、前記延伸装置15により延伸されたフィルムの全残留溶媒率は、特に限定されないが、前記乾燥装置17による作業性の観点等から、例えば、1~20質量%であることが好ましい。なお、前記延伸装置15を備えない場合は、前記乾燥装置17にフィルムを供給するまでに、フィルムの全残留溶媒率が1~20質量%となっていることが好ましい。
 前記乾燥装置17は、複数の搬送ローラを備え、そのローラ間をフィルムを搬送させる間にフィルムを乾燥させる。その際、加熱空気、赤外線等を単独で用いて乾燥してもよいし、加熱空気と赤外線とを併用して乾燥してもよい。簡便さの点から加熱空気を用いることが好ましい。乾燥温度としては、フィルムの残留溶媒率により、好適温度が異なるが、乾燥時間、収縮ムラ、伸縮量の安定性等を考慮し、30~180℃の範囲で残留溶媒率により適宜選択して決めればよい。また、一定の温度で乾燥してもよいし、2~4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。また、乾燥装置17内を搬送される間に、フィルムを、MD方向に延伸させることもできる。前記乾燥装置17での乾燥処理後のフィルムの残留溶媒率は、乾燥工程の負荷、保存時の寸法安定性伸縮率等を考慮し、0.01~15質量%が好ましい。
 前記巻取装置18は、前記乾燥装置17で所定の残留溶媒率となったフィルムを、その幅方向両端部にホットエンボス機構によりエンボス加工を施した後、巻き芯に巻き取る。なお、巻き取る際の温度は、巻き取り後の収縮によるスリキズ、巻き緩み等を防止するために室温まで冷却することが好ましい。使用する巻き取り機は、特に限定なくしようでき、一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻き取り方法で巻き取ることができる。
 また、前記製膜装置23では、前記延伸装置15及び前記乾燥装置17を備えているが、備えていなくてもよく、また、それぞれが2箇所以上に備えられていてもよい。
 (光学フィルム)
 また、前記光学フィルムの製造装置11によれば、前記ドープ製造装置21で製造された、微粒子の分散性の高いドープを用いるので、異物が少なく、内部ヘイズの充分に低い透明性に優れた光学フィルムが得られる。また、前記光学フィルムの内部ヘイズは、1枚あたり0.1以下であることが好ましい。
 また、前記光学フィルムは、異物が少ない方が好ましい。特に偏光クロスニコル状態で認識される異物が少ない方が好ましい。
 偏光クロスニコル状態で認識される異物とは、2枚の偏光板を直行(クロスニコル)状態にし、その間に光学フィルムを置いて測定されるものをいう。このような異物は、偏光クロスニコル状態では、暗視野中で、異物の箇所のみ光って観察されるので、容易にその大きさと個数を識別することができる。
 異物の個数としては、面積250mm当たり、偏光クロスニコル状態で認識される大きさが5~50μmの異物が200個以下、50μm以上の異物が実質0個であることが好ましい。更に好ましくは、5~50μmの異物が100個以下、より好ましくは50個以下である。
 また、前記光学フィルムは、上述したように、TEMで撮影した断面写真から測定される、前記微粒子の2次粒子の円相当平均粒径が、50~300nmであることが好ましく、80~200nmであることがより好ましい。前記微粒子の2次粒子の円相当平均粒径が小さすぎると、すべり性を充分に高めることができないという傾向がある。また、大きすぎると、内部ヘイズが高くなる傾向がある。したがって、前記微粒子の2次粒子の円相当平均粒径が上記範囲内であると、すべり性を充分に高め、内部ヘイズのより低い光学フィルムが得られる。
 また、前記光学フィルムは、上述したように、TEMで撮影した断面写真から測定される、前記微粒子の2次粒子の個数が、0.7~6個/μmであることが好ましく、2~5.5個/μmであることがより好ましい。前記微粒子の2次粒子の個数が少なすぎると、すべり性を充分に高めることができないという傾向がある。また、多すぎると、内部ヘイズが高くなる傾向がある。したがって、前記微粒子の2次粒子の個数が上記範囲内であると、すべり性を充分に高め、内部ヘイズのより低い光学フィルムが得られる。
 また、前記光学フィルムの幅は、大型の液晶表示装置への使用、偏光板加工時のフィルムの使用効率、生産効率の点から、1000~4000mmであることが好ましい。また、フィルムの膜厚は、液晶表示装置の薄型化、フィルムの生産安定化の観点等の点から、30~90μmであることが好ましい。ここで膜厚とは、平均膜厚のことであり、株式会社ミツトヨ製の接触式膜厚計により、フィルムの幅方向に20~200箇所、膜厚を測定し、その測定値の平均値を膜厚として示す。
 (偏光板)
