JP4838005B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP4838005B2
JP4838005B2 JP2006042345A JP2006042345A JP4838005B2 JP 4838005 B2 JP4838005 B2 JP 4838005B2 JP 2006042345 A JP2006042345 A JP 2006042345A JP 2006042345 A JP2006042345 A JP 2006042345A JP 4838005 B2 JP4838005 B2 JP 4838005B2
Authority
JP
Japan
Prior art keywords
light
light emitting
wavelength conversion
emitting element
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006042345A
Other languages
English (en)
Other versions
JP2007221044A (ja
Inventor
正人 福留
逸郎 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006042345A priority Critical patent/JP4838005B2/ja
Publication of JP2007221044A publication Critical patent/JP2007221044A/ja
Application granted granted Critical
Publication of JP4838005B2 publication Critical patent/JP4838005B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光素子から発せられる光を波長変換して外部に取り出す発光装置に関し、特に、電子ディスプレイ用のバックライト電源、蛍光ランプ等に好適に用いられる発光装置に関するものである。
従来、白色光を発する発光装置としては、青色を発光する発光素子(LEDチップ)の表面に青色光を黄色光に変換することができる蛍光体を含む波長変換層を設けた構造の発光装置が提案されている。例えば、特許文献1には、nGaN系材料を使った青色LEDチップ上に(Y,Gd)3(Al,Ga)512の組成式で表されるYAG系蛍光体を含む波長変換層を形成した発光装置では、LEDチップから青色光が放出され、波長変換層で青色光の一部が黄色光に変化するため、青色と黄色の光が混色して白色を呈する発光装置が提案されている(特許文献1参照)。
このような構成の発光装置の一例を図4に示した。この図によれば、発光装置は、電極101が形成された基板102と、基板102上に中心波長が470nmの光を発する半導体材料を具備する発光素子103と、基板102上に発光素子103を覆うように設けられた波長変換層104とを具備し、波長変換層104が蛍光体からなる波長変換物質105を含有してなるものである。なお、所望により、発光素子103と波長変換層104の側面に、光を反射する側面反射部材106を設け、側面に逃げる光を前方に焦光し、出力光の強度を高めることも知られている。
この発光装置では、発光素子103から発する光が波長変換層104に照射されると、波長変換物質105は励起されて可視光を発し、この可視光が出力として利用される。
その際、400nm付近の紫色光を発するLEDチップと赤色、緑色、青色の各波長に変換する蛍光体を含有した波長変換層の組み合わせにより、白色を発光するという試みがなされている(特許文献2参照)。例えば、特許文献2に記載のように、紫色LEDチップを覆うように、高分子樹脂中に3種類の蛍光物質を混ぜ込んだ波長変換層を設けることにより、紫色光が波長変換層を透過する際に、赤色、緑色、青色の各波長に変換し、幅広い範囲で発光波長をカバーすることが可能となり、演色性を大幅に向上することができるようになる。
特開平11−261114号公報 特開2002−314142号公報
上記従来の発光装置においては、発光素子から発せられた励起光が波長変換層中の蛍光体からなる波長変換物質に吸収された後、別の波長を有する蛍光に変化され、あらゆる方向に放出される。この蛍光のうち一部のものは波長変換層から上側に放出されて発光装置の出力光となるものの、波長変換物質で光散乱が発生するため、他の一部は波長変換層から下方に放出される。その結果、光が発光素子側へ放射されて吸収されてしまう。また、波長変換物質にて散乱した光が発光素子から波長変換層の外に射出されるまでの光路長が長くなり、光路を進行する際の光の吸収も多かった。その結果、発光装置の発光効率が向上しないという問題があった。
従って、本発明は、励起光を効率よく発光装置前方に射出し、優れた発光効率を実現する発光装置を提供することを課題としている。
本発明の発光装置は、
基板と、
該基板上に載置された励起光を発する発光素子と、
該発光素子の周囲に発光素子を取り囲むように設けられ前記励起光を所望の方向に反射する内壁面を備えた側面反射部材と、
側面反射部材の前記内壁面に形成された、平均粒径が0.1〜50μmの酸化物蛍光物質を透光部材に含有させて形成されている第一の波長変換層と、
