WO2010150366A1 - 光源装置およびこれを備えた投写型表示装置 - Google Patents

光源装置およびこれを備えた投写型表示装置 Download PDF

Info

Publication number
WO2010150366A1
WO2010150366A1 PCT/JP2009/061496 JP2009061496W WO2010150366A1 WO 2010150366 A1 WO2010150366 A1 WO 2010150366A1 JP 2009061496 W JP2009061496 W JP 2009061496W WO 2010150366 A1 WO2010150366 A1 WO 2010150366A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
light source
hole
source device
Prior art date
Application number
PCT/JP2009/061496
Other languages
English (en)
French (fr)
Inventor
宮崎 健二
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2009/061496 priority Critical patent/WO2010150366A1/ja
Priority to JP2011519426A priority patent/JP5201612B2/ja
Priority to US13/375,179 priority patent/US8944638B2/en
Publication of WO2010150366A1 publication Critical patent/WO2010150366A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • F21V29/59Cooling arrangements using liquid coolants with forced flow of the coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light source device and a projection display device including the same.
  • a means for cooling the LED module for example, a large heat sink and an air cooling fan are provided on the back side of a copper substrate of about 30 mm square on which the LED as a light emitting element is mounted, that is, on the side opposite to the light emitting surface of the LED. Means such as attachment are taken.
  • a large heat sink and an air cooling fan are provided on the back side of a copper substrate of about 30 mm square on which the LED as a light emitting element is mounted, that is, on the side opposite to the light emitting surface of the LED.
  • Means such as attachment are taken.
  • FIGS. 1 to 3 of Patent Document 1 Japanese Patent Laid-Open No. 2007-148341
  • there is also an efficient cooling method such as a liquid cooling method in which a water-cooling heat receiving jacket is attached to the back side of the substrate and cooled. It is taken.
  • the thermal resistance from the junction between the LED and the substrate to the back side of the LED substrate, and the allowable temperature of this junction generally depend on the form of the LED module.
  • specifications and data sheets also describe the thermal resistance value (hereinafter referred to as Rj-b) between the joint and the back side of the LED substrate, and the allowable temperature of the joint.
  • the junction temperature affects the life of the light source, and as the junction temperature increases, the life of the light source decreases accordingly.
  • a projection display device using an LED light source has advantages such as a long light source life, a wide color reproduction range compared to a discharge lamp, and an instant lighting / extinguishing capability. Therefore, in order to realize a projection display device having a long light source lifetime, it is desirable to prevent the junction temperature from exceeding an allowable range, or to use the junction temperature as low as possible.
  • the thermal resistance Rj-b and the supply power The temperature rise value from the junction to the back side of the LED substrate can be calculated. Furthermore, since the limit temperature of the junction is determined, if the ambient temperature is determined, the limit of power supplied to the LED module can be calculated.
  • the temperature rise from the junction to the back side of the LED substrate is 105 ° C. If the ambient temperature is 35 ° C., the junction temperature is 140 ° C. by adding this ambient temperature to the temperature rise 105 ° C.
  • the maximum allowable temperature of the LED junction temperature is about 120 to 130 ° C. For this reason, when a large power exceeding 150 W is supplied, there is a problem that the junction temperature exceeds the maximum allowable temperature.
  • the present invention provides a solution that can solve the problems of the background art as described above.
  • An example of the object is to provide a light source device capable of effectively cooling the surface side of a substrate on which a light emitting element is mounted, and a projection display device including the light source device.
  • another object is to provide a light source device that does not require a new space for the light emitting element cooling means on the substrate surface side and a projection display device including the same.
  • the light source device of one embodiment of the present invention includes a substrate, a light-emitting element mounted on the substrate, and a first member.
  • the substrate is provided with a first through hole and a second through hole.
  • the first member is disposed so as to surround the first through hole, the second through hole, and the light emitting element, and forms a flow path that passes through the light emitting surface of the light emitting element together with the substrate. And the 1st through-hole and the 2nd through-hole, and the channel are connected.
  • the projection display device of one embodiment of the present invention includes the above-described light source device.
  • the light emitting surface of the light emitting element is passed between the substrate and the optical element supporting member disposed so as to surround the light emitting element.
  • a flow path is formed through which a fluid capable of cooling the light emitting surface flows.
  • the flow path that is, the internal space between the optical element member and the substrate functions as a light emitting element cooling means. Therefore, it is not necessary to separately provide a means for cooling the heat generated from the light emitting element outside the optical element supporting member surrounding the light emitting element on the substrate surface. Therefore, it is not necessary to newly secure a cooling unit space on the light emitting surface side of the light emitting element, that is, on the substrate surface side.
  • the heat accompanying the radiation of the light emitted from the light emitting surface of the light emitting element can be cooled by the convection of the fluid passing through the light emitting surface.
  • a projection display device can be provided.
  • FIG. 1 is a perspective view of a light source device according to a first embodiment of the present invention. It is the top view seen from the light emission surface side of the light source device which concerns on the 1st Embodiment of this invention. It is sectional drawing in the cut surface of the light source device shown in FIG. It is a schematic block diagram explaining operation
  • FIG. 1 is an exploded view showing the configuration of the light source device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of the light source device according to the first embodiment of the present invention.
  • FIG. 3 shows a top view of the light source device according to the first embodiment of the present invention viewed from the light emitting side.
  • FIG. 4 shows a cross-sectional view of the light source device of FIG.
  • FIG. 5 is a schematic diagram for explaining the operation of the light source device of FIG. Note that the radiator is not shown in FIGS.
  • the light source device includes a light emitting element module support member 100, a light emitting element module 200, an optical element support member 300, an optical element 400, a fixing screw 500, and a radiator 600.
  • a light emitting element module support member 100 As illustrated in FIG. 1, the light source device according to the first embodiment of the present invention includes a light emitting element module support member 100, a light emitting element module 200, an optical element support member 300, an optical element 400, a fixing screw 500, and a radiator 600.
  • the light emitting element module support member 100 can support the light emitting element module 200 as shown in FIG. 4 and is disposed on the side opposite to the light emitting surface 211 side of the light emitting element 210. Further, in the light emitting element module support member 100, a cylindrical pipe line 150 through which a fluid, particularly a gas flows, is provided.
  • the pipe 150 has first and second holes 110 and 111 that communicate with a flow path 700 formed by the optical element support member 300 and the light emitting element module support member 100.
  • the fluid inlet or the fluid outlet of the pipe line 150 includes a first hole 110, a second hole 111, a third hole 120, and a fourth hole 121.
  • the first hole 110 is connected to the third hole 120
  • the second hole 111 is connected to the fourth hole 121.
  • fluid is supplied by a fluid supply means (not shown) provided outside the light emitting element module support member 100.
  • This fluid flows into the third hole 120 of the conduit 150 as shown in FIG.
  • the fluid that has flowed into the third hole 120 flows into the flow path 700 from the first hole 110 through the pipe 150.
  • the fluid is heated by passing through the light emitting surface 211 of the light emitting element 210 disposed in the flow path 700, and then flows into the pipe line 150 from the second hole 111.
  • the fluid is discharged out of the light emitting element module support member 100 from the fourth hole 121 which is an outlet.
  • the fluid flow shown in FIG. 4 flows from the third hole 120 arranged at the right end of the pipe line 150 as described above, and finally the fourth flow arranged at the left end of the pipe line 150.
  • the pipe line 150 and the flow path 700 may be configured so that the fluid that has passed through the pipe line 150 flows into the flow path 700 from at least one of the two holes 110 and 111. More specifically, the fluid flows in from the fourth hole 121 arranged at the left end of the conduit 150 and finally the fluid is discharged from the third hole 120 arranged at the right end of the conduit 150. It may be a form.
