WO2010150458A1 - 電池及び電池パック - Google Patents

電池及び電池パック Download PDF

Info

Publication number
WO2010150458A1
WO2010150458A1 PCT/JP2010/003449 JP2010003449W WO2010150458A1 WO 2010150458 A1 WO2010150458 A1 WO 2010150458A1 JP 2010003449 W JP2010003449 W JP 2010003449W WO 2010150458 A1 WO2010150458 A1 WO 2010150458A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
internal lead
case
battery case
negative electrode
Prior art date
Application number
PCT/JP2010/003449
Other languages
English (en)
French (fr)
Inventor
清水啓介
横山智彦
藤川万郷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010538671A priority Critical patent/JPWO2010150458A1/ja
Priority to US13/060,208 priority patent/US20110151297A1/en
Priority to CN2010800026603A priority patent/CN102160208A/zh
Publication of WO2010150458A1 publication Critical patent/WO2010150458A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/597Protection against reversal of polarity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery and a battery pack, and more particularly to a battery and a battery pack having internal leads that electrically connect a battery case and an electrode group.
  • a battery in which an electrode group including a positive electrode plate, a negative electrode plate, and a separator is housed in a battery case together with an electrolytic solution, and an opening of the battery case is sealed by a sealing plate is used.
  • the battery has a negative electrode internal lead that electrically connects the negative electrode plate and the inner bottom of the battery case, and a positive electrode internal lead that electrically connects the positive electrode plate and the sealing plate.
  • a battery pack in which a plurality of batteries are enclosed in a pack case is used.
  • a battery group in which a plurality of cylindrical batteries are arranged is sandwiched between a pair of opposed heat sinks, and the inner surface of the heat sink is brought into contact with the outer peripheral surface of the battery, while the outside of the heat sink is A technique for exposing the side surface outside the battery pack has been proposed (see, for example, Patent Document 1). Thereby, the heat which a battery emits is conducted to a heat sink, and is radiated outside the battery.
  • Patent Document 1 Since the battery group is sandwiched between a pair of opposed heat sinks, there is a problem that the weight of the entire battery pack increases.
  • Patent Document 2 has the following problems. Since the external lead is connected to the end face of the battery, the heat at the end face of the battery can be effectively dissipated outside the battery pack, but the heat at the peripheral face of the battery is effectively removed outside the battery pack. Can't dissipate heat. Therefore, there is a problem that heat generated by the entire battery cannot be effectively radiated outside the battery.
  • an object of the present invention is to suppress an increase in the weight of the battery pack even if an external short circuit occurs in the battery enclosed in the pack case of the battery pack and heat is generated in the battery.
  • the inventors of the present invention have made extensive studies, and as a result, when an external short circuit occurs in the battery, the first internal lead and the second internal lead generate heat. It has been found that the first internal lead connected to the battery case generates significant heat.
  • the inventors of the present invention used heat generated in the first internal lead for the pack case (particularly, heat dissipation characteristics (specifically, for example, high thermal conductivity or It is important to efficiently dissipate heat to the pack case) having high specific heat properties, etc., thereby reducing the risk of overheating of the battery in which an external short circuit has occurred, and thus the safety of the battery, and consequently the battery pack We have found that safety can be ensured.
  • the present invention has been made based on the knowledge found by the inventors of the present application.
  • the battery according to the present invention is enclosed in a pack case of a battery pack.
  • An electrode group in which a positive electrode plate and a negative electrode plate are wound or laminated with a porous insulating layer interposed therebetween is housed in a battery case together with an electrolytic solution, and the opening of the battery case is opened by a sealing plate
  • a first internal lead that is sealed and electrically connected to one of the positive electrode plate and the negative electrode plate is connected to the inner bottom of the battery case, and the other of the positive electrode plate and the negative electrode plate
  • a second internal lead electrically connected to the electrode plate is connected to the sealing plate, and the first internal lead is disposed close to the inner side surface of the battery case, and is stored in the battery case.
  • Display means to display the position of internal leads And features.
  • the position of the first internal lead housed in the battery case can be determined by the display means. Therefore, when the battery according to the present invention is used as a battery enclosed in a pack case of a battery pack, the first internal lead is placed in the pack case based on the position of the first internal lead determined by the display means. Can be placed close to. Therefore, even if an external short circuit occurs in the battery enclosed in the pack case and the first internal lead generates heat, the heat generated in the first internal lead is conducted to the battery case exhibiting thermal conductivity. The heat can be efficiently radiated to the pack case. In particular, when the pack case has heat dissipation characteristics, heat can be efficiently radiated by the pack case.
  • the heat generated in the battery in which the external short circuit has occurred (particularly, the heat generated in the first internal lead) is as described above.
  • the heat can be efficiently radiated to the pack case. That is, it is possible to efficiently dissipate the heat generated in the battery when an external short circuit occurs to the outside of the battery. Therefore, unlike the technique described in Patent Document 1, it is not necessary to provide a special new component (that is, a pair of heat sinks), so that the weight of the battery pack does not increase.
  • the first internal lead is a negative electrode internal lead electrically connected to the negative electrode plate
  • the second internal lead is a positive electrode internal lead electrically connected to the positive electrode plate. It is preferable that
  • the internal lead for the negative electrode can be used even if an external short circuit occurs in the battery and the internal lead for the negative electrode may generate significant heat.
  • the heat generated in step 1 can be conducted to the battery case and efficiently radiated to the pack case.
  • the electrode group is an electrode group in which a positive electrode plate and a negative electrode plate are wound through a porous insulating layer, and the electrode to which the first internal lead is electrically connected.
  • the plate has a current collector and an active material layer formed on the surface of the current collector so as to expose a part of the surface of the current collector, and is exposed from the active material layer on the surface of the current collector.
  • a first internal lead is connected to the exposed portion of the current collector, and the exposed portion of the current collector is provided at an end of the winding end side of the electrode plate to which the first internal lead is electrically connected. It is preferable.
  • the exposed portion of the current collector is provided at the end portion on the winding end side of the electrode plate to which the first internal lead is electrically connected, it is connected to the exposed portion of the current collector.
  • the first internal lead is disposed in proximity to the inner surface of the battery case.
  • the display means is preferably provided on the outer surface of the sealing plate.
  • the position of the first internal lead housed in the battery case can be determined by the display means provided on the outer surface of the sealing plate.
  • the display means is a printed portion printed on a portion corresponding to the first internal lead on the outer surface of the sealing plate.
  • the display means is preferably provided on the outer surface of the battery case.
  • the position of the first internal lead housed in the battery case can be determined by the display means provided on the outer surface of the battery case.
  • the display means is a printing portion printed on a portion corresponding to the first internal lead on the outer surface of the battery case.
  • the battery case is a cylindrical battery case
  • the display means is a flat portion provided in a portion corresponding to the first internal lead on the outer surface of the battery case.
  • the display means is preferably a convex portion provided at a portion corresponding to the first internal lead on the outer surface of the battery case.
  • the display means is preferably provided on the outer bottom of the battery case.
  • the position of the first internal lead housed in the battery case can be determined by the display means provided on the outer bottom of the battery case.
  • the display means is a welding mark remaining in a portion corresponding to the first internal lead in the outer bottom portion of the battery case.
  • the welding mark remaining on the outer bottom portion of the battery case when connecting the first internal lead to the inner bottom portion of the battery case can be used as a display means. Therefore, a separate process for providing display means is not necessary.
  • the battery pack according to the present invention includes a plurality of batteries, a plurality of batteries, and a plurality of batteries.
  • Each of the plurality of batteries is formed by winding or laminating a positive electrode plate and a negative electrode plate with a porous insulating layer interposed therebetween. Is housed in the battery case together with the electrolyte, the opening of the battery case is sealed by the sealing plate, and the first internal lead electrically connected to one of the positive electrode plate and the negative electrode plate is the battery.
  • a second internal lead connected to the inner bottom of the case and electrically connected to the other of the positive electrode plate and the negative electrode plate is connected to the sealing plate, and the first internal lead is connected to the battery case. It is placed close to the inner surface and the second on the outer surface of the battery case Internal lead and the corresponding portion so as to face the inner surface of the pack case, characterized in that it is disposed in a pack case.
  • the battery pack of the present invention by disposing each of the plurality of batteries in the pack case so that the portion corresponding to the first internal lead on the outer side surface of the battery case faces the inner side surface of the pack case.
  • the first internal lead can be disposed close to the pack case. Therefore, even if an external short circuit occurs in the battery and the first internal lead may generate heat, the heat generated in the first internal lead is conducted to the battery case exhibiting thermal conductivity, and the pack case is efficiently processed. It can dissipate heat. In particular, when the pack case has heat dissipation characteristics, heat can be efficiently radiated by the pack case.
  • the battery pack according to the present invention it is possible to reduce the risk that the battery in which an external short circuit has occurred will be overheated, so that the safety of the battery and thus the safety of the battery pack can be improved.
  • the heat generated in the battery in which the external short circuit has occurred (particularly, the heat generated in the first internal lead) is as described above.
  • the heat can be efficiently radiated to the pack case. That is, it is possible to efficiently dissipate the heat generated in the battery when an external short circuit occurs to the outside of the battery. Therefore, unlike the technique described in Patent Document 1, it is not necessary to provide a special new component (that is, a pair of heat sinks), so that the weight of the battery pack does not increase.
  • each of the plurality of batteries may be arranged in the pack case such that a portion corresponding to the first internal lead on the outer surface of the battery case is in contact with the inner surface of the pack case. preferable.
  • the battery pack further includes a heat dissipating portion made of a heat dissipating member disposed in a portion corresponding to the first internal lead on the outer surface of the battery case.
  • the heat generated in the first internal lead is conducted to the battery case and efficiently dissipated to the heat radiating part. be able to. Therefore, the heat efficiently radiated to the heat radiating portion can be efficiently radiated to the pack case.
  • the pack case is preferably made of a heat radiating member.
  • each of the plurality of batteries is preferably provided with display means for displaying the position of the first internal lead housed in the battery case.
  • the position of the first internal lead housed in the battery case can be determined by the display means. Therefore, based on the position of the first internal lead determined by the display means, the plurality of batteries are arranged such that the portion corresponding to the first internal lead on the outer surface of the battery case faces the inner surface of the pack case. Each can be placed in a pack case.
  • the display means is preferably provided on the outer surface of the sealing plate.
  • the outer surface of the sealing plate is observed from the opening of the pack case, so the display provided on the outer surface of the sealing plate
  • the position of the first internal lead can be determined by the means (however, the position of the first internal lead cannot be determined after the opening of the pack case is sealed).
  • the display means is preferably provided on the outer surface of the battery case.
  • the display means is preferably provided on the outer bottom of the battery case.
  • the position of the first internal lead housed in the battery case can be determined by the display means. Therefore, when the battery according to the present invention is used as a battery enclosed in a pack case of a battery pack, the first internal lead is placed in the pack case based on the position of the first internal lead determined by the display means. Can be placed close to.
  • the battery pack of the present invention by disposing each of the plurality of batteries in the pack case so that the portion corresponding to the first internal lead on the outer side surface of the battery case faces the inner side surface of the pack case.
  • the first internal lead can be disposed close to the pack case.
  • the heat generated in the first internal lead is conducted to the battery case exhibiting thermal conductivity.
  • the heat can be efficiently radiated to the pack case.
  • the heat generated in the battery in which the external short circuit has occurred (particularly, the heat generated in the first internal lead) is as described above.
  • the heat can be efficiently radiated to the pack case. That is, it is possible to efficiently dissipate the heat generated in the battery when an external short circuit occurs to the outside of the battery. Therefore, unlike the technique described in Patent Document 1, it is not necessary to provide a special new component (that is, a pair of heat sinks), so that the weight of the battery pack does not increase.
  • FIG. 1 is a cross-sectional view showing a configuration of a battery according to the first embodiment of the present invention.
  • FIGS. 2A to 2B are diagrams showing the configuration of a battery pack according to the second embodiment of the present invention.
  • FIG. 3 is an explanatory diagram for specifying one end, the center, and the other end of the negative electrode internal lead.
  • FIG. 4 is a cross-sectional view showing a configuration of a battery pack according to another example of the second embodiment of the present invention.
  • FIG. 5 is a perspective view showing a configuration of a battery in which display means is provided on the outer surface of the sealing plate.
  • FIG. 6 is a plan view showing the positional relationship between the sealing plate and the positive electrode internal lead and the positional relationship between the sealing plate and the negative electrode internal lead.
  • FIGS. 7A to 7B are diagrams showing the configuration of a battery in which display means is provided on the outer surface of the battery case.
  • FIGS. 8A to 8B are diagrams showing the configuration of a battery in which display means is provided on the outer surface of the battery case.
  • FIGS. 9A to 9B are diagrams showing the configuration of a battery in which display means is provided on the outer surface of the battery case.
  • FIG. 10 is a perspective view showing the configuration of a battery in which display means is provided on the outer bottom of the battery case.
  • FIG. 11 is an explanatory diagram for explaining an external short-circuit test.
  • the inventors of the present application investigated the situation inside the battery when the external short circuit occurred in the battery in order to ensure the safety of the battery even when the external short circuit occurred in the battery. Specifically, as the battery, a positive electrode internal lead electrically connected to the positive electrode plate is connected to the sealing plate, while a negative electrode internal lead electrically connected to the negative electrode plate is connected to the battery case. Using an ion secondary battery, an external short circuit was generated in the battery, and the situation inside the battery was examined.
  • the present inventors have discovered that when an external short circuit occurs in the battery, the internal lead for the positive electrode and the internal lead for the negative electrode generate heat, and in particular, the internal lead for the negative electrode generates significant heat. .
  • the inventors consider the reason as follows.
  • the negative internal lead has a higher resistance than the battery components other than the negative internal lead.
  • the negative electrode internal lead is made of nickel
  • the negative electrode current collector is made of copper
  • the positive electrode internal lead and the positive electrode current collector are made of aluminum. Since nickel has a higher specific resistance than copper and aluminum, the negative electrode internal lead has a higher resistance than the negative electrode current collector, the positive electrode internal lead, and the positive electrode current collector. Joule heat is proportional to the resistance value. Therefore, when an external short circuit occurs in a lithium ion secondary battery, the amount of heat generated in the negative electrode internal lead is the largest, and thus the negative electrode internal lead generates significant heat.
  • the inventors of the present application can overheat the battery in which an external short circuit has occurred if the heat generated in the negative electrode internal lead can be efficiently radiated to the pack case.
  • the present inventors have found that it is possible to reduce the risk of battery failure and to secure the safety of the battery, and thus the safety of the battery pack.
  • the positive electrode internal lead is connected to the sealing plate, while the negative electrode internal lead is connected to the battery case.
  • the positive electrode internal lead is connected to the battery case.
  • the negative electrode internal lead is connected to the sealing plate while being connected to the battery case.