前記発光素子から発せられた光が外部へ射出するまでの経路に形成された、平均粒径が10nm以下の化合物半導体を透光部材に含有させて形成されている第二の波長変換層と、
前記側面反射部材よりも内方に前記発光素子を取り囲むように設けられた内周反射部材と、
前記第二の波長変換層の一部を覆い前記発光素子の励起光出射面に対向する光反射面を有する対向反射部材と、
を具備していることを特徴とする
記発光装置は、前記内周反射部材の表面に第三の波長変換層を設けることが望ましい。
上記発光装置において、前記対向反射部材の外周部が、前記発光素子の端部と端部の反対側の前記内周反射部材の内周面の上端を通る直線よりも前記側面反射部材側に位置していることが望ましい。
本発明によれば、前記側面反射部材の内方に内周反射部材を具備しているので、発光素子から発光された光を高い強度で外部に出射できる。すなわち、発光素子から発光した光は内周反射部材により上方に反射され、さらに対向反射部材により下方に反射され、側面反射部材により外部に出射する光の経路が形成される。従来では、種々の方向に進んで外部に出なかった光でも、本構成により良好に外部へ出射させることが可能となり、高効率な発光装置が実現できる。
1は、発光装置の一実施形態を示す概略断面図である。図1に示す発光装置は、基板1と、該基板1上に中心波長が450nm以下の光を発する半導体材料を具備する発光素子2と、該発光素子2の周りに発光素子2から発する励起光を効率良く前方に出射するように設けられた側面反射部材3と、該側面反射部材3上に形成された第一の波長変換層4と、基板1上に発光素子2を覆うように形成された第二の波長変換層5とから構成されている。発光素子2は電極6と接続されている。
発光素子2から発せられる励起光Lの一部は、第二の波長変換層5内を通過する途中で、第二の波長変換物質5aに吸収され、第二の出力光L2を発する。残りの励起光Lは、第二の波長変換層5a吸収されずに通過し、第一の波長変換層4に注入される。注入された励起光Lは第一の波長変換層4内の蛍光物質からなる第の波長変換物質aに吸収され第一の出力光L1を発する。第一の出力光L1と第二の出力光L2が合成されて、白色光Lwが得られる。
波長変換物質の一部を第一の波長変換層として側面反射部材上に形成することにより、該第一の波長変換層内で波長変換物質に吸収され別の波長を有する蛍光に変化された光は、たとえ波長変換物質による光散乱が起こったとしても近傍に存在する側面反射部材により所望の方向(例えば発光素子の前方)に反射され、光の損失が抑制される。その結果、前記発光素子から発する光が前記発光装置から射出するまでの経路中(例えば透光部材中)に形成された第二の波長変換層では、該層中に分散する波長変換物質の量を減らすことができ、かつ光路長を短くし、光の吸収を抑制することができるので、光路中での光の吸収が少なくなり、発光効率が向上するという効果がある。
第一の出力光L1は、波長変換物質5aによる光散乱が起こったとしても近傍に存在する側面反射部材3により所望の方向(例えば発光素子の前方)に反射され、光の損失が抑制される。その結果、前記発光素子2から発する光が前記発光装置から射出するまでの経路中(例えば透光部材中)に形成された第二の波長変換層5では、該層5中に分散する波長変換物質5aの量を減らすことができ、かつ光路長を短くし、光の吸収を抑制することができるので、光路中での光の吸収が少なくなり、発光効率が向上する。
第一の波長変換層4は、粒径0.1〜50μmの蛍光物質からなる第一の波長変換物質4aが第一の透光部材4bに分散して形成されている。
第二の波長変換層5は、半導体超微粒子からなる第二の波長変換物質5aが第二の透光部材5bに分散して形成されている。
従来の発光装置のように、発光波長の異なる3種類の蛍光体が同一の波長変換層に含有されている場合には、いったん蛍光体から発せられた光を別の蛍光体が吸収してしまい、発光装置全体としての発光効率が充分に高くならなかった。
これに対して、本発明の場合、第一の波長変換層4および第二の波長変換層5内における、短波長の変換光を蛍光体からなる第一の波長変換物質4aが吸収する現象を抑制することができ、第一の波長変換層4内の第一の波長変換物質4aの濃度を上げて含有量を増やさなくても、高い変換効率を得ることができる。その結果、低消費電力で高光出力を得ることが期待できる。
基板1は、熱伝導性に優れ、全反射率の大きな基板が用いられる。アルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。
発光素子2は、中心波長が450nm以下、特に380〜420nmの光を発することが好ましい。この範囲の波長域の励起光を用いることにより、蛍光体の励起を効率的に行なうことができ、出力光の強度を高め、より発光強度の高い発光装置を得ることが可能となる。
発光素子2は、上記中心波長を発するものであれば特に制限されるものではないが、発光素子基板表面に、半導体材料からなる発光層を備える構造(不図示)を有していることが、高い外部量子効率を有する点で好ましい。このような半導体材料として、ZnSeや窒化物半導体(GaN等)等種々の半導体を挙げることができるが、発光波長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半導体材料を有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法等の結晶成長法により、発光素子基板上に半導体材料からなる発光層を有する積層構造を形成すれば良い。