 本実施形態に係る偏光板は、偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備え、前記透明保護フィルムが、前記光学フィルムである。前記偏光素子とは、入射光を偏光に変えて射出する光学素子である。
 前記偏光板としては、例えば、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬して延伸することによって作製される偏光素子の少なくとも一方の表面に、完全鹸化型ポリビニルアルコール水溶液を用いて、前記樹脂フィルム又は前記積層フィルムを貼り合わせたものが好ましい。また、前記偏光素子のもう一方の表面にも、前記光学フィルムを積層させてもよいし、別の偏光板用の透明保護フィルムを積層させてもよい。この偏光板用の透明保護フィルムとしては、例えば、市販のセルロースエステルフィルムとして、KC8UX2M、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UY-HA、KC8UX-RHA(以上、コニカミノルタオプト株式会社製)等が好ましく用いられる。あるいは、セルロースエステルフィルム以外の環状オレフィン樹脂、アクリル樹脂、ポリエステル、ポリカーボネート等の樹脂フィルムを用いてもよい。この場合は、ケン化適性が低いため、適当な接着層を介して偏光板に接着加工することが好ましい。
 前記偏光板は、上述のように、偏光素子の少なくとも一方の表面側に積層する保護フィルムとして、前記光学フィルムを使用したものである。その際、前記光学フィルムが位相差フィルムとして働く場合、樹脂フィルムの遅相軸が偏光素子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。
 また、前記偏光素子の具体例としては、例えば、ポリビニルアルコール系偏光フィルムが挙げられる。ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものとがある。前記ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。
 前記偏光素子は、例えば、以下のようにして得られる。まず、ポリビニルアルコール水溶液を用いて製膜する。得られたポリビニルアルコール系フィルムを一軸延伸させた後染色するか、染色した後一軸延伸する。そして、好ましくはホウ素化合物で耐久性処理を施す。
 前記偏光素子の膜厚は、5~40μmであることが好ましく、5~30μmであることがより好ましく、5~20μmであることがより好ましい。
 該偏光素子の表面上に、セルロ-スエステル系樹脂フィルムを張り合わせる場合、完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせることが好ましい。また、セルロースエステル系樹脂フィルム以外の樹脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工することが好ましい。
 上述のような偏光板は、透明保護フィルムとして、本実施形態に係る広幅の樹脂フィルムを用いることによって、大画面化した液晶表示装置にも適用可能となる。
 (液晶表示装置)
 本実施形態に係る液晶表示装置は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備え、前記2枚の偏光板のうち少なくとも一方が、前記偏光板である。なお、液晶セルとは、一対の電極間に液晶物質が充填されたものであり、この電極に電圧を印加することで、液晶の配向状態が変化され、透過光量が制御される。このような液晶表示装置は、偏光板用の透明保護フィルムとして、本実施形態に係る光学フィルムを用いることによって、大画面化が可能となる。
 以上、本発明に係る実施形態が詳細に説明されたが、上記した説明は、全ての局面において例示であって、本発明がこれらに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 [実施例1]
 (ドープの調製)
 まず、図1に示すような光学フィルムの製造装置の容器(溶解タンク)に、溶媒として、メチレンクロライド300質量部及びメタノール52質量部と、透明性樹脂としてセルロースエステル樹脂(アセチル基置換度:1.2、プロピオニル基置換度:1.2)100質量部とを同時に攪拌しながら添加した。そして、その前記溶媒と前記透明性樹脂との攪拌しながらの添加を行っている最中に、微粒子としてシリカ微粒子(日本アエロジル株式会社性のアエロジル972V)10質量部を添加した。その後、有機系添加剤として上記一般式(1)で表され、nが2のもの(分子量:696)10質量部を添加した。なお、前記有機系添加剤としては、固形分濃度を70質量%になるようにメチレンクロライドで予め調整し、粘度が100mPa・sであるものを用いた。
