WO2010147313A2 - 다층 세라믹 기판의 제조 방법 - Google Patents

다층 세라믹 기판의 제조 방법 Download PDF

Info

Publication number
WO2010147313A2
WO2010147313A2 PCT/KR2010/003314 KR2010003314W WO2010147313A2 WO 2010147313 A2 WO2010147313 A2 WO 2010147313A2 KR 2010003314 W KR2010003314 W KR 2010003314W WO 2010147313 A2 WO2010147313 A2 WO 2010147313A2
Authority
WO
WIPO (PCT)
Prior art keywords
sheet stack
green sheet
pressing
cavity
green
Prior art date
Application number
PCT/KR2010/003314
Other languages
English (en)
French (fr)
Other versions
WO2010147313A3 (ko
Inventor
김원묵
Original Assignee
주식회사 코미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코미코 filed Critical 주식회사 코미코
Priority to CN201080027392.0A priority Critical patent/CN102461351B/zh
Priority to US13/321,939 priority patent/US8496770B2/en
Publication of WO2010147313A2 publication Critical patent/WO2010147313A2/ko
Publication of WO2010147313A3 publication Critical patent/WO2010147313A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4697Manufacturing multilayer circuits having cavities, e.g. for mounting components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1082Partial cutting bonded sandwich [e.g., grooving or incising]

