WO2011001555A1 - 磁石可動型リニアモータ用の位置検出装置 - Google Patents

磁石可動型リニアモータ用の位置検出装置 Download PDF

Info

Publication number
WO2011001555A1
WO2011001555A1 PCT/JP2009/071543 JP2009071543W WO2011001555A1 WO 2011001555 A1 WO2011001555 A1 WO 2011001555A1 JP 2009071543 W JP2009071543 W JP 2009071543W WO 2011001555 A1 WO2011001555 A1 WO 2011001555A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
voltage
command
coils
magnetic body
Prior art date
Application number
PCT/JP2009/071543
Other languages
English (en)
French (fr)
Inventor
シャンドル マルコン
アーメット オナト
Original Assignee
サバンジ大学
フジテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サバンジ大学, フジテック株式会社 filed Critical サバンジ大学
Priority to JP2011520729A priority Critical patent/JP5562333B2/ja
Priority to CN200980160191.5A priority patent/CN102804566B/zh
Priority to EP09846846.5A priority patent/EP2451061B1/en
Priority to US13/380,253 priority patent/US8742702B2/en
Publication of WO2011001555A1 publication Critical patent/WO2011001555A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/062Linear motors of the induction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil

Definitions

  • the present invention relates to a position detection device that detects the position of a mover in a magnet movable linear motor in which the mover moves along one direction by a magnetic field generated by applying a voltage to a plurality of coils on the stator side.
  • a magnet-movable linear motor in which coils are arranged on the stator side and permanent magnets are arranged on the mover side does not require expensive magnets to be arranged on a long track, and heat is generated on the mover side.
  • it since it is not necessary to supply power to the movable element side, it is widely applied as a drive source for a transport mechanism having a particularly long track.
  • the stator is configured by arranging a plurality of coils in one direction, and the permanent magnet on the mover side is arranged to face the coil on the stator side. Therefore, when a moving magnetic field is formed by applying a multiphase AC voltage to the stator side coil, a thrust in the same direction as the moving magnetic field is generated in the mover. As a result, the mover moves in the one direction. Will move along.
  • Patent Document 1 proposes a magnet movable linear motor as an elevator drive source as described above.
  • a linear encoder is installed in the magnet movable linear motor, and by performing servo control using a position detection signal obtained from the linear encoder, the mover The propulsive force generated in the was controlled.
  • a control unit that performs servo control is provided on the stator side, and a position detection sensor is provided on the mover side. Therefore, in order to perform servo control by the control unit using the position detection signal obtained from the sensor, communication for transmitting the position detection signal from the mover side to the stator side to the magnet movable linear motor. There was a need to deploy means.
  • communication may be interrupted during transmission of the position detection signal.
  • a wired communication means it is necessary to arrange communication wiring in a tower in which a car moves. Especially in a multi-car elevator in which a plurality of cars move in one tower, communication wiring is required. There is a problem of complicated arrangement.
  • an object of the present invention is to provide a position detection device that can detect the position of the mover on the stator side and has high detection accuracy in the magnet movable linear motor.
  • a position detecting device for a magnet movable linear motor includes a stator configured by arranging a plurality of coils in one direction, and a movable element having a permanent magnet disposed to face the stator.
  • a detection device comprising a magnetic body fixed to the mover, selecting one or a plurality of coils, applying a voltage to the coil, and a current or voltage induced in a coil adjacent to the coil. Based on the measured current or voltage, the position of the magnetic body that changes according to the position of the mover is calculated.
  • the mutual inductance when the position of the magnetic material changes, the mutual inductance between adjacent coils changes.
  • the mutual inductance changes according to the position of the magnetic material. Is used.
  • the mutual inductance is obtained by calculating the ratio between the voltage applied to the coil and the voltage induced in the coil adjacent to the coil.
  • the position detection device includes a magnetic body fixed to the mover, power supply control means for generating a magnetic field for position detection by applying a voltage to a coil selected in response to the instruction, and the instruction.
  • Measuring means for measuring the current or voltage induced in the selected coil
  • command means gives a first command for selecting one or a plurality of coils as a voltage application target to the power supply control means, and measures a current or voltage to the measurement means.
  • the second command for selecting the coil adjacent to the coil to be selected by the power supply control means upon receiving the first command is given.
  • the position calculation means controls the command operation by the command means, and calculates the position of the magnetic body that changes according to the position of the mover based on the measurement value measured by the measurement means.
  • the power supply control means receives the first command from the command means, and applies a voltage to one or a plurality of coils (selected coils) selected based on the first command, thereby
  • the magnetic field for position detection passes inside the coil (adjacent coil) adjacent to the selection coil, and a voltage (current) is induced in the adjacent coil.
  • the magnetic substance has a low magnetic resistance. Therefore, when a magnetic body exists at a position facing the selection coil, the magnetic field for position detection easily passes through the magnetic body. For this reason, the magnetic flux density is increased at the position where the magnetic body is present, while the magnetic flux density is decreased in other regions.
  • the magnetic flux passing through the inside of the adjacent coil is increased, thereby increasing the current induced in the adjacent coil.
  • the magnetic flux passing through the inner side of the adjacent coil is reduced, thereby reducing the current induced in the adjacent coil. Therefore, a current corresponding to the magnetic body position is induced in the adjacent coil.
  • the position calculation unit is measured by the measurement unit.
  • the position of the magnetic body corresponding to the measured value can be calculated, and as a result, the position of the mover corresponding to the position of the magnetic body is detected.
  • the second command given by the command means to the measurement means is adjacent to both sides of the coil that receives the first command and is selected by the power supply control means.
  • a command for selecting a pair of coils wherein the measuring means receives the second command, selects the pair of coils, measures the current or voltage induced in the pair of coils, and
  • the calculation means acquires two measurement values measured by the measurement means, and calculates the position of the magnetic body based on the two measurement values.
  • the position of the magnetic body may not be uniquely determined only by measuring the current or voltage induced in any of the coils.
  • the position calculation means selects one of the one or more positions corresponding to one measurement value by matching or approximating one or more positions corresponding to the other measurement value. Even if it is not possible to uniquely determine the position of the magnetic material by using only the measured values, it is possible to uniquely determine the position of the magnetic material by using both measured values.
  • the position detection device further includes a recording unit in which a table representing a relationship between the position of the magnetic body and the current or voltage induced in the coil is recorded.
  • the position calculation means calculates at least one position corresponding to one measurement value obtained from the measurement means as the first position information based on a table recorded in the recording means, and the other position Calculating at least one position corresponding to the measurement value as the second position information, and selecting a position that matches or approximates the position included in the second position information from the positions included in the first position information; The selected position is calculated as the position of the magnetic body.
  • the table is determined by the dimensions of the coil, the number of turns of the coil, the dimensions of the magnetic body, the magnetic characteristics of the magnetic body, and the like, and can be obtained in advance by experiment or analysis.
  • the first command given by the command unit to the power supply control unit selects a pair of coils positioned with one coil interposed therebetween as a voltage application target.
  • the second command given to the measuring unit by the command unit is a command for selecting a coil to be sandwiched between the pair of coils as a target for measuring current or voltage, and a position
  • the detection device further includes voltage adjustment means and determination means.
  • the voltage adjustment unit acquires the measurement value measured by the measurement unit, and controls the power supply control unit based on the acquired measurement value, whereby the measurement value measured by the measurement unit becomes a predetermined value. Similarly, the voltage applied to the pair of coils is adjusted.
  • the determination unit acquires a measurement value measured by the measurement unit, and determines whether or not the acquired measurement value matches or approximates the predetermined value.
  • the position calculating means acquires the voltage applied to the pair of coils from the power supply control means when the determining means determines that the measured value matches or approximates a predetermined value.
  • the position of the magnetic body is calculated based on the acquired two voltages.
  • the current induced in the intermediate coil or The voltage applied to the pair of coils is adjusted so that the voltage becomes a predetermined value, and the two adjusted voltages are acquired from the power supply control means by the position calculation means.
  • the two voltages obtained in this way vary depending on the position of the magnetic body, but the two voltages and the position of the magnetic body have a one-to-one relationship. Therefore, in the position detection device, the position of the magnetic body can be uniquely determined by using two voltages obtained from the power supply means.
  • the power supply control unit is opposite to the inside of the coil sandwiched between the pair of coils with respect to the pair of coils selected in response to the first command from the command unit.
  • a voltage is applied so that a magnetic field in the direction is generated.
  • the voltage applied to the pair of coils can be easily adjusted so that the current or voltage induced in the coil sandwiched between the pair of coils becomes a predetermined value. Become.
  • the voltage adjusting means is configured so that magnetic fields generated by applying a voltage to the pair of coils cancel each other out inside the coil sandwiched between the pair of coils.
  • the power supply control means is controlled to adjust the voltage applied to the pair of coils.
  • the position detection device further includes a voltage to be applied to the pair of coils when the position of the magnetic body and the measurement value obtained from the measurement means reach the predetermined value.
  • Recording means in which a table representing the relationship between the magnetic material and the position calculating means is obtained from two voltages obtained from the power supply control means based on the table recorded in the recording means. The position of is calculated.
  • the magnetic body is disposed at a position where the magnetic body is opposed to a coil different from the coil opposed to the permanent magnet.
  • the magnetic body is made of a paramagnetic material.
  • the stator is divided into a plurality of segments, and a plurality of coils are arranged in the one direction in each segment, and the power supply control means applies to each coil for each segment.
  • the voltage to be controlled can be individually controlled. As a result, it is possible to detect the position of the magnetic body with less power consumption.
  • Each segment can be provided with at least one coil set with three coils as one coil set.
  • the voltage applied to the plurality of coils by the power supply control means is an alternating voltage.
  • an AC voltage By using an AC voltage, even when the mover is stopped and the magnetic body is stopped, current or voltage is induced in the coil adjacent to the coil to which the voltage is applied. Detection is possible.
  • the position detection device for a magnet movable linear motor according to the present invention can detect the position of the mover on the stator side and has high detection accuracy.
  • FIG. 1 is a plan view showing a magnet movable linear motor.
  • FIG. 2 is a plan view showing a coil group provided in the stator.
  • FIG. 3 is a block diagram showing a magnet movable linear motor including the position detection device according to the first embodiment of the present invention.
  • FIG. 4 is a plan view illustrating the first form of the position detection operation focusing on three coils arranged in one direction in the first embodiment.
  • FIG. 5 is a side view showing the state of the magnetic field in the first embodiment.
  • FIG. 6 is a plan view illustrating a second form of the position detection operation focusing on three coils arranged in one direction in the first embodiment.
  • FIG. 7 is a side view showing the state of the magnetic field in the second embodiment.
  • FIG. 1 is a plan view showing a magnet movable linear motor.
  • FIG. 2 is a plan view showing a coil group provided in the stator.
  • FIG. 3 is a block diagram showing a magnet movable linear motor including the position detection
  • FIG. 8 is a plan view illustrating a third form of the position detection operation focusing on three coils arranged in one direction in the first embodiment.
  • FIG. 9 is a side view showing the state of the magnetic field in the third embodiment.
  • FIG. 10 is a diagram showing the relationship between the magnetic body position and the magnitude of the induced voltage.
  • FIG. 11 is a block diagram showing a magnet movable linear motor including a position detection device according to the second embodiment of the present invention.
  • FIG. 12 is a plan view illustrating the first form of the position detection operation focusing on three coils arranged in one direction in the second embodiment.
  • FIG. 13 is a side view showing the state of the magnetic field before voltage adjustment in the first embodiment.
  • FIG. 14 is a plan view illustrating a second form of the position detection operation focusing on three coils arranged in one direction in the second embodiment.
  • FIG. 15 is a side view showing the state of the magnetic field before voltage adjustment in the second embodiment.
  • FIG. 16 is a plan view illustrating a third form of the position detection operation focusing on three coils arranged in one direction in the second embodiment.
  • FIG. 17 is a side view showing the state of the magnetic field before voltage adjustment in the third embodiment.
  • FIG. 18 is a diagram illustrating the voltage adjustment operation of the voltage adjustment means.
  • FIG. 19 is a side view showing the state of the magnetic field after voltage adjustment in the second embodiment of the second embodiment.
  • FIG. 20 is a side view showing the state of the magnetic field after voltage adjustment in the third mode of the second embodiment.
  • FIG. 21 is a side view showing the state of the magnetic field in the fourth form of the position detection operation in the second embodiment.
  • the magnet-movable linear motor (1) includes a stator (2) extending in one direction and a plurality of permanent magnets arranged to face the stator (2). It is comprised from the needle
  • the stator (2) is constituted by connecting a plurality of divided segments (21)... (21) in a line, and each segment (21) is opposed to the movable element (3).
  • a coil group (22) is provided on the surface to be formed as shown in FIG.
  • the coil group (22) includes a U-phase coil (22u) to which a U-phase AC voltage is applied, a V-phase coil (22v) to which a V-phase AC voltage is applied, and a W-phase to which a W-phase AC voltage is applied.
  • Coil (22w) is one coil set and four coil sets are included.
  • U-phase to W-phase coils (22u) (22v) (22w) included in each coil set are in the order of UVW. Lined up in one direction. Further, adjacent coils partially overlap each other. In each coil group (22), four coils are connected in series for each phase.
  • U-phase coils (22u) form a U-phase series coil (23u) in which these are connected in series
  • four V-phase coils (22v) form a V-phase series in which they are connected in series
  • a coil (23v) is formed
  • a W-phase series coil (23w) in which these are connected in series is formed by four W-phase coils (22w).
  • each permanent magnet (not shown) arranged in the mover (3) has an N-pole and an S-pole at both ends in one direction and is included in the same coil set. It has approximately the same length as the distance ⁇ (see FIG. 2) between the centers of the coil (22u) and the W-phase coil (22w).
  • an inverter (41) and inverter control means (40) for controlling the inverter (41) are arranged on the stator (2) side of the magnet movable linear motor (1).
  • the inverter (41) can individually control the AC voltage applied to each series coil for each segment (21).
  • the inverter (41) receives a control command from the inverter control means (40)
  • the inverter (41) applies a three-phase AC voltage to the coil group (22) based on the control command, and thereby the stator (2).
  • a moving magnetic field is generated on the coil side surface.
  • the inverter (41) can adjust the magnitude and propagation speed of the moving magnetic field based on the control command from the inverter control means (40).
  • the inverter (41) Based on the control command from the inverter control means (40), the inverter (41) is partly or entirely opposed to the mover (3) among the plurality of segments (21)... (21). A three-phase AC voltage is applied only to the segment (21) (the segment indicated by hatching in FIG. 1). That is, the inverter (41) receives a command from the inverter control means (40), selects a plurality of coil groups (22) to apply a three-phase AC voltage, and selects the selected plurality of coil groups. (22) ... A three-phase AC voltage is applied to (22) to generate a moving magnetic field. Therefore, the magnet movable linear motor (1) is driven with low power consumption.
  • a magnetic body (5) is further fixed to the mover (3), and the magnetic body (5) is made of a paramagnetic material. ing. Further, the magnetic body (5) is located at a position facing a segment (21) different from a group of segments (21) partially or entirely facing the mover (3), here the group. Is disposed at a position facing the segment (21) that is positioned with only one other segment (21) interposed therebetween.
  • the magnet movable linear motor (1) is provided with a position detection device for detecting the position of the mover (3), and a part of the position detection device includes the magnetic body (5 ) And an inverter (41).