  • the internal lead for the positive electrode generates heat when an external short circuit occurs in the battery (however, judging from the above consideration, the amount of heat generated in the internal lead for positive electrode is larger than the amount of heat generated in the internal lead for negative electrode Guessed small). Therefore, if the heat generated in the internal lead for the positive electrode can be efficiently radiated to the pack case, the risk of overheating of the battery in which an external short circuit has occurred can be reduced, and the safety of the battery and thus the safety of the battery pack can be reduced. Sex can be secured.
  • a portion corresponding to the first internal lead on the outer surface of the battery case is defined as a pack case. Place it in contact with the inner surface of the.
  • the first internal lead can be arranged close to the pack case. Therefore, even if an external short circuit occurs in the battery and the first internal lead generates heat, the first internal lead The generated heat is conducted to the battery case exhibiting thermal conductivity, and can be efficiently radiated to the pack case.
  • the first internal lead is a negative electrode internal lead
  • the negative electrode internal lead when the external short circuit occurs in the battery, the negative electrode internal lead generates significant heat, so that the effect of the present invention is effectively exhibited. be able to.
  • the first internal lead connected to the battery case is disposed closer to the inner surface of the battery case than the second internal lead connected to the sealing plate.
  • the object of the present invention is achieved by efficiently radiating heat generated in the first internal lead to the pack case.
  • FIG. 1 is a cross-sectional view showing a configuration of a battery according to the first embodiment of the present invention.
  • the electrode group 4 is housed in a bottomed cylindrical battery case 11 together with a non-aqueous electrolyte.
  • a ring-shaped upper insulating plate 7 is disposed above the electrode group 4, and a ring-shaped lower insulating plate 8 is disposed below the electrode group 4.
  • the opening of the battery case 11 is sealed by the caulking of the opening of the battery case 11 to the periphery of the sealing plate 9 via the gasket 10.
  • the electrode group 4 is formed by winding a belt-like positive electrode plate 1 and a belt-like negative electrode plate 2 with a separator 3 as a belt-like porous insulating layer interposed between the positive electrode plate 1 and the negative electrode plate 2. .
  • the positive electrode plate 1 has a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector so as to expose a part of the surface of the positive electrode current collector.
  • a portion of the positive electrode current collector exposed from the positive electrode active material layer (hereinafter referred to as “exposed portion of the positive electrode current collector”) is provided in the central portion of the positive electrode plate 1.
  • the “center portion of the positive electrode plate” refers to a portion located between the end portion on the winding start side and the end portion on the winding end side in the positive electrode plate constituting the wound electrode group.
  • the negative electrode plate 2 has a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector so as to expose a part of the surface of the negative electrode current collector.
  • the portion of the negative electrode current collector exposed from the negative electrode active material layer (hereinafter referred to as “exposed portion of the negative electrode current collector”) is provided at the end of the negative electrode plate 2 on the end of the winding.
  • the positive electrode plate 1 and the sealing plate 9 are electrically connected via the internal lead 5 for positive electrode.
  • One end of the positive electrode internal lead 5 is connected to the exposed portion of the positive electrode current collector.
  • the other end of the positive electrode internal lead 5 is connected to the lower plate 9 c of the sealing plate 9.
  • the sealing plate 9 functions as a positive electrode terminal.
  • the negative electrode plate 2 and the battery case 11 are electrically connected through the negative electrode internal lead 6.
  • One end of the negative electrode internal lead 6 is connected to the exposed portion of the negative electrode current collector.
  • the other end of the negative electrode internal lead 6 is connected to the inner bottom of the battery case 11.
  • the battery case 11 functions as a negative electrode terminal.
  • the sealing plate 9 includes a positive electrode cap 9a provided with an exhaust port, a valve body 9b that breaks when the internal pressure of the battery case 11 exceeds a predetermined value, a current blocking member such as a PTC (Positive Temperature Coefficient) element, and an internal lead 5 for the positive electrode. Has a lower plate 9c connected thereto.
  • a current blocking member such as a PTC (Positive Temperature Coefficient) element
  • the battery is provided with display means (not shown) for displaying the position of the negative electrode internal lead 6 housed in the battery case 11.
  • the display means includes, for example, the outer surface of the sealing plate 9 (see FIG. 5 to be described later), the outer surface of the battery case (see FIGS. 7A and 7B to FIGS. 9A and 9B described later), Or it is provided in the outer bottom part (refer FIG. 10 mentioned later) of a battery case.
  • the position of the negative electrode internal lead 6 housed in the battery case 11 can be determined by the display means.
  • the position of the negative electrode internal lead 6 accommodated in the battery case 11 can be determined by the display means. Therefore, when the battery according to the present embodiment is used as a battery sealed in a pack case of a battery pack, the negative electrode internal lead 6 is packed based on the position of the negative electrode internal lead 6 determined by the display means. It can be placed close to the case. Therefore, even if an external short circuit occurs in the battery enclosed in the pack case and the negative electrode internal lead 6 generates significant heat, the heat generated in the negative electrode internal lead 6 is transferred to the battery case 11 exhibiting thermal conductivity. Conducted and can efficiently dissipate heat to the pack case. In particular, when the pack case has heat dissipation characteristics, heat can be efficiently radiated by the pack case.
  • the heat generated in the battery in which the external short circuit has occurred (particularly, the heat generated in the negative electrode internal lead 6) is as described above.
  • the heat can be efficiently radiated to the pack case. That is, it is possible to efficiently dissipate the heat generated in the battery when an external short circuit occurs to the outside of the battery. Therefore, unlike the technique described in Patent Document 1, it is not necessary to provide a special new component (that is, a pair of heat sinks), so that the weight of the battery pack does not increase.
  • the electrode group 4 is a wound electrode group 4 in which the positive electrode plate 1 and the negative electrode plate 2 are wound between the positive electrode plate 1 and the negative electrode plate 2 with the separator 3 interposed therebetween.
  • the present invention is not limited to this.
  • a stacked electrode group in which the positive electrode plate and the negative electrode plate are stacked with a separator interposed between the positive electrode plate and the negative electrode plate may be used.
  • a separator is used as the porous insulating layer.
  • a non-fluid polymer electrolyte layer obtained by adding a polymer material to a non-aqueous electrolyte may be used.
  • FIGS. 2 (a) to 2 (b) are diagrams showing the configuration of the battery pack according to the second embodiment of the present invention. Specifically, FIG. 2 (a) is a sectional view, and FIG. b) is a cross-sectional perspective view.
  • the battery pack according to the present embodiment is a battery pack in which the battery 12 according to the first embodiment is enclosed in a pack case 13.
  • the battery 12 is disposed in the pack case 13 based on the position of the negative electrode internal lead 6 determined by the display means. Specifically, a portion corresponding to the negative electrode internal lead 6 on the outer surface of the battery case 11, in other words, a portion corresponding to one end portion (see FIG. 3: 6 a) of the negative electrode internal lead 6 in the battery case 11, The battery 12 is disposed in the pack case 13 so as to contact the inner surface of the pack case 13.
  • FIG. 3 is an explanatory diagram for specifying one end, the center, and the other end of the negative electrode internal lead.
  • the negative electrode internal lead 6 extends from the exposed portion 2a of the negative electrode current collector to the outside of the negative electrode current collector, is bent at the boundary between the inner side surface and the inner bottom portion of the battery case 11, and is further centered on the inner bottom portion of the battery case 11 It extends toward the part.
  • the one end portion 6a is a portion of the negative electrode internal lead 6 that is in contact with the exposed portion 2a of the negative electrode current collector. A part of the one end portion 6a is welded to the exposed portion 2a of the negative electrode current collector.
  • the other end portion 6 b is a portion of the negative electrode internal lead 6 that is in contact with the inner bottom portion of the battery case 11. A part of the other end 6 b is welded to the battery case 11.
  • the central portion 6c is a portion sandwiched between the one end portion 6a and the other end portion 6b, and is a portion not in contact with the exposed portion 2a of the negative electrode current collector and the inner bottom portion of the battery case 11, in other words, It is a portion surrounded by a non-aqueous electrolyte.
  • the pack case 13 is preferably made of a heat radiating member.
  • a heat radiating member for example, a metal or a resin having a thermal conductivity higher than that of air is used.
  • the position of the negative electrode internal lead 6 accommodated in the battery case 11 can be determined by the display means. Therefore, on the basis of the position of the negative electrode internal lead 6 determined by the display means, a portion corresponding to the negative electrode internal lead 6 on the outer surface of the battery case 11 is in contact with the inner surface of the pack case 13. Since each of the batteries 12 can be disposed in the pack case 13, the negative electrode internal lead 6 can be disposed in the vicinity of the pack case 13. Therefore, even when an external short circuit occurs in the battery 12 and the negative electrode internal lead 6 generates heat, the heat generated in the negative electrode internal lead 6 is conducted to the battery case 11 exhibiting thermal conductivity, and the pack case 13 Heat can be efficiently dissipated. In particular, when the pack case 13 is made of a heat dissipation member (that is, when the pack case 13 has heat dissipation characteristics), the pack case 13 can efficiently dissipate heat.
  • the risk of overheating of the battery in which an external short circuit has occurred can be reduced, so that the safety of the battery and thus the safety of the battery pack can be improved.
  • the heat generated in the battery in which the external short circuit has occurred is as described above.
  • heat can be efficiently radiated to the pack case 13. That is, it is possible to efficiently dissipate the heat generated in the battery when an external short circuit occurs to the outside of the battery. Therefore, unlike the technique described in Patent Document 1, it is not necessary to provide a special new component (that is, a pair of heat sinks), so that the weight of the battery pack does not increase.
  • the heat generated in the negative electrode internal lead 6 is efficiently dissipated to the pack case.
  • the configuration in which the portion corresponding to the negative electrode internal lead 6 on the side surface is brought into contact with the inner surface of the pack case 13 has been described as a specific example, but the present invention is not limited to this.
  • FIG. 4 is a cross-sectional view showing a configuration of a battery pack according to another example of the second embodiment of the present invention.
  • a plate-like heat radiating portion 14 made of a heat radiating member is disposed in a portion corresponding to the negative electrode internal lead 6 on the outer surface of the battery case 11.
  • the heat radiating portion 14 is disposed so that one surface thereof is in contact with the inner surface of the pack case 13.
  • the battery is disposed such that the portion corresponding to the negative electrode internal lead 6 on the outer surface of the battery case 11 is in contact with the other surface of the heat radiating portion 14 (the surface facing the inner surface of the pack case 13 in the heat radiating portion 14). 12 is arranged.
  • examples of the installation portion of the display means are the first outer surface of the sealing plate, the second outer surface of the battery case, and third the outer bottom portion of the battery case. explain.
  • FIG. 5 is a perspective view showing a configuration of a battery in which display means is provided on the outer surface of the sealing plate.
  • the display means 15 ⁇ / b> A is provided at a portion corresponding to the negative electrode internal lead 6 on the outer surface of the sealing plate 2. As shown in FIG. 5, the display means 15 ⁇ / b> A is arranged so as to correspond to the other end portion 6 b of the negative electrode internal lead 6.
  • a specific example of the display unit 15 ⁇ / b> A for example, a printing unit printed in a line shape on the outer surface of the sealing plate 9 by an ink jet may be used.
  • a battery manufacturing method in which display means is provided on the outer surface of the sealing plate will be described below.
  • a positive electrode plate and a negative electrode plate are prepared.
  • one end of the positive electrode internal lead is connected to the exposed portion of the positive electrode current collector, and one end of the negative electrode internal lead is connected to the exposed portion of the negative electrode current collector.
  • the positive electrode plate and the negative electrode plate are wound through a separator between the positive electrode plate and the negative electrode plate to constitute an electrode group.
  • an upper insulating plate is disposed above the electrode group, and a lower insulating plate is disposed below the electrode group.
  • the electrode group is housed in the battery case, the other end of the positive electrode internal lead is connected to the lower plate of the sealing plate, and the other end of the negative electrode internal lead is connected to the inner bottom of the battery case.
  • the position of the negative electrode internal lead is obtained, and display means for displaying the obtained position of the negative electrode internal lead is provided on the sealing plate. Provide on the outer surface.
  • each of the positive electrode plate, the negative electrode plate, and the separator has a length, a width, and a thickness that are preset according to the design of the battery. Further, in the positive electrode plate, the exposed portion of the positive electrode current collector to which the positive electrode internal lead is connected is provided in a portion preset according to the design of the battery (for example, the central portion of the positive electrode plate). Further, in the negative electrode plate, the exposed portion of the negative electrode current collector to which the negative electrode internal lead is connected is provided in a portion set in advance according to the design of the battery (for example, the end portion of the negative electrode plate on the end side of rolling). ing.
  • Each of the positive electrode internal lead and the negative electrode internal lead has a length, a width, and a thickness that are preset according to the design of the battery. Therefore, the position of the negative electrode internal lead connected to the inner bottom of the battery case can be obtained based on the position of the positive electrode internal lead observed from the opening of the battery case. Specifically, for example, as shown in FIG. 6, when the positive electrode internal lead 5 observed from the opening of the battery case is at a position P 5 passing through the center of the sealing plate 9, the center of the sealing plate 9 is used as a reference.
  • the negative electrode internal lead 6 is at a position P15A advanced clockwise by an angle ⁇ .
  • the angle ⁇ is an angle obtained in advance according to the battery design.
  • a non-aqueous electrolyte is poured into the battery case. Then, a battery is produced by caulking the opening of the battery case to the peripheral edge of the sealing plate via a gasket.
  • the position of the negative electrode internal lead 6 accommodated in the battery case 11 can be determined by the display means 15A provided on the outer surface of the sealing plate 9.
  • the display means provided on the outer surface of the sealing plate 9 The position of the negative internal lead 6 can be determined by 15A (however, after the opening of the pack case is sealed, the position of the negative internal lead 6 cannot be determined).
  • the display unit 15A has been described using a specific example of a printing unit printed in a line by inkjet, but the present invention is not limited thereto.
  • a printing unit in which characters or symbols are printed by inkjet, or a printing unit printed in a mesh or dot shape may be used.
  • the display unit 15A has been described by taking a specific example of the printed portion printed on the portion corresponding to the negative electrode internal lead 6 on the outer surface of the sealing plate 9 by inkjet. It is not limited. For example, a recess provided in a portion corresponding to the negative electrode internal lead on the outer surface of the sealing plate may be used.
  • a battery in which display means is provided on the outer surface of the battery case will be described by taking as an example the first printing part, the second flat part, and the third convex part as the display means.
  • FIGS. 7A to 7B are diagrams showing the configuration of a battery in which display means is provided on the outer surface of the battery case. Specifically, FIG. 7 (a) is a perspective view, and FIG. 7 (b) is a partially cutaway perspective view.
  • a printing portion 15B as a display means is provided on a portion corresponding to the negative electrode internal lead 6 on the outer surface of the battery case 11. As shown in FIG. 7B, the printing portion 15B is disposed so as to correspond to the one end portion 6a of the negative electrode internal lead 6.
  • the printing unit 15B is formed by printing on the outer surface of the battery case 11 by, for example, inkjet.
  • the negative electrode internal lead 6 has a thickness of 0.05 mm to 0.2 mm and a width of 2 mm to 5 mm, for example.
  • the printing unit 15B has a width of 0.5 mm to 5 mm, for example.
  • the position of the negative electrode internal lead 6 housed in the battery case 11 can be determined by the printing unit 15B provided on the outer surface of the battery case 11.
  • FIGS. 8A to 8B are diagrams showing the configuration of a battery in which display means is provided on the outer surface of the battery case. Specifically, FIG. 8A is a perspective view, and FIG. 8B is a plan view seen from the outer bottom side of the battery.
  • the flat portion 15C as a display means corresponds to the negative electrode internal lead 6 on the outer surface of the battery case 11 (in other words, the negative electrode internal lead in the battery case 11). 6 (the portion corresponding to one end of FIG. 6 (see FIG. 3: 6a)).
  • the position of the negative electrode internal lead 6 accommodated in the battery case 11 can be determined by the flat portion 15C provided on the outer surface of the battery case 11.