Definitions

  • the present invention relates to a method for manufacturing a multilayer ceramic substrate, and more particularly, to a method for manufacturing a multilayer ceramic substrate having a cavity applicable to a ceramic electrostatic chuck, a ceramic heater, and the like.
  • multi-layer ceramic substrates are widely used in the electronics industry to compensate for physical and chemical vulnerabilities of metal materials due to their excellent plasma resistance, oxidation resistance, chemical resistance, and insulation resistance. It is actively used in the field of manufacturing parts.
  • the multilayer ceramic substrate may be used in an electrostatic chuck for electrostatically adsorbing and holding a silicon wafer in a semiconductor manufacturing process, or a ceramic heater for high temperature treatment of a wafer.
  • a method of manufacturing a multilayer ceramic substrate may be manufactured by stacking a plurality of green ceramic green sheets, pressing and fixing them, and sintering them at a sintering temperature.
  • an electrode layer or an electrode pattern for forming an electrostatic force or generating heat is interposed between the green ceramic green sheets, and a cavity is formed to expose the electrode layer for connecting the conductors.
  • 1 is a schematic view showing a method of manufacturing a multilayer ceramic substrate having a conventional cavity.
  • a conventional multilayer ceramic substrate having a cavity 3 forms an electrode layer 8 on the green ceramic green sheets 1, and has a cavity 2 on the electrode layer.
  • the green ceramic sheets 1 are pressed to form a sheet stack in which the green ceramic green sheets 1 are fixed, and the sheet stack 4 is manufactured by sintering at a sintering temperature.
  • the pressing of the ceramic green sheets 1 may be generally made of flat molds 5 and 6 arranged in parallel with each other. Therefore, there is a problem that the bottom surface of the cavity 3 is not pressurized. That is, the area of the electrode layer 8 exposed by the cavity 3 is not pressurized and the ceramic green sheet 1 is separated, or the electrode layer 8 and the ceramic green sheet 1 on the bottom surface of the cavity 3 are deformed. .
  • a method of forming a cavity by stacking and pressing a plurality of green ceramic green sheets and then cutting the cavity area is removed.
  • the cut method has a problem that may affect the electrode layer or sheet of the cavity area according to the precision of the cut.
  • one problem to be solved through an embodiment of the present invention is to provide a method for manufacturing a multilayer ceramic substrate that can be simply and stably manufactured using a pair of flat molds arranged in parallel regardless of the shape of the cavity. will be.
  • a method of manufacturing a multilayer ceramic substrate having a cavity is to press each of a plurality of green ceramic green sheets to press the first green sheet stack and the second micro grain.
  • a first press step is performed to separately form the texture sheet stack.
  • a hole is formed in the second green sheet stack.
  • the second green sheet stack in which the hole is formed is disposed on the first green sheet stack to form a preliminary third green sheet stack.
  • the first thin film and the second thin film for sealing are disposed on the upper and lower surfaces of the preliminary third green sheet stack.
  • a second pressing step of pressing the first thin film and the preliminary third green sheet stack to form a third green sheet stack is performed.
  • the third green sheet stack is sintered.
  • the first and second thin films may be made of a resin material to maintain the pneumatic pressure of the cavity formed by the inner circumferential surface of the hole and the first green sheet stack.
  • the first and second thin films may be made of polyethylene terephthalate (PET), and at least one surface of the first and second green sheet stacks may be coated with silicon (Si). have.
  • the pressure in the first pressing step may be lower than the pressure in the second pressing step.
  • the pressure of the first pressurization step is 1Mpa to 2Mpa
  • the pressure of the second pressurization step is characterized in that 3Mpa to 3.5Mpa.
  • the pressing time of the first pressing step may be shorter than the pressing time of the second pressing step.
  • the first pressing step may be pressurized for 85s to 95s, and the second pressurizing step may be pressed for 595s to 605s.
  • each of the first and second pressing steps may be performed using a pair of flat molds arranged in parallel.
  • the pressing process temperature of the first and second pressing steps may be 65 ° C. to 100 ° C.
  • the method may further include forming an electrode layer between the first green sheet stack and the second green sheet stack.
  • the cavity is pneumatically formed by a thin film sealing the cavity in a lamination step of forming a fine sheet stack through pressing on a plurality of ceramic green sheets.
  • pressure is also applied to the bottom surface of the cavity due to pneumatic lamination. Therefore, even if the pressing mold does not directly contact the bottom surface of the cavity, stable lamination is possible, so that stable lamination using a flat mold is possible.
  • a flat sheet stack having a cavity of various shapes can be produced using a flat mold. Therefore, it is not necessary to manufacture a dedicated mold according to the shape of the cavity, and the time and cost required for the alignment of the dedicated mold can be reduced. In addition, since only the flat mold can cope with various shapes of the cavity, the compatibility of manufacturing facilities is improved and the process can be simplified. In addition, since the mold and the electrode layer are not in direct contact, damage and contamination of the electrode layer can be prevented, and since the mold is not restricted by the mold in forming the cavity, ease of design can be secured.
  • the laminating step is carried out two times by the first pressurization and the second pressurization, in particular the first pressurization step of the pressure compared with the second pressurization step.
  • the strength and pressure time progress to a relatively low level, more efficient and stable lamination is possible.
  • 1 is a schematic view showing a method of manufacturing a multilayer ceramic substrate having a conventional cavity.
  • FIG. 2 is a schematic process flowchart of a method of manufacturing a multilayer ceramic substrate having a cavity according to an embodiment of the present invention.
  • 3 to 9 are schematic process diagrams for describing a method of manufacturing a multilayer ceramic substrate having a cavity of FIG. 2.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIGS. 3 to 9 are schematic views illustrating a method of manufacturing a multilayer ceramic substrate having a cavity of FIG. 2. Phosphorus process charts.
  • the method of manufacturing a multilayer ceramic substrate having a cavity first presses each of a plurality of green ceramic green sheets 11.
  • the first green sheet stack 12 and the second green sheet stack 14 are individually formed through the first pressing step (S110).
  • a ceramic powder, a dispersant and a solvent for uniformly dispersing the ceramic powder are mixed to prepare a primary ceramic mixture. do.
  • a secondary ceramic mixture is prepared by secondary mixing (or stirring) a binder and a plasticizer having adhesion to the primary ceramic mixture.
  • air may enter during mixing to contain a large amount of bubbles.
  • the secondary ceramic mixture including bubbles is formed in a sheet shape, a recess may be formed on the surface of the green ceramic green sheet 11, and the green ceramic green sheet 11 A void may be formed inside the bubble. Therefore, after the secondary ceramic mixture is formed, the air bubbles in the secondary ceramic mixture are removed.
  • Bubble-free secondary ceramic mixture is processed into a thin plate by a variety of methods to produce a green ceramic green sheet (11).
  • the green ceramic green sheet 11 may be manufactured by forming a secondary ceramic mixture into a sheet using a doctor blade and then drying.
  • a pair of flat molds 32 and 34 arranged in parallel with the plurality of green ceramic green sheets 11 manufactured as described above, that is, the first mold 32 for pressing and the second mold 34 for pressing Perform the first pressurization step of pressurizing using.
  • a first microcrystalline sheet stack 12 in which a plurality of microcrystalline ceramic green sheets 11 are stacked is formed.
  • the plurality of green ceramic green sheets 11 are pressed through a pair of flat molds 32 and 34 to form the second green sheet stack 24. Pressing and stacking the plurality of green ceramic green sheets 11 may mean, for example, bonding and fixing the plurality of green ceramic green sheets 11.
  • the manufacturing processes of the first green sheet stack 12 and the second green sheet stack 24 are substantially the same.
  • the second green sheet stack 14 is formed into the cavity 24 forming layer in the following steps. Because it functions. Accordingly, the first and second green sheet stacks 12 and 14 need only be formed separately from each other, and are not meant to be manufactured at the same time point. That is, the manufacturing order of the first green sheet stack 12 and the second green sheet stack 14 may be changed. For the same reason as above, in the process flow diagram shown in FIG.
  • the multilayer ceramic substrate to be used in the electrostatic chuck or the ceramic heater includes the electrode layer 18.
  • the electrode layer 18 is configured for the generation of electrostatic force or heat generation, and is generally formed in a structure embedded in a multilayer ceramic substrate. Therefore, the electrode layer 18 is interposed between the first green sheet stack 12 and the second green sheet stack 12 and 14 in a later step.
  • electrode layer 18 may be formed with first green sheet stack 12 in a first pressing step. That is, in the first pressing step, the electrode layer 18 is disposed at the bottom (or top) of the plurality of green green sheets 11, and the plurality of green green sheets 11 and the electrode layers 18 are pressed together. Can be formed.
  • a protective film for protecting the electrode layer 18 may be disposed between the electrode layer 18 and the second mold 34.
  • Various kinds of protective films may be used.
  • a resin material may be used, or the same film as the first and second thin films 42 and 44 may be used.
  • the type of protective film is not limited and it is sufficient that the electrode layer 18 can be protected during the pressing process.
  • the electrode layer 18 may be formed on the bonding surface of the first green sheet stack 12 to be in contact with the second green sheet stack 14.
  • the electrode layer 18 may be manufactured in the form of a sheet, and then may be installed in the secondary pressing step of stacking the first and second fine grain sheets 12 and 14.
  • holes 22 for the cavity are formed in the second green sheet stack 14 ( S120).
  • the hole 22 may be formed in various ways. In general, the hole 22 may be formed using a punching process, or may be formed using a drill apparatus equipped with a drill. Or it may be formed using a laser beam generator for emitting a laser beam. The hole 22 is formed to penetrate through the second green sheet stack 24. The formation method of the hole 22 should just be a method which can form the hole 22 so that it may have a set shape.
  • a second third minute sheet stack 14 having holes 22 formed on the first minute sheet stack 12 having the electrode layer 18 is disposed to be a third third minute.
  • the texture sheet stack 16 is formed (S130).
  • the first thin film 42 is formed on the upper surface of the preliminary third green sheet stack 16 to cover the upper opening of the hole 22, and the second thin film is formed on the lower surface of the preliminary third green sheet stack 16.