  • the position detection device includes a measuring means (42), a command means (in addition to a magnetic body (5) and an inverter (41)). 43), position calculating means (44), and recording means (45).
  • the inverter (41) can receive from the command means (43) a first command different from the command from the inverter control means (40), and receives the first command from the command means (43).
  • Select one series coil from U-phase to W-phase series coils (23u) (23v) (23w) arranged in the segment (21) facing the magnetic body (5). An alternating voltage is applied to the one series coil. Thereby, a magnetic field for position detection different from the moving magnetic field is generated on the coil side surface of the segment (21) facing the magnetic body (5).
  • the measuring means (42) can receive a second command different from the first command from the command means (43).
  • the magnetic body (5) Two series coils are selected from the U-phase to W-phase series coils (23u) (23v) (23w) arranged in the opposing segment (21), and are induced by the selected two series coils. Measure the voltage (inductive voltage).
  • the command means (43) is provided with a segment (21) facing the magnetic body (5) as a voltage application target to the inverter (41).
  • a second command for selecting a pair of series coils different from the series coil to be selected by the inverter (41) in response to the first command is given.
  • an AC voltage Vu0 is applied to the U-phase coil (22u) to generate a magnetic field Bu for position detection, which causes the V-phase coil (22v) and the W-phase coil (22w) to As shown in FIG. 5, the magnetic field Bu for position detection passes through the area where the coils overlap each other inside.
  • the voltages Vvi and Vwi are induced in the V-phase coil (22v) and the W-phase coil (22w), and the induced voltages Vvi and Vwi are measured by the measuring means (42).
  • the magnetic body (5) has a low magnetic resistance. Therefore, as shown in FIG. 6, when the magnetic body (5) exists at a position facing the U-phase coil (22u) to which the AC voltage Vu0 is applied, the magnetic field Bu for position detection is the magnetic body (5). It becomes easy to pass through. For this reason, as shown in FIG. 7, the magnetic flux density of the magnetic field Bu increases at the position where the magnetic body (5) exists, while the magnetic flux density of the magnetic field Bu decreases in the other regions.
  • FIG. 10 shows that a voltage Vwi corresponding to the position x of the magnetic body (5) is induced in the W-phase coil (22w). Note that FIG. 10 shows that the magnitude
  • FIG. 10 shows that a voltage Vvi corresponding to the position x of the magnetic body (5) is induced in the V-phase coil (22v). Note that FIG. 10 shows that the magnitude
  • the recording means (45) includes a table showing the relationship between the magnetic body position x and the magnitude of the voltage induced in the V-phase coil (22v)
  • the voltage Vvi induced in the V-phase coil (22v) and the voltage Vwi induced in the W-phase coil (22w) are measured while actually moving the magnetic body (5). Is mentioned.
  • a magnetic field model of a system including a magnet movable linear motor (1) and a magnetic body (5) is set, and the magnetic field model is analyzed using a finite element method. It is done.
  • the position calculating means (44) acquires the two induced voltages Vvi and Vwi measured by the measuring means (42) from the measuring means (42) as measured values Vvi0 and Vwi0, and acquires the two measured values Vvi0, Based on Vwi0, the position of the magnetic body (5) that changes according to the position of the mover (3) is calculated.
  • the position calculating means (44) corresponds to one measured value Vvi0 obtained from the measuring means (42) based on the table recorded in the recording means (45).
  • the position corresponding to the measured values Vvi0 and Vwi0 is calculated using the table recorded in the recording means (45), the measured value from either one of the two measured values Vvi0 and Vwi0 Since a plurality of positions (for example, a plurality of positions xv1, xv2 with respect to the measurement value Vvi0) are calculated corresponding to the measurement value, the position of the magnetic body (5) cannot be uniquely determined.
  • the position detection device since two pieces of position information corresponding to both of the two measurement values Vvi0 and Vwi0 are calculated as described above, position information obtained from one measurement value is obtained. Even if the position of the magnetic body (5) cannot be uniquely determined only by using, the position of the magnetic body (5) is uniquely determined by using the position information obtained from the other measured value.
  • the induced voltage is measured by the measuring means (42), the induced voltage is measured with higher accuracy as the magnitude of the induced voltage is larger. That is, the relationship (table) between the magnetic body position x and the magnitude of the induced voltage shown in FIG. 10 has high reliability in the range where the width around the position where the magnitude of the induced voltage is maximum is about ⁇ . It will be. Therefore, when the position of the magnetic body (5) is detected from the two measured values Vvi0 and Vwi0 based on the table as described above, the relationship between the magnetic body position x and the magnitude of the induced voltage
  • the range overlaps with the reliable range in the relationship between the magnetic body position x and the induced voltage magnitude
  • , that is, the center position of the U-phase coil (22u) as a reference (x 0).
  • the position of the magnetic body (5) detected in the range of x ⁇ / 4 to + ⁇ / 4 is highly accurate.
  • the inverter (41) receives the first command from the command means (43), selects the V-phase coil (22v), and the measurement means (42) from the command means (43).
  • the W phase coil (22w) and the U phase coil (22u) adjacent to both sides of the V phase coil (22v) selected by the inverter (41) upon receipt of the first command are selected.
  • the inverter (41) receives the first command from the command means (43) and selects the W-phase coil (22w), and the measurement means (42) receives the second command from the command means (43),
  • the W phase coil (22w) receives the U phase coil (22u) and the V phase coil (22v) adjacent to both sides of the W phase coil (22w) selected by the inverter (41) in response to the first command are selected.
  • the position detection device detects the position of the magnetic body (5) based on the voltage induced in the coil. Therefore, in the magnet movable linear motor (1), the position of the mover (3) is detected on the stator (2) side. Therefore, even when servo control or the like is executed using the detected position of the movable element (3), the magnet movable linear motor (1) needs to be provided with communication means like a conventional magnet movable linear motor. Absent.
  • the magnetic field is an oscillating magnetic field. Therefore, even when the mover (3) is stopped and the magnetic body (5) is stopped, the voltage is induced in the pair of coils adjacent to both sides of the coil to which the AC voltage is applied. It is possible to detect the position of the magnetic body (5).
  • one of the U-phase to W-phase series coils (23u) (23v) (23w) arranged in the segment (21) facing the magnetic body (5) is connected in series. Since an AC voltage is applied only to the coil, less power is required to detect the position of the magnetic body (5).
  • the position detection device includes a magnetic means (5) and an inverter (41), a measuring means (42), a command means ( 43), a position calculating means (44), a recording means (45), a voltage adjusting means (46), and a judging means (47).
  • the inverter (41) can receive from the command means (43) a first command different from the command from the inverter control means (40), and receives the first command from the command means (43).
  • the measuring means (42) can receive a second command different from the first command from the command means (43).
  • the magnetic body (5) One series coil is selected from the U-phase to W-phase series coils (23u) (23v) (23w) arranged in the opposing segment (21), and is induced to the selected one series coil. Measure the voltage (inductive voltage).
  • the command means (43) is provided with a segment (21) facing the magnetic body (5) as a voltage application target to the inverter (41).
  • 2 series coils are selected from the U phase to W phase series coils (23u), (23v), and (23w) installed in A first command for applying an AC voltage having the same predetermined value V0 is given, and the inverter (41) receives the first command as a target for measuring the induced voltage to the measuring means (42).
  • a second command for selecting one series coil different from the two series coils to be given is given.
  • the measuring means (42) receives the second command from the command means (43), receives the first command, and the V-phase coil (22v) selected by the inverter (41) And the U-phase coil (22u) sandwiched between the W-phase coil (22w).
  • the AC voltage Vv0 is applied to the V-phase coil (22v) to generate a position detecting magnetic field Bv
  • the W-phase coil (22w) has a direction opposite to the AC voltage Vv0.
  • An alternating voltage Vw0 having the same magnitude V0 is applied, and a position detecting magnetic field Bw having the same magnitude as the magnetic field Bv is generated in the opposite direction to the magnetic field Bv.
  • the magnetic field Bv for position detection and the magnetic field Bw pass through two regions where the coils overlap each other as shown in FIG. 13 inside the U-phase coil (22u).
  • the magnetic substance (5) has a low magnetic resistance. Therefore, as shown in FIG. 14, when the magnetic body (5) exists at a position facing the W-phase coil (22w) to which the AC voltage Vw0 is applied, the magnetic field Bw for position detection is the magnetic body (5). It becomes easy to pass through. For this reason, as shown in FIG. 15, the magnetic flux density of the magnetic field Bw is high at the position where the magnetic body (5) is present, while the magnetic flux density of the magnetic field Bw is low in other regions. In addition, as shown in FIG. 16, when the magnetic body (5) exists at a position facing the V-phase coil (22v) to which the AC voltage Vv0 is applied, the magnetic body (5) as shown in FIG. The magnetic flux density of the magnetic field Bv increases at a position where the magnetic field B exists, while the magnetic flux density of the magnetic field Bv decreases in other areas.
  • the voltage adjusting means (46) fixes the magnitude
  • of the AC voltage Vw0 applied to the W-phase coil (22w) is changed from the predetermined value V0 to 0.
  • the AC voltage Vv0 by the voltage adjustment means (46) is determined. , Vw0 adjustment ends.
  • the induced voltage Vui measured by the measuring means (42) is a predetermined value by the adjusting operation (FIG. 18) of the voltage adjusting means (46).
  • the magnetic flux amount of the magnetic field Bw passing through the inside of the U-phase coil (22u) becomes equal to the magnetic flux amount of the magnetic field Bv passing through the inside of the U-phase coil (22u).
  • the magnetic field Bv and the magnetic field Bw cancel each other out inside (22u).
  • the induced voltage Vui measured by the measuring means (42) is a predetermined value by the adjusting operation (FIG. 18) of the voltage adjusting means (46).
  • the magnetic flux amount of the magnetic field Bv passing through the inside of the U-phase coil (22u) becomes equal to the magnetic flux amount of the magnetic field Bw passing through the inside of the U-phase coil (22u).
  • the magnetic field Bv and the magnetic field Bw cancel each other out inside (22u).
  • the two AC voltages Vv0 and Vw0 adjusted in this way change according to the magnetic material position x, and have a one-to-one relationship with the magnetic material position x.
  • is recorded.
  • the table is determined by the dimensions of the coil, the number of turns of the coil, the dimensions of the magnetic body, the magnetic characteristics of the magnetic body, and the like, and can be obtained in advance by experiment or analysis.
  • a method for acquiring a table by experiment it is possible to measure two AC voltages Vv0 and Vw0 after adjustment while actually moving the magnetic body (5).
  • a magnetic field model of a system including a magnet movable linear motor (1) and a magnetic body (5) is set, and the magnetic field model is analyzed using a finite element method. It is done.
  • the position calculation means (44) uses the inverter (41). AC voltages Vv0 and Vw0 applied to the V-phase coil (22v) and the W-phase coil (22w) are acquired from the inverter (41), and based on the acquired two AC voltages Vv0 and Vw0, the mover (3 The position of the magnetic body (5) that changes in accordance with the position of) is calculated.
  • the position calculating means (44) based on the two AC voltages Vv0, Vw0 acquired from the inverter (41), from the table recorded in the recording means (45), the two AC voltages Vv0, A position x corresponding to the magnitudes
  • the position of the magnetic body (5) is uniquely determined from the two AC voltages Vv0 and Vw0 after adjustment.
  • the inverter (41) receives the first command from the command means (43) and the U-phase coil (22u) positioned with one V-phase coil (22v) in between The W phase coil (22w) is selected, the measurement means (42) receives the second command from the command means (43), the U phase coil (22u) selected by the inverter (41) in response to the first command
  • the inverter (41) receives the first command from the command means (43), the U-phase coil (22u) and the V-phase coil (22v) positioned with one W-phase coil (22w) in between.
  • the measurement means (42) receives the second command from the command means (43), receives the first command, and the inverter (41) selects the U-phase coil (22u) and V-phase coil (22v).
  • the position of the magnetic body (5) having high accuracy is detected.
  • the position detection device detects the position of the magnetic body (5) based on the adjusted AC voltage applied to the pair of coils. Therefore, in the magnet movable linear motor (1), the position of the mover (3) is detected on the stator (2) side. Therefore, even when servo control or the like is executed using the detected position of the movable element (3), the magnet movable linear motor (1) needs to be provided with communication means like a conventional magnet movable linear motor. Absent.
  • the magnetic field is an oscillating magnetic field. Therefore, even when the mover (3) is stopped and the magnetic body (5) is stopped, a voltage is induced in the coil sandwiched between the pair of coils to which the AC voltage is applied. Therefore, it is possible to detect the position of the magnetic body (5).
  • a pair of series is selected from the U-phase to W-phase series coils (23u) (23v) (23w) arranged in the segment (21) opposed to the magnetic body (5). Since an AC voltage is applied only to the coil, less power is required to detect the position of the magnetic body (5).
  • the position x of the magnetic body (5) having high accuracy is detected. Therefore, in order to detect the absolute position of the magnetic body (5), the coil set facing the magnetic body (5) from the initial position where the magnetic body (5) can be detected by a switch, a sensor or the like. It is necessary to calculate the distance L to the center position (the center position of the V-phase coil (22v)).
  • the permanent magnet arranged in the mover (3) is the distance ⁇ between the centers of the U-phase coil (22u) and the W-phase coil (22w) included in the same coil set (see FIG. 2). ) And substantially the same length.
  • the mover (3) when a three-phase AC voltage is applied to the coil group (22) on the stator (2) side in order to move the mover (3), the mover (3) has a three-phase AC voltage. Each time it vibrates for one period, it moves by the distance between the centers of two coils of the same phase included in the adjacent coil set.
  • the initial position is obtained. From this, the distance L to the center position of the coil set facing the magnetic body (5) can be calculated.
  • the distance L calculated as described above is added to the position of the magnetic body (5) detected by the position detection device, and the coil of which phase the position of the magnetic body (5) detected by the position detection device is added.
  • the absolute position of the magnetic body (5) is calculated by adding together the correction values determined depending on whether the center position of the magnetic body is based on.
  • the correction value is 0 when the position of the magnetic body (5) is obtained with reference to the center position of the V-phase coil (22v), and the position of the magnetic body (5) is U-phase.
  • the position of the magnetic body (5) is the center position of the W-phase coil (22w). + ⁇ / 2 (or - ⁇ / 2) in the case of being obtained with reference to.
  • the position detection device according to the present invention is applied to a magnet movable linear motor in which adjacent coils partially overlap each other, but the applicable range of the position detection device according to the present invention is this. It is not limited to.
  • the position detection device according to the present invention can be applied to a magnet movable linear motor in which adjacent coils do not overlap each other.
  • adjacent coils need to have a positional relationship in which a magnetic field generated in one coil passes through the inside of the other coil.
  • the magnetic body (5) needs to have a shape that allows the magnetic field generated in one coil to pass through the inside of the other coil through the magnetic body (5) in relation to the adjacent coil. is there.
  • each segment (21) has only one coil set. It may be arranged, and a plurality of coil sets other than four may be arranged.
  • the magnetic body (5) is provided between a group of segments (21) partly or entirely facing the mover (3) and a segment (21) facing the magnetic body (5).
  • the magnetic body (5) may be fixed to the movable element (3) such that the segment (21) facing the magnetic body (5) is adjacent to a group of the segments (21).
  • the movable element (3) may be fixed so that a plurality of segments (21) are sandwiched between a group of segments (21) and the segment (21) facing the magnetic body (3).
  • the position detecting device includes the command means (43), and gives commands (first command and second command) to the inverter (41) and the measurement means (42) by the command means (43).
  • the present invention is not limited to this, and instead of the command means (43), the inverter control means (40) gives commands to the inverter (41) and the measurement means (42) (first command and second command). ) May be given.
  • the position detection device performs position detection using the coil for driving the mover (3).
  • a position detection coil is provided separately from the mover driving coil. It may be arranged in the stator (2), and position detection by a position detection device may be performed using the position detection coil.
  • the measuring means (42) measures the voltage induced in the coil. However, instead of this, the current induced in the coil may be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 磁石可動型リニアモータにおいて、可動子の位置を固定子側で検出することが可能であって、且つ高い検出精度を有する位置検出装置を提供する。 本発明の一実施形態に係る位置検出装置は、複数のコイルを一方向に配列して構成されている固定子2と、該固定子2に対向して配置された永久磁石を有する可動子3とを具えた磁石可動型リニアモータにおいて、前記可動子3の位置を検出する装置である。該位置検出装置は、前記可動子3に固定された磁性体5を具え、1又は複数のコイルを選択して該コイルに電圧を印加すると共に、該コイルに隣接するコイルに誘導される電流又は電圧を測定し、測定した電流又は電圧に基づいて、前記可動子3の位置に応じて変化する前記磁性体5の位置を算出する。

