WO2010147189A1 - トップロール、フロートガラス製造装置、およびフロートガラス製造方法 - Google Patents

トップロール、フロートガラス製造装置、およびフロートガラス製造方法 Download PDF

Info

Publication number
WO2010147189A1
WO2010147189A1 PCT/JP2010/060311 JP2010060311W WO2010147189A1 WO 2010147189 A1 WO2010147189 A1 WO 2010147189A1 JP 2010060311 W JP2010060311 W JP 2010060311W WO 2010147189 A1 WO2010147189 A1 WO 2010147189A1
Authority
WO
WIPO (PCT)
Prior art keywords
top roll
tip
cooling water
space
float
Prior art date
Application number
PCT/JP2010/060311
Other languages
English (en)
French (fr)
Inventor
哲史 瀧口
成明 富田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020117024818A priority Critical patent/KR101285989B1/ko
Priority to JP2011519839A priority patent/JPWO2010147189A1/ja
Priority to CN2010800268015A priority patent/CN102803164A/zh
Priority to EP10789563.3A priority patent/EP2444379A4/en
Publication of WO2010147189A1 publication Critical patent/WO2010147189A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath

Definitions

  • the present invention relates to a top roll used when producing glass by a float process, a float glass production apparatus having the top roll, and a float glass production method using such a top roll.
  • a float method As one method for producing a glass plate, a float method is known. In this float process, a plate glass is roughly manufactured through the following steps: (1) Molten glass is introduced into the surface of the molten tin accommodated in the float bath. (2) On the molten tin, the molten glass is continuously conveyed from the upstream side to the downstream side to form a glass ribbon. (3) Lightly hold both side ends of the glass ribbon and suppress shrinkage in the width direction of the glass ribbon. (4) A sheet glass is manufactured by drawing out from a float bath by roll conveyance, cooling this glass ribbon slowly.
  • a top roll controls the width and thickness of the glass ribbon of the molten glass that has flowed into the float bath and advances the glass ribbon to the upstream area of the float bath (the side on which the molten glass flows into the float bath).
  • a plurality of edge rolls arranged on both edge portions of the glass ribbon in the region (1).
  • the top roll is provided with a rotating member at the tip. Therefore, the rotating member is brought into contact with the surfaces of the edge portions on both sides of the glass ribbon, the glass ribbon is pressed and the rotating member is rotated, so that the shrinkage of the glass ribbon is suppressed, and the glass ribbon has a predetermined width and thickness. Can be transported.
  • shrinkage of the glass ribbon means shrinkage in the width direction of the glass ribbon.
  • the tip part of the top roll is in direct contact with the high temperature glass ribbon, the temperature may rise significantly during use in an uncooled state. For this reason, the tip portion of the top roll is usually cooled by circulating cooling water through a flow passage formed inside the top roll (for example, Patent Document 1).
  • the impurity components contained in the industrial water tend to gradually precipitate and deposit on the walls constituting the flow passage with time. Accordingly, after the top roll has been used for a long period of time, the flow path of the cooling water is narrowed or the flow path is blocked, and there may be a problem that the top end portion of the top roll cannot be sufficiently cooled.
  • the gear-shaped rotating member may not be able to rotate sufficiently. In this case, the top roll cannot operate properly, and there is a possibility that the conveyance of the glass ribbon may be hindered.
  • the top roll tip is exposed to a higher temperature. And the quantity of the deposit
  • the present invention has been made in view of such problems.
  • it is difficult to cause the cooling water flow path to be narrowed or blocked, and a top roll that operates properly over a long period of time is provided.
  • a top roll that operates properly over a long period of time is provided.
  • the tip portion Used to suppress shrinkage of the molten glass ribbon in the float bath, Having a rotatable tip in contact with the molten glass ribbon;
  • the tip portion is a top roll having a hollow structure having a tip portion space therein,
  • a top roll is provided in which cooling water having a hardness of 100 (mg / liter) or less is circulated in the tip space.
  • the tip portion has a hollow structure having a tip portion space inside, and a top roll having a flow path for supplying cooling water to the tip portion space,
  • the top roll is characterized in that cooling water having a hardness of 100 (mg / liter) or less is circulated in the tip space and the flow passage.
  • a float glass manufacturing apparatus comprising a float bath in which a molten glass ribbon is conveyed on an upper surface and a top roll used for suppressing shrinkage of the molten glass ribbon,
  • a float glass manufacturing apparatus is provided in which the top roll is a top roll having the characteristics as described above.
  • Introducing molten glass into the float bath Transporting the molten glass from the upstream side to the downstream side of the float bath to form a glass ribbon; Suppressing the shrinkage of the glass ribbon by rotating the top roll while pressing the tip of the top roll against the upper surfaces on both sides of the predetermined region in the traveling direction of the glass ribbon;
  • a float glass manufacturing method comprising: The top roll has a rotatable tip, The tip has a hollow structure with a tip space inside, A float glass manufacturing method is provided in which cooling water having a hardness of 100 mg / liter or less is circulated in the tip space.
  • the top end of the top roll has a hollow structure having a tip end space inside, and has a flow passage for supplying cooling water to the tip end space,
  • the float glass manufacturing method described above is characterized in that cooling water having a hardness of 100 (mg / liter) or less is circulated in the tip space and the flow passage.
  • FIG. 1 schematically shows a flow chart of a method for producing a plate glass by a float process.
  • the manufacturing method of plate glass by the float process is (I) a melting step (step S110) for melting the raw materials to produce molten glass; (II) In the float glass production, a glass ribbon forming step (step S120) for introducing a molten glass into a float bath and forming a glass ribbon; (III) A slow cooling step (step S130) in which a glass ribbon is slowly cooled in a slow cooling furnace to obtain a plate glass;
  • a melting step S110 for melting the raw materials to produce molten glass
  • step S120 In the float glass production, a glass ribbon forming step (step S120) for introducing a molten glass into a float bath and forming a glass ribbon;
  • step S130 A slow cooling step in which a glass ribbon is slowly cooled in a slow cooling furnace to obtain a plate glass;
  • molten glass is manufactured by putting raw materials such as silica sand, limestone, and / or soda ash prepared and mixed in accordance with the composition of the plate glass into a melting furnace.
  • the temperature of the melting furnace varies depending on the composition of the plate glass, but is, for example, about 1400 ° C. to 1600 ° C.
  • the heating method is not particularly limited.
  • the raw material may be heated by a flame of a burner provided inside the melting furnace.
  • the burner uses, for example, heavy oil or natural gas as fuel.
  • heating may be performed using a general electric melting furnace.
  • the molten glass obtained in the step (I) is introduced into a float bath containing molten tin to form a glass ribbon. Moreover, the obtained glass ribbon is carried out from the exit of a float bath. This process will be described in detail later.
  • the slow cooling furnace can supply heat from the combustion gas or electric heater to a required position in the slow cooling furnace. Therefore, the glass ribbon introduced into the slow cooling furnace at a relatively high temperature is finally cooled to a temperature range close to normal temperature and discharged from the slow cooling furnace.
  • a plate glass is manufactured by the above process.
  • step S120 step S120
  • FIG. 2 is a diagram schematically showing an example of a top view of the float bath of the float glass manufacturing apparatus used in the glass ribbon forming step (II) (step S120).
  • the float glass manufacturing apparatus 200 includes an introduction unit 210, a float bath 230, a transport apparatus 280, and a top roll 300.
  • the introduction part 210 is a part for introducing the molten glass obtained in the aforementioned step (I) into a float bath 230 having molten tin (including a molten tin alloy, hereinafter referred to as molten tin) 220 inside. It is.