  • Each film 44 is disposed (S130).
  • the first and second green sheet stacks 12 and 14 are disposed such that the electrode layer 18 is interposed between the first green sheet stack 12 and the second green sheet stack 14. That is, the second green sheet stack 14 having the holes 22 is disposed on the first green sheet stack 12 on which the electrode layer 18 is positioned.
  • the preliminary third green sheet stack 16 has a cavity 24 formed by the inner circumferential surface of the hole 22 and the first green sheet stack 12.
  • the electrode layer 18 is interposed between the first green sheet stack 12 and the second green sheet stack 14 to expose the electrode layer 18 corresponding to the cavity 24.
  • the bottom surface of the cavity 24 is a structure formed by the electrode layer 18.
  • the first thin film 42 and the second thin film 42 for sealing are respectively formed on the upper and lower surfaces of the preliminary third green sheet stack 16. , 44). That is, the first thin film film 42 for sealing is disposed on the upper surface of the second green sheet stack 14 positioned on the upper portion, and the second thin film film 44 for sealing is disposed on the lower surface of the first ceramic sheet stack 12. Place it.
  • the first and second thin films 42 and 44 are provided to create pneumatic pressure in the cavity 24 in the second pressurization step of the preliminary third green sheet stack 16 to be carried out later.
  • the first thin film 42 is disposed to cover the upper opening of the cavity 24 to seal the opening of the cavity 24 to maintain pneumatic pressure.
  • the first and second thin films 42 and 44 are formed of a sealing material, that is, a material capable of blocking the air more than a predetermined level for maintaining pneumatic pressure. Therefore, the first and second thin films 42 and 44 may be formed of a resin-based material that can be sealed through air blocking.
  • the first and second thin films 42 and 44 may be formed of a film made of polyethylene terephthalate (PET).
  • silicon (Si) may be coated on the surface of the film of polyethylene terephthalate resin (PET) to facilitate separation of the first and second thin films 42 and 44 in a later step.
  • the silicon (Si) coating can be made only on one surface in contact with at least the first green sheet stack 12 or the second green sheet stack 14, or of the first and second thin film films 42, 44 It can be done for the whole surface.
  • the first and second thin films 42 and 44 may be formed of various materials without being limited to resin-based materials.
  • the first and second thin films 42 and 44 are capable of blocking the air (eg, sealing) to form pneumatically in the cavity 24, and a material that is resistant to a subsequent pressing step is sufficient.
  • first and second thin films 42 and 44 may have a function of restraining the preliminary third green sheet stack 16.
  • the first and second thin films 42 and 44 may be configured to adhere to the surface of the preliminary third green sheet stack 16.
  • the first and second thin film films 42 and 44 and the preliminary third green sheet stack 16 are pressed to form the third green sheet stack 16 (S150). ). That is, the secondary pressurization using the pair of flat molds 32 and 34 arranged in parallel with respect to the preliminary third green sheet stack 16 provided with the first and second thin film films 42 and 44. Perform the steps.
  • the pair of flat molds 32 and 34 used in the second press step are press molds, which are substantially similar to the molds used in the first press step. Therefore, the same reference numerals are used.
  • the preliminary third green sheet stack 16 is laminated by bonding the first green sheet stack 12 and the second green sheet stack 14 through secondary pressure.
  • the pair of pressing molds 32 and 34 used in the secondary pressing step of pressing the preliminary third green sheet stack 16 have a flat structure. Therefore, the bottom surface of the cavity 24 is not in direct contact with the first mold 32 in the secondary pressing process.
  • the first and second thin film films 42 and 44 are disposed on the upper and lower surfaces of the preliminary third green sheet stack 16, respectively, so that the cavity 24 is formed of the first and the first. 2 is sealed by the thin films 42 and 44, and pneumatic pressure is formed.
  • the first thin film 42 seals the upper opening of the cavity 24 so that pneumatic pressure is formed in the cavity 24.
  • the second thin film 44 does not directly seal the cavity 24.
  • the green ceramic green sheet 11 has poor sealing (e.g., air blocking) capability due to its characteristics, so that the air in the cavity 24 at the time of pressurization is finely lowered through the first green sheet stack 12. Can flow.
  • the micro flow of air through the first green sheet stack 12 may lower the pneumatic pressure of the cavity 24. Therefore, the second thin film 44 serves to seal the lower surface of the first green sheet stack 12, and thus functions to allow pneumatic pressure to be formed in the cavity 24.
  • pneumatic pressure is formed in the cavity 24 by the first and second thin film films 42 and 44, and the pneumatic pressure of the cavity 24 is formed from the first mold 32 from the first mold 32 on the cavity 24.
  • pressure is applied to the bottom surface of the cavity 24 (for example, the electrode layer 18).
  • the bottom surface of the cavity 24 is not in direct contact with the first mold 32, but the pressure applied from the first mold 32 is transmitted through the pneumatic pressure of the cavity 24, thereby applying pressure to the bottom surface. Lamination is stable.
  • the preliminary third microscopic sheet stack 16 is formed, and the first and second thin film films 42 and 44 are disposed on the upper and lower surfaces of the preliminary third microscopic sheet stack 16 and then pressurized.
  • the process is divided into descriptions.
  • the division of the manufacturing steps as described above is not limited to the division for explaining the configuration and effect of the first and second thin film (42, 44). That is, the above manufacturing step may include, for example, the second thin sheet stack 14 having the second thin film 44, the first green sheet stack 12, and the holes 22 formed on the second mold 34. ) And the first thin film 42 may be sequentially disposed and pressurized through the first mold 32 on the first thin film 42.
  • the third green sheet stack 16 is a preliminary multilayer ceramic substrate 10 for forming the multilayer ceramic substrate 10.
  • the electrode layers 18 are provided on the plurality of ceramic green sheets 11, and the electrode layers 18 are formed.
  • the third green sheet stack 16 from which the first and second thin films 42 and 44 are removed is sintered at a sintering temperature (S170). That is, the multi-layered ceramic substrate 10 is formed by sintering the third green sheet stack 16 at the sintering temperature. Accordingly, the third green sheet stack 16 means the preliminary multilayer ceramic substrate 10.
  • the sintering step for the third green sheet stack 16 may vary depending on the type of ceramic used in the green ceramic green sheet 11.
  • alumina Al 2 O 3
  • sintering may be performed in a wet hydrogen (H 2 ) atmosphere.
  • AlN aluminum nitride
  • sintering may be performed in a nitrogen (N 2 ) gas atmosphere at a temperature of about 1750 ° C. to 1850 ° C.
  • the sintering temperature is higher than that of the green ceramic green sheet 11.
  • the strain inhibiting ceramic sheet (not shown) may be disposed on the upper and lower surfaces of the third green sheet stack 16, respectively.
  • the multilayer ceramic substrate 10 having the cavity has the first and second green sheet stacks 12 and 14 through the first pressing step of pressing the plurality of ceramic green sheets 11, respectively. To form them separately.
  • the third green sheet is subjected to the second pressing step of pressing the first and second green sheet stacks 12 and 14.
  • the stack 16 is formed.
  • the third green sheet stack 16 thus formed is sintered at a sintering temperature to manufacture a multilayer ceramic substrate 10.
  • the green sheet when pressing at the same level of pressure in the first pressurization step and the second pressurization step, the green sheet may not be completely laminated (adhesive) and may cause sag. Therefore, in the present embodiment, the first pressurization step is performed at a lower pressure than the second pressurization step.
  • the secondary pressing step has conditions similar to those of the conventional general lamination step.
  • the first pressurization step may pressurize to a pressure of 2Mpa or less
  • the second pressurization step may pressurize to a pressure of 3.5Mpa or less.
  • the first pressurization step is performed at a pressure of 1Mpa to 2Mpa
  • the second pressurization step is preferably performed at a pressure of 3Mpa to 3.5Mpa higher than the first pressurization step.
  • the lamination (fixing) may not be completely performed, and thus, deformation may occur in the first green sheet stack 12 in the second pressing step, which is not preferable. For example, a deformation may occur in which the portion of the first green sheet stack 12 exposed by the cavity 24 is convex.
  • a deformation may occur in which the portion of the first green sheet stack 12 exposed by the cavity 24 is convex.
  • pressurizing at a pressure higher than 2 Mpa in the first pressing step since the first green sheet stack 12 and the second green sheet stack 14 are not completely stacked (fixed) with each other in the second pressing step.
  • the lamination state of the green ceramic green sheets 11 is also affected by the pressing time (pressure application time) of the first pressing step and the second pressing step. Therefore, the pressure is applied in the time range of 85s to 95s in the first pressurization step, and in the time range of 595s to 605s in the second pressurization step. For example, it is preferable to pressurize for 90 s in the first pressing step and 600 s in the second laminating step. If the pressurization times of the first and second pressurization steps are different, they are not significantly different from the failure due to the preceding pressure.
  • the lamination temperature range in the 1st and 2nd pressurization steps has 65 to 100 degreeC.
  • the binder which is the main factor for laminating the green ceramic green sheets 11, does not function properly and thus is not completely laminated.
  • organic matter (binder and plasticizer) included in the green ceramic green sheet 11 starts to oxidize, which is not preferable because lamination is prevented.
  • the first pressing is performed by dividing into the first and second pressing steps. Since the cavity 22 is formed in the second green sheet stack 14 formed through the step, the cavity 22 can be easily formed. In addition, by applying a lower pressure and a shorter pressing time than the second pressing step, the lamination failure between the green ceramic green sheets 11 may be improved.
  • the method of manufacturing a multilayer ceramic substrate having a cavity forms a pneumatic pressure by sealing the cavity through a thin film for sealing installed on the upper and lower surfaces of the ceramic laminate, and pressurizes the air in the cavity. This is done. Therefore, pressure is applied to the bottom surface of the cavity due to the pressure of the mold due to the pneumatic pressure formed in the cavity, thereby achieving stable lamination (for example, adhesion) to the bottom surface of the cavity even in a non-contact state with the mold. Therefore, the manufacturing method of the multilayer ceramic substrate of the present invention can be used to produce a variety of cavity-shaped multilayer ceramic substrate using a flat mold.
  • the manufacturing method of the multilayer ceramic substrate of the present invention can be preferably used for process simplification and cost reduction.