Description

磁石可動型リニアモータ用の位置検出装置
 本発明は、固定子側の複数のコイルに電圧を印加して発生する磁界によって可動子が一方向に沿って移動する磁石可動型リニアモータにおいて、可動子の位置を検出する位置検出装置に関する。
 固定子側にコイルを配置すると共に可動子側に永久磁石を配置した磁石可動型のリニアモータは、高価な磁石を長い軌道上に配列する必要がなく、又、可動子側で熱が発生せず、然も可動子側に電力を供給する必要がないため、特に軌道の長い搬送機構の駆動源として広く応用されている。
 上記磁石可動型リニアモータにおいては、固定子は、複数のコイルを一方向に配列して構成され、可動子側の永久磁石は、固定子側のコイルに対向して配置されている。従って、固定子側のコイルに多相交流電圧を印加することにより移動磁界を形成した場合、これによって可動子には移動磁界と同じ方向の推力が発生し、その結果、可動子は前記一方向に沿って移動することになる。
 近年、上述の如く磁石可動型リニアモータを、エレベータの駆動源として用いることが提案されている(例えば、特許文献1)。
特開平7-112883号公報
 ところで、磁石可動型リニアモータを、特に乗用エレベータの駆動源として用いた場合、エレベータの乗り心地を良くするべく、着床精度の向上、振動やショックの低減等の対策が必要である。該対策を乗用エレベータに施すためには、該乗用エレベータのかごに接続されることとなる可動子の位置を、高い精度、例えばミリオーダーで検出する必要がある。
 従来は、可動子の位置を高い精度で検出するべく、磁石可動型リニアモータにリニアエンコーダが設置されており、リニアエンコーダから得られる位置検出信号を用いてサーボ制御を実行することによって、可動子に発生する推進力が制御されていた。
 しかしながら、従来の如くリニアエンコーダを用いた構成においては、サーボ制御を実行する制御部が固定子側に配備され、位置検出用のセンサが可動子側に配備されていた。このため、該センサから得られる位置検出信号を用いて制御部によってサーボ制御を実行するためには、磁石可動型リニアモータに、可動子側から固定子側へ位置検出信号を送信するための通信手段を配備する必要があった。
 上記通信手段として、無線方式の通信手段を採用した場合、位置検出信号の送信中に通信が遮断される虞がある。又、有線方式の通信手段を採用した場合、かごが移動する塔内に通信配線を配置することが必要となり、特に複数のかごが1つの塔内を移動するマルチカーエレベータにおいては、通信配線の配置が複雑になる問題がある。
 そこで本発明の目的は、磁石可動型リニアモータにおいて、可動子の位置を固定子側で検出することが可能であって、且つ高い検出精度を有する位置検出装置を提供することである。
 本発明に係る磁石可動型リニアモータ用の位置検出装置は、複数のコイルを一方向に配列して構成されている固定子と、該固定子に対向して配置された永久磁石を有する可動子とを具え、前記固定子側の複数のコイルに電圧を印加して発生する磁界によって前記可動子が前記一方向に沿って移動する磁石可動型リニアモータにおいて、前記可動子の位置を検出する位置検出装置であって、前記可動子に固定された磁性体を具え、1又は複数のコイルを選択して該コイルに電圧を印加すると共に、該コイルに隣接するコイルに誘導される電流又は電圧を測定し、測定した電流又は電圧に基づいて、前記可動子の位置に応じて変化する前記磁性体の位置を算出する。
 即ち、磁性体の位置が変化することによって、隣接するコイル間の相互インダクタンスが変化することになるが、上記位置検出装置は、この様に磁性体の位置に応じて該相互インダクタンスが変化することを利用したものである。ここで、相互インダクタンスは、コイルに印加される電圧と該コイルに隣接するコイルに誘導される電圧との比率を計算することによって求められる。
 具体的に上記位置検出装置は、前記可動子に固定された磁性体と、指令を受けて選択したコイルに電圧を印加して位置検出用の磁界を発生させる電力供給制御手段と、指令を受けて選択したコイルに誘導される電流又は電圧を測定する測定手段と、指令手段と、位置算出手段とを具えている。指令手段は、前記電力供給制御手段に対して、電圧を印加する対象として1又は複数のコイルを選択するための第1指令を与えると共に、前記測定手段に対して、電流又は電圧を測定する対象として、前記第1指令を受けて前記電力供給制御手段が選択することとなるコイルに隣接するコイルを選択するための第2指令を与える。位置算出手段は、前記指令手段による指令動作を制御して、前記測定手段によって測定される測定値に基づいて、前記可動子の位置に応じて変化する前記磁性体の位置を算出する。
 上記位置検出装置においては、電力供給制御手段が、指令手段からの第1指令を受けて、該第1指令に基づいて選択した1又は複数のコイル(選択コイル)に電圧を印加し、これにより位置検出用の磁界が発生すると、選択コイルに隣接するコイル(隣接コイル)の内側には位置検出用の磁界が通過して、隣接コイルには電圧(電流)が誘導されることになる。
 ここで、磁性体は磁気抵抗が低い。よって、選択コイルと対向する位置に磁性体が存在する場合、位置検出用の磁界は磁性体を通過し易くなる。このため、磁性体が存在する位置にて磁束密度が高くなる一方、その他の領域においては磁束密度が低くなる。従って、隣接コイルの近傍位置に磁性体が存在する場合、隣接コイルの内側を通過する磁束が増加し、これにより該隣接コイルに誘導される電流が増加することになる。一方、隣接コイルの近傍位置から磁性体が移動して遠ざかった場合、隣接コイルの内側を通過する磁束が減少し、これにより該隣接コイルに誘導される電流が減少することになる。よって、隣接コイルには、磁性体位置に応じた電流が誘導されることになる。
 上記位置検出装置によれば、測定手段によって、上記隣接コイルが選択されて該隣接コイルに誘導される電流又は電圧が測定されることになるので、位置算出手段は、測定手段によって測定される測定値を取得することにより、該測定値に対応する磁性体の位置を算出することが可能であり、その結果、磁性体の位置に対応する可動子の位置が検出されることになる。
 上記位置検出装置の第1の具体的構成において、前記指令手段が測定手段に与える第2指令は、前記第1指令を受けて前記電力供給制御手段が選択することとなるコイルの両側に隣接する一対のコイルを選択するための指令であり、前記測定手段は、前記第2指令を受けて前記一対のコイルを選択して、該一対のコイルに誘導される電流又は電圧を測定し、前記位置算出手段は、前記測定手段によって測定される2つの測定値を取得し、該2つの測定値に基づいて前記磁性体の位置を算出する。
 電圧が印加されているコイルの両側に隣接する一対のコイルの内、何れか一方のコイルに誘導される電流又は電圧を測定した場合、その測定値に対して複数の位置が対応することがある。このため、何れかのコイルに誘導される電流又は電圧を測定しただけでは、磁性体の位置が一意に決まらないことがある。
 上記第1の具体的構成においては、上記一方のコイルに誘導される電流又は電圧に加えて、他方のコイルに誘導される電流又は電圧が測定手段によって測定され、測定された2つの測定値が位置算出手段によって取得される。従って、位置算出手段において、一方の測定値に対応する1又は複数の位置の中から、他方の測定値に対応する1又は複数の位置と一致又は近似しているものを選択することにより、一方の測定値を用いただけでは磁性体の位置を一意に決めることが出来ない場合でも、両方の測定値を用いることによって磁性体の位置を一意に決めることが可能となる。
 より具体的には、上記第1の具体的構成に係る位置検出装置は更に、前記磁性体の位置と前記コイルに誘導される電流又は電圧との関係を表すテーブルが記録されている記録手段を具え、前記位置算出手段は、前記記録手段に記録されているテーブルに基づいて、前記測定手段から得られる一方の測定値に対応する少なくとも1つの位置を第1位置情報として算出すると共に、他方の測定値に対応する少なくとも1つの位置を第2位置情報として算出し、第1位置情報に含まれる位置の中から、第2位置情報に含まれる位置と一致又は近似しているものを選択し、選択した位置を磁性体の位置として算出する。
 ここで、上記テーブルは、コイルの寸法、コイルの巻き数、磁性体の寸法、磁性体の磁気的特性等により決定され、実験又は解析により予め取得することが出来るものである。
 上記位置検出装置の第2の具体的構成において、前記指令手段が電力供給制御手段に与える第1指令は、電圧を印加する対象として1つのコイルを間に挟んで位置する一対のコイルを選択するための指令であり、前記指令手段が測定手段に与える第2指令は、電流又は電圧を測定する対象として前記一対のコイルの間に挟まれることとなるコイルを選択するための指令であり、位置検出装置は更に、電圧調整手段と判定手段とを具えている。電圧調整手段は、前記測定手段によって測定される測定値を取得し、取得した測定値に基づいて前記電力供給制御手段を制御することにより、前記測定手段によって測定される測定値が所定値となる様に前記一対のコイルに印加する電圧を調整する。判定手段は、前記測定手段によって測定される測定値を取得し、取得した測定値が前記所定値に一致又は近似しているか否かを判定する。そして、前記位置算出手段は、前記判定手段により前記測定値が所定値に一致又は近似していると判定されたとき、前記一対のコイルに印加されている電圧を前記電力供給制御手段から取得し、取得した2つの電圧に基づいて前記磁性体の位置を算出する。
 上記第2の具体的構成においては、前記一対のコイルの間に挟まれているコイル(中間コイル)に誘導される電流又は電圧を所定値に固定するべく、該中間コイルに誘導される電流又は電圧が所定値になる様に前記一対のコイルに印加する電圧が調整され、調整後の2つの電圧が位置算出手段によって電力供給制御手段から取得されることになる。ここで、この様に取得される2つの電圧は磁性体の位置に応じて変化するが、該2つの電圧と磁性体の位置とは1対1の関係を有する。従って、上記位置検出装置において、電力供給手段から得られる2つの電圧を用いることにより、磁性体の位置を一意に決めることが可能である。
 より具体的には、前記電力供給制御手段は、前記指令手段からの第1指令を受けて選択した一対のコイルに対して、該一対のコイルの間に挟まれているコイルの内側に互いに逆向きの磁界が発生する様に電圧を印加する。
 該具体的構成によれば、前記一対のコイルに印加する電圧を、該一対のコイルの間に挟まれているコイルに誘導される電流又は電圧が所定値となる様に調整することが容易となる。
 更に具体的には、前記電圧調整手段は、前記一対のコイルに電圧を印加して発生する磁界が、該一対のコイルの間に挟まれているコイルの内側にて互いに打ち消し合う様に、前記電力供給制御手段を制御して該一対のコイルに印加する電圧を調整する。
 上記第2の具体的構成に係る位置検出装置は更に、前記磁性体の位置と前記測定手段から得られる測定値が前記所定値になったときに前記一対のコイルに印加されることとなる電圧との関係を表すテーブルが記録されている記録手段を具え、前記位置算出手段は、前記記録手段に記録されているテーブルに基づいて、前記電力供給制御手段から得られる2つの電圧から前記磁性体の位置を算出する。
 上記位置検出装置において、前記磁性体は、前記永久磁石が対向しているコイルとは別のコイルに対向することとなる位置に配置されている。又、前記磁性体は常磁性材料から形成されている。
 上記位置検出装置において、前記固定子は複数のセグメントに分割されており、各セグメントには複数のコイルが前記一方向に配列されており、前記電力供給制御手段は、セグメント毎に各コイルに印加する電圧を個々に制御することが可能である。これにより、少ない消費電力で、磁性体の位置を検出することが可能となる。
 又、各セグメントには、3つのコイルを1つのコイル組として少なくとも1つのコイル組を配備することが出来る。
 上記位置検出装置において、前記電力供給制御手段により前記複数のコイルに印加される電圧は交流電圧である。
 交流電圧を用いることにより、可動子が停止していて磁性体が停止しているときでも、電圧が印加されているコイルに隣接するコイルには電流又は電圧が誘導されるので、磁性体の位置検出が可能である。
 本発明に係る磁石可動型リニアモータ用の位置検出装置は、可動子の位置を固定子側で検出することが可能であり、且つ高い検出精度を有する。