 前記微粒子の添加は、前記微粒子を添加する際の、容器内の液体の粘度Aが、500mPa・sであるときに行った。前記有機系添加剤の添加は、前記微粒子の添加が終了してから15分後であって、前記有機系添加剤を添加する際の、容器内の液体の粘度Bが、500mPa・sであるときに行った。
 そして、攪拌しながら、液温がメチレンクロライド及びメタノールの沸点以上である85℃になるまで加熱した。そして、前記透明性樹脂が溶解するまで、攪拌することによって、ドープが得られた。なお、得られたドープの合計量が、5000kgとなるように、各成分の量を調整した。
 そして、得られたドープ樹脂溶液を、35℃まで冷却し、濾過精度0.005mmの濾紙を備えるろ過装置を使用して濾過した。
 このようにして得られたドープを使用して、以下のように、光学フィルムを製造した。
 (光学フィルムの製造)
 まず、得られたドープの温度を35℃に、無端ベルト支持体の温度を25℃に調整した。そして、図1に示すような光学フィルムの製造装置を用い、流延ダイ(コートハンガーダイ)から、ステンレス鋼製かつ超鏡面に研磨したエンドレスベルトからなる無端ベルト支持体にドープを流延した。そうすることによって、無端ベルト支持体上にウェブを形成し、乾燥させながら搬送した。そして、無端ベルト支持体からウェブをフィルムとして剥離し、50℃の雰囲気でロール搬送しながら乾燥させ、残留溶媒率が10%のとき、フィルムを延伸装置(テンター)を用いて、160℃の雰囲気内でフィルムの両端をクリップで把持しながら幅手方向に延伸率1.40倍延伸した。その後、裁断装置を用いて、クリップで把持されていた領域(フィルム端から60mmの幅)を裁断して、120℃でフィルム中の溶媒を完全に除去するまでフィルムを乾燥した。そうすることによって、厚み40±10μm、面内方向リタデーションRoが50nm、厚み方向リタデーションRtが、140nmである光学フィルムを得た。
 [実施例2]
 前記有機系添加剤を添加するタイミングとして、前記微粒子の添加が終了してから20分後であって、前記有機系添加剤を添加する際の、容器内の液体の粘度Bが、1000mPa・sになったときに変更した以外、実施例1と同様である。
 [実施例3]
 前記有機系添加剤を添加するタイミングとして、前記微粒子の添加が終了してから40分後であって、前記有機系添加剤を添加する際の、容器内の液体の粘度Bが、10000mPa・sになったときに変更した以外、実施例1と同様である。
 [実施例4]
 前記有機系添加剤を添加するタイミングとして、前記微粒子の添加が終了してから60分後であって、前記有機系添加剤を添加する際の、容器内の液体の粘度Bが、50000mPa・sになったときに変更した以外、実施例1と同様である。
 [実施例5]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、メチルアクリレート重合体(分子量:1400、粘度:100mPa・s)を用いること以外、実施例2と同様である。
 [実施例6]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、メチルメタアクリレートとヒドロキシエチルアクリレートとの質量比80:20の共重合体(その共重合体を合成するときに用いる連鎖移動剤であるメルカプトプロピオン酸の添加量及びアゾビスイソブチロにトリルの添加速度を変更して得られた分子量が4500である共重合体)(国際公開2006/132105号の実施例参照)の固形分濃度を65質量%になるようにメチレンクロライドで予め調整し、粘度が100mPa・sであるものを用いたこと以外、実施例2と同様である。
 [実施例7]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、トリフェニルフォスフェート(分子量:330)とエチルフタリルエチルグリコール(分子量:280)との質量比(5:5)の混合物(粘度:100mPa・s)を用い、延伸率を1.55倍としたこと以外、実施例2と同様である。
 [実施例8]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、上記一般式(1)で表され、nが2の分子量696のものの固形分濃度を65質量%になるようにメチレンクロライドで予め調整し、粘度が60mPa・sであるものを用いたこと以外、実施例2と同様である。
 [実施例9]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、上記一般式(1)で表され、nが2の分子量696のものの固形分濃度を95質量%になるようにメチレンクロライドで予め調整し、粘度が10000mPa・sであるものを用いたこと以外、実施例2と同様である。