  • the flat portion 15C of the battery case 11 can be brought into full contact with the pack case by making the shape of the portion in contact with the flat portion 15C in the pack case into a flat plate shape.
  • the portion of the heat radiating portion in contact with the flat portion 15C.
  • FIGS. 9A to 9B are diagrams showing the configuration of a battery in which display means is provided on the outer surface of the battery case. Specifically, FIG. 9A is a perspective view, and FIG. 9B is a plan view seen from the outer bottom side of the battery.
  • the convex portion 15D as the display means corresponds to the portion corresponding to the negative electrode internal lead 6 on the outer surface of the battery case 11 (in other words, the negative electrode internal electrode in the battery case 11).
  • the lead 6 is provided at one end (refer to FIG. 3: 6a).
  • the position of the negative electrode internal lead 6 housed in the battery case 11 can be determined by the convex portion 15D provided on the outer surface of the battery case 11.
  • the convex portion 15D of the battery case 11 and the concave portion of the pack case are fitted into the pack case.
  • a battery can be arranged.
  • the convex portion 15D of the battery case 11 is provided in the heat radiating portion.
  • a battery manufacturing method in which display means is provided on the outer surface of the battery case will be described below.
  • a positive electrode plate and a negative electrode plate are prepared.
  • a battery case having display means on the outer surface is prepared.
  • one end of the positive electrode internal lead is connected to the exposed portion of the positive electrode current collector, and one end of the negative electrode internal lead is connected to the exposed portion of the negative electrode current collector.
  • the positive electrode plate and the negative electrode plate are wound through a separator between the positive electrode plate and the negative electrode plate to constitute an electrode group.
  • an upper insulating plate is disposed above the electrode group, and a lower insulating plate is disposed below the electrode group.
  • the electrode group is housed in the battery case, the other end of the positive electrode internal lead is connected to the lower plate of the sealing plate, and the other end of the negative electrode internal lead is connected to the inner bottom of the battery case.
  • the electrode group is accommodated in the battery case so that one end portion of the negative electrode internal lead (see FIG. 3: 6a) corresponds to the display means provided on the outer surface of the battery case.
  • a non-aqueous electrolyte is poured into the battery case. Then, a battery is produced by caulking the opening of the battery case to the peripheral edge of the sealing plate via a gasket.
  • a positive electrode plate and a negative electrode plate are prepared.
  • one end of the positive electrode internal lead is connected to the exposed portion of the positive electrode current collector, and one end of the negative electrode internal lead is connected to the exposed portion of the negative electrode current collector.
  • the positive electrode plate and the negative electrode plate are wound through a separator between the positive electrode plate and the negative electrode plate to constitute an electrode group.
  • an upper insulating plate is disposed above the electrode group, and a lower insulating plate is disposed below the electrode group.
  • the electrode group is housed in the battery case, the other end of the positive electrode internal lead is connected to the lower plate of the sealing plate, and the other end of the negative electrode internal lead is connected to the inner bottom of the battery case.
  • a display means is provided at a portion corresponding to one end portion (see FIG. 3: 6a) of the negative electrode internal lead on the outer surface of the battery case.
  • a non-aqueous electrolyte is poured into the battery case. Then, a battery is produced by caulking the opening of the battery case to the peripheral edge of the sealing plate via a gasket.
  • FIG. 10 is a diagram illustrating a configuration of a battery in which display means is provided on the outer bottom portion of the battery case.
  • the display means 15E corresponds to a portion corresponding to the negative electrode internal lead 6 in the outer bottom portion of the battery case 11 (in other words, the other end portion of the negative electrode internal lead 6 in the battery case 11 (FIG. 3: 6b).
  • the portion corresponding to the reference) is provided.
  • the display means 15E for example, there is a welding mark remaining on the outer bottom portion of the battery case 11 when the negative electrode internal lead is connected to the inner bottom portion of the battery case.
  • a battery manufacturing method in which display means (for example, welding marks) is provided on the outer bottom of the battery case will be described below.
  • a positive electrode plate and a negative electrode plate are prepared.
  • one end of the positive electrode internal lead is connected to the exposed portion of the positive electrode current collector, and one end of the negative electrode internal lead is connected to the exposed portion of the negative electrode current collector.
  • the positive electrode plate and the negative electrode plate are wound through a separator between the positive electrode plate and the negative electrode plate to constitute an electrode group.
  • an upper insulating plate is disposed above the electrode group, and a lower insulating plate is disposed below the electrode group.
  • the electrode group is housed in the battery case, the other end of the positive electrode internal lead is connected to the lower plate of the sealing plate, and the other end of the negative electrode inner lead is disposed on the inner bottom of the battery case.
  • a laser is applied to the outer bottom portion of the battery case, and the other end of the negative electrode internal lead disposed on the inner bottom portion of the battery case is connected to the inner bottom portion of the battery case.
  • welding marks remain on the outer bottom of the battery case. In this way, welding marks are provided as display means on the outer bottom of the battery case.
  • a non-aqueous electrolyte is poured into the battery case. Then, a battery is produced by caulking the opening of the battery case to the peripheral edge of the sealing plate via a gasket.
  • the position of the negative electrode internal lead 6 housed in the battery case 11 can be determined by the display means 15E provided on the outer bottom portion of the battery case 11.
  • the welding marks remaining on the outer bottom portion of the battery case 11 when the negative electrode internal lead is connected to the inner bottom portion of the battery case can be used as the display means 15E. Therefore, a separate process for providing display means is not necessary.
  • the battery 12 provided with the display means (that is, the battery according to the first embodiment) has been described by taking the battery pack enclosed in the pack case 13 as an example.
  • the invention is not limited to this. That is, the display means provided in the battery is required when the battery is stored in the pack case in the manufacture of the battery pack, but is not required after the battery pack is manufactured. Therefore, the display means may disappear after storage. For this reason, the battery may be provided with temporary display means instead of formal display means.
  • the “formal display means” refers to display means that does not disappear after the battery pack is manufactured.
  • the “temporary display means” refers to display means that exists when the battery pack is stored but disappears after the battery pack is manufactured.
  • the positive electrode plate includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode current collector for example, a metal foil such as an aluminum foil, or a thin film made of carbon or conductive resin is used.
  • the positive electrode active material layer includes, for example, a positive electrode active material, a conductive agent, and a binder.
  • a lithium-containing composite oxide such as LiCoO 2 , LiNiO 2 and Li 2 MnO 4 , a mixture of two or more of these, or a combination of two or more of these A composite material is used.
  • the material of the conductive agent for example, graphites such as natural graphite and artificial graphite, or carbon blacks such as acetylene black, ketjen black, furnace black, lamp black and thermal black are used.
  • PVdF polyvinylidene fluoride
  • polytetrafluoroethylene polyethylene
  • polypropylene polypropylene
  • aramid resin polyamide
  • polyimide polyimide
  • aluminum is used as the material of the internal lead for the positive electrode.
  • the negative electrode plate has a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • the negative electrode current collector for example, a metal foil such as copper foil, stainless steel foil, nickel foil or titanium foil, or a thin film made of carbon or conductive resin is used.
  • the negative electrode active material layer includes, for example, a negative electrode active material, a conductive agent, and a binder.
  • the negative electrode active material layer may be, for example, a lithium metal plate or a lithium alloy plate.
  • the material of the negative electrode active material for example, a carbon material such as graphite or a material capable of reversibly occluding and releasing lithium ions such as silicon or tin is used.
  • the same material as that of the conductive agent contained in the positive electrode active material layer may be used.
  • the binder material the same material as the binder material contained in the positive electrode active material layer may be used.
  • nickel is used as a material for the negative electrode internal lead.
  • -Separator- As a material for the separator, for example, polyethylene, polypropylene, a mixture of polyethylene and polypropylene, or a copolymer of ethylene and propylene is used.
  • the nonaqueous electrolytic solution includes, for example, an organic solvent and a lithium salt dissolved in the organic solvent.
  • LiPF 6 LiBF 4 , LiClO 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiN (CF 3 CO 2 ) or LiN (CF 3 SO 2 ) 2 is used. .
  • organic solvent material for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is used.
  • -Battery case- As a material for the battery case, for example, iron, nickel, copper, or aluminum is used.
  • pack case As a material for the pack case, for example, polycarbonate is used.
  • the pack case is made of a heat radiating member
  • a metal or resin having a thermal conductivity higher than that of air is used as the heat radiating member.
  • the metal for example, aluminum is used.
  • the resin for example, a carbon fiber-containing resin is used.
  • high specific heat materials such as ceramics, materials that absorb heat as latent heat by melting or sublimation by heat, or materials that decompose and absorb heat, such as magnesium hydroxide, magnesium carbonate, or aluminum hydroxide, It is also possible to configure a pack case.
  • a heat radiating part made of a heat radiating member is provided in a portion corresponding to the negative electrode internal lead on the outer surface of the battery case, a metal or resin having a thermal conductivity higher than that of air is used as the heat radiating member. It is done.
  • the metal for example, aluminum is used.
  • the resin for example, a carbon fiber-containing resin is used.
  • high specific heat materials such as ceramics, materials that absorb heat as latent heat by melting, evaporating or sublimating by heat such as solder, solder, low melting glass or water, or magnesium hydroxide, magnesium carbonate or aluminum hydroxide, etc. It is also possible to configure the heat radiating portion with a material that decomposes and absorbs heat.
  • Example 1 Below, the manufacturing method of the battery of Example 1 is demonstrated, referring FIG.
  • N— lithium cobaltate (LiCoO 2 ) having an average particle diameter of 10 ⁇ m as a positive electrode active material, 8 parts by weight of PVdF as a binder, and 3 parts by weight of acetylene black as a conductive agent.
  • Methyl-2-pyrrolidone (NMP) was added and mixed to obtain a positive electrode mixture paste.
  • the positive electrode material mixture paste is connected to both sides of a positive electrode current collector made of a strip-like aluminum foil having a length of 600 mm, a width of 54 mm, and a thickness of 20 ⁇ m.
  • the exposed portion of the positive electrode current collector was applied.
  • the positive electrode mixture paste was dried to form a positive electrode active material layer, and a laminate comprising a positive electrode current collector and a positive electrode active material layer formed on both surfaces of the positive electrode current collector was obtained.
  • the laminate was rolled so that the thickness of the positive electrode active material layer was 70 ⁇ m. In this way, a belt-like positive electrode plate 1 having an exposed portion of the positive electrode current collector at the center was produced.
  • a strip-shaped aluminum positive electrode internal lead 5 having a length of 50 mm, a width of 3 mm, and a thickness of 0.1 mm is prepared, and one end of the positive electrode internal lead 5 is connected to the positive electrode current collector by ultrasonic welding. Connected to the exposed part.
  • the negative electrode mixture paste is applied to both ends of the negative electrode current collector made of a copper foil having a length of 630 mm, a width of 56 mm, and a thickness of 10 ⁇ m on the ends of the negative electrode current collector (that is, the internal lead for the negative electrode).
  • the negative electrode mixture paste was dried to form a negative electrode active material layer, and a laminate composed of a negative electrode current collector and a negative electrode active material layer formed on both surfaces of the negative electrode current collector was obtained.
  • the laminate was rolled so that the thickness of the negative electrode active material layer was 65 ⁇ m. In this manner, a strip-shaped negative electrode plate 2 having an exposed portion of the negative electrode current collector at the end portion on the side of the winding end was produced.
  • a strip-shaped nickel negative electrode internal lead 6 having a length of 50 mm, a width of 3 mm, and a thickness of 0.1 mm is prepared, and one end of the negative electrode internal lead 6 is connected to the negative electrode current collector by ultrasonic welding. Connected to the exposed part.
  • the positive electrode plate 1 and the negative electrode plate 2 were wound with a separator 3 made of Asahi Kasei Co., Ltd. made of a polyethylene microporous film having a thickness of 20 ⁇ m interposed between the positive electrode 1 and the negative electrode plate 2.
  • the electrode group 4 was configured. At this time, after winding, the exposed portion of the positive electrode current collector to which the positive electrode internal lead 5 is connected is located at the center, and the exposed portion of the negative electrode current collector to which the negative electrode internal lead 6 is connected is The positive electrode plate 1 and the negative electrode plate 2 were wound so as to be positioned at the end portion on the winding end side. Further, after winding, the positive electrode plate 1 and the negative electrode plate 2 are wound so that the positive electrode internal lead 5 extends upward from the upper end of the electrode group 4 and the negative electrode internal lead 6 extends downward from the lower end of the electrode group 4. Turned.
  • an upper insulating plate 7 made of polypropylene is arranged on the upper part of the electrode group 4, while a lower insulating plate 8 made of polypropylene is arranged on the lower part of the electrode group 4.
  • the electrode group 4 is housed in a bottomed cylindrical iron battery case 11, and the other end of the positive electrode internal lead 5 is connected to the lower plate 9 c of the sealing plate 9 by resistance welding.
  • the other end of the negative electrode internal lead 6 was connected to the inner bottom of the battery case 11 by the method.
  • a line-shaped printing portion (see FIGS. 7A and 7B: 15B) was provided as a display means in a portion corresponding to the negative electrode internal lead 6 on the outer surface of the battery case 11.
  • the printing portion was provided on the outer surface of the battery case 11 so that the central axis in the longitudinal direction of the line-shaped printing portion corresponds to the central axis in the longitudinal direction of the negative electrode internal lead 6.
  • a non-aqueous electrolyte was poured into the battery case 11. Thereafter, a stepped portion was formed at a portion located 5 mm below the opening in the battery case 11.
  • a sealing plate 9 was disposed on the stepped portion of the battery case 11 via a ring-shaped gasket 10. Thereafter, the opening of the battery case 11 was sealed by caulking the opening of the battery case 11 to the peripheral edge of the sealing plate 9 via the gasket 10.
  • a cylindrical lithium ion secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 2600 mAh was produced.
  • the produced battery is referred to as the battery of Example 1.
  • Example 1 Ten batteries of Example 1 were prepared. Ten batteries of Example 1 are referred to as batteries 1 to 10, respectively. On the other hand, ten batteries of Comparative Example 1 were prepared. Ten batteries of Comparative Example 1 are referred to as batteries 11 to 20, respectively.
  • the batteries 1 to 10 of Example 1 and the batteries 11 to 20 of Comparative Example 1 were charged at a constant current of 1500 A in a 25 ° C. environment until the battery voltage reached 4.25 V.
  • each of the batteries 1 to 10 of Example 1 was made of SUS304 (stainless steel containing chromium (Cr) and nickel (Ni)) having a length of 100 mm, a width of 100 mm, and a thickness of 10 mm. It mounted on the heat sink 16 of the shape. At this time, each of the batteries 1 to 10 of Example 1 is placed on the heat radiating plate 16 so that the central axis in the longitudinal direction of the line-shaped printed portion provided on the outer surface of the battery case 11 contacts the heat radiating plate 16. Placed.
  • SUS304 stainless steel containing chromium (Cr) and nickel (Ni)
  • each of the batteries 11 to 20 of Comparative Example 1 was placed on the heat sink 16.
  • each of the batteries 1 to 10 of Example 1 placed on the heat sink 16 and the batteries 11 to 20 of Comparative Example 1 placed on the heat sink 16 were placed in an environment of 60 ° C. Left for 1 hour.
  • the batteries 1 to 10 of Example 1 were able to efficiently dissipate the heat generated in the internal lead for the negative electrode when the external short circuit occurred in the battery to the heat radiating plate 16, and were excellent. It was confirmed that the battery has safety.
  • a battery in which the internal lead for positive electrode is connected to the inner bottom of the battery case and the internal lead for negative electrode is connected to the sealing plate may be used.
  • heat generated in the positive internal lead when an external short circuit occurs in the battery can be efficiently radiated to the pack case.
  • the battery pack in which the battery according to the present invention is enclosed and the battery pack according to the present invention have excellent safety, a personal computer, a mobile phone, a mobile device, a personal digital assistant (PDA), a portable game device, It is suitably used as a power source for portable electronic devices such as video cameras.
  • the battery pack in which the battery according to the present invention is enclosed, and the battery pack according to the present invention drive a power source, an electric tool, a vacuum cleaner, a robot, and the like that assist an electric motor of a hybrid electric vehicle and a fuel cell vehicle. It is suitably used as a power source for driving or a power source of a plug-in hybrid vehicle (PHEV).
  • PHEV plug-in hybrid vehicle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