  • the pipe line 150 has two edges that form the first hole 110 and the second hole 111.
  • the two edge portions protrude from the tube 150 side of the light emitting element module support member 100 toward the flow path 700 formed by the substrate 290 and the optical element support member 300 (see FIG. 4).
  • Each of the protruding edges (projections) is inserted into a plurality of through holes 220 provided in the substrate 290 of the light emitting element module 200.
  • the light emitting element module 200 is assembled with the light emitting element module support member 100 so as to be aligned with high accuracy. That is, each edge functions as a positioning unit for the light emitting element module 200 with respect to the light emitting element module support member 100.
  • each edge may be provided at an arbitrary position of the light emitting element module support member 100. Although two are provided in FIG. 1, three or more may be provided. In addition, each edge may be formed integrally with the light emitting element module support member 100, or may be constituted by a separate cylindrical part and press-fitted into the light emitting element module support member 100.
  • the light emitting element module support member 100 is integrally formed using a material having high thermal conductivity such as copper or aluminum.
  • the light emitting element module support member 100 can be formed as a plurality of components with the position of the third hole 120 or the fourth hole 121 as the boundary of the components.
  • the light emitting element module 200 is attached to the surface of the light emitting element module support member 100 provided with the plurality of holes 110, 111, 120, and 121 (see FIG. 1).
  • the light emitting element module 200 includes a substrate 290 and a light emitting element 210.
  • the light emitting element 210 is mounted on the substrate 290 and has a light emitting surface 211 that emits light to the optical element 400 side.
  • the substrate 290 has a plurality of through holes 220 extending in the thickness direction.
  • Each through hole 220 can be provided at an arbitrary position on the substrate 290 corresponding to the position of each edge forming the first hole 110 and the second hole 111. In FIG. 1, two edge portions are provided, but three or more edge portions may be provided. In particular, since the accuracy of the position of the light emitting element 210 is required, each through hole 220 is preferably provided as close to the light emitting element 210 as possible.
  • each edge may have a hollow cubic shape, and the exit of each through hole may have a polygonal shape.
  • the light emitting element module 200 further includes a power connector 230, a power cable 240, a temperature sensor connector 250, and a temperature sensor cable 260 as shown in FIG.
  • a power cable 240 is inserted into the power connector 230, and a temperature sensor cable 260 is inserted into the temperature sensor connector 250.
  • each of the power connector 230 and the power cable 240 shown in FIG. 2 has two terminals, but an arbitrary number of terminals can be adopted depending on the configuration of the light emitting chip of the light emitting element 210.
  • the light emitting element 210 emits light when electric power is supplied to the light emitting element module 200 from a power source (not shown) via the power cable 240.
  • the temperature sensor cable 260 is connected to a temperature measurement component (not shown) mounted on the light emitting element module 200, and is wired through the temperature sensor connector 250.
  • a thermistor or the like is used as the temperature measurement component, and the temperature of the light emitting element 210 can be monitored by this temperature measurement component.
  • the optical element supporting member 300 is placed on the light emitting element module supporting member 100 as shown in FIG. 4 showing a cross section taken along the cutting line 800 in FIG. Note that the cutting line 800 is on a straight extension line connecting the first hole 110, the second hole 111, the third hole 120, the fourth hole 121, and the light emitting element 210.
  • the optical element support member 300 is disposed on the light emitting surface 211 side so as to surround the substrate 290 and the light emitting element 210 and supports the optical element 400. Further, the optical element support member 300 is provided with a hole for communicating the flow path 7 with each of the first hole 110 and the second hole 111.
  • the optical element support member 300 forms a flow path 700 together with the substrate 290.
  • the flow path 700 extends along the cutting line 800.
  • the flow path 700 is formed in a concave shape in the optical element support member 300.
  • a fluid, particularly gas, that can cool the light exit surface 211 by passing through the light exit surface 211 flows through the flow path 700.
  • the optical element 400 is composed of a plurality of lenses as shown in FIG. 4, and refracts the light emitted from the light emitting surface 211. Further, the optical element 400 is disposed in a recess provided on the upper part of the optical element support member 300 located on the light emitting surface 211 side of the light emitting element 210 (see FIG. 4). Note that a portion of the optical element 400 that is close to the light emitting element 210 captures as much light emitted from the light emitting element 210 as possible, and thus is preferably as close to the light emitting element 210 as possible.
  • the fixing screw 500 is means for fixing the light emitting element module 200 to the light emitting element module support member 100 as shown in FIG.
  • FIGS. 1 to 3 show a form in which both members 100 and 200 are fixed with four screws, the number of the members can be selected as appropriate.
  • the heat radiator 600 is attached to a surface opposite to the surface on which the light emitting element module 200 is placed on the light emitting element module support member 100 as shown in FIG.
  • the radiator 600 is made of a metal part having high thermal conductivity such as copper or aluminum, and it is preferable to improve the cooling performance by applying air with an axial fan or the like.
  • a TIM Thermal Interface Module
  • a heat conductive paste or a heat conductive sheet is provided at a contact portion between the light emitting element module 200 and the light emitting element module support member 100. It is preferable to insert. Or you may insert this TIM in the contact location of the light emitting element module support member 100 and the heat radiator 600.
  • the light source device configured as described above has the following effects.
  • the light emitted from the light emitting element 210 passes through the optical element 400 and illuminates the projection system optical component at the subsequent stage.
  • the light emitting element 210 emits heat as the light is emitted, but an LED is used for the light emitting element 210, and about 90% of the supplied power is unintended heat.
  • heat is radiated from the light emitting element 210 in a radial manner as indicated by arrows 270 and 280.
  • the heat radiated in the direction indicated by the arrow 280 is transmitted to the light emitting element module support member 100 by heat conduction, which is a heat transfer form between solids, and then transmitted to the radiator 600.
  • the radiator 600 Since the radiator 600 has a large number of fins and is made of a metal material having high thermal conductivity, the heat transmitted to the radiator 600 is quickly transmitted to the fins. As a result, heat is exchanged by convection of the fluid around the fins for efficient cooling. *
  • the cooling fluid that has entered the third hole 120 of the conduit 150 enters the flow path 700 through the first hole 110 as indicated by the arrow 130 in FIG. Thereafter, the fluid passes through the light emitting element 210 and is exhausted from the second hole 111 through the fourth hole 121.
  • the structure for generating and supplying the fluid entering the third hole 120 is omitted, but a flow path for guiding the fluid to the third hole 120 is formed, and the fluid is supplied by a blower fan or an air pump. You may blow in the direction of arrow 130. Alternatively, the wind may be sucked in the direction of arrow 140 from the fourth hole 121 with a blower fan or the like.
  • the heat radiated from the light emitting element 210 indicated by the arrows 270 and 280 is transmitted through the light emitting element module support member 100 and cooled from the radiator 600, and the fluid supplied from the first hole 110. Cooled by two ways with the method cooled by. Therefore, it can cool efficiently also with respect to more calorific value. As the cooling performance is increased, more power can be supplied to the light emitting element 210, so that the light emitting element 210 can emit brighter light.
  • the light emitting surface 211 can be cooled by passing the light emitting surface 211 of the light emitting element 210 between the substrate 290 and the optical element supporting member 300 disposed so as to surround the light emitting element 210.
  • a flow path 700 through which a fluid flows is formed. Accordingly, the flow path 700, that is, the internal space between the optical element member and the substrate 290 functions as the light emitting element 210 cooling means. Therefore, it is not necessary to separately provide a means for cooling the heat generated from the light emitting element 210 outside the optical element support member 300 surrounding the light emitting element 210 on the surface of the substrate 290. Therefore, it is not necessary to newly secure a cooling unit space on the light emitting surface 211 side of the light emitting element 210, that is, on the surface side of the substrate 290.