  • the molten glass introduced into the float bath 230 continuously moves from the upstream side 232 to the downstream side 234 of the float bath 230 in a state of floating on the surface of the molten tin 220, whereby the glass ribbon 240 is moved. It is formed.
  • the glass ribbon 240 tends to reach an equilibrium thickness (for example, around 7 mm) due to the relationship between the surface tension of the molten glass and gravity in an unconstrained state, while the glass ribbon is pulled and conveyed in the traveling direction.
  • the width (the length in the vertical direction in FIG. 2) tends to shrink toward the central direction. Therefore, the top roll 300 is used to suppress the shrinkage of the glass ribbon 240 and maintain the thickness of the glass ribbon 240 at a predetermined thickness.
  • FIG. 3 shows the relative positional relationship between the glass ribbon 240 and the tip portion 320 of the top roll 300 when the top roll 300 is used to maintain the thickness of the glass ribbon 240 at a constant thickness.
  • the top roll 300 has a disk-shaped rotating member 325 at the distal end portion 320.
  • the rotating member 325 has a protrusion 326 formed along the circumferential direction around the rotating member 325.
  • both side portions of the glass ribbon 240 are pressed by the rotating member 325, particularly the protrusion 326, and the rotating member 325 is It is rotated. For this reason, the glass ribbon 240 is restrained by the rotating member 325 and cannot contract in a direction perpendicular to the traveling direction. Therefore, the glass ribbon 240 can be maintained at a predetermined thickness by using the top roll 300.
  • the rotating member 325 has a structure that is rotated with respect to the central axis 328 of the top roll 300.
  • the front end portion 320 of the top roll 300 Since the front end portion 320 of the top roll 300 is in direct contact with the high temperature glass ribbon 240, the temperature may increase significantly during use. Therefore, the front end portion 320 of the top roll 300 is configured to be cooled by circulating cooling water through a front end portion space formed inside the top roll 300. Thereby, the temperature rise of the front-end
  • the apparatus 200 includes a transfer device 280 provided outside the outlet on the downstream side 234 of the float bath 230.
  • the transport device 280 is, for example, a lift-out roll device.
  • the glass ribbon 240 is drawn out from the outlet of the float bath 230 by the rotation of the lift-out roll device, and then carried into the slow cooling furnace 285. Thereafter, the glass ribbon 240 is gradually cooled to room temperature (near) in the slow cooling furnace 285.
  • FIG. 4 is a diagram schematically showing an example of the tip portion of the top roll according to the present invention.
  • the top roll 400 has a tip portion 420 and a column portion 450, and the tip portion 420 is installed at one end of the column portion 450.
  • the front end portion 420 is constituted by a substantially disk-shaped rotating member 425, and the rotating member 425 has a hollow structure having a front end portion space 422 therein. Further, the rotating member 425 has two rows of gear shapes along the entire outer periphery of the disk, and thus has a plurality of rows of protrusions 426 on the outer periphery.
  • the protrusion 426 has a triangular cross section, but the present invention is not limited to this. That is, the protrusion 426 may have any cross-sectional shape. For example, the cross-section of the protrusion may be rectangular or semicircular.
  • the rows of the protrusions 426 are not particularly limited, and may be two rows as shown in FIG. 4 or other numbers (for example, one row or three rows or more).
  • the support column 450 has an inner tube 455 and an outer tube 470 extending along the same central axis 428.
  • the inner tube 455 and the outer tube 470 are formed of hollow tubular members.
  • the inner tube 455 has an inner space 460 inside.
  • One end of the outer tube 470 is coupled to the distal end portion 420 via the coupling portion 440, and the inner tube 455 is accommodated therein.
  • An outer space 480 is formed between the inner peripheral surface of the outer tube 470 and the outer peripheral surface of the inner tube 455.
  • the top roll 400 has a reduction mechanism such as a gear connected to the outer tube 470 and a driving device such as a motor on the other end side of the support column 450. Therefore, by controlling a speed reduction mechanism such as a gear or a timing belt by the driving device, the rotating member 425 of the tip portion 420 can be rotated at a predetermined number of rotations via the outer tube 470 of the column portion 450.
  • a reduction mechanism such as a gear connected to the outer tube 470 and a driving device such as a motor on the other end side of the support column 450. Therefore, by controlling a speed reduction mechanism such as a gear or a timing belt by the driving device, the rotating member 425 of the tip portion 420 can be rotated at a predetermined number of rotations via the outer tube 470 of the column portion 450.
  • the front end portion 420 of the top roll 400 is cooled by the cooling water.
  • the cooling water passes through the inner space 460 of the inner tube 455, reaches the tip end space 422 of the rotating member 425, and then flows through the outer space 480.
  • the cooling water may flow in the opposite direction.
  • a cooling water flow path is formed through a path through the inner space 460 of the inner tube 455, the tip end space 422 of the rotating member 425, and the outer space 480.
  • the impurity components contained in the industrial water tend to gradually precipitate and deposit on the walls constituting the flow passage with time. Therefore, after the top roll has been used for a long time, the flow path of the cooling water is narrowed or blocked due to the accumulation of impurity components (hereinafter simply referred to as “deposition impurities”) contained in industrial water, The problem that it becomes impossible to fully cool the front-end
  • the temperature at the tip of the top roll suddenly rises (for example, 800 ° C to 1000 ° C), and the rotating member of the top roll adheres to the glass ribbon.
  • the temperature at the tip of the top roll suddenly rises (for example, 800 ° C to 1000 ° C)
  • the rotating member of the top roll adheres to the glass ribbon.
  • a glass ribbon is wound around the tip, and the gear-shaped rotating member cannot be sufficiently rotated.
  • the top roll cannot operate properly, and there is a possibility that the conveyance of the glass ribbon may be hindered.
  • alkali-free glass for example, alkali-free aluminoborosilicate glass
  • This glass has a high melting point, and the melting point is higher by 100 ° C. or more than ordinary soda lime glass.
  • the top roll tip is exposed to a higher temperature. There is a high possibility that the amount of “depositional impurities” adhering to the flow path of the cooling water increases as the temperature of the top roll increases.
  • the above-mentioned problem of “clogging” of the cooling water is more likely to occur even when the top roll is used only for a short time. It should be noted that when industrial glass is used to produce a thin, high melting point glass as described above using a general top roll, it is confirmed that depositing impurities adhere to the tip space. It was.
  • the depositing impurities included calcium sulfide, calcium sulfide hydrate, calcium carbonate, and the like.
  • the “hardness” of the cooling water used in the present invention is preferably 80 (mg / liter) or less, more preferably 30 (mg / liter) or less, and 10 (mg / liter) or less. More preferably.
  • “hardness” means a value (unit: mg / liter) when the concentration of calcium salt and magnesium salt contained in water is converted into the amount of calcium carbonate (CaCO 3 ).
  • cooling water having a hardness of 100 (mg / liter) or less since cooling water having a hardness of 100 (mg / liter) or less is used, “depositing impurities” contained in the cooling water are significantly suppressed. Therefore, it is possible to significantly suppress “depositable impurities” from being deposited and deposited in the flow path. In addition, this makes it possible to suppress the temperature rise of the front end portion 420 of the top roll 400 over a long period of time, causing the problem that the rotating member 425 of the top roll 400 adheres to the glass ribbon. It becomes possible to suppress the problem that the device cannot operate properly.
  • the hardness of the cooling water is 80 (mg / liter) or less, generation of sedimentary impurities can be further suppressed, and when the hardness is 30 (mg / liter) or less, generation of deposition impurities can be further suppressed.