基板2は、発光層との組み合わせを考慮して材料選定ができ、例えば窒化物半導体からなる発光層を表面に形成する場合、サファイア、スピネル、SiC、Si、ZnO、ZrB2、GaNおよび石英等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイア基板を用いることが好ましい。
側面反射部材3は、Al,Ag,Au,白金(Pt),チタン(Ti),クロム(Cr),Cu等の高反射率の金属に対して切削加工や金型成形等を行うことにより形成される。または、側面反射部材3が、セラミックスや樹脂等の絶縁体からなる場合、絶縁体の表面上にメッキや蒸着等によりAl,Ag,Au,Pt,Ti,Cr,Cu等の高反射率の金属薄膜が形成されてもよい。側面反射部材3がAgやCu等の酸化により変色し易い金属からなる場合、その表面に、例えば厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのが良い。これにより、側面反射部材3の耐腐食性が向上するとともに、反射率の劣化が抑制される。
側面反射部材3は、図1に示すような、いわゆるすり鉢型であるのが好ましいが、必要に応じて、励起光を所望の方向に反射できるように任意な形状に形成することができる。
第一の波長変換層4に含まれる蛍光物質からなる波長変換物質4a、および第二の波長変換層5に含まれる半導体超微粒子からなる波長変換物質5aは、発光素子2から発せられる光で直接励起され、これらの光の波長が合成され、幅広い範囲で発光波長をカバーし、演色性が大幅に向上することができる。このようにして各波長変換層から得られる出力光の合成された白色光Lwのピーク波長は、400〜900nm、特に450〜850nm、更には500〜800nmであることが好ましい。
出力光L1、L2は、それぞれ500〜900nmおよび400〜700nmであることが好ましい。これにより、幅広い範囲で発光波長をカバーし、演色性をより向上することができる。
第二の波長変換層5内の半導体超微粒子からなる波長変換物質5aは、蛍光スペクトルの異なる複数の粒子からなってもよい。この場合、2種以上の半導体超微粒子は、半導体組成が異なるものであってもよく、あるいは同一組成で粒径が異なるものであってもよい。
また、第一の波長変換層4内における第一の波長変換物質4aは、蛍光スペクトルの異なる複数の物質からなっても良い。
第一の波長変換層4および第二の波長変換層5の製造方法は、先に示したそれぞれの蛍光物質からなる第一の波長変換物質4a、半導体超微粒子からなる第二の波長変換物質5aを高分子樹脂膜からなる第一の透光部材4b、第二の透光部材5bにそれぞれ分散して形成することが好ましい。
透光部材としては、蛍光体を均一に分散、担持することが容易で、蛍光体の光劣化を抑制することができる高分子樹脂膜が使用される。このような高分子樹脂膜の材料は特に限定されるものではなく、例えば、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、酢酸セルロース、ポリアリレート、さらにこれら材料の誘導体などが用いられる。特に、350nm以上の波長域において95%以上の光透過性を有している透光部材を用いるのが好ましい。このような透光性、透明性に加え、耐熱性の観点から、エポキシ樹脂、シリコーン樹脂がより好適に用いられる。シリコーン樹脂の場合、直鎖状であっても架橋構造であっても特に限定されない。また、珪素上の置換基は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基等の炭素数1〜20程度のアルキル基、フェニル基、ベンジル基、ナフチル基、ナフチルメチル基等の芳香族炭化水素基を含有する炭化水素基等が例示され、中でもメチル基、エチル基等の炭素数の少ない直鎖状アルキル基が好ましい。
さらに、半導体超微粒子からなる第二の波長変換物質5bと、第二の透光性部材5aとなるマトリックス樹脂の未硬化物との混合物をシート状に成形する。成形方法は、ドクターブレード法やダイコーター法、押し出し法、スピンコート法、ディップ法などシート成形ができる成形法を用いることができ、生産性の点でドクターブレード法やダイコーター法が望ましい。
次に、半導体超微粒子からなる第二の波長変換物質5bを含有した波長変換層5をBステージ化し、その後硬化する。Bステージの状態で硬化することで、密着性がよくなり、硬化後のシート層間の剥離を防止できる。また、熱圧着と硬化の工程は、別々に行ってもよいが、短時間で作製できる点では、連続して行うほうがよい。
第二の波長変換層5に含まれる半導体超微粒子からなる波長変換物質5aは、周期律表第I−b族、第II族(ただし、Be、Cd、Hg、Raを除く)、第III 族(ただし、Tl、Ac系列元素を除く)、第IV族(ただし、Pb、Hfを除く)、第V族(ただし、AsとPa系列を除く)、第VI族(ただし、Se、Uを除く)に属する少なくとも2種類以上の元素からなる半導体超微粒子であれば良く、特に限定されない。これには、例えばBN、BP、BAs、AlN、AlP、AlSb、GaN、GaP、GaSb、InN、InP、InSb等のIII−V族化合物半導体、ZnO、ZnS等のII−VI族化合物半導体、CuInS2、CuGaS2、CuAlS2、Cu(In1-xAlx)S2、CuInS2、Cu(In1-xGax)S2(x及びyは、それぞれ0≦x≦1、0≦y≦1で示される値)などが好適に用いられる。