  • FIG. 6 is an exploded view showing the configuration of the light source device according to the second embodiment of the present invention.
  • FIG. 7 shows a perspective view of a light source device according to the second embodiment of the present invention. In this figure, the radiator is omitted.
  • FIG. 8 shows a top view of the light source device according to the second embodiment of the present invention viewed from the light emitting side. In this figure, the radiator is also omitted.
  • FIG. 9 shows a cross-sectional view of the light source device shown in FIG. This cutting line is a straight line connecting the outlet, the inlet, the inlet, the outlet, and the light emitting element, as in FIG. 3 showing the light source device according to the first embodiment.
  • FIG. 10 is a schematic configuration diagram showing the operation of the light source device shown in FIG.
  • the optical element support member 300 is provided with a plurality of flow paths 700 and 710, and the flow path 710 has two discharge paths. This is a point having an outlet 711. More specifically, the optical element support member 300 of the light beam device according to the present embodiment forms another flow path 710 that extends in a direction perpendicular to the direction in which the flow path 700 extends together with the substrate 290. Another channel 710 has two outlets 711 arranged in a direction perpendicular to the direction in which the channel 700 extends. Then, the fluid flows into the flow path 700 from both of the two holes 110 and 111 of the pipe line 150. Furthermore, the fluid heated through the light emitting surface 211 arranged in the flow path 700 is discharged from the two discharge ports 711 through another flow path 710.
  • the form in which the fluid is supplied from both of the two holes 110 and 111 can increase the flow rate as compared with the form in which the fluid is supplied from one of the holes, thereby improving the cooling performance. Furthermore, since the flow path 710 different from the flow path 700 is formed by the optical element support member 300 and the substrate 290, the flow path volume in the optical element support member 300 increases. Further, since two discharge ports 711 are provided in another flow path 710, the flow volume of the fluid heated by heat exchange with the radiant heat generated from the light emitting surface 211 of the light emitting element 210 is increased. It is effectively discharged out of the light source device from the two discharge ports 711 through another increased flow path 710.
  • the light source device configured as described above has the following effects.
  • heat is radiated radially from the light emitting element 210 as indicated by arrows 270 and 280.
  • the heat radiated in the direction indicated by the arrow 280 is transmitted to the light emitting element module support member 100 by heat conduction, which is a heat transfer form between solids, and then transmitted to the radiator 600. Since the radiator 600 has a large number of fins, the heat transferred to the fins is efficiently cooled by heat exchange by convection of fluid around the fins. *
  • the fluid that has entered the third hole 120 of the conduit 150 enters the flow path 700 through the first hole 110, and passes through the light emitting surface 211 of the light emitting element 210. It passes through and is exhausted from the two outlets of the flow path 710. Further, as indicated by an arrow 140 in FIG. 10, the fluid that has entered the fourth hole 121 of the conduit 150 enters the flow path 700 through the second hole 111. Then, the fluid passes through the light emitting element 210 and is discharged from the two outlets 711 of the channel 710 as indicated by an arrow 720 in FIG. In FIG. 10, the structure for generating and supplying the fluid flowing into the third hole 120 and the fourth hole 121 is omitted as in FIG.
  • a flow path that guides the fluid to the third hole 120 may be formed as in the first embodiment, and the fluid may be blown in the direction of the arrow 130 with a blower fan or an air pump. Alternatively, wind may be sucked in the direction of the arrow 140 from the fourth hole 121 with a blower fan or the like.
  • the heat radiated from the light emitting element 210 indicated by the arrow 270 in FIG. 10 enters the optical element 210 that enters the flow path 700 through the first hole 110 and the second hole 111 of the conduit 150.
  • the heat exchange is effectively performed by the convection of the cooling fluid passing through the light exit surface 211 of the light. Therefore, the heat accompanying the radiation of the light emitted from the light emitting element 210 indicated by the arrow 270 is efficiently cooled.
  • the heat radiated from the light emitting element 210 indicated by the arrows 270 and 280 is transmitted from the light emitting element module support member 100 to be cooled from the radiator 600, and the first hole 110 and the second hole.
  • the cooling is performed by two methods, that is, cooling by the fluid supplied from 111. Therefore, it is possible to effectively cool even a larger amount of heat generation. As the cooling performance is increased, more power can be supplied to the light emitting element 210, so that the light emitting element 210 can emit brighter light.
  • the fluid is the light emitting element 210. May be discharged from the outlet of the flow path 710 without passing through. Therefore, the light emitting element 210 may not be uniformly cooled.
  • the extending direction of the flow path 710 of this embodiment is the cutting line 800, that is, the flow so that the fluid flowing from the flow path 700 to the flow path 710 is in the direction of the arrow 720 shown in FIG. It is preferable to be disposed at a position perpendicular to the direction in which the path 700 extends.
  • the straight line connecting both outlets 711 of the flow path 710 is also preferably perpendicular to the cutting line 800, that is, the direction in which the flow path 700 extends.
  • the light emitting surface 211 of the light emitting element 210 passes between the substrate 290 and the optical element support member 300 disposed so as to surround the light emitting element 210.
  • a flow path 700 through which a fluid capable of cooling the light emitting surface 211 flows is formed.
  • the flow path 710 different from the flow path 700 is formed by the optical element support member 300 and the substrate 290, the flow path volume in the optical element support member 300 increases. Accordingly, the flow path 700, that is, the internal space between the optical element member and the substrate 290 functions as the light emitting element 210 cooling means.
  • FIG. 11 is a schematic diagram showing a configuration of a projection display device to which the light source device according to each embodiment of the present invention is applied.
  • 11 includes a light source device 10R, a light source device 10G, a light source device 10B, a color synthesis optical system 20, an illumination optical system 30, a panel unit 40, a light modulation element 41, and a projection optical system 50.
  • the projection display device includes a light source device 10R that emits red light, a light source device 10G that emits green light, and a light source device 10B that emits blue light.
  • Light-emitting diodes are preferably used for the light source device 10R, the light source device 10G, and the light source device 10B.
  • the color synthesis optical system 20 is preferably a cross dichroic mirror or a cross dichroic prism.
  • the light source device 10G is linearly transmitted through the color synthesis optical system 20, and the light source device 10R and the light source device 10B are disposed so that the optical path is substantially perpendicular to the light source device 10G.
  • the illumination optical system 30 functions to uniformly illuminate the light modulation elements 41 with illumination light from the light source devices 10R, 10G, and 10B.
  • the light modulation element 41 is disposed in the panel unit 40.
  • the light modulation element 41 is a transmissive liquid crystal panel and uses an FSC (Field Sequential Color) display method.
  • FSC Field Sequential Color
  • the light modulation element 41 has shown the example which uses the transmissive liquid crystal display panel in FIG. 11, it is not limited to this form. That is, a reflective liquid crystal display panel such as a DMD (Digital Micromirror Device) or an LCoS (Liquid Crystal on Silicon) (registered trademark) panel can be used by changing the layout of the illumination optical system or the projection optical system.
  • the projection optical system 50 has a function of projecting illumination light modulated by the light modulation element 41 onto a screen (not shown).
  • the red light source, the green light source, and the blue light source are sequentially turned on, and the light modulation elements are used for the R light image signal, the G color video signal, and the B light, respectively. Modulate according to the color video signal. Then, R color, G color, and B color images are sequentially displayed, and they are synthesized and recognized as a color image by human eyes.
  • the light of each color emitted from the light source devices 10R, 10G, and 10B is matched with the optical path by the color synthesizing unit 20 to become one optical path.
  • the illumination optical system 30 illuminates the light modulation element 41 in the panel unit 40.
  • the illumination light incident on the light modulation element 41 is light-modulated by the light modulation element 41, and then an image is projected onto a screen (not shown) by the projection lens 50. *