 [実施例10]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、メチルメタアクリレートとヒドロキシエチルアクリレートとの質量比80:20の共重合体(その共重合体を合成するときに用いる連鎖移動剤であるメルカプトプロピオン酸の添加量及びアゾビスイソブチロにトリルの添加速度を変更して得られた分子量が5500である共重合体)(国際公開2006/132105号の実施例参照)の固形分濃度を60質量%になるようにメチレンクロライドで予め調整し、粘度が100mPa・sであるものを用いたこと以外、実施例2と同様である。
 [実施例11]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、上記一般式(1)で表され、nが2の分子量696のものの固形分濃度を40質量%になるようにメチレンクロライドで予め調整し、粘度が8mPa・sであるものを用いたこと以外、実施例2と同様である。
 [実施例12]
 前記有機系添加剤として、上記一般式(1)で表され、nが2の分子量696のもの(粘度:100mPa・s)の代わりに、上記一般式(1)で表され、nが2の分子量696のものの固形分濃度を97質量%になるようにメチレンクロライドで予め調整し、粘度が15000mPa・sであるものを用いたこと以外、実施例2と同様である。
 [実施例13]
 前記微粒子として、シリカ微粒子(日本アエロジル株式会社性のアエロジル972V)10質量部を添加する代わりに、1次粒径300nmのPMMA(ポリメチルメタクリレート樹脂)粒子0,05質量部添加したこと以外、実施例2と同様である。
 [比較例1]
 前記有機系添加剤を添加するタイミングとして、前記溶媒と前記透明性樹脂との攪拌しながらの添加を行っている最中であって、前記有機系添加剤を添加する際の、容器内の液体の粘度Bが、500mPa・sになったときに変更し、前記微粒子を添加するタイミングとして、前記有機系添加剤の添加が終了してから50分後であって、前記微粒子を添加する際の、容器内の液体の粘度Aが、20000mPa・sになったときに変更した以外、実施例1と同様である。
 [比較例2]
 前記有機系添加剤を添加するタイミングとして、前記溶媒と前記透明性樹脂との攪拌しながらの添加を行っている最中であって、前記有機系添加剤を添加する際の、容器内の液体の粘度Bが、500mPa・sになったときに変更し、前記微粒子を添加するタイミングとして、前記有機系添加剤の添加が終了した直後であって、前記微粒子を添加する際の、容器内の液体の粘度Aが、700mPa・sになったときに変更した以外、実施例1と同様である。
 [比較例3]
 前記有機系添加剤を添加するタイミングとして、前記微粒子の添加が終了してから80分後であって、前記有機系添加剤を添加する際の、容器内の液体の粘度Bが、60000mPa・sになったときに変更した以外、実施例1と同様である。
 実施例1~13、及び比較例1~3について、以下のような評価を行った。
 (平均粒径)
 得られた光学フィルムをエポキシ樹脂で包埋後、ウルトラミクロトームにより約150nm厚の超薄切片を作製し、透過型電子顕微鏡(日本電子株式会社製のJEM-1400)により、5000倍のTEM画像を撮影した。撮影で得られたネガを印画紙にプリントしフラットヘッドスキャナ(コニカミノルタ株式会社製のSitios9231)にて、入力解像度300dpiで電子化する。そして、電子化して得られたデータを画像解析ソフト(Image Pro Plus)にてフィルタ処理を行い、最適化して、微粒子の二次粒子の粒子径を計測し、その平均粒径を算出した。この平均粒径は、粒子投影面積と等しい面積をもつ円の直径で表される円相当径を使用した。
 (個数)
 そして、前記平均粒径を測定するのに用いた画像から、微粒子の二次粒子の所定面積当たりの個数(個/μm)を測定した。
 (内部ヘイズ)
 得られた光学フィルムの内部ヘイズは、ヘイズメーター(日本電色工業株式会社製のNDH2000)を用いて測定した。具体的には、光学フィルムの両側表面にグリセリンを塗布し、グリセリンを塗布した光学フィルムをガラス板で挟みこんで、上記ヘイズメーターを用いてヘイズを測定した。その後、測定したヘイズから、予め測定しておいたガラス板のヘイズを差し引いて、光学フィルムの内部ヘイズとした。
 (異物)
 光学フィルムの製造時に、前記巻取装置18の直前に設けられた不図示のオンライン欠陥検査機によって、光学フィルム3000m分を検査して、異物の個数を計測した。その計測した異物数から、光学フィルム1mあたりの異物の個数を算出した。

Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、前記微粒子を添加する際の前記容器内の液体の粘度Aに対する、前記有機系添加剤を添加する際の前記容器内の液体の粘度Bの比(B/A)が、1~100である場合(実施例1~13)は、B/Aが1未満である場合(比較例1,2)やB/Aが100を超える場合(比較例3)と比較して、得られた光学フィルムの内部ヘイズが低く、異物の発生が少ない。
 また、添加する有機系添加剤の分子量が500未満である場合(実施例7)や添加する有機系添加剤の分子量が5000を超える場合(実施例10)は、添加する有機系添加剤の分子量が500~5000である場合(実施例1や実施例2等)と比較して、内部ヘイズが高かった。また、実施例10の場合、異物数も多かった。具体的には、実施例7においては、実施例1や実施例2と同様のリタデーション値を得るために、延伸率を1.40倍から1.55倍に変化させた。その結果、内部ヘイズが高まった。これらのことから、ドープに添加する有機系添加剤の分子量は、500~5000であることが好ましいことがわかる。
 また、添加する有機系添加剤の粘度が10mPa・s未満である場合(実施例11)や添加する有機系添加剤の粘度が10000mPa・sを超える場合(実施例12)は、添加する有機系添加剤の粘度が10~10000mPa・sである場合(実施例1や実施例2等)と比較して、内部ヘイズが高く、異物数も多かった。これらのことから、ドープに添加する有機系添加剤の粘度は、10~10000mPa・sであることが好ましいことがわかる。
 また、添加する微粒子が、シリカ粒子以外のPMMA粒子である場合(実施例13)は、添加する微粒子が、シリカ粒子の場合(実施例1や実施例2等)と比較して、内部ヘイズが高かった。このことから、添加する微粒子は、シリカ粒子が好ましいことがわかる。このことは、用いたPMMA粒子は、単分散粒子であるので、光学フィルム中の微粒子の二次流離の平均粒径が大きくなる傾向がある。そして、添加量を減らしても、光学フィルムを構成する透明性樹脂との屈折率の差が大きいため、内部ヘイズが高まると考えられる。
 本明細書は、上記のような様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一局面は、透明性樹脂、微粒子、有機系添加剤、及び溶媒を含有する光学フィルム用ドープの製造方法であって、前記透明性樹脂と前記溶媒とを攪拌しながら容器に投入する工程と、前記透明性樹脂と前記溶媒とを前記容器内で前記溶媒の沸点以上で攪拌して溶解する工程と、溶解する前又は溶解中に、前記容器内の液体に前記微粒子を添加する工程と、溶解する前又は溶解中に、前記容器内の液体に前記有機系添加剤を添加する工程とを備え、前記微粒子を添加する際の前記容器内の液体の粘度に対する、前記有機系添加剤を添加する際の前記容器内の液体の粘度の比が、1~100であることを特徴とする光学フィルム用ドープの製造方法である。
 上記の構成によれば、微粒子及び有機系添加剤を含有させた場合であっても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。
 このことは、以下のことによると推察される。
 透明性樹脂と溶媒とを容器内で溶媒の沸点以上で攪拌することによって、前記透明性樹脂が前記溶媒に徐々に溶解し、容器内の液体の粘度が徐々に高まる。そして、容器内の液体の粘度が比較的低いときに、微粒子を容器内の液体に添加して、攪拌する。そうすることによって、微粒子が容器内の液体に分散されやすいと考えられる。その後、容器内の液体の粘度が、微粒子を添加する際の容器内の液体の粘度より上記範囲内で高まったとき、すなわち、前記透明性樹脂の溶解がある程度進んだときに、有機系添加剤を添加して、攪拌する。そうすることによって、前記有機系添加剤を添加した際には、前記透明性樹脂の溶解が進んでいるだけではなく、前記微粒子の分散もある程度進んでいるので、前記微粒子の分散性を維持しつつ、前記有機系添加剤も容器内の液体に溶解されると考えられる。よって、有機系添加剤を含有させた場合であっても、微粒子が均一に分散された光学フィルム用ドープを製造することができると考えられる。このようなドープを用いて光学フィルムを製造することによって、微粒子及び有機系添加剤を含有させた場合であっても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムが得られると考えられる。
 また、前記光学フィルム用ドープの製造方法において、前記有機系添加剤の分子量が、500~5000であることが好ましい。
