WO2011001523A1 - 光量検出装置、及び光量情報処理装置 - Google Patents

光量検出装置、及び光量情報処理装置 Download PDF

Info

Publication number
WO2011001523A1
WO2011001523A1 PCT/JP2009/062051 JP2009062051W WO2011001523A1 WO 2011001523 A1 WO2011001523 A1 WO 2011001523A1 JP 2009062051 W JP2009062051 W JP 2009062051W WO 2011001523 A1 WO2011001523 A1 WO 2011001523A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
current
negative
light
Prior art date
Application number
PCT/JP2009/062051
Other languages
English (en)
French (fr)
Inventor
潔 立石
義博 花田
満昭 中村
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2009/062051 priority Critical patent/WO2011001523A1/ja
Priority to US13/380,407 priority patent/US8742314B2/en
Priority to JP2011504276A priority patent/JP5085785B2/ja
Publication of WO2011001523A1 publication Critical patent/WO2011001523A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/082Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/4565Controlling the common source circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45082Indexing scheme relating to differential amplifiers the common mode signal being taken or deducted from the one or more outputs of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45138Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45528Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45702Indexing scheme relating to differential amplifiers the LC comprising two resistors

Definitions

  • the present invention relates to a technical field of a light amount detection device such as a photoelectric conversion device that converts a minute light amount into an electrical signal, and a light amount information processing device that processes a light detection signal corresponding to the minute light amount, for example.
  • a light amount detection device such as a photoelectric conversion device that converts a minute light amount into an electrical signal
  • a light amount information processing device that processes a light detection signal corresponding to the minute light amount, for example.
  • Patent Document 1 discloses a technique related to an optical receiver circuit for high-speed communication used for optical communication. Specifically, a technique is disclosed in which a reverse bias voltage is applied to a photodiode by a bias element to reduce the capacitance between both terminals of the photodiode and to broaden the light detection band.
  • the present invention has been made in view of, for example, the conventional problems described above, and an object thereof is to provide a light amount detection device and a light amount information processing device capable of detecting a weaker light amount.
  • a light quantity detection device is connected to a photoelectric conversion element (for example, a PIN diode) that converts a light quantity of input light into a current and a first terminal of the photoelectric conversion element.
  • a photoelectric conversion element for example, a PIN diode
  • Voltage converting means and the converted electric power And a amplifying means for amplifying.
  • the light amount of the input light is converted into a current by a photoelectric conversion element such as a PIN diode (P-Intrinsic-N-Diode).
  • a photoelectric conversion element such as a PIN diode (P-Intrinsic-N-Diode).
  • the current-voltage conversion means has the following six terminals, makes the photoelectric conversion element zero bias, and converts the converted current into voltage.
  • zero bias according to the present invention means a bias state in which a reverse bias voltage is hardly or completely applied to the photoelectric conversion element.
  • Such current-voltage conversion means is connected to a positive input terminal connected to a first terminal such as a P terminal in the photoelectric conversion element, and to a second terminal such as an N terminal in the photoelectric conversion element.
  • Negative input terminal negative output terminal that inverts the polarity of current input to the positive input terminal and outputs it as a voltage
  • positive output that inverts the polarity of current input to the negative input terminal and outputs it as a voltage
  • the output terminal includes a first negative feedback resistor connected between the positive input terminal and the negative output terminal, and a second negative feedback resistor connected between the negative input terminal and the positive output terminal.
  • the amplified voltage is amplified by the amplification means, and can be output as a light detection signal corresponding to the amount of received light.
  • a photoelectric conversion element such as a PIN diode is operated in a zero bias state in which a reverse bias voltage is hardly or completely applied to the photoelectric conversion element, that is, a so-called power generation mode. It is possible. This can make the dark current asymptotically almost or completely zero. As a result, it is possible to reduce the noise current due to the fluctuation of the dark current in the light detection signal and improve the S / N ratio. Typically, for example, it is possible to detect a weak light amount and a weak light amount change caused by light scattering by hemoglobin in blood.
  • the action of zero bias application to the photoelectric conversion element is performed by the negative feedback action by the first negative feedback resistor and the second negative feedback resistor.
  • the chip area can be reduced when the light quantity detection device is made into, for example, an LSI (Large Scaled Integrated Circuit), so that the manufacturing cost of the light quantity detection device can be reduced.
  • the first voltage is applied by applying the reverse bias voltage.
  • the capacitance between the first terminal and the second terminal can be reduced, as a detrimental effect, a current flowing in the opposite direction, that is, a dark current, is generated even if there is no input light quantity.
  • the change in the detected light amount is weak, and the current detected by the light receiving element is also a weak current amount, the noise component increases when the dark current increases due to the application of the reverse bias voltage.
  • the current-voltage conversion unit is a common negative that negatively feeds back a potential difference between a midpoint potential between the negative output terminal and the positive output terminal and a reference potential.
  • the common negative feedback means may include a midpoint potential detecting means for detecting the midpoint potential.
  • the photoelectric conversion element is operated in a zero bias state, that is, a so-called power generation mode, so that the input bias of the current-voltage conversion means and the bias of the photoelectric conversion element are electrically separated.
  • the input bias of the current-voltage conversion means can be asymptotically approximated to the reference potential by the cooperative action of the first negative feedback resistor, the second negative feedback resistor, and the common negative feedback means.
  • OEIC Optical Electric Integrated Circuits
  • the common negative feedback means equalizes the potential of the first terminal of the photoelectric conversion element and the potential of the second terminal.
  • the dark current in the photoelectric conversion element can be made almost or completely asymptotic to zero.
  • the noise current due to the fluctuation of the dark current can be reduced, and the S / N ratio can be further improved.
  • the amplifying unit differentially amplifies voltages output from the negative output terminal and the positive output terminal, respectively.
  • the voltage is differentially amplified through the negative output terminal and the positive output terminal by an amplification means such as an instrumentation amplifier.
  • an amplification means such as an instrumentation amplifier.
  • the polarity of the converted voltage is inverted to an odd-numbered cycle defined by a predetermined frequency higher than the frequency of the converted current, and is defined by the predetermined frequency.
  • the polarity of the converted voltage is not inverted at even-numbered cycles, thereby modulating the voltage signal of the converted voltage and inverting the polarity of the converted voltage at the odd-numbered cycles.
  • demodulating means for demodulating the voltage signal of the converted voltage by not inverting the polarity of the converted voltage in the even-numbered cycle.
  • the voltage of the current-voltage conversion means is substantially equivalent to a waveform that has been subjected to amplitude modulation at a predetermined frequency by the modulation means.
  • the current converted by the photoelectric conversion element is modulated into an amplitude-modulated wave having a frequency spectrum of upper and lower frequencies, that is, an upper side wave and a lower side wave, with a predetermined frequency as a carrier frequency, Voltage conversion is performed.
  • the predetermined frequency as the carrier frequency is higher than the frequency of the current converted by the photoelectric conversion element.
  • the current / voltage conversion is performed while the frequency is converted into a spectrum centered on a predetermined frequency as the carrier frequency, so that the “1 / f noise” generated by the amplifier used for the current / voltage conversion, that is, the low frequency It is possible to eliminate the influence of noise almost or completely.
  • the low-frequency noise is “1 / f noise” of the amplifier in the current-voltage conversion means that mainly performs differential amplification, and tends to decrease as the frequency increases. Therefore, the current-voltage conversion is performed while modulating the converted voltage at a predetermined frequency higher than the frequency of the current converted by the photoelectric conversion element by the modulation means, so that the effect of this low frequency noise is almost or completely eliminated. Can be eliminated.
  • the light detection characteristic (or light detection performance) in the low frequency region is remarkably excellent.
  • the amount of light from the optical sensor that measures a weak signal including a low frequency component such as a blood flow signal. can be detected more accurately and appropriately.
  • the current converted by the photoelectric conversion element has a colored spectrum having a center frequency fs as an example.
  • a case will be described as an example.
  • Current-voltage conversion is performed on the colored spectrum having the center frequency fs as it is.
  • the current-voltage converting means for performing differential amplification generates low frequency noise called “1 / f noise”.
  • the low frequency noise has a tendency that the degree of noise increases as the frequency decreases.
  • this “1 / f noise” is added to the signal component of the frequency fs at the time of current-voltage conversion, and current-voltage conversion is performed, and the modulation and demodulation by the above-described modulation means and demodulation means are not performed. In this case, there is a possibility that a technical problem that the S / N ratio is significantly reduced.
  • the modulation means As the modulation means, the first terminal and the positive input terminal are connected, and the second terminal and the negative input terminal are connected. A first connection state and a second connection state in which the first terminal and the negative input terminal are connected and the second terminal and the positive input terminal are connected are switched at the predetermined frequency.
  • One switch means is further provided.
  • the above-described modulation can be appropriately performed by the switching action of the first switching means.
  • the modulation means the negative output terminal and the first negative feedback resistor are connected, and the positive output terminal and the second negative feedback resistor are connected.
  • a fourth connection state in which the negative output terminal and the second negative feedback resistor are connected, and the positive output terminal and the first negative feedback resistor are connected.
  • a second switch means for switching between and at a predetermined frequency.
  • the above-described modulation can be appropriately performed by the switching action of the second switch means.
  • the amplifying unit differentially amplifies a negative detection voltage output from the negative output terminal and a positive detection voltage output from the positive output terminal.
  • Subtracting amplification means is included, and the demodulation means further includes third switch means for inverting the polarities of the negative detection voltage and the positive detection voltage at the predetermined frequency.
  • the above-described demodulation can be appropriately performed by the switching action of the third switching means.
  • the amplifying means includes delay means for delaying a timing for demodulating the voltage signal of the converted voltage by a predetermined time.
  • the harmonic of the carrier frequency at the time of demodulation which is generated due to the time difference between the modulation timing by the modulation means and the demodulation timing by the demodulation means. It is possible to effectively prevent residual wave components. As a result, high frequency noise generated during demodulation can be effectively suppressed, and further improvement in the S / N ratio of the light detection signal can be realized.
  • the light intensity detection device further includes high-pass filter means for removing low-frequency noise from the voltage signal of the modulated voltage.
  • the light intensity detection device further includes low-pass filter means for removing high-frequency noise from the demodulated voltage signal.
  • the low-pass filter means can remove high-frequency noise such as carrier frequency components that could not be removed at the time of demodulation, so that the S / N ratio of the photodetection signal can be significantly improved. Because there is, it is much more preferable in practice.
  • a light quantity information processing apparatus includes a light quantity detection apparatus according to the present invention described above, and a signal processing unit that performs signal processing on a light detection signal that is a voltage signal of the amplified voltage. Is provided.
  • the light quantity information processing apparatus of the present invention it is possible to enjoy various benefits of the above-described light quantity detection apparatus of the present invention while appropriately processing the light detection signal that is the voltage signal of the amplified voltage. It becomes.
  • the signal processing means for example, when it is transmitted via a communication network, it becomes strong against noise from the external environment. It is possible to realize.
  • the light quantity information processing apparatus of the present invention can also adopt various aspects.
  • FIG. 1 is a block diagram schematically showing a detailed configuration of a light amount detection device 1 according to a first embodiment.
  • 1 is a block diagram schematically showing a detailed configuration of a current-voltage converter 100 according to a first embodiment.
  • 3 is a circuit diagram schematically showing a detailed configuration of an amplifier 300 according to the first embodiment.
  • FIG. 5 is a circuit diagram schematically showing a detailed configuration of an amplifier 300a according to a second embodiment. It is a block diagram which shows typically the detailed structure of the current-voltage converter 100b which concerns on 3rd Embodiment.
  • FIG. 6 is a circuit diagram schematically showing a detailed configuration of an amplifier 300b according to a third embodiment.
  • FIG. 10 is a waveform diagram along the time axis of a detection current Idt, detection voltages VOut +, VOut ⁇ , switch action control signals SWP1, SWP2, SWP3, and a light detection signal DtOut of the light receiving element according to the third embodiment.
  • FIG. 1 is a block diagram conceptually showing the overall structure of the light quantity detection device 1 according to the first embodiment.
  • FIG. 2 is a block diagram schematically showing the detailed configuration of the light quantity detection device 1 according to the first embodiment.
  • the light quantity detection device 1 includes a light receiving element 10, a current-voltage converter 100 including a differential amplifier 200, and an amplifier 300.
  • the current-voltage converter 100 includes a differential amplifier 200 and feedback resistors Rf1 and Rf2.
  • the amplifier 300 includes input terminals In1 and In2 and an output terminal Out.
  • the light receiving element 10 receives a weak light amount input from the outside, and outputs a detection current according to the received light amount.
  • the light receiving element 10 is a photodiode such as a PIN diode, for example, and both ends of the light receiving element 10 are connected to the input terminals In + and In ⁇ of the differential amplifier 200 of the current-voltage converter 100, respectively.
  • the P-type semiconductor of the light receiving element 10 is connected to the input terminal In + of the differential amplifier 200 of the current-voltage converter 100.
  • the N-type semiconductor of the light receiving element 10 is connected to the input terminal In ⁇ of the differential amplifier 200 of the current / voltage converter 100.
  • the current-voltage converter 100 converts the detected current detected by the light receiving element 10 into a current-voltage by the action of the feedback resistors Rf1 and Rf2, and converts the detected voltages VOut ⁇ and VOut + having different signal polarities into output terminals Out ⁇ , Differential output is performed via Out +.