 電池パックは、複数の電池12と、複数の電池12が封入されたパックケース13とを備えている。正極板と負極板とが多孔質絶縁層を介して捲回又は積層されて構成された電極群が、電解液と共に電池ケース11に収納され、封口板により電池ケース11の開口部が封口されている。正極板及び負極板のうちの一方の極板に電気的に接続された第1の内部リード6が、電池ケース11の内底部に接続されている。正極板及び負極板のうちの他方の極板に電気的に接続された第2の内部リードが、封口板に接続されている。第1の内部リード6が、電池ケース11の内側面に近接して配置されている。複数の電池12の各々は、電池ケース11の外側面における第1の内部リード6と対応する部分がパックケース13の内側面と対向するように、パックケース13に配置されている。

Description

電池及び電池パック
 本発明は、電池及び電池パックに関し、特に、電池ケースと電極群とを電気的に接続する内部リードを有する電池及び電池パックに関する。
 従来の電池として、正極板、負極板及びセパレータからなる電極群が、電解液と共に電池ケースに収納され、封口板により電池ケースの開口部が封口された電池が利用されている。電池は、負極板と電池ケースの内底部とを電気的に接続する負極用内部リード、及び正極板と封口板とを電気的に接続する正極用内部リードを有する。
 また、従来の電池パックとして、複数の電池がパックケースに封入された電池パックが利用されている。
 電池で外部短絡が発生した場合、電池内で短絡電流が流れ、電池内にジュール熱が発生し、電池温度が上昇する。さらに、ジュール熱に起因して、電極群において化学反応が促進されて化学反応の際に反応熱が発生し、電池温度がさらに上昇し、電池が過熱に至る虞がある。
 そのため、電池パックにおいて、パックケースに封入された電池で外部短絡が発生した場合、電池の安全性を確保するには、電池で外部短絡が発生したときに電池内に発生する熱を、電池外に放熱させて、電池が過熱に至るのを未然に防止することが重要である。
 ところで、電池パックにおいて、パックケースに封入された電池が発する熱を、電池外に放熱させる技術が様々に提案されている。
 第1に例えば、複数の円筒型の電池を配列させてなる電池群を、対向する一対の放熱板の間に挟み込んで、電池の外周面に放熱板の内側面を当接させる一方、放熱板の外側面を電池パック外に露出させる技術が提案されている(例えば特許文献1参照)。これにより、電池が発する熱を、放熱板に伝導させ、電池外に放熱させる。
 第2に例えば、円筒型の電池の端面に接続された外部リードの一部を、電池パック外に突出させる技術が提案されている(例えば特許文献2参照)。これにより、電池が発する熱を、外部リードに伝導させ、電池パック外に放熱させる。
特開2002-124225号公報 特開2005-317456号公報
 しかしながら、特許文献1に記載の技術では、次に示す問題がある。対向する一対の放熱板の間に、電池群を挟み込むため、電池パック全体の重量が増大するという問題がある。
 また、特許文献2に記載の技術では、次に示す問題がある。外部リードは、電池の端面に接続されるため、電池の端面における熱を、電池パック外に効果的に放熱することは可能なものの、電池の周面における熱を、電池パック外に効果的に放熱することができない。そのため、電池全体が発する熱を、電池外に効果的に放熱することができないという問題がある。
 前記に鑑み、本発明の目的は、電池パックのパックケースに封入された電池で外部短絡が発生し電池内に熱が発生することがあっても、電池パックの重量の増大を抑えて、電池内に発生する熱をパックケースに効果的に放熱することにより、外部短絡時に電池内で発生する熱を電池外に効果的に放熱し、電池の安全性、延いては電池パックの安全性を確保することである。
 前記の目的を達成するために、後述の通り、本願発明者らは鋭意検討を重ねた結果、電池で外部短絡が発生すると、第1の内部リード及び第2の内部リードが発熱し、特に、電池ケースに接続された第1の内部リードが著しく発熱することを発見した。この発見に基づいて、本願発明者らは、前記の目的を達成するには、第1の内部リードにおいて発熱した熱を、パックケース(特に、放熱特性(具体的には例えば、高熱伝導性又は高比熱性等)を有するパックケース)に効率良く放熱することが重要であり、これにより、外部短絡が発生した電池が過熱に至る虞を低減し、電池の安全性、延いては電池パックの安全性を確保することができるという知見を見出した。
 前記の目的を達成するために、本発明は、本願発明者らが見出した知見に基づいて成されたものであり、具体的には、本発明に係る電池は、電池パックのパックケースに封入される電池であって、正極板と負極板とが多孔質絶縁層を介して捲回又は積層されて構成された電極群が、電解液と共に電池ケースに収納され、封口板により電池ケースの開口部が封口され、正極板及び負極板のうちの一方の極板に電気的に接続された第1の内部リードが、電池ケースの内底部に接続され、正極板及び負極板のうちの他方の極板に電気的に接続された第2の内部リードが、封口板に接続され、第1の内部リードが、電池ケースの内側面に近接して配置され、電池ケースに収納された第1の内部リードの位置を表示する表示手段が設けられていることを特徴とする。
 本発明に係る電池によると、表示手段により、電池ケースに収納された第1の内部リードの位置を判別することができる。そのため、本発明に係る電池が、電池パックのパックケースに封入される電池として利用される場合、表示手段により判別された第1の内部リードの位置に基づいて、第1の内部リードをパックケースに近接して配置することができる。そのため、パックケースに封入された電池で外部短絡が発生し第1の内部リードが発熱することがあっても、第1の内部リードにおいて発熱した熱を、熱伝導性を示す電池ケースに伝導し、パックケースに効率良く放熱することができる。特に、パックケースが放熱特性を有する場合、パックケースにより効率良く放熱することができる。
 従って、本発明に係る電池がパックケースに封入された電池パックにおいて、外部短絡が発生した電池が過熱に至る虞を低減することができるため、電池の安全性、延いては電池パックの安全性を高めることができる。
 さらに、第1の内部リードを、パックケースに近接して配置することにより、外部短絡が発生した電池内に発生した熱(特に、第1の内部リードにおいて発熱した熱)を、既述の通り、パックケースに効率良く放熱することができる。即ち、外部短絡時に電池内で発生した熱を電池外に効率良く放熱することができる。そのため、特許文献1に記載の技術のように、特別に新たな構成要素(即ち、一対の放熱板)を設ける必要がないので、電池パックの重量が増大することはない。
 本発明に係る電池において、第1の内部リードは、負極板に電気的に接続された負極用内部リードであり、第2の内部リードは、正極板に電気的に接続された正極用内部リードであることが好ましい。
 このようにすると、本発明に係る電池が、パックケースに封入される電池として利用される場合、電池で外部短絡が発生し負極用内部リードが著しく発熱することがあっても、負極用内部リードにおいて発熱した熱を、電池ケースに伝導し、パックケースに効率良く放熱することができる。
 本発明に係る電池において、電極群は、正極板と負極板とが多孔質絶縁層を介して捲回されて構成された電極群であり、第1の内部リードが電気的に接続された極板は、集電体と、集電体の表面に集電体の表面の一部を露出するように形成された活物質層とを有し、集電体の表面における活物質層から露出された集電体の露出部に、第1の内部リードが接続され、集電体の露出部は、第1の内部リードが電気的に接続された極板における捲き終わり側の端部に設けられていることが好ましい。
 このようにすると、第1の内部リードが電気的に接続された極板における捲き終わり側の端部に、集電体の露出部が設けられているため、集電体の露出部に接続された第1の内部リードは、電池ケースの内側面に近接して配置されている。
 本発明に係る電池において、表示手段は、封口板の外表面に設けられていることが好ましい。
 このようにすると、封口板の外表面に設けた表示手段により、電池ケースに収納された第1の内部リードの位置を判別することができる。
 本発明に係る電池において、表示手段は、封口板の外表面における第1の内部リードと対応する部分に印刷された印刷部であることが好ましい。
 本発明に係る電池において、表示手段は、電池ケースの外側面に設けられていることが好ましい。
 このようにすると、電池ケースの外側面に設けた表示手段により、電池ケースに収納された第1の内部リードの位置を判別することができる。
 本発明に係る電池において、表示手段は、電池ケースの外側面における第1の内部リードと対応する部分に印刷された印刷部であることが好ましい。
 本発明に係る電池において、電池ケースは、円筒型の電池ケースであり、表示手段は、電池ケースの外側面における第1の内部リードと対応する部分に設けられた平坦部であることが好ましい。
 本発明に係る電池において、表示手段は、電池ケースの外側面における第1の内部リードと対応する部分に設けられた凸部であることが好ましい。
 本発明に係る電池において、表示手段は、電池ケースの外底部に設けられていることが好ましい。
 このようにすると、電池ケースの外底部に設けた表示手段により、電池ケースに収納された第1の内部リードの位置を判別することができる。
 本発明に係る電池において、表示手段は、電池ケースの外底部における第1の内部リードと対応する部分に残る溶接痕であることが好ましい。
 このようにすると、第1の内部リードを電池ケースの内底部に接続する接続時に電池ケースの外底部に残る溶接痕を、表示手段として利用することができる。そのため、表示手段を設ける工程を別途必要としない。
 前記の目的を達成するために、本発明は、本願発明者らが見出した知見に基づいて成されたものであり、具体的には、本発明に係る電池パックは、複数の電池と、複数の電池が封入されたパックケースとを備えた電池パックであって、複数の電池の各々は、正極板と負極板とが多孔質絶縁層を介して捲回又は積層されて構成された電極群が、電解液と共に電池ケースに収納され、封口板により電池ケースの開口部が封口され、正極板及び負極板のうちの一方の極板に電気的に接続された第1の内部リードが、電池ケースの内底部に接続され、正極板及び負極板のうちの他方の極板に電気的に接続された第2の内部リードが、封口板に接続され、第1の内部リードが、電池ケースの内側面に近接して配置され、電池ケースの外側面における第1の内部リードと対応する部分がパックケースの内側面と対向するように、パックケースに配置されていることを特徴とする。
 本発明に係る電池パックによると、電池ケースの外側面における第1の内部リードと対応する部分が、パックケースの内側面と対向するように、複数の電池の各々をパックケースに配置することにより、第1の内部リードをパックケースに近接して配置することができる。そのため、電池で外部短絡が発生し第1の内部リードが発熱することがあっても、第1の内部リードにおいて発熱した熱を、熱伝導性を示す電池ケースに伝導し、パックケースに効率良く放熱することができる。特に、パックケースが放熱特性を有する場合、パックケースにより効率良く放熱することができる。
 従って、本発明に係る電池パックにおいて、外部短絡が発生した電池が過熱に至る虞を低減することができるため、電池の安全性、延いては電池パックの安全性を高めることができる。
 さらに、第1の内部リードを、パックケースに近接して配置することにより、外部短絡が発生した電池内に発生した熱(特に、第1の内部リードにおいて発熱した熱)を、既述の通り、パックケースに効率良く放熱することができる。即ち、外部短絡時に電池内で発生した熱を電池外に効率良く放熱することができる。そのため、特許文献1に記載の技術のように、特別に新たな構成要素(即ち、一対の放熱板)を設ける必要がないため、電池パックの重量が増大することはない。
 本発明に係る電池パックにおいて、複数の電池の各々は、電池ケースの外側面における第1の内部リードと対応する部分がパックケースの内側面に接するように、パックケースに配置されていることが好ましい。
 本発明に係る電池パックにおいて、電池ケースの外側面における第1の内部リードと対応する部分に配置された放熱部材からなる放熱部をさらに備えていることが好ましい。
 このようにすると、電池で外部短絡が発生し第1の内部リードが発熱することがあっても、第1の内部リードにおいて発熱した熱を、電池ケースに伝導し、放熱部に効率良く放熱することができる。そのため、放熱部に効率良く放熱した熱を、パックケースに効率良く放熱することができる。
 本発明に係る電池パックにおいて、パックケースは、放熱部材からなることが好ましい。
 本発明に係る電池パックにおいて、複数の電池の各々には、電池ケースに収納された第1の内部リードの位置を表示する表示手段が設けられていることが好ましい。
 このようにすると、表示手段により、電池ケースに収納された第1の内部リードの位置を判別することができる。そのため、表示手段により判別された第1の内部リードの位置に基づいて、電池ケースの外側面における第1の内部リードと対応する部分が、パックケースの内側面と対向するように、複数の電池の各々をパックケースに配置することができる。
 本発明に係る電池パックにおいて、表示手段は、封口板の外表面に設けられていることが好ましい。
 このようにすると、電池パックの製造において、パックケースに電池を収納した後であっても、パックケースの開口部から封口板の外表面が観察されるため、封口板の外表面に設けた表示手段により、第1の内部リードの位置を判別することができる(但し、パックケースの開口部を封口した後は、第1の内部リードの位置を判別することはできない)。
 本発明に係る電池パックにおいて、表示手段は、電池ケースの外側面に設けられていることが好ましい。
 本発明に係る電池パックにおいて、表示手段は、電池ケースの外底部に設けられていることが好ましい。
 本発明に係る電池によると、表示手段により、電池ケースに収納された第1の内部リードの位置を判別することができる。そのため、本発明に係る電池が、電池パックのパックケースに封入される電池として利用される場合、表示手段により判別された第1の内部リードの位置に基づいて、第1の内部リードをパックケースに近接して配置することができる。