 光学フィルム用ドープに含有する有機系添加剤として、上記のような、比較的高分子量のものを用いることにより、光学特性、特にリタデーションを所望の値に調整することができるものの、一般的に、前記微粒子の分散性が低下し、得られた光学フィルムの内部ヘイズが充分に低いものとはならない傾向があるが、上記の製造方法によれば、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。
 また、前記光学フィルム用ドープの製造方法において、前記有機系添加剤の粘度が、10~10000mPa・sであることが好ましい。
 光学フィルム用ドープに含有する有機系添加剤として、粘度の高いものを用いた場合、一般的に、前記微粒子の分散性が低下し、得られた光学フィルムの内部ヘイズが充分に低いものとはならない傾向があるが、上記の製造方法によれば、上記のような幅広い粘度範囲から選ばれる有機系添加剤を含有させても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。
 また、前記光学フィルム用ドープの製造方法において、前記微粒子が、シリカ粒子であることが好ましい。
 このような構成によれば、異物の発生がより抑制され、内部ヘイズのより低く透明性のより優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。
 また、前記光学フィルム用ドープの製造方法において、前記透明性樹脂が、セルロースエステル系樹脂であることが好ましい。
 このような構成によれば、透明性のより優れた光学フィルムを製造することができる光学フィルム用ドープを得ることができる。
 また、本発明の他の一局面は、走行する支持体上にドープを流延してフィルムを形成する流延工程と、前記フィルムを前記支持体から剥離する剥離工程とを備え、前記ドープが、前記光学フィルム用ドープの製造方法により製造された光学フィルム用ドープであることを特徴とする光学フィルムの製造方法である。
 このような構成によれば、異物が少なく、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる。
 また、本発明の他の一局面は、前記光学フィルムの製造方法によって得られることを特徴とする光学フィルムである。
 このような構成によれば、異物が少なく、内部ヘイズの充分に低い透明性に優れた光学フィルムが得られる。
 また、前記光学フィルムにおいて、透過型電子顕微鏡で撮影した断面写真から測定される、前記微粒子の2次粒子の円相当平均粒径が、50~300nmであることが好ましい。
 このような構成によれば、内部ヘイズのより低い光学フィルムが得られる。また、得られた光学フィルムは、すべり性に優れたものである。このことは、前記微粒子の分散性が高いことにより、前記微粒子のすべり性を高める作用を充分に発揮できるためであると考えられる。
 また、前記光学フィルムにおいて、透過型電子顕微鏡で撮影した断面写真から測定される、前記微粒子の2次粒子の個数が、0.7~6個/μmであることが好ましい。
 このような構成によれば、内部ヘイズのより低い光学フィルムが得られる。また、得られた光学フィルムは、すべり性に優れたものである。このことは、前記微粒子の分散性が高いことにより、前記微粒子のすべり性を高める作用を充分に発揮できるためであると考えられる。
 また、本発明の他の一局面は、偏光素子と、前記偏光素子の少なくとも一方の表面上に配置された透明保護フィルムとを備える偏光板であって、前記透明保護フィルムが、前記光学フィルムであることを特徴とする偏光板である。
 このような構成によれば、偏光板の透明保護フィルムとして、内部ヘイズの低い透明性に優れた光学フィルムが適用されているので、例えば、液晶表示装置に適用した際に、コントラストの向上等の、液晶表示装置の高画質化を実現できる偏光板が得られる。
 また、本発明の他の一局面は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備える液晶表示装置であって、前記2枚の偏光板のうち少なくとも一方が、前記偏光板であることを特徴とする液晶表示装置である。
 このような構成によれば、内部ヘイズの低い透明性に優れた光学フィルムを備えた偏光板を用いるので、コントラスト等が向上された、高画質な液晶表示装置を提供することができる。
 本発明によれば、微粒子及び有機系添加剤を含有させた場合であっても、異物の発生が抑制され、内部ヘイズの充分に低い透明性に優れた光学フィルムを製造することができる光学フィルム用ドープの製造方法が提供される。また、このような光学フィルム用ドープの製造方法によって製造された光学フィルム用ドープを用いた光学フィルムの製造方法、前記光学フィルムの製造方法によって得られた光学フィルム、前記光学フィルムを透明保護フィルムとして用いた偏光板、及び前記偏光板を備えた液晶表示装置が提供される。