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

 発光素子基板の表面側を効果的に冷却することが可能な光源装置およびこれを備えた投写型表示装置を提供する。 光源装置は、基板(290)と、発光素子(210)と、光学素子(400)と、光学素子支持部材(300)とを有する。基板(290)には2つの貫通穴(220)が設けられている。発光素子(210)は基板(290)上に実装される。光学素子支持部材(300)は2つの貫通穴(220)および発光素子(210)を取り囲むように配されていて、基板(290)とともに発光素子(210)の光出射面(211)を通る流路(700)を形成する。各貫通孔(220)と流路(700)とは連通されている。

Description

光源装置およびこれを備えた投写型表示装置
 本発明は、光源装置およびこれを備えた投写型表示装置に関する。
 近年、数ワットの電力が供給可能なパワーLED(Light Emitting Diode)が各メーカーから市販されている。さらには20A、30Aの電流を許容でき、家庭用程度の消費電力100Wを超える、投写型表示装置用の光源用途の超大電流LEDも製品化されている。 
 しかし、このような超大電流LEDを用いても現在多くの投写型表示装置で使用されている放電ランプほどの明るさは得られず、LED光源の明るさを増すためには供給電力のさらなる増大が必要となっている。一方、供給電力の増大に伴って、LEDやLEDが実装される基板を含むLEDモジュールで生じる熱の十分な冷却が困難となってきている。このLEDモジュールの冷却に関しては、パソコン用CPU(Central Processing Unit)を凌ぐ冷却規模が必要となっている。
 こうした状況下、LEDモジュールを冷却する手段としては、例えば、発光素子であるLEDが搭載された30mm四方程度の銅製の基板裏側、すなわちLEDの光出射面とは反対側に大きなヒートシンクと空冷ファンを取り付けるといった手段が採られている。あるいは、特許文献1(特開2007-148341号公報)の図1から3に例示されるように、水冷の受熱ジャケットを基板裏側に取り付けて冷却する液冷方式のような効率的な冷却方法も採られている。
 また、LEDモジュールで生じる熱に関して、LEDと基板との接合部からLED基板裏側までの熱抵抗、およびこの接合部の許容温度は、一般的にLEDモジュールの形態に依存する。例えば仕様書やデータシートなどにも接合部とLED基板裏側との間の熱抵抗値(以下Rj―bとする)、接合部の許容温度が記載されている。接合部温度は光源の寿命に影響し、接合部温度が高くなるとそれに伴って光源の寿命が短くなる。LED光源を使用した投写型表示装置は、光源寿命が長い、色再現範囲が放電ランプと比較して広い、あるいは瞬時点灯/消灯が可能といったメリットがある。そのため、光源寿命が長い投写型表示装置を実現するためには接合部温度が許容範囲を越えないようにしたり、できる限り接合部温度が低い状態で使用したりするのが望ましい。
 この接合部温度の上昇について、LEDが実装される基板表面の裏側からのみ冷却する場合(特許文献2(特開2008-90260号公報)の図12参照)、熱抵抗Rj―bおよび供給電力によって接合部からLED基板裏側までの温度上昇値が計算できる。さらには接合部の限界温度が決まっているので、周囲温度が決定すれば、LEDモジュールへの供給電力の限度を計算で求めることができる。供給電力Wは、発光素子に印加する電圧Vfと発光素子に流れる電流Ifを乗算することで、W=Vf×Ifと求められる。例えば、Rj―bが0.7℃/Wの場合、150Wを供給すると、0.7℃/W×150W=105℃となる。ゆえに、接合部からLED基板裏側までの温度上昇は105℃となり、周囲温度が35℃であれば、接合部温度は温度上昇105℃にこの周囲温度を加算して140℃となる。通常、LEDの接合部温度の最大許容温度は120~130℃程度である。そのため、150Wを超えるような大電力を供給すると、接合部温度は最大許容温度を超えてしまうという問題がある。
 こうした接合部温度に関する問題を解消するために、上述のようなLED基板裏側からの冷却だけでなく、LED基板表面側からも効率的に冷却する必要性が生じてきている。
 しかし、家庭用あるいはオフィス用規模の投写型表示装置にあっては、光源のLED基板表面側、すなわちLEDの光出射面側から冷却するにあたって冷却スペースの確保が難しいといった問題がある。すなわち、LED基板表面側にはLEDから出射した光を有効利用するために集光レンズが発光素子に近接して配されている。加えて、LEDモジュールに数十アンペアの大電流を供給するための太い電線や大きなコネクタも基板表面側には配されている。さらには、基板表面側に配された温度監視用の温度センサに配線が必要であり、温度センサ接続用のコネクタを基板に実装する必要もある。こうした多数の部品を配設するためのスペースの他に新たに冷却手段用のスペースを確保することは困難であった。 
 一方、このような家庭用あるいはオフィス用規模の投写型表示装置において、LEDモジュールの冷却手段に水冷方式を含む液冷方式を採用する場合、冷却装置をLEDモジュール内に設けるだけのスペースの確保が容易ではない。さらに、このスペースが確保できたとしても、冷却液の液漏れを防止するための完全密閉、あるいは液漏れに対する電気的な絶縁の確保といったことが容易ではない。また、液冷方式を採用する場合、冷媒がチューブから蒸発した後に追加の冷媒をリザーバタンクへ補充しなければならないといったメンテナンス上の厄介な点もある。
特開2007-148341号公報 特開2008-90260号公報
 本発明は、上記のような背景技術の課題を解決できるものを提供する。その目的の一例は、発光素子が実装される基板の表面側を効果的に冷却することが可能な光源装置およびこれを備えた投写型表示装置を提供することである。さらに、他の目的は、発光素子冷却手段用のスペースを基板表面側に新たに確保する必要がない光源装置およびこれを備えた投写型表示装置を提供することである。
 本発明の一態様の光源装置は、基板と、基板上に実装された発光素子と、第1の部材とを有する。基板には第1の貫通穴および第2の貫通穴が設けられている。第1の部材は、第1の貫通孔、第2の貫通孔および発光素子を取り囲むように配されており、基板とともに発光素子の光出射面を通る流路を形成する。そして、第1の貫通孔および第2の貫通孔と、流路とは連通されている。
 本発明の一態様の投写型表示装置は、上述の光源装置を備えている。
 本発明の一態様に係る光源装置およびこれを備えた投写型表示装置では、基板と発光素子を取り囲むように配された光学素子支持部材との間に、発光素子の光出射面を通ることで光出射面を冷却可能な流体が流れる流路が形成されている。これにより、流路、すなわち光学素子部材と基板との間の内部空間が発光素子冷却手段として機能する。そのため、基板表面上において、発光素子を取り囲む光学素子支持部材外に別途、発光素子から生じる熱を冷却する手段を設ける必要がない。よって、発光素子の光出射面側、すなわち基板表面側に冷却手段用スペースを新たに確保する必要がない。さらに、発光素子の光出射面から出射した光の放射に伴う熱は、光出射面を通る流体の対流によって冷却することができる。
 したがって、発光素子が実装される基板の表面側を効果的に冷却することが可能であり、発光素子冷却手段用のスペースを基板表面側に新たに確保する必要がない光源装置およびこれを備えた投写型表示装置を提供することができる。
本発明の第1の実施形態に係る光源装置の構成を示す分解組立図である。 本発明の第1の実施形態に係る光源装置の斜視図である。 本発明の第1の実施形態に係る光源装置の発光面側から見た上面図である。 図3に示す光源装置の切断面での断面図である。 図4に示す光源装置の動作を説明する概略構成図である。 本発明の第2の実施形態に係る光源装置の構成を示す分解組立図である。 本発明の第2の実施形態に係る光源装置の斜視図である。 本発明の第2の実施形態に係る光源装置の発光面側から見た上面図である。 図8に示す光源装置の切断面での断面図である。 図9に示す光源装置の動作を説明する概略構成図である。 本発明の各実施形態に係る光源装置を適用した投写型表示装置の構成を示す概略図である。
 以下、本発明に係る光源装置およびこれを備えた投写型表示装置について図面を参照しながら説明する。
 (第1の実施形態)
 図1に本発明の第1の実施形態に係る光源装置の構成を示す分解組立図を示す。図2に本発明の第1の実施形態に係る光源装置の斜視図を示す。図3に本発明の第1の実施形態に係る光源装置を光出射側から見た上面図を示す。図4に図3の光源装置の切断線における断面図を示す。図5に図4の光源装置の動作を説明する概略図を示す。なお、図2と図3では放熱器の図示を省略している。
 本発明の第1の実施形態に係る光源装置は、図1に示すように、発光素子モジュール支持部材100、発光素子モジュール200、光学素子支持部材300、光学素子400、固定ネジ500および放熱器600を有する。 
 発光素子モジュール支持部材100は、図4に示すように発光素子モジュール200を支持可能であって、発光素子210の光出射面211側とは反対の側に配されている。また、発光素子モジュール支持部材100内には、流体、特に気体が流れる円筒状の管路150が設けられている。管路150は、光学素子支持部材300と発光素子モジュール支持部材100とで形成された流路700に連通する第1および第2の穴110、111を有する。管路150の流体入口または流体出口は、第1の穴110、第2の穴111、第3の穴120、および第4の穴121で構成されている。第1の穴110は第3の穴120に接続されており、第2の穴111は第4の穴121に接続されている。