本発明の半導体超微粒子からなる第二の波長変換物質5aの粒径は10nm以下、特に2nm〜10nmであることが好ましい。
さらに、本発明の半導体超微粒子からなる第二の波長変換物質5aは、これを構成する半導体組成物のバルク状態での化合物半導体のバンドギャップエネルギーが、温度300Kで1.5から2.5eVの範囲であることが好ましい。
また、本発明における半導体超微粒子からなる第二の波長変換物質5aは、内核(コア)と外殻(シェル)からなる、いわゆるコアシェル構造であってもよい。コアシェル型半導体ナノ粒子では、エキシトン吸発光帯を利用する用途に好適な場合がある。この場合、シェルの半導体粒子の組成として、禁制帯幅(バンドギャップ)がコアよりも大きなものを起用することによりエネルギー的な障壁を形成させることが一般に有効である。これは、外界の影響や結晶表面での結晶格子欠陥等の理由による望ましくない表面準位等の影響を抑制する機構によるものと推測される。
シェルに好適に用いられる半導体材料の組成としては、コア半導体結晶のバンドギャップにもよるが、バルク状態のバンドギャップが温度300Kにおいて2.5eV以上であるもの、例えばBN、BAs、GaNやGaP等のIII−V族化合物半導体、ZnO、ZnS等のII−VI族化合物半導体、MgSやMgSe等の周期表第2族元素と周期表第16族元素との化合物等が好適に用いられる。
また、本発明における半導体超微粒子からなる第二の波長変換物質5aは、有機配位子からなる表面修飾分子で覆われていても良い。表面分修飾分子覆うことにより、半導体超微粒子からなる第二の波長変換物質5aの凝集を抑制し、半導体超微粒子の機能を最大限に発現することができる。表面修飾分子としては、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基等の炭素数3〜20程度のアルキル基、フェニル基、ベンジル基、ナフチル基、ナフチルメチル基等の芳香族炭化水素基を有する炭化水素系化合物等が例示され、中でもn−ヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基等の炭素数6〜16程度の直鎖状アルキル基を有する炭化水素系化合物が好ましい。また、メルカプト基、ジスルフィド基、チオフェン環等の硫黄原子含有官能基、アミノ基、ピリジン環、アミド結合、ニトリル基等の窒素原子含有官能基、カルボキシル基、スルホン酸基、ホスホン酸基、ホスフィン酸基等の酸性官能基、ホスフィン基やホスフィンオキシド基等のリン原子含有官能基、あるいは水酸基、カルボニル基、エステル結合、エーテル結合、ポリエチレングリコール鎖等の酸素原子含有官能基等を有する有機化合物が好ましい。
このような表面修飾分子の具体例としては、オレイルアミン、オクタデシルアミン、オレイン酸、メルカプト変性シリコーン、アミン変性シリコーン、カルボキシル変性シリコーンなどが例示される。
また、本発明における半導体超微粒子からなる第二の波長変換物質5aは、一般的な製造方法によって製造される。例えば、火炎プロセス・プラズマプロセス・電気加熱プロセス・レーザープロセス等の気相化学反応法、物理冷却法、ゾルゲル法・アルコキシド法・共沈法・ホットソープ法・水熱合成法・噴霧熱分解法等の液相法、さらにメカノケミカルボンディング法、マイクロリアクター法、マイクロ波加熱法等が用いられる。
本発明における蛍光物質からなる第一の波長変換物質4aは、450nm以下の光により励起され、400〜700nmの範囲の光を発する材料であれば特に限定されない。蛍光物質からなる第一の波長変換物質4aには、一般的に用いられる蛍光体を採用できる。例えば、(Ba,Eu)MgAl1017、(Sr,Ca,Ba,Mg)10(PO46Cl17:Eu、Sr10(PO46Cl12:Eu、(Ba,Sr,Eu)(Mg,Mn)Al1017、10(Sr,Ca,Ba,Eu)・6PO4・Cl2、BaMg2Al1625:Eu、Y3Al512:Tb、Y3(Al,Ga)512:Tb、Y2SiO5:Tb、Zn2SiO4:Mn、ZnS:Cu+Zn2SiO4:Mn、Gd22S:Tb、(Zn,Cd)S:Ag、Y22S:Tb、ZnS:Cu,Al+In23、(Zn,Cd)S:Ag+In23、(Zn,Mn)2SiO4、BaAl1219:Mn、(Ba,Sr,Mg)O・aAl23:Mn、LaPO4:Ce,Tb、3(Ba,Mg,Eu,Mn)O・8Al23、La23・0.2SiO2・0.9P25:Ce,Tb、CeMgAl1119:Tb、Y22S:Eu、Y23:Eu、Zn3(PO42:Mn、(Zn,Cd)S:Ag+In23、(Y,Gd、Eu)BO3、(Y,Gd、Eu)23、YVO4:Eu、La22S:Eu,Sm、YAG:Ce等が用いられる。第一の波長変換物質4aは粒径が0.1〜50μm、特に1μm20μmであることが好ましい。
第二の波長変換層5の厚みは、変換効率および紫外および可視光の透過率の観点から、0.5〜10μm、特に1.0〜5mmが好ましい。さらに、第一の波長変換層4の厚みは、0.05〜0.5mm、特に0.1〜0.3mmが好ましい。この範囲であれば、発光素子から発せられる励起光Lを高効率で出力光L1及びL2に変換することができ、さらに変換された出力光L1およびL2を外部に高効率で透過させることができる。
2は本発明の実施形態を示す概略断面図である。なお、図1と同じ構成部材には同一符号を付して説明を省略する。