Claims (11)

  1.  透明性樹脂、微粒子、有機系添加剤、及び溶媒を含有する光学フィルム用ドープの製造方法であって、
     前記透明性樹脂と前記溶媒とを攪拌しながら容器に投入する工程と、
     前記透明性樹脂と前記溶媒とを前記容器内で前記溶媒の沸点以上で攪拌して溶解する工程と、
     溶解する前又は溶解中に、前記容器内の液体に前記微粒子を添加する工程と、
     溶解する前又は溶解中に、前記容器内の液体に前記有機系添加剤を添加する工程とを備え、
     前記微粒子を添加する際の前記容器内の液体の粘度に対する、前記有機系添加剤を添加する際の前記容器内の液体の粘度の比が、1~100であることを特徴とする光学フィルム用ドープの製造方法。
  2.  前記有機系添加剤の分子量が、500~5000であることを特徴とする請求項1に記載の光学フィルム用ドープの製造方法。
  3.  前記有機系添加剤の粘度が、10~10000mPa・sであることを特徴とする請求項1又は請求項2に記載の光学フィルム用ドープの製造方法。
  4.  前記微粒子が、シリカ粒子であることを特徴とする請求項1~3のいずれか1項に記載の光学フィルム用ドープの製造方法。
  5.  前記透明性樹脂が、セルロースエステル系樹脂であることを特徴とする請求項1~4のいずれか1項に記載の光学フィルム用ドープの製造方法。
  6.  走行する支持体上にドープを流延してフィルムを形成する流延工程と、
     前記フィルムを前記支持体から剥離する剥離工程とを備え、
     前記ドープが、請求項1~5のいずれか1項に記載の光学フィルム用ドープの製造方法により製造された光学フィルム用ドープであることを特徴とする光学フィルムの製造方法。
  7.  請求項6に記載の光学フィルムの製造方法によって得られることを特徴とする光学フィルム。
  8.  透過型電子顕微鏡で撮影した断面写真から測定される、前記微粒子の2次粒子の円相当平均粒径が、50~300nmであることを特徴とする請求項7に記載の光学フィルム。
  9.  透過型電子顕微鏡で撮影した断面写真から測定される、前記微粒子の2次粒子の個数が、0.7~6個/μmであることを特徴とする請求項7又は請求項8に記載の光学フィルム。
  10.  偏光素子と、前記偏光素子の少なくとも一方の表面上に配置された透明保護フィルムとを備える偏光板であって、
     前記透明保護フィルムが、請求項7~9のいずれか1項に記載の光学フィルムであることを特徴とする偏光板。
  11.  液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備える液晶表示装置であって、
     前記2枚の偏光板のうち少なくとも一方が、請求項10に記載の偏光板であることを特徴とする液晶表示装置。
PCT/JP2010/001999 2009-06-30 2010-03-19 光学フィルム用ドープの製造方法、光学フィルムの製造方法、光学フィルム、偏光板、及び液晶表示装置 WO2011001570A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127001976A KR20120058505A (ko) 2009-06-30 2010-03-19 광학 필름용 도프의 제조 방법, 광학 필름의 제조 방법, 광학 필름, 편광판 및 액정 표시 장치
JP2011520738A JPWO2011001570A1 (ja) 2009-06-30 2010-03-19 光学フィルム用ドープの製造方法、光学フィルムの製造方法、光学フィルム、偏光板、及び液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009154855 2009-06-30
JP2009-154855 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001570A1 true WO2011001570A1 (ja) 2011-01-06

Family

ID=43410664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001999 WO2011001570A1 (ja) 2009-06-30 2010-03-19 光学フィルム用ドープの製造方法、光学フィルムの製造方法、光学フィルム、偏光板、及び液晶表示装置

Country Status (3)

Country Link
JP (1) JPWO2011001570A1 (ja)
KR (1) KR20120058505A (ja)