 こうした管路150および流路700の構成においては、発光素子モジュール支持部材100外に設けられた不図示の流体供給手段により流体が供給される。この流体は、図4に示すように管路150の第3の穴120に流入する。そして、第3の穴120に流入した流体は管路150内を通って第1の穴110から流路700へ流入する。この流体は流路700内に配された発光素子210の光出射面211を通ることで加熱された後、第2の穴111から管路150内に流入する。そして、流体は、流出口である第4の穴121から発光素子モジュール支持部材100外に排出される。
 なお、図4に示す流体の流れは、上述のように管路150の右端に配された第3の穴120から流体が流入し、最終的に管路150の左端に配された第4の穴121から流体が排出される形態であるがこれに限るものではない。つまり、管路150および流路700は、管路150を通った流体が2つの穴110、111の少なくとも一方から流路700へ流入するように構成されていればよい。より具体的には、管路150の左端に配された第4の穴121から流体が流入し、最終的に管路150の右端に配された第3の穴120から流体が排出される逆の形態であってもよい。
 また、管路150は、第1の穴110および第2の穴111を形成する2つの縁部を有する。2つの縁部は、発光素子モジュール支持部材100の管路150側から基板290と光学素子支持部材300とで形成される流路700側へ突出している(図4参照)。この突起状の各縁部(突起部)は発光素子モジュール200の基板290に設けられた複数の貫通孔220に挿入される。各縁部が複数の貫通孔200に挿入されることで、発光素子モジュール200は発光素子モジュール支持部材100と高精度に位置合わせできるように組立てられる。つまり、各縁部は発光素子モジュール支持部材100に対する発光素子モジュール200の位置決め手段として機能する。
 なお、各縁部は発光素子モジュール支持部材100の任意の位置に設けられていてよく、図1では2つ設けられているが3つ以上でも構わない。また、各縁部は、発光素子モジュール支持部材100と一体的に形成されていてもよいし、あるいは、円筒状の別部品で構成して発光素子モジュール支持部材100に圧入されてもよい。
 また、発光素子モジュール支持部材100の材料および形成方法に関しては、銅やアルミニウムなどの熱伝導性の高い材料を用いて一体的に形成されるのが好ましい。あるいは、部品製造を簡略化するために、発光素子モジュール支持部材100は、第3の穴120または第4の穴121の位置を部品の境界として複数の部品として形成することもできる。
 これら複数の穴110、111、120、および121が設けられた発光素子モジュール支持部材100の表面には、発光素子モジュール200が取り付けられる(図1参照)。発光素子モジュール200は、基板290および発光素子210を有する。発光素子210は基板290上に実装され、光学素子400側に光を出射する光出射面211を有する。基板290は、その厚み方向に延びる複数の貫通孔220を有する。
 各貫通孔220は、第1の穴110および第2の穴111を形成する各縁部の位置に対応して基板290上の任意の位置に設けることができる。図1では各縁部が2つ設けられているが3つ以上設けてもよい。特に発光素子210の位置について精度が必要となるため、各貫通孔220はできるだけ発光素子210の近傍に設けることが好ましい。
 なお、本実施形態では、位置決め手段としての上述の各縁部が円筒状、それに対応する各貫通孔の出口が円形状に形成されているが、この組み合わせに限るものではない。すなわち、各縁部が中空の立方体状であり、各貫通孔の出口が多角形状である組合せとしても構わない。
 また、発光素子モジュール200は、図2に示すように、電源コネクタ230、電源ケーブル240、温度センサコネクタ250および温度センサケーブル260をさらに有する。電源コネクタ230には電源ケーブル240が挿入され、温度センサコネクタ250には温度センサケーブル260が挿入される。なお、図2に示す電源コネクタ230、電源ケーブル240はそれぞれ2端子であるが、発光素子210の発光チップの構成によって任意の端子数を採ることができる。
 電源ケーブル240を介して不図示の電源から発光素子モジュール200へ電力が供給されることで、発光素子210は発光する。温度センサケーブル260は、発光素子モジュール200に搭載される不図示の温度計測部品と接続されており、温度センサコネクタ250を通じて配線されている。温度計測部品にはサーミスタ等が用いられ、この温度計測部品によって発光素子210の温度を監視することが可能となっている。
 光学素子支持部材300は、図3の切断線800における断面を示す図4に示すように発光素子モジュール支持部材100上に載置される。なお、切断線800は、第1の穴110、第2の穴111、第3の穴120、第4の穴121および発光素子210を結ぶ直線の延長線上にある。また、光学素子支持部材300は、光出射面211側に基板290および発光素子210を取り囲むように配されているとともに、光学素子400を支持する。さらに、光学素子支持部材300には第1の穴110及び第2の穴111のそれぞれに流路7を連通させる穴が設けられている。
 さらに、光学素子支持部材300は、基板290とともに流路700を形成している。流路700は切断線800に沿って延びている。また、図4に示すように光学素子支持部材300内に流路700は凹状に形成されている。流路700には、光出射面211を通ることで光出射面211を冷却可能な流体、特に気体が流れる。
 光学素子400は、図4に示すように複数のレンズから構成されており、光出射面211から出射した光を屈折させる。また、光学素子400は、発光素子210の光出射面211側に位置する光学素子支持部材300の上部に設けられた凹部内に配されている(図4参照)。なお、光学素子400において発光素子210に近接する部分は、発光素子210の出射光をできるだけ多く取り込むため、可能な限り発光素子210に近づけることが好ましい。
 固定ネジ500は、図1に示すように発光素子モジュール200を発光素子モジュール支持部材100に固定する手段である。なお、図1から図3では4本のネジで両部材100、200が固定される形態が示されているが、その本数については適宜選択することができる。
 放熱器600は、図1に示すように発光素子モジュール200が発光素子モジュール支持部材100に載置される面とは反対側の面に取り付けられる。放熱器600は、銅やアルミニウムなどの熱伝導率の高い金属部品からなり、軸流ファンなどで風を当てることで冷却性能を高めることが好ましい。また、図1では不図示であるが、熱抵抗を下げるために、発光素子モジュール200と発光素子モジュール支持部材100との接触箇所に熱伝導ペーストや熱伝導シートなどのTIM(Thermal Interface Module)を挿入するのが好ましい。あるいは、発光素子モジュール支持部材100と放熱器600との接触箇所にこのTIMを挿入してもよい。 
 以上のように構成された光源装置は、次のような効果を奏する。図4を参照すると、発光素子210から出射された光は光学素子400を通過して後段の投写系光学部品を照明する。発光素子210は光の放射に伴って熱を発するが、発光素子210にはLEDを用いており、供給電力の約90%は本来意図するところではない熱となってしまう。図5を参照すると、発光素子210からは矢印270、矢印280に示すように放射状に熱が放射される。矢印280に示す方向に放射された熱は、固体間の伝熱形態である熱伝導によって発光素子モジュール支持部材100へ伝達された後、放熱器600へ伝達される。放熱器600は多数のフィンを有しているとともに熱伝導率の高い金属材料で作られているため、放熱器600に伝わった熱は速やかにフィンに伝わる。これにより、フィン周囲の流体の対流によって熱交換が行なわれることで効率良く冷却される。 
 一方では、図5の矢印130で示すように管路150の第3の穴120へ入った冷却用流体は、第1の穴110を通って流路700に入る。その後、流体は、発光素子210を通過し、第2の穴111から第4の穴121を通って排気される。図5では、第3の穴120に入る流体を生成して供給する構造は省略しているが、第3の穴120へ流体を導く流路を形成し、ブロアファンやエアーポンプなどで流体を矢印130の方向へ吹き込んでもよい。あるいは、逆に第4の穴121からブロアファンなどで矢印140の方向に風を吸い込んでもよい。
 こうした構成により、管路150の第1の穴110から入って流路700内に配された光学素子210の光出射面211を通る冷却用流体の対流によって流体と放射熱との間で熱交換が効果的に行なわれる。そのため、矢印270で示す、発光素子210から出射した光の放射に伴う熱は、効率良く冷却される。
 以上により、矢印270と矢印280で示される発光素子210から放射された熱は、発光素子モジュール支持部材100を伝わって放熱器600から冷却される方法と、第1の穴110から供給される流体によって冷却される方法との2通りによって冷却される。そのため、より多くの発熱量に対しても効率良く冷却することができる。冷却性能が高まることでそれだけ発光素子210へより多くの電力を供給することができるため、発光素子210は、より明るい光を発することが可能となる。
 また、本実施形態では、基板290と発光素子210を取り囲むように配された光学素子支持部材300との間に、発光素子210の光出射面211を通ることで光出射面211を冷却可能な流体が流れる流路700が形成されている。これにより、流路700、すなわち光学素子部材と基板290との間の内部空間が発光素子210冷却手段として機能する。そのため、基板290表面上において、発光素子210を取り囲む光学素子支持部材300外に別途、発光素子210から生じる熱を冷却する手段を設ける必要がない。よって、発光素子210の光出射面211側、すなわち基板290表面側に冷却手段用スペースを新たに確保する必要がない。