  • the feedback resistor Rf1 is connected between the input terminal In + and the output terminal Out ⁇ of the differential amplifier 200 of the current-voltage converter 100, and the feedback resistor Rf2 is connected between the input terminal In ⁇ and the output terminal Out +.
  • the detection voltages VOut ⁇ and VOut + of the differential amplifier 200 of the current / voltage converter 100 are input to the input terminals In1 and In2 of the amplifier 300, respectively.
  • the amplifier 300 amplifies the input voltage and outputs a light detection signal.
  • the light receiving element 10 constitutes an example of the photoelectric conversion element according to the present invention.
  • the current-voltage converter 100 constitutes an example of current-voltage conversion means according to the present invention.
  • the feedback resistors Rf1, Rf2 constitute an example of the first negative feedback resistor and the second negative feedback resistor according to the present invention.
  • the amplifier 300 constitutes an example of an amplifying unit according to the present invention.
  • FIG. 3 is a block diagram schematically showing the detailed configuration of the current-voltage converter 100 according to the first embodiment.
  • the current-voltage converter 100 includes the feedback resistors Rf1 and Rf2 and the differential amplifying unit 200.
  • the feedback resistor Rf1 is connected between the input terminal In + and the output terminal Out ⁇ of the differential amplifier 200 of the current-voltage converter 100, and the feedback resistor Rf2 is connected to the input terminal In ⁇ and the output.
  • the feedback resistors Rf1 and Rf2 are connected between the terminal Out + and negative feedback, and at the same time convert current into voltage.
  • the differential amplifier 200 includes input terminals In + and In ⁇ , a differential amplifier circuit 210, a midpoint potential detector 220, a common negative feedback device 230, and output terminals Out + and Out ⁇ .
  • the differential amplifier circuit 210 includes transistors Tr1 and Tr2, a power supply voltage Vcc, load resistors Rc1 and Rc2, and a constant current source IE.
  • the input terminals In + and In ⁇ of the differential amplifier 200 are connected to the bases of the transistors Tr1 and Tr2 of the differential amplifier circuit 210 as differential inputs of the differential amplifier circuit 210, respectively.
  • the constant current source IE is connected between the connection point of each emitter of the transistors Tr1 and Tr2 and the ground point.
  • the load resistors Rc1 and Rc2 are connected between the collectors of the transistors Tr1 and Tr2 and the power supply voltage Vcc, respectively, and these connection points are derived as output terminals Out ⁇ and Out +, respectively.
  • the two differential outputs of the differential amplifier circuit 210 are input to the midpoint potential detector 220, respectively.
  • the midpoint potential detector 220 detects the midpoint potential of the two differential outputs of the differential amplifier circuit 210 and outputs the detected signal.
  • the signal output from the midpoint potential detector 220 is input to the common negative feedback unit 230.
  • the common negative feedback unit 230 includes a subtracter 231 and a reference potential generator 232.
  • the subtractor 231 compares the reference potential generated by the reference potential generator 232 with the midpoint potential detected by the midpoint potential detector 220, and outputs a signal indicating the potential difference between the two.
  • the reference potential may be a reference potential input from the outside of the common negative feedback unit 230.
  • the potential difference signal output from the common negative feedback unit 230 is input to a control terminal for setting the current value of the constant current source IE of the differential amplifier circuit.
  • the midpoint potential detector 220 constitutes an example of the midpoint detection means according to the present invention.
  • the common negative feedback unit 230 constitutes an example of the common negative feedback unit according to the present invention.
  • FIG. 4 is a circuit diagram schematically showing the detailed configuration of the amplifier 300 according to the first embodiment.
  • the amplifier 300 is an operational amplifier operational amplifier (hereinafter, appropriately referred to as "amplifier") OP1, OP2, OP3, feedback resistor R2, R3, R6, common input resistor R1, the input resistor R4, R5 and R7 are provided.
  • amplifier operational amplifier operational amplifier
  • the input terminals In1 and In2 of the amplifier 300 are connected to the plus input terminals of the amplifiers OP1 and OP2, respectively.
  • the amplifiers OP1 and OP2 are negatively fed back by feedback resistors R2 and R3, respectively.
  • the common input resistor R1 is provided between the negative input terminal of the amplifier OP1 and the negative input terminal of the amplifier OP2.
  • the common input resistor R1 may function as a variable resistor in order to make the gain variable.
  • the feedback resistors R2 and R3 are set to the same resistance value.
  • the output of the amplifier OP1 is connected to the negative input terminal of the amplifier OP3 via the input resistor R4.
  • the output of the amplifier OP2 is connected to the plus input terminal of the amplifier OP3 via the input resistor R5.
  • the input resistors R4 and R5 are set to the same resistance value.
  • the amplifier OP3 is negatively fed back by the feedback resistor R6.
  • the signal component output from the amplifier OP2 is divided by the input resistor R5 and the input resistor R7 and input to the plus input terminal of the amplifier OP3.
  • the other terminal of the input resistor R7 is connected to the reference potential Vref.
  • the feedback resistor R6 and the input resistor R7 are set to the same resistance value.
  • the output of the amplifier OP3 is output as a light detection signal DtOut.
  • the amplifier 300 is configured as an instrumentation amplifier such as an instrumentation amplifier, for example, and includes a voltage input from the input terminal In1 and a voltage input from the input terminal In2.
  • the potential difference is amplified.
  • in-phase signal components can be removed as noise in the two differential outputs output from the current-voltage converter 100.
  • two differential signals having different polarities are generated according to the amount of light input to the light receiving element 10 such as a photodiode as described above.
  • the detected light signal components are input in opposite phases to the input terminals In 1 and In 2 of the amplifier 300.
  • in-phase components such as hum noise from the power source, for example, can be removed as noise from the light detection signal DtOut output from the amplifier 300.
  • the detected light signal component is out of phase, it is amplified by the amplifier 300 and output as the light detection signal DtOut.
  • the noise level is reduced and the signal level is increased, so that the S / N ratio can be significantly improved.
  • the amplifier 300 is configured as an instrumentation amplifier such as an instrumentation amplifier in this manner, thereby increasing the input impedance, lowering the output impedance, and increasing the common mode rejection ratio (CMRR: Common Mode Rejection Rate). It is possible. As a result, the voltage difference between the potential of the input terminal In1 and the potential of the input terminal In2 is more appropriately differentially amplified, and a more appropriate light detection signal DtOut can be output.
  • CMRR Common Mode Rejection Rate
  • the light receiving element 10 is configured by a photodiode such as a PIN diode, for example.
  • a so-called P terminal of the light receiving element 10 such as a photodiode is connected to the input terminal In + of the differential amplifier 200 of the current-voltage converter 100.
  • the N-type semiconductor of the light receiving element 10, so-called N terminal is connected to the input terminal In ⁇ of the differential amplifier 200 of the current-voltage converter 100.
  • the input terminals In + and In ⁇ of the differential amplifier 200 are connected to the bases of the transistors Tr1 and Tr2 of the differential amplifier circuit 210 as differential inputs of the differential amplifier circuit 210, respectively.
  • the differential output of the differential input on the input terminal In + side in the differential amplifier circuit 210 is negatively fed back by the feedback resistor Rf1.
  • the differential output of the differential input on the input terminal In ⁇ side in the differential amplifier circuit 210 is negatively fed back by the feedback resistor Rf2.
  • a light receiving element such as a photodiode
  • a positive voltage is generated at the P terminal.
  • a reverse current flows according to the amount of light, and this current becomes a detection current of the light receiving element.
  • This detection current flows from the P terminal of the photodiode, that is, the input terminal In + of the differential amplifier 200 to the feedback resistor Rf1, and drops in voltage due to Rf1, so that the output of the differential amplifier 200 of the current-voltage converter 100 is output.
  • the potential at the terminal Out ⁇ decreases.
  • this detection current flows from the feedback resistor Rf2 to the photodiode N terminal, that is, the input terminal In ⁇ , and the voltage drops due to Rf2, so that the potential of the output terminal Out + of the differential amplifier 200 of the current-voltage converter 100 is reduced. Will rise. As a result, the potential of the output terminal Out ⁇ of the differential amplifier 200 of the current-voltage converter 100 decreases and the potential of the output terminal Out + of the differential amplifier 200 increases according to the amount of light input to the photodiode. Thus, differential output signals having different polarities can be obtained.
  • the input resistance value of the differential amplifier 200 can be designed to be higher than the resistance values of the feedback resistors Rf1 and Rf2, and the current flowing into the input terminals In + and In ⁇ of the differential amplifier 200 can be ignored.
  • the two differential outputs in the differential amplifier circuit 210 are respectively input to the midpoint potential detector 220, and the midpoint potential of the two differential outputs of the differential amplifier circuit 210 is detected.
  • the detected midpoint potential is compared with the reference potential by the above-described subtracter 231 and the reference potential generator 232, and the potential difference is compared with the bias of the differential amplifier circuit 210. Is negatively fed back to the control terminal of the constant current source IE. Thereby, the bias of the differential amplifier circuit 210 is appropriately controlled.
  • the first negative feedback action by feedback resistors Rf1, Rf2, the two types of negative feedback effect of the second negative feedback action by common negative feedback device 230, the potential of the input terminal of the differential amplifier circuit 210 It is possible to asymptotically approach the reference potential.
  • the potential of the input terminal In + and the potential of the input terminal In ⁇ of the differential amplifier 200 of the current-voltage converter 100 can be made asymptotic to the reference potential in the common negative feedback unit 230, respectively.
  • the potential of the input terminal In + of the differential amplifier 200 of the current-voltage converter 100 and the potential of the input terminal In ⁇ can be made substantially equal.
  • the potential of the P terminal in the light receiving element 10 such as a PIN diode and the potential of the N terminal can be made equal.
  • the light receiving element 10 such as a PIN diode can be operated in a zero bias, so-called power generation mode.
  • the P terminal or the N terminal of the light receiving element 10 and the input terminal In + or In ⁇ of the differential amplifier 200 of the current-voltage converter 100 are equal, the P terminal or the N terminal of the light receiving element 10 and the input terminal In + or In ⁇ of the differential amplifier 200 of the current-voltage converter 100.
  • the connection relationship is not limited to the present embodiment. That is, the P terminal of the light receiving element 10 may be connected to the input terminal In ⁇ of the differential amplifier 200, and the N terminal of the light receiving element 10 may be connected to the input terminal In + of the differential amplifier 200.
  • the present embodiment can detect the change in the feeble light intensity and weak light intensity due to scattering of light by hemoglobin, for example in blood.
  • FIG. 5 is a graph schematically showing the zero bias according to the first embodiment and the reverse bias voltage according to the comparative example (FIG. 5A), and a circuit diagram of the light receiving element according to the comparative example (FIG. b)), and a circuit diagram of the light receiving element according to the first embodiment (FIG. 5C).
  • the horizontal axis indicates the photodiode voltage
  • the vertical axis indicates the photodiode current.
  • the potential of the N terminal is made higher than the potential of the P terminal, and the reverse bias voltage is set.
  • the reverse bias voltage is set.
  • the light receiving element 10 such as a PIN diode, for example, has almost or a reverse bias voltage applied to the light receiving element 10. It is possible to operate in a so-called power generation mode in which zero bias is not applied completely. This can make the dark current asymptotically almost or completely zero. As a result, reduces the noise current due to fluctuations in the dark current, it is possible to improve the S / N ratio, for example, detect weak light intensity and changes in the weak light intensity due to scattering of light by hemoglobin in the blood Is possible.
  • the action of applying a bias to the photodiode is performed by a negative feedback action by feedback resistors Rf1 and Rf2, as shown in FIG.
  • the chip area can be reduced when the light quantity detection device is made into, for example, an LSI (Large Scale Integrated Circuit), so that the manufacturing cost of the light quantity detection device can be reduced.
  • the light receiving element such as a photodiode is operated in a zero bias state, that is, a so-called power generation mode.
  • the feedback resistors Rf1 and Rf2 and the midpoint potential detection are performed without electrically separating the input bias of the differential amplifier circuit 210 and the bias of the light receiving element such as a photodiode.
  • the input bias of the differential amplifier circuit 210 can be asymptotic to the reference potential to be optimized by the cooperative action of the amplifier and the common negative feedback device.
  • the distortion characteristics of the differential amplifier circuit 210 can be obtained without adding a special capacitor for electrically separating the input bias of the differential amplifier circuit 210 and the bias of the light receiving element or the above-described special bias element. Improvement can be realized. In addition, it is possible to improve the dynamic range in the light amount detection device without adding a special capacitor for separating the bias or the special bias element described above.
  • OEIC Optical Electric Integrated Circuit
  • FIG. 6 is a circuit diagram schematically showing the detailed configuration of the amplifier 300a according to the second embodiment.
  • the amplifier 300a according to the second embodiment substantially the same components as those of the amplifier 300 according to the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the light receiving element 10 and the current-voltage converter 100 according to the second embodiment are substantially the same as the light receiving element 10 and the current-voltage converter 100 according to the first embodiment described above, and thus description thereof is omitted for the sake of convenience.
  • the amplifier 300a includes amplifiers OP1 and OP2, feedback resistors R2 and R3, a common input resistor R1, a low-pass filter (ie, a low-pass filter) LPF1, LPF2, and AD conversion. (Analog-to-Digital Converter) ADC1 and ADC2.
  • the amplifier 300 according to the first embodiment is configured to output a photodetection signal DtOut as an analog signal as well as a single-ended signal.
  • the amplifier 300a according to the second embodiment may differentially output two differential signals having different polarities as the photodetection signals DtOut1 and DtOut2.
  • it may be output as a digital signal via the low-pass filters LPF1 and LPF2 and AD converters ADC1 and ADC2 described above.
  • the optical detection signal DTOUT1, DTOUT2 when outputting a digital signal, an AD conversion via a low-pass filter LPF1, LPF2 as anti-alias filter is capable of removing aliasing noise generated by the sampling by the AD converter Since the S / N ratio can be increased by inputting the signals to the ADCs ADC1 and ADC2, it is very suitable and beneficial.
  • AD converters ADC1, ADC2 quantized light detection signal which is an output signal of DTOUT1, DTOUT2, for example subtraction process executed by a DSP (Digital Signal Processor) signal processing apparatus such as a digital signal processor (not shown) such as May be.
  • DSP Digital Signal Processor