図1は、磁石可動型リニアモータを示す平面図である。 図2は、固定子に配備されているコイル群を示す平面図である。 図3は、本発明の第1実施形態に係る位置検出装置を含む磁石可動型リニアモータを示すブロック図である。 図4は、上記第1実施形態において、一方向に並んだ3つのコイルに着目して位置検出動作の第1形態を説明している平面図である。 図5は、上記第1形態での磁界の状態を示した側面図である。 図6は、上記第1実施形態において、一方向に並んだ3つのコイルに着目して位置検出動作の第2形態を説明している平面図である。 図7は、上記第2形態での磁界の状態を示した側面図である。 図8は、上記第1実施形態において、一方向に並んだ3つのコイルに着目して位置検出動作の第3形態を説明している平面図である。 図9は、上記第3形態での磁界の状態を示した側面図である。 図10は、磁性体位置と誘導電圧の大きさとの関係を示した図である。 図11は、本発明の第2実施形態に係る位置検出装置を含む磁石可動型リニアモータを示すブロック図である。 図12は、上記第2実施形態において、一方向に並んだ3つのコイルに着目して位置検出動作の第1形態を説明している平面図である。 図13は、上記第1形態での電圧調整前の磁界の状態を示した側面図である。 図14は、上記第2実施形態において、一方向に並んだ3つのコイルに着目して位置検出動作の第2形態を説明している平面図である。 図15は、上記第2形態での電圧調整前の磁界の状態を示した側面図である。 図16は、上記第2実施形態において、一方向に並んだ3つのコイルに着目して位置検出動作の第3形態を説明している平面図である。 図17は、上記第3形態での電圧調整前の磁界の状態を示した側面図である。 図18は、電圧調整手段の電圧調整動作を説明している図である。 図19は、上記第2実施形態の第2形態での電圧調整後の磁界の状態を示した側面図である。 図20は、上記第2実施形態の第3形態での電圧調整後の磁界の状態を示した側面図である。 図21は、上記第2実施形態において、位置検出動作の第4形態での磁界の状態を示した側面図である。
 以下、本発明に係る磁石可動型リニアモータ用の位置検出装置につき、その実施形態を図面に沿って具体的に説明する。
 1.磁石可動型リニアモータ
 磁石可動型リニアモータ(1)は、図1に示す如く、一方向に延びている固定子(2)と、該固定子(2)に対向して配置された複数の永久磁石(図示せず)を有する可動子(3)とから構成されている。固定子(2)は、分割された複数のセグメント(21)・・・(21)を一列に並べて連結することによって構成されており、各セグメント(21)には、可動子(3)と対向することとなる表面に、図2に示す如くコイル群(22)が配備されている。
 コイル群(22)には、U相交流電圧が印加されるU相コイル(22u)と、V相交流電圧が印加されるV相コイル(22v)と、W相交流電圧が印加されるW相コイル(22w)とを1つのコイル組として、4つのコイル組が含まれており、各コイル組に含まれているU相~W相コイル(22u)(22v)(22w)は、UVWの順に一方向に並んでいる。又、隣接するコイルどうしは互いに一部で重なり合っている。
 そして、各コイル群(22)においては、相毎に4つのコイルが直列に接続されている。即ち、4つのU相コイル(22u)によって、これらが直列に接続されたU相直列コイル(23u)が形成され、4つのV相コイル(22v)によって、これらが直列に接続されたV相直列コイル(23v)が形成され、4つのW相コイル(22w)によって、これらが直列に接続されたW相直列コイル(23w)が形成されている。
 一方、可動子(3)に配置されている各永久磁石(図示せず)は、一方向についての両端部にそれぞれN極とS極とを有すると共に、同じコイル組に含まれているU相コイル(22u)とW相コイル(22w)との中心間の距離τ(図2参照)と略同一の長さ寸法を有している。
 図3に示す様に、磁石可動型リニアモータ(1)の固定子(2)側には、インバータ(41)と、該インバータ(41)を制御するインバータ制御手段(40)とが配備されており、インバータ(41)は、セグメント(21)毎に各直列コイルに対して印加する交流電圧を個々に制御することが出来る。そして、インバータ(41)は、インバータ制御手段(40)から制御指令を受けた場合、該制御指令に基づいてコイル群(22)に3相交流電圧を印加し、これによって固定子(2)のコイル側の表面に移動磁界を発生させる。
 又、インバータ(41)は、インバータ制御手段(40)からの制御指令に基づいて、移動磁界の大きさや伝播速度を調整することが出来る。
 インバータ(41)によってコイル群(14)に3相交流電圧を印加されると、図2に示す様に、U相直列コイル(23u)の両端にはU相交流電圧Vu(=Vu(+)-Vu(-))が印加され、V相直列コイル(23v)の両端にはV相交流電圧Vv(=Vv(+)-Vv(-))が印加され、W相直列コイル(23w)の両端にはW相交流電圧Vw(=Vw(+)-Vw(-))が印加されることになる。
 そして、固定子(2)のコイル側表面に移動磁界が発生すると、可動子(3)には該移動磁界と同じ方向の推進力が発生し、これによって可動子(3)は一方向に沿って移動することになる。又、移動磁界の大きさや伝播速度が調整されることにより、可動子(3)の速度等が調整されることになる。
 インバータ(41)は、インバータ制御手段(40)からの制御指令に基づいて、複数のセグメント(21)・・・(21)の内、可動子(3)と一部又は全部が対向することになるセグメント(21)(図1において斜線のハッチングにて示したセグメント)にのみ3相交流電圧を印加する。即ち、インバータ(41)は、インバータ制御手段(40)からの指令を受けて3相交流電圧を印加する複数のコイル群(22)・・・(22)を選択し、選択した複数のコイル群(22)・・・(22)に対して3相交流電圧を印加して移動磁場を発生させる。よって、磁石可動型リニアモータ(1)は、少ない消費電力で駆動されることになる。
 上記磁石可動型リニアモータ(1)において、図1に示す様に、可動子(3)には更に磁性体(5)が固定されており、該磁性体(5)は常磁性材料から形成されている。又、磁性体(5)は、可動子(3)に一部又は全部が対向しているセグメント(21)の一群とは別のセグメント(21)と対向することとなる位置、ここでは該一群との間に別のセグメント(21)を1つだけ挟んで位置するセグメント(21)と対向することとなる位置に、配置されている。
 そして、上記磁石可動型リニアモータ(1)には、可動子(3)の位置を検出するための位置検出装置が配備されており、該位置検出装置の一部が、上述した磁性体(5)とインバータ(41)によって構成されている。
 2.位置検出装置の第1実施形態
 図3に示す様に、第1実施形態に係る位置検出装置は、磁性体(5)とインバータ(41)の他に、測定手段(42)と、指令手段(43)と、位置算出手段(44)と、記録手段(45)とを具えている。
 ここで、インバータ(41)は、上述したインバータ制御手段(40)からの指令とは別の第1指令を指令手段(43)から受けることが出来、指令手段(43)から第1指令を受けた場合、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から1つの直列コイルを選択し、選択した1つの直列コイルに対して交流電圧を印加する。これによって、移動磁界とは別の位置検出用の磁界が、磁性体(5)が対向しているセグメント(21)のコイル側表面に発生することになる。
 測定手段(42)は、上記第1指令とは別の第2指令を指令手段(43)から受けることが出来、指令手段(43)から第2指令を受けた場合、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から2つの直列コイルを選択し、選択した2つの直列コイルに誘導される電圧(誘導電圧)を測定する。
 指令手段(43)は、位置算出手段(44)からの制御指令に基づいて、インバータ(41)に対しては、電圧を印加する対象として、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から1つの直列コイルを選択するための第1指令を与え、測定手段(42)に対しては、誘導電圧を測定する対象として、第1指令を受けてインバータ(41)が選択することとなる直列コイルとは別の一対の直列コイルを選択するための第2指令を与える。
 以下、本実施形態においては、U相~W相直列コイル(23u)(23v)(23w)に含まれるコイルの内、一方向に並んだ3つのコイル(22u)(22u)(22w)に着目して説明を行う(例えば図4参照)。
 図4に示す様に、インバータ(41)が、指令手段(43)から第1指令を受けてU相コイル(22u)を選択した場合、測定手段(42)は、指令手段(43)から第2指令を受けて、第1指令を受けてインバータ(41)が選択したU相コイル(22u)の両側に隣接するV相コイル(22v)とW相コイル(22w)とを選択することになる。
 この場合、図4に示す様に、U相コイル(22u)に交流電圧Vu0が印加されて位置検出用の磁界Buが発生し、これによりV相コイル(22v)とW相コイル(22w)の内側にはそれぞれ、図5に示す様にコイルどうしが重なった領域に位置検出用の磁界Buが通過することになる。そして、V相コイル(22v)とW相コイル(22w)には電圧Vvi,Vwiが誘導され、誘導された電圧Vvi,Vwiが測定手段(42)によって測定されることになる。
 ここで、磁性体(5)は磁気抵抗が低い。よって、図6に示す様に、交流電圧Vu0が印加されているU相コイル(22u)と対向する位置に磁性体(5)が存在する場合、位置検出用の磁界Buは磁性体(5)を通過し易くなる。このため、図7に示す様に、磁性体(5)が存在する位置にて磁界Buの磁束密度が高くなる一方、その他の領域においては磁界Buの磁束密度が低くなる。
 従って、図6及び図7に示す如く、U相コイル(22u)とこれに隣接するW相コイル(22w)とが互いに重なった領域に対向して磁性体(5)が存在する場合(磁性体(5)が磁性体位置x=-τ/4又はその近傍に存在するとき)、W相コイル(22w)の内側を通過する磁界Buの磁束量が増加し、これにより該W相コイル(22w)に誘導される電圧Vwiが増加することになる。
 一方、図8及び図9に示す如く、U相コイル(22u)とW相コイル(22w)とが互いに重なった領域と対向した位置から磁性体(5)が移動して遠ざかった場合、W相コイル(22w)の内側を通過する磁界Buの磁束量は減少し、これにより該W相コイル(22w)に誘導される電圧Vwiは減少することになる。
 よって、図10に示す様に、W相コイル(22w)には、磁性体(5)の位置xに応じた電圧Vwiが誘導されることになる。尚、図10では、誘導電圧Vwiの大きさ|Vwi|が磁性体位置xに応じて変化することが示されている。
 又、図8及び図9に示す如く、U相コイル(22u)とこれに隣接するV相コイル(22v)とが互いに重なった領域に対向して磁性体(5)が存在する場合(磁性体(5)が磁性体位置x=+τ/4又はその近傍に存在するとき)、V相コイル(22v)の内側を通過する磁界Buの磁束量が増加し、これにより該V相コイル(22v)に誘導される電圧Vviが増加することになる。
 一方、図6及び図7に示す如く、U相コイル(22u)とV相コイル(22v)とが互いに重なった領域と対向した位置から磁性体(5)が移動して遠ざかった場合、V相コイル(22v)の内側を通過する磁界Buの磁束量は減少し、これにより該V相コイル(22v)に誘導される電流Vviは減少することになる。
 よって、図10に示す様に、V相コイル(22v)には、磁性体(5)の位置xに応じた電圧Vviが誘導されることになる。尚、図10では、誘導電圧Vviの大きさ|Vvi|が磁性体位置xに応じて変化することが示されている。
 記録手段(45)には、図10に示す如く磁性体位置xとV相コイル(22v)に誘導される電圧の大きさ|Vvi|との関係を表すテーブルと、図10に示す如く磁性体位置xとW相コイル(22w)に誘導される電圧の大きさ|Vwi|との関係を表すテーブルとが記録されている。
 尚、これらのテーブルは、コイルの寸法、コイルの巻き数、磁性体の寸法、磁性体の磁気的特性等により決定され、実験又は解析により予め取得することが出来るものである。実験によるテーブルの取得方法として、実際に磁性体(5)を移動させつつ、V相コイル(22v)に誘導される電圧VviとW相コイル(22w)に誘導される電圧Vwiとを測定することが挙げられる。又、解析によるテーブルの取得方法として、磁石可動型リニアモータ(1)と磁性体(5)とから成るシステムの磁界モデルを設定し、該磁界モデルに有限要素法を用いて解析することが挙げられる。