  • the effect is recognized notably that the hardness of a cooling water is 10 (mg / liter) or less.
  • the cooling water preferably has a turbidity of 20 degrees or less because it can prevent adhesion of impurities to the flow path wall, more preferably 10 degrees or less, and even more preferably 5 degrees or less.
  • the turbidity here is an index of the degree of turbidity of water as defined in JIS-K-0101 9.2, which is about the same as when 1 mg of a standard substance (kaolin or formazine) is contained in 1 liter of purified water.
  • the turbidity is 1 degree (or 1 mg / liter).
  • the cooling water is preferable when the electrical conductivity is 1000 mS / m or less because generation of sedimentary impurities can be suppressed.
  • the electrical conductivity is more preferably 250 mS / m or less, and further preferably 150 mS / m or less.
  • the electric conductivity (also referred to as electric conductivity or specific electric conductivity) of the cooling water here is an index of electric conductivity defined in JIS-K-010112, and is relative to a cross-sectional area of 1 cm 2 and a distance of 1 cm. It is an index of the ease of electrical conduction at 25 ° C. of the solution between the electrodes. Since the more electrolyte contained, the easier it is to conduct electricity, the amount of dissolved electrolyte can be estimated from the electrical conductivity (conductivity).
  • the material of the rotating member 425 is not particularly limited.
  • the rotating member 425 is made of a metal such as steel or a heat-resistant alloy. By using the metal rotating member 425, the cooling effect during cooling of the rotating member 425 is enhanced.
  • the surface of the rotating member 425 may be coated or surface-modified.
  • the coating material preferably has heat resistance, and for example, metal nitride or the like may be used.
  • the surface modification preferably has a property of low affinity and / or low adsorptivity to glass ribbon, molten tin, tin oxide and the like.
  • the rotating member 425 has a substantially disk shape whose center passes through the shaft 428.
  • the diameter of the disk is not particularly limited, but is preferably in the range of, for example, 100 to 300 mm (about 4 to 12 inches), more preferably in the range of 120 to 250 mm (about 5 to 10 inches), 150 More preferably, it is in the range of ⁇ 230 mm (about 6-9 inches).
  • the cooling water can be used even when the rotating member 425 having a relatively small diameter is used. It should be noted that clogging is unlikely to occur.
  • the material of the inner tube 455 and the outer tube 470 is not particularly limited.
  • the inner tube 455 and the outer tube 470 may be made of a metal such as steel (for example, stainless steel) or a heat-resistant alloy.
  • the outer tube 470 may be coated or surface-modified on the surface.
  • the coating material preferably has heat resistance, and for example, metal nitride or the like may be used.
  • the surface modification preferably has a property of low affinity and / or low adsorptivity to glass ribbon, molten tin, tin oxide and the like.
  • FIG. 5 is a schematic cross-sectional view of a part of the insertion portion of the top roll of the float bath of the float glass manufacturing apparatus 500.
  • the actual float glass manufacturing apparatus 500 is installed between the upper sealing structure 510 installed on the upper part of the float bath 530 and between the upper sealing structure 510 and the float bath 530.
  • Side sealing wall 540 is installed between the upper sealing structure 510 installed on the upper part of the float bath 530 and between the upper sealing structure 510 and the float bath 530.
  • the side sealing wall 540 is provided with an insertion hole 542 for the top roll, and the top roll 400 is installed through the insertion hole 542.
  • the upper space 550 of the float bath 530 surrounded by the upper sealing structure 510 and the side sealing wall 540 has a reducing gas (usually hydrogen for the purpose of preventing oxidation of the molten tin 520 in the float bath 530). And nitrogen mixed gas).
  • a reducing gas usually hydrogen for the purpose of preventing oxidation of the molten tin 520 in the float bath 530.
  • nitrogen mixed gas nitrogen mixed gas
  • oxygen may enter from the insertion hole 542 of the side sealing wall 540 or other gaps.
  • the top roll 400 is movable, it is extremely difficult to completely eliminate the gap between the insertion hole 542 of the side sealing wall 540 and the top roll 400. And the molten tin 520 may be contaminated by such intrusion of oxygen.
  • the airflow is lowered near the top roll 400. Therefore, oxygen that has entered from the gap between the top roll 400 and the insertion hole 542 rides on the downward flow and is guided from the inner surface of the side sealing wall 540 to the surface of the molten tin 520.
  • oxygen that has entered the upper space 550 is discharged to the outside of the apparatus without coming into contact with the molten tin 520, so that it is lower than the position of the insertion hole 542 of the side sealing wall 540 and higher than the surface of the molten tin 520.
  • An exhaust pipe 562 is connected to the through hole 560. Accordingly, oxygen that has entered the upper space 550 is discharged to the outside through the through-hole 560 and the exhaust pipe 562 before reaching the surface of the molten tin 520 by descending flow.
  • a plurality of such through-holes 560 are provided, and each through-hole is provided below the corresponding top roll 400 (precisely as described above, lower than the position of the insertion hole 542 and from the surface of the molten tin 520). Is preferably provided at a higher position).
  • the inner diameter of the through hole 560 is preferably in the range of 10 to 200 mm, more preferably in the range of 20 to 150 mm, and still more preferably in the range of 30 to 120 mm.
  • the center-to-center distance between adjacent through holes 560 is preferably in the range of 1500 to 3500 mm (about 60 to 138 inches), more preferably in the range of 1000 to 2500 mm (about 40 to 100 inches). More preferably, it is in the range of 500-1500 mm (about 20-60 inches).
  • the cross section of the through hole 560 is not limited to a circle, and may be appropriately selected from an elliptical shape, a rectangular shape, a slit shape, and the like.
  • the method for producing glass according to the present invention is based on the aforementioned float method, (1) introducing molten glass into the float bath (step S510); (2) transporting the molten glass from the upstream side of the float bath to the downstream side to form a glass ribbon (step S520); (3) By rotating the top roll in the direction of travel of the glass ribbon while pressing the tip of the top roll against a predetermined region in the direction of travel of the glass ribbon, that is, the upper surface of both sides of the glass ribbon in the upstream region of the float bath, A step of suppressing the shrinkage of the glass ribbon, wherein the top roll has a tip end space at the tip end, and cooling water having a hardness of 100 (mg / liter) or less circulates in the tip end space.
  • Performed step (step S530), Have
  • the present invention is effective for the production of a thin plate (thickness: 0.3 mm to 1.0 mm) non-alkali glass glass plate, and further, a thin plate non-alkali glass having a thickness of 0.1 mm to 0.2 mm. It can also be applied to manufacturing.
  • soda lime glass was produced using the cooling water of Examples 1 and 2 below, and non-alkali glass was produced using the cooling water of Example 3 below.
  • Example 1 Hardness 94 (mg / liter), turbidity 1 degree
  • Example 2 Hardness 34 (mg / liter), turbidity 3 degree
  • Example 3 Hardness 4 (mg / liter), turbidity 12 degree
  • alkali-free glass was produced using industrial water (hard water with a hardness of more than 100 mg / liter) as cooling water, there was a problem that the tip of the top roll adhered to the molten glass two months after the start of use.
  • the flow path of the cooling water of the top roll disposed in the float bath of the facility for producing plate glass by the float method is unlikely to be narrowed or blocked, and the top roll is appropriately set for a long time. Since it can be operated, it is useful in the production of various plate glasses by the float method, and particularly in the stable operation of alkali-free glass by the float method having a thin plate thickness. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-14653, filed on June 19, 2009, is incorporated herein as the disclosure of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