 以上により、発光素子が実装される基板の表面側を効果的に冷却することが可能であるとともに、冷却用スペースを新たに確保することがない光源装置およびこれを備えた投写型表示装置を提供することができる。 
 (第2の実施形態)
 図6に本発明の第2の実施形態に係る光源装置の構成を示す分解組立図を示す。図7に本発明の第2の実施形態に係る光源装置の斜視図を示す。なお、本図では放熱器を省略している。図8に本発明の第2の実施形態に係る光源装置の光出射側から見た上面図を示す。本図でも放熱器を省略している。図9に、図8に示す光源装置の切断線での断面図を示す。この切断線は、第1の実施形態に係る光源装置を示す図3と同様に流出口、流入口、吸入口、排出口、および発光素子を結ぶ直線となっている。図10に、図9に示す光源装置の動作を表す概略構成図を示す。
 本実施形態が第1の実施形態に対して異なる点は、例えば図7に示すように、光学素子支持部材300に複数の流路700、710が設けられており、流路710が2つの排出口711を有している点である。より具体的に、本実施形態に係る光線装置の光学素子支持部材300は、流路700の延びる方向に対して垂直な方向に延びる別の流路710を基板290とともに形成している。別の流路710は、流路700の延びる方向に対して垂直な方向に配された2つの排出口711を有する。そして、流体が管路150の2つの穴110、111の両方から流路700へ流入する。さらに、流路700内に配された光出射面211を通って加熱された流体が別の流路710を通って2つの排出口711から排出されるように構成されている。
 これにより、2つの穴110、111両方から流体が供給される形態はどちらか一方の穴から流体が供給される形態に比べ流量を増すことができることで、冷却性能を高めることができる。さらには、流路700とは別の流路710が光学素子支持部材300と基板290とで形成されていることで、光学素子支持部材300内での流路容積が増える。さらに、別の流路710に2つの排出口711が設けられていることで、発光素子210の光出射面211から生じる放射熱と熱交換が行われて加熱された流体は、流路容積が増大した別の流路710を通って2つの排出口711から光源装置外へ効果的に排出される。
 このように構成された本実施形態に係る光源装置は、次のような効果を奏する。図10を参照すると、矢印270、矢印280に示すように発光素子210から放射状に熱が放射される。矢印280に示す方向に放射された熱は、固体間の伝熱形態である熱伝導によって発光素子モジュール支持部材100へ伝達された後、放熱器600へ伝達される。放熱器600は多数のフィンを有しているため、フィンに伝わった熱はフィン周囲の流体の対流によって熱交換が行なわれることで効率良く冷却される。 
 一方では、図10の矢印130で示すように管路150の第3の穴120へ入った流体は、第1の穴110を通って流路700に入り、発光素子210の光出射面211を通過して流路710の2つの出口から排気される。また、図10の矢印140で示すように管路150の第4の穴121へ入った流体は、第2の穴111を通って流路700に入る。そして、流体は、発光素子210を通過して図8の矢印720に示すように流路710の2つの排出口711から排出される。なお、図10では、第1の実施形態に係る光源装置を示す図5と同様に第3の穴120および第4の穴121に流入する流体を生成し供給する構造は省略している。この構造に関しては、第1の実施形態と同様に第3の穴120へ流体を導く流路を形成し、ブロアファンやエアーポンプなどで流体を矢印130の方向へ吹き込んでもよい。あるいは、第4の穴121からブロアファンなどで矢印140の方向に風を吸い込んでもよい。
 こうした構成により、図10の矢印270で示す発光素子210から放射された熱は、管路150の第1の穴110と第2の穴111から入って流路700内に配された光学素子210の光出射面211を通る冷却用流体の対流によって熱交換が効果的に行なわれる。そのため、矢印270で示す、発光素子210から出射した光の放射に伴う熱は、効率良く冷却される。
 以上により、矢印270と矢印280で示される発光素子210から放射された熱は、発光素子モジュール支持部材100を伝わって放熱器600から冷却される方法と、第1の穴110と第2の穴111から供給される流体によって冷却される方法との2通りによって冷却される。そのため、より多くの発熱量に対しても効果的に冷却することができる。冷却性能が高まることでそれだけ発光素子210へより多くの電力を供給することができるため、発光素子210は、より明るい光を発することが可能となる。
 なお、図8の矢印720で示す流体の流れが切断線800(流出口、流入口、吸入口、第4の穴、および発光素子を結ぶ直線)に対して垂直でない場合、流体が発光素子210を通過せずに流路710の出口から排出されてしまうことがある。そのため、発光素子210が均一に冷却されないことがあり得る。こうしたケースを回避するために、流路700から流路710へ流れる流体が図8に示す矢印720の方向となるように、本実施形態の流路710の延びる方向は、切断線800、すなわち流路700の延びる方向に対して垂直になる位置に配されることが好ましい。そして、流路710の両出口711を結ぶ直線も切断線800、すなわち流路700の延びる方向に対して垂直となることが好ましい。
 上述のように構成された本実施形態に係る光源装置においては、基板290と発光素子210を取り囲むように配された光学素子支持部材300との間に、発光素子210の光出射面211を通ることで光出射面211を冷却可能な流体が流れる流路700が形成されている。さらに、流路700とは別の流路710が光学素子支持部材300と基板290とで形成されていることで、光学素子支持部材300内での流路容積が増える。これにより、流路700、すなわち光学素子部材と基板290との間の内部空間が発光素子210冷却手段として機能する。そのため、基板290表面上において、発光素子210を取り囲む光学素子支持部材300外に別途、発光素子210から生じる熱を冷却する手段を設ける必要がない。よって、発光素子210の光出射面211側、すなわち基板290表面側に冷却手段用スペースを新たに確保する必要がない。さらに、別の流路710に2つの排出口711が設けられていることで、発光素子210の光出射面211から生じる放射熱と熱交換が行われて加熱された流体は、流路容積が増大した別の流路710を通って2つの排出口711から光源装置外へ効果的に排出される。
 以上により、発光素子が実装される基板の表面側を効果的に冷却することが可能であるとともに、冷却用スペースを新たに確保することがない光源装置およびこれを備えた投写型表示装置を提供することができる。 
 次に、図11に本発明の各実施形態に係る光源装置を適用した投写型表示装置の構成を示す概略図を示す。図11に示す投写型表示装置は、光源装置10R、光源装置10G、光源装置10B、色合成光学系20、照明光学系30、パネルユニット40、光変調素子41、および投写光学系50を有する。
 白色光を得るために、本投写型表示装置は、赤色光を発する光源装置10R、緑色光を発する光源装置10G、および青色光を発する光源装置10Bを有する。光源装置10R、光源装置10G、光源装置10Bには発光ダイオードが用いられるのが好ましい。色合成光学系20にはクロスダイクロミラーやクロスダイクロイックプリズムが用いられるのが好ましい。光源装置10Gは色合成光学系20を直線的に透過する配置、光源装置10Rと光源装置10Bは光源装置10Gに対して光路が略直角となる配置となっている。照明光学系30は、光源装置10R、10G、10Bからの照明光を光変調素子41へ均一に照明する機能を果たす。光変調素子41はパネルユニット40内に配されている。また、光変調素子41は、透過型の液晶パネルであってFSC(Field Sequential Color)表示方式を用いる。さらに、光変調素子41は、図11では透過型の液晶表示パネルを使用した例を示しているが、この形態に限定されるものではない。すなわち、照明光学系や投写光学系のレイアウトを変更してDMD(Digital Micromirror Device)や、LCoS(Liquid Crystal on Silicon)(登録商標)パネルなどの反射型の液晶表示パネルを用いることもできる。投写光学系50は、光変調素子41で変調された照明光を不図示のスクリーンなどへ投影する機能を有する。
 このように構成された投写型表示装置によれば、赤色の光源、緑色の光源、青色の光源を順次点灯し、それらの光を光変調素子はそれぞれR色映像信号、G色映像信号、B色映像信号に従って変調する。すると、R色、G色、B色画像が順次表示され、人間の眼にはそれらが合成されてカラー画像として認識される。光源装置10R、10G、10Bから発光した各色の光は、色合成手段20にて光路が一致させられて一つの光路となる。そして、照明光学系30によってパネルユニット40内の光変調素子41を照明する。光変調素子41へ入射した照明光は、光変調素子41にて光変調された後、投写レンズ50によって不図示のスクリーンへ画像が投影される。 
 このとき、光源装置10R、10G、10Bでは上述のように発光素子210で生じた熱が効率良く放出されるため、より多くの電力を光源装置に供給することができる。これにより、明るい投写型表示装置を実現することが可能になる。また、発光素子の接合部温度を低くすることができるため、光源装置の寿命を長くすることも可能になる。よって、長寿命な投写型表示装置を実現することができる。 
 100 発光素子モジュール支持部材(第2の部材)
 110 第1の穴
 111 第2の穴
 120 第3の穴
 121 第4の穴
 150 管路
 210 発光素子
 211 光出射面
 290 基板
 300 光学素子支持部材(第1の部材)
 400 光学素子
 700 流路
 710 別の流路
 711 排出口