この実施形態の発光装置は、図2に示すように、発光素子2の周りに発光素子2から発する励起光を効率良く前方に出射するように設けられた側面反射部材3と、側面反射部材3上に形成された第一の波長変換層4と、基板1上に発光素子2を覆うように形成された第二の波長変換層5と、この第二の波長変換層5の一部を覆う対向反射部材8と、側面反射部材3よりも内方に発光素子2を取り囲むように発光素子2の周囲に設けられた内周反射部材9とから構成されている。
その結果、発光素子から発光した光は内周反射部材により上方に反射され、さらに対向反射部材により下方に反射され、側面反射部材により外部に出射する光の経路が形成される。従来では、種々の方向に進んで外部に出なかった光でも、本構成により良好に外部へ出射させることが可能となり、高効率な発光装置が実現できる。
すなわち、対向反射部材を具備することにより、透光部材を通過した透過光の一部を対向反射部材にて反射させて、もう一度第一および第2の変換層内に取り込み、各層内の波長変換物質でそれぞれ変換させて、外部に出射することができ、第一および第2の変換層内の波長変換物質の濃度を増大させることなく、変換効率を向上させることができる。
対向反射部材8は板状で構成され、前記発光素子2の励起光出射面に対向する光反射面8aを有する。
第一の波長変換層4には、平均粒径0.1〜50μmの酸化物蛍光物質からなる第一の波長変換物質4aが第一の透光部材4bに分散している。このような構成により、側面反射部材上での拡散、反射する量が増大するため、第二の波長変換層へ吸収される励起光の量が増大し、高発光特性を実現することができる。
また、第二の波長変換層5には、平均粒径10nm以下の半導体超微粒子からなる第二の波長変換物質5aが第二の透部材5bに分散している。このような構成により、波長変換物質は高い発光効率を示すだけなく、粒径に応じて様々な発光スペクトルを発現できる。よって、高効率かつ波長制御可能な発光装置を実現できる。
すなわち、第二の波長変換層が、平均粒径10nm以下の第二の波長変換物質を含有していることにより、励起光波長の4分の1よりもはるかに小さいため、光散乱が起き難い。
これにより、紫外域の励起光に対して優れた発光効率を示し、高輝度発光装置を実現できる。
対向反射材8の材料は、近紫外光から可視光領域において反射率が高い金属、樹脂、セラミックス等である。金属ではアルミニウム等、樹脂ではポリエステルやポリオレフィン等、セラミックスではアルミナセラミックス等が材料としてあげられる。あるいは金属や樹脂、セラミックス等の基板の表面に、めっきや蒸着等の薄膜形成法により、AgやAuを被着させて対向反射板としてもよい。
対向反射材8は、例えばアルミニウム板から成る場合、アルミニウムを打ち抜き加工や切削加工により円板状等に形成し、その表面に硫酸バリウムや酸化チタン等の光散乱材を樹脂に含有して霧状に塗布することにより高反射率の光散乱面を有する対向反射板を形成することができる。
内周反射部材9は、前記側面反射部材3の内周側に、発光素子を取り囲むように形成されている。内周反射部材9は、側面反射部材3と同じ材料を使用して形成することができる。
また、前記対向反射部材8は、その外周部が発光素子2の端部とその端部の反対側の内周反射部材9の内周面上端を通る直線Aよりも側面反射部材3側に位置しているのが発光効率を高めるうえで好ましい。すなわち、第二の波長変換層5を通過した透過光の一部を対向反射部材8にて反射させるため、第二の波長変換層8を通過した励起光をもう一度第一および第二の変換層4,5内に取り込み、各層4,5内の波長変換物質4a,5aでそれぞれ変換させて、外部に出射するため(光の反射経路を矢印B1,B2,B3で例示する)、第一および第二の変換層4,5内の波長変換物質4a,5aの濃度(含有量)を増大させることなく、変換効率を向上させることができる。
また、図3に示すように、この実施形態の発光装置は、内周反射部材9の表面に第三の波長変換層7を具備しているのが好ましい。すなわち、この実施形態の発光装置は、基板1と、該基板1上に中心波長が450nm以下の光を発する半導体材料を具備する発光素子2と、該発光素子2の周りに発光素子2から発する励起光を効率良く前方に出射するように設けられた側面反射部材3と、該側面反射部材3上に形成された第一の波長変換層4と、基板1上に発光素子2を覆うように形成された第二の波長変換層5と、前記側面反射部材3よりも内方に発光素子を取り囲むように設けられた内周反射部材9と、内周反射部材9の表面に第三の波長変換層7とを具備しているのが好ましい。
第三の波長変換層7は、粒径0.1〜50μmの蛍光物質、または半導体超微粒子からなる第三の波長変換物質7aが透光部材7bに分散して形成されている。第三の波長変換物質7aは、第一の波長変換物質4aおよび第二の波長変換物質5aと同じでもよく、相違していてもよい。
このように内周反射部材9の表面に第三の波長変換層7を設けることにより、通常よりも励起光が波長変換層に照射させる面積が大きくなるため、蛍光体の分散濃度を増やさなくても、変換効率を向上させることができる。さらに、励起光の照射面積を大きくなったにもかかわらず、モジュールサイズを大きくしなくても良いので、小型かつ高効率の発光装置が可能となる。
波長変換物質の一部で内周反射部材上に第三の波長変換層を形成することにより、該第三の波長変換層内で波長変換物質に吸収され別の波長を有する蛍光に変化された光は、たとえ波長変換物質による光散乱が起こったとしても近傍に存在する内周反射部材により所望の方向、例えば発光素子の前方に反射され、光の損失が抑制される。