 冷却水の流通路が狭まったり、閉塞したりすることが生じ難く、長期にわたって、適正に作動するトップロールを提供する。 フロートバス内の溶融ガラスリボンの収縮の抑制に使用され、前記溶融ガラスリボンと接触する、回転可能な先端部を有し、該先端部は、内部に先端部空間を有する中空構造となっているトップロールであって、前記先端部空間には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とするトップロール。

Description

トップロール、フロートガラス製造装置、およびフロートガラス製造方法
 本発明は、フロート法によりガラスを製造する際に使用されるトップロール、そのトップロールを有するフロートガラス製造装置、およびそのようなトップロールを用いたフロートガラス製造方法に関する。
 ガラス板を製造する一つの方法として、フロート法が知られている。このフロート法では、大まかには、以下の工程を経て、板ガラスが製造される:
(1)フロートバス内に収容されている溶融スズの表面に、溶融ガラスを導入する。
(2)溶融スズ上で、溶融ガラスを上流側から下流側に沿って連続的に搬送し、ガラスリボンを形成する。
(3)ガラスリボンの両側端部を軽く抑え付け、ガラスリボンの幅方向の収縮を抑制する。
(4)このガラスリボンを徐冷しながら、ロール搬送により、フロートバスから引き出すことにより、板ガラスが製造される。
 ここで、(3)の工程では、トップロールと呼ばれる装置が使用される。このトップロールは、フロートバス内へ流入された溶融ガラスのガラスリボンの幅と厚さを制御するとともにガラスリボンを前進させるために、フロートバスの上流域(フロートバスへ溶融ガラスが流入される側の領域)においてガラスリボンの両側の縁部に複数配される縁ロールである。このトップロールは、先端部に回転部材が設置されている。従って、この回転部材をガラスリボンの両側の縁部の表面に接触させ、ガラスリボンを押さえ付けるとともに回転部材を回転させることにより、ガラスリボンの収縮を抑制し、所定の幅と厚さをもってガラスリボンを搬送させることができる。なお、以下本明細書においてガラスリボンの収縮という場合は、ガラスリボンの幅方向の収縮を意味するものとする。
 なお、トップロールの先端部は、高温のガラスリボンと直接接するため、無冷却状態では、使用時に温度が著しく上昇するおそれがある。そのため、通常、トップロールの先端部は、トップロールの内部に形成された流通路に冷却水を流通させることにより、冷却されている(例えば特許文献1)。
特開2008-189516号公報
 通常の場合、トップロールの先端部を冷却するための冷却水には、工業用水が使用される。
 しかしながら、工業用水を冷却水として使用したトップロールでは、時間とともに、工業用水中に含まれる不純物成分が徐々に流通路を構成する壁に析出、堆積する傾向にある。従って、トップロールを長期間使用した後には、冷却水の流通路が狭まり、あるいは流通路が閉塞され、トップロールの先端部を十分に冷却することができなくなるという問題が生じ得る。
 また、このような冷却水の「詰まり」が生じると、トップロールの先端部の温度が上昇し、トップロールの先端部が溶融ガラスに接着してしまったり、先端部にガラスリボンが巻き付いたりして、歯車状の回転部材が十分に回転することができなくなるおそれがある。この場合、トップロールが適正に動作することができなくなる上、ガラスリボンの搬送にも支障が生じるおそれがある。
 特に、近年は、例えば液晶パネルなどの表示装置向けに、厚さが薄い板ガラス(例えば厚さ0.3mm~1mmなど)の生産が拡大している。また、これらのガラスとしては、主に、無アルカリガラスが使用される。このガラスは、高融点であり、通常のソーダライムガラスに比べて、融点が100℃以上高い。
 このようなガラスの場合、ガラスの製造時に、ガラスリボンを今まで以上に薄くする必要があり、一製造設備当たりに設置されるトップロールの数を、これまで以上に増やす必要がある。また、同じスペース内に配置されるトップロールの数を増やすためには、トップロールの先端部に設置される回転部材の寸法を、より小さくする必要がある。このような回転部材の寸法の小型化に伴って、近年、冷却水用の流通路は、より狭小化される傾向にある。
 また、ガラスリボン温度の高温化に伴い、トップロールの先端部は、より高い温度に晒されるようになる。そして、前述のような冷却水の流通路に付着する堆積物の量は、トップロールの温度上昇とともに多くなる可能性が高い。
 従って、このような近年の状況の下では、前述の冷却水の「詰まり」の問題は、トップロールを短時間しか使用しない場合でも、発生する傾向が高くなる。
 本発明は、このような問題に鑑みなされたものであり、本発明では、冷却水の流通路が狭まったり、閉塞したりすることが生じ難く、長期にわたって、適正に作動するトップロールを提供することを目的とする。
 本発明では、
 フロートバス内の溶融ガラスリボンの収縮の抑制に使用され、
 前記溶融ガラスリボンと接触する、回転可能な先端部を有し、
 該先端部は、内部に先端部空間を有する中空構造となっているトップロールであって、
 前記先端部空間には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とするトップロールが提供される。
 また、本発明では、
 前記先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有するトップロールであって、
 前記先端部空間および前記流通路には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とする上記のトップロールを提供する。
 また、本発明では、上面で溶融ガラスリボンが搬送されるフロートバスと、前記溶融ガラスリボンの収縮の抑制に使用されるトップロールとを備えるフロートガラス製造装置であって、
 前記トップロールは、前述のような特徴を有するトップロールであることを特徴とするフロートガラス製造装置が提供される。
 さらに、本発明では、
 フロートバスに溶融ガラスを導入するステップと、
 前記溶融ガラスを前記フロートバスの上流側から下流側に搬送させ、ガラスリボンを形成するステップと、
 トップロールの先端部を前記ガラスリボンの進行方向の所定領域の両側の上面に押し付けながら回転させることにより、前記ガラスリボンの収縮を抑制するステップと、
 を有する、フロートガラス製造方法であって、
 前記トップロールは、回転可能な先端部を有し、
 該先端部は、内部に先端部空間を有する中空構造となっており、
 前記先端部空間には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とするフロートガラス製造方法が提供される。
 また、本発明では、
 前記トップロールの先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有し、
 前記先端部空間および前記流通路には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とする上記のフロートガラス製造方法を提供する。
 本発明では、冷却水の流通路が狭まったり、閉塞したりすることが生じ難く、長期にわたって、適正に作動するトップロールを提供することが可能となる。
フロート法による板ガラスの製造方法のフローを概略的に示したフロー図である。 フロートガラス製造装置のフロートバスの上面の一例を、概略的に示した上面図である。 トップロールとガラスリボンの相対位置関係を概略的に示した側面図である。 本発明によるトップロールの先端部の一例を概略的に示した断面図である。 フロートガラス製造装置のフロートバスのトップロールの挿入部分の一部の概略の一例を示した断面図である。 本発明による板ガラスの製造方法のフローを概略的に示したフロー図である。
 以下、本発明の特徴について詳しく説明する。
 まず、本発明をより良く理解するため、図1を参照して、フロート法による板ガラスの製造工程について、簡単に説明する。
 図1は、フロート法による板ガラスの製造方法のフロー図を概略的に示したものである。フロート法による板ガラスの製造方法は、
(I)原材料を溶解して、溶融ガラスを製造する溶解工程(ステップS110)と、
(II)フロートガラス製造において、フロートバスに溶融ガラスを導入して、ガラスリボンを形成するガラスリボン形成工程(ステップS120)と、
(III)徐冷炉でガラスリボンを徐冷して、板ガラスを得る徐冷工程(ステップS130)と、
 を有する。
 (I)の溶解工程では、板ガラスの組成に合わせて調合、混合された、珪砂、石灰石、および/またはソーダ灰等の原材料を、溶解窯に投入することにより、溶融ガラスが製造される。溶解窯の温度は、板ガラスの組成によって異なるが、例えば1400℃~1600℃程度である。
 加熱の方法は、特に限られず、例えば、溶解窯内部に設けたバーナーの火炎により、原材料を加熱しても良い。バーナーは、例えば、重油または天然ガスを燃料とする。あるいは、一般的な電気溶解炉を用いて、加熱を行っても良い。
 (II)のガラスリボン形成工程では、(I)の工程で得られた溶融ガラスが、溶融スズを収容するフロートバスに導入され、ガラスリボンが形成される。また、得られたガラスリボンがフロートバスの出口から搬出される。この工程については、後に詳しく説明する。