Abstract

캐비티를 갖는 다층 세라믹 기판의 제조 방법은 각각 다수 매의 미소결 세라믹 그린 시트를 가압하여 제1 및 제2 미소결 시트스택을 개별 형성하는 1차 가압단계와, 제2 미소결 시트스택에 홀(hole)을 형성하는 단계와, 제1 미소결 시트스택 상에 홀이 형성된 제2 미소결 시트스택을 배치하여 예비 제3 미소결 시트스택을 형성하는 단계와, 예비 제3 미소결 시트스택의 상면 및 하면에 각각 실링용 제1 박막 필름 및 제2 박막 필름을 배치하는 단계와, 제1 및 제2 박막 필름과 예비 제3 미소결 시트스택을 가압하여 제3 미소결 시트스택을 형성하는 2차 가압 단계, 그리고 제3 미소결 시트스택을 소결하는 단계를 포함한다. 따라서 캐비티의 형상에 구애받지 않고 평판형 몰드를 통해 다수 매의 세라믹 그린 시트를 적층할 수 있어 제조 공정을 간소화하고 안정적으로 수행할 수 있다.

Description

다층 세라믹 기판의 제조 방법
본 발명은 다층 세라믹 기판의 제조 방법에 관한 것으로, 세라믹 정전척, 세라믹 히터 등에 적용될 수 있는 캐비티(cavity)를 갖는 다층 세라믹 기판의 제조 방법에 관한 것이다.
일반적으로 다층 세라믹 기판(multi layer ceramic substrate)은 뛰어난 내 플라즈마성, 내 산화성, 내 화학성 및 내 절연성이 우수하여 금속재료가 갖는 물리적, 화학적 취약성을 보완하여 전자산업 분야에서 광범위하게 사용되고 있으며, 특히 반도체 제조 부품 관련 분야에서 활발하게 사용되고 있다. 예를 들어, 다층 세라믹 기판은 반도체 제조 공정 상에서 실리콘웨이퍼를 정전 흡착하여 파지하기 위한 정전척(Electrostatic Chuck), 또는 웨이퍼를 고온 처리하기 위한 세라믹 히터(Ceramic Heater) 등에 사용될 수 있다.
다층 세라믹 기판의 제조 방법은 다수 매의 미소결 세라믹 그린 시트(ceramic green sheet)를 적층한 후 가압하여 고정시키고, 이를 소결 온도로 소결하여 제조될 수 있다. 여기서, 정전척 또는 세라믹 히터의 경우 미소결 세라믹 그린 시트 사이에 정전기력 형성 또는 발열을 위한 전극층(또는 전극 패턴)이 개재되며, 도선 연결을 위해 전극층이 노출되도록 캐비티(cavity)를 형성하게 된다.
도 1은 종래 캐비티를 갖는 다층 세라믹 기판의 제조 방법을 나타내는 개략적인 도면이다.
도 1을 참조하면, 종래 캐비티(3)를 갖는 다층 세라믹 기판은 미소결 세라믹 그린 시트(1)들 상에 전극층(8)을 형성하고, 상기 전극층 상에 캐비티용 홀(2,hole)을 갖는 미소결 세라믹 그린 시트(1)들을 적층한 후, 가압하여 미소결 세라믹 그린 시트(1)들이 고정된 시트 스택을 형성하고, 시트 스택(4)을 소결 온도로 소결하여 제조된다.
여기서, 세라믹 그린 시트(1)들의 가압은 일반적으로 상호 평행 배치된 평판형 몰드(5,6)로 이루어 질 수 있다. 따라서 캐비티(3)의 바닥면은 가압되지 않는 문제점이 있다. 즉, 캐비티(3)에 의해 노출되는 전극층(8) 영역이 가압되지 않아 세라믹 그린 시트(1)가 분리되거나, 캐비티(3) 바닥면의 전극층(8) 및 세라믹 그린 시트(1)가 변형된다.
이를 개선하기 위해 캐비티(3)에 대응하는 돌출부를 갖는 몰드를 사용하는 방안이 제안되었다. 하지만, 캐비티의 배치 구조나 형상에 따라 전용 몰드를 제작하고, 얼라인 해야 되는 불편함으로 캐비티에 따른 즉각적인 대응이 어렵다는 문제점이 있다. 또한, 돌출부의 형상이 정확하지 않는 경우 가해지는 압력이 부족하여 적층되지 않거나, 가해지는 압력이 강하여 전극층을 손상시키는 문제점이 있다.
또 다른 개선 방안으로 다수 매의 미소결 세라믹 그린 시트를 적층하여 가압한 후, 캐비티 영역을 컷(cut) 하여 제거함으로써 캐비티를 형성하는 방법이 제안되었다. 하지만, 컷 방식은 컷의 정밀도에 따라 캐비티 영역의 전극층 또는 시트에 영향을 줄 수 있는 문제점이 있다.
따라서, 간편하면서 효과적인 캐비티를 갖는 다층 세라믹 기판의 제조 방법이 요구되고 있다.
따라서 본 발명의 실시예를 통해 해결하고자 하는 일 과제는 캐비티의 형상에 구애받지 않고 평행 배치된 한 쌍의 평판형 몰드를 이용하여 간단하고 안정적으로 제조할 수 있는 다층 세라믹 기판의 제조 방법을 제공하는 것이다.
상기 본 발명의 일 과제를 달성하기 위해 본 발명의 일 실시예에 따른 캐비티를 갖는 다층 세라믹 기판의 제조 방법은 각각 다수 매의 미소결 세라믹 그린 시트를 가압하여 제1 미소결 시트스택 및 제2 미소결 시트스택을 개별 형성하는 1차 가압 단계를 수행한다. 상기 제2 미소결 시트스택에 홀(hole)을 형성한다. 상기 제1 미소결 시트스택 상에 상기 홀이 형성된 제2 미소결 시트스택을 배치하여 예비 제3 미소결 시트스택을 형성한다. 상기 예비 제3 미소결 시트스택의 상면 및 하면에 각각 실링용 제1 박막 필름 및 제2 박막 필름을 배치한다. 상기 제1 박막 필름 및 상기 예비 제3 미소결 시트스택을 가압하여 제3 미소결 시트스택을 형성하는 2차 가압 단계를 수행한다. 상기 제3 미소결 시트스택을 소결한다.
여기서, 일 실시예에 따른 다층 세라믹 기판의 제조 방법에서 상기 제1 및 제2 박막 필름은 상기 홀의 내주면과 상기 제1 미소결 시트스택에 의해 형성되는 캐비티의 공압 유지를 위하여 수지 재질로 이루어질 수 있다. 특히, 상기 제1 및 제2 박막 필름은 폴리에틸렌 테레프탈레이트 수지(polyethylen terephthalate: PET) 재질로 이루어지고, 적어도 상기 제1 및 제2 미소결 시트스택에 접하는 일 표면이 실리콘(Si)으로 코팅될 수 있다.
다른 실시예에 따른 다층 세라믹 기판의 제조 방법에서 상기 1차 가압 단계의 압력은 상기 2차 가압 단계의 압력보다 낮은 압력으로 진행될 수 있다. 특히, 상기 1차 가압 단계의 압력은 1Mpa 내지 2Mpa 이고, 상기 2차 가압 단계의 압력은 3Mpa 내지 3.5Mpa인 것을 특징으로 한다.
또 다른 실시예에 따른 다층 세라믹 기판의 제조 방법에서 상기 1차 가압 단계의 가압 시간은 상기 2차 가압 단계의 가압 시간보다 짧을 수 있다. 특히, 상기 1차 가압 단계는 85s 내지 95s 동안 가압하고, 상기 2차 가압 단계는 595s 내지 605s 동안 가압하는 것을 특징으로 할 수 있다.
또 다른 실시예에 따른 다층 세라믹 기판의 제조 방법에서 상기 1차 및 2차 가압 단계 각각은 평행 배치된 한 쌍의 평판형 몰드를 이용하여 수행될 수 있다.
또 다른 실시예에 따른 다층 세라믹 기판의 제조 방법에서 상기 1차 및 2차 가압 단계의 가압 공정 온도는 65℃ 내지 100℃ 일 수 있다.
또 다른 실시예에 따른 다층 세라믹 기판의 제조 방법에서 상기 제1 미소결 시트스택과 상기 제2 미소결 시트스택 사이에 전극층을 형성하는 단계를 더 포함할 수 있다.
이와 같이 구성된 본 발명에 따른 캐비티를 갖는 다층 세라믹 기판의 제조 방법에 의하면 다수 매의 세라믹 그린 시트에 대한 가압을 통해 미소결 시트스택을 형성하는 적층 단계에서 캐비티를 실링하는 박막 필름에 의해 캐비티는 공압을 형성하고, 캐비티에 공압이 형성된 상태에서 압력이 가해지면 공압으로 인해 캐비티의 바닥면에도 압력이 가해져 적층이 이루어진다. 따라서, 가압용 몰드가 캐비티의 바닥면에 직접 접촉하지 않더라도 안정적인 적층이 가능하게 되므로, 평판형 몰드를 이용한 안정적인 적층이 가능해진다.
즉, 캐비티의 형상에 구애받지 않고, 평판형 몰드를 이용하여 다양한 형상의 캐비티를 갖는 미소결 시트스택을 제작할 수 있다. 따라서, 캐비티의 형상에 따른 전용 몰드를 제작하지 않아도 되며, 전용 몰드의 얼라인에 소요되는 시간 및 비용을 절감할 수 있다. 또한, 평판형 몰드만으로 캐비티의 다양한 형상에 대응할 수 있으므로 제조 설비의 호환성이 향상되며, 공정을 간소화 할 수 있다. 또한, 몰드와 전극층이 직접 접촉하지 않게 되므로 전극층의 손상 및 오염을 방지할 수 있으며, 캐비티의 형성함에 있어서 몰드에 제약을 받지 않게 되므로 설계의 용이성이 확보될 수 있다.
또한, 본 발명에 따른 캐비티를 갖는 다층 세라믹 기판의 제조 방법에 따르면 적층 단계가 1차 가압 및 2차 가압으로 2번에 걸쳐 진행되며, 특히 1차 가압 단계는 2차 가압 단계와 비교하여 압력의 강도 및 가압 시간이 상대적으로 낮은 수준으로 진행함에 따라서 보다 효율적이고, 안정적인 적층이 가능해진다.
도 1은 종래 캐비티를 갖는 다층 세라믹 기판의 제조 방법을 나타내는 개략적인 도면이다.
도 2는 본 발명의 일 실시예에 따른 캐비티를 갖는 다층 세라믹 기판의 제조 방법의 개략적인 공정 흐름도이다.
도 3 내지 도 9는 도 2의 캐비티를 갖는 다층 세라믹 기판의 제조 방법을 설명하기 위한 개략적인 공정도들이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 정전 척 및 정전 척용 단자부 및 그 제조방법의 바람직한 실시예에 대하여 상세히 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 2는 본 발명의 일 실시예에 따른 캐비티를 갖는 다층 세라믹 기판의 제조 방법의 개략적인 공정 흐름도이고, 도 3 내지 도 9는 도 2의 캐비티를 갖는 다층 세라믹 기판의 제조 방법을 설명하기 위한 개략적인 공정도들이다.
도 2, 도 3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 캐비티를 갖는 다층 세라믹 기판의 제조 방법은 먼저 각각 다수 매의 미소결 세라믹 그린 시트(11, ceramic green sheet)를 가압하는 1차 가압 단계를 통해서 제1 미소결 시트스택(12) 및 제2 미소결 시트스택(14)을 개별 형성한다(S110).
상기 미소결 세라믹 시트(11)의 제조 과정은 먼저, 세라믹 분말(ceramic powder), 세라믹 분말을 고르게 분산시키기 위한 분산제(dispersant) 및 용제(solvent)를 혼합하여 1차 세라믹 혼합물(ceramic mixture)을 제조한다. 다음 1차 세라믹 혼합물에 접착성을 갖는 바인더(binder) 및 가소제(plasticizer)를 2차 혼합(또는 교반)하여 2차 세라믹 혼합물을 제조한다. 2차 세라믹 혼합물에는 혼합 도중 공기가 유입되어 다량의 기포를 포함할 수 있다. 기포가 포함된 2차 세라믹 혼합물을 시트 형상으로 형성할 경우, 미소결 세라믹 그린 시트(11)의 표면에는 기포에 의한 리세스(recess)가 형성될 수 있고, 미소결 세라믹 그린 시트(11)의 내부에는 기포에 의한 보이드(void)가 형성될 수 있다. 따라서 2차 세라믹 혼합물이 형성된 후 2차 세라믹 혼합물에 포함된 기포를 제거하는 과정을 거친다. 기포가 제거된 2차 세라믹 혼합물은 다양한 방법에 의하여 박판 형태로 가공되어 미소결 세라믹 그린 시트(11)가 제조된다. 예컨대 미소결 세라믹 그린 시트(11)는 2차 세라믹 혼합물을 닥터 블레이드법(doctor blade)을 이용하여 시트로 형성한 후, 건조되어 제조될 수 있다.
상기와 같이 제조된 다수 매의 미소결 세라믹 그린 시트(11)를 평행 배치된 한 쌍의 평판형 몰드(32, 34), 즉 가압용 제1 몰드(32)와 가압용 제2 몰드(34)를 이용하여 가압하는 1차 가압 단계를 수행한다. 이러한 1차 가압 단계를 통해서 다수 매의 미소결 세라믹 그린 시트(11)를 적층시킨 제1 미소결 시트스택(12)이 형성된다. 동일한 방법으로 다수 매의 미소결 세라믹 그린 시트(11)를 한 쌍의 평판형 몰드(32, 34)를 통해 가압하여 제2 미소결 시트스택(24)을 형성한다. 다수 매의 미소결 세라믹 그린 시트(11)를 가압하여 적층하는 과정은 예컨대 다수 매의 미소결 세라믹 그린 시트(11)를 접착하여 고정하는 것을 의미한다. 여기서, 제1 미소결 시트스택(12)과 제2 미소결 시트스택(24)의 제조 과정은 실질적으로 동일하다. 또한, 제1 및 제2 미소결 시트스택(12, 14)의 제조 과정이 실질적으로 동일함에도 불구하고 서로 구분하는 것은 제2 미소결 시트스택(14)이 이하의 단계에서 캐비티(24) 형성층으로 기능하기 때문이다. 따라서, 제1 및 제2 미소결 시트스택(12, 14)은 서로 개별 형성되는 구성이면 충분하며, 서로 동일 시점에 제조되는 것을 의미하지는 않는다. 즉, 제1 미소결 시트스택(12)과 제2 미소결 시트스택(14)의 제조 순서는 변경될 수 있다. 상기와 같은 이유로 도 2에 도시한 공정 흐름도에서 제1 및 제2 미소결 시트스택(12, 14)을 제조하는 단계 번호를 동일하게 부여하였다.
한편, 정전척 또는 세라믹 히터에 사용될 다층 세라믹 기판에는 전극층(18)이 포함된다. 전극층(18)은 정전기력 형성 또는 발열을 위해 구성되며, 통상 다층 세라믹 기판의 내부에 매립된 구조로 형성된다. 따라서, 이후의 단계에서 제1 미소결 시트스택(12)과 제2 미소결 시트스택(12, 14) 사이에 전극층(18)이 개재되도록 구성한다. 예를 들어, 전극층(18)은 1차 가압 단계에서 제1 미소결 시트스택(12)과 함께 형성될 수 있다. 즉, 1차 가압 단계에서 다수 매의 미소결 그린 시트(11)의 최하단(또는 최상단)에 전극층(18)을 배치하고, 다수 매의 미소결 그린 시트(11)와 전극층(18)을 함께 가압하여 형성될 수 있다. 이 때, 전극층(18)은 제2 몰드(34, 혹은 제1 몰드(32))와 직접 접촉하게 되므로 손상 및 오염될 수 있다. 따라서, 도시하진 않았지만 전극층(18)과 제2 몰드(34) 사이에 전극층(18)을 보호하기 위한 보호 필름을 배치할 수 있다. 보호 필름은 다양한 종류가 사용될 수 있다. 예를 들어, 수지 재질이 사용될 수 있고, 또는 상기 제1 및 제2 박막 필름(42, 44)과 동일한 필름이 사용될 수도 있다. 보호 필름의 종류는 제한적이지 않으며 가압 과정에서 전극층(18)을 보호할 수 있으면 충분하다. 이처럼, 전극층(18)은 제2 미소결 시트스택(14)과 접하게 될 제1 미소결 시트스택(12)의 접합면에 형성될 수 있다. 이와 달리, 전극층(18)은 시트 형태로 제조한 뒤, 제1 및 제2 미소결 시트스택(12, 14)을 적층하는 2차 가압 단계에서 설치될 수도 있다.
도 2 및 도 5를 참조하면, 1차 가압 단계를 통해 제2 미소결 시트스택(14)을 제조한 후 제2 미소결 시트스택(14)에는 캐비티용 홀(22, hole)을 형성한다(S120).
상기 홀(22)은 다양한 방법으로 형성될 수 있다. 일반적으로 홀(22)은 펀칭(punching) 공정을 이용하여 형성될 수 있고, 또는 드릴이 장착된 드릴 장치를 이용하여 형성될 수 있다. 또는 레이저빔을 방출하는 레이저빔 발생장치를 이용하여 형성될 수도 있다. 홀(22)은 제2 미소결 시트스택(24)을 관통하게 형성된다. 홀(22)의 형성 방법은 설정된 형상을 갖도록 홀(22)을 형성할 수 있는 방법이면 충분하다.
도 2 및 도 6를 참조하면, 전극층(18)이 구비된 제1 미소결 시트스택(12)의 상부에 홀(22)이 형성된 제2 미소결 시트스택(14)을 배치하여 예비 제3 미소결 시트스택(16)을 형성한다(S130). 다음 예비 제3 미소결 시트스택(16)의 상면에 상기 홀(22)의 상단 개구부를 덮도록 제1 박막 필름(42)을, 예비 제3 미소결 시트스택(16)의 하면에 제2 박막 필름(44)을 각각 배치한다(S130).
여기서, 제1 및 제2 미소결 시트스택(12, 14)의 배치는 전극층(18)이 제1 미소결 시트스택(12)과 제2 미소결 시트스택(14) 사이에 개재되도록 배치한다. 즉, 전극층(18)이 상부에 위치하도록 놓여진 제1 미소결 시트스택(12) 상에 홀(22)이 형성된 제2 미소결 시트스택(14)을 배치한다. 따라서, 예비 제3 미소결 시트스택(16)은 홀(22)의 내주면과 제1 미소결 시트스택(12)에 의해 형성되는 캐비티(24)를 갖게 된다. 또한, 전극층(18)이 제1 미소결 시트스택(12)과 제2 미소결 시트스택(14) 사이에 개재됨으로써, 캐비티(24)에 대응하여 전극층(18)이 노출된다. 다시 말해서, 캐비티(24)의 바닥면은 전극층(18)에 의해 형성되는 구조가 된다.
예비 제3 미소결 시트스택(16)이 형성한 후, 예비 제3 미소결 시트스택(16)의 상면 및 하면에 각각 실링(sealing)용 제1 박막 필름(42) 및 제2 박막 필름(42, 44)을 배치한다. 즉, 상부에 위치한 제2 미소결 시트스택(14)의 상면에 실링용 제1 박막 필름(42)을 배치하고, 제1 세라믹 시트스택(12)의 하면에 실링용 제2 박막 필름(44)을 배치한다. 제1 및 제2 박막 필름(42, 44)은 추후 진행될 예비 제3 미소결 시트스택(16)의 2차 가압 단계에서 캐비티(24)에 공압을 형성하기 위하여 구비된다. 특히, 제1 박막 필름(42)은 캐비티(24)의 상단 개구부를 덮도록 배치되어, 캐비티(24)의 개구부를 밀폐시켜 공압을 유지하게 된다. 따라서, 제1 및 제2 박막 필름(42, 44)은 실링용 재질, 즉 공압 유지를 위하여 공기를 일정 수준 이상 차단할 수 있는 재질로 형성된다. 따라서, 제1 및 제2 박막 필름(42, 44)은 공기 차단을 통하여 실링 가능한 수지(resin) 계열 재질로 형성될 수 있다. 예를 들어, 제1 및 제2 박막 필름(42, 44)은 폴리에틸렌 테레프탈레이트 수지(polyethylen terephthalate: PET) 재질의 필름으로 이루어질 수 있다. 더불어, 이후의 단계에서 제1 및 제2 박막 필름(42, 44)의 분리가 용이해지도록 폴리에틸렌 테레프탈레이트 수지(PET) 재질의 필름 표면에 실리콘(Si)을 코팅처리 할 수 있다. 실리콘(Si) 코팅은 적어도 제1 미소결 시트스택(12) 또는 제2 미소결 시트스택(14)에 접하는 일 표면에 대해서만 이루어질 수 있으며, 또는 제1 및 제2 박막 필름(42, 44)의 표면 전체에 대하여 이루어질 수 있다. 한편, 제1 및 제2 박막 필름(42, 44)은 수지 계열 재질로 한정되지 않고 다양한 재질로 형성될 수 있다. 제1 및 제2 박막 필름(42, 44)은 캐비티(24)에 공압 형성을 위해서 공기 차단(예컨대 실링)이 가능하며, 이후의 가압 단계에 내성을 갖는 재질이면 충분하다.
또한, 제1 및 제2 박막 필름(42, 44)은 예비 제3 미소결 시트스택(16)을 구속하는 기능을 가질 수도 있다. 이를 위해, 제1 및 제2 박막 필름(42, 44)은 예비 제3 미소결 시트스택(16)의 표면에 접착되도록 구성될 수 있다. 제1 및 제2 박막 필름(42, 44)에 의한 예비 제3 미소결 시트스택(16)의 구속을 통해서 이후 2차 가압 단계에서 제1 및 제2 미소결 시트스택(12, 14) 혹은 미소결 세라믹 그린 시트(11)의 변형을 억제할 수 있다.
도 2 및 도 7를 참조하면, 제1 및 제2 박막 필름(42, 44)과, 예비 제3 미소결 시트스택(16)을 가압하여 제3 미소결 시트스택(16)을 형성한다(S150). 즉, 제1 및 제2 박막 필름(42, 44)이 설치된 예비 제3 미소결 시트스택(16)에 대해서 평행 배치된 한 쌍의 평판형 몰드(32, 34)를 이용하여 가압하는 2차 가압 단계를 수행한다. 여기서, 2차 가압 단계에 이용되는 한 쌍의 평판형 몰드(32, 34)는 가압용 몰드로서, 앞서 1차 가압 단계에서 이용되는 몰드와 실질적으로 유사하다. 따라서 동일한 도면부호를 사용하였다. 예비 제3 미소결 시트스택(16)은 2차 가압을 통해서 제1 미소결 시트스택(12)과 제2 미소결 시트스택(14)이 접착되어 적층된다.
