WO2010150828A1 - 電力供給装置 - Google Patents

電力供給装置 Download PDF

Info

Publication number
WO2010150828A1
WO2010150828A1 PCT/JP2010/060683 JP2010060683W WO2010150828A1 WO 2010150828 A1 WO2010150828 A1 WO 2010150828A1 JP 2010060683 W JP2010060683 W JP 2010060683W WO 2010150828 A1 WO2010150828 A1 WO 2010150828A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
value
output
voltage
Prior art date
Application number
PCT/JP2010/060683
Other languages
English (en)
French (fr)
Inventor
小新 博昭
卓也 香川
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to KR1020117031649A priority Critical patent/KR101278095B1/ko
Priority to JP2011519924A priority patent/JP5303032B2/ja
Priority to EP10792146.2A priority patent/EP2447804B1/en
Priority to CN201080029699.4A priority patent/CN102460337B/zh
Priority to SG2011096443A priority patent/SG177382A1/en
Priority to US13/380,647 priority patent/US9142958B2/en
Publication of WO2010150828A1 publication Critical patent/WO2010150828A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for DC mains or DC distribution networks
    • H02J1/10Parallel operation of DC sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for DC mains or DC distribution networks
    • H02J1/10Parallel operation of DC sources
    • H02J1/102Parallel operation of DC sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power supply device in which a plurality of power supply devices are operated in parallel to supply DC power to a load device.
  • a power supply device that includes two power supply devices whose output voltage monotonously decreases as the output current increases (see, for example, JP-A-10-248253).
  • the inclination angles of the output current-output voltage characteristics of the two power supply devices are different. That is, when the output current changes by the same magnitude, the amount of change in the output voltage of one power supply device is different from the amount of change in the output voltage of the other power supply device.
  • each power supply device settles at the balance point of output current-output voltage characteristics and load current, An arbitrary output current can be output from each power supply device at an arbitrary output voltage.
  • one power supply device has constant voltage control, and the remaining power supply devices monotonously as the output current increases.
  • a power supply device that is tilt control using a decreasing DC voltage as an output voltage is conceivable.
  • the slope control power supply device outputs current to the load device while the output voltage of the slope control power supply device is adjusted to the output voltage (reference voltage) of the constant voltage control power supply device. To do. At this time, the shortage of the load current is output from the power supply device of constant voltage control to the load device.
  • the power supply to the load device is maintained while keeping the supply voltage to the load device at a constant voltage (the output voltage of the power supply device of constant voltage control). It can be performed stably.
  • the present invention has been made in view of the above points, and an object thereof is to provide a power supply device capable of operating a power supply device to which a commercial power supply is connected with maximum conversion efficiency.
  • a power supply apparatus is connected to a DC supply line to which a load device is connected, and includes a first power supply device and a second power supply unit that supply DC power to the load device through the DC supply line, and Load current detection means for measuring the value of the current flowing through the DC supply line and outputting it as a measurement value; if the measurement value is obtained from the load current detection means, whether or not the obtained measurement value is greater than the optimum current value Determination means for determining whether or not, and control means.
  • the first power supply device is connected to a commercial power source and converts the power obtained from the commercial power source into DC power, so that the DC power supply line is constant regardless of the magnitude of the current output to the DC power supply line.
  • the optimum current value is a value of a current that the first power supply device outputs to the DC supply line when the conversion efficiency of the first power supply device is maximum.
  • the second power supply unit includes a second power supply device.
  • the second power supply device monotonously decreases the output voltage applied to the DC supply line as the output current output to the DC supply line increases, and monotonously increases the output voltage as the output current decreases. It is configured to perform tilt control.
  • the determination means determines that the measured value is larger than the optimum current value
  • the control means determines that the current value output from the second power supply unit to the DC supply line is the measured value and the optimum current value.
  • the instruction value is output to the second power supply device so as to be equal to the difference value.
  • the second power supply device includes adjustment means for adjusting the value of the output current based on the instruction value received from the control means.
  • the adjustment unit receives the instruction value from the control unit, the adjustment unit sets the value of the output current to a value corresponding to the instruction value without changing the output voltage by changing the condition of the inclination control. Configured to do.
  • control means is configured to cause the second power supply unit to stop outputting the current to the DC supply line when the determination means determines that the measured value is equal to or less than the optimum current value. Is done.
  • the second power supply unit includes a plurality of the second power supply devices.
  • the value of the current output from the second power supply unit to the DC supply line is the sum of the output current values of the plurality of second power supply devices.
  • the house H is provided with a DC power supply unit 101 that outputs DC power and a DC device (load device) 102 as a load driven by the DC power.
  • DC power is supplied to the DC device 102 through a DC supply line Wdc connected to the output end of the DC device 102.
  • a current flowing through the DC supply line Wdc is monitored between the DC power supply unit 101 and the DC device 102.
  • a DC breaker 114 is provided for limiting or blocking the current.
  • the DC supply line Wdc is used as both a DC power supply path and a communication path, and is connected to the DC supply line Wdc by superimposing a communication signal for transmitting data on a DC voltage using a high-frequency carrier wave. Enables communication between devices.
  • This technique is similar to a power line carrier technique in which a communication signal is superimposed on an AC voltage in a power line that supplies AC power.
  • the DC supply line Wdc is connected to the home server 116 via the DC power supply unit 101.
  • the home server 116 is a main device that constructs a home communication network (hereinafter referred to as “home network”), and communicates with a subsystem or the like constructed by the DC device 102 in the home network.
  • home network a home communication network
  • an illumination system comprising an information equipment system K101 comprising an information-system DC device 102 such as a personal computer, a wireless access point, a router, and an IP telephone, and an illumination system DC equipment 102 such as a lighting fixture.
  • Each subsystem constitutes a self-supporting distributed system, and can operate even with the subsystem alone.
  • the above-described DC breaker 114 is provided in association with a subsystem.
  • four DCs are associated with the information equipment system K101, the lighting system K102 and the entrance system K103, the house alarm system K104, and the lighting system K105.
  • a breaker 114 is provided.
  • a connection box 121 for dividing the system of the DC supply line Wdc is provided for each subsystem.
  • a connection box 121 is provided between the illumination system K102 and the entrance system K103.
  • an information equipment system K101 composed of a DC equipment 102 connected to a DC outlet 131 arranged in advance in the house H (constructed when the house H is constructed) in the form of a wall outlet or a floor outlet.
  • the lighting systems K102 and K105 include a lighting system K102 composed of a lighting device (DC device 102) arranged in advance in the house H and a lighting device (DC device 102) connected to a hook ceiling 132 arranged in advance on the ceiling.
  • An illumination system K105 is provided.
  • the contractor attaches the lighting fixture to the hook ceiling 132, or the householder himself attaches the lighting fixture.
  • an instruction to control the lighting apparatus that is the DC device 102 constituting the lighting system K102 can be given using a communication signal from the switch 141 connected to the DC supply line Wdc.
  • a control instruction for the luminaire that is the DC device 102 constituting the illumination system K105 can be given using a communication signal from the switch 142 connected to the DC supply line Wdc. That is, the switches 141 and 142 have a communication function together with the DC device 102.
  • a control instruction may be given by a communication signal from another DC device 102 in the home network or the home server 116 regardless of the operation of the switches 141 and 142.
  • the instructions to the lighting fixture include lighting, extinguishing, dimming, and blinking lighting.
  • DC outlet Since any DC device 102 can be connected to the DC outlet 131 and the hooking ceiling 132 described above and DC power is output to the connected DC device 102, the DC outlet 131 and the hooking ceiling 132 are distinguished below. When it is not necessary, it is called “DC outlet”.
  • DC outlets have a plug-in connection port into which a contact (not shown) provided directly on the DC device 102 or a contact (not shown) provided via a connection line is inserted into the body.
  • the contact receiver that directly contacts the contact inserted into the connection port is held by the container. That is, the direct current outlet supplies power in a contact manner.
  • a communication signal can be transmitted through the DC supply line Wdc.
  • a communication function is provided not only in the DC device 102 but also in the DC outlet.
  • the home server 116 not only is connected to the home network, but also has a connection port connected to the wide area network NT that constructs the Internet.
  • the in-home server 116 is connected to the wide area network NT, it is possible to receive services from the center server 200 that is a computer server connected to the wide area network NT.
  • the service provided by the center server 200 includes a service that enables monitoring and control of equipment (including mainly the DC equipment 102 but also other equipment having a communication function) connected to the home network through the wide area network NT. is there.
  • This service makes it possible to monitor and control devices connected to the home network using a communication terminal (not shown) having a browser function such as a personal computer, Internet TV, or mobile phone.
  • the in-home server 116 has both functions of communication with the center server 200 connected to the wide area network NT and communication with equipment connected to the home network, and identification information about equipment in the home network ( Here, it is assumed that an IP address is used).
  • the home server 116 enables monitoring and control of home devices through the center server 200 from a communication terminal connected to the wide area network NT by using a communication function with the center server 200.
  • the center server 200 mediates between home devices and communication terminals on the wide area network NT.
  • monitoring and control requests are stored in the center server 200, and the home device periodically performs one-way polling communication to monitor from the communication terminal. And receive control requests. With this operation, it is possible to monitor and control devices in the house from the communication terminal.
  • the home device when an event that should be notified to the communication terminal, such as a fire detection, occurs in the home device, the home device notifies the center server 200, and the center server 200 notifies the communication terminal by e-mail.
  • an event that should be notified to the communication terminal such as a fire detection
  • the home server 116 automatically detects devices connected to the home network by applying UPnP (Universal Plug and Play).
  • the home server 116 includes a display device 117 having a browser function, and displays a list of detected devices on the display device 117.
  • the display device 117 has a configuration with a touch panel type or an operation unit, and can perform an operation of selecting desired contents from options displayed on the screen of the display device 117. Therefore, the user (contractor or householder) of the home server 116 can monitor or control the device on the screen of the display device 117.
  • the display device 117 may be provided separately from the home server 116.
  • the home server 116 manages information related to device connection, and grasps the type, function, and address of the device connected to the home network. Accordingly, the devices in the home network can be operated in conjunction with each other. Information on the connection of the device is automatically detected as described above. In order to operate the device in an interlocking manner, the device itself is automatically associated with the attribute held by the device itself, and the home server 116 is configured as a personal computer. It is also possible to connect various information terminals and use the browser function of the information terminals to associate devices.
  • Each device maintains the relationship of the interlocking operation of the devices. Therefore, the device can operate in an interlocked manner without passing through the home server 116.
  • By associating the linked operations for each device for example, by operating a switch that is a device, it is possible to turn on or off the lighting fixture that is the device. In many cases, the association of the interlocking operations is performed within the subsystem, but the association beyond the subsystem is also possible.
  • the DC power supply unit 101 basically generates DC power by power conversion of the commercial power supply AC supplied from outside the house.
  • the commercial power source AC is input to the AC / DC converter 112 including the switching power source through the main breaker 111 attached to the distribution board 110 as an internal unit.
  • the DC power output from the AC / DC converter 112 is connected to each DC breaker 114 through the cooperative control unit 113.
  • the DC power supply unit 101 is provided with a secondary battery 162 in preparation for a period in which power is not supplied from the commercial power source AC (for example, a power failure period of the commercial power source AC).
  • a secondary battery 162 for example, a lithium ion secondary battery or the like is used. It is also possible to use a solar cell 161 or a fuel cell 163 that generates DC power.
  • the solar cell 161, the secondary battery 162, and the fuel cell 163 are distributed power sources with respect to the main power source including the AC / DC converter 112 that generates DC power from the commercial power source AC.
  • the secondary battery 162 includes a circuit unit that controls charging.
  • the secondary battery 162 is charged in a timely manner by the commercial power source AC, the solar cell 161, and the fuel cell 163, and the secondary battery 162 is discharged in a timely manner as needed not only during a period in which no power is supplied from the commercial power source AC. .
  • the cooperation control unit 113 performs charge / discharge of the secondary battery 162 and cooperation between the main power source and the distributed power source. That is, the cooperative control unit 113 functions as a DC power control unit that controls the distribution of power from the main power supply and the distributed power supply constituting the DC power supply unit 101 to the DC devices 102.
  • a DC / DC converter is provided in the cooperative control unit 113 to convert the DC voltage obtained from the main power source and the distributed power source into a necessary voltage. Is desirable. Normally, one type of voltage is supplied to one subsystem (or DC device 102 connected to one DC breaker 114), but three or more wires are used for one subsystem. A plurality of types of voltages may be supplied. It is also possible to adopt a configuration in which the DC supply line Wdc is of a two-wire type and the voltage applied between the lines is changed over time.
  • the DC / DC converter may be provided in a plurality of dispersed manners like the DC breaker.
  • the AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, the solar cell 161, the secondary battery 162, and the fuel cell 163 described above are provided with a communication function, and include a main power source, a distributed power source, and a DC device 102. It is possible to perform cooperative operations that deal with the load status.
  • the communication signal used for this communication is transmitted in the form of being superimposed on the DC voltage in the same manner as the communication signal used for the DC device 102.
  • the AC / DC converter 112 is arranged in the distribution board 110 in order to convert the AC power output from the main breaker 111 into DC power by the AC / DC converter 112.
  • a branch breaker (not shown) provided in the distribution board 110 branches the AC supply line into a plurality of systems, and an AC / DC converter is provided on the AC supply line of each system to convert it into DC power for each system. You may employ
  • the DC power supply unit 101 can be provided for each floor or room of the house H, the DC power supply unit 101 can be managed for each system, and the DC device 102 that uses DC power and Since the distance of the DC supply line Wdc between the two is reduced, the power loss due to the voltage drop in the DC supply line Wdc can be reduced.
  • the main breaker 111 and the branch breaker are housed in the distribution board 110, and the AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, and the home server 116 are housed in a separate board from the distribution board 110. Also good.
  • the power supply device 3 housed in the DC power supply unit 101 will be described with reference to FIG.
  • the power supply device 3 includes a plurality of (four in the illustrated example) power supply devices 4 (5, 6) that operate in parallel and supply DC power to the DC device (load device) 102, and the entire DC power supply system. And a monitoring device 7 for monitoring.
  • the plurality of power supply devices 4 are composed of one first power supply device 5 and a plurality (three in the illustrated example) of second power supply devices 6 (6a to 6c).
  • the second power supply unit 8 includes three second power supply devices 6, but the second power supply unit 8 may include only one second power supply device 6. In this case, the value of the current output from the second power supply unit 8 to the DC supply line Wdc is equal to the output current Io2 of the second power supply device 6.
  • the second power supply unit 8 may include only two second power supply devices 6 or may include four or more.
  • the first power supply 5 uses a DC voltage that is always a constant voltage regardless of the magnitude of the output current Io1 as the output voltage Vo1 (see FIG. 5B).
  • a power supply voltage from the commercial power supply AC is input to the first power supply device 5 as the input voltage Vi1 (see FIG. 3). That is, the first power supply device 5 is a power supply device for commercial power supply that supplies DC power to the DC device 102 using the commercial power supply AC as an input power supply.
  • the first power supply device 5 is connected to the commercial power supply AC.
  • the first power supply device 5 converts the electric power obtained from the commercial power supply AC into DC power, so that the DC power supply line Wdc is constant regardless of the magnitude of the current (output current Io1) output to the DC supply line Wdc. It is configured to perform constant voltage control that provides a voltage (output voltage Vo1).
  • the first power supply device 5 is connected to the commercial power supply AC via the AC / DC converter 112. That is, the AC voltage of the commercial power supply AC is converted into a predetermined DC voltage by the AC / DC converter 112 and is supplied to the first power supply device 5. Therefore, the input voltage Vi1 is a DC voltage output from the AC / DC converter 112. However, the input voltage Vi1 may be an AC voltage output from the commercial power supply AC. In this case, the first power supply device 5 is provided with an AC / DC converter that converts the input voltage Vi ⁇ b> 1 that is an AC voltage into a DC voltage and outputs the DC voltage to the DC / DC converter 52.
  • the first power supply device 5 has an on-duty width set according to the voltage detection means 50 for detecting the output voltage Vo1, the reference voltage V2, and the detection voltage V1 of the voltage detection means 50.
  • the voltage detection means 50 includes two resistors 500 and 501 connected in series, and a voltage follower 502 to which a divided voltage by the resistors 500 and 501 is input, and outputs the output voltage Vo1 of the first power supply device 5. To detect.
  • the voltage detection means 50 is configured to detect the output voltage Vo1 and to provide the switching control means 51 with a detection voltage V1 corresponding to the detected output voltage Vo1.
  • the switching control means 51 includes a switching IC 510 to which the detection voltage (output voltage of the voltage follower 502) V1 of the voltage detection means 50 and the reference voltage V2 are input.
  • the switching IC 510 outputs the pulse width modulation signal S1 in which the on-duty width is set so that the differential voltage (V2 ⁇ V1) between the reference voltage V2 and the detection voltage V1 is constant, to the switching element 520. That is, the switching IC 510 sets the on-duty width of the pulse width modulation signal S1 so that the output voltage Vo1 (detection voltage V1) is always constant.
  • the DC / DC converter 52 includes a smoothing capacitor 521, an inductor 522, a switching element 520, a diode 523, and a smoothing capacitor 524 in order from the input side.
  • the DC / DC converter 52 receives the input voltage Vi1 by the on / off operation of the switching element 520. Boost the pressure.
  • the switching element 520 is, for example, a field effect transistor, and the pulse width modulation signal S1 from the switching IC 510 is input to the gate via the resistor 525.
  • the switching element 520 When the switching element 520 is turned on, conduction occurs between the source and the drain, and electromagnetic energy is stored in the inductor 522. Thereafter, when the switching element 520 is turned off, the electromagnetic energy stored in the inductor 522 is released and the voltage is increased.
  • the boosted voltage is smoothed by the smoothing capacitor 524.
  • the DC voltage smoothed by the smoothing capacitor 524 is output to the DC device 102 (see FIG. 1) as the output voltage Vo1.
  • the first power supply device 5 deviates from the output current-output voltage characteristic in which the output voltage Vo1 is a constant DC voltage regardless of the magnitude of the output current Io1, as shown in FIG. 5B. Feedback control can be performed so that there is no.
  • the second power supply device 6 applies a DC voltage that monotonously decreases as the output current (current output to the DC supply line Wdc) Io2 increases to the output voltage (DC supply line Wdc).
  • the applied voltage is Vo2.
  • Vo2 + ⁇ Io2 is a constant value at V0.
  • may be a different value for each second power supply device 6 or may be the same value.
  • the second power supply device 6 monotonously decreases the output voltage Vo2 applied to the DC supply line Wdc as the output current Io2 output to the DC supply line Wdc increases, and decreases the output voltage Vo2 as the output current Io2 decreases. It is comprised so that the inclination control which raises monotonously may be performed.
  • a solar cell 161 is connected to the second power supply device 6a
  • a secondary battery 162 is connected to the second power supply device 6b
  • a fuel cell 163 is connected to the second power supply device 6c. It is connected.
  • Each second power supply device 6 receives an input voltage Vi2 (see FIG. 4) from the batteries 161 to 163 connected thereto. That is, the second power supply device 6a is a solar cell power supply device (PV converter) that supplies the DC power to the DC device 102 using the solar cell 161 as an input power supply, and the second power supply device 6b is a secondary battery 162.
  • PV converter solar cell power supply device
  • Each second power supply device 6 corresponds to another power supply device with respect to the first power supply device 5.
  • each of the second power supply devices 6 includes a current detection means 60 for detecting the output current Io2, a voltage detection means 61 for detecting the output voltage Vo2, and a detection voltage V5 and current of the voltage detection means 61.
  • a switching control means 62 for generating a pulse width modulation signal S2 having an on-duty width set according to the voltage V8 output from the detection means 60, and an on-duty width of the pulse width modulation signal S2 from the switching control means 62
  • a DC / DC converter 63 having a switching element 630 that performs an on / off operation in response thereto, and an adjustment unit 64 that adjusts the magnitude of the output current Io2 under the control of a control unit 73 (see FIG. 1) described later.
  • the current detection means 60 is divided by resistors 600 and 605, a current IC 601 that detects the voltage across the resistor 600, resistors 602 and 603 that divide the output voltage V3 of the current IC 601, and resistors 602 and 603. And a voltage follower 604 to which the divided voltage is input, and detects the output current Io2.
  • the voltage detecting means 61 includes two resistors 610 and 611 connected in series and a voltage follower 612 to which a divided voltage by the resistors 610 and 611 is input, and detects the output voltage Vo2.
  • the voltage detection means 61 is configured to detect the output voltage Vo2 and to provide the switching control means 62 with a detection voltage V5 corresponding to the detected output voltage Vo2.
  • the switching control means 62 includes a switching IC 620 to which the detection voltage (output voltage of the voltage follower 612) V5 of the voltage detection means 61 and a voltage V8 described later are input.
  • the DC / DC converter 63 includes a smoothing capacitor 631, an inductor 632, a switching element 630, a diode 633, and a smoothing capacitor 634 in order from the input side, and the input voltage Vi ⁇ b> 2 is obtained by the on / off operation of the switching element 630. Boost the pressure.
  • the adjusting unit 64 includes a CPU 640 that obtains an instruction value of the output current Io2 from a control unit 73 (see FIG. 1) described later, two resistors 641 and 642 that divide the output voltage V6 of the CPU 640, and resistors 641 and 642. And a non-inverting amplifier circuit 643 to which the divided voltage is input.
  • the magnitude of the output current Io2 is changed based on the instruction value from the control unit 73. Control is performed.
  • the load current detection unit (load current detection means) 70 for detecting a current value of the load current I L supplied to the DC device 102, the solar cell 161 and fuel cell 163 determining determines that the remaining amount detecting unit 71 that detects the remaining amount of the supply range and the secondary battery 162, the load current detector load current I L is detected at 70 as to whether or not larger than the optimum current value Im of the later And a control unit (control means) 73 for controlling the magnitude of the output current Io2 of each second power supply device 6.
  • the load current detection unit 70 detects a necessary current from each DC device 102 at a preset time interval while the power supply device 3 is operating, that is, when power is supplied to the DC device 102 by the power supply device 3.
  • the load current I L which is the total use current on the DC device 102 side is detected.
  • the preset time interval is a time interval that satisfies the load following (for example, several milliseconds).
  • the load current detector 70 is configured to measure the value (current value) I0 of the current (load current I L ) flowing through the DC supply line Wdc and output it as a measured value.
  • the remaining amount detection unit 71 detects and detects the output voltage and output current of the secondary battery 162 at the above time intervals while the power supply device 3 is operating (when the power supply device 3 supplies power to the DC device 102). The remaining amount of the secondary battery 162 is detected using the result.
  • the determination unit 72 is configured to determine whether or not the obtained measurement value is larger than the optimum current value Im when the measurement value is obtained from the load current detection unit 70.
  • the determination unit 72 together with the load current I L to determine whether it is larger than the optimum current value Im as described above, the remaining amount of the secondary battery 162 detected by the remaining amount detecting unit 71, the secondary It is also determined whether or not the second power supply device (BAT converter) 6b connected to the battery 162 is sufficient to output the output current Io2 (Iob). Specifically, if the remaining amount of the secondary battery 162 is equal to or greater than a preset threshold, the determination unit 72 causes the remaining amount of the secondary battery 162 to be such that the BAT converter 6b can output the output current Iob having the current value I2. Determine that the amount is sufficient.
  • BAT converter second power supply device
  • the determination unit 72 determines that the remaining amount of the secondary battery 162 is not sufficient so that the BAT converter 6b can output the output current Iob having the current value I2. .
  • the control unit 73 determines how much power should be supplied from each power source device 5 and 6 to each DC device 102 as a whole system, and adjusts the output of each power source device 5 and 6 accordingly.
  • the control unit 73 transmits an instruction value for instructing the current value of the output current Io2 to each of the adjusting means 64 of each second power supply device 6.
  • the indicated value may be a value that directly represents the current value of the output current Io2, or may be a voltage value obtained by converting the current value of the output current Io2.
  • the instruction value is not limited to a value for indicating the current value of the output current Io2 in each second power supply device 6, but indicates the magnitude of the output power in each second power supply device 6. May be a value for
  • the CPU 640 shown in FIG. 4 outputs an output voltage V6 having a magnitude corresponding to the instruction value from the control unit 73 (see FIG. 1).
  • the output voltage V7 of the non-inverting amplifier circuit 643 increases as the output voltage V6 of the CPU 640 increases, and decreases as the output voltage V6 of the CPU 640 decreases.
  • a differential amplifier circuit 606 is inserted between the voltage follower 604 and the resistor 605.
  • the voltage V8 output to the switching IC 620 is also reduced. Note that the magnitude of ⁇ is set so that the voltage V8 can be calculated as the detection voltage V5 in the switching IC 620 described later.
  • the switching IC 620 generates the pulse width modulation signal S2 whose on-duty width is set (changed) so that the differential voltage (V8 ⁇ V5), that is, the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) between the voltage V8 and the detection voltage V5 is constant. Output to the switching element 630. Specifically, when the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) becomes larger than before, the switching IC 620 reduces the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) (voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) until now.
  • the on-duty width of the pulse width modulation signal S2 is set wide.
  • the switching IC 620 increases the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) (voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) is the same as before.
  • the on-duty width of the pulse width modulation signal S2 is set to be small.
  • the switching element 630 is, for example, a field effect transistor, and the pulse width modulation signal S2 from the switching IC 620 is input to the gate via the resistor 635.
  • the switching element 630 When the switching element 630 is turned on, conduction occurs between the source and the drain, and electromagnetic energy is stored in the inductor 632. Thereafter, when the switching element 630 is turned off, the electromagnetic energy stored in the inductor 632 is released to increase the voltage.
  • the boosted voltage is smoothed by the smoothing capacitor 634.
  • the DC voltage smoothed by the smoothing capacitor 634 is output to the DC device 102 (see FIG. 1) as the output voltage Vo2.
  • the output current Io2 (detection voltage V4) becomes larger than before
  • the output voltage Vo2 (detection voltage V5) can be made smaller than before by setting the on-duty width to be the same size and reducing the boost.
  • the output current Io2 (detection voltage V4) becomes smaller than before
  • the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) becomes larger than before, but the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) has the same magnitude as before.
  • the output voltage Vo2 (detection voltage V5) can be increased more than before by setting the on-duty width to be large and increasing the boost.
  • each second power supply device 6 having such a configuration makes the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) constant so that the output voltage Vo2 increases as the output current Io2 increases as shown in FIG. 5A.
  • Each second power supply device 6 having such an output current-output voltage characteristic has an output voltage Vo2 that is the output voltage Vo1 of the first power supply device 5 in a state where the second power supply device 6 has the intersection used together with the first power supply device 5.
  • the output current Io2 is output when the output voltage Vo2 is adjusted to the output voltage Vo1.
  • the output voltage Vo2 fluctuates according to the output current-output voltage characteristic of FIG. 6 and temporarily increases ((A) of FIG. 6).
  • the detection voltage V4 also increases ((B) in FIG. 6).
  • the detection voltage V4 increases, the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) decreases, so that the on-duty width of the pulse width modulation signal S2 decreases, and the output voltage Vo2 (detection voltage V5) decreases ((( C)).
  • the output voltage Vo2 is adjusted to the output voltage Vo1.
  • the output voltage Vo2 fluctuates according to the output current-output voltage characteristic of FIG. 6 and temporarily decreases ((D) of FIG. 6).
  • the detection voltage V4 also decreases ((E) in FIG. 6).
  • the detection voltage V4 decreases, the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) increases, so that the on-duty width of the pulse width modulation signal S2 increases, and the output voltage Vo2 (detection voltage V5) increases (FIG. 6 ( F)).
  • the output voltage Vo2 is adjusted to the output voltage Vo1.
  • the total use current (load current I L ) on the DC device 102 side is increased, and the output voltage Vo2 (detection voltage V5) is kept constant.
  • the on-duty width of the pulse width modulation signal S2 becomes wide and the output voltage Vo2 temporarily becomes larger than the output voltage Vo1 ((A) in FIG. 7).
  • This operation corresponds to adding a predetermined voltage to the output voltage Vo2 of the second power supply device 6.
  • the output current Io2 detection voltage V4
  • the detection voltage V4 increases, the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) decreases, so the on-duty width of the pulse width modulation signal S2 decreases.
  • the output voltage Vo2 becomes small ((C) in FIG. 7). After repeating the above operation, the output voltage Vo2 becomes the output voltage Vo1.
  • the second power supply device 6 allows the output current Io2 at the intersection with the constant voltage characteristic (output current-output voltage characteristic of the first power supply device 5) to be the indicated value (current value I1).
  • the output current-output voltage characteristic of the power supply device 6 is shifted, and the output current Io2 according to the instruction value is output.
  • the output current Io2 (detection voltage V4) also decreases ((E) in FIG. 7).
  • the detection voltage V4 decreases, the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) increases, so the on-duty width of the pulse width modulation signal S2 increases.
  • the output voltage Vo2 increases ((F) in FIG. 7).
  • the output voltage Vo2 becomes the output voltage Vo1.
  • the second power supply device 6 allows the output current Io2 at the intersection with the constant voltage characteristic (output current-output voltage characteristic of the first power supply device 5) to be the indicated value (current value I0).
  • the output current-output voltage characteristic of the power supply device 6 is shifted, and the output current Io2 according to the instruction value is output.
  • the adjustment unit 64 when the adjustment unit 64 receives the instruction value from the control unit (control unit) 73, the instruction that has received the value of the output current Io2 without changing the output voltage Vo2 by changing the condition of the inclination control. It is configured to set to a value corresponding to the value.
  • the adjusting unit 64 shifts the output current-output voltage characteristic by changing the tilt control condition (that is, the line indicating the output current-output voltage characteristic is translated).
  • the output voltage Vo2 of the second power supply device 6 becomes the output voltage Vo1 of the first power supply device 5 as before the shift.
  • the output current Io2 when the output voltage Vo2 is adjusted to the output voltage Vo1 is output.
  • each second power supply device 6 has the output voltage Vo2 adjusted to the output voltage Vo1 of the first power supply device 5, and the output voltage Vo2 is equal to the output voltage Vo1.
  • the output current Io2 can be output to the DC device 102.
  • the load current I L may be set to an output current Io2 corresponding respective second power device 6 to the load current I L, the load current I L changes Even so, the output voltage Vo2 of the second power supply device 6 is matched with the output voltage Vo1 of the first power supply device 5, so that the output voltage Vo2 can be maintained at a constant voltage. As a result, it is possible to stably supply power to the DC device 102.
  • FIG. 5 shows the output current-output voltage characteristic of the second power supply device 6, and (b) shows the output current-output voltage characteristic of the first power supply device 5.
  • I11 is instructed as an instruction value from the control unit 73
  • the output current-output voltage characteristics of the second power supply device 6 are as shown by the arrows in FIG. 5 (c).
  • the output current Io2 of the second power supply device 6 can be increased from I12 to I11.
  • the relationship in which the output voltage Vo2 decreases monotonously as the output current Io2 increases can be easily realized without increasing the number of parts from the configuration of the first power supply device 5. Can do.
  • the current value of the output current Io1 of the first power supply device 5 when the conversion efficiency of the first power supply device 5 is maximized is the optimum current value Im. That is, the optimum current value Im is the value of the current (output current Io1) that the first power supply device 5 outputs to the DC supply line Wdc when the conversion efficiency of the first power supply device 5 is maximum.
  • the conversion efficiency of the first power supply device 5 is, for example, that the power conversion efficiency is output from the first power supply device 5 to the power supply PIN from the commercial power supply AC input to the first power supply device 5 to the DC supply line Wdc.
  • the control unit 73 of the monitoring device 7 changes the output current Io1 of the first power supply device 5 to the optimum current value Im. That is, that is, the sum of the output currents Io2 of each second power supply device 6 when the output voltage Vo2 of each second power supply device 6 is adjusted to the output voltage Vo1 of the first power supply device 5 is a load. to correspond to the difference value between the current value and the optimal current value Im of the current I L, adjusting means 64 the output current of the relative (see FIG. 4) the second power device 6 of each of the second power device 6 -Shift the output voltage characteristics.
  • the control unit 73 is configured to cause the second power supply unit 8 to stop outputting the current to the DC supply line Wdc. .
  • the control unit 73 transmits an output stop signal to each second power supply device 6 of the second power supply unit 8. Composed.
  • the second power supply device 6 that has received the output stop signal is configured to stop the output of the output current Io2.
  • the load current detector 70 detects the current value I0 of the load current I L (S1 in FIG. 8). Subsequently, whether the load current I L the current value I0 is greater than the optimal current value Im of the determination unit 72 determines (S2). When the current value I0 is larger than the optimum current value Im, the control unit 73 determines that the output current Ioa of the PV converter 6a is the difference value (I0 ⁇ Im) between the current value I0 and the optimum current value Im within the supply capacity range of the solar cell 161. ) Is transmitted to the PV converter 6a (S3).
  • the PV device 6a When the PV converter 6a receives the instruction value from the control unit 73, the PV device 6a shifts the output current-output voltage characteristic of the PV converter 6a using the adjusting unit 64, and sets the output current Ioa as a difference value (I0-Im). To supply.
  • the BAT converter 6b receives the instruction value from the control unit 73, the BAT converter 6b shifts the output current-output voltage characteristic of the BAT converter 6b using the adjusting unit 64, and the output current Iob is changed to the current value as shown in FIG. It is supplied to the DC device 102 as I2.
  • step S3 to S5 energy saving can be achieved by giving priority to the PV converter 6a over the BAT converter 6b as control for compensating for the difference value (I0-Im).
  • steps S4 and S5 when the control unit 73 knows the difference value (I0 ⁇ Im), the output current Ioa of the PV converter 6a is still set as the maximum current value I1 in the current sunshine environment.
  • the output current Iob of the BAT converter 6b should be set to the current value I2
  • the PV converter 6a is set so that the output current Ioa of the PV converter 6a becomes the maximum current value I1.
  • the instruction value may be output to the BAT converter 6b so that the output current Iob of the BAT converter 6b becomes the current value I2.
  • the output current Io1 having the optimum current value Im is supplied from the first power supply device 5 to the DC device 102 (S6). Note that the shortage is supplied from the first power supply device 5 until the output currents Ioa and Iob of the PV converter 6a and the BAT converter 6c are completely shifted and the current of the current value I0 is output as a sum. Therefore, there is no problem in the stable supply to the load (DC device 102).
  • step S2 when the current value I0 of the load current I L is equal to or less than the optimum current value Im in step S2, the control unit 73 stops each second power supply device 6 so as to stop the current output of each second power supply device 6. 6 is controlled. Thereby, the output current Io1 having the current value I0 is supplied from the first power supply device 5 to the DC device 102 (S6).
  • step S4 when the difference current (load current ⁇ optimum current value) is the same as the output current Ioa of the PV converter 6a, the control unit 73 controls the second power supply device 6 (BAT converter 6b, FC) other than the PV converter 6a. The current output of the converter 6c) is stopped. As a result, the first power supply device 5 outputs the output current Io1 having the optimum current value Im to the DC device 102 (S6). That is, the control unit 73 transmits an instruction value to the second power supply device 6a and transmits an output stop signal to the remaining second power supply devices 6b and 6c.
  • the load current I L is increased to increase the output current Ioa of the PV converter 6a and BAT converter 6b, a total amount of Iob only the increase in the load current I L , the load current I L decreases, the output current Ioa, reducing the total amount of Iob only decrease of the load current I L.
  • the output current Iob of the BAT converter 6b is first decreased, and then the output current Ioa of the PV converter 6a is decreased. You may control.
  • the preset time interval is a time interval that satisfies the load following (for example, several milliseconds). Note that the power supply device 3 may perform the operations from step S1 to step S6 other than the preset time interval.
  • the power supply device 3 uses a commercial power supply AC as an input power supply and a commercial power supply apparatus (first power supply apparatus) that uses a DC voltage that is a constant voltage regardless of the magnitude of the output current Io1 as an output voltage Vo1. 5, one or a plurality of others that supply DC power to the load device 102 by operating in parallel with the first power supply device 5 as the output voltage Vo2 with a DC voltage that decreases monotonically as the power supply voltage is input and the output current Io2 increases.
  • the power supply device 6 includes an adjustment unit 64 that shifts an output current-output voltage characteristic indicating a relationship between the output current Io2 and the output voltage Vo2 when power is supplied to the load device 102.
  • the control unit 73 includes a load current detection unit.
  • the power supply device 3 of the present embodiment is connected to the DC supply line Wdc to which the load device 102 is connected, and the first power supply device 5 and the second power supply device 5 that supply DC power to the load device 102 through the DC supply line Wdc.
  • Power supply unit 6 load current detection means (load current detection unit) 70 that measures a value (current value) I 0 of a current (load current) I L flowing through the DC supply line Wdc and outputs it as a measured value I 0, a load
  • a determination unit (determination unit) 72 for determining whether or not the obtained measurement value I0 is larger than the optimum current value Im, and a control unit (control unit) 73 are provided. Prepare.
  • the first power supply device 5 is connected to the commercial power supply AC and converts the electric power obtained from the commercial power supply AC into DC power, so that the current (output current) Io1 output to the DC supply line Wdc is independent of the magnitude. It is configured to perform constant voltage control for applying a constant voltage (output voltage) Vo1 to the DC supply line Wdc.
  • the optimum current value Im is a value of a current (output current) Io1 that the first power supply device 5 outputs to the DC supply line Wdc when the conversion efficiency of the first power supply device 5 is maximum.
  • the second power supply unit 8 includes a second power supply device 6.
  • the second power supply device 6 monotonously decreases the output voltage Vo2 applied to the DC supply line Wdc as the output current Io2 output to the DC supply line Wdc increases, and monotonously decreases the output voltage Vo2 as the output current Io2 decreases. It is comprised so that the inclination control to raise may be performed.
  • the determination unit 72 determines that the measured value I0 is larger than the optimum current value Im
  • the control unit 73 determines that the current value output from the second power supply unit 8 to the DC supply line Wdc is the measured value I0 and the optimum current value Im.
  • the instruction value is output to the second power supply device 6 so as to be equal to the difference value (difference current value).
  • the second power supply device 6 includes an adjustment unit 64 that adjusts the value of the output current Io2 based on the instruction value received from the control unit 73.
  • the adjustment unit 64 receives the instruction value from the control unit 73, the adjustment unit 64 changes the slope control condition to set the value of the output current Io2 to a value corresponding to the instruction value without changing the output voltage Vo2. Composed.
  • the load current I L, the current value of the output current Io1 when the first power device 5 to the commercial power source AC is connected becomes the maximum conversion efficiency (optimum current value Im) or If the current value of the output current Io2 of each second power supply device 6 is adjusted so that the output current Io1 of the first power supply device 5 becomes the optimal current value Im, the first power supply device 5 Can be operated with maximum conversion efficiency.
  • control unit 73 switches the second power supply device so as to stop the current output of the second power supply device 6.
  • the difference current (load current - optimum current value) is compensated by a combination of PV converter 6a and BAT converter 6b
  • the differential current may be supplemented by a combination of the PV converter 6a and the FC converter 6c or a combination of the BAT converter 6b and the FC converter 6c instead of the combination of the PV converter 6a and the BAT converter 6b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

 電力供給装置は、直流供給線路に直流電力を出力する第1の電源機器および第2の電源ユニットと、制御手段とを備える。第1の電源機器は、商用電源を利用して定電圧制御を行う。第2の電源ユニットは、出力電流が増加するにつれて出力電圧を単調に下降させ、上記出力電流が減少するにつれて上記出力電圧を単調に上昇させる傾斜制御を行う第2の電源機器を備える。上記制御手段は、最適電流値(上記第1の電源機器の変換効率が最大であるときに上記第1の電源機器が上記直流供給線路に出力する電流の値)より計測値(直流供給線路に流れる電流の値)が大きい場合、上記第2の電源ユニットが上記直流供給線路に出力する電流の値が上記計測値と上記最適電流値との差分値と等しくなるように指示値を出力する。上記第2の電源機器は、上記傾斜制御の条件を変更することで、上記出力電圧を変化させることなく上記出力電流の値を上記指示値に対応する値に設定する。

Description

電力供給装置
 本発明は、複数台の電源機器が並列運転して直流電力を負荷機器に供給する電力供給装置に関するものである。
 従来から、複数台の電源機器が並列運転して直流電力を負荷機器に供給する電力供給装置として、さまざまな方式のものが知られている。
 従来の電力供給装置の一例として、出力電流が大きくなると出力電圧が単調に小さくなる電源機器を2台備える電力供給装置が知られている(例えば特開平10-248253号公報参照)。この電力供給装置では、2台の電源機器の出力電流-出力電圧特性の傾斜角度が異なっている。つまり、出力電流が同じ大きさだけ変化したときに、一方の電源機器の出力電圧の変化量と他方の電源機器の出力電圧の変化量とが異なる。
 上記のような電力供給装置では、すべての負荷機器の総使用電流(負荷電流)の大きさに応じて、各電源機器がそれぞれ出力電流-出力電圧特性と負荷電流のバランス点で落ち着くことによって、各電源機器から任意の出力電圧で任意の出力電流を出力することができる。
 しかしながら、2台の電源機器の出力電流-出力電圧特性の傾斜角度が異なっている電力供給装置は、負荷電流の大きさに応じて各電源機器の出力電圧つまり負荷機器への供給電圧が変動してしまうため、負荷機器への供給電圧を安定に保つことができないという問題があった。仮に、このような電力供給装置に対して、各電源機器の出力電流を所望の電流値に変更したときに、出力電流の変更前後において負荷機器への供給電圧を定電圧に保つためには、2台の電源機器の出力電流-出力電圧特性の両方を水平移動する必要があり、構成が複雑になってしまう。
 ここで、上記問題を解決するための手段として、並列運転する複数台の電源機器のうち、1台の電源機器が定電圧制御であり、残りの電源機器が、出力電流が大きくなるにつれて単調に小さくなる直流電圧を出力電圧とする傾斜制御である電力供給装置が考えられる。このような電力供給装置では、傾斜制御の電源機器の出力電圧が定電圧制御の電源機器の出力電圧(基準電圧)に合わせ込まれた状態で、傾斜制御の電源機器が電流を負荷機器に出力する。このとき、負荷電流の不足分は、定電圧制御の電源機器から負荷機器に出力される。これにより、この電力供給装置では、負荷電流がある程度変化しても、負荷機器への供給電圧を定電圧(定電圧制御の電源機器の出力電圧)に保ったまま、負荷機器への電力供給を安定に行うことができる。
 ところで、上記のような電源機器に接続される電源として、商用電源が用いられる場合がある。商用電源が接続される電源機器には、内蔵のDC/DCコンバータ部分において、定常損失(スイッチング素子のオン抵抗やインダクタの寄生抵抗などによる損失)などの内部損失が存在する。その結果、電源機器の変換効率(電源機器の入力電力に対する電源機器の出力電力の比)は、図9(a)に示すように、ある大きさの出力電流で最大となる特性になる。したがって、商用電源が接続されている電源機器は、変換効率が最大となるときの出力電流で用いると、効率よく運転することができる。
 しかしながら、従来の電力供給装置では、負荷電流の大きさに応じて各電源機器の出力電流の大きさを変動する場合に、商用電源が接続されている電源機器を必ずしも効率よく運転させているとはいえなかった。
 本発明は上記の点に鑑みて為され、その目的は、商用電源が接続されている電源機器を最大変換効率で運転させることができる電力供給装置を提供することである。
 本発明に係る電力供給装置は、負荷機器が接続される直流供給線路に接続され、上記直流供給線路を通じて上記負荷機器に直流電力を供給する第1の電源機器および第2の電源ユニットと、上記直流供給線路を流れる電流の値を計測して計測値として出力する負荷電流検出手段と、上記負荷電流検出手段より上記計測値を得ると、得られた上記計測値が最適電流値より大きいか否かを判定する判定手段と、制御手段と、を備える。上記第1の電源機器は、商用電源に接続され、上記商用電源より得た電力を直流電力に変換することで、上記直流供給線路に出力する電流の大きさに関わらず上記直流供給線路に一定の電圧を与える定電圧制御を行うように構成される。上記最適電流値は、上記第1の電源機器の変換効率が最大であるときに上記第1の電源機器が上記直流供給線路に出力する電流の値である。上記第2の電源ユニットは、第2の電源機器を備える。上記第2の電源機器は、上記直流供給線路に出力する出力電流が増加するにつれて上記直流供給線路に与える出力電圧を単調に下降させ、上記出力電流が減少するにつれて上記出力電圧を単調に上昇させる傾斜制御を行うように構成される。上記制御手段は、上記最適電流値より上記計測値が大きいと上記判定手段が判定すると、上記第2の電源ユニットが上記直流供給線路に出力する電流の値が上記計測値と上記最適電流値との差分値と等しくなるように、上記第2の電源機器に指示値を出力するように構成される。上記第2の電源機器は、上記制御手段から受け取った上記指示値に基づいて上記出力電流の値を調整する調整手段を備える。上記調整手段は、上記制御手段から上記指示値を受け取ると、上記傾斜制御の条件を変更することで、上記出力電圧を変化させることなく上記出力電流の値を上記指示値に対応する値に設定するように構成される。
 好ましい形態では、上記制御手段は、上記計測値が上記最適電流値以下であると上記判定手段が判定すると、上記第2の電源ユニットに上記直流供給線路への電流の出力を停止させるように構成される。
 好ましい形態では、上記第2の電源ユニットは、複数の上記第2の電源機器を備える。上記第2の電源ユニットが上記直流供給線路に出力する電流の値は、上記複数の第2の電源機器の上記出力電流の値の総和である。
本発明の実施形態の要部を示すブロック図である。 同上の構成図である。 同上に係る第1の電源機器の回路図である。 同上に係る第2の電源機器の回路図である。 同上に係る電力供給装置において、(a)が第2の電源機器の出力電流-出力電圧特性を示す図、(b)が第1の電源機器の出力電流-出力電圧特性を示す図、(c)が第2の電源機器の出力電流について説明する図である。 同上に係る第2の電源機器の動作を説明する図である。 同上に係る第2の電源機器の出力電流-出力電圧特性のシフトについて説明する図である。 同上に係る電力供給装置の動作を説明するフローチャートである。 同上に係る電力供給装置において、(a)が第1の電源機器の出力電流-出力電圧特性を示す図、(b)がPVコンバータの出力電流-出力電圧特性を示す図、(c)がBATコンバータの出力電流-出力電圧特性を示す図である。
 以下に説明する形態は、本発明に係る電力供給装置3を適用する建物として戸建て住宅の家屋を想定して説明するが、本発明の技術思想を集合住宅に適用することを妨げるものではない。家屋Hには、図2に示すように、直流電力を出力する直流電力供給部101と、直流電力により駆動される負荷としての直流機器(負荷機器)102とが設けられ、直流電力供給部101の出力端部に接続した直流供給線路Wdcを通して直流機器102に直流電力が供給される。直流電力供給部101と直流機器102との間には、直流供給線路Wdcに流れる電流を監視し、異常を検知したときに直流供給線路Wdc上で直流電力供給部101から直流機器102への給電を制限ないし遮断する直流ブレーカ114が設けられる。
 直流供給線路Wdcは、直流電力の給電路であるとともに通信路としても兼用されており、高周波の搬送波を用いてデータを伝送する通信信号を直流電圧に重畳することにより直流供給線路Wdcに接続された機器間での通信を可能にしている。この技術は、交流電力を供給する電力線において交流電圧に通信信号を重畳させる電力線搬送技術と類似した技術である。
 直流供給線路Wdcは、直流電力供給部101を介して宅内サーバ116に接続される。宅内サーバ116は、宅内の通信網(以下「宅内網」という)を構築する主装置であり、宅内網において直流機器102が構築するサブシステムなどと通信を行う。
 図示例では、サブシステムとして、パーソナルコンピュータ、無線アクセスポイント、ルータ、IP電話機のような情報系の直流機器102からなる情報機器システムK101、照明器具のような照明系の直流機器102からなる照明システムK102,K105、来客対応や侵入者の監視などを行う直流機器102からなる玄関システムK103、火災感知器のような警報系の直流機器102からなる住警器システムK104などがある。各サブシステムは、自立分散システムを構成しており、サブシステム単独でも動作が可能になっている。
 上述した直流ブレーカ114は、サブシステムに関連付けて設けられており、図示例では、情報機器システムK101、照明システムK102および玄関システムK103、住警器システムK104、照明システムK105に関連付けて4個の直流ブレーカ114を設けている。1台の直流ブレーカ114に複数個のサブシステムを関連付ける場合には、サブシステムごとに直流供給線路Wdcの系統を分割する接続ボックス121が設けられる。図示例においては、照明システムK102と玄関システムK103との間に接続ボックス121が設けられている。
 情報機器システムK101としては、壁コンセントあるいは床コンセントの形態で家屋Hに先行配置(家屋Hの建築時に施工)される直流コンセント131に接続される直流機器102からなる情報機器システムK101が設けられる。
 照明システムK102,K105としては、家屋Hに先行配置される照明器具(直流機器102)からなる照明システムK102と、天井に先行配置される引掛シーリング132に接続する照明器具(直流機器102)からなる照明システムK105とが設けられる。引掛シーリング132には、家屋Hの内装施工時に施工業者が照明器具を取り付けるか、または家人自身が照明器具を取り付ける。
 照明システムK102を構成する直流機器102である照明器具に対する制御の指示は、赤外線リモコン装置を用いて与えるほか、直流供給線路Wdcに接続されたスイッチ141から通信信号を用いて与えることができる。照明システムK105を構成する直流機器102である照明器具に対する制御の指示は、赤外線リモコン装置を用いて与えるほか、直流供給線路Wdcに接続されたスイッチ142から通信信号を用いて与えることができる。すなわち、スイッチ141,142は直流機器102とともに通信の機能を有している。また、スイッチ141,142の操作によらず、宅内網の別の直流機器102あるいは宅内サーバ116から通信信号により制御の指示がなされることもある。照明器具への指示には、点灯、消灯、調光、点滅点灯などがある。
 上述した直流コンセント131、引掛シーリング132には、任意の直流機器102を接続することができ、接続された直流機器102に直流電力を出力するから、以下では直流コンセント131、引掛シーリング132を区別する必要がない場合には「直流アウトレット」と呼ぶ。
 これらの直流アウトレットは、直流機器102に直接設けた接触子(図示せず)または接続線を介して設けた接触子(図示せず)が差し込まれる差込式の接続口が器体に開口し、接続口に差し込まれた接触子に直接接触する接触子受けが器体に保持された構造を有している。すなわち、直流アウトレットは接触式で給電を行う。直流アウトレットに接続された直流機器102が通信機能を有する場合には、直流供給線路Wdcを通して通信信号を伝送することが可能になる。直流機器102だけではなく直流アウトレットにも通信機能が設けられている。
 宅内サーバ116は、宅内網に接続されるだけではなく、インターネットを構築する広域網NTに接続される接続口を有している。宅内サーバ116が広域網NTに接続されている場合には、広域網NTに接続されたコンピュータサーバであるセンタサーバ200によるサービスを享受することができる。
 センタサーバ200が提供するサービスには、広域網NTを通して宅内網に接続された機器(主として直流機器102であるが通信機能を有した他の機器も含む)の監視や制御を可能にするサービスがある。このサービスにより、パーソナルコンピュータ、インターネットTV、移動体電話機などのブラウザ機能を備える通信端末(図示せず)を用いて宅内網に接続された機器の監視や制御が可能になる。
 宅内サーバ116は、広域網NTに接続されたセンタサーバ200との間の通信と、宅内網に接続された機器との間の通信との両方の機能を備え、宅内網の機器に関する識別情報(ここでは、IPアドレスを用いるものとする)の取得の機能を備える。
 宅内サーバ116は、センタサーバ200との通信機能を用いることにより、広域網NTに接続された通信端末からセンタサーバ200を通して宅内の機器の監視や制御を可能にする。センタサーバ200は、宅内の機器と広域網NT上の通信端末とを仲介する。
 通信端末から宅内の機器の監視や制御を行う場合は、監視や制御の要求をセンタサーバ200に記憶させ、宅内の機器は定期的に片方向のポーリング通信を行うことにより、通信端末からの監視や制御の要求を受信する。この動作により、通信端末から宅内の機器の監視や制御が可能になる。
 また、宅内の機器において火災検知など通信端末に通知すべきイベントが生じたときには、宅内の機器からセンタサーバ200に通知し、センタサーバ200から通信端末に対して電子メールによる通知を行う。
 宅内サーバ116における宅内網との通信機能のうち重要な機能は、宅内網を構成する機器の検出と管理である。宅内サーバ116では、UPnP(Universal Plug and Play)を応用して宅内網に接続された機器を自動的に検出する。宅内サーバ116はブラウザ機能を有する表示器117を備え、検出した機器の一覧を表示器117に表示する。この表示器117はタッチパネル式もしくは操作部が付設された構成を有し、表示器117の画面に表示された選択肢から所望の内容を選択する操作が可能になっている。したがって、宅内サーバ116の利用者(施工業者あるいは家人)は、表示器117の画面上で機器の監視ないし制御が可能になる。表示器117は宅内サーバ116とは分離して設けてもよい。
 宅内サーバ116では、機器の接続に関する情報を管理しており、宅内網に接続された機器の種類や機能とアドレスとを把握する。したがって、宅内網の機器を連動動作させることができる。機器の接続に関する情報は上述のように自動的に検出されるが、機器を連動動作させるには、機器自身が保有する属性により自動的に関係付けを行うほか、宅内サーバ116にパーソナルコンピュータのような情報端末を接続し、情報端末のブラウザ機能を利用して機器の関係付けを行うこともできる。
 機器の連動動作の関係は各機器がそれぞれ保持する。したがって、機器は宅内サーバ116を通すことなく連動動作することができる。各機器について、連動動作の関係付けを行うことにより、例えば、機器であるスイッチの操作により、機器である照明器具の点灯あるいは消灯の動作を行うことが可能になる。また、連動動作の関係付けはサブシステム内で行うことが多いが、サブシステムを超える関係付けも可能である。
 ところで、直流電力供給部101は、基本的には、宅外から供給される商用電源ACの電力変換により直流電力を生成する。図示する構成では、商用電源ACは、分電盤110に内器として取り付けられた主幹ブレーカ111を通して、スイッチング電源を含むAC/DCコンバータ112に入力される。AC/DCコンバータ112から出力される直流電力は、協調制御部113を通して各直流ブレーカ114に接続される。
 直流電力供給部101には、商用電源ACから電力が供給されない期間(例えば商用電源ACの停電期間)に備えて二次電池162が設けられている。二次電池162としては、例えばリチウムイオン二次電池などが用いられる。また、直流電力を生成する太陽電池161や燃料電池163を併用することも可能になっている。商用電源ACから直流電力を生成するAC/DCコンバータ112を備える主電源に対して、太陽電池161や二次電池162や燃料電池163は分散電源になる。なお、図示していないが、二次電池162は、充電を制御する回路部を含んでいる。
 二次電池162は、商用電源ACや太陽電池161、燃料電池163によって適時充電され、二次電池162の放電は、商用電源ACから電力が供給されない期間だけではなく必要に応じて適時に行われる。二次電池162の充放電や主電源と分散電源との協調は、協調制御部113により行われる。すなわち、協調制御部113は、直流電力供給部101を構成する主電源および分散電源から直流機器102への電力の配分を制御する直流電力制御部として機能する。
 直流機器102の駆動電圧は機器に応じた複数種類の電圧から選択されるから、協調制御部113にDC/DCコンバータを設け、主電源および分散電源から得られる直流電圧を必要な電圧に変換するのが望ましい。通常は、1系統のサブシステム(もしくは1台の直流ブレーカ114に接続された直流機器102)に対して1種類の電圧が供給されるが、1系統のサブシステムに対して3線以上を用いて複数種類の電圧を供給するように構成してもよい。また、直流供給線路Wdcを2線式とし、線間に印加する電圧を時間経過に伴って変化させる構成を採用することも可能である。DC/DCコンバータは、直流ブレーカと同様に複数に分散して設けてもよい。
 上述の構成例では、AC/DCコンバータ112を1個だけ図示しているが、複数個のAC/DCコンバータ112を並設することが可能であり、複数個のAC/DCコンバータ112を設けるときには、負荷の大きさに応じて運転するAC/DCコンバータ112の台数を増減させるのが望ましい。
 上述したAC/DCコンバータ112、協調制御部113、直流ブレーカ114、太陽電池161、二次電池162、燃料電池163には通信機能が設けられており、主電源および分散電源や直流機器102を含む負荷の状態に対処する連携動作を行うことを可能にしている。この通信に用いる通信信号は、直流機器102に用いる通信信号と同様に直流電圧に重畳する形式で伝送する。
 上述の例では主幹ブレーカ111から出力された交流電力をAC/DCコンバータ112により直流電力に変換するために、AC/DCコンバータ112を分電盤110内に配置しているが、主幹ブレーカ111の出力側において分電盤110内に設けた分岐ブレーカ(図示せず)で交流供給線路を複数系統に分岐し、各系統の交流供給線路にAC/DCコンバータを設けて系統ごとに直流電力に変換する構成を採用してもよい。
 この場合、家屋Hの各階や各部屋を単位として直流電力供給部101を設けることができるから、直流電力供給部101を系統別に管理することができ、しかも、直流電力を利用する直流機器102との間の直流供給線路Wdcの距離が小さくなるから、直流供給線路Wdcでの電圧降下による電力損失を低減させることができる。また、主幹ブレーカ111および分岐ブレーカを分電盤110に収納し、AC/DCコンバータ112と協調制御部113と直流ブレーカ114と宅内サーバ116とを分電盤110とは別の盤に収納してもよい。
 続いて、直流電力供給部101に収納されている電力供給装置3について図1を用いて説明する。電力供給装置3は、並列運転して直流電力を直流機器(負荷機器)102に供給する複数台(図示例では4台)の電源機器4(5,6)と、直流電力供給のシステム全体を監視する監視装置7とを備えている。
 複数台の電源機器4は、1台の第1の電源機器5と、複数台(図示例では3台)の第2の電源機器6(6a~6c)とで構成されている。
 複数台の第2の電源機器6(6a~6c)は、第2の電源ユニット8を構成する。すなわち、本実施形態では、第2の電源ユニット8は、3つの第2の電源機器6a,6b,6cを備える。そのため、第2の電源ユニット8が直流供給線路Wdcに出力する電流の値は、3つの第2の電源機器6の出力電流Io2の値の総和(=Ioa+Iob+Ioc)である。
 ところで、本実施形態では、第2の電源ユニット8は3つの第2の電源機器6を備えるが、第2の電源ユニット8は第2の電源機器6を1つだけ備えていてもよい。この場合、第2の電源ユニット8が直流供給線路Wdcに出力する電流の値は、第2の電源機器6の出力電流Io2に等しい。また、第2の電源ユニット8は、第2の電源機器6を2つだけ備えていてもよいし、4つ以上備えていてもよい。
 第1の電源機器5は、出力電流Io1の大きさに関わらず常に定電圧となる直流電圧を出力電圧Vo1とするものである(図5(b)参照)。第1の電源機器5には、商用電源ACからの電源電圧が入力電圧Vi1(図3参照)として入力される。つまり、第1の電源機器5は、商用電源ACを入力電源として直流電力を直流機器102に供給する商用電源用電源機器である。
 すなわち、第1の電源機器5は、商用電源ACに接続される。第1の電源機器5は、商用電源ACより得た電力を直流電力に変換することで、直流供給線路Wdcに出力する電流(出力電流Io1)の大きさに関わらず直流供給線路Wdcに一定の電圧(出力電圧Vo1)を与える定電圧制御を行うように構成される。
 なお、本実施形態では、図2に示すように、第1の電源機器5は、AC/DCコンバータ112を介して商用電源ACに接続されている。すなわち、商用電源ACの交流電圧は、AC/DCコンバータ112で所定の直流電圧に変換されて、第1の電源機器5に与えられる。よって、入力電圧Vi1は、AC/DCコンバータ112が出力する直流電圧である。しかしながら、入力電圧Vi1は、商用電源ACが出力する交流電圧であってもよい。この場合、第1の電源機器5には、交流電圧である入力電圧Vi1を直流電圧に変換してDC/DCコンバータ52に出力するAC/DCコンバータが設けられる。
 この第1の電源機器5は、図3に示すように、出力電圧Vo1を検出する電圧検出手段50と、基準電圧V2と電圧検出手段50の検出電圧V1とに応じてオンデューティ幅が設定されたパルス幅変調信号S1を生成するスイッチング制御手段51と、スイッチング制御手段51からのパルス幅変調信号S1のオンデューティ幅に応じてオンオフ動作するスイッチング素子520を有するDC/DCコンバータ52とを備えている。
 電圧検出手段50は、直列接続の2つの抵抗器500,501と、抵抗器500,501による分割電圧が入力される電圧ホロア502とを備えており、第1の電源機器5の出力電圧Vo1を検出する。電圧検出手段50は、出力電圧Vo1を検出し、検出された出力電圧Vo1に応じた検出電圧V1をスイッチング制御手段51に与えるように構成される。
 スイッチング制御手段51は、電圧検出手段50の検出電圧(電圧ホロア502の出力電圧)V1および基準電圧V2が入力されるスイッチングIC510を備えている。
 スイッチングIC510は、基準電圧V2と検出電圧V1との差分電圧(V2-V1)が一定となるようにオンデューティ幅が設定されたパルス幅変調信号S1をスイッチング素子520に出力する。つまり、スイッチングIC510は、出力電圧Vo1(検出電圧V1)が常に一定となるように、パルス幅変調信号S1のオンデューティ幅を設定する。
 DC/DCコンバータ52は、入力側から順に、平滑コンデンサ521と、インダクタ522と、スイッチング素子520と、ダイオード523と、平滑コンデンサ524とを備えており、スイッチング素子520のオンオフ動作によって入力電圧Vi1を昇圧する。
 スイッチング素子520は、例えば電界効果トランジスタなどであり、スイッチングIC510からのパルス幅変調信号S1が抵抗器525を介してゲートに入力される。スイッチング素子520がオンになると、ソースとドレインの間が導通し、インダクタ522には電磁エネルギーが蓄えられる。その後、スイッチング素子520がオフになると、インダクタ522に蓄えられた電磁エネルギーが放出されることによって昇圧する。昇圧された電圧は平滑コンデンサ524で平滑される。平滑コンデンサ524で平滑された直流電圧は、出力電圧Vo1として直流機器102(図1参照)に出力される。
 上記の動作により、第1の電源機器5は、図5(b)に示すように、出力電流Io1の大きさに関わらず出力電圧Vo1を一定の直流電圧とする出力電流-出力電圧特性から外れないようにフィードバック制御を行うことができる。
 第2の電源機器6は、図5(a)に示すように、出力電流(直流供給線路Wdcに出力する電流)Io2が大きくなるにつれて単調に小さくなる直流電圧を出力電圧(直流供給線路Wdcに与える電圧)Vo2とするものである。このような第2の電源機器6の出力電流-出力電圧特性を、Vo2=-αIo2+V0(α>0、V0>0)と表わすことができる。上記の出力電流-出力電圧特性では、Vo2+αIo2はV0で一定値となる。αは、第2の電源機器6ごとに異なった値であってもよいし、同じ値であってもよい。
 すなわち、第2の電源機器6は、直流供給線路Wdcに出力する出力電流Io2が増加するにつれて直流供給線路Wdcに与える出力電圧Vo2を単調に下降させ、出力電流Io2が減少するにつれて出力電圧Vo2を単調に上昇させる傾斜制御を行うように構成される。
 図1に示すように、第2の電源機器6aには太陽電池161が接続され、第2の電源機器6bには二次電池162が接続され、第2の電源機器6cには燃料電池163が接続されている。各第2の電源機器6は、それぞれ接続されている電池161~163から入力電圧Vi2(図4参照)が入力される。つまり、第2の電源機器6aは、太陽電池161を入力電源として直流電力を直流機器102に供給する太陽電池用電源機器(PVコンバータ)であり、第2の電源機器6bは、二次電池162を入力電源として直流電力を直流機器102に供給する二次電池用電源機器(BATコンバータ)であり、第2の電源機器6cは、燃料電池163を入力電源として直流電力を直流機器102に供給する燃料電池用電源機器(FCコンバータ)である。なお、各第2の電源機器6は、第1電源機器5に対して他の電源機器に相当する。
 各第2の電源機器6は、図4に示すように、出力電流Io2を検出する電流検出手段60と、出力電圧Vo2を検出する電圧検出手段61と、電圧検出手段61の検出電圧V5と電流検出手段60から出力される電圧V8とに応じてオンデューティ幅が設定されたパルス幅変調信号S2を生成するスイッチング制御手段62と、スイッチング制御手段62からのパルス幅変調信号S2のオンデューティ幅に応じてオンオフ動作するスイッチング素子630を有するDC/DCコンバータ63と、後述の制御部73(図1参照)の制御によって出力電流Io2の大きさを調整する調整手段64とを備えている。
 電流検出手段60は、抵抗器600,605と、抵抗器600の両端電圧を検出する電流IC601と、電流IC601の出力電圧V3を分割する抵抗器602,603と、抵抗器602,603で分割された分割電圧が入力される電圧ホロア604とを備えており、出力電流Io2を検出する。
 電圧検出手段61は、直列接続の2つの抵抗器610,611と、抵抗器610,611による分割電圧が入力される電圧ホロア612とを備えており、出力電圧Vo2を検出する。電圧検出手段61は、出力電圧Vo2を検出し、検出された出力電圧Vo2に応じた検出電圧V5をスイッチング制御手段62に与えるように構成される。
 スイッチング制御手段62は、電圧検出手段61の検出電圧(電圧ホロア612の出力電圧)V5および後述の電圧V8が入力されるスイッチングIC620を備えている。
 DC/DCコンバータ63は、入力側から順に、平滑コンデンサ631と、インダクタ632と、スイッチング素子630と、ダイオード633と、平滑コンデンサ634とを備えており、スイッチング素子630のオンオフ動作によって入力電圧Vi2を昇圧する。
 調整手段64は、後述の制御部73(図1参照)から出力電流Io2の指示値を取得するCPU640と、CPU640の出力電圧V6を分割する2つの抵抗器641,642と、抵抗器641,642による分割電圧が入力される非反転増幅回路643とを備えている。
 CPU640では、電力供給装置3の動作中において、つまり電力供給装置3による直流機器102への電力供給時において、制御部73からの指示値に基づいて、出力電流Io2の大きさを変動するための制御が行われる。
 監視装置7は、図1に示すように、直流機器102に供給される負荷電流ILの電流値を検出する負荷電流検出部(負荷電流検出手段)70と、太陽電池161および燃料電池163の供給可能範囲ならびに二次電池162の残量を検出する残量検出部71と、負荷電流検出部70で検出された負荷電流ILが後述の最適電流値Imより大きいか否かを判定する判定部72と、各第2の電源機器6の出力電流Io2の大きさを制御する制御部(制御手段)73とを備えている。
 負荷電流検出部70は、電力供給装置3が動作中において、つまり電力供給装置3による直流機器102への電力供給時において、予め設定された時間間隔で各直流機器102から必要な電流を検出して、直流機器102側の総使用電流である負荷電流ILを検出する。予め設定された時間間隔は、負荷追従を満足する時間間隔(例えば数ミリ秒間)である。このように、負荷電流検出部70、直流供給線路Wdcを流れる電流(負荷電流IL)の値(電流値)I0を計測して計測値として出力するように構成される。
 残量検出部71は、電力供給装置3が動作中(電力供給装置3による直流機器102への電力供給時)において、上記時間間隔で二次電池162の出力電圧および出力電流を検出し、検出結果を用いて二次電池162の残量を検出する。
 判定部72は、負荷電流検出部70より計測値を得ると、得られた計測値が最適電流値Imより大きいか否かを判定するように構成される。
 また、判定部72は、上述したように負荷電流ILが最適電流値Imより大きいか否かを判定するとともに、残量検出部71で検出された二次電池162の残量が、二次電池162が接続されている第2の電源機器(BATコンバータ)6bが出力電流Io2(Iob)を出力できるほど十分であるか否かも判定する。具体的には、二次電池162の残量が、予め設定された閾値以上であれば、判定部72は、BATコンバータ6bが電流値I2の出力電流Iobを出力できるほど二次電池162の残量が十分であると判定する。一方、二次電池162の残量が閾値未満であれば、判定部72は、BATコンバータ6bが電流値I2の出力電流Iobを出力できるほど二次電池162の残量が十分ではないと判定する。
 制御部73は、システム全体としてどの電源機器5,6からどれだけの電力を各直流機器102に供給すればよいのかを求め、それに応じて各電源機器5,6の出力を調整する。制御部73は、各第2の電源機器6の調整手段64のそれぞれに対して、出力電流Io2の電流値を指示するための指示値を送信する。なお、指示値は、出力電流Io2の電流値を直接表わす値であってもよいし、出力電流Io2の電流値を換算した電圧値であってもよい。また、指示値は、各第2の電源機器6における出力電流Io2の電流値を指示するための値に限定されるものではなく、各第2の電源機器6における出力電力の大きさを指示するための値であってもよい。
 図4に示すCPU640は、制御部73(図1参照)からの指示値に応じた大きさの出力電圧V6を出力する。非反転増幅回路643の出力電圧V7は、CPU640の出力電圧V6が大きくなるにつれて大きくなっていき、CPU640の出力電圧V6が小さくなるにつれて小さくなっていく。
 また、電流検出手段60には、電圧ホロア604と抵抗器605との間に差動増幅回路606が挿入されている。差動増幅回路606は、非反転増幅回路643の出力電圧V7と電流検出手段60の検出電圧(電圧ホロア604の出力電圧)V4との差分電圧(V7-V4)に比例した電圧V8(=β(V7-V4)(β>0))をスイッチングIC620に出力する。したがって、検出電圧V4が同じ大きさであっても、制御部73からの指示値に応じて出力電圧V6および出力電圧V7が大きくなった場合、スイッチングIC620に出力される電圧V8も大きくなる。逆に、出力電圧V6および出力電圧V7が小さくなった場合、スイッチングIC620に出力される電圧V8も小さくなる。なお、βの大きさは、後述のスイッチングIC620において、電圧V8が検出電圧V5と演算できるように設定される。
 スイッチングIC620は、電圧V8と検出電圧V5との差分電圧(V8-V5)つまり電圧(βV7-(V5+βV4))が一定となるようにオンデューティ幅が設定(変更)されたパルス幅変調信号S2をスイッチング素子630に出力する。具体的には、電圧(βV7-(V5+βV4))がこれまでよりも大きくなると、スイッチングIC620は、電圧(βV7-(V5+βV4))が小さくなるように(電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるように)、パルス幅変調信号S2のオンデューティ幅を広く設定する。逆に、電圧(βV7-(V5+βV4))がこれまでよりも小さくなると、スイッチングIC620は、電圧(βV7-(V5+βV4))が大きくなるように(電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるように)、パルス幅変調信号S2のオンデューティ幅を狭く設定する。
 スイッチング素子630は、例えば電界効果トランジスタなどであり、スイッチングIC620からのパルス幅変調信号S2が抵抗器635を介してゲートに入力される。スイッチング素子630がオンになると、ソースとドレインの間が導通し、インダクタ632には電磁エネルギーが蓄えられる。その後、スイッチング素子630がオフになると、インダクタ632に蓄えられた電磁エネルギーが放出されることによって昇圧する。昇圧された電圧は、平滑コンデンサ634で平滑される。平滑コンデンサ634で平滑された直流電圧は、出力電圧Vo2として直流機器102(図1参照)に出力される。
 上記の動作により、出力電流Io2(検出電圧V4)がこれまでよりも大きくなると、電圧(βV7-(V5+βV4))がこれまでよりも小さくなるが、電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるようにオンデューティ幅を狭く設定して昇圧を小さくすることによって、出力電圧Vo2(検出電圧V5)をこれまでよりも小さくすることができる。一方、出力電流Io2(検出電圧V4)がこれまでよりも小さくなると、電圧(βV7-(V5+βV4))がこれまでよりも大きくなるが、電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるようにオンデューティ幅を広く設定して昇圧を大きくすることによって、出力電圧Vo2(検出電圧V5)をこれまでよりも大きくすることができる。
 よって、このような構成の各第2の電源機器6は、電圧(βV7-(V5+βV4))を一定とすることによって、図5(a)に示すように、出力電流Io2が大きくなると出力電圧Vo2が単調(直線上)に小さくなる出力電流-出力電圧特性(Vo2+αIo2が一定値である特性)から外れないようにフィードバック制御を行うことができる。
 このような出力電流-出力電圧特性を持つ各第2の電源機器6は、第1の電源機器5とともに用いられた交点を持つ状態において、出力電圧Vo2が第1の電源機器5の出力電圧Vo1に合わせ込まれ、出力電圧Vo2が出力電圧Vo1に合わせ込まれたときの出力電流Io2を出力する。
 ここで、出力電流Io2が減少した場合、出力電圧Vo2は、図6の出力電流-出力電圧特性にしたがって変動し、一時的に大きくなる(図6の(A))。出力電圧Vo2が大きくなると、出力電流Io2は大きくなり、その結果、検出電圧V4も大きくなる(図6の(B))。検出電圧V4が大きくなると、電圧(βV7-(V5+βV4))が小さくなることにより、パルス幅変調信号S2のオンデューティ幅が狭くなり、出力電圧Vo2(検出電圧V5)は小さくなる(図6の(C))。これにより、出力電圧Vo2は出力電圧Vo1に合わせ込まれる。
 一方、出力電流Io2が増加した場合、出力電圧Vo2は、図6の出力電流-出力電圧特性にしたがって変動し、一時的に小さくなる(図6の(D))。出力電圧Vo2が小さくなると、出力電流Io2は小さくなり、その結果、検出電圧V4も小さくなる(図6の(E))。検出電圧V4が小さくなると、電圧(βV7-(V5+βV4))が大きくなることにより、パルス幅変調信号S2のオンデューティ幅が広くなり、出力電圧Vo2(検出電圧V5)は大きくなる(図6の(F))。これにより、出力電圧Vo2は出力電圧Vo1に合わせ込まれる。
 続いて、このような第2の電源機器6に対して、直流機器102側の総使用電流(負荷電流IL)が大きくなり、出力電圧Vo2(検出電圧V5)が一定のもとで、出力電流Io2を大きくする指示値が制御部73からあった場合について図7を用いて説明する。まず、上記指示値があると、出力電圧V7および電圧V8(=β(V7-V4))が大きくなる。このとき、電圧(βV7-(V5+βV4))が大きくなるので、パルス幅変調信号S2のオンデューティ幅は広くなり、出力電圧Vo2は一時的に出力電圧Vo1より大きくなる(図7の(A))。この動作は、第2の電源機器6の出力電圧Vo2に所定電圧を加算することに相当する。出力電圧Vo2が大きくなると、出力電流Io2(検出電圧V4)も大きくなる(図7の(B))。検出電圧V4が大きくなると、電圧(βV7-(V5+βV4))は小さくなるので、パルス幅変調信号S2のオンデューティ幅は狭くなる。その結果、出力電圧Vo2は小さくなる(図7の(C))。上記の動作を繰り返した後、出力電圧Vo2は出力電圧Vo1になる。これにより、第2の電源機器6は、定電圧特性(第1の電源機器5の出力電流-出力電圧特性)との交点の出力電流Io2が指示値(電流値I1)になるように第2の電源機器6の出力電流-出力電圧特性をシフトしたことになり、指示値通りの出力電流Io2を出力する。
 これに対して、負荷電流ILが小さくなり、出力電圧Vo2(検出電圧V5)が一定のもとで、出力電流Io2を小さくする指示値が制御部73からあった場合、出力電圧V7および電圧V8(=β(V7-V4))が小さくなる。このとき、電圧(βV7-(V5+βV4))が小さくなるので、パルス幅変調信号S2のオンデューティ幅は狭くなり、出力電圧Vo2は一時的に出力電圧Vo1より小さくなる(図7の(D))。この動作は、第2の電源機器6の出力電圧Vo2に所定電圧を減算することに相当する。出力電圧Vo2が小さくなると、出力電流Io2(検出電圧V4)も小さくなる(図7の(E))。検出電圧V4が小さくなると、電圧(βV7-(V5+βV4))は大きくなるので、パルス幅変調信号S2のオンデューティ幅は広くなる。その結果、出力電圧Vo2は大きくなる(図7の(F))。上記の動作を繰り返した後、出力電圧Vo2は出力電圧Vo1になる。これにより、第2の電源機器6は、定電圧特性(第1の電源機器5の出力電流-出力電圧特性)との交点の出力電流Io2が指示値(電流値I0)になるように第2の電源機器6の出力電流-出力電圧特性をシフトしたことになり、指示値通りの出力電流Io2を出力する。
 このように、調整手段64は、制御部(制御手段)73から指示値を受け取ると、傾斜制御の条件を変更することで、出力電圧Vo2を変化させることなく出力電流Io2の値を受け取った指示値に対応する値に設定するように構成される。調整手段64は、傾斜制御の条件を変更することで、出力電流-出力電圧特性をシフトさせる(すなわち、出力電流-出力電圧特性を示す線を平行移動させる)。
 上記のように第2の電源機器6の出力電流-出力電圧特性がシフトした後も、シフト前と同様、第2の電源機器6の出力電圧Vo2が第1の電源機器5の出力電圧Vo1に合わせ込まれ、出力電圧Vo2が出力電圧Vo1に合わせ込まれたときの出力電流Io2を出力する。
 上記より、負荷電流ILが変化したときに、各第2の電源機器6において、制御部73からの指示値に基づいて、図7に示すように、出力電流-出力電圧特性をシフトすることができる。シフトさせた後においても、各第2の電源機器6は、出力電圧Vo2が第1の電源機器5の出力電圧Vo1に合わせ込まれ、出力電圧Vo2が出力電圧Vo1と同じ大きさであるときの出力電流Io2を直流機器102に出力することができる。これにより、負荷電流ILが変化しても、電力供給装置3は各第2の電源機器6を負荷電流ILに応じた出力電流Io2に設定することができるとともに、負荷電流ILが変化しても、第2の電源機器6の出力電圧Vo2が第1の電源機器5の出力電圧Vo1に合わせ込まれることで、上記出力電圧Vo2を定電圧に保つことができる。その結果、直流機器102への電力供給を安定に行うことができる。
 以下に一例を示す。図5では、(a)が第2の電源機器6の出力電流-出力電圧特性を示し、(b)が第1の電源機器5の出力電流-出力電圧特性を示す。ここで、図5(c)に示すように、制御部73からの指示値としてI11が指示されて第2の電源機器6の出力電流-出力電圧特性を図5(c)の矢印のようにシフトさせた場合、第2の電源機器6の出力電流Io2をI12からI11に増加させることができる。
 また、第2の電源機器6において、出力電流Io2が大きくなるにつれて単調に出力電圧Vo2が小さくなる関係を、第1の電源機器5の構成から部品点数をほとんど増やすことなく、容易に実現することができる。
 続いて、図1に示す監視装置7について詳細に説明する。以下の説明において、第1の電源機器5の変換効率が最大となるときの第1の電源機器5の出力電流Io1の電流値を最適電流値Imとする。すなわち、最適電流値Imは、第1の電源機器5の変換効率が最大であるときに第1電源機器5が直流供給線路Wdcに出力する電流(出力電流Io1)の値である。第1の電源機器5の変換効率は、例えば、電力変換効率は、第1の電源機器5に入力される商用電源ACからの電力PINに対する第1の電源機器5が直流供給線路Wdcに出力する電力POUTの比の値(=POUT/PIN)である。
 本実施形態では、制御部73は、最適電流値Imより計測値(負荷電流ILの値)I0が大きいと判定部72が判定すると、第2電源ユニット8が直流供給線路Wdcに出力する電流の値(=Ioa+Iob+Ioc)が計測値と最適電流値Imとの差分値と等しくなるように、第2電源機器6に指示値を出力するように構成される。
 すなわち、監視装置7の制御部73は、負荷電流検出部70で検出された負荷電流ILが最適電流値Im以上である場合、第1の電源機器5の出力電流Io1が最適電流値Imになるように、つまり、各第2の電源機器6の出力電圧Vo2が第1の電源機器5の出力電圧Vo1に合わせ込まれたときの各第2の電源機器6の出力電流Io2の総和が負荷電流ILの電流値と最適電流値Imとの差分値に相当するように、各第2の電源機器6の調整手段64(図4参照)に対して各第2の電源機器6の出力電流-出力電圧特性をシフトさせる。
 一方、制御部73は、計測値I0が最適電流値Im以下であると判定部72が判定すると、第2の電源ユニット8に直流供給線路Wdcへの電流の出力を停止させるように構成される。例えば、制御部73は、計測値I0が最適電流値Im以下であると判定部72が判定すると、第2の電源ユニット8の各第2の電源機器6に、出力停止信号を送信するように構成される。上記出力停止信号を受け取った第2の電源機器6は、出力電流Io2の出力を停止するように構成される。
 次に、本実施形態に係る電力供給装置3の動作について図8および図9を用いて説明する。
 まず、負荷電流検出部70が負荷電流ILの電流値I0を検出する(図8のS1)。続いて、負荷電流ILの電流値I0が最適電流値Imより大きいか否かを判定部72が判定する(S2)。電流値I0が最適電流値Imより大きい場合、制御部73は、太陽電池161の供給能力範囲内でPVコンバータ6aの出力電流Ioaが電流値I0と最適電流値Imとの差分値(I0-Im)になるような指示値をPVコンバータ6aに送信する(S3)。PVコンバータ6aは、制御部73から指示値を受け取ると、調整手段64を用いてPVコンバータ6aの出力電流-出力電圧特性をシフトし、出力電流Ioaを差分値(I0-Im)として直流機器102に供給する。
 ここで、図9(b)に示すようにPVコンバータ6aの出力電流Ioaを最大電流値I1にしても差分値(I0-Im)に満たさない場合(I0-Im>I1の場合)(S4)、制御部73は、BATコンバータ6bの出力電流Iobが電流値I2(I2=I0-Im-I1)になるような指示値をBATコンバータ6bに送信する(S5)。BATコンバータ6bは、制御部73から指示値を受け取ると、調整手段64を用いてBATコンバータ6bの出力電流-出力電圧特性をシフトし、図9(c)に示すように出力電流Iobを電流値I2として直流機器102に供給する。
 上記ステップS3~ステップS5において、差分値(I0-Im)を補う制御として、PVコンバータ6aをBATコンバータ6bより優先することによって、省エネルギー化を図ることができる。
 なお、ステップS4,S5の他の例として、制御部73は、差分値(I0-Im)がわかった時点で、PVコンバータ6aの出力電流Ioaを現在の日照環境における最大電流値I1としてもまだ足りず、さらに、BATコンバータ6bの出力電流Iobを電流値I2にさせるべきと計算によって瞬時に判断し、そこから、PVコンバータ6aの出力電流Ioaが最大電流値I1になるようにPVコンバータ6aに指示値を出すとともに、BATコンバータ6bの出力電流Iobが電流値I2になるようにBATコンバータ6bに指示値を出してもよい。
 その後、第1の電源機器5からは、最適電流値Imの出力電流Io1が直流機器102に供給される(S6)。なお、PVコンバータ6aやBATコンバータ6cの出力電流Ioa,Iobのシフトが完了して、総和として電流値I0の電流が出力されるまでの間は、第1の電源機器5から不足分が供給されており、負荷(直流機器102)への安定供給には問題がない。
 一方、ステップS2において、負荷電流ILの電流値I0が最適電流値Im以下である場合、制御部73は、各第2の電源機器6の電流出力を停止するように各第2の電源機器6を制御する。これにより、第1の電源機器5からは、電流値I0の出力電流Io1が直流機器102に供給される(S6)。
 また、ステップS4において、差分電流(負荷電流-最適電流値)がPVコンバータ6aの出力電流Ioaと同じ場合、制御部73は、PVコンバータ6a以外の第2の電源機器6(BATコンバータ6b、FCコンバータ6c)の電流出力を停止させる。これにより、第1の電源機器5からは、最適電流値Imの出力電流Io1が直流機器102に出力される(S6)。すなわち、制御部73は、第2の電源機器6aに指示値を送信し、残りの第2の電源機器6b,6cに出力停止信号を送信する。
 上記の動作により、本実施形態に係る電力供給装置3は、負荷電流ILが増加すると、PVコンバータ6aおよびBATコンバータ6bの出力電流Ioa,Iobの総量を負荷電流ILの増加分だけ増加させ、負荷電流ILが減少すると、出力電流Ioa,Iobの総量を負荷電流ILの減少分だけ減少させる。なお、PVコンバータ6aおよびBATコンバータ6bの出力電流Ioa,Iobの総和を減少させる場合、最初にBATコンバータ6bの出力電流Iobを減少させて、次にPVコンバータ6aの出力電流Ioaを減少させるように制御してもよい。
 電力供給装置3は、ステップS1からステップS6までの動作を定期的(予め設定された時間間隔)に行えば、各電池161~163の供給能力が変動した場合や負荷電流ILの大きさが変動した場合であっても、変動に対応した出力電流Io2の設定を行うことができる。予め設定された時間間隔は、負荷追従を満足する時間間隔(例えば数ミリ秒間)である。なお、電力供給装置3は、ステップS1からステップS6までの動作を、予め設定された時間間隔以外に行ってもよい。
 本実施形態の電力供給装置3は、商用電源ACを入力電源とし出力電流Io1の大きさに関わらず定電圧となる直流電圧を出力電圧Vo1とする商用電源用電源機器(第1の電源機器)5と、電源電圧が入力され出力電流Io2が大きくなるにつれて単調に小さくなる直流電圧を出力電圧Vo2とし第1電源機器5と並列運転して直流電力を負荷機器102に供給する1乃至複数の他の電源機器(第2の電源機器)6と、負荷機器102に供給される負荷電流ILの電流値を検出する負荷電流検出手段(負荷電流検出部)70と、第2の電源機器6の出力電流Io2の電流値を制御する制御手段(制御部)73とを備え、第1の電源機器5の変換効率が最大となるときの第1の電源機器5の出力電流Io1の電流値を最適電流値Imとし、第2の電源機器6は、負荷機器102への電力供給時に出力電流Io2と出力電圧Vo2の関係を示す出力電流-出力電圧特性をシフトする調整手段64を有し、制御部73は、負荷電流検出部70で検出された負荷電流ILが最適電流値Imより大きい場合、第2の電源機器6の出力電流Io2の総和が負荷電流ILと最適電流値Imの差分電流に相当するように、調整手段64に対して第2の電源機器6の出力電流-出力電圧特性をシフトさせる。
 すなわち、本実施形態の電力供給装置3は、負荷機器102が接続される直流供給線路Wdcに接続され、直流供給線路Wdcを通じて負荷機器102に直流電力を供給する第1の電源機器5および第2の電源ユニット6と、直流供給線路Wdcを流れる電流(負荷電流)ILの値(電流値)I0を計測して計測値I0として出力する負荷電流検出手段(負荷電流検出部)70と、負荷電流検出部70より計測値I0を得ると、得られた計測値I0が最適電流値Imより大きいか否かを判定する判定手段(判定部)72と、制御手段(制御部)73と、を備える。第1の電源機器5は、商用電源ACに接続され、商用電源ACより得た電力を直流電力に変換することで、直流供給線路Wdcに出力する電流(出力電流)Io1の大きさに関わらず直流供給線路Wdcに一定の電圧(出力電圧)Vo1を与える定電圧制御を行うように構成される。最適電流値Imは、第1の電源機器5の変換効率が最大であるときに第1の電源機器5が直流供給線路Wdcに出力する電流(出力電流)Io1の値である。第2の電源ユニット8は、第2の電源機器6を備える。第2の電源機器6は、直流供給線路Wdcに出力する出力電流Io2が増加するにつれて直流供給線路Wdcに与える出力電圧Vo2を単調に下降させ、出力電流Io2が減少するにつれて出力電圧Vo2を単調に上昇させる傾斜制御を行うように構成される。制御部73は、最適電流値Imより計測値I0が大きいと判定部72が判定すると、第2の電源ユニット8が直流供給線路Wdcに出力する電流の値が計測値I0と最適電流値Imとの差分値(差分電流の値)と等しくなるように、第2の電源機器6に指示値を出力するように構成される。第2の電源機器6は、制御部73から受け取った指示値に基づいて出力電流Io2の値を調整する調整手段64を備える。調整手段64は、制御部73から指示値を受け取ると、傾斜制御の条件を変更することで、出力電圧Vo2を変化させることなく出力電流Io2の値を指示値に対応する値に設定するように構成される。
 以上、本実施形態によれば、負荷電流ILが、商用電源ACが接続されている第1の電源機器5が最大変換効率になるときの出力電流Io1の電流値(最適電流値Im)以上である場合に、第1の電源機器5の出力電流Io1が最適電流値Imになるように各第2の電源機器6の出力電流Io2の電流値を調整することによって、第1の電源機器5を最大変換効率の状態で運転させることができる。
 また、制御部73は、負荷電流検出部70で検出された負荷電流ILが最適電流値Im以下である場合、第2の電源機器6の電流出力を停止するように第2の電源機器を制御する。すなわち、制御部73は、計測値I0が最適電流値Im以下であると判定部72が判定すると、第2の電源ユニット8に直流供給線路Wdcへの電流の出力を停止させるように構成される。
 そのため、本実施形態によれば、負荷電流ILが最適電流値Imより小さい場合であっても、第1の電源機器5をできるだけ最大変換効率に近い状態で運転させることができる。
 なお、本実施形態では、負荷電流ILが最適電流値Imより大きい場合に、差分電流(負荷電流-最適電流値)をPVコンバータ6aとBATコンバータ6bの組み合わせで補うが、本実施形態の変形例として、上記差分電流をPVコンバータ6aとBATコンバータ6bの組み合わせではなく、PVコンバータ6aとFCコンバータ6cの組み合わせまたはBATコンバータ6bとFCコンバータ6cの組み合わせで補ってもよい。

Claims (3)

  1.  負荷機器が接続される直流供給線路に接続され、上記直流供給線路を通じて上記負荷機器に直流電力を供給する第1の電源機器および第2の電源ユニットと、
     上記直流供給線路を流れる電流の値を計測して計測値として出力する負荷電流検出手段と、
     上記負荷電流検出手段より上記計測値を得ると、得られた上記計測値が最適電流値より大きいか否かを判定する判定手段と、
     制御手段と、を備え、
      上記第1の電源機器は、商用電源に接続され、上記商用電源より得た電力を直流電力に変換することで、上記直流供給線路に出力する電流の大きさに関わらず上記直流供給線路に一定の電圧を与える定電圧制御を行うように構成され、
      上記最適電流値は、上記第1の電源機器の変換効率が最大であるときに上記第1の電源機器が上記直流供給線路に出力する電流の値であり、
      上記第2の電源ユニットは、少なくとも1つの第2の電源機器を備え、
       上記第2の電源機器は、上記直流供給線路に出力する出力電流が増加するにつれて上記直流供給線路に与える出力電圧を単調に下降させ、上記出力電流が減少するにつれて上記出力電圧を単調に上昇させる傾斜制御を行うように構成され、
      上記制御手段は、上記最適電流値より上記計測値が大きいと上記判定手段が判定すると、上記第2の電源ユニットが上記直流供給線路に出力する電流の値が上記計測値と上記最適電流値との差分値と等しくなるように、上記第2の電源機器に指示値を出力するように構成され、
       上記第2の電源機器は、上記制御手段から受け取った上記指示値に基づいて上記出力電流の値を調整する調整手段を備え、
        上記調整手段は、上記制御手段から上記指示値を受け取ると、上記傾斜制御の条件を変更することで、上記出力電圧を変化させることなく上記出力電流の値を上記指示値に対応する値に設定するように構成される
     ことを特徴とする電力供給装置。
  2.  上記制御手段は、上記計測値が上記最適電流値以下であると上記判定手段が判定すると、上記第2の電源ユニットに上記直流供給線路への電流の出力を停止させるように構成される
     ことを特徴とする請求項1記載の電力供給装置。
  3.  上記第2の電源ユニットは、複数の上記第2の電源機器を備え、
     上記第2の電源ユニットが上記直流供給線路に出力する電流の値は、上記複数の第2の電源機器の上記出力電流の値の総和である
     ことを特徴とする請求項1記載の電力供給装置。
PCT/JP2010/060683 2009-06-25 2010-06-23 電力供給装置 WO2010150828A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117031649A KR101278095B1 (ko) 2009-06-25 2010-06-23 전력 공급 장치
JP2011519924A JP5303032B2 (ja) 2009-06-25 2010-06-23 電力供給装置
EP10792146.2A EP2447804B1 (en) 2009-06-25 2010-06-23 Electric-power supplying device
CN201080029699.4A CN102460337B (zh) 2009-06-25 2010-06-23 电力供给装置
SG2011096443A SG177382A1 (en) 2009-06-25 2010-06-23 Power supply apparatus
US13/380,647 US9142958B2 (en) 2009-06-25 2010-06-23 Power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-151607 2009-06-25
JP2009151607 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150828A1 true WO2010150828A1 (ja) 2010-12-29

Family

ID=43386597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060683 WO2010150828A1 (ja) 2009-06-25 2010-06-23 電力供給装置

Country Status (7)

Country Link
US (1) US9142958B2 (ja)
EP (1) EP2447804B1 (ja)
JP (1) JP5303032B2 (ja)
KR (1) KR101278095B1 (ja)
CN (1) CN102460337B (ja)
SG (1) SG177382A1 (ja)
WO (1) WO2010150828A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010464A (ja) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd 電源供給装置
JP2013247780A (ja) * 2012-05-25 2013-12-09 Kyocera Corp 制御装置、電力供給システム、および制御方法
JP2014043098A (ja) * 2012-07-31 2014-03-13 Ricoh Co Ltd 電源装置、電子機器およびシステム
JP2015133213A (ja) * 2014-01-10 2015-07-23 京セラ株式会社 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
JP2016052170A (ja) * 2014-08-29 2016-04-11 三洋電機株式会社 蓄電システム、管理装置、およびdc/dcコンバータ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604711B2 (en) * 2009-05-12 2013-12-10 Koninklijke Philips N.V. Intelligent dimmer for managing a lighting load
CN105281315A (zh) * 2014-07-24 2016-01-27 中兴通讯股份有限公司 一种通信网的供电控制装置和方法
JP6808589B2 (ja) * 2017-07-21 2021-01-06 株式会社東芝 発電システム
DE102019100821A1 (de) 2019-01-14 2020-07-16 Lufthansa Technik Aktiengesellschaft Boroskop zur optischen Inspektion von Gasturbinen
US11309732B2 (en) 2019-12-19 2022-04-19 Astec International Limited Controlled power transitions between electrical power supplies
TWI724824B (zh) * 2020-03-17 2021-04-11 經緯航太科技股份有限公司 無人機電力管理系統
US11859869B2 (en) * 2020-06-23 2024-01-02 Rheem Manufacturing Company Systems and methods for integrating photovoltaic energy into water heater systems
JP7522706B2 (ja) * 2021-08-18 2024-07-25 矢崎総業株式会社 電源制御装置、電源装置、及び電源制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380316A (ja) * 1989-08-24 1991-04-05 Nippon Telegr & Teleph Corp <Ntt> 燃料電池直流並列運転システム
JPH10248253A (ja) 1997-03-03 1998-09-14 Omron Corp 電源装置
JP2005224009A (ja) * 2004-02-05 2005-08-18 My Way Giken Kk 分散電源システム
JP2006262549A (ja) * 2005-03-15 2006-09-28 Densei Lambda Kk 電源装置の系統連携システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805926A1 (de) * 1998-02-13 1999-08-19 Bosch Gmbh Robert Vorrichtung und Verfahren zum gesteuerten Parallelbetrieb von Gleichspannungswandlern
JP2002204531A (ja) * 2000-10-31 2002-07-19 Canon Inc 交流連系装置およびその制御方法
JP3825020B2 (ja) * 2002-08-01 2006-09-20 株式会社アイ・ヒッツ研究所 分散給電システム
JP4256845B2 (ja) * 2002-08-21 2009-04-22 株式会社荏原製作所 電力供給システム
JP4791689B2 (ja) * 2003-10-06 2011-10-12 パナソニック株式会社 電源装置
JP2005168107A (ja) * 2003-11-28 2005-06-23 Tdk Corp 並列駆動型電源装置
US7368896B2 (en) * 2004-03-29 2008-05-06 Ricoh Company, Ltd. Voltage regulator with plural error amplifiers
JP4421536B2 (ja) * 2005-09-09 2010-02-24 富士通マイクロエレクトロニクス株式会社 Dc−dcコンバータ、dc−dcコンバータの制御回路及びdc−dcコンバータの制御方法
JP4724834B2 (ja) * 2006-04-12 2011-07-13 農工大ティー・エル・オー株式会社 電力変換装置、系統連係分散発電システム、および複数の電力変換装置による系統連係運転の停止方法
JP4890920B2 (ja) * 2006-04-14 2012-03-07 株式会社日立製作所 複数の分散型電源が連系された配電系統の電力品質維持支援方法及び電力品質維持支援システム
CN100580603C (zh) * 2006-07-21 2010-01-13 晨星半导体股份有限公司 电源供应装置及提供电压的方法
JP4948080B2 (ja) * 2006-08-11 2012-06-06 株式会社クボタ ブーム
US9088178B2 (en) * 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
CN101465432A (zh) * 2007-12-17 2009-06-24 思柏科技股份有限公司 具燃料电池输出控制的混合电力装置
JP4966321B2 (ja) * 2008-02-26 2012-07-04 パナソニック株式会社 電源供給装置
JP5346255B2 (ja) * 2009-09-02 2013-11-20 パナソニック株式会社 電源供給装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380316A (ja) * 1989-08-24 1991-04-05 Nippon Telegr & Teleph Corp <Ntt> 燃料電池直流並列運転システム
JPH10248253A (ja) 1997-03-03 1998-09-14 Omron Corp 電源装置
JP2005224009A (ja) * 2004-02-05 2005-08-18 My Way Giken Kk 分散電源システム
JP2006262549A (ja) * 2005-03-15 2006-09-28 Densei Lambda Kk 電源装置の系統連携システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2447804A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010464A (ja) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd 電源供給装置
JP2013247780A (ja) * 2012-05-25 2013-12-09 Kyocera Corp 制御装置、電力供給システム、および制御方法
JP2014043098A (ja) * 2012-07-31 2014-03-13 Ricoh Co Ltd 電源装置、電子機器およびシステム
JP2015133213A (ja) * 2014-01-10 2015-07-23 京セラ株式会社 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
JP2016052170A (ja) * 2014-08-29 2016-04-11 三洋電機株式会社 蓄電システム、管理装置、およびdc/dcコンバータ

Also Published As

Publication number Publication date
EP2447804A1 (en) 2012-05-02
EP2447804B1 (en) 2015-12-02
SG177382A1 (en) 2012-02-28
CN102460337A (zh) 2012-05-16
JP5303032B2 (ja) 2013-10-02
KR20120024891A (ko) 2012-03-14
CN102460337B (zh) 2014-01-08
KR101278095B1 (ko) 2013-06-24
EP2447804A4 (en) 2014-11-12
US20120091801A1 (en) 2012-04-19
JPWO2010150828A1 (ja) 2012-12-10
US9142958B2 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
JP5303032B2 (ja) 電力供給装置
JP4784652B2 (ja) 電源供給装置
JP5369184B2 (ja) 電力供給装置
JP5346255B2 (ja) 電源供給装置
JP5058778B2 (ja) 光源点灯装置、照明器具、照明システム
JP5271190B2 (ja) 電源供給装置
JP2009159734A (ja) 直流配電システム
JP5199658B2 (ja) 光源点灯装置、照明器具、照明システム
JP5385698B2 (ja) 電源供給装置
JP2009159655A (ja) 直流配電システム
JP2009159692A (ja) 電源システムおよびその電源装置
JP2009165247A (ja) 電源システムおよびその電源装置
JP2009165250A (ja) 直流配電システム
JP2009159653A (ja) 直流配電システム
JP2009153338A (ja) 直流配電システム
JP2009159693A (ja) 電力供給システムおよびその電源装置
JP2009159728A (ja) 直流配電システム
JP4977003B2 (ja) 回路遮断器
JP4977002B2 (ja) 回路遮断器
JP2009159729A (ja) 直流配電システム
JP2009159652A (ja) 直流電源装置および直流電源システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029699.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519924

Country of ref document: JP

Ref document number: 9663/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010792146

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117031649

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13380647

Country of ref document: US