 (III)の徐冷工程では、フロートバスから引き出されたガラスリボンが徐冷され、板ガラスが提供される。
 徐冷炉は、燃焼ガスまたは電気ヒータによる熱を、徐冷炉内の必要位置に供給することができる。従って、比較的高温で徐冷炉内に導入されたガラスリボンは、最終的に常温に近い温度域まで冷却され、徐冷炉から排出される。
 以上の工程により、板ガラスが製造される。
 次に、図2を参照して、前述の(II)の工程(ステップS120)について、より詳しく説明する。
 図2は、(II)のガラスリボン形成工程(ステップS120)に使用されるフロートガラス製造装置のフロートバスの上面図の一例を、概略的に示した図である。
 フロートガラス製造装置200は、導入部210と、フロートバス230と、搬送装置280と、トップロール300とを有する。
 導入部210は、前述の工程(I)で得られた溶融ガラスを、内部に溶融スズ(溶融スズ合金も含み、以下熔融スズと称す。)220を有するフロートバス230内に導入するための部分である。
 フロートバス230内に導入された溶融ガラスは、溶融スズ220の表面に浮遊した状態で、フロートバス230の上流側232から下流側234に向かって連続的に移動し、これにより、ガラスリボン240が形成される。
 なお、ガラスリボン240は、無拘束状態では、溶融ガラスの表面張力と重力との関係により平衡厚み(例えば7mm前後)に至る傾向にある一方、ガラスリボンは進行方向に引っ張られて搬送されるため、特に幅(図2の上下方向の長さ)が中心方向に向かって収縮する傾向にある。そこで、このガラスリボン240の収縮を抑制して、ガラスリボン240の厚さを所定の厚さに維持するため、トップロール300が使用される。
 図3には、トップロール300を使用して、ガラスリボン240の厚さを一定の薄さに維持するときの、ガラスリボン240とトップロール300の先端部320の相対位置関係を示す。
 図3に示すように、トップロール300は、先端部320に円盤状回転部材325を有する。通常の場合、この回転部材325は、該回転部材325の周囲に、円周方向に沿って形成された突起部326を有する。
 この回転部材325を、ガラスリボン240の進行方向に沿った両側部分の表面に接触させた場合、回転部材325、特に突起部326により、ガラスリボン240の両側部分が押さえ付けられ、回転部材325が回転される。このため、ガラスリボン240は、回転部材325によって拘束され、進行方向に対して垂直な方向に、収縮することができなくなる。従って、トップロール300を使用することにより、ガラスリボン240を、所定の厚さに維持することができる。
 回転部材325は、トップロール300の中心軸328に対して回転される構造となっている。
 トップロール300の先端部320は、高温のガラスリボン240と直接接するため、使用時に温度が著しく上昇するおそれがある。そのため、トップロール300の先端部320は、トップロール300の内部に形成された先端部空間に冷却水を流通させることにより、冷却される構成となっている。これにより、トップロール300の先端部320の温度上昇を抑制することができる。
 また、装置200は、フロートバス230の下流側234の出口の外側に設けられた搬送装置280を有する。
 搬送装置280は、例えば、リフトアウトロール装置である。リフトアウトロール装置の回転により、ガラスリボン240は、フロートバス230の出口から引き出され、その後、徐冷炉285に搬入される。その後、ガラスリボン240は、徐冷炉285において、室温(近傍)まで徐冷される。
 (本発明によるトップロールの特徴)
 次に、図4を参照して、本発明によるトップロールについて、詳しく説明する。
 図4は、本発明によるトップロールの先端部の一例を概略的に示した図である。
 本発明によるトップロール400は、先端部420と、支柱部450とを有し、支柱部450の一端に、先端部420が設置されている。
 先端部420は、略円盤状の回転部材425で構成され、該回転部材425は、内部に先端部空間422を有する中空構造となっている。また、回転部材425は、円盤の外周全周に沿って歯車形状が2列形成され、このため、外周に複数の突起部426を2列有する。なお、図において、突起部426は、三角形状の断面を有するが、本発明は、これに限られるものではない。すなわち、突起部426は、いかなる断面形状を有しても良く、例えば、突起部の断面は、矩形状または半円状等であっても良い。また、突起部426の列は、特に限られず、図4に示すような2列であっても、その他の数(例えば、1列または3列以上)であっても良い。
 支柱部450は、同一の中心軸428の方向に沿って伸びる内管455および外管470を有する。内管455および外管470は、中空の管状部材で構成される。内管455は、内部に内側空間460を有する。外管470は、一端が結合部440を介して、先端部420と結合されており、内部には、内管455が収容されている。外管470の内周面と、内管455の外周面の間には、外側空間480が形成されている。
 なお、図4には示していないが、トップロール400は、支柱部450の他端側に、外管470に接続されたギア等の減速機構、およびモータ等の駆動装置を有する。従って、駆動装置によりギアやタイミングベルト等の減速機構を制御することにより、支柱部450の外管470を介して、先端部420の回転部材425を、所定の回転数で回転させることができる。
 前述のように、トップロール400の先端部420は、冷却水により、冷却される。冷却水は、例えば、内管455の内側空間460を通り、回転部材425の先端部空間422に至り、その後、外側空間480を通って流れる。あるいは、冷却水は、その逆向きに流れても良い。トップロール400の内部には、内管455の内側空間460と回転部材425の先端部空間422と外側空間480とを通じた経路で、冷却水の流通路が形成される。
 ここで、従来においては、トップロール300の流通路を流れる冷却水には、工業用水が使用される。
 しかしながら、工業用水を冷却水として使用したトップロールでは、時間とともに、工業用水中に含まれる不純物成分が徐々に流通路を構成する壁に析出、堆積して行く傾向にある。従って、トップロールを長期間使用した後には、工業用水中に含まれる不純物成分(以下、単に「堆積性不純物」という)の堆積によって、冷却水の流通路が狭まり、あるいは流通路が閉塞され、トップロールの先端部を十分に冷却することができなくなるという問題が生じ得る。
 また、このような冷却水の「詰まり」が生じると、トップロールの先端部の温度が急激に上昇し(例えば800℃~1000℃)、トップロールの回転部材がガラスリボンに接着してしまったり、先端部にガラスリボンが巻き付いたりして、歯車状の回転部材が十分に回転することができなくなるおそれがある。この場合、トップロールが適正に動作することができなくなる上、ガラスリボンの搬送にも支障が生じるおそれがある。
 特に、近年は、例えば液晶パネルなどの表示装置向けに、厚さが薄い板ガラス(例えば厚さ0.3mm~1mmなど)の生産が拡大している。また、これらのガラスとしては、主に、無アルカリガラス(例えば無アルカリのアルミノ硼珪酸ガラス)が使用される。このガラスは、高融点であり、通常のソーダライムガラスに比べて、融点が100℃以上高い。
 このようなガラスの場合、ガラスの製造時に、ガラスリボンを今まで以上に薄く維持する必要があり、一製造設備当たりに設置されるトップロールの数を、これまで以上に増やす必要がある。また、同じスペース内に配置されるトップロールの数を増やすためには、トップロールの先端部に設置される円盤状の回転部材の直径を、より小さくする必要がある。このため、近年、トップロール内に設けられる冷却水の流通路は、より狭小化される傾向にある。
 また、ガラスリボン温度の高温化に伴い、トップロールの先端部は、より高い温度に晒されるようになる。前述のような「堆積性不純物」が冷却水の流通路に付着する量は、トップロールの温度上昇とともに上昇する可能性が高い。
 従って、このような近年の状況の下では、前述の冷却水の「詰まり」の問題は、トップロールを短時間しか使用しない場合でも、発生する傾向が高くなる。なお、工業用水を使用して、前述のような薄くて高融点のガラスを、一般的なトップロールを用いて製造した場合、先端部空間に、堆積性不純物が付着していることが確認された。この堆積性不純物には、カルシウム硫化物、カルシウム硫化物の水和物、およびカルシウム炭酸塩などが含まれていた。
 本発明によるトップロール400では、上記堆積性不純物の付着を防止するため、流通路に流れる冷却水として、工業用水ではなく、「硬度」が100(mg/リットル)以下の水が使用される。特に、本発明に使用される冷却水の「硬度」は、80(mg/リットル)以下であることが好ましく、30(mg/リットル)以下であることがより好ましく、10(mg/リットル)以下であることがさらに好ましい。
 なお、本願において、「硬度」とは、水中に含まれるカルシウム塩とマグネシウム塩の濃度を、炭酸カルシウム(CaCO)の量に換算したときの値(単位mg/リットル)を意味することに留意する必要がある。例えば、100mg/リットルの炭酸カルシウム(CaCO)と、100mg/リットルの炭酸マグネシウム(MgCO)とを含む水の硬度Pは、