 位置算出手段(44)は、測定手段(42)によって測定される2つの誘導電圧Vvi,Vwiを、測定値Vvi0,Vwi0として該測定手段(42)から取得し、取得した2つの測定値Vvi0,Vwi0に基づいて、可動子(3)の位置に応じて変化する磁性体(5)の位置を算出する。
 具体的には図10に示す様に、位置算出手段(44)は、記録手段(45)に記録されているテーブルに基づいて、測定手段(42)から得られる一方の測定値Vvi0に対応する2つの位置xv1(=x2),xv2(=x3)を第1位置情報として算出すると共に、測定手段(42)から得られる他方の測定値Vwi0に対応する2つの位置xw1(=x1),xw2(=x2)を第2位置情報として算出し、第1位置情報と第2位置情報とを比較することにより、第1位置情報に含まれる位置xv1(=x2),xv2(=x3)の中から、第2位置情報に含まれる位置xw1(=x1),xw2(=x2)と一致又は近似している位置xv1(=x2)を選択し、選択した位置xv1(=x2)を磁性体(5)の位置として算出する。
 上述の如く、記録手段(45)に記録されているテーブルを用いて測定値Vvi0,Vwi0に対応する位置を算出する場合、2つの測定値Vvi0,Vwi0の何れか一方の測定値からでは、該測定値に対応して複数の位置(例えば測定値Vvi0に対して複数の位置xv1,xv2)が算出されるため、磁性体(5)の位置を一意に決めることが出来ない。
 しかし、第1実施形態に係る位置検出装置においては、上述の如く2つの測定値Vvi0,Vwi0の両方からこれらに対応する2つの位置情報が算出されるため、一方の測定値から得られる位置情報を用いただけでは磁性体(5)の位置を一意に決めることが出来ない場合でも、他方の測定値から得られる位置情報を用いることにより磁性体(5)の位置が一意に決まることになる。
 又、測定手段(42)によって誘導電圧を測定する場合、該誘導電圧の大きさが大きい程、該誘導電圧は高い精度で測定されることになる。即ち、図10に示す磁性体位置xと誘導電圧の大きさとの関係(テーブル)は、誘導電圧の大きさが最大となる位置を中心とした幅がτ程度の範囲において、高い信頼性を有することになる。
 従って、上述の如くテーブルに基づいて2つの測定値Vvi0,Vwi0から磁性体(5)の位置を検出する場合、磁性体位置xと誘導電圧の大きさ|Vvi0|との関係において信頼性の高い範囲と、磁性体位置xと誘導電圧の大きさ|Vwi0|との関係において信頼性の高い範囲とが重なっている範囲、即ちU相コイル(22u)の中心位置を基準(x=0)としたx=-τ/4~+τ/4の範囲において検出された磁性体(5)の位置は、精度の高いものとなる。
 上述したのと同様の原理により、インバータ(41)が、指令手段(43)から第1指令を受けてV相コイル(22v)を選択し、測定手段(42)が、指令手段(43)から第2指令を受けて、第1指令を受けてインバータ(41)が選択したV相コイル(22v)の両側に隣接するW相コイル(22w)とU相コイル(22u)とを選択した場合には、V相コイル(22v)の中心位置を基準(x=0)としたx=-τ/4~+τ/4の範囲において、高い精度を有する磁性体(5)の位置が検出されることになる。
 又、インバータ(41)が、指令手段(43)から第1指令を受けてW相コイル(22w)を選択し、測定手段(42)が、指令手段(43)から第2指令を受けて、第1指令を受けてインバータ(41)が選択したW相コイル(22w)の両側に隣接するU相コイル(22u)とV相コイル(22v)を選択した場合には、W相コイル(22w)の中心位置を基準(x=0)としたx=-τ/4~+τ/4の範囲において、高い精度を有する磁性体(5)の位置が検出されることになる。
 ここで、U相コイル~W相コイル(22u)(22v)(22w)の何れか1つのコイルに交流電圧を印加して検出動作を実行したときに、x=-τ/4~+τ/4の範囲外にて磁性体(5)の位置が検出された場合でも、別の1つのコイルに交流電圧を印加して検出動作を実行し直すことにより、交流電圧が印加されているコイルの中心位置(x=0)を基準としたx=-τ/4~+τ/4の範囲において、高い精度を有する磁性体(5)の位置を検出することが可能となる。
 よって、上記第1実施形態に係る位置検出装置においては、磁性体(5)の位置に拘わらず、該磁性体(5)の位置を高い精度で検出することが出来る。
 又、上述した様に、第1実施形態に係る位置検出装置は、コイルに誘導される電圧に基づいて磁性体(5)の位置を検出する。従って、磁石可動型リニアモータ(1)においては、可動子(3)の位置が固定子(2)側で検出されることになる。よって、検出された可動子(3)の位置を用いてサーボ制御等を実行する場合でも、磁石可動型リニアモータ(1)には、従来の磁石可動型リニアモータの如く通信手段を設ける必要がない。
 しかも、上記位置検出装置においては、位置検出用の磁界を発生させるためにコイルに交流電圧が印加されているので、該磁界は振動磁界になっている。従って、可動子(3)が停止していて磁性体(5)が停止しているときでも、交流電圧が印加されているコイルの両側に隣接する一対のコイルには電圧が誘導されるので、磁性体(5)の位置を検出することが可能である。
 又、上記位置検出装置においては、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から1つの直列コイルにのみ交流電圧が印加されるので、磁性体(5)の位置検出に必要な消費電力は少なく済む。
3.位置検出装置の第2実施形態
 図11に示す様に、第2実施形態に係る位置検出装置は、磁性体(5)とインバータ(41)の他に、測定手段(42)と、指令手段(43)と、位置算出手段(44)と、記録手段(45)と、電圧調整手段(46)と、判定手段(47)とを具えている。
 ここで、インバータ(41)は、上述したインバータ制御手段(40)からの指令とは別の第1指令を指令手段(43)から受けることが出来、指令手段(43)から第1指令を受けた場合、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から2つの直列コイルを選択し、選択した2つの直列コイルに対して互いに逆向きの交流電圧を印加する。これによって、移動磁界とは別の位置検出用の磁界が、磁性体(5)が対向しているセグメント(21)のコイル側表面に発生することになる。
 測定手段(42)は、上記第1指令とは別の第2指令を指令手段(43)から受けることが出来、指令手段(43)から第2指令を受けた場合、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から1つの直列コイルを選択し、選択した1つの直列コイルに誘導される電圧(誘導電圧)を測定する。
 指令手段(43)は、位置算出手段(44)からの制御指令に基づいて、インバータ(41)に対しては、電圧を印加する対象として、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から2つの直列コイルを選択すると共に、選択した2つの直列コイルに対して互いに逆向きで大きさが同じ所定値V0である交流電圧を印加するための第1指令を与え、測定手段(42)に対しては、誘導電圧を測定する対象として、第1指令を受けてインバータ(41)が選択することとなる2つの直列コイルとは別の1つの直列コイルを選択するための第2指令を与える。
 以下、本実施形態においては、U相~W相直列コイル(23u)(23v)(23w)に含まれるコイルの内、一方向に並んだ3つのコイル(22u)(22u)(22w)に着目して説明を行う(例えば図12参照)。
 図12に示す様に、インバータ(41)が、指令手段(43)から第1指令を受けて、1つのU相コイル(22u)を間に挟んで位置するV相コイル(22v)とW相コイル(22w)とを選択した場合、測定手段(42)は、指令手段(43)からの第2指令を受けて、第1指令を受けてインバータ(41)が選択したV相コイル(22v)とW相コイル(22w)と間に挟まれたU相コイル(22u)を選択することになる。
 この場合、図12に示す様に、V相コイル(22v)に交流電圧Vv0が印加されて位置検出用の磁界Bvが発生すると共に、W相コイル(22w)に交流電圧Vv0とは逆向きで大きさが同じ所定値V0である交流電圧Vw0が印加されて、磁界Bvとは逆向きで磁界Bvと大きさが同じ位置検出用の磁界Bwが発生する。これにより、U相コイル(22u)の内側には、図13に示す様にコイルどうしが重なった2つの領域にそれぞれ位置検出用の磁界Bvと磁界Bwが通過することになる。
 ここで、V相コイル(22v)とW相コイル(22w)にはそれぞれ、互いに逆向きで大きさが同じ所定値V0である交流電圧Vv0,Vw0が印加されているので、図13に示す如く、U相~W相コイル(22u)(22v)(22w)と対向する位置に磁性体(5)が存在しない場合には、U相コイル(22u)の内側を通過する磁界Bvの磁束と磁界Bwの磁束とが互いに打ち消し合い、これによってU相コイル(22u)には電圧が殆ど誘導されない。従って、測定手段(42)によって測定される電圧はほぼ0となる。
 ここで、磁性体(5)は磁気抵抗が低い。よって、図14に示す様に、交流電圧Vw0が印加されているW相コイル(22w)と対向する位置に磁性体(5)が存在する場合、位置検出用の磁界Bwは磁性体(5)を通過し易くなる。このため、図15に示す様に、磁性体(5)が存在する位置にて磁界Bwの磁束密度が高くなる一方、その他の領域においては磁界Bwの磁束密度が低くなる。
 又、図16に示す様に、交流電圧Vv0が印加されているV相コイル(22v)と対向する位置に磁性体(5)が存在する場合、図17に示す様に、磁性体(5)が存在する位置にて磁界Bvの磁束密度が高くなる一方、その他の領域においては磁界Bvの磁束密度が低くなる。
 従って、図14及び図15に示す如く、U相コイル(22u)とこれに隣接するW相コイル(22w)とが互いに重なった領域に対向して磁性体(5)が存在する場合(磁性体(5)が磁性体位置x=-τ/4又はその近傍に存在するとき)、U相コイル(22u)の内側を通過する磁界Bwの磁束量が増加することになる。よって、U相コイル(22u)の内側を通過する磁界Bwの磁束量が、U相コイル(22u)の内側を通過する磁界Bvの磁束量よりも大きくなり、U相コイル(22u)には電圧Vuiが誘導されることになる。そして、誘導された電圧Vuiが測定手段(42)によって測定されることになる。
 一方、図16及び図17に示す如く、U相コイル(22u)とこれに隣接するV相コイル(22v)とが互いに重なった領域に対向して磁性体(5)が存在する場合(磁性体(5)が磁性体位置x=+τ/4又はその近傍に存在するとき)、U相コイル(22v)の内側を通過する磁界Bvの磁束量が増加することになる。よって、U相コイル(22u)の内側を通過する磁界Bvの磁束量が、U相コイル(22u)の内側を通過する磁界Bwの磁束量よりも大きくなり、U相コイル(22u)には電圧Vuiが誘導されることになる。そして、誘導された電圧Vuiが測定手段(42)によって測定されることになる。
 次に、電圧調整手段(46)は、測定手段(42)によって測定される誘導電圧Vuiを測定値Vui0として該測定手段(42)から取得し、取得した測定値Vui0に基づいてインバータ(41)を制御することにより、測定手段(42)によって測定される誘導電圧Vuiが所定値(=0)となる様にV相コイル(22v)とW相コイル(22w)に印加する交流電圧Vv0,Vw0をそれぞれ調整する。
 判定手段(47)は、電圧調整手段(46)によって交流電圧Vv0,Vw0が調整されている間、このとき測定手段(42)によって測定される誘導電圧Vuiを測定値Vui0として測定手段(42)から取得し、取得した測定値Vui0が所定値(=0)に一致又は近似しているか否かを判定する。そして、判定手段(47)によって測定値Vui0が所定値(=0)に一致又は近似していると判定される迄、電圧調整手段(46)による交流電圧Vv0,Vw0の調整が実行される。
 具体的に電圧調整手段(46)は、図18に示す様に、W相コイル(22w)に印加する交流電圧Vw0の大きさ|Vw0|を所定値V0に固定して、V相コイル(22v)に印加する交流電圧Vv0の大きさ|Vv0|を0から所定値V0まで変化させ、その後、V相コイル(22v)に印加する交流電圧Vv0の大きさ|Vv0|を所定値V0に固定して、W相コイル(22w)に印加する交流電圧Vw0の大きさ|Vw0|を所定値V0から0まで変化させる。
 そして、判定手段(47)によって、測定手段(42)から得られる測定値Vui0が所定値(=0)に一致又は近似していると判断されたとき、電圧調整手段(46)による交流電圧Vv0,Vw0の調整を終了する。