Claims (8)

  1.  第1の貫通穴および第2の貫通穴が設けられている基板と、
     前記基板上に実装された発光素子と、
     前記第1の貫通孔、前記第2の貫通孔および前記発光素子を取り囲むように配され、前記基板とともに前記発光素子の光出射面を通る流路を形成する第1の部材と、を有し、
    前記第1の貫通孔および前記第2の貫通孔と、前記流路とは連通されていることを特徴とする光源装置。
  2.  請求項1に記載の光源装置であって、前記基板の前記発光素子が実装されている側とは反対の側に配され、前記第1の貫通孔と連通する第1の管路および前記第2の貫通孔と連通する第2の管路が設けられた第2の部材を備えた、光源装置。
  3.  前記第1の貫通孔と、前記第2の貫通孔は、前記発光素子を挟んで互いに反対側にあることを特徴とする請求項1に記載の光源装置。
  4.  請求項2または3に記載の光源装置であって、前記第1の管路および前記第2の管路には該第2の部材側から前記第1の部材側へ突出する突起部をそれぞれ有し、該突起部は前記第1の貫通孔に挿入される、光源装置。
  5.  請求項2または3に記載の光源装置であって、前記第2の部材が放熱部を備えている、光源装置。
  6.  前記第1の部材には、前記流路の延びる方向に対して垂直な方向に排出口があることを特徴とする請求項1に記載の光源装置。
  7.  前記排出口とは、前記発光素子を挟んで反対側に他の排出口がある、請求項6に記載の光学装置。
  8.  請求項1から7のいずれかに記載の光源装置を備えた投写型表示装置。
PCT/JP2009/061496 2009-06-24 2009-06-24 光源装置およびこれを備えた投写型表示装置 WO2010150366A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/061496 WO2010150366A1 (ja) 2009-06-24 2009-06-24 光源装置およびこれを備えた投写型表示装置
JP2011519426A JP5201612B2 (ja) 2009-06-24 2009-06-24 光源装置およびこれを備えた投写型表示装置
US13/375,179 US8944638B2 (en) 2009-06-24 2009-06-24 Light source device and projection type display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/061496 WO2010150366A1 (ja) 2009-06-24 2009-06-24 光源装置およびこれを備えた投写型表示装置

Publications (1)

Publication Number Publication Date
WO2010150366A1 true WO2010150366A1 (ja) 2010-12-29

Family

ID=43386160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061496 WO2010150366A1 (ja) 2009-06-24 2009-06-24 光源装置およびこれを備えた投写型表示装置

Country Status (3)

Country Link
US (1) US8944638B2 (ja)
JP (1) JP5201612B2 (ja)
WO (1) WO2010150366A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197593A (ja) * 2010-03-24 2011-10-06 Casio Computer Co Ltd 半導体光源装置及びプロジェクタ
JP2012242633A (ja) * 2011-05-20 2012-12-10 Casio Comput Co Ltd 光源装置及びプロジェクタ
US20130100670A1 (en) * 2011-10-20 2013-04-25 Osram Sylvania Inc. Lighting system with a heat sink having plurality of heat conduits
JP2014509774A (ja) * 2011-03-29 2014-04-21 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング セラミック製の冷却器とledを備える射出成形されたランプボディ
JP2017188256A (ja) * 2016-04-04 2017-10-12 中村 正一 Led照明装置
JP2017199882A (ja) * 2016-04-28 2017-11-02 岩崎電気株式会社 光源ユニット
WO2018173942A1 (ja) * 2017-03-22 2018-09-27 フリージア・マクロス株式会社 冷却構造体、冷却システム、発熱装置および構造物
JP2018160659A (ja) * 2017-03-22 2018-10-11 フリージア・マクロス株式会社 冷却構造体、冷却システム、発熱装置および構造物
JP2021085749A (ja) * 2019-11-27 2021-06-03 ダイプラ・ウィンテス株式会社 光照射試験装置
WO2024057412A1 (ja) * 2022-09-13 2024-03-21 シャープNecディスプレイソリューションズ株式会社 フレキシブル配線板、光源装置及びプロジェクタ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591419B (zh) * 2015-05-05 2017-07-11 佳世達科技股份有限公司 投影裝置及電子裝置
TW201641912A (zh) * 2015-05-29 2016-12-01 鴻富錦精密工業(武漢)有限公司 散熱裝置
JP2022146685A (ja) * 2021-03-22 2022-10-05 セイコーエプソン株式会社 光源装置及びプロジェクター

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108544A (ja) * 2003-09-29 2005-04-21 Matsumura Denki Seisakusho:Kk Led照明装置
JP2006047914A (ja) * 2004-08-09 2006-02-16 Seiko Epson Corp プロジェクタ
JP2007073984A (ja) * 2003-01-16 2007-03-22 Nikon Corp 照明光源装置、露光装置及び露光方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596125A (en) * 1969-06-09 1971-07-27 Wayne A Seigel Liquid cooled radiation source with filter
US6002987A (en) * 1996-03-26 1999-12-14 Nikon Corporation Methods to control the environment and exposure apparatus
JPH11329951A (ja) * 1998-05-15 1999-11-30 Canon Inc 光源装置及び露光装置
US6183114B1 (en) * 1998-05-28 2001-02-06 Kermit J. Cook Halogen torchiere light
US6071000A (en) * 1998-09-25 2000-06-06 Valeo Sylvania, L.L.C. Vehicle lamp with ram air vent
US6719446B2 (en) * 2001-08-24 2004-04-13 Densen Cao Semiconductor light source for providing visible light to illuminate a physical space
EP1590996B1 (en) * 2003-02-07 2010-07-14 Panasonic Corporation Lighting system using a socket for mounting a card-type led module on a heatsink
JP2005079149A (ja) * 2003-08-28 2005-03-24 Seiko Epson Corp 光源装置及びプロジェクタ
JP2005078966A (ja) * 2003-09-01 2005-03-24 Seiko Epson Corp 光源装置、光源装置の製造方法、投射型表示装置
JP2006093428A (ja) * 2004-09-24 2006-04-06 Canon Inc 温調チャンバおよびこれを用いた露光装置
JP4910496B2 (ja) 2005-11-04 2012-04-04 セイコーエプソン株式会社 光学装置、および光学機器
TWI307756B (en) * 2006-12-08 2009-03-21 Delta Electronics Inc Light-emitting diode heat-dissipating module and display apparatus applied thereto
CN100583470C (zh) * 2006-12-15 2010-01-20 富准精密工业(深圳)有限公司 发光二极管散热装置组合
US7524090B2 (en) * 2007-02-26 2009-04-28 Ip Holdings Llc Horticulture light fixture having integrated lamp and ballast
US20090059594A1 (en) * 2007-08-31 2009-03-05 Ming-Feng Lin Heat dissipating apparatus for automotive LED lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073984A (ja) * 2003-01-16 2007-03-22 Nikon Corp 照明光源装置、露光装置及び露光方法
JP2005108544A (ja) * 2003-09-29 2005-04-21 Matsumura Denki Seisakusho:Kk Led照明装置
JP2006047914A (ja) * 2004-08-09 2006-02-16 Seiko Epson Corp プロジェクタ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197593A (ja) * 2010-03-24 2011-10-06 Casio Computer Co Ltd 半導体光源装置及びプロジェクタ
JP2014509774A (ja) * 2011-03-29 2014-04-21 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング セラミック製の冷却器とledを備える射出成形されたランプボディ
JP2012242633A (ja) * 2011-05-20 2012-12-10 Casio Comput Co Ltd 光源装置及びプロジェクタ
US20130100670A1 (en) * 2011-10-20 2013-04-25 Osram Sylvania Inc. Lighting system with a heat sink having plurality of heat conduits
JP2017188256A (ja) * 2016-04-04 2017-10-12 中村 正一 Led照明装置
JP2017199882A (ja) * 2016-04-28 2017-11-02 岩崎電気株式会社 光源ユニット
WO2018173942A1 (ja) * 2017-03-22 2018-09-27 フリージア・マクロス株式会社 冷却構造体、冷却システム、発熱装置および構造物
JP2018160659A (ja) * 2017-03-22 2018-10-11 フリージア・マクロス株式会社 冷却構造体、冷却システム、発熱装置および構造物
KR20190131073A (ko) * 2017-03-22 2019-11-25 프리지어 마크로스 주식회사 냉각 구조체, 냉각 시스템, 발열 장치 및 구조물
CN110520980A (zh) * 2017-03-22 2019-11-29 福利家麦克罗斯株式会社 冷却构造体、冷却系统、发热装置以及构造物
KR102552685B1 (ko) 2017-03-22 2023-07-06 베지 사사키 냉각 구조체, 냉각 시스템, 발열 장치 및 구조물
US11994351B2 (en) 2017-03-22 2024-05-28 Beji Sasaki Cooling structural body, cooling system, heat generator and construction
JP2021085749A (ja) * 2019-11-27 2021-06-03 ダイプラ・ウィンテス株式会社 光照射試験装置
JP7377686B2 (ja) 2019-11-27 2023-11-10 ダイプラ・ウィンテス株式会社 光照射試験装置
WO2024057412A1 (ja) * 2022-09-13 2024-03-21 シャープNecディスプレイソリューションズ株式会社 フレキシブル配線板、光源装置及びプロジェクタ

Also Published As

Publication number Publication date
US8944638B2 (en) 2015-02-03
JPWO2010150366A1 (ja) 2012-12-06
JP5201612B2 (ja) 2013-06-05
US20120069586A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5201612B2 (ja) 光源装置およびこれを備えた投写型表示装置
JP5010311B2 (ja) 投写型表示装置
JP5311838B2 (ja) 映像表示装置
CN111290203B (zh) 投影装置
US7309145B2 (en) Light source apparatus and projection display apparatus
CN107765496B (zh) 光源装置、图像投影装置、光源装置的设置方法
US20110157560A1 (en) Electronic apparatus and projector
JP5354288B2 (ja) プロジェクタ
US7740379B2 (en) Illumination module and projection apparatus
JP4988912B2 (ja) 投写型映像表示装置
JP2010272472A (ja) Led照明装置
JP2006139245A (ja) 投写型映像表示装置
JP2009129642A (ja) Led照明装置
JP4657242B2 (ja) 投写型映像表示装置
CN110687739A (zh) 激光投影设备
JP2009031557A (ja) 液冷システム
WO2022088772A1 (zh) 光源组件、投影仪光机和投影仪
WO2014064904A1 (ja) ランプ
CN107210582B (zh) 半导体激光光源装置、半导体激光光源系统及影像显示装置
TWM594106U (zh) 燈具及燈具系統
JP5092525B2 (ja) 冷却装置を備えた投写型表示機器
JP2007094037A (ja) 電子装置
JP6593901B2 (ja) 光源装置および投写型表示装置、半導体発光素子の冷却方法
CN112526810B (zh) 激光投影设备
JP4345507B2 (ja) 光源装置及びプロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519426

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13375179

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846499

Country of ref document: EP

Kind code of ref document: A1