 硬度P(mg/リットル)=炭酸カルシウム(CaCO)の濃度+炭酸マグネシウム(MgCO)の濃度を炭酸カルシウム(CaCO)の濃度に換算した値
=100(mg/リットル)+(100(mg/リットル)/84.3)×100.08
=218.7(mg/リットル)

である。
 本発明の場合、硬度が100(mg/リットル)以下の冷却水が使用されるため、冷却水中に含まれる「堆積性不純物」は、有意に抑制される。従って、「堆積性不純物」が流通路に析出、堆積することを有意に抑制することができる。また、これにより、長期にわたって、トップロール400の先端部420の温度上昇を抑制することが可能となり、トップロール400の回転部材425がガラスリボンに接着してしまうという問題、さらには、トップロールが適正に動作することができなくなるという問題を抑制することが可能になる。前記冷却水の硬度は、80(mg/リットル)以下であると堆積性不純物の発生を一層抑制できるようになり、30(mg/リットル)以下であるとさらに堆積性不純物の発生を抑制できる。また冷却水の硬度は、10(mg/リットル)以下であると顕著にその効果が認められる。
 さらに、前記冷却水は、濁度が20度以下であると流通路壁への不純物の付着を防止できるため好ましく、10度以下であるとより好ましく、5度以下であるとさらに好ましい。ここでいう濁度とは、JIS-K-0101 9.2に定められる水の濁りの程度の指標であって、精製水1リットル中に標準物質(カオリンまたはホルマジン)1mgを含む場合と同程度の濁りを濁度1度(または1mg/リットル)とするものである。
 また、前記冷却水は、電気伝導率が1000mS/m以下であると堆積性不純物の発生を抑制できるため好ましい。前記電気伝導率は250mS/m以下であるとより好ましく、150mS/m以下であるとさらに好ましい。ここでいう冷却水の電気伝導率(導電率または比電気伝導度ともいう)とは、JIS-K-0101 12に定められる導電性の指標であって、断面積1cm、距離1cmの相対する電極間にある溶液の25℃における電気伝導のしやすさの指標である。含有する電解質が多いほど電気を通しやすくなるため、電気伝導率(導電率)により溶解している電解質の量を推定することができる。
 なお、本発明によるトップロール400において、回転部材425の材質は、特に限られない。通常の場合、回転部材425は、例えば鋼、または耐熱合金のような金属で構成される。金属製の回転部材425を使用することにより、回転部材425の冷却時の冷却効果が高まる。
 また、回転部材425は、表面がコーティングまたは表面改質されていても良い。コーティングの材料は、耐熱性を有するものが好ましく、例えば、金属窒化物等が使用されても良い。表面改質は、ガラスリボン、溶融スズ、スズ酸化物等に対する親和性および/または吸着性が低い特性のものが好ましい。
 また、回転部材425は、中心が軸428を通る略円盤の形状で構成される。円盤の直径は、特に限られないが、例えば100~300mm(約4~12インチ)の範囲であることが好ましく、120~250mm(約5~10インチ)の範囲であることがより好ましく、150~230mm(約6~9インチ)の範囲であることがさらに好ましい。本発明では、前述のように、「堆積性不純物」が流通路に析出、堆積することを有意に抑制することができるため、比較的小さな直径を有する回転部材425を使用しても、冷却水の詰まりは、生じ難いことに留意する必要がある。
 内管455および外管470の材質は、特に限られない。内管455および外管470は、例えば鋼(例えばステンレス鋼)、または耐熱合金のような金属で構成されても良い。また、外管470は、表面がコーティングまたは表面改質されていても良い。コーティングの材料は、耐熱性を有するものが好ましく、例えば、金属窒化物等が使用されても良い。表面改質は、ガラスリボン、溶融スズ、スズ酸化物等に対する親和性および/または吸着性が低い特性のものが好ましい。
 次に、図5を参照して、本発明によるトップロールを備えるフロートガラス製造装置のフロートバスのガラスリボンの端部へのトップロールの挿入部分のより実際的な構成について説明する。
 図5は、フロートガラス製造装置500のフロートバスのトップロールの挿入部分の一部の概略断面図である。図2においては、詳しく説明しなかったが、実際のフロートガラス製造装置500は、フロートバス530の上部に設置された上部シーリング構造510、および該上部シーリング構造510とフロートバス530の間に設置されたサイドシーリング壁540とを備える。
 サイドシーリング壁540には、トップロール用の挿入孔542が設けられており、この挿入孔542を介して、トップロール400が設置されている。
 通常、上部シーリング構造510とサイドシーリング壁540によって取り囲まれた、フロートバス530の上部空間550には、フロートバス530内の溶融スズ520の酸化を防止する目的で、還元性ガス(通常は、水素と窒素の混合ガス)が供給される。しかしながら、サイドシーリング壁540の挿入孔542またはその他の隙間から、酸素が侵入する場合がある。特に、トップロール400は、可動性のため、サイドシーリング壁540の挿入孔542とトップロール400の間の隙間を完全になくすことは、極めて難しい。そして、このような酸素の侵入によって、溶融スズ520が汚染される場合がある。
 また、トップロール400は、冷却されているため、トップロール400の近傍では、気流の下降が生じる。そのため、トップロール400と挿入孔542の間の隙間から侵入した酸素は、下降流に乗って、サイドシーリング壁540の内表面から、溶融スズ520の表面に導かれるようになる。
 従って、上部空間550に侵入した酸素を溶融スズ520に接触させずに、装置外部に排出させるため、サイドシーリング壁540の挿入孔542の位置よりも低く、溶融スズ520の表面よりも高い位置には、排気用の貫通孔560が設置されることが好ましい。また、この貫通孔560には、排気管562が接続される。これにより、上部空間550に侵入した酸素は、下降流に乗って溶融スズ520の表面に到達する前に、貫通孔560から排気管562を通って外部に排出されるようになる。
 このような貫通孔560は、複数設けられ、各貫通孔は、対応する各トップロール400の下側(前述のように正確には、挿入孔542の位置よりも低く、溶融スズ520の表面よりも高い位置)に、設けられることが好ましい。
 また、貫通孔560の内径は、10~200mmの範囲であることが好ましく、20~150mmの範囲であることがより好ましく、30~120mmの範囲であることがさらに好ましい。また、隣り合う貫通孔560同士の中心間距離は、1500~3500mm(約60~138インチ)の範囲であることが好ましく、1000~2500mm(約40~100インチ)の範囲であることがより好ましく、500~1500mm(約20~60インチ)の範囲であることがさらに好ましい。なお、前記貫通孔560の断面は円形に限定されず、楕円形、矩形、スリット形状など適宜選択できる。
 (本発明によるガラスの製造方法)
 次に、図6を参照して、本発明によるガラスの製造方法について、説明する。
 本発明によるガラスの製造方法は、前述のフロート法に基づくものであり、当該方法は、
 (1)フロートバスに、溶融ガラスを導入するステップ(ステップS510)と、
 (2)溶融ガラスをフロートバスの上流側から下流側に搬送させ、ガラスリボンを形成するステップ(ステップS520)と、
 (3)トップロールの先端部を前記ガラスリボンの進行方向の所定領域、すなわちフロートバスの上流領域におけるガラスリボンの両側の上面に押し付けながらトップロールをガラスリボンの進行方向に回転させることにより、前記ガラスリボンの収縮を抑制するステップであって、前記トップロールは、前記先端部に、先端部空間を有し、該先端部空間には、硬度が100(mg/リットル)以下の冷却水が流通されるステップ(ステップS530)と、
 を有する。
 前述のように、このような方法では、長期にわたって、トップロール400の先端部420の温度上昇を抑制することが可能となり、トップロール400の回転部材425がガラスリボンに接着してしまうという問題、さらには、トップロールが適正に動作することができなくなるという問題を抑制することが可能になる。本発明は、薄板(板厚:0.3mm~1.0mm)の無アルカリガラスガラス板の製造に有効であり、さらには、0.1mm~0.2mmの板厚の薄板の無アルカリガラスの製造にも適用可能である。
 具体例として、下記例1、2の冷却水を用いてソーダライムガラスを製造し、また下記例3の冷却水を用いて無アルカリガラスを製造したところ、いずれの場合も1年以上フロート成形設備の正常運転を継続することができた。
例1: 硬度94(mg/リットル)、濁度1度
例2: 硬度34(mg/リットル)、濁度3度
例3: 硬度4(mg/リットル)、濁度12度
 一方、一般的な工業用水(硬度100mg/リットル超の硬水)を冷却水として用いて無アルカリガラスを製造したところ、使用開始から2ヶ月後にトップロールの先端部が溶融ガラスに接着する問題が生じた。
 本発明によれば、フロート法で板ガラスを製造する設備のフロートバス内に配するトップロールの冷却水の流通路が狭まったり、閉塞したりすることが生じ難く、長期にわたって、トップロールを適正に作動させることができるので、フロート法のよる各種板ガラスの製造において、特に板厚の薄いフロート法による無アルカリガラスの安定操業において有用である。
 なお、2009年6月19日に出願された日本特許出願2009-146531号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 200  フロートガラス製造装置
 210  導入部
 220  溶融スズ
 230  フロートバス
 232  上流側
 234  下流側
 240  ガラスリボン
 280  搬送装置
 285  徐冷炉
 300  トップロール
 320  先端部
 325  回転部材
 326  突起部
 328  中心軸
 400  トップロール
 420  先端部
 422  先端部空間
 425  回転部材
 426  突起部
 428  中心軸
 450  支柱部
 455  内管
 460  内側空間
 470  外管
 480  外側空間
 500  フロートガラス製造装置
 510  上部シーリング構造
 520  溶融スズ
 530  フロートバス
 540  サイドシーリング壁
 542  挿入孔
 550  上部空間
 560  貫通孔
 562  排気管

Claims (13)