なお、対向反射材8および内周反射部材9のいずれか一方のみであっても、発光効率を高めるのに効果的である。
(半導体超微粒子)
使用した半導体超微粒子の平均粒子径は、透過型電子顕微鏡(TEM)により確認した。使用した透過型電子顕微鏡はJEOL製JEM2010Fであり、以下の手順で加速電圧200kVの観察を行った。すなわち、半導体超微粒子をサンプル瓶にとり、粒子濃度が0.002〜0.02モル/リットルの範囲となる量のイソプロピルアルコール(IPA)またはトルエンを加えて分散させた。これをTEM観察用マイクログリッドですくい取り、乾燥後、透過型電子顕微鏡にセットした。平均粒子径の測定は格子像より粒子を確認して行った。まず、粒子がメッシュに付着している部分を低倍率で探した。この時、蛍光体が多く付着している部分は粒子が電子線の方向に重なっているため平均粒子径の測定には適さない。また、マイクログリッドのCuメッシュの部分に付着している蛍光体も格子像が観察できないため平均粒子径の観察には適さない。従って、平均粒子径を測定する半導体超微粒子はマイクログリッドの樹脂の部分にある極力重なりの少ない部分を選んで行なった。次に、この部分を1,000,000倍程度に拡大して格子像の確認を行なう。
このとき、蛍光体の周囲に合成時に使用した有機成分が多く残っている場合には格子像がぼやけてしまうため、平均粒子径を正しく測定することができない。このような場合には場所を変えて観察を行なうか、場合によっては合成時の有機成分の除去を繰り返し行なったサンプルを準備しなおして観察を行なった。
合成時の有機成分の除去は、沈殿させた蛍光体にクロロホルム、トルエンもしくはヘキサンを加えて超音波で分散させた後、ここにアルコール(例えばエタノール)を加えて、遠心分離機にかけることで行なうことができる。合成時の有機成分は上澄みのエタノールに溶解し、蛍光体は沈殿する。必要に応じてこの操作を繰り返した。このようにして合成時に使用した有機成分の付着の少ない半導体超微粒子を探し出した後、この部分を倍率4,000,000倍として格子像の写真撮影を行なった。このとき電子線を長く当て続けると半導体超微粒子は移動してしまうため、速やかに撮影を行なった。
蛍光体の平均粒子径は撮影した格子像200個の直径を元に以下の方法で処理することにより求めた。
測定した格子像の直径を、ヒストグラムを書いて統計的に計算することで、長さ平均直径を算出した。長さ平均直径の算出方法は、直径区に属する個数をカウントし、直径区の中心値と個数のそれぞれの積の和を、測定した格子像の個数の総数で割るという方法を用いた(平均粒子径の形状とその計算式、「セラミックの製造プロセス」p.11〜12、窯業協会編集委員会講座小委員会編)。このようにして計算した長さ平均直径を蛍光体の平均粒子径とみなした。
(半導体超微粒子以外)
半導体超微粒子以外の波長変換物質の平均粒子径(0.1μm〜50μm)は、レーザー回折散乱法を用いて、測定した。すなわち、日機装(株)製のマイクロトラック(9320−X100)を用いて、測定を行った。分散媒には、2−プロパノールを用い、超音波ホモジナーザー(超音波出力:300〜400μA、照射時間6分)にて分散させた。
以下、実施例をあげて本発明の発光装置を説明するが、本発明は以下の実施例に限定されるものではない。
参考例1
図1の発光装置を作製した。まず、サファイアからなる発光素子基板上に窒化物半導体からなる発光素子を有機金属気相成長法にて形成した。
発光素子の構造としては発光素子基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、次に発光層を構成するバリア層となるGaN層、井戸層を構成するInGaN層、バリア層となるGaN層を1セットとしGaN層に挟まれたInGaN層を5層積層させた多重量子井戸構造とした。
この発光素子を、アルミナからなる基板上にフリップチップ実装法にて実装した。一方、発光素子2の周りに、アルミニウムからなる側面反射部材を設け、さらにこの側面反射部材の内周面に(Sr,Ca,Ba,Mg)10(PO46l2:Eu、BaMgAl1017:Eu,Mnを20質量%含有したシリコーン樹脂を塗布し、厚さ0.2mmの第一の波長変換層を作成した。
さらに、発光素子を覆うように半導体超微粒子CuGa0.5In0.52を(バンドギャップエネルギー:2.0eV)を0.5質量%分散したシリコーン樹脂をディスペンサーにて塗布し、厚さ5mmの第二の波長変換層を作成した。この第二の波長変換層の表面は直径10mmの円形である。なお、上記半導体超微粒子は、粒径2.5nmおよび3.5nmの粒子を同量混合した。
得られた発光装置の発光特性を評価した。その結果、演色性Ra85、発光効率60lm/Wと高い特性を示すことがわかった。演色性Ra及び発光効率は、蛍光測定システムMCPD−7000(大塚電子社製)により測定した。
参考例2
発光素子を覆う第二の波長変換層の表面中央部に対向反射板として直径7mmのアルミニウム板を載置した以外は、参考例1と同様にして発光装置を得た。
得られた発光装置の発光特性を参考例1と同様にして評価した。その結果、演色性Ra92、発光効率72lm/Wと非常に高い特性を示すことがわかった。
参考例2において、前記側面反射部材よりも内方にアルミニウムからなる内周反射部材を、発光素子を取り囲むように設けた以外は、参考例2と同様にして発光装置を得た。このとき、内周反射部材は、図2に一点鎖線Aで示すように、その外周部が発光素子の端部とその端部の反対側の内周反射部材の内周面の上端を通る直線よりも側面反射部材側に位置している。
得られた発光装置の発光特性を参考例1と同様にして評価した。その結果、演色性Ra90、発光効率70lm/Wと非常に高い特性を示すことがわかった。
実施例において、前記内周反射部材表面に蛍光物質を含有した第三の波長変換層を設けた以外は、実施例と同様にして発光装置を得た。すなわち、内周反射部材の内周面に(Sr,Ca,Ba,Mg)10(PO46l2:Eu、BaMgAl1017:Eu,Mnを固形物換算で20質量%含有したシリコーン樹脂を塗布し、厚さ0.1mmの第三の波長変換層を作成した。
得られた発光装置の発光特性を参考例1と同様にして評価した。その結果、演色性Ra90、発光効率75lm/Wのランプ効率が得られた。内周反射面に波長変換層を設けることにより、装置サイズを大きくしなくても、発光効率を向上させることが出来た。
発光装置の一実施形態を示す概略断面図である。 本発明の発光装置の他の実施形態を示す概略断面図である。 本発明の発光装置のさらに他の実施形態を示す概略断面図である。 従来の発光装置を示す概略断面図である。
1・・・基板
2・・・発光素子
3・・・側面反射部材
4・・・第一の波長変換層
5・・・第二の波長変換層
4a・・・第一の波長変換物質
4b・・・第一の透光部材
5a・・・第二の波長変換物質
5b・・・第二の透光部材
6・・・電極
8・・・対向反射部材
9・・・内周反射部材

Claims (3)

  1. 基板と、
    該基板上に載置された励起光を発する発光素子と、
    該発光素子の周囲に発光素子を取り囲むように設けられ前記励起光を所望の方向に反射する内壁面を備えた側面反射部材と、
    側面反射部材の前記内壁面に形成された、平均粒径が0.1〜50μmの酸化物蛍光物質を透光部材に含有させて形成されている第一の波長変換層と、
    前記発光素子から発せられた光が外部へ射出するまでの経路に形成された、平均粒径が10nm以下の化合物半導体を透光部材に含有させて形成されている第二の波長変換層と、
    前記側面反射部材よりも内方に前記発光素子を取り囲むように設けられた内周反射部材と、
    前記第二の波長変換層の一部を覆い前記発光素子の励起光出射面に対向する光反射面を有する対向反射部材と、
    を具備していることを特徴とする発光装置。
  2. 前記内周反射部材の表面に第三の波長変換層を設けたことを特徴とする請求項1に記載の発光装置。
  3. 前記対向反射部材の外周部が、前記発光素子の端部と端部の反対側の前記内周反射部材の内周面の上端を通る直線よりも前記側面反射部材側に位置していることを特徴とする請求項1または2に記載の発光装置。
JP2006042345A 2006-02-20 2006-02-20 発光装置 Active JP4838005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042345A JP4838005B2 (ja) 2006-02-20 2006-02-20 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042345A JP4838005B2 (ja) 2006-02-20 2006-02-20 発光装置

Publications (2)

Publication Number Publication Date
JP2007221044A JP2007221044A (ja) 2007-08-30
JP4838005B2 true JP4838005B2 (ja) 2011-12-14

Family

ID=38497960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042345A Active JP4838005B2 (ja) 2006-02-20 2006-02-20 発光装置

Country Status (1)

Country Link
JP (1) JP4838005B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033558B2 (ja) * 2006-09-28 2012-09-26 三洋電機株式会社 発光装置
DE102007057710B4 (de) * 2007-09-28 2024-03-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes Bauelement mit Konversionselement
DE102008014927A1 (de) * 2008-02-22 2009-08-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Mehrzahl von strahlungsemittierenden Bauelementen und strahlungsemittierendes Bauelement
KR101505430B1 (ko) * 2008-06-30 2015-03-31 서울반도체 주식회사 Led 패키지
EP2448020A4 (en) * 2009-06-23 2014-04-30 Koito Mfg Co Ltd LIGHT EMITTING MODULE
JP5178796B2 (ja) * 2010-09-10 2013-04-10 三菱電機株式会社 発光装置及び照明装置
JP6025144B2 (ja) * 2013-03-27 2016-11-16 シチズン時計株式会社 発光デバイス
JP6237174B2 (ja) 2013-12-05 2017-11-29 日亜化学工業株式会社 発光装置
DE102014100991A1 (de) 2014-01-28 2015-07-30 Osram Opto Semiconductors Gmbh Lichtemittierende Anordnung und Verfahren zur Herstellung einer lichtemittierenden Anordnung
KR102142718B1 (ko) * 2014-03-20 2020-08-07 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 장치
JP6493348B2 (ja) 2016-09-30 2019-04-03 日亜化学工業株式会社 発光装置
JP6428894B2 (ja) * 2017-11-01 2018-11-28 日亜化学工業株式会社 発光装置
JP6601550B2 (ja) * 2018-10-31 2019-11-06 日亜化学工業株式会社 発光装置
JP7481610B2 (ja) * 2019-12-26 2024-05-13 日亜化学工業株式会社 発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124521A (ja) * 2001-10-09 2003-04-25 Rohm Co Ltd ケース付半導体発光装置
JP4172196B2 (ja) * 2002-04-05 2008-10-29 豊田合成株式会社 発光ダイオード
JP3707688B2 (ja) * 2002-05-31 2005-10-19 スタンレー電気株式会社 発光装置およびその製造方法
JP3910517B2 (ja) * 2002-10-07 2007-04-25 シャープ株式会社 Ledデバイス
TW200531315A (en) * 2004-01-26 2005-09-16 Kyocera Corp Wavelength converter, light-emitting device, method of producing wavelength converter and method of producing light-emitting device
JP4546176B2 (ja) * 2004-07-16 2010-09-15 京セラ株式会社 発光装置

Also Published As

Publication number Publication date
JP2007221044A (ja) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4838005B2 (ja) 発光装置
JP2007103512A (ja) 発光装置
JP4653662B2 (ja) 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法
US7518160B2 (en) Wavelength converter, lighting system, and lighting system assembly
JP2007103513A (ja) 発光装置
JP2007157798A (ja) 発光装置
JP2007146154A (ja) 波長変換器、照明装置および照明装置集合体
JP4960645B2 (ja) 波長変換器および発光装置
CN111540822B (zh) 具有远程纳米结构磷光体的发光设备
CN107665940B (zh) 发光装置及其制造方法
KR101739851B1 (ko) 파장변환구조체를 포함하는 발광 소자
JP2007273498A (ja) 波長変換器および発光装置
JP4960644B2 (ja) 蛍光体粒子および波長変換器ならびに発光装置
JP2007173754A (ja) 波長変換器および発光装置
CN107887490B (zh) 发光装置
JP2011071404A (ja) 発光装置および照明装置
JP2007184615A (ja) 複合波長の光を発生する発光ダイオード素子
JP6724634B2 (ja) 発光装置の製造方法
JP2010225960A (ja) 発光装置および照明装置
JP2011155125A (ja) 発光装置および照明装置
JP2010199273A (ja) 発光装置および照明装置
JP6068473B2 (ja) 波長変換粒子、波長変換部材及び発光装置
JP2009203264A (ja) 蛍光体および波長変換器ならびに発光装置、照明装置
CN103972366A (zh) 波长转换物质、波长转换胶体以及发光装置
JP2008208202A (ja) 蛍光体および波長変換器ならびに発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4838005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150