WO (1) WO2011001570A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140990A1 (ja) * 2011-04-12 2012-10-18 コニカミノルタアドバンストレイヤー株式会社 光学補償フィルム、その製造方法、偏光板、及び液晶表示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108323A1 (ja) * 2006-03-22 2007-09-27 Konica Minolta Opto, Inc. セルロースエステルフィルム、及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108323A1 (ja) * 2006-03-22 2007-09-27 Konica Minolta Opto, Inc. セルロースエステルフィルム、及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140990A1 (ja) * 2011-04-12 2012-10-18 コニカミノルタアドバンストレイヤー株式会社 光学補償フィルム、その製造方法、偏光板、及び液晶表示装置

Also Published As

Publication number Publication date
KR20120058505A (ko) 2012-06-07
JPWO2011001570A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
TW200530010A (en) Optical film and its manufacturing method
WO2007102327A1 (ja) 偏光板及び液晶表示装置
JP2007003679A (ja) 位相差板、偏光板及び液晶表示装置
JP2003294944A (ja) 位相差フィルム、セルロースエステルフィルムの製造方法、偏光板及び液晶表示装置
JP5716748B2 (ja) 樹脂フィルム、樹脂フィルムの製造方法、偏光板、及び液晶表示装置
WO2015111435A1 (ja) 位相差フィルム、偏光板及びva型液晶表示装置
JP5845702B2 (ja) 位相差フィルムの製造方法
JP5040608B2 (ja) 光学用フィルムの製造方法、光学用フィルム、偏光板及び液晶表示装置
JP2008191217A (ja) 位相差フィルムの製造方法、位相差フィルム、偏光板及び液晶表示装置
JP2002225054A (ja) セルロースエステルフィルム、その製造方法、偏光板及び液晶表示装置
WO2011001570A1 (ja) 光学フィルム用ドープの製造方法、光学フィルムの製造方法、光学フィルム、偏光板、及び液晶表示装置
JP5641045B2 (ja) 樹脂フィルムの製造方法
JP5104154B2 (ja) 位相差フィルムの製造方法
JP6676930B2 (ja) 光学フィルム
JP2008107778A (ja) 光学フィルム及びその製造方法、偏光板用保護フィルム、及びそれを用いた偏光板、並びに液晶表示装置
JP2007256637A (ja) 位相差フィルム、及びその製造方法
JP6330807B2 (ja) 偏光板および液晶表示装置
JP2005181683A (ja) 光学フィルムの製造方法、光学フィルム及びそれを用いた偏光フィルム
JP5692095B2 (ja) 樹脂フィルムの製造方法、樹脂フィルム、偏光板、及び液晶表示装置
JP5494367B2 (ja) 光学フィルムの製造方法
JP2009083343A (ja) 光学フィルム及びその製造方法、偏光板用保護フィルム及びそれを用いた偏光板、並びに液晶表示装置
TWI451960B (zh) Anti-glare film, and manufacturing method thereof
JPWO2010119732A1 (ja) 偏光子保護フィルム、それを用いた偏光板及びその製造方法
WO2013011655A1 (ja) 光学フィルムとその製造方法
JP6176269B2 (ja) セルロースエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011520738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127001976

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10793748

Country of ref document: EP

Kind code of ref document: A1