  1.  フロートバス内の溶融ガラスリボンの収縮の抑制に使用され、
     前記溶融ガラスリボンと接触する、回転可能な先端部を有し、
     該先端部は、内部に先端部空間を有する中空構造となっているトップロールであって、
     前記先端部空間には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とするトップロール。
  2.  前記先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有するトップロールであって、
     前記先端部空間および前記流通路には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とする請求項1に記載のトップロール。
  3.  前記冷却水の硬度は、30(mg/リットル)以下であることを特徴とする請求項1または2に記載のトップロール。
  4.  前記冷却水の硬度は、10(mg/リットル)以下であることを特徴とする請求項1乃至3のいずれか1項に記載のトップロール。
  5.  前記冷却水は、濁度が20度以下であることを特徴とする請求項1乃至4のいずれか1項に記載のトップロール。
  6.  当該トップロールは、回転軸方向に延伸する内管および外管を有し、
     前記外管は、前記内管を収容し、内管の内部には内側空間が形成され、前記外管の内周面と前記内管の外周面との間には、外側空間が形成され、
     前記内側空間および外側空間を介して、前記先端部空間の冷却水が流通されることを特徴とする請求項1乃至5のいずれか1項に記載のトップロール。
  7.  前記先端部は、100mmから300mmの範囲の最大直径を有することを特徴とする請求項1乃至6のいずれか1項に記載のトップロール。
  8.  上面で溶融ガラスリボンが搬送されるフロートバスと、前記溶融ガラスリボンの収縮の抑制に使用されるトップロールとを備えるフロートガラス製造装置であって、
     前記トップロールは、請求項1乃至7のいずれか1項に記載のトップロールであることを特徴とするフロートガラス製造装置。
  9.  当該フロートガラス製造装置は、さらに、前記フロートバスの上部に設置された上部シーリング構造、および前記フロートバスと前記上部シーリング構造との間に設置されたサイドシーリング壁を有し、
     前記サイドシーリング壁には、前記トップロールが通る挿入孔が設けられており、
     前記挿入孔と前記溶融ガラスリボンの表面との間の位置には、複数の貫通孔が設けられ、
     前記複数の貫通孔の内径は、10mmから200mmの範囲であり、
     隣り合う貫通孔の中心間の距離は、1500mmから3500mmの範囲であることを特徴とする請求項8に記載のフロートガラス製造装置。
  10.  フロートバスに溶融ガラスを導入するステップと、
     前記溶融ガラスを前記フロートバスの上流側から下流側に搬送させ、ガラスリボンを形成するステップと、
     トップロールの先端部を前記ガラスリボンの進行方向の所定領域の両側の上面に押し付けながら回転させることにより、前記ガラスリボンの収縮を抑制するステップと、
     を有する、フロートガラス製造方法であって、
     前記トップロールは、回転可能な先端部を有し、
     該先端部は、内部に先端部空間を有する中空構造となっており、
     前記先端部空間には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とするフロートガラス製造方法。
  11.  前記トップロールの先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有し、
     前記先端部空間および前記流通路には、硬度が100(mg/リットル)以下の冷却水が流通されることを特徴とする請求項10に記載のフロートガラス製造方法。
  12.  前記先端部空間には、硬度が30(mg/リットル)以下の冷却水が流通されることを特徴とする請求項10または11に記載のフロートガラス製造方法。
  13.  前記フロートバスの上部には、上部シーリング構造が設置され、前記フロートバスと前記上部シールイング構造との間には、サイドシーリング壁が設置され、該サイドシーリング壁には、前記トップロールが通る挿入孔が設けられており、
     前記挿入孔と前記ガラスリボンの表面との間の位置には、複数の貫通孔が設けられ、
     前記複数の貫通孔の内径は、10mmから200mmの範囲であり、
     隣り合う貫通孔の中心間の間隔は、1500mmから3500mmの範囲であることを特徴とする請求項10乃至12のいずれか1項に記載のフロートガラス製造方法。
PCT/JP2010/060311 2009-06-19 2010-06-17 トップロール、フロートガラス製造装置、およびフロートガラス製造方法 WO2010147189A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117024818A KR101285989B1 (ko) 2009-06-19 2010-06-17 톱 롤, 플로트 유리 제조 장치, 및 플로트 유리 제조 방법
JP2011519839A JPWO2010147189A1 (ja) 2009-06-19 2010-06-17 トップロール、フロートガラス製造装置、およびフロートガラス製造方法
CN2010800268015A CN102803164A (zh) 2009-06-19 2010-06-17 拉边机、浮法玻璃制造装置以及浮法玻璃制造方法
EP10789563.3A EP2444379A4 (en) 2009-06-19 2010-06-17 SUPERIOR WHEEL MACHINE, FLOATING GLASS PRODUCTION DEVICE, AND METHOD FOR PRODUCING FLOAT GLASS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146531 2009-06-19
JP2009-146531 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147189A1 true WO2010147189A1 (ja) 2010-12-23

Family

ID=43356506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060311 WO2010147189A1 (ja) 2009-06-19 2010-06-17 トップロール、フロートガラス製造装置、およびフロートガラス製造方法

Country Status (6)