예비 제3 미소결 시트스택(16)을 가압하는 2차 가압 단계에서 이용되는 한 쌍의 가압용 몰드(32, 34)는 평판형 구조를 갖는다. 따라서, 2차 가압 과정에서 캐비티(24)의 바닥면은 제1 몰드(32)와 직접 접촉하지 않게 된다. 하지만, 본 실시예에서는 설명한 바와 같이 예비 제3 미소결 시트스택(16)의 상면 및 하면에 각각 제1 및 제2 박막 필름(42, 44)을 배치함으로써, 캐비티(24)는 제1 및 제2 박막 필름(42, 44)에 의해 실링되어 공압이 형성된다. 특히, 제1 박막 필름(42)은 캐비티(24)의 상단 개구를 밀폐하여 캐비티(24)에 공압이 형성된다. 한편, 제2 박막 필름(44)은 캐비티(24)를 직접적으로 실링하지는 않는다. 하지만, 미소결 세라믹 그린 시트(11)는 특성상 실링(예컨대 공기 차단) 능력이 좋지 않으며, 그로 인해서 가압시에 캐비티(24) 내의 공기가 제1 미소결 시트스택(12)을 통해 하부로 미세하게 흐를 수 있다. 제1 미소결 시트스택(12)을 통한 공기의 미세 흐름은 캐비티(24)의 공압을 저하시킬 수 있다. 따라서, 제2 박막 필름(44)은 제1 미소결 시트스택(12)의 하면을 실링하는 역할을 하며, 이를 통해서 캐비티(24)에 공압이 형성될 수 있도록 기능한다.
이처럼, 제1 및 제2 박막 필름(42, 44)에 의해 캐비티(24)에 공압이 형성되며, 캐비티(24)의 공압은 캐비티(24) 상부에서 제1 몰드(32)로부터 제1 박막 필름(42)에 가해지는 압력에 반발하여 캐비티(24)의 바닥면(예컨대 전극층(18))에 압력을 가하게 된다. 결과적으로, 캐비티(24)의 바닥면은 제1 몰드(32)와 직접 접촉하지 않지만 제1 몰드(32)로부터 가해지는 압력이 캐비티(24)의 공압을 통해 전달됨으로써, 바닥면에 압력이 가해져 안정적으로 적층이 이루어진다.
앞서 설명에서 예비 제3 미소결 시트스택(16)을 형성하고, 예비 제3 미소결 시트스택(16)의 상,하면에 제1 및 제2 박막 필름(42, 44)을 배치한 후, 가압하는 과정으로 구분하여 설명하였다. 하지만 상기와 같은 제조 단계의 구분은 제1 및 제2 박막 필름(42, 44)의 구성 및 효과를 설명하기 위한 구분일 뿐 한정적이지 않다. 즉, 상기의 제조 단계는 예를 들어 제2 몰드(34) 상에 제2 박막 필름(44), 제1 미소결 시트스택(12), 홀(22)이 형성된 제2 미소결 시트스택(14) 및 제1 박막 필름(42)을 순차적으로 배치하고, 제1 박막 필름(42)의 상부에서 제1 몰드(32)를 통해 가압하는 단계로 구성될 수도 있다. 즉, 본 실시예에서 예비 제3 미소결 시트스택(16)의 형성 단계와, 제1 및 제2 박막 필름(42, 44)의 배치 단계 및 2차 가압 단계에 대한 설명은 제1 및 제2 미소결 시트스택(12, 14)과 제1 및 제2 박막 필름(42, 44)의 배치 순서에 대하여 한정하고자 하는 설명일 뿐이며, 그 적용은 자유로이 변경 가능하다.
도 2 및 도 8를 참조하면, 2차 가압 단계를 거쳐 제3 미소결 시트스택(16)이 형성되면, 제3 미소결 시트스택(16)으로부터 제1 및 제2 박막 필름(42, 44)을 제거한다(S160). 제3 미소결 시트스택(16)은 다층 세라믹 기판(10)을 형성하기 위한 예비 다층 세라믹 기판(10)으로 다수 매의 세라믹 그린 시트(11) 상에 전극층(18)이 설치되고, 전극층(18) 상에 캐비티용 홀(18)이 형성된 다수 매의 세라믹 그린 시트(11)가 적층된 구조를 갖는다.
도 2 및 도 9를 참조하면, 다음으로 제1 및 제2 박막 필름(42, 44)이 제거된 제3 미소결 시트스택(16)을 소결 온도로 소결 한다(S170). 즉, 제3 미소결 시트스택(16)을 소결 온도로 소결함으로써, 다층 세라믹 기판(10)이 형성된다. 따라서, 제3 미소결 시트스택(16)은 예비 다층 세라믹 기판(10)을 의미한다.
제3 미소결 시트스택(16)에 대한 소결 단계는 미소결 세라믹 그린 시트(11)에 사용된 세라믹의 종류에 따라 다를 수 있다. 예를 들어, 알루미나(Al2O3)의 경우 약 1600℃ 내지 1650℃의 온도로, Wet 수소(H2) 분위기에서 소결이 이루어 질 수 있다. 질화알루미늄(AlN)의 경우 약 1750℃ 내지 1850℃의 온도로 질소(N2) 가스 분위기에서 소결이 이루어 질 수 있다.
한편, 제3 미소결 시트스택(16)에 대한 소결 단계에서는 소결 공정 중에 발생하는 미소결 세라믹 그린 시트(11)의 변형을 억제하기 위하여, 미소결 세라믹 그린 시트(11)보다 높은 소결 온도를 갖는 변형 억제용 세라믹 시트(미도시)를 제3 미소결 시트스택(16)의 상면 및 하면에 각각 배치할 수도 있다.
이와 같이, 본 실시예에서 캐비티를 갖는 다층 세라믹 기판(10)은 각각 다수 매의 세라믹 그린 시트(11)를 가압하는 1차 가압 단계를 통해 제1 및 제2 미소결 시트스택(12, 14)을 개별 형성한다. 다음 제2 미소결 시트스택(14)에 캐비티용 홀(22)을 형성한 후, 제1 및 제2 미소결 시트스택(12, 14)을 가압하는 2차 가압 단계를 통해 제3 미소결 시트스택(16)을 형성한다. 이렇게 형성된 제3 미소결 시트스택(16)을 소결 온도로 소결하여 다층 세라믹 기판(10)이 제조된다.
여기서, 1차 가압 단계 및 2차 가압 단계에서 동일한 수준의 압력으로 가압하는 경우 그린 시트가 완전히 적층(접착)되지 않게 되어 처짐 현상이 발생할 수 있다. 따라서, 본 실시예에서 1차 가압 단계는 2차 가압 단계보다 낮은 압력으로 수행한다. 여기서, 2차 가압 단계는 종래 일반적인 적층 단계의 압력과 비슷한 조건을 갖는 것이 바람직하다.
예를 들어, 1차 가압 단계는 2Mpa 이하의 압력으로 가압하고, 2차 가압 단계는 3.5Mpa 이하의 압력으로 가압할 수 있다. 보다 안정적인 적층을 위해서 1차 가압 단계는 1Mpa 내지 2Mpa의 압력으로 수행하고, 2차 가압 단계는 1차 가압 단계보다 높은 3Mpa 내지 3.5Mpa의 압력으로 수행하는 것이 바람직하다.
1차 가압 단계에서 1Mpa 보다 낮은 압력으로 가압하는 경우 적층(고정)이 완전히 이루어지지 않게 되어 2차 가압 단계에서 제1 미소결 시트스택(12)에 변형이 발생하므로 바람직하지 못하다. 예를 들어, 캐비티(24)에 의해 노출되는 제1 미소결 시트스택(12) 부분이 볼록해지는 변형이 발생할 수 있다. 또한, 1차 가압 단계에서 2Mpa 보다 높은 압력으로 가압하는 경우에 2차 가압 단계에서 제1 미소결 시트스택(12)과 제2 미소결 시트스택(14)이 서로 완전히 적층(고정)되지 않게 되므로 바람직하지 못하다. 또한, 2차 가압 단계에서 3Mpa 보다 낮은 압력으로 가압하는 경우 제1 미소결 시트스택(12)과 제2 미소결 시트스택(14)이 서로 완전히 적층(고정)되지 않으므로 바람직하지 못하다. 또한, 2차 가압 단계에서 3.5Mpa 보다 높은 압력으로 가압하는 경우 제1 미소결 시트스택(12)에 변형이 발생하므로 바람직하지 못하다. 예를 들어, 캐비티(24)에 의해 노출되는 제1 미소결 시트스택(12) 부분이 볼록해지는 변형이 발생할 수 있다.
미소결 세라믹 그린 시트(11)들의 적층 상태는 1차 가압 단계 및 2차 가압 단계의 가압 시간(압력 인가시간)에 의해서도 영향을 받는다. 따라서 1차 가압 단계에서는 85s 내지 95s의 시간 범위로 가압하고, 2차 가압 단계에서는 595s 내지 605s의 시간 범위로 가압한다. 일 예로, 1차 가압 단계에서는90s 동안 가압하고, 2차 적층 단계에서는 600s 동안 가압하는 것이 바람직하다. 1차 및 2차 가압 단계의 가압 시간이 다른 경우 앞서 압력에 따른 불량과 크게 다르지 아니하다.
한편, 1차 및 2차 가압 단계에서의 적층 온도 범위는 65℃ 내지 100℃를 갖는 것이 바람직하다. 65℃ 미만의 적층 온도에서 적층을 진행하면, 미소결 세라믹 그린 시트(11)들을 적층시키는 주된 인자인 바인더가 제대로 기능하지 못하여 완전히 적층이 이루어지지 않게 되므로 바람직하지 못하다. 또한, 100℃ 이상의 적층 온도에서 적층을 진행하면, 미소결 세라믹 그린 시트(11)에 포함되어 있는 유기물(바인더 및 가소제)이 산화되기 시작하여 적층을 방해하게 되므로 바람직하지 못하다.
이와 같이, 다수 매의 미소결 세라믹 그린 시트(11)에 대한 가압 단계를 통해서 제3 미소결 시트스택(16)을 형성함에 있어서, 1차 및 2차 가압 단계로 구분하여 진행함으로써, 1차 가압 단계를 통해 형성된 제2 미소결 시트스택(14)에 대해 캐비티용 홀(22)을 형성하므로 캐비티용 홀(22)을 용이하게 형성할 수 있게 된다. 또한, 1차 가압 단계를 2차 가압 단계보다 낮은 압력 및 짧은 가압 시간을 적용함으로써, 미소결 세라믹 그린 시트(11)들 사이의 적층 불량을 개선할 수 있다.
상기와 같이 본 발명에 따른 캐비티를 갖는 다층 세라믹 기판의 제조 방법은 세라믹 적층물의 상면 및 하면에 각각 설치되는 실링용 박막 필름을 통해 캐비티를 실링하여 공압을 형성하고, 캐비티에 공압이 형성된 상태에서 가압이 이루어진다. 따라서 캐비티에 형성된 공압에 의해서 몰드의 가압에 반발하여 캐비티의 바닥면에 압력이 가해지게 됨으로써, 몰드와 비접촉 상태에서도 캐비티의 바닥면에 대해 안정적인 적층(예컨대 접착)이 이루어진다. 따라서 본 발명의 다층 세라믹 기판의 제조 방법은 평판형 몰드를 이용하여 다양한 캐비티 형상의 다층 세라믹 기판을 제조하기 위하여 이용될 수 있다.
또한, 1차 가압을 통해 고정된 미소결 그린시트에 캐비티용 홀을 형성한 후, 2차 가압을 통해 캐비티를 갖는 예비 세라믹 시트를 형성함으로써, 원하는 형상의 캐비티를 용이하게 형성할 수 있으며, 적층 과정이 간소화되고 안정적으로 이루어 질 수 있다. 따라서 본 발명의 다층 세라믹 기판의 제조 방법은 공정 간소화 및 비용 절감을 위하여 바람직하게 이용될 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명 이 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (10)