 図15に示す様に、U相コイル(22u)の内側を通過する磁界Bwの磁束量が、U相コイル(22u)の内側を通過する磁界Bvの磁束量よりも大きい場合(磁性体(5)が磁性体位置x=-τ/4又はその近傍に存在するとき)、電圧調整手段(46)の調整動作(図18)により、測定手段(42)によって測定される誘導電圧Vuiが所定値(=0)となる様に、W相コイル(22w)に印加する交流電圧Vw0の大きさ|Vw0|が所定値V0より小さい値に調整されることになる。このとき、図19に示す様にU相コイル(22u)の内側を通過する磁界Bwの磁束量は、U相コイル(22u)の内側を通過する磁界Bvの磁束量と等しくなり、U相コイル(22u)の内側にて磁界Bvと磁界Bwは互いに打ち消し合うことになる。
 一方、図17に示す如く、U相コイル(22u)の内側を通過する磁界Bvの磁束量が、U相コイル(22u)の内側を通過する磁界Bwの磁束量よりも大きい場合(磁性体(5)が磁性体位置x=+τ/4又はその近傍に存在するとき)、電圧調整手段(46)の調整動作(図18)により、測定手段(42)によって測定される誘導電圧Vuiが所定値(=0)となる様にV相コイル(22v)に印加されている交流電圧Vv0の大きさ|Vv0|が所定値V0より小さい値に調整されることになる。このとき、図20に示す様にU相コイル(22u)の内側を通過する磁界Bvの磁束量は、U相コイル(22u)の内側を通過する磁界Bwの磁束量と等しくなり、U相コイル(22u)の内側にて磁界Bvと磁界Bwは互いに打ち消し合うことになる。
 尚、図21に示す様に、磁性体(5)がU相コイル(22u)の中心位置に存在する場合(磁性体(5)が磁性体位置x=0に存在するとき)、磁性体(5)は2つの磁界Bv,Bwに殆ど影響を与えないので、U相コイル(22u)の内側を通過する磁界Bvと磁界Bwの磁束量は互いに等しく、従ってU相コイル(22u)には電圧が殆ど誘導されない。従って、調整後の交流電圧Vv0,Vw0の大きさ|Vv0|,|Vw0|は何れも所定値V0のままとなる(図18参照)。
 この様に調整された2つの交流電圧Vv0,Vw0は、磁性体位置xに応じて変化し、しかも磁性体位置xとは1対1の関係を有することになる。
 記録手段(45)には、磁性体位置xと調整後の2つ交流電圧の大きさ|Vv0|,|Vw0|との関係を表すテーブルが記録されている。
 尚、上記テーブルは、コイルの寸法、コイルの巻き数、磁性体の寸法、磁性体の磁気的特性等により決定され、実験又は解析により予め取得することが出来るものである。実験によるテーブルの取得方法として、実際に磁性体(5)を移動させつつ、調整後の2つの交流電圧Vv0,Vw0を測定することが挙げられる。又、解析によるテーブルの取得方法として、磁石可動型リニアモータ(1)と磁性体(5)とから成るシステムの磁界モデルを設定し、該磁界モデルに有限要素法を用いて解析することが挙げられる。
 位置算出手段(44)は、判定手段(47)により測定手段(42)から得られる測定値Vui0が所定値(=0)に一致又は近似していると判定されたとき、インバータ(41)によってV相コイル(22v)とW相コイル(22w)にそれぞれ印加されている交流電圧Vv0,Vw0をインバータ(41)から取得し、取得した2つの交流電圧Vv0,Vw0に基づいて、可動子(3)の位置に応じて変化する磁性体(5)の位置を算出する。
 具体的には、位置算出手段(44)は、インバータ(41)から取得した2つの交流電圧Vv0,Vw0に基づいて、記録手段(45)に記録されているテーブルから該2つの交流電圧Vv0,Vw0の大きさ|Vv0|,|Vw0|に対応する位置xを取得し、取得した位置xを磁性体(5)の位置として算出する。斯くして、第2実施形態に係る位置検出装置においては、調整後の2つの交流電圧Vv0,Vw0から磁性体(5)の位置が一意に決まることになる。
 又、上述の如くインバータ(41)から得られる2つの交流電圧Vv0,Vw0に基づいて磁性体(5)の位置を検出する場合、U相コイル(22u)の内側を通過する調整前の磁界Bvと磁界Bwとの磁束量の差が磁性体(5)の位置xの変化に伴って大きく変化する磁性体位置xの範囲、即ちU相コイル(22u)の中心位置を基準(x=0)としたx=-τ/4~+τ/4の範囲において検出された磁性体(5)の位置は、精度の高いものとなる。
 上述したのと同様の原理により、インバータ(41)が、指令手段(43)から第1指令を受けて、1つのV相コイル(22v)を間に挟んで位置するU相コイル(22u)とW相コイル(22w)とを選択し、測定手段(42)が、指令手段(43)から第2指令を受けて、第1指令を受けてインバータ(41)が選択したU相コイル(22u)とW相コイル(22w)との間に挟まれたV相コイル(22v)を選択した場合には、V相コイル(22v)の中心位置を基準(x=0)としたx=-τ/4~+τ/4の範囲において、高い精度を有する磁性体(5)の位置が検出されることになる。
 又、インバータ(41)が、指令手段(43)から第1指令を受けて、1つのW相コイル(22w)を間に挟んで位置するU相コイル(22u)とV相コイル(22v)とを選択し、測定手段(42)が、指令手段(43)から第2指令を受けて、第1指令を受けてインバータ(41)が選択したU相コイル(22u)とV相コイル(22v)との間に挟まれたW相コイル(22w)を選択した場合には、W相コイル(22u)の中心位置を基準(x=0)としたx=-τ/4~+τ/4の範囲において、高い精度を有する磁性体(5)の位置が検出されることになる。
 ここで、U相コイル~W相コイル(22u)(22v)(22w)の何れか1つのコイルを間に挟んで位置する一対のコイルに交流電圧を印加して検出動作を実行したときに、x=-τ/4~+τ/4の範囲外にて磁性体(5)の位置が検出された場合でも、別の1つのコイルを間に挟んで位置する一対のコイルに交流電圧を印加して検出動作を実行し直すことにより、誘導電圧が測定されるコイル(一対のコイルの間に挟まれたコイル)の中心位置(x=0)を基準としたx=-τ/4~+τ/4の範囲において、高い精度を有する磁性体(5)の位置を検出することが可能となる。
 よって、上記第2実施形態に係る位置検出装置においては、磁性体(5)の位置に拘わらず、該磁性体(5)の位置を高い精度で検出することが出来る。
 又、上述した様に、第2実施形態に係る位置検出装置は、一対のコイルに印加する調整後の交流電圧に基づいて磁性体(5)の位置を検出する。従って、磁石可動型リニアモータ(1)においては、可動子(3)の位置が固定子(2)側で検出されることになる。よって、検出された可動子(3)の位置を用いてサーボ制御等を実行する場合でも、磁石可動型リニアモータ(1)には、従来の磁石可動型リニアモータの如く通信手段を設ける必要がない。
 しかも、上記位置検出装置においては、位置検出用の磁界を発生させるためにコイルに交流電圧が印加されているので、該磁界は振動磁界になっている。従って、可動子(3)が停止していて磁性体(5)が停止しているときでも、交流電圧が印加されている一対のコイルの間に挟まれているコイルには電圧が誘導されるので、磁性体(5)の位置を検出することが可能である。
 又、上記位置検出装置においては、磁性体(5)が対向しているセグメント(21)に配備されているU相~W相直列コイル(23u)(23v)(23w)の中から一対の直列コイルにのみ交流電圧が印加されるので、磁性体(5)の位置検出に必要な消費電力は少なく済む。
 4.磁性体の絶対位置の検出方法
 上述した第1及び第2実施形態に係る位置検出装置によれば、何れかのコイルに対して、該コイルの中心位置(x=0)を基準としたx=-τ/4~+τ/4の範囲内で、高い精度を有する磁性体(5)の位置xが検出されることになる。
 従って、磁性体(5)の絶対位置を検出するためには、スイッチやセンサ等で磁性体(5)を検出することが出来る初期位置から、磁性体(5)が対向しているコイル組の中心位置(V相コイル(22v)の中心位置)迄の距離Lを算出する必要がある。
 可動子(3)に配置されている永久磁石は、上述の如く、同じコイル組に含まれているU相コイル(22u)とW相コイル(22w)との中心間の距離τ(図2参照)と略同一の長さ寸法を有している。この様な構成においては、可動子(3)を移動させるべく固定子(2)側のコイル群(22)に3相交流電圧の印加した場合、可動子(3)は、3相交流電圧が1周期分だけ振動する毎に、隣接するコイル組に含まれている同じ相の2つのコイルの中心間の距離だけ移動することになる。
 従って、上記初期位置に磁性体(5)が存在していた状態から、コイル群(22)に印加されている3相交流電圧が何周期分の振動を行ったかをカウントすることにより、初期位置から、磁性体(5)が対向しているコイル組の中心位置迄の距離Lを算出することが出来る。
 そこで、位置検出装置により検出される磁性体(5)の位置に、上述の如く算出された距離Lを合算する共に、位置検出装置によって検出された磁性体(5)の位置がどの相のコイルの中心位置を基準としたものかによって決まる補正値を合算することにより、磁性体(5)の絶対位置が算出されることになる。
 ここで、補正値は、磁性体(5)の位置がV相コイル(22v)の中心位置を基準として得られたものである場合には0であり、磁性体(5)の位置がU相コイル(22u)の中心位置を基準として得られたものである場合には-τ/2(又は、+τ/2)であり、磁性体(5)の位置がW相コイル(22w)の中心位置を基準として得られたものである場合には+τ/2(又は、-τ/2)である。
 尚、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。上記実施形態においては、本発明に係る位置検出装置が、隣接するコイルどうしが互いに一部で重なり合った磁石可動型リニアモータに適用されていたが、本発明に係る位置検出装置の適用範囲はこれに限られるものではない。例えば、本発明に係る位置検出装置は、隣接するコイルどうしが互いに重なり合っていない磁石可動型リニアモータにも適用することが可能である。但し、隣接するコイルは、一方のコイルに発生した磁界が他方のコイルの内側を通過することとなる位置関係を有している必要がある。或いは、磁性体(5)は、隣接するコイルとの関係において、一方のコイルに発生した磁界が磁性体(5)を通じて他方のコイルの内側を通過することとなる形状を有している必要がある。
 上記実施形態においては、各セグメント(21)には4つのコイル組が配備されていたが、本発明はこれに限られるものではなく、例えば各セグメント(21)には、1つのコイル組だけが配備されていてもよいし、4つ以外の複数のコイル組が配備されていてもよい。
 又、上記実施形態においては、磁性体(5)は、可動子(3)に一部又は全部が対向するセグメント(21)の一群と磁性体(5)に対向するセグメント(21)との間に別のセグメント(21)が1つだけ挟まれる様に、可動子(3)に固定されていたが、本発明はこれに限られるものではない。例えば、磁性体(5)は、該磁性体(5)に対向するセグメント(21)が前記セグメント(21)の一群に隣接する様に可動子(3)に固定されていてもよいし、前記セグメント(21)の一群と磁性体(3)に対向するセグメント(21)との間に複数のセグメント(21)が挟まれる様に可動子(3)に固定されていてもよい。
 更に、上記実施形態においては、位置検出装置は指令手段(43)を具え、該指令手段(43)によってインバータ(41)及び測定手段(42)に指令(第1指令及び第2指令)を与えていたが、本発明はこれに限られるものではなく、指令手段(43)に代えてインバータ制御手段(40)によってインバータ(41)及び測定手段(42)に指令(第1指令及び第2指令)を与えてもよい。
 更に又、上記実施形態においては、可動子(3)を駆動するためのコイルを利用して位置検出装置による位置検出を行ったが、可動子駆動用のコイルとは別に位置検出用のコイルを固定子(2)に配備し、該位置検出用のコイルを用いて位置検出装置による位置検出を行ってもよい。
 又、上記実施形態においては、測定手段(42)はコイルに誘導される電圧を測定していたが、これに代えてコイルに誘導される電流を測定してもよい。
 (1) 磁石可動型リニアモータ
 (2) 固定子
 (21) セグメント
 (22) コイル群
 (22u) U相コイル
 (22v) V相コイル
 (22w) W相コイル
 (3) 可動子
 (40) インバータ制御手段
 (41) インバータ(電力供給制御手段)
 (42) 測定手段
 (43) 指令手段
 (44) 位置算出手段
 (45) 記録手段
 (46) 電圧調整手段
 (47) 判定手段
 (5) 磁性体