  • the light detection signal DTOUT1, DTOUT2 is because it is quantized, in case of transmitting through the communication network for example, resistant to noise from the outside environment Therefore, it is possible to realize long-distance transmission of the light detection signal.
  • FIG. 7 is a block diagram schematically showing the detailed configuration of the current-voltage converter 100b according to the third embodiment.
  • FIG. 9 is a waveform diagram along the time axis of the detection current Idt, the detection voltages VOut +, VOut ⁇ , the switch action control signals SWP1, SWP2, SWP3, and the light detection signal DtOut of the light receiving element according to the third embodiment.
  • the current-voltage converter 100b is configured to include feedback resistors Rf1 and Rf2 and a differential amplifier 200b.
  • Feedback resistors Rf1, Rf2 has an input terminal of the differential amplifier 200b of the current-voltage converter 100 an In +, and In-, output terminals Out +, is connected between the Out-, at the same time subjected to negative feedback, the current Convert to voltage.
  • the differential amplifier 200b includes input terminals In + and In ⁇ , a first switch 250, a differential amplifier circuit 210, a second switch 260, a midpoint potential detector 220, a common negative feedback device 230, and output terminals Out + and Out ⁇ .
  • the stipulated period generator 270 is provided.
  • the first switch 250 is provided between the input terminals In + and In ⁇ and the differential amplifier circuit 210, and connects the input terminals In + and In ⁇ and the two input terminals of the differential amplifier circuit 210. It is configured to be switchable.
  • the second switch 260 is provided between the output terminal of the differential amplifier circuit 210 and the feedback resistors Rf1 and Rf2, and is connected to two output terminals (in other words, output terminals Out + and Out ⁇ ) of the differential amplifier circuit 210.
  • the connection to the feedback resistors Rf1 and Rf2 can be switched.
  • the first switch 250 constitutes an example of the first switch means according to the present invention
  • the second switch 260 constitutes an example of the second switch means according to the present invention.
  • the first switch 250 and the second switch 260 constitute an example of the modulation means according to the present invention.
  • the specified period generator 270 is constituted by, for example, a digital oscillator, a frequency divider, a delay element, a logic circuit (all not shown), etc., and the conduction and non-conduction in the first switch 250 and the second switch 260 according to the specified period T.
  • Control signals SWP1, SWP2, and SWP3 for controlling conduction, so-called switching action, are generated.
  • the control signal SWP3 is a signal delayed by a time Td as compared with the control signals SWP1 and SWP2.
  • the control signal SWP1 is supplied to the first switch 250, the control signal SWP2 is supplied to the second switch 260, and the control signal SWP3 is supplied to the third switch 330 described later.
  • the polarity of the electrical connection between the two terminals of the light receiving element 10 and the two input terminals of the differential amplifier circuit 210 is inverted by the first switch 250.
  • the control signal SWP1 is at a high level
  • the P terminal of the light receiving element 10 is connected to the plus input terminal of the differential amplifier circuit 210 via the first switch 250.
  • the control signal SWP2 is also High level
  • the feedback resistor Rf1 is connected via a second switch 260 to the negative output terminal of the differential amplifier circuit 210, the light receiving element 10
  • the output voltage from the negative output terminal of the differential amplifier circuit 210 is negatively fed back to the P terminal.
  • the P terminal of the light receiving element 10 is connected to the negative input terminal of the differential amplifier circuit 210 via the first switch 250.
  • the control signal SWP1 is at the low level
  • the control signal SWP2 is also at the low level
  • the feedback resistor Rf1 is connected to the plus output terminal of the differential amplifier circuit 210 via the second switch 260.
  • the output voltage from the positive output terminal of the differential amplifier is negatively fed back to the P terminal.
  • the N terminal of the light receiving element 10 in a complementary manner to the negative feedback focusing on the P terminal of the light receiving element 10 described above. That is, when the control signal SWP1 is at a high level, the N terminal of the light receiving element 10 is connected to the negative input terminal of the differential amplifier circuit 210 via the first switch 250. At the same time, when the control signal SWP1 is at the high level, the control signal SWP2 is also at the high level, and the feedback resistor Rf2 is connected to the plus output terminal of the differential amplifier circuit 210 via the second switch 260. The output voltage from the plus output terminal of the differential amplifier circuit 210 is negatively fed back to the N terminal.
  • the N terminal of the light receiving element 10 is connected to the plus input terminal of the differential amplifier circuit 210 via the first switch 250.
  • the control signal SWP1 is Low level
  • the control signal SWP2 is Low level
  • the feedback resistor Rf2 is connected via a second switch 260 to the negative output terminal of the differential amplifier circuit 210, the light receiving element 10
  • the output voltage from the negative output terminal of the differential amplifier 210 is negatively fed back to the N terminal.
  • the detection current Idt detected by the light receiving element 10 by the switching operation of the first switch 250 and the second switch 260 described above is respectively output from the output terminals Out + and Out ⁇ of the current-voltage converter 100 as shown in FIG.
  • Current-voltage conversion is performed on the output detection voltages VOut + and VOut ⁇ to form a pulse-shaped waveform according to a specified period T.
  • the upper and lower envelopes of the waveforms of the detection voltages VOut + and VOut ⁇ are waveforms corresponding to the detection current Idt, and are substantially equivalent to the waveform subjected to amplitude modulation at the carrier frequency “1 / T”.
  • the switching action by the first switch 250 and the second switch 260 is substantially equivalent to the action of a modulator in an amplitude modulation (AM) system that performs amplitude modulation at a specified frequency “1 / T”.
  • AM amplitude modulation
  • FIG. 8 is a circuit diagram schematically showing the detailed configuration of the amplifier 300b according to the third embodiment.
  • an amplifier 300b includes a high-pass filter (i.e., high-pass filter) HPF1, HPF2, the third switch 330, an input resistor R4, R5, R7, amplifier OP3, a feedback resistor R6, a low-pass filter (that is, a low-pass filter) LPF3 is provided.
  • a high-pass filter i.e., high-pass filter
  • HPF2 high-pass filter
  • HPF2 high-pass filter
  • the third switch 330 an input resistor R4, R5, R7, amplifier OP3, a feedback resistor R6, a low-pass filter (that is, a low-pass filter) LPF3 is provided.
  • the input terminals In1 and In2 of the amplifier 300 are connected to high-pass filters HPF1 and HPF2, respectively.
  • the third switch 330 constitutes an example of third switch means and demodulating means according to the present invention, and the high-pass circuits HPF1 and HPF2 constitute one example of high-pass filter means according to the present invention.
  • the amplifier OP3 which is an output stage is accompanied by a low-pass circuit, so-called low-pass filter LPF3.
  • the low pass filter LPF3 constitutes a low pass filter means.
  • the amplifier OP3 itself may have an LPF characteristic.
  • High-pass circuit so-called, by the filtering action of the high-pass filter HPF1, HPF2, the output terminal of the current-voltage converter 100 shown in FIG. 7 described above Out-, the detection voltage output from Out + Vout-, from VOut + output signal
  • the third switch 330, the output terminal Out-, the detection voltage VOut- and VOut + output signal outputted from the Out +, according to the control signal SWP3 in accordance with the provisions of the period T, and to the amplifier OP3 is selectively polarity inverting input
  • the third switch 330 is substantially equivalent to the operation of a demodulator in an amplitude modulation (AM) system that demodulates a modulation signal of the detection voltages VOut ⁇ and VOut + that are amplitude-modulated at a specified frequency “1 / T”.
  • AM amplitude modulation
  • the amplifier OP3 differentially amplifies the two demodulated current-voltage conversion signals.
  • the low-pass filter LPF3 associated with the amplifier OP3 has a noise component around the carrier frequency that could not be removed during the demodulation described above, and thermal noise generated by the feedback resistors Rf1 and Rf2 used for current-voltage conversion. It is possible to effectively suppress noise components at high frequencies.
  • FIG. 10 is a graph schematically showing the power spectrum of the modulated wave, the modulated wave, and the demodulated wave in the spectrum analysis according to the third embodiment.
  • the carrier frequency of the carrier wave in the amplitude modulation is indicated by the frequency fc
  • the lower side wave of the amplitude modulation is indicated by the frequency fc ⁇ fs
  • the upper side wave of the amplitude modulation is indicated by the frequency fc + fs.
  • the detected current Idt detected by the light receiving element 10 is, for example, a signal centered on the frequency fs.
  • the spectrum is subjected to current-voltage conversion as it is.
  • the differential amplifier circuit 210 constituting the current-voltage converter 100 generates low-frequency noise called “1 / f noise”.
  • the low frequency noise has a tendency that the amplitude of the noise increases as the frequency decreases.
  • this “1 / f noise” is added to the signal component of the frequency fs at the time of current-voltage conversion, and current-voltage conversion is performed, and the modulation in the amplitude modulation method according to the third embodiment and If demodulation is not performed, there may be a technical problem that the S / N ratio is significantly reduced.
  • the detection voltages VOut ⁇ and VOut + of the current-voltage converter 100b are generated by the switching action of the first switch 250 and the second switch 260.
  • the detection current Idt detected by the light receiving element 10 has a frequency spectrum of upper and lower frequencies, ie, “frequency fc + fs” and “frequency fc ⁇ fs”, with the carrier frequency fc as the center, as shown in FIG.
  • Current-voltage conversion is performed while being modulated into an amplitude-modulated wave.
  • the low-frequency noise indicated by the dotted line in FIG. 10 is mainly “1 / f noise” of the differential amplifier circuit 210 and tends to decrease as the frequency increases. Therefore, when the current / voltage conversion is performed by setting the modulation frequency fc to a high frequency that is significantly less influenced by the “1 / f noise” due to the switching action of the first switch 250 and the second switch 260. It is possible to eliminate the influence of frequency noise almost or completely.
  • the S / N ratio of the photodetection signal DtOut is eliminated while almost or completely eliminating the influence of the “1 / f noise” of the differential amplifier circuit 210 constituting the current-voltage converter 100b. It is possible to improve.
  • the light quantity detection device according to the third embodiment is remarkably excellent in light detection characteristics (or light detection performance) in the low frequency range, so that low-frequency signals such as blood flow signals can be used as biological information. It is possible to detect a weak light amount from an optical sensor that measures a signal including a component with higher accuracy and appropriately.
  • the voltages VOut + and VOut ⁇ are applied to the carrier frequency fc that is higher than the frequency fs of the detection current Idt described above by the switching action of the first switch 250 and the second switch 260 shown in FIG.
  • current-voltage conversion is performed while amplitude modulation is performed.
  • the voltages VOut + and VOut ⁇ that have been subjected to the current-voltage conversion while being subjected to the amplitude modulation are subjected to the third low frequency noise after being removed by the filtering action of the high pass filters HPF1 and HPF2 shown in FIG. Demodulation by the switch action of the switch 330 is performed.
  • the voltages VOut + and VOut ⁇ are obtained by removing low-frequency noise such as the above-mentioned “1 / f noise” after modulation and before demodulation in the amplitude modulation method by the high-pass filters HPF1 and HPF2. Since the signal is amplified while being demodulated by the third switch 330, the S / N ratio can be remarkably improved, which is very preferable in practice.
  • the demodulation control signal SWP3 is a signal delayed by a predetermined time Td compared to the modulation control signals SWP1 and SWP2. Accordingly, the harmonic component of the carrier frequency fc at the time of demodulation, which is generated due to the time difference between the modulation timing by the current-voltage converter 100b (see FIG. 7) and the demodulation timing by the amplifier 300b (see FIG. 8). Can be effectively prevented. Due to the delay action of delaying the control signal SWP3 by a predetermined time Td, it is possible to effectively suppress high-frequency noise generated during demodulation, and to further improve the S / N ratio of the photodetection signal. is there.
  • FIG. 11 is a block diagram conceptually showing the overall structure of a blood flow sensor that is an example of the biological information detecting apparatus according to the fourth embodiment.
  • or 3rd embodiment mentioned above is attached
  • the biological information detecting apparatus 1c includes a laser driving device 2, a semiconductor laser 3, a light receiving element 10, a current-voltage converter 100, an amplifier 300, a low-pass filter LPF4, and an AD converter.
  • An ADC 4 and a signal processing unit 5 are provided.
  • the laser driving device 2 drives the semiconductor laser 3 which is a light source, and the specimen is irradiated with light.
  • Light scattered by hemoglobin in the capillary of the sample enters the light receiving element 10.
  • the detected current detected by the light receiving element 10 is converted into a voltage by the negative feedback action of the feedback resistors Rf1 and Rf2 in the current-voltage converter 100.
  • the amplified photodetection signal DtOut is input to the low-pass filter LPF4.
  • the low-pass filter LPF4 removes aliasing noise due to sampling of the AD converter ADC4.
  • the output signal from the AD converter ADC 4 is subjected to digital signal processing by a signal processing unit 5 such as a DSP (Digital Signal Processor), for example, and a digital signal indicating the blood flow is calculated and output as a blood flow detection signal.
  • the blood flow rate detection signal is input to a control unit (not shown) such as a CPU via a communication interface such as a wired interface or a wireless interface, and is displayed by a display unit (not shown) such as a monitor.
  • the current-voltage converter according to the third embodiment can be applied instead of the current-voltage converter according to the first embodiment.
  • the amplifier according to the second embodiment can be applied instead of the amplifier according to the first embodiment.
  • the current-voltage converter and amplifier according to the third embodiment can be applied instead of the current-voltage converter and amplifier according to the first embodiment.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • the light quantity information processing apparatus is also included in the technical scope of the present invention.
  • the present invention provides, for example, a photoelectric conversion device that converts a minute amount of light into an electrical signal, a light amount detection device such as a measuring instrument that measures the blood flow of the subject, and a subject from the measurement result of the blood flow of the subject, for example.
  • the present invention is applicable to a light quantity information processing apparatus such as a biological information estimation apparatus that estimates the biological information of
  • SYMBOLS 1 Light quantity detection apparatus, 1c ... Biological information detection apparatus, 2 ... Laser drive apparatus, 3 ... Semiconductor laser, 5 ... Signal processing part, 10 ... Light receiving element, 200 ... Differential amplification part, 100, 100b ... Current-voltage converter , 300, 300a, 300b ... amplifier, 200, 200b ... differential amplifier, 250 ... first switch, 210 ... differential amplifier circuit, 220 ... midpoint potential detector, 230 ... common negative feedback, 260 ... second Switch, 270 ... Specified period generator, 330 ... Third switch, Rf1, Rf2 ... Feedback resistor, In1, In2 ... Input terminal, Out ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 光量検出装置(1)は、入力された光の光量を電流に変換する光電気変換素子(10)と、光電気変換素子の第1端子(P端子)に接続された正の入力端子(In+)、光電気変換素子の第2端子(N端子)に接続された負の入力端子(In-)、正の入力端子に入力された電流の極性を反転して電圧として出力する負の出力端子(Out-)、負の入力端子に入力された電流の極性を反転して電圧として出力する正の出力端子(Out+)、正の入力端子と前記負の出力端子との間に接続される第1負帰還抵抗、及び、負の入力端子と前記正の出力端子との間に接続される第2負帰還抵抗を有し、光電気変換素子をゼロバイアスにさせると共に前記変換された電流を電圧に変換する電流電圧変換手段(100)と、変換された電圧を増幅する増幅手段(300)とを備える。

Description

光量検出装置、及び光量情報処理装置
 本発明は、例えば、微小な光量を電気信号に変換する光電変換装置などの光量検出装置、並びに、例えば、微小な光量に応じた光検出信号を信号処理する光量情報処理装置の技術分野に関する。
 この種の装置として、特許文献1等では、光通信に使用する高速通信用の光受信回路に関する技術が開示されている。具体的には、フォトダイオードに、バイアス素子によって、逆バイアス電圧を印加することにより、フォトダイオードの両端子間の静電容量を低下させ、光検出帯域を広帯域化する技術が開示されている。
特開平6-224652号公報 特開2000-261385号公報 特開2000-357929号公報 特開平6-84176号公報 特表2008-510383号公報
 しかしながら、上述した特許文献1等では、フォトダイオードにおいて、逆バイアス電圧を印加するので、逆バイアス電圧の印加によりP端子とN端子との間の静電容量を低下させることはできるが、弊害として、入力光量がなくても、逆方向に流れる電流、即ち、暗電流が発生してしまうという技術的な問題点が生じる。このため、検出された光量の変化が微弱であることによって、フォトダイオードによって検出された電流も微弱な電流量である場合、逆バイアス電圧の印加によって暗電流が増加してしまうとノイズ成分が増加し、微弱な光量を検出することが困難となってしまうという技術的な問題点が生じる。
 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、より微弱な光量を検出することが可能な光量検出装置、及び光量情報処理装置を提供することを課題とする。
 上記課題を解決するために、本発明に係る光量検出装置は、入力された光の光量を電流に変換する光電気変換素子(例えばPINダイオード)と、前記光電気変換素子の第1端子に接続された正の入力端子、前記光電気変換素子の第2端子に接続された負の入力端子、前記正の入力端子に入力された電流の極性を反転して電圧として出力する負の出力端子、前記負の入力端子に入力された電流の極性を反転して電圧として出力する正の出力端子、前記正の入力端子と前記負の出力端子との間に接続される第1負帰還抵抗、及び、前記負の入力端子と前記正の出力端子との間に接続される第2負帰還抵抗を有し、前記光電気変換素子をゼロバイアスにさせると共に前記変換された電流を電圧に変換する電流電圧変換手段と、前記変換された電圧を増幅する増幅手段とを備える。
 本発明に係る光量検出装置によれば、例えばPINダイオード(P-Intrinsic-N Diode)等の光電気変換素子によって、入力された光の光量が電流に変換される。
 電流電圧変換手段は、次の6つの端子を有し、光電気変換素子をゼロバイアスにさせると共に変換された電流を電圧に変換する。ここに、本発明に係る「ゼロバイアス」とは、光電気変換素子に逆バイアス電圧を殆ど又は完全に印加しないバイアスの状態を意味する。このような電流電圧変換手段は、光電気変換素子における、例えばP端子等の第1端子に接続された正の入力端子、光電気変換素子における、例えばN端子等の第2端子に接続された負の入力端子、正の入力端子に入力された電流の極性を反転して電圧として出力する負の出力端子、負の入力端子に入力された電流の極性を反転して電圧として出力する正の出力端子、正の入力端子と負の出力端子との間に接続される第1負帰還抵抗、負の入力端子と正の出力端子との間に接続される第2負帰還抵抗を有する。
 増幅手段によって、変換された電圧は増幅されることにより、受光量に応じた光検出信号として出力可能である。
 本発明によれば、上述したように、例えばPINダイオード等の光電気変換素子を、当該光電気変換素子に逆バイアス電圧を殆ど又は完全に印加しないゼロバイアスの状態、所謂、発電モードとして動作させることが可能である。これにより、暗電流を殆ど又は完全にゼロに漸近させることができる。その結果、光検出信号における、暗電流のゆらぎによるノイズ電流を低下させ、S/N比を向上させることが可能である。典型的には、例えば血液中のヘモグロビンによる光の散乱に起因した微弱な光量及び微弱な光量の変化を検出可能である。
 加えて、本発明によれば、光電気変換素子へのゼロバイアス印加の作用を、第1負帰還抵抗及び第2負帰還抵抗による負帰還作用で実施している。これにより、光電気変換素子をゼロバイアスの状態にするのに、この特別なバイアス素子を追加する必要を殆ど又は完全に無くすことができる。この結果、光量検出装置を、例えばLSI(Large Scaled Integrated Circuits)化する際に、チップ面積を低減できることが可能であるので、光量検出装置の製造の低コスト化を実現することが可能である。
 仮に、光電気変換素子において、例えばP端子等の第1端子の電位より、例えばN端子等の第2端子の電位を高くして、逆バイアス電圧を印加した場合、逆バイアス電圧の印加により第1端子と第2端子との間の静電容量を低下させることはできるが、弊害として、入力光量がなくても、逆方向に流れる電流、即ち、暗電流が発生してしまう。このため、検出された光量の変化が微弱であることによって、受光素子によって検出された電流も微弱な電流量である場合、逆バイアス電圧の印加によって暗電流が増加してしまうとノイズ成分が増加し、微弱な光量及び微弱な光量の変化を検出することは技術的に困難となってしまう。言い換えると、検出された電流信号に比較して、暗電流のゆらぎによるノイズ電流が増大してしまい、S/N比が大きく低下してしまうという技術的な問題点が生じる。
 本発明に係る光量検出装置の一の態様では、前記電流電圧変換手段は、前記負の出力端子と前記正の出力端子との間の中点電位と基準電位との電位差を負帰還する共通負帰還手段を有する。尚、前記共通負帰還手段は、前記中点電位を検出するための中点電位検出手段を含んでよい。
 この態様によれば、光電気変換素子を、ゼロバイアスの状態、所謂、発電モードとして動作させることにより、電流電圧変換手段の入力バイアスと、光電気変換素子のバイアスとを電気的に分離させることなく、第1負帰還抵抗、第2負帰還抵抗、共通負帰還手段の協調的な作用により電流電圧変換手段の入力バイアスを、基準電位に漸近させ適正化することが可能である。
 この結果、電流電圧変換手段の入力バイアスと、光電気変換素子のバイアスとを電気的に分離させるための特別なコンデンサや特別なバイアス素子を追加することなく、電流電圧変換手段による差動増幅における動作点を最適化でき、歪み特性の向上を実現することが可能である。加えて、バイアスを分離させるための特別なコンデンサや上述の特別なバイアス素子を追加することなく、光量検出装置において、ダイナミックレンジを向上させることが可能である。
 更に、加えて、本実施形態によれば、光量検出装置において、コンデンサを設ける必要性がないので、低コスト化を実現可能である。また、コンデンサを設ける必要がないので、光電気変換素子と、電流電圧変換手段とを、同一のLSI上に形成する所謂、OEIC(Optical Electric Integrated Circuits)化の際にチップの面積を低減することが可能であるので、簡便且つ低コストのLSI化を実現可能である。
 本発明に係る光量検出装置の他の態様では、前記共通負帰還手段は、光電気変換素子の第1端子の電位と、第2端子の電位とを等しくする。
 この態様によれば、光電気変換素子における暗電流を殆ど又は完全にゼロに漸近させることができる。その結果、暗電流のゆらぎによるノイズ電流を低下させ、S/N比をより向上させることが可能である。典型的には、例えば血液中のヘモグロビンによる光の散乱に起因した微弱な光量及び微弱な光量の変化を検出可能である。
 本発明に係る光量検出装置の他の態様では、前記増幅手段は、前記負の出力端子及び前記正の出力端子が夫々出力した電圧を差動増幅する。
 この態様によれば、例えばインスツルメンテーションアンプ等の増幅手段によって、電圧は、負の出力端子及び正の出力端子を介して、差動増幅される。これにより、S/N比がより向上した光検出信号に基づいて、微弱な光量及び微弱な光量の変化をより高精度に検出可能である。
 本発明に係る光量検出装置の他の態様では、前記変換された電流の周波数より高い所定周波数で規定される奇数番目の周期に前記変換された電圧の極性を反転し、前記所定周波数で規定される偶数番目の周期で前記変換された電圧の極性を反転しないことにより、前記変換された電圧の電圧信号を変調する変調手段と、前記奇数番目の周期で前記変換された電圧の極性を反転し、前記偶数番目の周期で前記変換された電圧の極性を反転しないことにより、前記変換された電圧の電圧信号を復調する復調手段とを更に備える。
 この態様によれば、電流電圧変換手段の電圧は、変調手段により、所定周波数で振幅変調を施した波形とほぼ等価となる。これにより、光電気変換素子によって変換された電流は、所定周波数をキャリア周波数として、上下の周波数、所謂、上側波と、下側波との周波数スペクトルを有する振幅変調波へと変調されつつ、電流電圧変換が施される。特に、キャリア周波数としての所定周波数は、光電気変換素子によって変換された電流の周波数と比較して高い。これにより、キャリア周波数としての所定周波数を中心としたスペクトルに周波数変換されつつ、電流電圧変換されるので、この電流電圧変換のために用いる増幅器が発生する「1/fノイズ」、即ち、低周波ノイズの影響を殆ど又は完全に無くすことが可能である。
 言い換えると、低周波ノイズは、主に差動増幅を行う電流電圧変換手段における増幅器の「1/fノイズ」であり、周波数が高くなるに従って減少する傾向にある。そこで、変調手段によって、光電気変換素子によって変換された電流の周波数より高い所定周波数で、変換された電圧を変調しつつ、電流電圧変換を行うことにより、この低周波ノイズの影響を殆ど又は完全に無くすことが可能である。
 この結果、差動増幅を行う電流電圧変換手段の「1/fノイズ」の影響を殆ど又は完全に無くしつつ、光検出信号のS/N比を向上させることが可能である。以上の結果、低周波の周波数領域における光検出特性(又は光検出性能)が顕著に優れているので、例えば血流信号等の低周波成分が含まれる微弱な信号を測定する光センサからの光量をより高精度且つ適切に検出することが可能である。
 ここで、仮に、上述した変調手段及び復調手段による変調及び復調を行わない場合の技術的な問題点について、光電気変換素子によって変換された電流が、一例として、中心周波数fsなる有色スペクトルを有する場合を例にして説明する。この中心周波数fsなる有色スペクトルに対して、そのまま電流電圧変換が施される。この場合、差動増幅を行う電流電圧変換手段は、所謂、「1/fノイズ」といわれる低周波ノイズを発生する。この低周波ノイズは、周波数が低くなるに従ってそのノイズの度合いが大きくなる傾向を有する。このため、この「1/fノイズ」が電流電圧変換の際に、周波数fsの信号成分に加算されて電流電圧変換が施されてしまい、上述した変調手段及び復調手段による変調及び復調を行わない場合、S/N比が顕著に低下してしまうという技術的な問題点が生じる可能性がある。
 本発明に係る光量検出装置の他の態様では、前記変調手段として、前記第1端子と前記正の入力端子とが接続され、且つ、前記第2端子と前記負の入力端子とが接続された第1接続状態と、前記第1端子と前記負の入力端子とが接続され、且つ、前記第2端子と前記正の入力端子とが接続された第2接続状態とを前記所定周波数で切り替える第1スイッチ手段を更に備える。
 この態様によれば、第1スイッチ手段によるスイッチ作用によって、上述した変調を適切に行うことができる。
 本発明に係る光量検出装置の他の態様では、前記変調手段として、前記負の出力端子と前記第1負帰還抵抗とが接続され、且つ、前記正の出力端子と前記第2負帰還抵抗とが接続された第3接続状態と、前記負の出力端子と前記第2負帰還抵抗とが接続され、且つ、前記正の出力端子と前記第1負帰還抵抗とが接続された第4接続状態とを前記所定周波数で切り替える第2スイッチ手段を更に備える。
 この態様によれば、上述の第1スイッチ手段に加えて、第2スイッチ手段によるスイッチ作用によって、上述した変調を適切に行うことができる。
 本発明に係る光量検出装置の他の態様では、前記増幅手段は、前記負の出力端子が出力する負の検出電圧と、前記正の出力端子が出力する正の検出電圧とを差動増幅する減算増幅手段を含み、前記復調手段として、前記負の検出電圧と前記正の検出電圧との極性を前記所定周波数で反転する第3スイッチ手段を更に備える。
 この態様によれば、第3スイッチ手段によるスイッチ作用によって、上述した復調を適切に行うことができる。
 本発明に係る光量検出装置の他の態様では、前記増幅手段は、前記変換された電圧の電圧信号を復調するタイミングを所定時間だけ遅延させる遅延手段を含む。
 この態様によれば、遅延手段による所定時間だけ復調タイミングを遅延させる遅延作用によって、変調手段による変調タイミングと、復調手段による復調タイミングとの時間差に起因して発生する、復調時のキャリア周波数の高調波成分の残留を効果的に防止することが可能である。この結果、復調時に発生する高域ノイズを効果的に抑制することが可能であり、光検出信号のS/N比の更なる向上を実現可能である。
 本発明に係る光量検出装置の他の態様では、前記変調された電圧の電圧信号の低周波ノイズを除去するための高域通過フィルタ手段を更に備える。
 この態様によれば、高域通過フィルタ手段によって、変調後及び復調前に存在する上述の「1/fノイズ」等の低周波ノイズを適切に除去することが可能である。その後、復調されるので、光検出信号のS/N比を顕著に向上可能であるので、実践上、大変好ましい。
 本発明に係る光量検出装置の他の態様では、前記復調された電圧の電圧信号の高周波ノイズを除去するための低域通過フィルタ手段を更に備える。
 この態様によれば、低域通過フィルタ手段によって、復調時に除去しきれなかったキャリア周波数成分等の高域ノイズを除去可能であるので、光検出信号のS/N比をより顕著に向上可能であるので、実践上、更に大変好ましい。
 上記課題を解決するために、本発明に係る光量情報処理装置は、上述した本発明に係る光量検出装置と、前記増幅された電圧の電圧信号である光検出信号を信号処理する信号処理手段とを備える。
 本発明に係る光量情報処理装置によれば、増幅された電圧の電圧信号である光検出信号を適切に信号処理しつつ、上述した本発明の光量検出装置が有する各種利益を享受することが可能となる。典型的には、信号処理手段によって、光検出信号を、量子化することによって、例えば通信網を介して伝送する場合における、外界環境からのノイズに強くなるので、光検出信号の長距離伝送を実現することが可能である。
 尚、上述した本発明の光量検出装置が有する各種態様に対応して、本発明の光量情報処理装置も各種態様を採ることが可能である。
第1実施形態に係る光量検出装置1の全体構成を概念的に示すブロック図である。 第1実施形態に係る光量検出装置1の詳細な構成を図式的に示すブロック図である。 第1実施形態に係る電流電圧変換器100の詳細な構成を図式的に示すブロック図である。 第1実施形態に係る増幅器300の詳細な構成を図式的に示す回路図である。 第1実施形態に係るゼロバイアス及び比較例に係る逆バイアス電圧を図式的に示すグラフ(図5(a))、比較例に係る受光素子の回路図(図5(b))、及び第1実施形態に係る受光素子の回路図(図5(c))である。 第2実施形態に係る増幅器300aの詳細な構成を図式的に示す回路図である。 第3実施形態に係る電流電圧変換器100bの詳細な構成を図式的に示すブロック図である。 第3実施形態に係る増幅器300bの詳細な構成を図式的に示す回路図である。 第3実施形態に係る受光素子の検出電流Idt、検出電圧VOut+、VOut-、スイッチ作用の制御信号SWP1、SWP2、SWP3、光検出信号DtOutの時間軸に沿った波形図である。 第3実施形態に係るスペクトル解析における、被変調波、変調波、復調波のパワースペクトルを図式的に示したグラフである。 第4実施形態に係る生体情報検出装置の一具体例である血流量センサの全体構成を概念的に示すブロック図である。
 以下、図面を参照して本発明を実施するための最良の形態について説明する。
 <第1実施形態>
 <全体構成:光量検出装置>
 先ず、図1及び図2を参照して、本発明に係る第1実施形態の基本構成について説明する。ここに、図1は、第1実施形態に係る光量検出装置1の全体構成を概念的に示すブロック図である。図2は、第1実施形態に係る光量検出装置1の詳細な構成を図式的に示すブロック図である。
 図1及び図2に示されるように、第1実施形態に係る光量検出装置1は、受光素子10、差動増幅部200を含む電流電圧変換器100、及び増幅器300を備えて構成されている。電流電圧変換器100は、差動増幅部200、及び帰還抵抗Rf1、Rf2を備えて構成されている。増幅器300は、入力端子In1、In2、及び出力端子Outを備える。
 受光素子10は、外部から入力された微弱光量を受光し、受光量に応じて検出電流を出力する。典型的には、受光素子10は、例えばPINダイオード等のフォトダイオードであり、この受光素子10の両端は、電流電圧変換器100の差動増幅部200の入力端子In+、In-に夫々接続される。詳細には、受光素子10のP型半導体は、電流電圧変換器100の差動増幅部200の入力端子In+に接続されている。また、受光素子10のN型半導体は、電流電圧変換器100の差動増幅部200の入力端子In-に接続されている。
 電流電圧変換器100は、受光素子10が検出した検出電流を、帰還抵抗Rf1、Rf2の作用により、電流電圧変換し、互いに信号極性の異なる検出電圧VOut-とVOut+とを、出力端子Out-、Out+を介して、差動出力する。帰還抵抗Rf1は、電流電圧変換器100の差動増幅部200の入力端子In+と出力端子Out-との間に接続されると共に、帰還抵抗Rf2は、入力端子In-と出力端子Out+との間に接続され、これらの帰還抵抗Rf1、Rf2は負帰還を施すと同時に、電流を電圧に変換する。
 電流電圧変換器100の差動増幅部200の検出電圧VOut-とVOut+は、増幅器300の入力端子In1、In2にそれぞれ入力される。増幅器300は入力された電圧を増幅し、光検出信号を出力する。
 尚、受光素子10によって、本発明に係る光電気変換素子の一例が構成されている。また、電流電圧変換器100によって、本発明に係る電流電圧変換手段の一例が構成されている。帰還抵抗Rf1、Rf2によって、本発明に係る第1負帰還抵抗、第2負帰還抵抗の一例が構成されている。また、増幅器300によって、本発明に係る増幅手段の一例が構成されている。
 <詳細構成:電流電圧変換器>
 次に、図3を参照して、第1実施形態に係る電流電圧変換器100の詳細構成について説明する。ここに、図3は、第1実施形態に係る電流電圧変換器100の詳細な構成を図式的に示すブロック図である。
 上述したように、電流電圧変換器100は、帰還抵抗Rf1、Rf2、及び差動増幅部200を備えて構成されている。
 上述したように、帰還抵抗Rf1は、電流電圧変換器100の差動増幅部200の入力端子In+と出力端子Out-との間に接続されると共に、帰還抵抗Rf2は、入力端子In-と出力端子Out+との間に接続され、これらの帰還抵抗Rf1、Rf2は負帰還を施すと同時に、電流を電圧に変換する。
 差動増幅部200は、入力端子In+、In-、差動増幅回路210、中点電位検出器220、共通負帰還器230、及び出力端子Out+、Out-を備えて構成されている。
 差動増幅回路210は、トランジスタTr1、Tr2、電源電圧Vcc、負荷抵抗Rc1、Rc2、定電流源IEを備えて構成されている。差動増幅部200の入力端子In+、In-は、差動増幅回路210の差動入力として、差動増幅回路210のトランジスタTr1、Tr2のベースにそれぞれ接続されている。定電流源IEは、トランジスタTr1、Tr2の各エミッタの接続点と接地点との間に接続されている。負荷抵抗Rc1、Rc2は、トランジスタTr1、Tr2の各コレクタと電源電圧Vccとの間にそれぞれ接続されており、この各接続点がそれぞれ出力端子Out-、Out+として導出されている。
 差動増幅回路210の2つの差動出力は、中点電位検出器220にそれぞれ入力される。
 中点電位検出器220は、差動増幅回路210の2つの差動出力の中点電位を検出し、検出した信号を出力する。中点電位検出器220から出力された信号は、共通負帰還器230に入力される。
 共通負帰還器230は、減算器231及び基準電位生成器232を備えて構成されている。減算器231は、基準電位生成器232によって生成された基準電位と、中点電位検出器220が検出した中点電位とを比較し、両者の電位差の信号を出力する。尚、この基準電位は、共通負帰還器230の外部から入力された基準電位であってよい。
 共通負帰還器230から出力された電位差の信号は、差動増幅回路の定電流源IEの電流値を設定する制御端子に入力される。尚、中点電位検出器220によって、本発明に係る中点検出手段の一例が構成されている。また、共通負帰還器230によって、本発明に係る共通負帰還手段の一例が構成されている。
 <詳細構成:増幅器>
 次に、図4を参照して、第1実施形態に係る増幅器300の詳細構成について説明する。ここに、図4は、第1実施形態に係る増幅器300の詳細な構成を図式的に示す回路図である。
 図4に示されるように、増幅器300は、演算増幅器であるオペアンプ(以下、適宜「アンプ」と称す)OP1、OP2、OP3、帰還抵抗R2、R3、R6、共通入力抵抗R1、入力抵抗R4、R5、R7を備えて構成されている。
 増幅器300の入力端子In1、In2は、アンプOP1、OP2のプラス入力端子にそれぞれ接続される。アンプOP1、OP2は、帰還抵抗R2、R3によってそれぞれ負帰還が施される。
 共通入力抵抗R1は、アンプOP1のマイナス入力端子と、アンプOP2のマイナス入力端子との間に設けられる。尚、共通入力抵抗R1は、利得を可変とするために可変抵抗として機能してよい。
 帰還抵抗R2とR3とは、等しい抵抗値に設定される。
 アンプOP1の出力は、入力抵抗R4を介して、アンプOP3のマイナス入力端子に接続される。概ね同様にして、アンプOP2の出力は、入力抵抗R5を介して、アンプOP3のプラス入力端子に接続される。
 入力抵抗R4とR5とは、等しい抵抗値に設定される。
 アンプOP3は、帰還抵抗R6により負帰還が施される。
 アンプOP2から出力された信号の成分は、入力抵抗R5と入力抵抗R7とによって分圧されアンプOP3のプラス入力端子に入力される。
 入力抵抗R7の他方の端子は、基準電位Vrefに接続される。
 帰還抵抗R6と入力抵抗R7は、等しい抵抗値に設定される。
 アンプOP3の出力は、光検出信号DtOutとして出力される。
 特に、図4に示されるように、増幅器300は、例えば、インスツルメンテーションアンプ等の計装アンプとして構成され、入力端子In1から入力される電圧と、入力端子In2から入力される電圧との電位差を増幅している。これにより、電流電圧変換器100から出力される2つの差動出力において、同相の信号成分は、ノイズとして除去可能である。加えて、電流電圧変換器100における2つの出力端子Out-、Out+においては、前述したようにフォトダイオード等の受光素子10に入力した光の光量に応じて、極性の異なる2つの差動信号が出力されており、増幅器300の入力端子In1、In2に、検出した光の信号成分は逆相で入力される。これにより、増幅器300から出力される光検出信号DtOutから、例えば電源からのハムノイズ等の同相成分は、ノイズとして除去可能である。加えて、検出した光の信号成分は逆相なので、増幅器300によって増幅されて、光検出信号DtOutとして出力される。この結果、ノイズ(Noise)の度合いを低下させ、信号(Signal)の度合いを増加させるので、S/N比を顕著に向上させることが可能である。
 加えて、増幅器300は、このようにインスツルメンテーションアンプ等の計装アンプとして構成することにより、入力インピーダンスを高めると共に、出力インピーダンスを低め、同相除去比(CMRR:Common Mode Rejection Rate)を高めることが可能である。この結果、入力端子In1の電位と入力端子In2の電位との電圧差がより適切に差動増幅され、より適切な光検出信号DtOutを出力することが可能である。
 <動作原理:光量検出装置>
 次に、上述した図3及び図4を参照して、第1実施形態に係る光量検出装置の動作原理について説明する。
 上述した図3に示したように、受光素子10は、例えばPINダイオード等のフォトダイオードにより構成される。例えばフォトダイオード等の受光素子10のP型半導体、所謂、P端子は、電流電圧変換器100の差動増幅部200の入力端子In+に接続されている。また、受光素子10のN型半導体、所謂、N端子は、電流電圧変換器100の差動増幅部200の入力端子In-に接続されている。差動増幅部200の入力端子In+、In-は、差動増幅回路210の差動入力として、差動増幅回路210のトランジスタTr1、Tr2のベースにそれぞれ接続されている。
 差動増幅回路210における入力端子In+側の差動入力は、帰還抵抗Rf1により、その差動出力が負帰還されている。加えて、差動増幅回路210における入力端子In-側の差動入力は、帰還抵抗Rf2により、その差動出力が負帰還されている。
 具体的には、例えばフォトダイオード等の受光素子に光が入力されると、P端子に正の電圧が発生する。その結果、光量に応じて逆方向電流が流れ、この電流が受光素子の検出電流となる。この検出電流は、フォトダイオードのP端子、即ち、差動増幅部200の入力端子In+から帰還抵抗Rf1に流れ、Rf1により、電圧降下するので、電流電圧変換器100の差動増幅部200の出力端子Out-の電位は低下する。また、この検出電流は、帰還抵抗Rf2からフォトダイオードN端子、即ち、入力端子In-に流れ、Rf2により、電圧降下するので、電流電圧変換器100の差動増幅部200の出力端子Out+の電位は上昇する。これにより、フォトダイオードに入力する光量に応じて、電流電圧変換器100の差動増幅部200の出力端子Out-の電位は低下し、差動増幅部200の出力端子Out+の電位は上昇するので、極性の異なる差動出力信号が得られる。特に、差動増幅部200の入力抵抗値は、帰還抵抗Rf1とRf2の抵抗値より高く設計可能であり、差動増幅部200の入力端子In+、In-に流入する電流は無視できる。
 また、差動増幅回路210における2つの差動出力は、中点電位検出器220にそれぞれ入力され、差動増幅回路210の2つの差動出力の中点電位が検出される。
 共通負帰還器230においては、上述したように、検出された中点電位は、上述の減算器231及び基準電位生成器232によって、基準電位と比較され、その電位差が差動増幅回路210のバイアスを生成するための定電流源IEの制御端子に負帰還されている。これにより、差動増幅回路210のバイアスに適切に制御される。
 このように、帰還抵抗Rf1、Rf2による第1の負帰還作用と、共通負帰還器230による第2の負帰還作用という2種類の負帰還作用により、差動増幅回路210の入力端子の電位を基準電位に漸近させることが可能である。これにより、電流電圧変換器100の差動増幅部200の入力端子In+の電位、及び入力端子In-の電位は、共通負帰還器230における基準電位にそれぞれ漸近させることが可能である。これにより、電流電圧変換器100の差動増幅部200の入力端子In+の電位と、入力端子In-の電位とを略等しい電位にさせることが可能である。
 これにより、例えばPINダイオード等の受光素子10におけるP端子の電位と、N端子の電位とを等しくさせることが可能である。これにより、例えばPINダイオード等の受光素子10を、ゼロバイアス、所謂、発電モードとして動作させることが可能である。
 受光素子10におけるP端子の電位と、N端子の電位は等しくなるので、受光素子10のP端子ないしはN端子と、電流電圧変換器100の差動増幅部200の入力端子In+ないしはIn-との接続関係は、本実施例に限定されることはない。即ち、受光素子10のP端子を差動増幅部200の入力端子In-に接続すると共に、受光素子10のN端子を差動増幅部200の入力端子In+に接続して良い。
 この結果、逆バイアス電圧に起因した暗電流のゆらぎによるノイズ電流を低下させ、S/N比を向上させることが可能である。特に、本願発明者らによる研究によれば、本実施形態によって、例えば血液中のヘモグロビンによる光の散乱に起因した微弱な光量及び微弱な光量の変化を検出可能であることが判明している。
 <第1実施形態における作用と効果の検討>
 次に、図5に加えて、上述した図3等を適宜参照して、第1実施形態に係る光量検出装置の作用と効果とについて検討する。ここに、図5は、第1実施形態に係るゼロバイアス及び比較例に係る逆バイアス電圧を図式的に示すグラフ(図5(a))、比較例に係る受光素子の回路図(図5(b))、及び第1実施形態に係る受光素子の回路図(図5(c))である。尚、図5(a)中の横軸はフォトダイオードの電圧を示し、縦軸はフォトダイオードの電流を示す。
 仮に、比較例に係る図5(a)及び図5(b)に示したように、例えばフォトダイオード等の受光素子において、P端子の電位よりN端子の電位を高くして、逆バイアス電圧を印加した場合、逆バイアス電圧の印加によりP端子とN端子との間の静電容量を低下させることはできるが、弊害として、入力光量がなくても、逆方向に流れる電流、即ち、暗電流が発生してしまう。このため、検出された光量の変化が微弱であることによって、受光素子によって検出された電流も微弱な電流量である場合、逆バイアス電圧の印加によって暗電流が増加してしまうとノイズ成分が増加し、微弱な光量及び微弱な光量の変化を検出することは技術的に困難となってしまう。言い換えると、検出された電流信号に比較して、暗電流のゆらぎによるノイズ電流が増大してしまい、S/N比が大きく低下してしまうという技術的な問題点が生じる。
 これに対して、本実施形態によれば、図5(a)及び図5(c)に示したように、例えばPINダイオード等の受光素子10を、当該受光素子10に逆バイアス電圧を殆ど又は完全に印加しないゼロバイアスの状態、所謂、発電モードとして動作させることが可能である。これにより、暗電流を殆ど又は完全にゼロに漸近させることができる。その結果、暗電流のゆらぎによるノイズ電流を低下させ、S/N比を向上させることが可能であり、例えば血液中のヘモグロビンによる光の散乱に起因した微弱な光量及び微弱な光量の変化を検出可能である。
 加えて、本実施形態によれば、フォトダイオードへのバイアス印加作用を、図3で示したように、帰還抵抗Rf1、Rf2による負帰還作用で実施している。これにより、フォトダイオードへのバイアス印加の際に、このゼロバイアスにさせることを専ら目的とする特別なバイアス素子を追加する必要を殆ど又は完全に無くすことができる。この結果、光量検出装置を、例えばLSI(Large Scale Integrated Circuit)化する際に、チップ面積を低減できることが可能であるので、光量検出装置の製造の低コスト化を実現することが可能である。
 加えて、本実施形態によれば、上述したように、フォトダイオード等の受光素子を、ゼロバイアスの状態、所謂、発電モードとして動作させている。これにより、図3で示したように、差動増幅回路210の入力バイアスと、フォトダイオード等の受光素子のバイアスとを電気的に分離させることなく、帰還抵抗Rf1、Rf2と、中点電位検出器と、共通負帰還器の協調的な作用により差動増幅回路210の入力バイアスを、基準電位に漸近させ適正化することが可能である。この結果、差動増幅回路210の入力バイアスと、受光素子のバイアスとを電気的に分離させるための特別なコンデンサや上述の特別なバイアス素子を追加することなく、差動増幅回路210の歪み特性の向上を実現することが可能である。加えて、バイアスを分離させるための特別なコンデンサや上述の特別なバイアス素子を追加することなく、光量検出装置において、ダイナミックレンジを向上させることが可能である。
 更に、加えて、本実施形態によれば、光量検出装置において、バイアスを分離させるためのコンデンサを設ける必要性がないので、低コスト化を実現可能である。また、バイアスを分離させるためのコンデンサを設ける必要がないので、例えばフォトダイオード等の受光素子10と、差動増幅回路210とを、同一のLSI上に形成する所謂、OEIC(Optical Electric Integrated Circuit)化の際にチップの面積を低減することが可能であるので、簡便且つ低コストのLSI化を実現可能である。
 <第2実施形態:増幅器>
 次に、図6を参照して、第2実施形態に係る増幅器300aの詳細構成について説明する。ここに、図6は、第2実施形態に係る増幅器300aの詳細な構成を図式的に示す回路図である。尚、第2実施形態に係る増幅器300aにおいて、上述した第1実施形態に係る増幅器300と概ね同様の構成要素については同一の符号番号を付し、それらの説明は適宜省略する。また、第2実施形態に係る受光素子10、電流電圧変換器100は、上述した第1実施形態に係る受光素子10、電流電圧変換器100と概ね同様であるので便宜上説明を省略する。
 図6に示されるように、第2実施形態に係る増幅器300aは、アンプOP1、OP2、帰還抵抗R2、R3、共通入力抵抗R1、ローパスフィルタ(即ち、低域通過フィルタ)LPF1、LPF2、AD変換器(Analog to Digital Converter)ADC1、ADC2を備えて構成されている。
 上述したように、第1実施形態に係る増幅器300(図4を参照)は、シングルエンドの信号であると共にアナログ信号として光検出信号DtOutを出力可能なように構成される。これに対して、第2実施形態に係る増幅器300aは、図6に示されるように、光検出信号DtOut1、DtOut2として、極性の異なる2つの差動信号を差動出力して良い。加えて、図6に示されるように、上述したローパスフィルタLPF1、LPF2、AD変換器ADC1、ADC2を介して、ディジタル信号として出力して良い。このように、光検出信号DtOut1、DtOut2を、ディジタル信号として出力する場合、AD変換器によるサンプリングによって発生するエリアシングノイズを除去可能であるアンチエリアスフィルタとしてのローパスフィルタLPF1、LPF2を介してAD変換器ADC1、ADC2へ入力させることにより、S/N比を高めることが可能であるので大変好適且つ有益である。AD変換器ADC1、ADC2の出力信号である量子化された光検出信号DtOut1、DtOut2は、例えばDSP(Digital Signal Processor)等のディジタル信号処理装置等の信号処理装置(不図示)により減算処理が実行されてよい。
 以上の結果、第2実施形態に係る増幅器300aによれば、光検出信号DtOut1、DtOut2は、量子化されているので、例えば通信網を介して伝送する場合における、外界環境からのノイズに強くなるので、光検出信号の長距離伝送を実現することが可能である。
 <第3実施形態>
 次に、図7乃至図10を参照して、第3実施形態に係る光量検出装置1について説明する。尚、第3実施形態に係る構成要素においては、上述した第1及び第2実施形態に係る構成要素と概ね同様である構成要素については同一の符号番号を付し、それらの説明は適宜省略する。
 <詳細構成:電流電圧変換器>
 先ず、図7及び図9を参照して、第3実施形態に係る電流電圧変換器100bの詳細な構成と、当該電流電圧変換器100bでの変調について説明する。ここに、図7は、第3実施形態に係る電流電圧変換器100bの詳細な構成を図式的に示すブロック図である。図9は、第3実施形態に係る受光素子の検出電流Idt、検出電圧VOut+、VOut-、スイッチ作用の制御信号SWP1、SWP2、SWP3、光検出信号DtOutの時間軸に沿った波形図である。
 図7に示されるように、第3実施形態に係る電流電圧変換器100bは、帰還抵抗Rf1、Rf2、及び差動増幅部200bを備えて構成されている。
 帰還抵抗Rf1、Rf2は、電流電圧変換器100の差動増幅部200bの入力端子In+、In-と、出力端子Out+、Out-との間にそれぞれ接続され、負帰還を施すと同時に、電流を電圧に変換する。
 差動増幅部200bは、入力端子In+、In-、第1スイッチ250、差動増幅回路210、第2スイッチ260、中点電位検出器220、共通負帰還器230、及び出力端子Out+、Out-、規定周期生成器270を備えて構成されている。特に、第1スイッチ250は、入力端子In+、In-と、差動増幅回路210との間に設けられ、入力端子In+、In-と、差動増幅回路210の2つの入力端子との接続をスイッチ可能に構成されている。第2スイッチ260は、差動増幅回路210の出力端子と、帰還抵抗Rf1、Rf2との間に設けられ、差動増幅回路210の2つの出力端子(言い換えると、出力端子Out+、Out-)と、帰還抵抗Rf1、Rf2との接続をスイッチ可能に構成されている。尚、第1スイッチ250は、本発明に係る第1スイッチ手段の一例を構成し、第2スイッチ260は、本発明に係る第2スイッチ手段の一例を構成する。加えて、第1スイッチ250、及び第2スイッチ260は、本発明に係る変調手段の一例を構成する。
 規定周期生成器270は、例えばデジタル発振器、分周器、遅延素子、論理回路(いずれも不図示)等により構成され、規定の周期Tに従って、第1スイッチ250及び第2スイッチ260における導通及び非導通、所謂、スイッチ作用を制御するための制御信号SWP1、SWP2、SWP3を生成する。制御信号SWP3は、制御信号SWP1、SWP2と比較して、時間Tdだけ遅延した信号である。制御信号SWP1は第1スイッチ250へ供給され、制御信号SWP2は第2スイッチ260へ供給され、制御信号SWP3は後述の第3スイッチ330へ供給される。
 受光素子10の2つの端子と、差動増幅回路210の2つの入力端子との間の電気的な接続の極性は、第1スイッチ250によって反転される。例えば、制御信号SWP1がHighレベルの場合、受光素子10のP端子は、第1スイッチ250を介して差動増幅回路210のプラス入力端子に接続される。と同時に、制御信号SWP1がHighレベルの場合、制御信号SWP2もHighレベルであり、帰還抵抗Rf1は、第2スイッチ260を介して差動増幅回路210のマイナス出力端子に接続され、受光素子10のP端子へと差動増幅回路210のマイナス出力端子からの出力電圧が負帰還される。
 概ね同様にして、制御信号SWP1がLowレベルの場合、受光素子10のP端子は、第1スイッチ250を介して差動増幅回路210のマイナス入力端子に接続される。と同時に、制御信号SWP1がLowレベルの場合、制御信号SWP2もLowレベルであり、帰還抵抗Rf1は、第2スイッチ260を介して差動増幅回路210のプラス出力端子に接続され、受光素子10のP端子へ差動増幅器のプラス出力端子からの出力電圧が負帰還される。
 上述した受光素子10のP端子に着目した負帰還と相補的に、受光素子10のN端子に着目する。即ち、制御信号SWP1がHighレベルの場合、受光素子10のN端子は、第1スイッチ250を介して差動増幅回路210のマイナス入力端子に接続される。と同時に、制御信号SWP1がHighレベルの場合、制御信号SWP2もHighレベルであり、帰還抵抗Rf2は、第2スイッチ260を介して差動増幅回路210のプラス出力端子に接続され、受光素子10のN端子へと差動増幅回路210のプラス出力端子からの出力電圧が負帰還される。
 概ね同様にして、制御信号SWP1がLowレベルの場合、受光素子10のN端子は、第1スイッチ250を介して差動増幅回路210のプラス入力端子に接続される。と同時に、制御信号SWP1がLowレベルの場合、制御信号SWP2はLowレベルであり、帰還抵抗Rf2は、第2スイッチ260を介して差動増幅回路210のマイナス出力端子に接続され、受光素子10のN端子へと差動増幅器210のマイナス出力端子からの出力電圧が負帰還される。
 前述の第1スイッチ250と第2スイッチ260とのスイッチ動作により、受光素子10が検出した検出電流Idtは、図9に示したように、電流電圧変換器100の出力端子Out+、Out-から夫々出力される検出電圧VOut+、VOut-に電流電圧変換され、規定の周期Tに従ったパルス形状の波形となる。検出電圧VOut+、VOut-の波形の上下エンベロープは、検出電流Idtに応じた波形となり、キャリア周波数「1/T」で振幅変調を施した波形とほぼ等価となる。第1スイッチ250と第2スイッチ260によるスイッチ作用は、規定の周波数「1/T」で振幅変調する振幅変調(AM:Amplitude Modulation)方式における変調器の作用とほぼ等価である。
 <詳細構成:増幅器>
 次に、図8に加えて上述した図7を適宜参照して、第3実施形態に係る増幅器300bの詳細構成と当該増幅器300bでの復調とについて説明する。ここに、図8は、第3実施形態に係る増幅器300bの詳細な構成を図式的に示す回路図である。
 図8に示されるように、第3実施形態に係る増幅器300bは、ハイパスフィルタ(即ち、高域通過フィルタ)HPF1、HPF2、第3スイッチ330、入力抵抗R4、R5、R7、アンプOP3、帰還抵抗R6、ローパスフィルタ(即ち、低域通過フィルタ)LPF3を備えて構成されている。
 増幅器300の入力端子In1、In2と、出力段であるアンプOP3との間において、ハイパスフィルタHPF1、HPF2、第3スイッチ330が設けられている。
 増幅器300の入力端子In1、In2は、ハイパスフィルタHPF1、HPF2にそれぞれ接続される。
 尚、第3スイッチ330は、本発明に係る第3スイッチ手段及び復調手段の一例を構成し、高域通過回路HPF1とHPF2は、本発明に係る高域通過フィルタ手段の一例を構成する。
 また、出力段であるアンプOP3には、低域通過回路、所謂、ローパスフィルタLPF3が付随している。ローパスフィルタLPF3は、低域通過フィルタ手段を構成する。ローパスフィルタLPF3がアンプOP3の後段に位置する例を示したが、アンプOP3自体が、LPF特性を有していて良い。
 高域通過回路、所謂、ハイパスフィルタHPF1、HPF2のフィルタリング作用により、上述の図7で示した電流電圧変換器100の出力端子Out-、Out+から出力された検出電圧VOut-、VOut+の出力信号から、電流電圧変換の際に生じた低域ノイズ成分を適切に除去可能である。第3スイッチ330は、出力端子Out-、Out+から出力された検出電圧VOut-とVOut+の出力信号を、規定の周期Tに応じた制御信号SWP3に従って、選択的に極性反転させアンプOP3へと入力させる。
 第3スイッチ330は、規定の周波数「1/T」で振幅変調された検出電圧VOut-、VOut+の変調信号を復調する振幅変調(AM)方式における復調器の作用とほぼ等価である。
 アンプOP3は、復調された2つの電流電圧変換信号を差動増幅する。特に、アンプOP3に付随したローパスフィルタLPF3は、上述の復調の際に除去しきれなかったキャリア周波数の周辺のノイズ成分や、電流電圧変換に用いた帰還抵抗Rf1、Rf2が発生した熱雑音などの高域周波数のノイズ成分を効果的に抑制することが可能である。
 <第3実施形態における作用と効果の検討>
 ここで、図10に加えて、上述した図3及び図7を適宜参照して、第3実施形態に係る光量検出装置の作用と効果とについて検討する。ここに、図10は、第3実施形態に係るスペクトル解析における、被変調波、変調波、復調波のパワースペクトルを図式的に示したグラフである。尚、図10中の周波数fcによって振幅変調における搬送波のキャリア周波数が示され、周波数fc-fsによって、振幅変調の下側波が示され、周波数fc+fsによって振幅変調の上側波が示されている。
 仮に、第3実施形態に係る振幅変調の方式での変調及び復調を行わない場合、図10で示したように、受光素子10が検出した検出電流Idtは、例えば周波数fsを中心とした信号としたスペクトルを有し、このスペクトルに対して、そのまま電流電圧変換が施される。この場合、図10中の点線で示されるように、電流電圧変換器100を構成する差動増幅回路210は、所謂、「1/fノイズ」といわれる低周波ノイズを発生する。この低周波ノイズは、図10中の点線で示されるように、周波数が低くなるに従ってそのノイズの振幅が大きくなる傾向を有する。このため、この「1/fノイズ」が電流電圧変換の際に、周波数fsの信号成分に加算されて電流電圧変換が施されてしまい、第3実施形態に係る振幅変調の方式での変調及び復調を行わない場合、S/N比が顕著に低下してしまうという技術的な問題点が生じる可能性がある。
 これに対して、第3実施形態においては、先ず、電流電圧変換器100b(図7を参照)の検出電圧VOut-、VOut+は、第1スイッチ250と第2スイッチ260とのスイッチ作用により、キャリア周波数fc(=1/T)で振幅変調を施した波形とほぼ等価となる。これにより、受光素子10が検出した検出電流Idtは、図10に示されるように、キャリア周波数fcを中心として上下の周波数、即ち「周波数fc+fs」と、「周波数fc-fs」との周波数スペクトルを有する振幅変調波へと変調されつつ、電流電圧変換が施される。特に、図10に示されるように、上述した検出電流Idtの周波数fsと比較してより高い周波数fcを中心としたスペクトルに周波数変換されつつ、電流電圧変換されるので、上述の「1/fノイズ」、即ち、低周波ノイズ(図10中の点線を参照)の影響を殆ど又は完全に無くすことが可能である。
 言い換えると、図10中の点線で示される低周波ノイズは、主に差動増幅回路210の「1/fノイズ」であり、周波数が高くなるに従って減少する傾向にある。そこで、第1スイッチ250と第2スイッチ260のスイッチ作用によって変調周波数fcを、「1/fノイズ」の影響が顕著に少ない高い周波数に設定することによって、電流電圧変換を行う際に、この低周波ノイズの影響を殆ど又は完全に無くすことが可能である。
 この結果、第3実施形態によれば、電流電圧変換器100bを構成する差動増幅回路210の「1/fノイズ」の影響を殆ど又は完全に無くしつつ、光検出信号DtOutのS/N比を向上させることが可能である。以上の結果、第3実施形態に係る光量検出装置は、低周波の周波数領域における光検出特性(又は光検出性能)が顕著に優れているので、生体情報として、例えば血流信号等の低周波成分が含まれる信号を測定する光センサからの微弱な光量をより高精度且つ適切に検出することが可能である。
 特に、上述したように、電圧VOut+、VOut-は、図7で示される第1スイッチ250と第2スイッチ260とのスイッチ作用により、上述した検出電流Idtの周波数fsより高い周波数であるキャリア周波数fcで振幅変調が施されつつ電流電圧変換される。加えて、この振幅変調が施されつつ電流電圧変換された電圧VOut+、VOut-は、図8で示されるハイパスフィルタHPF1、HPF2のフィルタリング作用により、上述の低周波ノイズが除去された後、第3スイッチ330のスイッチ作用による復調が施される。このように、電圧VOut+、VOut-は、振幅変調の方式における変調後及び復調前に存在する上述の「1/fノイズ」等の低周波ノイズを、ハイパスフィルタHPF1、HPF2によって除去された後、第3スイッチ330によって復調されつつ増幅されるので、S/N比を顕著に向上可能であるので、実践上、大変好ましい。
 また、増幅器300bのアンプOP3に付随したローパスフィルタLPF3によって復調時に除去しきれなかったキャリア周波数fc成分等の高域ノイズを除去可能であるので、S/N比をより顕著に向上可能であるので、実践上、更に大変好ましい。
 更に、図9に示したように、復調用の制御信号SWP3は、変調用の制御信号SWP1及びSWP2と比較して、所定の時間Tdだけ遅延した信号としている。これにより、電流電圧変換器100b(図7を参照)による変調タイミングと、増幅器300b(図8を参照)による復調タイミングとの時間差に起因して発生する、復調時のキャリア周波数fcの高調波成分の残留を効果的に防止することが可能である。制御信号SWP3を所定の時間Tdだけ遅延させる遅延作用によって、復調時に発生する高域ノイズを効果的に抑制することが可能であり、光検出信号のS/N比の更なる向上を実現可能である。
 <第4実施形態>
 次に、図11を参照して、第4実施形態に係る光量情報処理装置の一具体例である生体情報検出装置について説明する。ここに、図11は、第4実施形態に係る生体情報検出装置の一例である血流量センサの全体構成を概念的に示すブロック図である。尚、第4実施形態に係る構成要素においては、上述した第1乃至第3実施形態に係る構成要素と概ね同様である構成要素については同一の符号番号を付し、それらの説明は適宜省略する。
 図11に示されるように、第4実施形態に係る生体情報検出装置1cは、レーザ駆動装置2、半導体レーザ3、受光素子10、電流電圧変換器100、増幅器300、ローパスフィルタLPF4、AD変換器ADC4、信号処理部5を備えて構成されている。
 図11に示されるように、レーザ駆動装置2によって光源である半導体レーザ3が駆動され、披検体に光が照射される。披検体の毛細血管内のヘモグロビンにより散乱された光が、受光素子10に入射される。受光素子10が検出した検出電流を電流電圧変換器100における帰還抵抗Rf1、Rf2の負帰還作用により電圧に変換される。そして、増幅器300の増幅作用により差動増幅された後、増幅された光検出信号DtOutがローパスフィルタLPF4へ入力される。ローパスフィルタLPF4は、AD変換器ADC4のサンプリングによるエリアシングノイズを除去する。AD変換器ADC4からの出力信号は、例えばDSP(Digital Signal Processor)等の信号処理部5によってデジタル信号処理が施され、血流量を示すディジタル信号が演算され、血流量検出信号として出力される。血流量検出信号は、例えば有線インターフェースや無線インターフェース等の通信インターフェースを経由して、CPU等の制御手段(不図示)に入力されて、例えばモニター等の表示手段(不図示)によって表示される。
 尚、第4実施形態において、第1実施形態に係る電流電圧変換器に代えて、第3実施形態に係る電流電圧変換器を適用可能である。また、第4実施形態において、第1実施形態に係る増幅器に代えて、第2実施形態に係る増幅器を適用可能である。また、第4実施形態において、第1実施形態に係る電流電圧変換器及び増幅器に代えて、第3実施形態に係る電流電圧変換器及び増幅器を適用可能である。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光量検出装置、及び光量情報処理装置もまた本発明の技術的範囲に含まれるものである。
 本発明は、例えば、微小な光量を電気信号に変換する光電変換装置、被検体の血流量を計測する計測器などの光量検出装置、並びに、例えば、被検体の血流量の計測結果から被検体の生体情報を推定する生体情報推定装置などの光量情報処理装置に利用可能である。
 1…光量検出装置、1c…生体情報検出装置、2…レーザ駆動装置、3…半導体レーザ、5…信号処理部、10…受光素子、200…差動増幅部、100、100b…電流電圧変換器、300、300a、300b…増幅器、200、200b…差動増幅部、250…第1スイッチ、210…差動増幅回路、220…中点電位検出器、230…共通負帰還器、260…第2スイッチ、270…規定周期生成器、330…第3スイッチ、Rf1、Rf2…帰還抵抗、In1、In2…入力端子、Out…出力端子、OP1、OP2、OP3…アンプ、R2、R3、R6…帰還抵抗、R1…共通入力抵抗、R4、R5、R7…入力抵抗、Rc1、Rc2…負荷抵抗、LPF1、LPF2、LPF3、LPF4…ローパスフィルタ、ADC1、ADC2、ADC4…AD変換器、In+、In-…入力端子、Out+、Out-…出力端子、HPF1、HPF2…ハイパスフィルタ、R4、R5、R7…入力抵抗。