  1. 캐비티(cavity)를 갖는 다층 세라믹 기판의 제조 방법에 있어서,
    각각 다수 매의 미소결 세라믹 그린 시트를 가압하여 제1 미소결 시트스택 및 제2 미소결 시트스택을 개별 형성하는 1차 가압 단계;
    상기 제2 미소결 시트스택에 홀(hole)을 형성하는 단계;
    상기 제1 미소결 시트스택 상에 상기 홀이 형성된 제2 미소결 시트스택을 배치하여 예비 제3 미소결 시트스택을 형성하는 단계;
    상기 예비 제3 미소결 시트스택의 상면 및 하면에 각각 실링(sealing)용 제1 박막 필름 및 제2 박막 필름을 배치하는 단계;
    상기 제1 및 제2 박막 필름 및 상기 예비 제3 미소결 시트스택을 가압하여 제3 미소결 시트스택을 형성하는 2차 가압 단계; 및
    상기 제3 미소결 시트스택을 소결하는 단계를 포함하는 다층 세라믹 기판의 제조 방법.
  2. 제1항에 있어서, 상기 제1 및 제2 박막 필름은 상기 홀의 내주면과 상기 제1 미소결 시트스택에 의해 형성되는 캐비티의 공압 유지를 위하여 수지 재질로 이루어진 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  3. 제2항에 있어서, 상기 제1 및 제2 박막 필름은 폴리에틸렌 테레프탈레이트 수지(polyethylen terephthalate: PET) 재질로 이루어지고, 적어도 상기 제1 및 제2 미소결 시트스택에 접하는 일 표면이 실리콘(Si)으로 코팅된 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  4. 제1항에 있어서, 상기 1차 가압 단계의 압력은 상기 2차 가압 단계의 압력보다 낮은 압력으로 진행되는 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  5. 제4항에 있어서, 상기 1차 가압 단계의 압력은 1Mpa 내지 2Mpa 이고, 상기 2차 가압 단계의 압력은 3Mpa 내지 3.5Mpa인 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  6. 제1항에 있어서, 상기 1차 가압 단계의 가압 시간은 상기 2차 가압 단계의 가압 시간보다 짧은 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  7. 제6항에 있어서, 상기 1차 가압 단계는 85s 내지 95s 동안 가압하고, 상기 2차 가압 단계는 595s 내지 605s 동안 가압하는 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  8. 제1항에 있어서, 상기 1차 및 2차 가압 단계 각각은 평행 배치된 한 쌍의 평판형 몰드를 이용하여 수행되는 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  9. 제1항에 있어서, 상기 1차 및 2차 가압 단계의 가압 공정 온도는 65℃ 내지 100℃인 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
  10. 제1항에 있어서, 상기 제1 미소결 시트스택과 상기 제2 미소결 시트스택 사이에 전극층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 다층 세라믹 기판의 제조 방법.
PCT/KR2010/003314 2009-06-19 2010-05-26 다층 세라믹 기판의 제조 방법 WO2010147313A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080027392.0A CN102461351B (zh) 2009-06-19 2010-05-26 多层陶瓷基片的制造方法
US13/321,939 US8496770B2 (en) 2009-06-19 2010-05-26 Method of manufacturing multilayer ceramic substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090054726A KR101580464B1 (ko) 2009-06-19 2009-06-19 다층 세라믹 기판의 제조 방법
KR10-2009-0054726 2009-06-19