Claims (13)

  1.  複数のコイルを一方向に配列して構成されている固定子と、該固定子に対向して配置された永久磁石を有する可動子とを具え、前記固定子側の複数のコイルに電圧を印加して発生する磁界によって前記可動子が前記一方向に沿って移動する磁石可動型リニアモータにおいて、前記可動子の位置を検出する位置検出装置であって、
     前記可動子に固定された磁性体を具え、1又は複数のコイルを選択して該コイルに電圧を印加すると共に、該コイルに隣接するコイルに誘導される電流又は電圧を測定し、測定した電流又は電圧に基づいて、前記可動子の位置に応じて変化する前記磁性体の位置を算出する磁石可動型リニアモータ用の位置検出装置。
  2.  複数のコイルを一方向に配列して構成されている固定子と、該固定子に対向して配置された永久磁石を有する可動子とを具え、前記固定子側の複数のコイルに電圧を印加して発生する磁界によって前記可動子が前記一方向に沿って移動する磁石可動型リニアモータにおいて、前記可動子の位置を検出する位置検出装置であって、
     前記可動子に固定された磁性体と、
     指令を受けて選択したコイルに電圧を印加して位置検出用の磁界を発生させる電力供給制御手段と、
     指令を受けて選択したコイルに誘導される電流又は電圧を測定する測定手段と、
     前記電力供給制御手段に対して、電圧を印加する対象として1又は複数のコイルを選択するための第1指令を与えると共に、前記測定手段に対して、電流又は電圧を測定する対象として、前記第1指令を受けて前記電力供給制御手段が選択することとなるコイルに隣接するコイルを選択するための第2指令を与える指令手段と、
     前記指令手段による指令動作を制御して、前記測定手段によって測定される測定値に基づいて、前記可動子の位置に応じて変化する前記磁性体の位置を算出する位置算出手段
    とを具える磁石可動型リニアモータ用の位置検出装置。
  3.  前記指令手段が測定手段に与える第2指令は、前記第1指令を受けて前記電力供給制御手段が選択することとなるコイルの両側に隣接する一対のコイルを選択するための指令であり、前記測定手段は、前記第2指令を受けて前記一対のコイルを選択して、該一対のコイルに誘導される電流又は電圧を測定し、前記位置算出手段は、前記測定手段によって測定される2つの測定値を取得し、該2つの測定値に基づいて前記磁性体の位置を算出する請求項2に記載の磁石可動型リニアモータ用の位置検出装置。
  4.  更に、前記磁性体の位置と前記コイルに誘導される電流又は電圧との関係を表すテーブルが記録されている記録手段を具え、
     前記位置算出手段は、前記記録手段に記録されているテーブルに基づいて、前記測定手段から得られる一方の測定値に対応する少なくとも1つの位置を第1位置情報として算出すると共に、他方の測定値に対応する少なくとも1つの位置を第2位置情報として算出し、第1位置情報に含まれる位置の中から、第2位置情報に含まれる位置と一致又は近似しているものを選択し、選択した位置を磁性体の位置として算出する請求項3に記載の磁石可動型リニアモータ用の位置検出装置。
  5.  前記指令手段が電力供給制御手段に与える第1指令は、電圧を印加する対象として1つのコイルを間に挟んで位置する一対のコイルを選択するための指令であり、前記指令手段が測定手段に与える第2指令は、電流又は電圧を測定する対象として前記一対のコイルの間に挟まれることとなるコイルを選択するための指令であり、更に、
     前記測定手段によって測定される測定値を取得し、取得した測定値に基づいて前記電力供給制御手段を制御することにより、前記測定手段によって測定される測定値が所定値となる様に前記一対のコイルに印加する電圧を調整する電圧調整手段と、
     前記測定手段によって測定される測定値を取得し、取得した測定値が前記所定値に一致又は近似しているか否かを判定する判定手段
    とを具え、
     前記位置算出手段は、前記判定手段により前記測定値が所定値に一致又は近似していると判定されたとき、前記一対のコイルに印加されている電圧を前記電力供給制御手段から取得し、取得した2つの電圧に基づいて前記磁性体の位置を算出する請求項2に記載の磁石可動型リニアモータ用の位置検出装置。
  6.  前記電力供給制御手段は、前記指令手段からの第1指令を受けて選択した一対のコイルに対して、該一対のコイルの間に挟まれているコイルの内側に互いに逆向きの磁界が発生する様に電圧を印加する請求項5に記載の磁石可動型リニアモータ用の位置検出装置。
  7.  前記電圧調整手段は、前記一対のコイルに電圧を印加して発生する磁界が、該一対のコイルの間に挟まれているコイルの内側にて互いに打ち消し合う様に、前記電力供給制御手段を制御して該一対のコイルに印加する電圧を調整する請求項6に記載の磁石可動型リニアモータ用の位置検出装置。
  8.  更に、前記磁性体の位置と前記測定手段から得られる測定値が前記所定値になったときに前記一対のコイルに印加されることとなる電圧との関係を表すテーブルが記録されている記録手段を具え、
     前記位置算出手段は、前記記録手段に記録されているテーブルに基づいて、前記電力供給制御手段から得られる2つの電圧から前記磁性体の位置を算出する請求項5乃至請求項7の何れかに記載の磁石可動型リニアモータ用の位置検出装置。
  9.  前記磁性体は、前記永久磁石が対向しているコイルとは別のコイルに対向することとなる位置に配置されている請求項1乃至請求項8の何れかに記載の磁石可動型リニアモータ用の位置検出装置。
  10.  前記固定子は複数のセグメントに分割されており、各セグメントには複数のコイルが前記一方向に配列されており、前記電力供給制御手段は、セグメント毎に各コイルに印加する電圧を個々に制御することが可能である請求項1乃至請求項9の何れかに記載の磁石可動型リニアモータ用の位置検出装置。
  11.  各セグメントには、3つのコイルを1つのコイル組として少なくとも1つのコイル組が配備されている請求項10に記載の磁石可動型リニアモータ用の位置検出装置。
  12.  前記電力供給制御手段により前記複数のコイルに印加される電圧は交流電圧である請求項1乃至請求項11の何れかに記載の磁石可動型リニアモータ用の位置検出装置。
  13.  前記磁性体は常磁性材料から形成されている請求項1乃至請求項12に記載の磁石可動型リニアモータ用の位置検出装置。
PCT/JP2009/071543 2009-06-29 2009-12-25 磁石可動型リニアモータ用の位置検出装置 WO2011001555A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011520729A JP5562333B2 (ja) 2009-06-29 2009-12-25 磁石可動型リニアモータ用の位置検出装置
CN200980160191.5A CN102804566B (zh) 2009-06-29 2009-12-25 动磁式直线电动机用的位置检测装置
EP09846846.5A EP2451061B1 (en) 2009-06-29 2009-12-25 Position detection device for movable magnet type linear motor
US13/380,253 US8742702B2 (en) 2009-06-29 2009-12-25 Position detector for moving magnet type linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-154275 2009-06-29
JP2009154275 2009-06-29