Claims (12)

  1.  入力された光の光量を電流に変換する光電気変換素子と、
     前記光電気変換素子の第1端子に接続された正の入力端子、前記光電気変換素子の第2端子に接続された負の入力端子、前記正の入力端子に入力された電流の極性を反転して電圧として出力する負の出力端子、前記負の入力端子に入力された電流の極性を反転して電圧として出力する正の出力端子、前記正の入力端子と前記負の出力端子との間に接続される第1負帰還抵抗、及び、前記負の入力端子と前記正の出力端子との間に接続される第2負帰還抵抗を有し、前記光電気変換素子をゼロバイアスにさせると共に前記変換された電流を電圧に変換する電流電圧変換手段と、
     前記変換された電圧を増幅する増幅手段と
     を備えることを特徴とする光量検出装置。
  2.  前記電流電圧変換手段は、前記負の出力端子と前記正の出力端子との間の中点電位と基準電位との電位差を負帰還する共通負帰還手段を有することを特徴とする請求の範囲第1項に記載の光量検出装置。
  3.  前記共通負帰還手段は、光電気変換素子の第1端子の電位と、第2端子の電位とを等しくすることを特徴とする請求の範囲第2項に記載の光量検出装置。
  4.  前記増幅手段は、前記負の出力端子及び前記正の出力端子が夫々出力した電圧を差動増幅することを特徴とする請求の範囲第1項に記載の光量検出装置。
  5.  前記変換された電流の周波数より高い所定周波数で規定される奇数番目の周期に前記変換された電圧の極性を反転し、前記所定周波数で規定される偶数番目の周期で前記変換された電圧の極性を反転しないことにより、前記変換された電圧の電圧信号を変調する変調手段と、
     前記奇数番目の周期で前記変換された電圧の極性を反転し、前記偶数番目の周期で前記変換された電圧の極性を反転しないことにより、前記変換された電圧の電圧信号を復調する復調手段とを更に備えることを特徴とする請求の範囲第1項に記載の光量検出装置。
  6.  前記変調手段として、前記第1端子と前記正の入力端子とが接続され、且つ、前記第2端子と前記負の入力端子とが接続された第1接続状態と、
     前記第1端子と前記負の入力端子とが接続され、且つ、前記第2端子と前記正の入力端子とが接続された第2接続状態とを前記所定周波数で切り替える第1スイッチ手段を更に備えることを特徴とする請求の範囲第5項に記載の光量検出装置。
  7.  前記変調手段として、前記負の出力端子と前記第1負帰還抵抗とが接続され、且つ、前記正の出力端子と前記第2負帰還抵抗とが接続された第3接続状態と、
     前記負の出力端子と前記第2負帰還抵抗とが接続され、且つ、前記正の出力端子と前記第1負帰還抵抗とが接続された第4接続状態とを前記所定周波数で切り替える第2スイッチ手段を更に備えることを特徴とする請求の範囲第6項に記載の光量検出装置。
  8.  前記増幅手段は、前記負の出力端子が出力する負の検出電圧と、前記正の出力端子が出力する正の検出電圧とを差動増幅する減算増幅手段を含み、
     前記復調手段として、前記負の検出電圧と前記正の検出電圧との極性を前記所定周波数で反転する第3スイッチ手段を更に備えることを特徴とする請求の範囲第5項に記載の光量検出装置。
  9.  前記増幅手段は、前記変換された電圧の電圧信号を復調するタイミングを所定時間だけ遅延させる遅延手段を含むことを特徴とすることを特徴とする請求の範囲第5項に記載の光量検出装置。
  10.  前記変調された電圧の電圧信号の低周波ノイズを除去するための高域通過フィルタ手段を更に備えることを特徴とする請求の範囲第5項に記載の光量検出装置。
  11.  前記復調された電圧の電圧信号の高周波ノイズを除去するための低域通過フィルタ手段を更に備えることを特徴とする請求の範囲第5項に記載の光量検出装置。
  12.  請求の範囲第1項に記載の光量検出装置と、
     前記増幅された電圧の電圧信号である光検出信号を信号処理する信号処理手段と
     を備えることを特徴とする光量情報処理装置。
PCT/JP2009/062051 2009-07-01 2009-07-01 光量検出装置、及び光量情報処理装置 WO2011001523A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/062051 WO2011001523A1 (ja) 2009-07-01 2009-07-01 光量検出装置、及び光量情報処理装置
US13/380,407 US8742314B2 (en) 2009-07-01 2009-07-01 Light amount detecting apparatus, and light amount information processing apparatus
JP2011504276A JP5085785B2 (ja) 2009-07-01 2009-07-01 光量検出装置、及び光量情報処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062051 WO2011001523A1 (ja) 2009-07-01 2009-07-01 光量検出装置、及び光量情報処理装置

Publications (1)

Publication Number Publication Date
WO2011001523A1 true WO2011001523A1 (ja) 2011-01-06

Family

ID=43410621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062051 WO2011001523A1 (ja) 2009-07-01 2009-07-01 光量検出装置、及び光量情報処理装置

Country Status (3)

Country Link
US (1) US8742314B2 (ja)
JP (1) JP5085785B2 (ja)
WO (1) WO2011001523A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879087A (zh) * 2012-09-21 2013-01-16 成都君万科技有限公司 一种差分滤光补偿电路及其实现方法
JP2013113840A (ja) * 2011-11-25 2013-06-10 Asset-Wits Co Ltd 光学画像測定装置
WO2013136826A1 (ja) * 2012-03-15 2013-09-19 オムロン株式会社 受光用集積回路およびこの集積回路を用いた光電センサ
WO2015105048A1 (ja) * 2014-01-08 2015-07-16 旭化成エレクトロニクス株式会社 ダイオード型センサの出力電流検出icチップ及びダイオード型センサ装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022082B (zh) * 2015-07-29 2018-01-19 中派科技(深圳)有限责任公司 光子测量前端电路
US10488446B2 (en) * 2017-02-21 2019-11-26 Fci Inc. Power detector
CN112032488B (zh) * 2020-08-25 2022-04-08 南宁学院 一种基于pso优化神经网络的光电探测设备故障诊断装置
US20240044704A1 (en) * 2020-12-18 2024-02-08 Newsouth Innovations Pty Limited Circuitry and methods of operating a photodiode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142513A (en) * 1976-05-21 1977-11-28 Yashica Co Ltd Exposure measuring circuit
JPS57133325A (en) * 1981-02-10 1982-08-18 Matsushita Electric Ind Co Ltd Autorange photometer
JPS63185208A (ja) * 1987-01-28 1988-07-30 Nec Corp 差動増幅回路
JPH0287709A (ja) * 1988-09-26 1990-03-28 Hitachi Ltd 光受信回路
JP2001004444A (ja) * 1999-05-07 2001-01-12 Leco Corp スイッチング式ndirシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287340A (en) 1992-02-13 1994-02-15 International Business Machines Corporation Differential amplifier for optical detectors in an optical data storage system
JPH06224652A (ja) 1993-01-26 1994-08-12 Toshiba Corp 光受信回路
DE4403982A1 (de) 1994-02-07 1995-08-10 Gerd Reime Schaltungsanordnung zum Empfangen von Lichtsignalen
JP2000261385A (ja) 1999-03-11 2000-09-22 Fujitsu Denso Ltd 光信号受信回路
JP2000357929A (ja) 1999-06-16 2000-12-26 Mitsubishi Electric Corp 前置増幅回路
EP1779558B1 (en) 2004-08-12 2012-11-28 Triaccess Technologies, Inc Level detector for optical receivers
US7279982B1 (en) * 2005-03-24 2007-10-09 Xilinx, Inc. Apparatus and method for low current differential swing I/O interface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142513A (en) * 1976-05-21 1977-11-28 Yashica Co Ltd Exposure measuring circuit
JPS57133325A (en) * 1981-02-10 1982-08-18 Matsushita Electric Ind Co Ltd Autorange photometer
JPS63185208A (ja) * 1987-01-28 1988-07-30 Nec Corp 差動増幅回路
JPH0287709A (ja) * 1988-09-26 1990-03-28 Hitachi Ltd 光受信回路
JP2001004444A (ja) * 1999-05-07 2001-01-12 Leco Corp スイッチング式ndirシステム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113840A (ja) * 2011-11-25 2013-06-10 Asset-Wits Co Ltd 光学画像測定装置
WO2013136826A1 (ja) * 2012-03-15 2013-09-19 オムロン株式会社 受光用集積回路およびこの集積回路を用いた光電センサ
JP2013197120A (ja) * 2012-03-15 2013-09-30 Omron Corp 受光用集積回路およびこの集積回路を用いた光電センサ
CN103547882A (zh) * 2012-03-15 2014-01-29 欧姆龙株式会社 受光用集成电路以及使用该集成电路的光电传感器
CN102879087A (zh) * 2012-09-21 2013-01-16 成都君万科技有限公司 一种差分滤光补偿电路及其实现方法
WO2015105048A1 (ja) * 2014-01-08 2015-07-16 旭化成エレクトロニクス株式会社 ダイオード型センサの出力電流検出icチップ及びダイオード型センサ装置
JPWO2015105048A1 (ja) * 2014-01-08 2017-03-23 旭化成エレクトロニクス株式会社 ダイオード型センサの出力電流検出icチップ及びダイオード型センサ装置
US9863808B2 (en) 2014-01-08 2018-01-09 Asahi Kasei Microdevices Corporation Output-current detection chip for diode sensors, and diode sensor device

Also Published As

Publication number Publication date
JPWO2011001523A1 (ja) 2012-12-10
JP5085785B2 (ja) 2012-11-28
US20120105033A1 (en) 2012-05-03
US8742314B2 (en) 2014-06-03

Similar Documents

Publication Publication Date Title
JP5085785B2 (ja) 光量検出装置、及び光量情報処理装置
JP5244973B2 (ja) 光検出装置及び流体計測装置
US11946987B2 (en) Hall electromotive force signal detection circuit having a difference calculation circuit and current sensor thereof
US7764118B2 (en) Auto-correction feedback loop for offset and ripple suppression in a chopper-stabilized amplifier
JP5459103B2 (ja) 増幅回路
JP6131550B2 (ja) 信号増幅回路及び信号増幅判定回路
US11394349B2 (en) Transimpedance amplifier
JPH05501344A (ja) コンピュータ断層撮影に有用な雑音消去光検出器前置増幅器
US10116262B2 (en) Front-end amplifier circuits for biomedical electronics
CN110940416A (zh) 一种多通道并行的光电探测电路结构
US8643526B1 (en) Data acquisition system
Song et al. A 50μW fully differential interface amplifier with a current steering class AB output stage for PPG and NIRS recordings
US20170241807A1 (en) Readout circuit
KR102424468B1 (ko) 증폭 회로, 및 멀티패스 네스티드 밀러 증폭 회로
JP2015207923A (ja) トランスインピーダンス増幅器
Ferreira et al. Analog integrated lock-in amplifier for optical sensors
JP4297097B2 (ja) 光受信器及び入射光信号強度の測定方法
Hassan et al. High Gain Readout Interface Circuit for Hall Sensors for Low Power Applications
CN220271887U (zh) 一种量子随机数发生器
US20170310289A1 (en) Analog front-end circuit
JP4370577B2 (ja) 信号抽出方法および信号抽出回路
JP2011013037A (ja) アレイセンサ装置
JP2004153699A (ja) 単相/差動変換回路
JP2005164555A (ja) 電界検出光学装置
JPH03188335A (ja) 分光光度計

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011504276

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13380407

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846816

Country of ref document: EP

Kind code of ref document: A1