 本発明に係る電池パックによると、電池ケースの外側面における第1の内部リードと対応する部分が、パックケースの内側面と対向するように、複数の電池の各々をパックケースに配置することにより、第1の内部リードをパックケースに近接して配置することができる。
 そのため、パックケースに封入された電池で外部短絡が発生し第1の内部リードが発熱することがあっても、第1の内部リードにおいて発熱した熱を、熱伝導性を示す電池ケースに伝導し、パックケースに効率良く放熱することができる。
 従って、本発明に係る電池が封入された電池パック、及び本発明に係る電池パックにおいて、外部短絡が発生した電池が過熱に至る虞を低減することができるため、電池の安全性、延いては電池パックの安全性を高めることができる。
 さらに、第1の内部リードを、パックケースに近接して配置することにより、外部短絡が発生した電池内に発生した熱(特に、第1の内部リードにおいて発熱した熱)を、既述の通り、パックケースに効率良く放熱することができる。即ち、外部短絡時に電池内で発生した熱を電池外に効率良く放熱することができる。そのため、特許文献1に記載の技術のように、特別に新たな構成要素(即ち、一対の放熱板)を設ける必要がないので、電池パックの重量が増大することはない。
図1は、本発明の第1の実施形態に係る電池の構成を示す断面図である。 図2(a) ~(b) は、本発明の第2の実施形態に係る電池パックの構成を示す図である。 図3は、負極用内部リードの一端部、中央部及び他端部を特定するための説明図である。 図4は、本発明の第2の実施形態のその他の例に係る電池パックの構成を示す断面図である。 図5は、封口板の外表面に表示手段が設けられた電池の構成を示す斜視図である。 図6は、封口板と正極用内部リードとの位置関係、及び封口板と負極用内部リードとの位置関係を示す平面図である。 図7(a) ~(b) は、電池ケースの外側面に表示手段が設けられた電池の構成を示す図である。 図8(a) ~(b) は、電池ケースの外側面に表示手段が設けられた電池の構成を示す図である。 図9(a) ~(b) は、電池ケースの外側面に表示手段が設けられた電池の構成を示す図である。 図10は、電池ケースの外底部に表示手段が設けられた電池の構成を示す斜視図である。 図11は、外部短絡試験を説明するための説明図である。
 本発明の各実施形態を説明する前に、本願発明者らが本願発明を完成させるに至った経緯を説明する。
 複数の電池がパックケースに封入された電池パックにおいて、電池で外部短絡が発生すると、電池の安全性を確保することが難しいということが知られている。そこで、本願発明者らは、電池で外部短絡が発生した場合においても電池の安全性を確保するために、電池で外部短絡が発生しているときの電池内の状況を調べた。具体的には、電池として、正極板と電気的に接続する正極用内部リードが封口板に接続する一方、負極板と電気的に接続する負極用内部リードが電池ケースに接続した円筒型のリチウムイオン二次電池を用い、その電池で外部短絡を発生させ、電池内の状況を調べた。
 その結果、本願発明者らは、電池で外部短絡が発生しているときに、正極用内部リード及び負極用内部リードが発熱し、特に、負極用内部リードが著しく発熱していることを発見した。その理由を、本願発明者らは、以下のように考察する。
 負極用内部リードは、負極用内部リード以外の電池の構成要素よりも高抵抗である。具体的には、多くのリチウムイオン二次電池では、負極用内部リードはニッケルからなり、負極集電体は銅からなり、正極用内部リード及び正極集電体はアルミニウムからなる。ニッケルは、銅及びアルミニウムよりも比抵抗が高いため、負極用内部リードは、負極集電体、正極用内部リード及び正極集電体よりも高抵抗である。また、ジュール熱は抵抗値に比例する。そのため、リチウムイオン二次電池で外部短絡が発生すると、負極用内部リードにおける発熱量が最も多くなるため、負極用内部リードが著しく発熱する。
 上記の発見及びその発見した事実に対する考察に基づいて、本願発明者らは、負極用内部リードにおいて発熱した熱を、パックケースに効率良く放熱することができれば、外部短絡が発生した電池が過熱に至る虞を低減し、電池の安全性、延いては電池パックの安全性を確保することができるという知見を見出した。
 なお、上記の説明では、正極用内部リードが封口板に接続する一方、負極用内部リードが電池ケースに接続したリチウムイオン二次電池の場合について説明したが、その反対に、正極用内部リードが電池ケースに接続する一方、負極用内部リードが封口板に接続したリチウムイオン二次電池の場合、以下に示すことが考察される。
 電池で外部短絡が発生しているときに、正極用内部リードが発熱している(但し、上記の考察から判断すると、正極用内部リードにおける発熱量は、負極用内部リードにおける発熱量に比べて小さいと推測される)。そのため、正極用内部リードにおいて発熱した熱を、パックケースに効率良く放熱することができれば、外部短絡が発生した電池が過熱に至る虞を低減し、電池の安全性、延いては電池パックの安全性を確保することができる。
 本願発明者らは、上記の知見に基づいて、例えば、後述の図2(a) ~(b) に示すように、電池ケースの外側面における第1の内部リードと対応する部分を、パックケースの内側面に接して配置する。これにより、第1の内部リードを、パックケースに近接して配置することができるため、電池で外部短絡が発生し第1の内部リードが発熱することがあっても、第1の内部リードにおいて発熱した熱を、熱伝導性を示す電池ケースに伝導し、パックケースに効率良く放熱することができる。
 特に、第1の内部リードが負極用内部リードである場合、電池で外部短絡が発生したときに、既述の通り、負極用内部リードが著しく発熱するため、本発明の効果を有効に発揮することができる。
 このように、本発明は、電池ケースに接続された第1の内部リードが、封口板に接続された第2の内部リードに比べて、電池ケースの内側面に近接して配置されることを利用して、第1の内部リードにおいて発熱した熱を、パックケースに効率良く放熱することにより、本発明の目的を達成するものである。
 以下に、本発明の各実施形態について、図面を参照しながら説明する。
 (第1の実施形態)
 以下に、本発明の第1の実施形態に係る電池について、電池として、円筒型のリチウムイオン二次電池を例に挙げて、図1を参照しながら説明する。図1は、本発明の第1の実施形態に係る電池の構成を示す断面図である。
 図1に示すように、電極群4が、非水電解液と共に、有底円筒型の電池ケース11に収納されている。電極群4の上部には、リング状の上部絶縁板7が配置されていると共に、電極群4の下部には、リング状の下部絶縁板8が配置されている。封口板9の周縁部には、ガスケット10を介して、電池ケース11の開口部がかしめつけられることにより、電池ケース11の開口部は封口されている。
 電極群4は、帯状の正極板1及び帯状の負極板2を、正極板1と負極板2との間に帯状の多孔質絶縁層としてのセパレータ3を介在させて捲回して構成されている。
 正極板1は、正極集電体、及び正極集電体の表面に正極集電体の表面の一部を露出するように形成された正極活物質層を有する。正極集電体における正極活物質層から露出した部分(以下、「正極集電体の露出部」と称す)は、正極板1の中央部に設けられている。ここで、「正極板の中央部」とは、捲回型の電極群を構成する正極板における捲き始め側の端部と捲き終わり側の端部との間に位置する部分をいう。
 負極板2は、負極集電体、及び負極集電体の表面に負極集電体の表面の一部を露出するように形成された負極活物質層を有する。負極集電体における負極活物質層から露出した部分(以下、「負極集電体の露出部」と称す)は、負極板2の捲き終わり側の端部に設けられている。
 正極板1と封口板9とは、正極用内部リード5を介して電気的に接続されている。正極用内部リード5の一端は、正極集電体の露出部に接続されている。正極用内部リード5の他端は、封口板9における下板9cに接続されている。封口板9は、正極端子として機能する。
 負極板2と電池ケース11とは、負極用内部リード6を介して電気的に接続されている。負極用内部リード6の一端は、負極集電体の露出部に接続されている。負極用内部リード6の他端は、電池ケース11の内底部に接続されている。電池ケース11は、負極端子として機能する。
 封口板9は、排気口を設けた正極キャップ9a、電池ケース11の内圧が所定値を超えると破断する弁体9b、PTC(Positive Temperature Coefficient)素子等の電流遮断部材、及び正極用内部リード5が接続される下板9cを有する。電池の過充電等により、電池ケース11内に発生するガスの発生量が増大し、電池ケース11の内圧が所定値を超えると、弁体9bが破断し、正極キャップ9aの排気口を通して、電池外にガスが放出される。
 電池には、電池ケース11に収納された負極用内部リード6の位置を表示する表示手段(図示せず)が設けられている。表示手段は、例えば、封口板9の外表面(後述の図5参照)、電池ケースの外側面(後述の図7(a),(b) ~図9(a),(b)参照)、又は電池ケースの外底部(後述の図10参照)に設けられている。表示手段により、電池ケース11に収納された負極用内部リード6の位置を判別することができる。
 本実施形態によると、表示手段により、電池ケース11に収納された負極用内部リード6の位置を判別することができる。そのため、本実施形態に係る電池が、電池パックのパックケースに封入される電池として利用される場合、表示手段により判別された負極用内部リード6の位置に基づいて、負極用内部リード6をパックケースに近接して配置することができる。そのため、パックケースに封入された電池で外部短絡が発生し負極用内部リード6が著しく発熱することがあっても、負極用内部リード6において発熱した熱を、熱伝導性を示す電池ケース11に伝導し、パックケースに効率良く放熱することができる。特に、パックケースが放熱特性を有する場合、パックケースにより効率良く放熱することができる。
 従って、本発明に係る電池がパックケースに封入された電池パックにおいて、外部短絡が発生した電池が過熱に至る虞を低減することができるため、電池の安全性、延いては電池パックの安全性を高めることができる。
 さらに、負極用内部リード6を、パックケースに近接して配置することにより、外部短絡が発生した電池内に発生した熱(特に、負極用内部リード6において発熱した熱)を、既述の通り、パックケースに効率良く放熱することができる。即ち、外部短絡時に電池内で発生した熱を電池外に効率良く放熱することができる。そのため、特許文献1に記載の技術のように、特別に新たな構成要素(即ち、一対の放熱板)を設ける必要がないため、電池パックの重量が増大することはない。
 なお、本実施形態では、電極群として、正極板1及び負極板2が、正極板1と負極板2との間にセパレータ3を介して、捲回して構成された捲回型の電極群4を用いた場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、正極板及び負極板が、正極板と負極板との間にセパレータを介して、積層して構成された積層型の電極群でもよい。
 また、本実施形態では、多孔質絶縁層として、セパレータを用いたが、セパレータに代えて、例えば、非水電解液に高分子材料を加えた非流動性のポリマー電解質層を用いてもよい。
 (第2の実施形態)
 以下に、本発明の第2の実施形態に係る電池パックについて、図2(a) ~(b) を参照しながら説明する。図2(a) ~(b) は、本発明の第2の実施形態に係る電池パックの構成を示す図であり、具体的には、図2(a) は断面図であり、図2(b) は断面斜視図である。
 本実施形態に係る電池パックは、第1の実施形態に係る電池12が、パックケース13に封入された電池パックである。
 図2(a) ~(b) に示すように、表示手段により判別された負極用内部リード6の位置に基づいて、パックケース13に電池12が配置されている。具体的には、電池ケース11の外側面における負極用内部リード6と対応する部分、言い換えれば、電池ケース11における負極用内部リード6の一端部(図3:6a参照)と対応する部分が、パックケース13の内側面に接するように、パックケース13に電池12が配置されている。
 ここで、負極用内部リードの一端部、中央部及び他端部について、図3を参照しながら説明する。図3は、負極用内部リードの一端部、中央部及び他端部を特定するための説明図である。負極用内部リード6は、負極集電体の露出部2aから負極集電体の外へ延び、電池ケース11の内側面と内底部との境界において折り曲げられ、さらに電池ケース11の内底部における中央部に向かって延びている。一端部6aは、負極用内部リード6のうち負極集電体の露出部2aに当接された部分である。一端部6aの一部は、負極集電体の露出部2aに溶接されている。他端部6bは、負極用内部リード6のうち電池ケース11の内底部に当接された部分である。他端部6bの一部は、電池ケース11に溶接されている。中央部6cは、一端部6aと他端部6bとに挟まれた部分であり、負極集電体の露出部2a及び電池ケース11の内底部に当接されていない部分であり、言い換えれば、周囲を非水電解液で囲まれた部分である。
 パックケース13は、放熱部材からなることが好ましい。放熱部材としては、例えば、空気の熱伝導率よりも高い熱伝導率を有する金属、又は樹脂が用いられる。
 本実施形態によると、表示手段により、電池ケース11に収納された負極用内部リード6の位置を判別することができる。そのため、表示手段により判別された負極用内部リード6の位置に基づいて、電池ケース11の外側面における負極用内部リード6と対応する部分が、パックケース13の内側面と接するように、複数の電池12の各々をパックケース13に配置することができるため、負極用内部リード6をパックケース13に近接して配置することができる。そのため、電池12で外部短絡が発生し負極用内部リード6が発熱することがあっても、負極用内部リード6において発熱した熱を、熱伝導性を示す電池ケース11に伝導し、パックケース13に効率良く放熱することができる。特に、パックケース13が放熱部材からなる場合(即ち、パックケース13が放熱特性を有する場合)、パックケース13により効率良く放熱することができる。
 従って、本実施形態に係る電池パックにおいて、外部短絡が発生した電池が過熱に至る虞を低減することができるため、電池の安全性、延いては電池パックの安全性を高めることができる。
 さらに、負極用内部リード6を、パックケース13に近接して配置することにより、外部短絡が発生した電池内に発生した熱(特に、負極用内部リード6において発熱した熱)を、既述の通り、パックケース13に効率良く放熱することができる。即ち、外部短絡時に電池内で発生した熱を電池外に効率良く放熱することができる。そのため、特許文献1に記載の技術のように、特別に新たな構成要素(即ち、一対の放熱板)を設ける必要がないため、電池パックの重量が増大することはない。
 なお、本実施形態では、負極用内部リード6において発熱した熱を、パックケースに効率良く放熱する電池パックの構成として、図2(a) ~(b) に示すように、電池ケース11の外側面における負極用内部リード6と対応する部分を、パックケース13の内側面に接触させた構成を具体例に挙げて説明したが、本発明はこれに限定されるものではない。
 例えば、パックケースと電池との間に、放熱部を設け、電池ケースの外側面における負極用内部リードと対応する部分を、放熱部に接触させた構成でもよい。この構成について、図4を参照しながら説明する。図4は、本発明の第2の実施形態のその他の例に係る電池パックの構成を示す断面図である。
 図4に示すように、電池ケース11の外側面における負極用内部リード6と対応する部分に、放熱部材からなる板状の放熱部14が配置されている。放熱部14は、その一方の面が、パックケース13の内側面に接するように配置されている。放熱部14の他方の面(放熱部14におけるパックケース13の内側面と接する面と相対する面)に、電池ケース11の外側面における負極用内部リード6と対応する部分が接するように、電池12が配置されている。
 このようにすると、電池12で外部短絡が発生し負極用内部リード6が著しく発熱することがあっても、負極用内部リード6において発熱した熱を、電池ケース11に伝導し、放熱部14に効率良く放熱することができる。そのため、放熱部14に効率良く放熱した熱を、パックケース13に効率良く放熱することができる。
 以下に、表示手段が設けられた電池について、表示手段の設置部位として、第1に封口板の外表面、第2に電池ケースの外側面、第3に電池ケースの外底部を例に挙げて説明する。
 <封口板の外表面に表示手段が設けられた電池>
 以下に、封口板の外表面に表示手段が設けられた電池の構成について、図5を参照しながら説明する。図5は、封口板の外表面に表示手段が設けられた電池の構成を示す斜視図である。
 図5に示すように、表示手段15Aが、封口板2の外表面における負極用内部リード6と対応する部分に設けられている。図5に示すように、表示手段15Aが、負極用内部リード6の他端部6bと対応するように配置されている。表示手段15Aの具体例として、例えば、インクジェットにより、封口板9の外表面にライン状に印刷された印刷部が挙げられる。
 封口板の外表面に表示手段が設けられた電池の製造方法について、以下に説明する。
 まず、正極板及び負極板を準備する。
 次に、正極集電体の露出部に、正極用内部リードの一端を接続すると共に、負極集電体の露出部に、負極用内部リードの一端を接続する。その後、正極板及び負極板を、正極板と負極板との間にセパレータを介して捲回し、電極群を構成する。
 次に、電極群の上部に上部絶縁板を配置すると共に、電極群の下部に下部絶縁板を配置する。その後、電極群を電池ケースに収納し、正極用内部リードの他端を、封口板の下板に接続すると共に、負極用内部リードの他端を、電池ケースの内底部に接続する。
 次に、電池ケースの開口部から観察される正極用内部リードの位置に基づいて、負極用内部リードの位置を求め、求められた負極用内部リードの位置を表示する表示手段を、封口板の外表面に設ける。
 ここで、正極板、負極板及びセパレータの各々は、電池の設計に応じて予め設定された長さ、幅及び厚さを有している。また、正極板において、正極用内部リードが接続される正極集電体の露出部は、電池の設計に応じて予め設定された部分(例えば、正極板の中央部)に設けられている。また、負極板において、負極用内部リードが接続される負極集電体の露出部は、電池の設計に応じて予め設定された部分(例えば、負極板の捲き終わり側の端部)に設けられている。また、正極用内部リード及び負極用内部リードの各々は、電池の設計に応じて予め設定された長さ、幅及び厚さを有している。そのため、電池ケースの開口部から観察される正極用内部リードの位置に基づいて、電池ケースの内底部に接続された負極用内部リードの位置を求めることができる。具体的には例えば、図6に示すように、電池ケースの開口部から観察される正極用内部リード5が、封口板9の中心を通る位置P5にある場合、封口板9の中心を基準に、角度αだけ、時計回りに進めた位置P15Aに、負極用内部リード6がある。角度αは、電池の設計に応じて予め求められた角度である。
 次に、電池ケースに非水電解液を注液する。その後、電池ケースの開口部を、ガスケットを介して、封口板の周縁部にかしめることにより、電池を作製する。
 このようにすると、封口板9の外表面に設けた表示手段15Aにより、電池ケース11に収納された負極用内部リード6の位置を判別することができる。
 さらに、電池パックの製造において、パックケースに電池を収納した後であっても、パックケースの開口部から封口板9の外表面が観察されるため、封口板9の外表面に設けた表示手段15Aにより、負極用内部リード6の位置を判別することができる(但し、パックケースの開口部を封口した後は、負極用内部リード6の位置を判別することはできない)。
 なお、上記では、表示手段15Aとして、インクジェットにより、ライン状に印刷された印刷部を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、インクジェットにより、文字若しくは記号等が印刷された印刷部、又は網目状若しくはドット状に印刷された印刷部等でもよい。
 また、上記では、表示手段15Aとして、インクジェットにより、封口板9の外表面における負極用内部リード6と対応する部分に印刷された印刷部を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、封口板の外表面における負極用内部リードと対応する部分に設けられた凹み等でもよい。
 <電池ケースの外側面に表示手段が設けられた電池>
 以下に、電池ケースの外側面に表示手段が設けられた電池について、表示手段として、第1に印刷部、第2に平坦部、及び第3に凸部を例に挙げて説明する。
 -第1の構成例-
 以下に、電池ケースの外側面に表示手段(例えば印刷部)が設けられた電池について、図7(a) ~(b) を参照しながら説明する。図7(a) ~(b) は、電池ケースの外側面に表示手段が設けられた電池の構成を示す図である。具体的には、図7(a) は斜視図であり、図7(b) は、一部切り欠き斜視図である。
 図7(a) ~(b) に示すように、表示手段としての印刷部15Bが、電池ケース11の外側面における負極用内部リード6と対応する部分に設けられている。図7(b) に示すように、印刷部15Bが、負極用内部リード6の一端部6aと対応するように配置されている。印刷部15Bは、例えば、インクジェットにより、電池ケース11の外側面に印刷して形成される。
 負極用内部リード6は、例えば、厚さ0.05mm~0.2mm、幅2mm~5mmである。印刷部15Bは、例えば、幅0.5mm~5mmである。
 このようにすると、電池ケース11の外側面に設けた印刷部15Bにより、電池ケース11に収納された負極用内部リード6の位置を判別することができる。
 -第2の構成例-
 以下に、電池ケースの外側面に表示手段(例えば平坦部)が設けられた電池について、図8(a) ~(b) を参照しながら説明する。図8(a) ~(b) は、電池ケースの外側面に表示手段が設けられた電池の構成を示す図である。具体的には、図8(a) は斜視図であり、図8(b) は電池の外底部側から見た平面図である。
 図8(a) ~(b) に示すように、表示手段として平坦部15Cが、電池ケース11の外側面における負極用内部リード6と対応する部分(言い換えれば、電池ケース11における負極用内部リード6の一端部(図3:6a参照)と対応する部分)に設けられている。
 このようにすると、電池ケース11の外側面に設けた平坦部15Cにより、電池ケース11に収納された負極用内部リード6の位置を判別することができる。
 さらに、第1に例えば、パックケースにおける平坦部15Cと接触する部分の形状を、平板形状にすることにより、電池ケース11の平坦部15Cを、パックケースに全面接触させることができる。第2に例えば、電池ケース11の外側面における負極用内部リード6と対応する部分に放熱部(図4:14参照)を設けた電池パックの場合、放熱部における平坦部15Cと接触する部分の形状を、平板形状にすることにより、電池ケース11の平坦部15Cを、放熱部に全面接触させることができる。
 -第3の構成例-
 以下に、電池ケースの外側面に表示手段(例えば凸部)が設けられた電池について、図9(a) ~(b) を参照しながら説明する。図9(a) ~(b) は、電池ケースの外側面に表示手段が設けられた電池の構成を示す図である。具体的には、図9(a) は斜視図であり、図9(b) は電池の外底部側から見た平面図である。
 図9(a) ~(b) に示すように、表示手段としての凸部15Dが、電池ケース11の外側面における負極用内部リード6と対応する部分(言い換えれば、電池ケース11における負極用内部リード6の一端部(図3:6a参照)と対応する部分)に設けられている。
 このようにすると、電池ケース11の外側面に設けた凸部15Dにより、電池ケース11に収納された負極用内部リード6の位置を判別することができる。
 さらに、第1に例えば、パックケースに、電池ケース11の凸部15Dに嵌合する凹部を設けることにより、パックケースに、電池ケース11の凸部15Dとパックケースの凹部とが嵌合するように、電池を配置することができる。第2に例えば、電池ケース11の外側面における負極用内部リード6と対応する部分に放熱部(図4:14参照)を設けた電池パックの場合、放熱部に、電池ケース11の凸部15Dに嵌合する凹部を設けることにより、放熱部に、電池ケース11の凸部15Dと放熱部の凹部とが嵌合するように、電池を配置することができる。
 電池ケースの外側面に表示手段が設けられた電池の製造方法について、以下に説明する。
 -第1の製法例-
 まず、正極板及び負極板を準備する。
 一方、外側面に表示手段を設けた電池ケースを準備する。
 次に、正極集電体の露出部に、正極用内部リードの一端を接続すると共に、負極集電体の露出部に、負極用内部リードの一端を接続する。その後、正極板及び負極板を、正極板と負極板との間にセパレータを介して捲回し、電極群を構成する。
 次に、電極群の上部に上部絶縁板を配置すると共に、電極群の下部に下部絶縁板を配置する。その後、電極群を電池ケースに収納し、正極用内部リードの他端を、封口板の下板に接続すると共に、負極用内部リードの他端を、電池ケースの内底部に接続する。このとき、負極用内部リードの一端部(図3:6a参照)が、電池ケースの外側面に設けた表示手段と対応するように、電極群を電池ケースに収納する。
 次に、電池ケースに非水電解液を注液する。その後、電池ケースの開口部を、ガスケットを介して、封口板の周縁部にかしめることにより、電池を作製する。
 -第2の製法例-
 まず、正極板及び負極板を準備する。
 次に、正極集電体の露出部に、正極用内部リードの一端を接続すると共に、負極集電体の露出部に、負極用内部リードの一端を接続する。その後、正極板及び負極板を、正極板と負極板との間にセパレータを介して捲回し、電極群を構成する。
 次に、電極群の上部に上部絶縁板を配置すると共に、電極群の下部に下部絶縁板を配置する。その後、電極群を電池ケースに収納し、正極用内部リードの他端を、封口板の下板に接続すると共に、負極用内部リードの他端を、電池ケースの内底部に接続する。
 次に、電池ケースの外側面における負極用内部リードの一端部(図3:6a参照)と対応する部分に、表示手段を設ける。
 次に、電池ケースに非水電解液を注液する。その後、電池ケースの開口部を、ガスケットを介して、封口板の周縁部にかしめることにより、電池を作製する。
 <電池ケースの外底部に表示手段が設けられた電池>
 以下に、電池ケースの外底部に表示手段が設けられた電池について、図10を参照しながら説明する。図10は、電池ケースの外底部に表示手段が設けられた電池の構成を示す図である。
 図10に示すように、表示手段15Eが、電池ケース11の外底部における負極用内部リード6と対応する部分(言い換えれば、電池ケース11における負極用内部リード6の他端部(図3:6b参照)と対応する部分)に設けられている。表示手段15Eの具体例として、例えば、負極用内部リードを電池ケースの内底部に接続する接続時に、電池ケース11の外底部に残る溶接痕が挙げられる。
 電池ケースの外底部に表示手段(例えば溶接痕)が設けられた電池の製造方法について、以下に説明する。
 まず、正極板及び負極板を準備する。
 次に、正極集電体の露出部に、正極用内部リードの一端を接続すると共に、負極集電体の露出部に、負極用内部リードの一端を接続する。その後、正極板及び負極板を、正極板と負極板との間にセパレータを介して捲回し、電極群を構成する。
 次に、電極群の上部に上部絶縁板を配置すると共に、電極群の下部に下部絶縁板を配置する。その後、電極群を電池ケースに収納し、正極用内部リードの他端を、封口板の下板に接続すると共に、負極用内部リードの他端を、電池ケースの内底部に配置する。
 次に、例えば、レーザー溶接法により、電池ケースの外底部にレーザーを当て、電池ケースの内底部に配置された負極用内部リードの他端を、電池ケースの内底部に接続する。このとき、電池ケースの外底部に、溶接痕が残る。このようにして、電池ケースの外底部に、表示手段としての溶接痕を設ける。
 次に、電池ケースに非水電解液を注液する。その後、電池ケースの開口部を、ガスケットを介して、封口板の周縁部にかしめることにより、電池を作製する。
 このようにすると、電池ケース11の外底部に設けた表示手段15Eにより、電池ケース11に収納された負極用内部リード6の位置を判別することができる。
 さらに、負極用内部リードを電池ケースの内底部に接続する接続時に電池ケース11の外底部に残る溶接痕を、表示手段15Eとして利用することができる。そのため、表示手段を設ける工程を別途必要としない。
 なお、第2の実施形態では、表示手段が設けられた電池(即ち、第1の実施形態に係る電池)12が、パックケース13に封入された電池パックを例に挙げて説明したが、本発明はこれに限定されるものではない。即ち、電池に設けられた表示手段は、電池パックの製造における電池をパックケースに収納する収納時には必要とされるものの、電池パックの製造後には必要とされない。そのため、表示手段は、収納後に消失してもよい。そのため、電池に、正式な表示手段ではなく、仮の表示手段を設けてもよい。ここで、「正式な表示手段」とは、電池パックの製造後にも消失せずに残存する表示手段をいう。一方、「仮の表示手段」とは、電池パックの製造における収納時には存在するものの、電池パックの製造後には消失する表示手段をいう。
 電池の構成要素の材料について、以下に記す。
 -正極板-
 正極板は、正極集電体と、正極集電体上に形成された正極活物質層とを有する。
 正極集電体としては、例えば、アルミニウム箔のような金属箔、又は炭素若しくは導電性樹脂からなる薄膜が用いられる。
 正極活物質層は、例えば、正極活物質、導電剤及び結着剤を含む。
 正極活物質の材料としては、例えば、LiCoO2、LiNiO2及びLi2MnO4のようなリチウム含有複合酸化物、これらのうち2種以上を組み合わせた混合物、又はこれらのうち2種以上を組み合わせた複合体物が用いられる。
 導電剤の材料としては、例えば、天然黒鉛及び人造黒鉛のようなグラファイト類、又はアセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラック及びサーマルブラックのようなカーボンブラック類が用いられる。
 結着剤の材料としては、例えば、PVdF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド又はポリイミドが用いられる。
 正極用内部リードの材料としては、例えば、アルミニウムが用いられる。
 -負極板-
 負極板は、負極集電体と、負極集電体上に形成された負極活物質層とを有する。
 負極集電体としては、例えば、銅箔、ステンレス鋼箔、ニッケル箔若しくはチタン箔のような金属箔、又は炭素若しくは導電性樹脂からなる薄膜が用いられる。
 負極活物質層は、例えば、負極活物質、導電剤及び結着剤を含む。また、負極活物質層は、例えば、リチウム金属板又はリチウム合金板でもよい。
 負極活物質の材料としては、例えば、黒鉛のような炭素材料、又はケイ素若しくはスズのようなリチウムイオンを可逆的に吸蔵・放出可能な材料が用いられる。
 導電剤の材料としては、正極活物質層に含まれる導電剤の材料と同じ材料を用いてもよい。
 結着剤の材料としては、正極活物質層に含まれる結着剤の材料と同じ材料を用いてもよい。
 負極用内部リードの材料としては、例えば、ニッケルが用いられる。
 -セパレータ-
 セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンとポリプロピレンとの混合物、又はエチレンとプロピレンとの共重合体が用いられる。
 -非水電解液-
 非水電解液は、例えば、有機溶媒、及び有機溶媒中に溶解させたリチウム塩を含む。
 リチウム塩の材料としては、例えば、LiPF6、LiBF4、LiClO4、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiN(CF3CO2)又はLiN(CF3SO22が用いられる。
 有機溶媒の材料としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート又はエチルメチルカーボネートが用いられる。
 -電池ケース-
 電池ケースの材料としては、例えば、鉄、ニッケル、銅又はアルミニウムが用いられる。
 -パックケース-
 パックケースの材料としては、例えば、ポリカーボネートが用いられる。
 また、パックケースが放熱部材からなる場合、放熱部材としては、空気の熱伝導率よりも高い熱伝導率を有する金属又は樹脂が用いられる。金属としては、例えば、アルミニウムが用いられる。また、樹脂としては、例えば、カーボンファイバー含有樹脂が用いられる。また、セラミックス等の高比熱材料、熱により溶融若しくは昇華することで潜熱として熱を吸収する材料、又は水酸化マグネシウム、炭酸マグネシウム若しくは水酸化アルミニウム等の、分解して熱を吸収する材料等で、パックケースを構成することも可能である。
 -放熱部-
 電池ケースの外側面における負極用内部リードと対応する部分に、放熱部材からなる放熱部を設けた場合、放熱部材としては、空気の熱伝導率よりも高い熱伝導率を有する金属又は樹脂が用いられる。金属としては、例えば、アルミニウムが用いられる。また、樹脂としては、例えば、カーボンファイバー含有樹脂が用いられる。また、セラミックス等の高比熱材料、半田、ろう、低融点ガラス若しくは水等の熱により溶融、蒸発若しくは昇華することで潜熱として熱を吸収する材料、又は水酸化マグネシウム、炭酸マグネシウム若しくは水酸化アルミニウム等の、分解して熱を吸収する材料等で、放熱部を構成することも可能である。
 以下に、本発明を、実施例に基づいて具体的に説明するが、実施例は、本発明の例示に過ぎず、本発明は、実施例に限定されるものではない。
 <実施例1>
 以下に、実施例1の電池の製造方法について、図1を参照しながら説明する。
 (1)正極板の作製
 正極活物質として平均粒径10μmのコバルト酸リチウム(LiCoO2)100重量部、結着剤としてPVdF8重量部、及び導電剤としてアセチレンブラック3重量部に、適量のN-メチル-2-ピロリドン(NMP)を加えて混合し、正極合剤ペーストを得た。
 次に、正極合剤ペーストを、長さ600mm、幅54mm、厚さ20μmの帯状のアルミニウム箔からなる正極集電体の両面に、正極集電体の中央部(即ち、正極用内部リードが接続される正極集電体の露出部)を除いて塗布した。その後、正極合剤ペーストを乾燥させて正極活物質層を形成し、正極集電体、及び正極集電体の両面に形成された正極活物質層からなる積層体を得た。積層体を圧延し、正極活物質層の厚さを70μmとした。このようにして、中央部に正極集電体の露出部を有する帯状の正極板1を作製した。
 次に、長さ50mm、幅3mm、厚さ0.1mmの帯状のアルミニウム製の正極用内部リード5を準備し、超音波溶接法により、正極用内部リード5の一端を、正極集電体の露出部に接続した。
 (2)負極板の作製
 負極活物質として平均粒径20μmの人造黒鉛100重量部、結着剤としてスチレンブタジエンゴム1重量部、及び増粘剤としてカルボキシメチルセルロース1重量部に、適量の水を加えて混合し、負極合剤ペーストを得た。
 次に、負極合剤ペーストを、長さ630mm、幅56mm、厚さ10μmの銅箔からなる負極集電体の両面に、負極集電体の捲き終わり側の端部(即ち、負極用内部リードが接続される負極集電体の露出部)を除いて塗布した。その後、負極合剤ペーストを乾燥させて負極活物質層を形成し、負極集電体、及び負極集電体の両面に形成された負極活物質層からなる積層体を得た。積層体を圧延し、負極活物質層の厚さを65μmとした。このようにして、捲き終わり側の端部に負極集電体の露出部を有する帯状の負極板2を作製した。
 次に、長さ50mm、幅3mm、厚さ0.1mmの帯状のニッケル製の負極用内部リード6を準備し、超音波溶接法により、負極用内部リード6の一端を、負極集電体の露出部に接続した。
 (3)非水電解液の調製
 エチレンカーボネートとエチルメチルカーボネートとを1:1の体積比で混合させた混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させることにより、非水電解液を調製した。
 (4)電池の作製
 正極板1及び負極板2を、正極極1と負極板2との間に厚さ20μmのポリエチレン微多孔膜からなる旭化成(株)製のセパレータ3を介在させて捲回し、電極群4を構成した。このとき、捲回後に、正極用内部リード5が接続された正極集電体の露出部が、中央部に位置すると共に、負極用内部リード6が接続された負極集電体の露出部が、捲き終わり側の端部に位置するように、正極板1及び負極板2を捲回した。また、捲回後に、正極用内部リード5が電極群4の上端から上方に延びると共に、負極用内部リード6が電極群4の下端から下方に延びるように、正極板1及び負極板2を捲回した。
 次に、電極群4の上部に、ポリプロピレン製の上部絶縁板7を配置する一方、電極群4の下部に、ポリプロピレン製の下部絶縁板8を配置した。その後、電極群4を、有底円筒状の鉄製の電池ケース11に収納し、レーザー溶接法により、正極用内部リード5の他端を、封口板9の下板9cに接続する一方、抵抗溶接法により、負極用内部リード6の他端を、電池ケース11の内底部に接続した。
 次に、電池ケース11の外側面における負極用内部リード6と対応する部分に、表示手段としてライン状の印刷部(図7(a),(b):15B参照)を設けた。このとき、ライン状の印刷部の長手方向の中心軸が、負極用内部リード6の長手方向の中心軸と対応するように、電池ケース11の外側面に印刷部を設けた。
 次に、電池ケース11に非水電解液を注液した。その後、電池ケース11における開口部から5mmだけ下に位置する部分に、段部を形成した。電池ケース11の段部上に、リング状のガスケット10を介して、封口板9を配置した。その後、電池ケース11の開口部を、ガスケット10を介して、封口板9の周縁部にかしめることにより、電池ケース11の開口部を封口した。このようにして、直径18mm、高さ65mm、設計容量2600mAhの円筒型のリチウムイオン二次電池を作製した。作製した電池を、実施例1の電池と称す。
 <比較例1>
 電池ケース11の外側面に、表示手段を設けなかったこと以外は、実施例1と同様の方法により電池を作製した。作製した電池を、比較例1の電池と称す。
 [外部短絡試験]
 実施例1の電池を10個用意した。10個の実施例1の電池をそれぞれ、電池1~10と称す。一方、比較例1の電池を10個用意した。10個の比較例1の電池をそれぞれ、電池11~20と称す。
 その後、実施例1の電池1~10、及び比較例1の電池11~20を、25℃の環境下にて、電池電圧が4.25Vに達するまで、1500Aの定電流で充電した。
 その後、図11に示すように、実施例1の電池1~10の各々を、縦100mm、横100mm、厚さ10mmのSUS304(クロム(Cr)及びニッケル(Ni)を含むステンレス鋼)からなる板状の放熱板16上に載置した。このとき、電池ケース11の外側面に設けたライン状の印刷部の長手方向の中心軸が、放熱板16に当接するように、実施例1の電池1~10の各々を放熱板16上に載置した。
 一方、比較例1の電池11~20の各々を、放熱板16上に載置した。
 その後、放熱板16に載置された状態の実施例1の電池1~10、及び放熱板16に載置された状態の比較例1の電池11~20の各々を、60℃の環境下にて1時間放置した。
 その後、放熱板16に載置された状態の実施例1の電池1~10、及び放熱板16に載置された状態の比較例1の電池11~20の各々において、60℃の環境下にて、抵抗値が0.005Ωの試験回路を用いて、正極板と負極板とを10秒間外部短絡させた。このとき、実施例1の電池1~10、及び比較例1の電池11~20の各々において、電池の表面の温度(以下、単に「電池温度」と称す)を測定した。外部短絡試験の結果を、表1に記す。表1は、実施例1の電池1~10の各々の電池温度、及び比較例1の電池11~20の各々の電池温度を示す。
Figure JPOXMLDOC01-appb-T000001
 外部短絡試験では、電池温度が80℃を超えない電池を、優れた安全性を有する電池であると判断した。
 表1に示すように、実施例1の電池1~10のうち電池温度が80℃を超えた電池の個数は、0個であった。これに対して、比較例1の電池11~20のうち電池温度が80℃を超えた電池の個数は、8個であった。
 外部短絡試験の結果から、実施例1の電池1~10は、電池で外部短絡が発生したときに負極用内部リードにおいて発熱した熱を、放熱板16に効率良く放熱することができ、優れた安全性を有する電池であることが確かめられた。
 なお、第1~第2の実施形態及び実施例1では、正極用内部リードが封口板に接続し、負極用内部リードが電池ケースの内底部に接続した電池を具体例に挙げて説明したが、本発明はこれに限定されるものではない。
 例えば、正極用内部リードが電池ケースの内底部に接続し、負極用内部リードが封口板に接続した電池でもよい。この場合、電池で外部短絡が発生したときに正極用内部リードにおいて発熱した熱を、パックケースに効率良く放熱することができる。
 本発明に係る電池が封入された電池パック、及び本発明に係る電池パックは、優れた安全性を有するため、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器及びビデオカメラ等の携帯用電子機器の電源として好適に用いられる。また、本発明に係る電池が封入された電池パック、及び本発明に係る電池パックは、ハイブリッド電気自動車及び燃料電池自動車等の電気モーターを補助する電源、電動工具、掃除機及びロボット等を駆動する駆動用電源、又はプラグインハイブリット自動車(PHEV:plug-in Hybrid Electric Vehicle)の動力源として好適に用いられる。
 1 正極板
 2 負極板
 2a 負極集電体の露出部
 3 セパレータ
 4 電極群
 5 正極用内部リード
 6 負極用内部リード
 6a 一端部
 6b 他端部
 6c 中央部
 7 上部絶縁板
 8 下部絶縁板
 9 封口板
 9a 正極キャップ
 9b 弁体
 9c 下板
 10 ガスケット
 11 電池ケース
 12 電池
 13 パックケース
 14 放熱部
 15A 表示手段(印刷部)
 15B 印刷部
 15C 平坦部
 15D 凸部
 15E 表示手段(溶接痕)
 16 放熱板

Claims (19)

  1.  電池パックのパックケースに封入される電池であって、
     正極板と負極板とが多孔質絶縁層を介して捲回又は積層されて構成された電極群が、電解液と共に電池ケースに収納され、封口板により前記電池ケースの開口部が封口され、
     前記正極板及び前記負極板のうちの一方の極板に電気的に接続された第1の内部リードが、前記電池ケースの内底部に接続され、
     前記正極板及び前記負極板のうちの他方の極板に電気的に接続された第2の内部リードが、前記封口板に接続され、
     前記第1の内部リードが、前記電池ケースの内側面に近接して配置され、
     前記電池ケースに収納された前記第1の内部リードの位置を表示する表示手段が設けられていることを特徴とする電池。
  2.  前記第1の内部リードは、前記負極板に電気的に接続された負極用内部リードであり、
     前記第2の内部リードは、前記正極板に電気的に接続された正極用内部リードであることを特徴とする請求項1に記載の電池。
  3.  前記電極群は、前記正極板と前記負極板とが前記多孔質絶縁層を介して捲回されて構成された電極群であり、
     前記第1の内部リードが電気的に接続された極板は、集電体と、前記集電体の表面に前記集電体の表面の一部を露出するように形成された活物質層とを有し、
     前記集電体の表面における前記活物質層から露出された集電体の露出部に、前記第1の内部リードが接続され、
     前記集電体の露出部は、前記第1の内部リードが電気的に接続された極板における捲き終わり側の端部に設けられていることを特徴とする請求項1に記載の電池。
  4.  前記表示手段は、前記封口板の外表面に設けられていることを特徴とする請求項1~3のうちいずれか1項に記載の電池。
  5.  前記表示手段は、前記封口板の外表面における前記第1の内部リードと対応する部分に印刷された印刷部であることを特徴とする請求項4に記載の電池。
  6.  前記表示手段は、前記電池ケースの外側面に設けられていることを特徴とする請求項1~3のうちいずれか1項に記載の電池。
  7.  前記表示手段は、前記電池ケースの外側面における前記第1の内部リードと対応する部分に印刷された印刷部であることを特徴とする請求項6に記載の電池。
  8.  前記電池ケースは、円筒型の電池ケースであり、
     前記表示手段は、前記電池ケースの外側面における前記第1の内部リードと対応する部分に設けられた平坦部であることを特徴とする請求項6に記載の電池。
  9.  前記表示手段は、前記電池ケースの外側面における前記第1の内部リードと対応する部分に設けられた凸部であることを特徴とする請求項6に記載の電池。
  10.  前記表示手段は、前記電池ケースの外底部に設けられていることを特徴とする請求項1~3のうちいずれか1項に記載の電池。
  11.  前記表示手段は、前記電池ケースの外底部おける前記第1の内部リードと対応する部分に残る溶接痕であることを特徴とする請求項10に記載の電池。
  12.  複数の電池と、前記複数の電池が封入されたパックケースとを備えた電池パックであって、
     前記複数の電池の各々は、
      正極板と負極板とが多孔質絶縁層を介して捲回又は積層されて構成された電極群が、電解液と共に電池ケースに収納され、封口板により前記電池ケースの開口部が封口され、
      前記正極板及び前記負極板のうちの一方の極板に電気的に接続された第1の内部リードが、前記電池ケースの内底部に接続され、
      前記正極板及び前記負極板のうちの他方の極板に電気的に接続された第2の内部リードが、前記封口板に接続され、
      前記第1の内部リードが、前記電池ケースの内側面に近接して配置され、
      前記電池ケースの外側面における前記第1の内部リードと対応する部分が前記パックケースの内側面と対向するように、前記パックケースに配置されていることを特徴とする電池パック。
  13.  前記複数の電池の各々は、前記電池ケースの外側面における前記第1の内部リードと対応する部分が前記パックケースの内側面に接するように、前記パックケースに配置されていることを特徴とする請求項12に記載の電池パック。
  14.  前記電池ケースの外側面における前記第1の内部リードと対応する部分に配置された放熱部材からなる放熱部をさらに備えていることを特徴とする請求項12に記載の電池パック。
  15.  前記パックケースは、放熱部材からなることを特徴とする請求項12~14のうちいずれか1項に記載の電池パック。
  16.  前記複数の電池の各々には、前記電池ケースに収納された前記第1の内部リードの位置を表示する表示手段が設けられていることを特徴とする請求項12~15のうちいずれか1項に記載の電池パック。
  17.  前記表示手段は、前記封口板の外表面に設けられていることを特徴とする請求項16に記載の電池パック。
  18.  前記表示手段は、前記電池ケースの外側面に設けられていることを特徴とする請求項16に記載の電池パック。
  19.  前記表示手段は、前記電池ケースの外底部に設けられていることを特徴とする請求項16に記載の電池パック。
PCT/JP2010/003449 2009-06-22 2010-05-21 電池及び電池パック WO2010150458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010538671A JPWO2010150458A1 (ja) 2009-06-22 2010-05-21 電池及び電池パック
US13/060,208 US20110151297A1 (en) 2009-06-22 2010-05-21 Battery and battery pack
CN2010800026603A CN102160208A (zh) 2009-06-22 2010-05-21 电池和电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-147452 2009-06-22
JP2009147452 2009-06-22

Publications (1)

Publication Number Publication Date
WO2010150458A1 true WO2010150458A1 (ja) 2010-12-29

Family

ID=43386248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003449 WO2010150458A1 (ja) 2009-06-22 2010-05-21 電池及び電池パック

Country Status (5)

Country Link
US (1) US20110151297A1 (ja)
JP (1) JPWO2010150458A1 (ja)
KR (1) KR20110040931A (ja)
CN (1) CN102160208A (ja)
WO (1) WO2010150458A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162764A (ja) * 2016-03-11 2017-09-14 トヨタ自動車株式会社 電池モジュールの製造方法
WO2019187776A1 (ja) * 2018-03-30 2019-10-03 三洋電機株式会社 円筒形電池及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090176B2 (en) * 2012-10-01 2015-07-28 Fca Us Llc Method and device for electrochemical cell propagation avoidance in a battery module
JP2014086342A (ja) * 2012-10-25 2014-05-12 Sanyo Electric Co Ltd 電池パックとその製造方法
US9912020B2 (en) * 2013-03-12 2018-03-06 Milwaukee Electric Tool Corporation Battery pack with heat sink
WO2016174811A1 (ja) * 2015-04-27 2016-11-03 三洋電機株式会社 円筒形電池、並びにそれに用いる集電部材及びその製造方法
KR102175940B1 (ko) * 2017-08-22 2020-11-06 주식회사 엘지화학 배터리 팩 및 이를 포함하는 자동차
KR102263763B1 (ko) * 2018-01-17 2021-06-09 주식회사 엘지에너지솔루션 방열 및 연쇄발화 방지 구조를 구비한 멀티 레이어 원통형 전지모듈 및 이를 포함하는 전지팩
KR102353934B1 (ko) * 2018-03-09 2022-01-19 주식회사 엘지에너지솔루션 원통형 이차전지 모듈 및 이를 포함하는 이차전지 팩
US10573864B2 (en) * 2018-03-23 2020-02-25 Chongqing Jinkang New Energy Vehicle Co., Ltd. Battery cells for battery packs in electric vehicles
US20210305634A1 (en) * 2020-03-31 2021-09-30 Samsung Sdi Co., Ltd. Battery system with a flexible printed circuit
CN112968234A (zh) * 2021-01-22 2021-06-15 刘昌国 锂电池外壳、锂电池正极盖板及锂电池
CN114204223B (zh) * 2022-02-18 2022-05-13 宁德时代新能源科技股份有限公司 电池单体、电池、用电装置、制造电池单体的方法和设备
CN114883517A (zh) * 2022-06-07 2022-08-09 江门市宏力能源有限公司 一种提高大电流放电容量的电池极片制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590806U (ja) * 1992-05-11 1993-12-10 三洋電機株式会社 電池パック
JP2004103382A (ja) * 2002-09-09 2004-04-02 Hitachi Maxell Ltd 乾電池およびパック電池
JP2007311083A (ja) * 2006-05-16 2007-11-29 Gs Yuasa Corporation:Kk 蓄電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636016B2 (en) * 2000-10-16 2003-10-21 Toshiba Battery Co., Ltd. Battery pack and backup power supply device utilizing the battery pack
JP4578147B2 (ja) * 2004-04-30 2010-11-10 三洋電機株式会社 パック電池
CN1780040A (zh) * 2004-11-22 2006-05-31 中山中炬森莱高技术有限公司 新型动力电池单元及集成式电池组
CN2817081Y (zh) * 2005-06-20 2006-09-13 河南环宇集团有限公司 卷绕式动力锂离子电池
JP2008243708A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 非水電解質二次電池および非水電解質二次電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590806U (ja) * 1992-05-11 1993-12-10 三洋電機株式会社 電池パック
JP2004103382A (ja) * 2002-09-09 2004-04-02 Hitachi Maxell Ltd 乾電池およびパック電池
JP2007311083A (ja) * 2006-05-16 2007-11-29 Gs Yuasa Corporation:Kk 蓄電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162764A (ja) * 2016-03-11 2017-09-14 トヨタ自動車株式会社 電池モジュールの製造方法
WO2019187776A1 (ja) * 2018-03-30 2019-10-03 三洋電機株式会社 円筒形電池及びその製造方法
JPWO2019187776A1 (ja) * 2018-03-30 2021-04-30 三洋電機株式会社 円筒形電池及びその製造方法
US11717916B2 (en) 2018-03-30 2023-08-08 Panasonic Energy Co., Ltd. Cylindrical battery and method of manufacturing same
JP7341123B2 (ja) 2018-03-30 2023-09-08 パナソニックエナジー株式会社 円筒形電池及びその製造方法

Also Published As

Publication number Publication date
US20110151297A1 (en) 2011-06-23
KR20110040931A (ko) 2011-04-20
JPWO2010150458A1 (ja) 2012-12-06
CN102160208A (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2010150458A1 (ja) 電池及び電池パック
US9184426B2 (en) Battery connection member and battery module using the same
US8318337B2 (en) Battery including electrode lead having high resistant portion
WO2009150791A1 (ja) 電池
WO2014119308A1 (ja) 密閉型電池
US20100233524A1 (en) Cylindrical non-aqueous electrolyte secondary battery
US8309250B2 (en) Battery having fire extinguishing element in mesh form
US8372544B2 (en) Non-aqueous electrolyte secondary battery
JP2007200755A (ja) 電池
US20100136423A1 (en) Secondary battery
JP7027632B2 (ja) 非対称ノッチが形成された電極リードを含むパウチ型二次電池
JP2008108648A (ja) 蓄電装置及び冷却システム
JP2012226826A (ja) 二次電池及び携帯電子機器
JP2013219027A (ja) 非水電解質二次電池
JP2003142068A (ja) 非水電解質二次電池
JP2007194203A (ja) リチウムイオン二次電池
JP4053802B2 (ja) 電気化学デバイス
JP2004178914A (ja) バイポーラ電極およびその電極を用いたバイポーラ二次電池
JP5113959B2 (ja) 角形電池
JP3579227B2 (ja) 薄形二次電池
JP2009259749A (ja) 非水電解液二次電池
JP2002358947A (ja) 電気化学デバイス
JP2018098154A (ja) 蓄電素子、蓄電装置及び蓄電素子の製造方法
JP3878798B2 (ja) 電気化学デバイス
WO2023176499A1 (ja) 電池の安全機構および電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002660.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010538671

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117003600

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13060208

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791784

Country of ref document: EP

Kind code of ref document: A1