Publications (2)

Publication Number Publication Date
WO2010147313A2 true WO2010147313A2 (ko) 2010-12-23
WO2010147313A3 WO2010147313A3 (ko) 2011-02-24

Family

ID=43356857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003314 WO2010147313A2 (ko) 2009-06-19 2010-05-26 다층 세라믹 기판의 제조 방법

Country Status (4)

Country Link
US (1) US8496770B2 (ko)
KR (1) KR101580464B1 (ko)
CN (1) CN102461351B (ko)
WO (1) WO2010147313A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998144B2 (en) * 2012-02-06 2015-04-07 Textron Innovations Inc. Thermal insulation barrier for an aircraft de-icing heater
CN111312596B (zh) * 2020-03-10 2022-03-08 中国电子科技集团公司第二十九研究所 一种ltcc基板双面腔体结构的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230548A (ja) * 2000-02-21 2001-08-24 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP2002164655A (ja) * 2000-11-28 2002-06-07 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP2002164654A (ja) * 2000-11-27 2002-06-07 Murata Mfg Co Ltd 多層セラミック基板およびその製造方法
JP2003158375A (ja) * 2001-11-22 2003-05-30 Sumitomo Metal Electronics Devices Inc セラミック多層基板の製造方法及び半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4392791T1 (de) * 1992-06-12 1995-06-01 Aluminum Co Of America Verfahren zur Herstellung mehrlagiger Strukturen mit nichtebenen Oberflächen
US6423174B1 (en) * 1996-06-21 2002-07-23 International Business Machines Corporation Apparatus and insertless method for forming cavity substrates using coated membrane
US5858145A (en) * 1996-10-15 1999-01-12 Sarnoff Corporation Method to control cavity dimensions of fired multilayer circuit boards on a support
US5788808A (en) * 1997-04-15 1998-08-04 International Business Machines Corporation Apparatus for forming cavity substrates using compressive pads
US6179951B1 (en) * 1999-03-05 2001-01-30 International Business Machines Corporation Method of protecting a non-planar feature using compressive pads and apparatus thereof
JP3709802B2 (ja) * 2001-03-28 2005-10-26 株式会社村田製作所 多層セラミック基板の製造方法
US7018494B2 (en) * 2002-08-28 2006-03-28 Kyocera Corporation Method of producing a composite sheet and method of producing a laminate by using the composite sheet
CN1781170A (zh) * 2003-03-31 2006-05-31 Tdk株式会社 多层陶瓷电子元件的制造方法
US7244331B1 (en) * 2004-10-07 2007-07-17 Northrop Grumman Corporation Method of producing an LTCC substrate with cavities having improved bondability
JP4310468B2 (ja) * 2004-10-29 2009-08-12 株式会社村田製作所 セラミック多層基板及びその製造方法
KR100849455B1 (ko) * 2005-04-19 2008-07-30 티디케이가부시기가이샤 다층 세라믹 기판 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230548A (ja) * 2000-02-21 2001-08-24 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP2002164654A (ja) * 2000-11-27 2002-06-07 Murata Mfg Co Ltd 多層セラミック基板およびその製造方法
JP2002164655A (ja) * 2000-11-28 2002-06-07 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP2003158375A (ja) * 2001-11-22 2003-05-30 Sumitomo Metal Electronics Devices Inc セラミック多層基板の製造方法及び半導体装置

Also Published As

Publication number Publication date
KR101580464B1 (ko) 2015-12-29
KR20100136587A (ko) 2010-12-29
US8496770B2 (en) 2013-07-30
CN102461351A (zh) 2012-05-16
US20120061002A1 (en) 2012-03-15
WO2010147313A3 (ko) 2011-02-24
CN102461351B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
US6432239B1 (en) Method of producing ceramic multilayer substrate
US6743316B2 (en) Multilayered ceramic substrate and production method therefor
KR20150034944A (ko) 전극조립체 제조방법
JPH02129994A (ja) 導電性回路部材及びその製造方法
KR100475345B1 (ko) 적층 세라믹 기판 제작 방법
WO2021054788A1 (ko) 질화규소 기판의 제조 방법
WO2010147313A2 (ko) 다층 세라믹 기판의 제조 방법
WO1996039298A1 (en) Method for the reduction of lateral shrinkage in multilayer circuit boards on a support
JPWO2004088686A1 (ja) 積層セラミック電子部品の製造方法
WO2017142206A1 (ko) 전극조립체 및 그의 제조방법
WO2004088687A1 (ja) 積層セラミック電子部品の製造方法
CN114656899A (zh) 一种陶瓷生片叠层压合用胶水、陶瓷封装基座的制备方法
JP2006253435A (ja) 積層セラミック基板の製造方法
WO2000064227A1 (fr) Procede de fabrication d'une plaquette ceramique multicouche
US6709749B1 (en) Method for the reduction of lateral shrinkage in multilayer circuit boards on a substrate
JPH04152107A (ja) セラミックシートの積層成形法
JP4721742B2 (ja) 電子部品の製造方法
JP3912153B2 (ja) セラミック多層基板の製造方法
JP3724113B2 (ja) セラミック積層体及び酸素センサ素子の製造方法
JP2004304000A (ja) 積層セラミック電子部品用の積層体ユニットの製造方法および積層セラミック電子部品用の積層体ユニット
JP2003095750A (ja) 積層セラミック部品の製造方法、及びそれに用いるグリーンシートとキャリアフィルム
KR100978654B1 (ko) 세라믹 적층체의 가압 지그 및 다층 세라믹 기판의제조방법
JPH07321466A (ja) 多層セラミックス基板の製造方法
KR101547231B1 (ko) 소결 시트의 제조방법
JP2002164655A (ja) 多層セラミック基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027392.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789640

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13321939

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789640

Country of ref document: EP

Kind code of ref document: A2