Publications (1)

Publication Number Publication Date
WO2011001555A1 true WO2011001555A1 (ja) 2011-01-06

Family

ID=43410649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071543 WO2011001555A1 (ja) 2009-06-29 2009-12-25 磁石可動型リニアモータ用の位置検出装置

Country Status (8)

Country Link
US (1) US8742702B2 (ja)
EP (1) EP2451061B1 (ja)
JP (1) JP5562333B2 (ja)
KR (1) KR101597862B1 (ja)
CN (1) CN102804566B (ja)
HU (1) HUE031873T2 (ja)
PL (1) PL2451061T3 (ja)
WO (1) WO2011001555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2755308A1 (en) * 2011-09-07 2014-07-16 THK Co., Ltd. Linear motor device and control method
JP2022507652A (ja) * 2018-11-19 2022-01-18 ベーウントエル・インダストリアル・オートメイション・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 電磁式運搬機器の機能を安全に監視する方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001555A1 (ja) * 2009-06-29 2011-01-06 サバンジ大学 磁石可動型リニアモータ用の位置検出装置
JP5836193B2 (ja) * 2012-05-17 2015-12-24 オリンパス株式会社 慣性駆動アクチュエータ
JP6313642B2 (ja) * 2014-04-18 2018-04-18 キヤノン株式会社 リニアモータ制御装置及びリニアモータ制御システム
KR101892811B1 (ko) * 2016-09-08 2018-10-05 삼성전기주식회사 카메라 모듈의 액츄에이터
CN108539949B (zh) * 2017-03-01 2020-07-31 台达电子工业股份有限公司 动磁式移载平台
CN109217767B (zh) * 2017-07-06 2020-08-18 上海合栗智能科技有限公司 线性传输系统及其控制装置和多动子协同控制系统
EP3706297A1 (de) * 2019-03-07 2020-09-09 B&R Industrial Automation GmbH Verfahren zum steuern eines langstatorlinearmotors
CN113795295A (zh) * 2019-03-15 2021-12-14 科瓦韦公司 用于控制可植入血泵的系统及方法
DE102019219338A1 (de) * 2019-12-11 2021-06-17 Thyssenkrupp Elevator Innovation And Operations Ag Seillose Aufzugsanlage mit echtzeitfähiger drahtloser Übertragung von Sensordaten eines Positionssensors
JP2022026199A (ja) * 2020-07-30 2022-02-10 キヤノン株式会社 搬送装置、制御装置及び制御方法
KR102369889B1 (ko) * 2020-11-17 2022-03-02 국민대학교산학협력단 선형모터 내의 이동자 위치 추정 장치
CN117606525A (zh) * 2023-11-08 2024-02-27 浙江锐鹰传感技术有限公司 动子位置检测传感器及柔性输送线系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598044A (en) 1993-09-13 1997-01-28 Oriental Motor Co., Ltd. Linear motor
JPH10104251A (ja) * 1996-09-26 1998-04-24 Victor Co Of Japan Ltd リニアモータの駆動制御装置
JP2000341929A (ja) * 1999-05-27 2000-12-08 Mirae Corp リニアモータ
JP2002186283A (ja) * 2000-12-14 2002-06-28 Aichi Electric Co Ltd スイッチドリラクタンスモータ及びそのセンサレス駆動回路
JP2002223587A (ja) * 2001-01-24 2002-08-09 Mitsubishi Heavy Ind Ltd リニアモータの制御装置
US20040055829A1 (en) 2002-09-23 2004-03-25 Morris Nigel Bruce Tubular linear synchronous motor door and encoder-less control

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515136A (ja) * 1991-07-03 1993-01-22 Kobe Steel Ltd リニアモータの位置検出装置
JPH07112883A (ja) 1993-10-19 1995-05-02 Mitsubishi Electric Corp リニアモータエレベーター
US6731083B2 (en) * 1998-06-02 2004-05-04 Switched Reluctance Drives, Ltd. Flux feedback control system
KR20010001888A (ko) * 1999-06-09 2001-01-05 정문술 리니어 모터
GB0007422D0 (en) * 2000-03-27 2000-05-17 Switched Reluctance Drives Ltd Position detection of switched reluctance machines
JP3791402B2 (ja) * 2001-01-26 2006-06-28 松下電工株式会社 リニア振動モータの駆動制御方法及び駆動制御装置
JP2002281783A (ja) * 2001-03-22 2002-09-27 Tsunehiko Yamazaki リニアモータ用位置検出装置
JP3907566B2 (ja) * 2002-09-27 2007-04-18 キヤノン株式会社 位置決め装置における測定手段を初期化する方法
JP2006020415A (ja) * 2004-07-01 2006-01-19 Yamazaki Mazak Corp リニアモータ用位置検出装置
JP2006320035A (ja) * 2005-05-10 2006-11-24 Hitachi Ltd リニアモータ
JP5292707B2 (ja) * 2007-03-06 2013-09-18 株式会社ジェイテクト 可動磁石型リニアモータ
TWI442026B (zh) * 2007-05-31 2014-06-21 Thk Co Ltd 線性馬達之位置檢測系統
JP5515310B2 (ja) * 2009-02-05 2014-06-11 リコーイメージング株式会社 直線型アクチュエータ
WO2011001555A1 (ja) * 2009-06-29 2011-01-06 サバンジ大学 磁石可動型リニアモータ用の位置検出装置
JP2011147330A (ja) * 2009-12-16 2011-07-28 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
US20110273789A1 (en) * 2010-05-05 2011-11-10 Digital Imaging Systems Gmbh Linear motor with integral position sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598044A (en) 1993-09-13 1997-01-28 Oriental Motor Co., Ltd. Linear motor
JPH10104251A (ja) * 1996-09-26 1998-04-24 Victor Co Of Japan Ltd リニアモータの駆動制御装置
JP2000341929A (ja) * 1999-05-27 2000-12-08 Mirae Corp リニアモータ
JP2002186283A (ja) * 2000-12-14 2002-06-28 Aichi Electric Co Ltd スイッチドリラクタンスモータ及びそのセンサレス駆動回路
JP2002223587A (ja) * 2001-01-24 2002-08-09 Mitsubishi Heavy Ind Ltd リニアモータの制御装置
US20040055829A1 (en) 2002-09-23 2004-03-25 Morris Nigel Bruce Tubular linear synchronous motor door and encoder-less control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2451061A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2755308A1 (en) * 2011-09-07 2014-07-16 THK Co., Ltd. Linear motor device and control method
EP2755308A4 (en) * 2011-09-07 2015-08-12 Thk Co Ltd LINEAR MOTOR DEVICE AND CONTROL METHOD
US10020767B2 (en) 2011-09-07 2018-07-10 Thk Co., Ltd. Linear motor device and control method
JP2022507652A (ja) * 2018-11-19 2022-01-18 ベーウントエル・インダストリアル・オートメイション・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 電磁式運搬機器の機能を安全に監視する方法

Also Published As

Publication number Publication date
US8742702B2 (en) 2014-06-03
KR101597862B1 (ko) 2016-02-25
KR20120101291A (ko) 2012-09-13
US20120091928A1 (en) 2012-04-19
EP2451061B1 (en) 2016-11-23
HUE031873T2 (en) 2017-08-28
EP2451061A4 (en) 2014-06-11
CN102804566A (zh) 2012-11-28
JP5562333B2 (ja) 2014-07-30
CN102804566B (zh) 2015-02-25
JPWO2011001555A1 (ja) 2012-12-10
EP2451061A1 (en) 2012-05-09
PL2451061T3 (pl) 2017-07-31

Similar Documents

Publication Publication Date Title
JP5562333B2 (ja) 磁石可動型リニアモータ用の位置検出装置
CN102474217B (zh) 分布式布置的直线电机及分布式布置的直线电机的控制方法
US8653766B2 (en) Linear motor driving system and linear motor control method
JP4941790B2 (ja) 移動体システム
JP5590137B2 (ja) 離散配置リニアモータシステム
US9292018B2 (en) Moving body system and method for controlling travel of moving body
WO2009119810A1 (ja) サーボモータの位置制御装置
JP6005803B2 (ja) リニアモータ装置及び制御方法
JP5666025B2 (ja) 電子整流型のサーボ駆動装置を有する位置決めシステムを較正するための方法および装置
KR940025152A (ko) 유도전동기의 제어방법
JP2001218497A (ja) リニアモータにおける推力リップル測定方法
TW201240285A (en) Linear motor driving device
JP5529637B2 (ja) リニアモータの位置検出システム
JP5783410B2 (ja) 移動体システムと移動体の位置検出方法
WO2011115098A1 (ja) 制御装置、及び制御方法
JP2012005233A (ja) リニアモータの制御装置
JPWO2008117345A1 (ja) リニアモータ及びその制御方法
KR20120022244A (ko) 희토류 영구자석을 이용한 토크 발생 장치
JP5473595B2 (ja) 磁極検出方法および駆動案内システム
WO2016042661A1 (ja) リニアモータシステム
JP2002291273A (ja) 複合リニアモータ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160191.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520729

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 9644/CHENP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009846846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13380253

Country of ref document: US

Ref document number: 2009846846

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117031307

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE