WO2010150459A1 - 発光モジュール - Google Patents

発光モジュール Download PDF

Info

Publication number
WO2010150459A1
WO2010150459A1 PCT/JP2010/003462 JP2010003462W WO2010150459A1 WO 2010150459 A1 WO2010150459 A1 WO 2010150459A1 JP 2010003462 W JP2010003462 W JP 2010003462W WO 2010150459 A1 WO2010150459 A1 WO 2010150459A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
phosphor
emitting module
wavelength
Prior art date
Application number
PCT/JP2010/003462
Other languages
English (en)
French (fr)
Inventor
大長久芳
松浦辰哉
加藤建
佐々木祥敬
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2011519505A priority Critical patent/JPWO2010150459A1/ja
Priority to EP10791785.8A priority patent/EP2448020A4/en
Priority to US13/380,390 priority patent/US20120092853A1/en
Priority to CN2010800280568A priority patent/CN102804420A/zh
Publication of WO2010150459A1 publication Critical patent/WO2010150459A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a light emitting module, and more particularly, to a light emitting module including a light emitting element and a light wavelength conversion member that converts the wavelength of light emitted from the light emitting element and emits the light.
  • white LEDs Light Emitting Diodes
  • a semiconductor light emitting element that emits blue light a phosphor that emits green light when excited by blue light
  • a phosphor that emits red light when excited by blue light blue light, green light, and red light
  • White LEDs that emit white light by additive color mixing of light have been proposed (see, for example, Patent Document 1).
  • a semiconductor light emitting element is coated by pouring a binder containing a phosphor into a cup in which a semiconductor light emitting element emitting blue light is disposed on the bottom surface.
  • the white LED having such a structure since the distance from the semiconductor light emitting element to the emission surface of the binder paste is not uniform, the amount of light that is converted in wavelength when light emitted from the semiconductor light emitting element passes through the binder paste Varies depending on the radiation direction. For this reason, the portion where the binder paste is thick appears yellow because the yellow light emitted by wavelength conversion increases, and the portion where the binder paste is thin appears blue because the yellow light decreases, and uniformly emits white light. It becomes difficult. When color unevenness occurs in the light emitting module as described above, it becomes difficult to provide high-quality illumination particularly in an application as an illumination light source.
  • Patent Documents a method of forming a light emitting diode for forming a fluorescent material to be disposed on the LED chip by an ink jet printing method has been proposed (for example, Patent Documents). 2).
  • a light emitting device manufactured by volume-making a stencil composition in an opening of a positioned stencil, removing the stencil, and curing the stencil composition has been proposed (see, for example, Patent Document 3).
  • JP-A-10-107325 Japanese Patent Laid-Open No. 11-46019 JP 2002-185048 A
  • the thickness of the binder paste is made uniform in order to make the color of light emitted from the light emitting device uniform.
  • the degree of freedom of the shape of the binder paste may be reduced.
  • applications of LEDs have become more and more widespread, and realization of various types of LED light-emitting elements is required. At this time, if the shape of the binder paste is restricted, the degree of freedom in designing the LED may be impaired.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a light emitting module that emits a uniform color while ensuring a degree of freedom of form.
  • a light emitting module includes a light emitting element and a light wavelength conversion member that converts the wavelength of light emitted from the light emitting element and emits the light.
  • the light wavelength conversion member contains a plurality of phosphors in which the wavelength range of light emitted by wavelength conversion is different from the excitation wavelength of each other, and is formed so as to cover the light emitting element.
  • emits the light of a uniform color irrespective of the thickness of a light wavelength conversion member can be obtained.
  • a plurality of light emitting elements may be arranged in parallel with being spaced apart from each other, and the light wavelength conversion member may be formed so as to integrally cover the plurality of light emitting elements.
  • the plurality of light emitting elements are arranged in parallel with each other. Even in this case, a light emitting module that emits uniform light can be realized.
  • the plurality of light emitting elements may be arranged on the same plane.
  • a mode in which a plurality of light emitting elements are arranged apart from each other on the same plane can be considered.
  • the substrate configuration can be simplified by arranging the light emitting elements on the same substrate, so that there is a high demand for arranging them on the same plane.
  • multiple light-emitting elements are arranged side by side on the same plane, it is possible to see the light of all the light-emitting elements from the same viewpoint, which is very noticeable when color unevenness occurs. become.
  • the plurality of light emitting elements may be arranged side by side on a straight line or may be arranged so as to be scattered on a plane.
  • the light emitting module includes a light emitting element emitting light in the wavelength range of near ultraviolet or short wavelength visible, the general formula M 1 O 2 ⁇ a (M 2 1-z, M 4 z) O ⁇ bM 3 X 2 (where , M 1 is at least one element selected from the group consisting of Si, Ge, Ti, Zr and Sn, M 2 is at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn, M 3 is at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn, X is at least one halogen element, and M 4 is essential Eu 2+ selected from the group consisting of rare earth elements and Mn.
  • M 1 is at least one element selected from the group consisting of Si, Ge, Ti, Zr and Sn
  • M 2 is at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn
  • M 3 is at least one element selected from the group consisting of Mg, Ca, Sr
  • the wavelength of the light emitted from the first phosphor represented by It contains a second phosphor that emits blue light, both, and a light wavelength conversion member is formed so as to cover the light emitting element.
  • the wavelength range of the light emitted by wavelength conversion of the first phosphor and the second phosphor is substantially different from the excitation wavelength of each other. Therefore, according to this aspect, it is possible to avoid that the light wavelength-converted by one of the first phosphor and the second phosphor is excited and absorbed by the other. For this reason, the light emitting module which radiate
  • a plurality of light emitting elements may be arranged in parallel to be separated from each other, and the light wavelength conversion member may be formed so as to integrally cover the plurality of light emitting elements.
  • the plurality of light emitting elements may be arranged on the same plane.
  • the plurality of light emitting elements may be arranged side by side on a straight line, or may be arranged so as to be scattered on a plane.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting module 10 according to the first embodiment.
  • the light emitting module 10 includes a support substrate 12, a semiconductor light emitting element 14, and an optical wavelength conversion member 16.
  • the support substrate 12 is formed of aluminum nitride (AlN), and a circuit is formed on the upper surface by gold vapor deposition. Note that the support substrate 12 may be formed of another material that has no electrical conductivity but has high thermal conductivity, such as ceramics such as alumina, mullite, and glass ceramic, and glass epoxy. In the first embodiment, the support substrate 12 is formed in a rectangular plate shape having a length of 6 mm, a width of 1 mm, and a thickness of 1 mm.
  • an LED that emits near ultraviolet light or short wavelength visible light is employed as the semiconductor light emitting element 14.
  • the semiconductor light emitting element 14 is formed as a 1 mm square chip, for example, and is provided so that the center wavelength of emitted light is about 400 nm.
  • MvpLED (registered trademark) SL-V-U40AC manufactured by SemiLEDs having a peak wavelength at 402 nm was used as the semiconductor light emitting element 14.
  • the semiconductor light emitting element 14 is not limited to this, and for example, a semiconductor laser diode (LD) may be adopted.
  • LD semiconductor laser diode
  • the semiconductor light emitting element 14 is a so-called vertical chip type. It goes without saying that other types of semiconductor light emitting elements 14 may be employed, and for example, a so-called flip chip type or a so-called face-up type may be employed for the semiconductor light emitting element 14.
  • a plurality of semiconductor light emitting elements 14 are arranged on the support substrate 12 so as to be spaced apart from each other on the same plane. Specifically, two semiconductor light emitting elements 14 are mounted in series on the support substrate 12 with an interval of 2.3 mm. Of course, the number and interval of the semiconductor light emitting elements 14 are not limited to these. Further, the support substrate 12 may be provided on each step of a surface other than the same plane, for example, a curved surface or a surface provided with a step.
  • the light wavelength conversion member 16 is formed so as to integrally cover the plurality of semiconductor light emitting elements 14.
  • the light wavelength conversion member 16 contains a first phosphor and a second phosphor in which the wavelength range of light emitted by wavelength conversion is substantially different from the excitation wavelength of each other.
  • a phosphor paste is produced by including the first phosphor and the second phosphor in a transparent binder paste, and the phosphor paste is potted and cured so as to integrally cover a plurality of semiconductor light emitting elements 14.
  • An optical wavelength conversion member 16 is formed.
  • First phosphor As the first phosphor, a material that absorbs near-ultraviolet light or short-wavelength visible light efficiently, but hardly absorbs visible light of 450 nm or more is used.
  • the first phosphor is a yellow phosphor that emits yellow light by converting near-ultraviolet light or short-wavelength visible light, and has a dominant wavelength of 564 nm or more and 582 nm or less.
  • a phosphor represented by SiO 2 ⁇ 1.0 (Ca 0.54 , Sr 0.36 , Eu 0.1 ) O ⁇ 0.17SrCl 2 is used as the first phosphor.
  • the first phosphor by adding a SiO 2 excess in the mixing ratios of raw materials, a phosphor to produce cristobalite fluorescent body.
  • each weighed raw material was put in an alumina mortar and pulverized and mixed for about 30 minutes to obtain a raw material mixture.
  • This raw material mixture was put in an alumina crucible and baked at (H 2 / N 2 ) at 1030 ° C. for 5 to 40 hours in an atmosphere (5/95) in a reducing atmosphere electric furnace to obtain a baked product.
  • the obtained fired product was carefully washed with warm pure water to obtain a first phosphor.
  • the material forming the first phosphor is not limited to the above material, and other materials whose general formula is represented by M 1 O 2 ⁇ a (M 2 1 ⁇ z , M 4 z ) O ⁇ bM 3 X 2 May be adopted.
  • M 1 represents at least one element selected from the group consisting of Si, Ge, Ti, Zr and Sn.
  • M 2 represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn.
  • M 3 represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn.
  • X represents at least one halogen element, and M 4 represents at least one element essentially including Eu 2+ selected from the group consisting of rare earth elements and Mn.
  • a is in the range of 0.1 ⁇ a ⁇ 1.3
  • b is in the range of 0.1 ⁇ b ⁇ 0.25
  • z is in the range of 0.03 ⁇ z ⁇ 0.8.
  • the second phosphor is a blue phosphor that emits blue light by converting the wavelength of near-ultraviolet light or short-wavelength visible light.
  • a material that efficiently absorbs near ultraviolet light or red light and emits light having a dominant wavelength of 440 nm to 470 nm is used.
  • a phosphor represented by (Ca 4.67 Mg 0.5 ) (PO 4 ) 3 Cl: Eu 0.08 is used as the second phosphor.
  • the second phosphor is not limited to this, and may be selected from the phosphor group represented by the following general formula.
  • M 1 is essentially one or more of Ca, Sr, and Ba, and a part thereof can be replaced with an element of the group consisting of Mg, Zn, Cd, K, Ag, and Tl.
  • M 2 requires P, and a part thereof can be replaced with an element of the group consisting of V, Si, As, Mn, Co, Cr, Mo, W, and B.
  • X represents at least one halogen element
  • Re represents at least one rare earth element essentially containing Eu 2+ , or Mn.
  • a is 4.2 ⁇ a ⁇ 5.8
  • b is 2.5 ⁇ b ⁇ 3.5
  • c is 0.8 ⁇ c ⁇ 1.4
  • d is 0.01 ⁇ d ⁇ 0.1. Scope.
  • M 1 is at least one element selected from the group consisting of Ca, Sr, Ba, and Zn, and a is in the range of 0.001 ⁇ a ⁇ 0.5.
  • M 1 is at least one element selected from the group consisting of Ca, Sr, Ba, and Zn, and a is in the range of 0.001 ⁇ a ⁇ 0.8.
  • M 1 2-a (B 5 O 9 ) X Re a M 1 is at least one element selected from the group consisting of Ca, Sr, Ba, and Zn, X is at least one halogen element, and a is in the range of 0.001 ⁇ a ⁇ 0.5.
  • Binder material As the binder material, a material that is transparent to near-ultraviolet light or short-wavelength visible light, that is, has a light transmittance of 90% or more and good light resistance is used.
  • a silicone resin is used as the binder material.
  • dimethyl silicone resin JCR6126, manufactured by Dow Corning Toray
  • the binder material is not limited to this, and for example, a fluororesin, a sol-gel glass, an acrylic resin, an inorganic binder, a glass material, or the like can be used.
  • the silica fine particles are dispersed in a silicone resin as a thixotropic agent to produce a binder paste.
  • a silicone resin as a thixotropic agent
  • Other materials may be used as the diffusing agent and thixotropic agent.
  • fine particles such as silicon dioxide, titanium oxide, aluminum oxide, and barium titanate may be included in the binder paste.
  • Manufacturing method of light emitting module In manufacturing the light emitting module 10, first, an electrode pattern including an anode and a cathode was previously formed on the support substrate 12 by gold vapor deposition. Next, a silver paste (manufactured by Able Stick: 84-1LMISR4) is dropped onto the anode of the support substrate 12 using a dispenser, and the lower surfaces (supported surfaces) of the two semiconductor light emitting elements 14 are formed thereon. Glued. Thus, the silver paste was cured for 1 hour in an environment of 175 ° C. Thereafter, a gold wire having a diameter of 45 ⁇ m was bonded to the upper surface side electrode of the semiconductor light emitting element 14 and the cathode of the support substrate 12 by ultrasonic thermocompression bonding.
  • the first phosphor and the second phosphor are mixed at a weight ratio of 2: 1, and the mixed phosphor is blended in a binder material made of dimethyl silicone resin so as to be 1.8 vol%. .
  • the phosphor paste was potted with a 2.5 cc syringe (with a coating outlet diameter of 1 mm) so that the semiconductor element was hidden. Further, the phosphor paste was cured by performing a heat treatment for maintaining the temperature at 150 ° C. for 1 hour, and the light wavelength conversion member 16 was formed.
  • the cured light wavelength conversion member 16 had an irregular shape with a width of 2 mm to 4 mm, a height of 2 mm to 3 mm, and a length of about 7 mm.
  • FIG. 2 is a diagram showing excitation, emission spectrum of the first phosphor, and emission spectrum of the second phosphor.
  • L1 is an emission spectrum indicating the wavelength range of light emitted from the first phosphor after wavelength conversion
  • L2 is an emission spectrum indicating the wavelength range of light emitted by the second phosphor after wavelength conversion
  • E1 is the first spectrum.
  • the excitation spectrum which shows the excitation wavelength range which fluorescent substance wavelength-converts is shown. Since it is clear that the excitation spectrum of the second phosphor does not overlap with the emission spectrum of the first phosphor, the excitation spectrum of the second phosphor is not shown.
  • the excitation spectrum E1 of the first phosphor hardly overlaps the emission spectrum L2 of the second phosphor. Further, as described above, the excitation spectrum of the second phosphor also does not overlap with the emission spectrum of the first phosphor. Therefore, the wavelength range of the light emitted by wavelength conversion between the first phosphor and the second phosphor is generally different from the mutual excitation wavelength range. For this reason, the blue light emitted after wavelength conversion by the second phosphor can pass through the light wavelength conversion member 16 with almost no absorption by the first phosphor. Further, yellow light that is wavelength-converted and emitted by the first phosphor can also pass through the light wavelength conversion member 16 with almost no absorption by the second phosphor.
  • the thickness is not uniform, that is, the distance from the light emitting surface of the semiconductor light emitting element 14 to the light emitting surface of the light wavelength converting member 16 is not uniform. Even in this case, light can be emitted from the light wavelength conversion member 16 with a uniform color over the entire emission surface. Therefore, even when the light wavelength conversion member 16 is formed by a manufacturing method such as potting, a light emitting module that emits a uniform color can be manufactured.
  • FIG. 3 is a diagram illustrating values in the respective items of the light emitting module 10 according to the first embodiment and the light emitting module according to the comparative example.
  • FIG. 4 is a diagram showing an emission spectrum of the light emitting module 10 according to the first embodiment
  • FIG. 5 is a diagram showing an emission spectrum of the light emitting module of the comparative example.
  • the light emission characteristics of the light emitting module of the comparative example were also examined.
  • a comparative phosphor is used instead of the first phosphor and the second phosphor.
  • this phosphor for comparison is blended in dimethyl silicone resin so as to be 0.7 vol%.
  • cerium activated yttrium aluminum garnet P46-Y3 manufactured by Kasei Optonics
  • the configuration of the light emitting module of the comparative example is the same as that of the light emitting module 10.
  • each of the light emitting module 10 and the light emitting module of the comparative example was driven with a current of 700 mA, and the light emission characteristics were examined.
  • each of the luminous flux ratio and the luminous efficiency ratio represents the ratio when the comparative example is 100.
  • the light emitting module 10 according to the first embodiment has higher luminous flux and light emission efficiency and better color rendering than the light emitting module of the comparative example.
  • FIG. 6 is a diagram illustrating a chromaticity distribution of emitted light by the light emitting module 10 according to the first embodiment.
  • FIG. 7 is a diagram illustrating a chromaticity distribution of emitted light by the light emitting module according to the comparative example.
  • a Minolta CA1500 as a color luminance meter
  • the chromaticity distribution obtained by dividing each potting surface of the light emitting module 10 and the light emitting module according to the comparative example by about 50 ⁇ m 2 was examined.
  • the chromaticity distribution on the center line in the longitudinal direction of each light emitting module is plotted.
  • the light emitting module 10 emits light with the same chromaticity in any part.
  • the light-emitting module of the comparative example emits blue-colored white near the semiconductor light-emitting element 14 and changes to yellowish white as the distance from the semiconductor light-emitting element 14 increases. It can be seen that the variation is large.
  • the color variation is further expanded, such as a bluish white portion and a yellowish white portion, depending on where the light is irradiated. This greatly impairs the quality of the lighting.
  • the light emitting module 10 According to the light emitting module 10 according to the first embodiment, such a color variation can be suppressed, and the illuminated area can be illuminated with a uniform white color. Therefore, it turns out that the light emitting module 10 is especially useful for the use as a light source for illumination.
  • the semiconductor light emitting element 14 is covered with the light wavelength conversion member 16 containing the first phosphor and the second phosphor whose wavelength range of light emitted by wavelength conversion is substantially different from the excitation wavelength of each other.
  • the light wavelength conversion member 16 containing the first phosphor and the second phosphor whose wavelength range of light emitted by wavelength conversion is substantially different from the excitation wavelength of each other.
  • FIG. 8 is a perspective view showing the configuration of the light emitting module 30 according to the second embodiment.
  • the light emitting module 30 includes a case 32, a light emitting element unit 34, and a light wavelength conversion member 36.
  • the case 32 is formed of a transparent polycarbonate and is formed in a rectangular parallelepiped box shape having a length of 45 mm, a width of 8 mm, a height of 5 mm, and a plate thickness of 0.2 mm, and only the upper surface is opened.
  • the light emitting element unit 34 includes a support substrate 38 and a semiconductor light emitting element 40.
  • the support substrate 38 is the same as the support substrate 12 according to the first embodiment in that a circuit is formed on the upper surface by aluminum vapor deposition and gold deposition.
  • the support substrate 38 is formed in a rectangular plate shape having a length of 40 mm, a width of 5 mm, and a thickness of 1 mm.
  • the semiconductor light emitting device 40 is the same as the semiconductor light emitting device 14 according to the first embodiment.
  • five semiconductor light emitting elements 40 are arranged in series on the support substrate 38 to constitute the light emitting element unit 34.
  • the interval between the semiconductor light emitting elements 40 is 5 mm.
  • the light emitting element unit 34 was accommodated in the case 32 and fixed to the bottom surface.
  • a power supply cord for supplying current to the light emitting element unit 34 was drawn out from the side surface of the case 32.
  • the first phosphor and the second phosphor are mixed at a weight ratio of 2: 1, and the mixed phosphor is blended in a binder material made of dimethyl silicone resin so as to be 3.0 vol%. .
  • the mixing method is the same as in the first embodiment.
  • the phosphor paste was filled in a case 32 in which the light emitting element unit 34 was already fixed to the bottom using a 2.5 cc syringe (with a coating outlet diameter of 1 mm). After filling, the upper surface of the phosphor paste was flattened with a squeegee. Furthermore, the phosphor paste was cured by performing a heat treatment for maintaining the temperature at 150 ° C. for 1 hour, and the light wavelength conversion member 36 was formed.
  • FIG. 9 is a diagram illustrating values in the respective items of the light emitting module 30 according to the second embodiment and the light emitting module according to the comparative example.
  • FIG. 10 is a diagram illustrating an emission spectrum of the light emitting module 30 according to the second embodiment
  • FIG. 11 is a diagram illustrating an emission spectrum of the light emitting module of the comparative example.
  • a comparative phosphor is used instead of the first phosphor and the second phosphor.
  • the material of the comparative phosphor is the same as that in the first embodiment.
  • this phosphor for comparison is blended with dimethyl silicone resin so as to be 0.18 vol%.
  • the configuration of the light emitting module of the comparative example is the same as that of the light emitting module 10.
  • each of the light emitting module 30 and the light emitting module of the comparative example was driven with a current of 700 mA, and the light emission characteristics were examined.
  • each of the luminous flux ratio and the luminous efficiency ratio represents a ratio when the comparative example is 100.
  • the light emitting module 30 according to the second embodiment has higher luminous flux and light emission efficiency and better color rendering than the light emitting module of the comparative example.
  • FIG. 12 is a diagram showing the detection location of the light emission chromaticity of the light emitting module 30 according to the first embodiment.
  • the light emission chromaticity detection location of the light emitting module 30 is shown using a top view of the light emitting module 30.
  • the light emission chromaticity of the light emitting module 30 was examined at a location corresponding to the second semiconductor light emitting element 40 from the end. Specifically, on the upper surface of the light wavelength conversion member 36, the vertical upper portion of the center of the semiconductor light emitting element 40 is the origin, the a axis passing through the origin and parallel to the extending direction of the support substrate 38, and the The light emission chromaticity was detected while moving the detection location on both the b-axis passing through the origin and perpendicular to the extending direction of the support substrate 38, and the chromaticity distribution was examined for each axis.
  • CA 1500 manufactured by Minolta was used as a color luminance meter, and the chromaticity at 50 ⁇ m 2 on the upper surface of the light wavelength conversion member 36 was detected. The chromaticity was also detected at both the point B, which is the vertically upper portion of the center of the semiconductor light emitting element 40, and the point Y on the b-axis that is a predetermined distance (about 1 mm) from the point B. The same investigation as described above was performed for the light emitting module according to the comparative example.
  • FIG. 13 is a diagram illustrating the a-axis chromaticity distribution of the light emitting module 30 according to the second embodiment
  • FIG. 14 is a diagram illustrating the a-axis chromaticity distribution of the light emitting module according to the comparative example
  • 15 is a diagram illustrating the b-axis chromaticity distribution of the light-emitting module 30 according to the second embodiment
  • FIG. 16 is a diagram illustrating the b-axis chromaticity distribution of the light-emitting module according to the comparative example. is there.
  • the chromaticity does not change much even when the detection location is moved in both the a-axis and the b-axis.
  • the chromaticity changes greatly when the detection position is moved in both the a-axis and the b-axis.
  • the light emitting module according to the comparative example has a chromaticity variation from blue to yellow.
  • the light emitting module emits blue white light immediately above the semiconductor light emitting element 40 and directly above the semiconductor light emitting element 40. It turns out that it changes to yellowish white by moving away from.
  • FIG. 17 is a diagram showing the difference between the chromaticity at the point B and the chromaticity at the point Y for both the light emitting module 30 according to the second embodiment and the light emitting module according to the comparative example.
  • the color difference between the B point and the Y point is 0.371, whereas in the light emitting module 30 according to the second embodiment, the color difference is reduced to 0.098, which is about a quarter. I understand.
  • the semiconductor light emitting element 40 is covered by using the light wavelength conversion member 36 containing the first phosphor and the second phosphor whose wavelength range emitted by wavelength conversion is substantially different from the excitation wavelength of each other. By molding, a light emitting module with little color unevenness can be obtained.
  • a plurality of semiconductor light emitting elements are scattered on a plane rather than in a straight line.
  • the plurality of semiconductor light emitting elements are integrally covered by using a light wavelength conversion member containing a plurality of phosphors whose wavelength ranges emitted by wavelength conversion are different from the excitation wavelengths of each other. This makes it possible to obtain a light emitting module that emits light uniformly over a wide area on a plane.
  • the light wavelength conversion member when the light wavelength conversion member is coated on the semiconductor light emitting element, the light wavelength conversion member is formed in a shape in which the distance from the light emitting surface of the light emitting element to the outer surface of the light wavelength conversion member is not uniform.
  • the light wavelength conversion member may be formed in a cylindrical shape, a polygonal column shape, a conical shape, or a polygonal pyramid shape.
  • a light wavelength conversion member containing a first phosphor, a second phosphor, and a third phosphor in which the wavelength range of light emitted by wavelength conversion is different from the excitation wavelength of each other is used.
  • the light emitting module is provided by covering the semiconductor light emitting element.
  • the first phosphor emits blue light by converting the wavelength of light emitted from the semiconductor light emitting element.
  • the second phosphor emits green light by converting the wavelength of light emitted from the semiconductor light emitting element.
  • the third phosphor emits red light by converting the wavelength of light emitted from the semiconductor light emitting element. According to this aspect as well, it is possible to provide a light emitting module that emits uniform white light by additive mixing of blue light, green light, and red light.
  • a light emitting module is provided.
  • the plurality of semiconductor light emitting elements are not the same, but are provided to emit light in a common wavelength range.
  • Each of the plurality of phosphors is provided so as to convert the wavelength of light in the common wavelength range.
  • the present invention can be used for a light-emitting module, and in particular, can be used for a light-emitting module including a light-emitting element and a light wavelength conversion member that converts the wavelength of light emitted from the light-emitting element and emits the light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

 発光モジュール10において、半導体発光素子14は、短波長可視光を発光する。半導体発光素子14は、同一平面上に複数が並設される。光波長変換部材16は、白色光を出射するよう、半導体発光素子14が発する光を波長変換する。光波長変換部材16は、波長変換して発する光の波長範囲が互いの励起波長と異なる第1蛍光体および第2蛍光体を含有する。第1蛍光体は、短波長可視光を励起して黄色光を発する。第2蛍光体は短波長可視光を励起して青色光を発する。第1蛍光体は、励起波長範囲に青色光の波長範囲を含まない。光波長変換部材16は、複数の半導体発光素子14を一体的に被覆するようポッティングされた後硬化される。

Description

発光モジュール
 本発明は、発光モジュールに関し、特に発光素子とその発光素子が発する光を波長変換して出射する光波長変換部材を備える発光モジュールに関する。
 現在、白色光を発する白色LED(Light Emitting Diode)が広く用いられている。ここで、例えば青色光を発する半導体発光素子と、青色光によって励起され緑色光を発する蛍光体と、青色光によって励起され赤色光を発する蛍光体を組み合わせることにより、青色光、緑色光、および赤色光の加色混合により白色光を出射する白色LEDが提案されている(例えば、特許文献1参照)。この白色LEDでは、底面に青色光を発する半導体発光素子が配置されたカップに蛍光体を含むバインダーを流し込んで半導体発光素子を被覆している。
 一方、このような構造の白色LEDでは、半導体発光素子からバインダーペーストの出射面までの距離が均一にならないため、半導体発光素子から発せられた光がバインダーペーストを透過するときに波長変換される光量が放射方向によって異なることになる。このため、バインダーペーストが厚い部分は波長変換されて発せられる黄色光が多くなるため黄色く見え、バインダーペーストが薄い部分は黄色光が少なくなるため青色に見えることになり、均一に白色の発光を得ることは困難となる。このように発光モジュールに色むらが生じると、特に照明光源としての用途において高い品質の照明を提供することが困難となる。
 このため、蛍光体を含むバインダーペーストの厚さを均一にすべく、例えば、インクジェット印刷法によってLEDチップ上に配置する蛍光物質を形成する発光ダイオードの形成方法が提案されている(例えば、特許文献2参照)。また、例えば、位置決めしたステンシルの開口部にステンシル組成物を体積させた後ステンシルを除去し、ステンシル組成物を硬化させて製造した発光装置が提案されている(例えば、特許文献3参照)。
特開平10-107325号公報 特開平11-46019号公報 特開2002-185048号公報
 上記特許文献2および3に記載される技術では、発光装置が発する光の色を均一にするために、バインダーペーストの厚さを均一にすることに着目している。しかしながら、バインダーペーストの厚さを均一にしなければならないとすると、バインダーペーストの形状の自由度が低下するおそれがある。これに対し、近年LEDの用途は益々広範となり、様々な形態のLED発光素子の実現が要求されている。このとき、バインダーペーストの形状に制限が設けられると、LEDの設計自由度が損なわれる可能性がある。特に、互いに離間した複数の半導体発光素子をバインダーペーストで一体的に被覆する場合、単にバインダーペーストの表面を均一な平面としただけでは半導体発光素子の各々からバインダーペーストの出射面までの距離が均一とはならないため、上述の特許文献2および3に記載される技術では均一な色を発する発光モジュールを得ることは困難である。
 そこで、本発明は上述した課題を解決するためになされたものであり、その目的は、形態の自由度を確保しつつ均一な色を発する発光モジュールを提供することにある。
 上記課題を解決するために、本発明のある態様の発光モジュールは、発光素子と、発光素子が発する光を波長変換して出射する光波長変換部材と、を備える。光波長変換部材は、波長変換して発する光の波長範囲が互いの励起波長と異なる複数の蛍光体を含有し、発光素子を被覆するよう形成される。
 この態様によれば、ある蛍光体によって波長変換された光が他の蛍光体によって励起され吸収されることを回避することができる。このため、光波長変換部材の厚みによらず均一な色の光を出射する発光モジュールを得ることができる。
 発光素子は、互いに離間して複数並設され、光波長変換部材は、複数の発光素子を一体的に被覆するよう形成されてもよい。
 近年、LEDの照明光源としての用途への要求などにより、より広範な面積を均一な色で発光する発光モジュールの開発が求められている。しかしながら、より広範な面積で発光可能な発光モジュールを実現すべく、互いに離間するよう複数の発光素子を配置した場合、これらを光波長変換部材で一体的に被覆したときに、各々の発光素子から光波長変換部材の出射面までの距離を均一にすることは困難となる。この態様によれば、波長変換して発する光の波長範囲が互いの励起波長と異なる複数の蛍光体を含有する光波長変換部材を用いることにより、複数の発光素子を互いに離間して並設した場合においても、均一な光を発する発光モジュールを実現することができる。
 複数の発光素子は、同一平面上に配置されてもよい。
 例えば照明光源として複数の発光素子を利用する場合、同一平面上に複数の発光素子を互いに離間して並設する態様が考えられる。また、複数の発光素子を設ける場合、同一基板上に配置することにより基板構成を簡略化できることから、同一平面上に配置することへの要求も高い。しかし、同一平面上に複数の発光素子を互いに離間して並設した場合、同じ視点からすべての発光素子の光を視認することが可能となるため、色ムラが生じた場合に非常に目立つことになる。この態様によれば、複数の発光素子を同一平面上に配置しても、色ムラの発生を抑制することができる。このため、均一な色で光を出射する平面上の発光モジュールを実現することができる。なお、複数の発光素子は、一直線上に並設されてもよく、平面上に散在するよう配置されてもよい。
 本発明の別の態様もまた、発光モジュールである。この発光モジュールは、近紫外または短波長可視の波長範囲の光を発する発光素子と、一般式がM・a(M 1-z,M )O・bM(但し、MはSi、Ge、Ti、Zr及びSnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、Xは少なくとも1種のハロゲン元素、Mは希土類元素及びMnからなる群より選ばれるEu2+を必須とする少なくとも1種の元素を示す。aは0.1≦a≦1.3、bは0.1≦b≦0.25、zは0.03<z<0.8の範囲である。)で表される第1蛍光体と、発光素子が発する光を波長変換して青色光を発する第2蛍光体と、の双方を含有し、発光素子を被覆するよう形成される光波長変換部材と、を備える。
 発明者による鋭意なる研究開発の結果、上記の第1蛍光体と第2蛍光体とは、波長変換して発する光の波長範囲が互いの励起波長と概ね異なることは確認された。したがってこの態様によれば、第1蛍光体および第2蛍光体の一方によって波長変換された光が他方によって励起され吸収されることを回避することができる。このため、光波長変換部材の厚みによらず均一な色の光を出射する発光モジュールを得ることができる。
 なお、この態様においても、発光素子は、互いに離間して複数並設され、光波長変換部材は、複数の発光素子を一体的に被覆するよう形成されてもよい。また、複数の発光素子は、同一平面上に配置されてもよい。また、複数の発光素子は、一直線上に並設されてもよく、平面上に散在するよう配置されてもよい。
 本発明によれば、形態の自由度を確保しつつ均一な色を発する発光モジュールを提供することができる。
第1の実施形態に係る発光モジュールの構成を示す断面図である。 第1蛍光体の励起、発光スペクトル、および第2蛍光体の発光スペクトルを示す図である。 第1の実施形態に係る発光モジュールと比較例に係る発光モジュールの各々の各項目における値を示す図である。 第1の実施形態に係る発光モジュールの発光スペクトルを示す図である。 比較例の発光モジュールの発光スペクトルを示す図である。 第1の実施形態に係る発光モジュールによる出射光の色度分布を示す図である。 比較例に係る発光モジュールによる出射光の色度分布を示す図である。 第2の実施形態に係る発光モジュールの構成を示す斜視図である。 第2の実施形態に係る発光モジュールと比較例に係る発光モジュールの各々の各項目における値を示す図である。 第2の実施形態に係る発光モジュールの発光スペクトルを示す図である。 比較例の発光モジュールの発光スペクトルを示す図である。 第1の実施形態に係る発光モジュールの発光色度の検出個所を示す図である。 第2の実施形態に係る発光モジュールのa軸の色度分布を示す図である。 比較例に係る発光モジュールのa軸の色度分布を示す図である。 第2の実施形態に係る発光モジュールのb軸の色度分布を示す図である。 比較例に係る発光モジュールのb軸の色度分布を示す図である。 第2の実施形態に係る発光モジュールおよび比較例に係る発光モジュールの双方についての、B点の色度とY点の色度との差を示す図である。
 以下、図面を参照して本発明の実施の形態(以下、実施形態という)について詳細に説明する。
(第1の実施形態)
 図1は、第1の実施形態に係る発光モジュール10の構成を示す断面図である。発光モジュール10は、支持基板12、半導体発光素子14、および光波長変換部材16を有する。
(1)支持基板
 支持基板12は窒化アルミニウム(AlN)によって形成され、金蒸着によって上面に回路が形成されている。なお、支持基板12は、例えば、アルミナ、ムライト、ガラスセラミックなどのセラミックや、ガラスエポキシなど、導電性を有しない一方、熱伝導性が高い他の材料によって形成されてもよい。第1の実施形態では、支持基板12は、長さ6mm、幅1mm、厚さ1mmの長方形プレート状に形成されている。
(2)半導体発光素子
 第1の実施形態では、半導体発光素子14として近紫外光または短波長可視光を発光するLEDを採用した。半導体発光素子14は、例えば1mm角のチップとして形成され、発する光の中心波長は約400nmとなるよう設けられている。第1の実施形態では、半導体発光素子14に、402nmにピーク波長を有するSemiLEDs社製のMvpLED(登録商標)SL-V-U40ACを用いた。なお、半導体発光素子14がこれに限られないことは勿論であり、例えば半導体レーザーダイオード(LD)が採用されてもよい。
 半導体発光素子14は、いわゆる縦型チップタイプのものが採用される。なお、半導体発光素子14に他のタイプのものが採用されてもよいことは勿論であり、例えば半導体発光素子14にいわゆるフリップチップタイプのものやいわゆるフェイスアップタイプのものが採用されてもよい。
 半導体発光素子14は、支持基板12上に互いに離間して同一平面上に複数並設される。具体的には、半導体発光素子14は、2.3mmの間隔をあけて支持基板12上に2個が直列に実装される。なお、半導体発光素子14の個数、間隔がこれらに限られないことは勿論である。また、支持基板12は同一平面以外の面、例えば曲面や段差が設けられた面の各々の段差に設けられてもよい。
(3)光波長変換部材
 光波長変換部材16は、複数の半導体発光素子14を一体的に被覆するよう形成される。光波長変換部材16は、波長変換して発する光の波長範囲が互いの励起波長と概ね異なる第1蛍光体および第2蛍光体を含有する。この第1蛍光体および第2蛍光体を透明なバインダーペーストに含有させて蛍光体ペーストを生成し、この蛍光体ペーストを複数の半導体発光素子14を一体的に被覆するようポッティングし硬化させることにより光波長変換部材16が形成される。
(4)第1蛍光体
 第1蛍光体は、近紫外光または短波長可視光を効率的に吸収する一方、450nm以上の可視光の吸収がほとんどないものを用いる。第1蛍光体は、近紫外光または短波長可視光を波長変換して黄色光を発する黄色蛍光体であり、放射する光のドミナント波長は564nm以上582nm以下のものを用いる。
 第1の実施形態では、第1蛍光体として、SiO・1.0(Ca0.54,Sr0.36,Eu0.1)O・0.17SrClで表される蛍光体を用いた。第1蛍光体は、原料の混合比においてSiOを過剰に添加することで、蛍光体内にクリストバライトを生成させた蛍光体である。
 第1蛍光体を製造するにあたって、まず、SiO、Ca(OH)、SrCl・6HO、及びEuの各原料をこれらのモル比がSiO:Ca(OH):SrCl・6HO:Eu=1.1:0.45:1.0:0.13となるように秤量した。次に秤量した各原料をアルミナ乳鉢に入れ約30分粉砕混合し、原料混合物を得た。この原料混合物をアルミナ坩堝に入れ、還元雰囲気の電気炉で雰囲気(5/95)の(H/N)、1030℃で5~40時間焼成し、焼成物を得た。得られた焼成物を温純水で丹念に洗浄し、第1蛍光体を得た。
 なお、第1蛍光体を形成する材料は上記材料に限られず、一般式がM・a(M 1-z,M )O・bMで表される他の材料が採用されてもよい。但し、Mは、Si、Ge、Ti、Zr及びSnからなる群より選ばれる少なくとも1種の元素を示す。Mは、Mg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素を示す。Mは、Mg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素を示す。Xは、少なくとも1種のハロゲン元素、Mは希土類元素及びMnからなる群より選ばれるEu2+を必須とする少なくとも1種の元素を示す。aは、0.1≦a≦1.3の範囲であり、bは0.1≦b≦0.25の範囲であり、zは0.03<z<0.8の範囲である。この一般式では、第1の実施形態にて採用した第1蛍光体は、M=Si、M=Ca/Sr(モル比60/40)、M=Sr、X=Cl、M=Eu2+、a=0.9、b=0.17、Mの含有量c(モル比)がc/(a+c)=0.1となる。
(5)第2蛍光体
 第2蛍光体は、近紫外光または短波長可視光を波長変換して青色光を発する青色蛍光体である。第2蛍光体は、近紫外光または赤色光を効率的に吸収し、ドミナント波長が440nm以上470nm以下の光を放射するものを用いる。第1の実施形態では、第2蛍光体として、(Ca4.67Mg0.5)(POCl:Eu0.08で表される蛍光体を用いた。なお、第2蛍光体はこれに限られず、以下の一般式で表される蛍光体群の中から選択してもよい。
 一般式Ma(M:Re
 MはCa、Sr、Baのうち一種以上を必須とし、一部をMg、Zn,Cd、K、Ag、Tlからなる群の元素に置き換えることができる。Mは、Pを必須とし、一部をV、Si、As、Mn、Co、Cr、Mo、W、Bからなる群の元素に置き換えることができる。Xは少なくとも1種のハロゲン元素、ReはEu2+を必須とする少なくとも1種の希土類元素、またはMnを示す。また、aは4.2≦a≦5.8、bは2.5≦b≦3.5、cは0.8<c<1.4、dは0.01<d<0.1の範囲とされる。
 一般式M 1-aMgAl1017:Eu2+
 Mは、Ca、Sr、Ba、Znからなる群より選ばれる少なくとも1種の元素、aは0.001≦a≦0.5の範囲とされる。
 一般式M 1-aMgSi:Eu2+
 Mは、Ca、Sr、Ba、Znからなる群より選ばれる少なくとも1種の元素、aは0.001≦a≦0.8の範囲とされる。
 一般式M 2-a(B)X:Re
 Mは、Ca、Sr、Ba、Znからなる群より選ばれる少なくとも1種の元素、Xは少なくとも1種のハロゲン元素、aは0.001≦a≦0.5の範囲とされる。
 第2蛍光体を製造するにあたって、まず、CaCO、MgCO、CaCl、CaHPO、及びEuの各原料を、これらのモル比がCaCO:MgCO:CaCl:CaHPO:Eu=0.42:0.5:3.0:1.25:0.04となるよう秤量し、秤量した各原料をアルミナ乳鉢に入れ約30分粉砕混合し、原料混合物を得た。この原料混合物をアルミナ坩堝に入れ、2~5%のHを含むN雰囲気中で、温度800℃以上1200℃未満で3時間焼成し、焼成物を得た。得られた焼成物を温純水で丹念に洗浄し、第2蛍光体を得た。
(6)バインダー材料
 バインダー材料は、近紫外光または短波長可視光に対して透明、すなわちこれらの光の透過率が90%以上であり、光耐性が良好な材料を用いる。第1の実施形態では、バインダー材料としてシリコーン樹脂を用いた。具体的には、バインダー材料として、耐光性の良好なジメチルシリコーン樹脂(東レ・ダウコーニング製JCR6126)を用いた。しかしバインダー材料はこれに限られず、例えばフッ素樹脂、ゾルゲルガラス、アクリル樹脂、無機バインダー、ガラス材料等を用いることができる。
 また、第1の実施形態では、シリカ微粒子をチクソ剤としてシリコーン樹脂に分散させてバインダーペーストを生成している。なお、拡散剤、チクソ剤として他の材料が用いられてもよく、例えば二酸化珪素、酸化チタン、酸化アルミニウム、チタン酸バリウムなどの微粒子がバインダーペーストに含められてもよい。
(7)発光モジュールの製造方法
 発光モジュール10を製造するにあたって、まず、予め金蒸着によって陽極および陰極を含む電極パターンを支持基板12に形成した。次に、ディスペンサーを用いて銀ペースト(エイブルスティック社製:84-1LMISR4)を支持基板12の陽極上に滴下し、その上に2個の半導体発光素子14の各々の下面(被支持面)を接着した。こうして銀ペーストを175℃環境下で1時間硬化させた。その後、ワイヤとしてφ45μmの金ワイヤを、半導体発光素子14の上面側電極および支持基板12の陰極にそれぞれ超音波熱圧着にて接合した。
 蛍光体ペーストを生成するにあたって、まず第1蛍光体と第2蛍光体とを重量比2:1で混合し、混合蛍光体をジメチルシリコーン樹脂によるバインダー材料に1.8vol%になるように配合した。これを10ccの軟膏容器に3g以上5g以下充填し、自公転ミキサー(クラボウ製マゼルスター)を用いて公転1200、自転400回転で90秒間混合することにより、蛍光体ペーストを作製した。
 この蛍光体ペーストを2.5cc(塗出口径φ1mm)のシリンジで半導体素子が隠れるようにポッティングした。さらに1時間150℃を維持する加熱処理を施して蛍光体ペーストを硬化させ、光波長変換部材16を形成した。硬化後の光波長変換部材16は、幅2mm以上4mm以下、高さ2mm以上3mm以下、長さ約7mmの不定形の形状であった。
 図2は、第1蛍光体の励起、発光スペクトル、および第2蛍光体の発光スペクトルを示す図である。図2において、L1は第1蛍光体が波長変換して発する光の波長範囲を示す発光スペクトル、L2は第2蛍光体が波長変換して発する光の波長範囲を示す発光スペクトル、E1は第1蛍光体が波長変換する励起波長範囲を示す励起スペクトルを示す。なお、第2蛍光体の励起スペクトルが第1蛍光体の発光スペクトルと重ならないことは明らかであることから、第2蛍光体の励起スペクトルの図示は省略している。
 図2に示すように、第1蛍光体の励起スペクトルE1は、第2蛍光体の発光スペクトルL2とほとんど重ならない。また、上述のように、第2蛍光体の励起スペクトルもまた、第1蛍光体の発光スペクトルと重ならない。したがって、第1蛍光体と第2蛍光体とは波長変換して発する光の波長範囲が互いの励起波長範囲と概ね異なる。このため、第2蛍光体によって波長変換され発せられる青色光は、第1蛍光体によってほとんど吸収されることなく光波長変換部材16を通過することができる。また、第1蛍光体によって波長変換され発せられる黄色光もまた、第2蛍光体によってほとんど吸収されることなく光波長変換部材16を通過することができる。
 このため、第1の実施形態に係る光波長変換部材16によれば、厚さが不均一、すなわち、半導体発光素子14の発光面から光波長変換部材16の出射面までの距離が不均一となった場合においても、出射面全体にわたって均一な色で光波長変換部材16から光を出射させることが可能となる。したがって、ポッティングなどの製法によって光波長変換部材16を形成した場合においても、均一な色を発する発光モジュールを製造することができる。
 図3は、第1の実施形態に係る発光モジュール10と比較例に係る発光モジュールの各々の各項目における値を示す図である。図4は、第1の実施形態に係る発光モジュール10の発光スペクトルを示す図であり、図5は、比較例の発光モジュールの発光スペクトルを示す図である。発光モジュール10の発光特性を確認するため、比較例の発光モジュールの発光特性も調べた。この比較例の発光モジュールでは、第1蛍光体および第2蛍光体に代えて、比較用蛍光体を用いている。比較例の発光モジュールの蛍光体ペーストは、この比較用蛍光体をジメチルシリコーン樹脂に0.7vol%になるように配合している。比較用蛍光体としては、セリウム付活のイットリウムアルミニウムガーネット(化成オプトニクス製P46-Y3)を用いた。それ以外は、比較例の発光モジュールの構成は発光モジュール10と同様である。
 発光モジュール10および比較例の発光モジュールの各々を700mAの電流で駆動し、その発光特性を調べた。図3において、光束比、および発光効率比の各々は、比較例を100としたときの比率を表している。図3から分かるように、比較例の発光モジュールに比べ、第1の実施形態に係る発光モジュール10は、光束および発光効率が高く、しかも演色性が良好なことが分かる。
 図6は、第1の実施形態に係る発光モジュール10による出射光の色度分布を示す図である。図7は、比較例に係る発光モジュールによる出射光の色度分布を示す図である。色彩輝度計としてミノルタ製CA1500を用い、発光モジュール10および比較例に係る発光モジュールの各々のポッティング面を約50μmで分割した色度分布を調べた。各々の発光モジュールの色度バラツキを評価すべく、図6および図7では、各々の発光モジュールの長手方向の中央線上の色度分布をプロットした。
 図6および図7から分かるように、発光モジュール10はどの部分も同一の色度で発光していることが分かる。これに対し比較例の発光モジュールは、半導体発光素子14の真上付近では青色を帯びた白色で発光し、半導体発光素子14の真上から離れるにしたがって黄色を帯びた白色に変化し、色のバラツキも大きいことが分かる。例えば比較例の発光モジュールを照明用の光源として用いた場合、光が照射される場所によって青みがかった白色部分と黄色みがかった白色部分が生じるなどさらに色のバラツキは拡大する。これによって、照明の品質は大きく損なわれる。第1の実施形態に係る発光モジュール10によれば、このような色のバラツキを抑制することができ、照明された領域を均一な白色で照らし出すことが可能となる。したがって、照明用光源としての用途に発光モジュール10は特に有用であることが分かる。
 以上のように、波長変換して発する光の波長範囲が互いの励起波長と概ね異なる第1蛍光体と第2蛍光体を含有した光波長変換部材16を用いて半導体発光素子14を被覆するようポッティングすることにより、色むらの少ない発光モジュールを得ることができる。
(第2の実施形態)
 図8は、第2の実施形態に係る発光モジュール30の構成を示す斜視図である。発光モジュール30は、ケース32、発光素子ユニット34、および光波長変換部材36を有する。
 ケース32は、透明なポリカーボネートによって、長さ45mm、幅8mm、高さ5mm、板厚0.2mmの直方体の箱状に形成され、上面のみが開口している。発光素子ユニット34は、支持基板38および半導体発光素子40を含む。支持基板38は、窒化アルミニウムによって形成され金蒸着によって上面に回路が形成されている点は、第1の実施形態に係る支持基板12と同様である。支持基板38は、長さ40mm、幅5mm、厚さ1mmの長方形プレート状に形成されている。
 半導体発光素子40は、第1の実施形態に係る半導体発光素子14と同様である。第2の実施形態では、支持基板38上に半導体発光素子40が5個直列に並設され、発光素子ユニット34が構成されている。半導体発光素子40の間隔は5mmとされている。
 発光素子ユニット34はケース32の内部に収容し、底面に固定した。ケース32の側面から、発光素子ユニット34に電流を供給するための給電コードを引き出した。
 蛍光体ペーストを生成するにあたって、まず第1蛍光体と第2蛍光体とを重量比2:1で混合し、混合蛍光体をジメチルシリコーン樹脂によるバインダー材料に3.0vol%になるように配合した。混合方法は第1の実施形態と同様である。
 この蛍光体ペーストを2.5cc(塗出口径φ1mm)のシリンジを用いて、すでに発光素子ユニット34が底部に固定されたケース32に充填した。充填後、蛍光体ペーストの上面をスキージにより平坦に整えた。さらに1時間150℃を維持する加熱処理を施して蛍光体ペーストを硬化させ、光波長変換部材36を形成した。
 図9は、第2の実施形態に係る発光モジュール30と比較例に係る発光モジュールの各々の各項目における値を示す図である。図10は、第2の実施形態に係る発光モジュール30の発光スペクトルを示す図であり、図11は、比較例の発光モジュールの発光スペクトルを示す図である。発光モジュール30の発光特性を確認するため、第2の実施形態についても、比較例の発光モジュールの発光特性を調べた。この比較例の発光モジュールでは、第1蛍光体および第2蛍光体に代えて、比較用蛍光体を用いている。比較用蛍光体の材質は第1の実施形態と同様である。比較例の発光モジュールの蛍光体ペーストは、この比較用蛍光体をジメチルシリコーン樹脂に0.18vol%になるように配合している。それ以外は、比較例の発光モジュールの構成は発光モジュール10と同様である。
 発光モジュール30および比較例の発光モジュールの各々を700mAの電流で駆動し、その発光特性を調べた。図9において、光束比、および発光効率比の各々は、比較例を100としたときの比率を表している。図9から分かるように、比較例の発光モジュールに比べ、第2の実施形態に係る発光モジュール30は、光束および発光効率が高く、しかも演色性が良好なことが分かる。
 図12は、第1の実施形態に係る発光モジュール30の発光色度の検出個所を示す図である。図12では、発光モジュール30の上面図を用いて発光モジュール30の発光色度の検出個所を示している。
 発光モジュール30の発光色度は、端から2番目の半導体発光素子40に対応する個所について調べた。具体的には、光波長変換部材36の上面のうちその半導体発光素子40の中心の鉛直上方個所を原点として、その原点を通過し支持基板38の延在方向に平行なa軸上、およびその原点を通過し支持基板38の延在方向に垂直なb軸上の双方について検出個所を移動させながら発光色度を検出し、それぞれの軸について色度分布を調べた。このとき、色彩輝度計としてミノルタ製CA1500を用い、光波長変換部材36の上面の50μmにおける色度を検出した。また、半導体発光素子40の中心の鉛直上方個所であるB点、およびB点から所定距離(約1mm)離れたb軸上のY点の双方においても、色度を検出した。上記と同様の調査を、上述の比較例に係る発光モジュールについても実施した。
 図13は、第2の実施形態に係る発光モジュール30のa軸の色度分布を示す図であり、図14は、比較例に係る発光モジュールのa軸の色度分布を示す図である。また、図15は、第2の実施形態に係る発光モジュール30のb軸の色度分布を示す図であり、図16は、比較例に係る発光モジュールのb軸の色度分布を示す図である。
 図13~図16から分かるように、第2の実施形態に係る発光モジュール30では、a軸およびb軸の双方において、検出個所を移動させた場合においても色度はあまり変化しない。これに対し、比較例に係る発光モジュールでは、a軸およびb軸の双方において、検出個所を移動させると色度が大きく変化する。具体的には、比較例に係る発光モジュールでは、青から黄色までの色度変動があり、特に半導体発光素子40の真上周辺では青色を帯びた白色で発光し、半導体発光素子40の真上から離れていくことで黄色を帯びた白色に変化することが分かる。
 図17は、第2の実施形態に係る発光モジュール30および比較例に係る発光モジュールの双方についての、B点の色度とY点の色度との差を示す図である。比較例の発光モジュールでは、B点とY点の色差が0.371であるのに対し、第2の実施形態に係る発光モジュール30では0.098と約4分の1まで色差が低減することが分かる。
 以上のように、波長変換して発する光の波長範囲が互いの励起波長と概ね異なる第1蛍光体と第2蛍光体を含有した光波長変換部材36を用いて半導体発光素子40を被覆するようモールド成形することにより、色むらの少ない発光モジュールを得ることができる。
 本発明は上述の各実施形態に限定されるものではなく、各実施形態の各要素を適宜組み合わせたものも、本発明の実施形態として有効である。また、当業者の知識に基づいて各種の設計変更等の変形を各実施形態に対して加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうる。以下、そうした例をあげる。
 ある変形例では、複数の半導体発光素子を一直線状ではなく平面上に散在させる。波長変換して発する光の波長範囲が互いの励起波長と異なる複数の蛍光体を含有した光波長変換部材を用いて、これら複数の半導体発光素子を一体的に被覆する。これにより、平面上に広い面積にわたって均一に発光する発光モジュールを得ることが可能となる。
 ある別の変形例では、光波長変換部材を半導体発光素子に被覆するとき、発光素子の発光面から光波長変換部材の外面までの距離が不均一となる形状に光波長変換部材を形成する。このとき、光波長変換部材は円柱形状や多角柱形状、円錐形状や多角錐形状に形成されてもよい。このように波長変換して発する光の波長範囲が互いの励起波長と異なる複数の蛍光体を含有した光波長変換部材を用いることにより、光波長変換部材の形状に依存することなく均一な色の光を発する発光モジュールを得ることが可能となる。このため、このように光波長変換部材をこのように様々な形状に形成した場合においても、色むらの少ない発光モジュールを提供することができる。
 ある別の変形例では、波長変換して発する光の波長範囲が互いの励起波長と異なる第1の蛍光体、第2の蛍光体、および第3の蛍光体を含有した光波長変換部材を用いて半導体発光素子を被覆することにより発光モジュールが設けられる。第1の蛍光体は、半導体発光素子が発する光を波長変換して青色光を発する。第2の蛍光体は、半導体発光素子が発する光を波長変換して緑色光を発する。第3の蛍光体は、半導体発光素子が発する光を波長変換して赤色光を発する。この態様によっても、青色光、緑色光、赤色光の加色混合によって均一な白色光を発する発光モジュールを提供することが可能となる。
 ある別の変形例では、波長変換して発する光の波長範囲が互いの励起波長と異なる複数の蛍光体を含有した光波長変換部材を用いて複数の半導体発光素子を一体的に被覆することにより発光モジュールが設けられる。この複数の半導体発光素子は同一ではないが、共通する波長範囲の光を出射するよう設けられている。複数の蛍光体の各々は、この共通する波長範囲の光を波長変換するよう設けられている。これにより、例えば波長範囲が若干異なる紫外光をそれぞれが発する複数の半導体発光素子を一体的に被覆するような場合においても、色ムラの少ない発光モジュールを提供することができる。
 10 発光モジュール、 12 支持基板、 14 半導体発光素子、 16 光波長変換部材、 30 発光モジュール、 32 ケース、 34 発光素子ユニット、 36 光波長変換部材、 38 支持基板、 40 半導体発光素子。
 本発明は、発光モジュールに利用可能であり、特に発光素子とその発光素子が発する光を波長変換して出射する光波長変換部材を備える発光モジュールに利用可能である。

Claims (10)

  1.  発光素子と、
     前記発光素子が発する光を波長変換して出射する光波長変換部材と、
    を備え、
     前記光波長変換部材は、波長変換して発する光の波長範囲が互いの励起波長と異なる複数の蛍光体を含有し、前記発光素子を被覆するよう形成されることを特徴とする発光モジュール。
  2.  前記発光素子は、互いに離間して複数並設され、
     光波長変換部材は、前記複数の発光素子を一体的に被覆するよう形成されることを特徴とする請求項1に記載の発光モジュール。
  3.  前記複数の発光素子は、同一平面上に配置されることを特徴とする請求項2に記載の発光モジュール。
  4.  前記複数の発光素子は、一直線上に並設されることを特徴とする請求項2または3に記載の発光モジュール。
  5.  前記複数の発光素子は、平面上に散在するよう配置されることを特徴とする請求項2または3に記載の発光モジュール。
  6.  近紫外または短波長可視の波長範囲の光を発する発光素子と、
     一般式がM・a(M 1-z,M )O・bM(但し、MはSi、Ge、Ti、Zr及びSnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、Xは少なくとも1種のハロゲン元素、Mは希土類元素及びMnからなる群より選ばれるEu2+を必須とする少なくとも1種の元素を示す。aは0.1≦a≦1.3、bは0.1≦b≦0.25、zは0.03<z<0.8の範囲である。)で表される第1蛍光体と、前記発光素子が発する光を波長変換して青色光を発する第2蛍光体と、の双方を含有し、前記発光素子を被覆するよう形成される光波長変換部材と、
    を備えることを特徴とする発光モジュール。
  7.  前記発光素子は、互いに離間して複数並設され、
     光波長変換部材は、前記複数の発光素子を一体的に被覆するよう形成されることを特徴とする請求項1に記載の発光モジュール。
  8.  前記複数の発光素子は、同一平面上に配置されることを特徴とする請求項5に記載の発光モジュール。
  9.  前記複数の発光素子は、一直線上に並設されることを特徴とする請求項7または8に記載の発光モジュール。
  10.  前記複数の発光素子は、平面上に散在するよう配置されることを特徴とする請求項7または8に記載の発光モジュール。
PCT/JP2010/003462 2009-06-23 2010-05-24 発光モジュール WO2010150459A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011519505A JPWO2010150459A1 (ja) 2009-06-23 2010-05-24 発光モジュール
EP10791785.8A EP2448020A4 (en) 2009-06-23 2010-05-24 LIGHT EMITTING MODULE
US13/380,390 US20120092853A1 (en) 2009-06-23 2010-05-24 Light emitting module
CN2010800280568A CN102804420A (zh) 2009-06-23 2010-05-24 发光模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009149112 2009-06-23
JP2009-149112 2009-06-23

Publications (1)

Publication Number Publication Date
WO2010150459A1 true WO2010150459A1 (ja) 2010-12-29

Family

ID=43386249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003462 WO2010150459A1 (ja) 2009-06-23 2010-05-24 発光モジュール

Country Status (6)

Country Link
US (1) US20120092853A1 (ja)
EP (1) EP2448020A4 (ja)
JP (2) JPWO2010150459A1 (ja)
KR (1) KR20120024976A (ja)
CN (1) CN102804420A (ja)
WO (1) WO2010150459A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033938A (ja) * 2011-06-28 2013-02-14 Koito Mfg Co Ltd 発光モジュール
US9333905B2 (en) 2013-01-30 2016-05-10 Koito Manufacturing Co., Ltd. Light emitting module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056213B2 (ja) * 2012-06-26 2017-01-11 東芝ライテック株式会社 発光モジュール及び照明装置
US9761763B2 (en) * 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
JP2016058614A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 発光装置、及び照明装置
DE102015107580A1 (de) * 2015-05-13 2016-11-17 Osram Opto Semiconductors Gmbh Strahlungsemittierendes optoelektronisches Bauelement
CN110630976A (zh) * 2018-06-22 2019-12-31 株式会社小糸制作所 发光模块

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107325A (ja) 1996-09-30 1998-04-24 Nichia Chem Ind Ltd 発光装置及びそれを用いた表示装置
JPH1146019A (ja) 1997-07-28 1999-02-16 Nichia Chem Ind Ltd 発光ダイオード及びled表示器の形成方法
JP2002185048A (ja) 2000-10-13 2002-06-28 Lumileds Lighting Us Llc 発光ダイオードのステンシル蛍光体層
JP2003031011A (ja) * 2001-07-16 2003-01-31 Stanley Electric Co Ltd 灯具用線状光源
JP2004247151A (ja) * 2003-02-13 2004-09-02 Koito Mfg Co Ltd 車両用前照灯
JP2004247150A (ja) * 2003-02-13 2004-09-02 Koito Mfg Co Ltd 車両用前照灯
JP2008274240A (ja) * 2007-04-05 2008-11-13 Koito Mfg Co Ltd 蛍光体
JP2009009898A (ja) * 2007-06-29 2009-01-15 Toshiba Lighting & Technology Corp 照明装置および照明器具
JP2009038348A (ja) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd 発光装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344029A (ja) * 2001-05-17 2002-11-29 Rohm Co Ltd 発光ダイオードの色調調整方法
JP2004127988A (ja) * 2002-09-30 2004-04-22 Toyoda Gosei Co Ltd 白色発光装置
US20040183081A1 (en) * 2003-03-20 2004-09-23 Alexander Shishov Light emitting diode package with self dosing feature and methods of forming same
US7005679B2 (en) * 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
US7700002B2 (en) * 2004-05-27 2010-04-20 Koninklijke Philips Electronics N.V. Illumination system comprising a radiation source and fluorescent material
JP2008537002A (ja) * 2005-04-19 2008-09-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 赤色光を放射するセラミック・ルミネッセンス・コンバータから成る照明システム
JP2006332134A (ja) * 2005-05-23 2006-12-07 Ijin Jo 白色発光ダイオード
JP2007088095A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd 発光装置
JP2007103512A (ja) * 2005-09-30 2007-04-19 Kyocera Corp 発光装置
JP4838005B2 (ja) * 2006-02-20 2011-12-14 京セラ株式会社 発光装置
KR101258227B1 (ko) * 2006-08-29 2013-04-25 서울반도체 주식회사 발광 소자
JP2008244468A (ja) * 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp 発光装置
EP2015614B1 (en) * 2007-07-12 2010-12-15 Koito Manufacturing Co., Ltd. Light emitting device
JP2009111273A (ja) * 2007-10-31 2009-05-21 Toshiba Lighting & Technology Corp 発光装置
US8461613B2 (en) * 2008-05-27 2013-06-11 Interlight Optotech Corporation Light emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107325A (ja) 1996-09-30 1998-04-24 Nichia Chem Ind Ltd 発光装置及びそれを用いた表示装置
JPH1146019A (ja) 1997-07-28 1999-02-16 Nichia Chem Ind Ltd 発光ダイオード及びled表示器の形成方法
JP2002185048A (ja) 2000-10-13 2002-06-28 Lumileds Lighting Us Llc 発光ダイオードのステンシル蛍光体層
JP2003031011A (ja) * 2001-07-16 2003-01-31 Stanley Electric Co Ltd 灯具用線状光源
JP2004247151A (ja) * 2003-02-13 2004-09-02 Koito Mfg Co Ltd 車両用前照灯
JP2004247150A (ja) * 2003-02-13 2004-09-02 Koito Mfg Co Ltd 車両用前照灯
JP2008274240A (ja) * 2007-04-05 2008-11-13 Koito Mfg Co Ltd 蛍光体
JP2009009898A (ja) * 2007-06-29 2009-01-15 Toshiba Lighting & Technology Corp 照明装置および照明器具
JP2009038348A (ja) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd 発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2448020A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033938A (ja) * 2011-06-28 2013-02-14 Koito Mfg Co Ltd 発光モジュール
US9333905B2 (en) 2013-01-30 2016-05-10 Koito Manufacturing Co., Ltd. Light emitting module
KR20160083839A (ko) 2013-01-30 2016-07-12 가부시키가이샤 고이토 세이사꾸쇼 발광 모듈

Also Published As

Publication number Publication date
KR20120024976A (ko) 2012-03-14
JP5852149B2 (ja) 2016-02-03
JP2014082527A (ja) 2014-05-08
EP2448020A1 (en) 2012-05-02
EP2448020A4 (en) 2014-04-30
US20120092853A1 (en) 2012-04-19
JPWO2010150459A1 (ja) 2012-12-06
CN102804420A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5852149B2 (ja) 発光モジュール
JP5752650B2 (ja) 発光装置
JP5468985B2 (ja) 照明装置
JP5641384B2 (ja) 表示装置用照明装置及び表示装置
JP5076017B2 (ja) 発光装置
WO2011108194A1 (ja) 発光装置
US20080128654A1 (en) Phosphor composition and method for producing the same, and light-emitting device using the same
JP5740344B2 (ja) 発光装置の製造方法
US8313844B2 (en) Phosphor, method for production thereof, wavelength converter, light emitting device and luminaire
JP5319743B2 (ja) 発光装置
JPWO2006077740A1 (ja) 発光装置及びその製造方法
JP2004115633A (ja) 珪酸塩蛍光体およびそれを用いた発光装置
JP4929413B2 (ja) 発光装置
JP2011159809A (ja) 白色発光装置
JP2010225960A (ja) 発光装置および照明装置
JP5566263B2 (ja) 発光モジュール
JP6231787B2 (ja) 蛍光体及び発光装置
JP5462211B2 (ja) 白色発光装置
JP2010199273A (ja) 発光装置および照明装置
KR102255213B1 (ko) 형광체와 이를 포함하는 발광 소자
JP5194395B2 (ja) 酸窒化物系蛍光体及びこれを用いた発光装置
JP4948015B2 (ja) アルミン酸系青色蛍光体およびそれを用いた発光装置
JP4863794B2 (ja) 波長変換材料、その製造方法およびそれを用いた発光装置
JP2013185011A (ja) 蛍光体の製造方法、およびその製造方法により得られる蛍光体
WO2020246395A1 (ja) 蛍光体、波長変換部材および照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028056.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519505

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13380390

Country of ref document: US

Ref document number: 2010791785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127001286

Country of ref document: KR

Kind code of ref document: A