Country Link
EP (1) EP2444379A4 (ja)
JP (1) JPWO2010147189A1 (ja)
KR (1) KR101285989B1 (ja)
CN (1) CN102803164A (ja)
TW (1) TWI461374B (ja)
WO (1) WO2010147189A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137780A1 (ja) * 2011-04-08 2012-10-11 旭硝子株式会社 基板用無アルカリガラスおよび基板用無アルカリガラスの製造方法
WO2013073353A1 (ja) * 2011-11-17 2013-05-23 旭硝子株式会社 支持ロール、支持ロールを有する板ガラスの成形装置、および支持ロールを用いた板ガラスの成形方法
WO2013073352A1 (ja) * 2011-11-17 2013-05-23 旭硝子株式会社 支持ロール、支持ロールを有する板ガラスの成形装置、および支持ロールを用いた板ガラスの成形方法
KR101379689B1 (ko) 2011-03-09 2014-04-01 주식회사 엘지화학 유리판 제조용 성형 롤러, 이를 이용한 유리판 제조 장치 및 방법
WO2014091967A1 (ja) * 2012-12-11 2014-06-19 旭硝子株式会社 フロートガラス製造装置、およびフロートガラス製造方法
JP2014193796A (ja) * 2013-02-26 2014-10-09 Nippon Electric Glass Co Ltd ガラス板製造装置、及びガラス板製造方法
WO2014185129A1 (ja) * 2013-05-16 2014-11-20 旭硝子株式会社 ガラス板の成形方法、ガラス板の製造装置、およびガラス板の製造方法
CN104743777A (zh) * 2015-03-10 2015-07-01 宜昌南玻光电玻璃有限公司 玻璃拉边机整体升降装置
KR20160115737A (ko) 2015-03-26 2016-10-06 아사히 가라스 가부시키가이샤 지지 롤, 유리 제조 장치 및 유리 제조 방법
CN109133585A (zh) * 2018-11-05 2019-01-04 海南中航特玻科技有限公司 一种浮法玻璃锡槽的玻璃带冷却降温装置
CN115178968A (zh) * 2022-07-12 2022-10-14 蚌埠凯盛工程技术有限公司 一种玻璃浮法线密封箱辊子支座及其加工方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045834B1 (ko) * 2012-04-12 2019-11-18 에이지씨 가부시키가이샤 유리판의 제조 방법 및 제조 장치
KR102045833B1 (ko) * 2012-04-17 2019-11-18 에이지씨 가부시키가이샤 유리판의 제조 장치 및 제조 방법
WO2014185128A1 (ja) * 2013-05-16 2014-11-20 旭硝子株式会社 支持ロール、ガラス板の成形方法、ガラス板の製造装置、およびガラス板の製造方法
KR102153288B1 (ko) * 2013-05-16 2020-09-08 에이지씨 가부시키가이샤 지지 롤, 유리판의 성형 방법, 유리판의 제조 방법, 및 유리판의 제조 장치
CN104259683A (zh) * 2014-08-04 2015-01-07 蚌埠凯盛工程技术有限公司 一种拉边机拉边头的焊接结构
BE1022595A9 (fr) * 2014-11-19 2016-09-28 Fives Stein S A Dispositif de manipulation du bord d'un ruban de verre flotte, comprenant une molette a axe incline, et installation comportant un tel dispositif
JP2016098161A (ja) * 2014-11-25 2016-05-30 旭硝子株式会社 フロートガラス製造装置、およびフロートガラス製造方法
JP2016210630A (ja) * 2015-04-28 2016-12-15 旭硝子株式会社 支持ロール、ガラス板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222336U (ja) * 1988-07-29 1990-02-14
JPH03288586A (ja) * 1990-04-04 1991-12-18 Kurita Water Ind Ltd 水系の汚れのモニタリング方法
JPH11302024A (ja) * 1998-04-17 1999-11-02 Asahi Glass Co Ltd フロート板ガラス製造装置
JP2000126854A (ja) * 1998-10-23 2000-05-09 Kawasaki Steel Corp ロール冷却方法及び装置
JP2008189516A (ja) 2007-02-05 2008-08-21 Asahi Glass Co Ltd フロート法による板ガラスの製造方法
JP2009146531A (ja) 2007-12-17 2009-07-02 Funai Electric Co Ltd 光ピックアップ用レンズホルダ及びそれを備えた光ピックアップ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1015290B (zh) * 1986-06-27 1992-01-08 建筑材料工业部秦皇岛玻璃工业设计院 浮法玻璃液流自动调节方法及装置
CN2494830Y (zh) * 2001-08-13 2002-06-12 洛阳玻璃股份有限公司 8排齿拉边机机头装置
EP1705160A4 (en) * 2003-12-26 2009-05-06 Asahi Glass Co Ltd GLASS NOT COMPRISING ALKALI, PROCESS FOR PRODUCING THE SAME, AND LIQUID CRYSTAL DISPLAY PANEL
CN101213148B (zh) * 2005-07-06 2012-04-11 旭硝子株式会社 无碱玻璃的制造方法以及无碱玻璃板
CN1899998A (zh) * 2006-07-18 2007-01-24 福耀集团双辽有限公司 平板玻璃在线镀膜的方法和设备
CN100534647C (zh) * 2006-12-05 2009-09-02 中国建材国际工程有限公司 浮法拉边器拉边杆内水管清洗装置及其操作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222336U (ja) * 1988-07-29 1990-02-14
JPH03288586A (ja) * 1990-04-04 1991-12-18 Kurita Water Ind Ltd 水系の汚れのモニタリング方法
JPH11302024A (ja) * 1998-04-17 1999-11-02 Asahi Glass Co Ltd フロート板ガラス製造装置
JP2000126854A (ja) * 1998-10-23 2000-05-09 Kawasaki Steel Corp ロール冷却方法及び装置
JP2008189516A (ja) 2007-02-05 2008-08-21 Asahi Glass Co Ltd フロート法による板ガラスの製造方法
JP2009146531A (ja) 2007-12-17 2009-07-02 Funai Electric Co Ltd 光ピックアップ用レンズホルダ及びそれを備えた光ピックアップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444379A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379689B1 (ko) 2011-03-09 2014-04-01 주식회사 엘지화학 유리판 제조용 성형 롤러, 이를 이용한 유리판 제조 장치 및 방법
WO2012137780A1 (ja) * 2011-04-08 2012-10-11 旭硝子株式会社 基板用無アルカリガラスおよび基板用無アルカリガラスの製造方法
KR101831480B1 (ko) * 2011-04-08 2018-02-22 아사히 가라스 가부시키가이샤 기판용 무알칼리 유리 및 기판용 무알칼리 유리의 제조 방법
JP5888326B2 (ja) * 2011-04-08 2016-03-22 旭硝子株式会社 基板用無アルカリガラスの製造方法
CN103476718A (zh) * 2011-04-08 2013-12-25 旭硝子株式会社 基板用无碱玻璃和基板用无碱玻璃的制造方法
JPWO2013073352A1 (ja) * 2011-11-17 2015-04-02 旭硝子株式会社 支持ロール、支持ロールを有する板ガラスの成形装置、および支持ロールを用いた板ガラスの成形方法
CN103906714B (zh) * 2011-11-17 2016-02-24 旭硝子株式会社 支承辊、具有支承辊的板玻璃的成形装置、及使用了支承辊的板玻璃的成形方法
KR20140098736A (ko) * 2011-11-17 2014-08-08 아사히 가라스 가부시키가이샤 지지 롤, 지지 롤을 갖는 판 유리의 성형 장치, 및 지지 롤을 사용한 판 유리의 성형 방법
KR102002655B1 (ko) * 2011-11-17 2019-07-23 에이지씨 가부시키가이샤 지지 롤, 지지 롤을 갖는 판 유리의 성형 장치, 및 지지 롤을 사용한 판 유리의 성형 방법
WO2013073353A1 (ja) * 2011-11-17 2013-05-23 旭硝子株式会社 支持ロール、支持ロールを有する板ガラスの成形装置、および支持ロールを用いた板ガラスの成形方法
CN103906714A (zh) * 2011-11-17 2014-07-02 旭硝子株式会社 支承辊、具有支承辊的板玻璃的成形装置、及使用了支承辊的板玻璃的成形方法
JPWO2013073353A1 (ja) * 2011-11-17 2015-04-02 旭硝子株式会社 支持ロール、支持ロールを有する板ガラスの成形装置、および支持ロールを用いた板ガラスの成形方法
WO2013073352A1 (ja) * 2011-11-17 2013-05-23 旭硝子株式会社 支持ロール、支持ロールを有する板ガラスの成形装置、および支持ロールを用いた板ガラスの成形方法
WO2014091967A1 (ja) * 2012-12-11 2014-06-19 旭硝子株式会社 フロートガラス製造装置、およびフロートガラス製造方法
KR20150095662A (ko) 2012-12-11 2015-08-21 아사히 가라스 가부시키가이샤 플로트 유리 제조 장치 및 플로트 유리 제조 방법
JP2014193796A (ja) * 2013-02-26 2014-10-09 Nippon Electric Glass Co Ltd ガラス板製造装置、及びガラス板製造方法
WO2014185129A1 (ja) * 2013-05-16 2014-11-20 旭硝子株式会社 ガラス板の成形方法、ガラス板の製造装置、およびガラス板の製造方法
CN104743777A (zh) * 2015-03-10 2015-07-01 宜昌南玻光电玻璃有限公司 玻璃拉边机整体升降装置
KR20160115737A (ko) 2015-03-26 2016-10-06 아사히 가라스 가부시키가이샤 지지 롤, 유리 제조 장치 및 유리 제조 방법
CN109133585A (zh) * 2018-11-05 2019-01-04 海南中航特玻科技有限公司 一种浮法玻璃锡槽的玻璃带冷却降温装置
CN109133585B (zh) * 2018-11-05 2023-07-25 海南海控特玻科技有限公司 一种浮法玻璃锡槽的玻璃带冷却降温装置
CN115178968A (zh) * 2022-07-12 2022-10-14 蚌埠凯盛工程技术有限公司 一种玻璃浮法线密封箱辊子支座及其加工方法
CN115178968B (zh) * 2022-07-12 2023-08-11 蚌埠凯盛工程技术有限公司 一种玻璃浮法线密封箱辊子支座及其加工方法

Also Published As

Publication number Publication date
CN102803164A (zh) 2012-11-28
TW201103871A (en) 2011-02-01
EP2444379A1 (en) 2012-04-25
EP2444379A4 (en) 2013-07-31
TWI461374B (zh) 2014-11-21
KR101285989B1 (ko) 2013-07-15
JPWO2010147189A1 (ja) 2012-12-06
KR20120038922A (ko) 2012-04-24

Similar Documents

Publication Publication Date Title
WO2010147189A1 (ja) トップロール、フロートガラス製造装置、およびフロートガラス製造方法
TWI469937B (zh) 製造浮法玻璃用之浮浴槽及其冷卻方法
JP7438285B2 (ja) ガラス溶融物の表面上の気泡の寿命を減少させる方法
WO2014091967A1 (ja) フロートガラス製造装置、およびフロートガラス製造方法
CN106007342B (zh) 支承辊、玻璃制造装置、及玻璃制造方法
TW201245070A (en) Method for producing glass plate
WO2009148139A1 (ja) 板ガラスの製造装置及び板ガラスの製造方法
JP6346485B2 (ja) ガラス基板の製造方法およびガラス基板の製造装置
KR20110049785A (ko) 플로트 유리의 제조 장치 및 제조 방법
US10392289B2 (en) Method for manufacturing float glass, and float glass
WO2013187179A1 (ja) 板ガラスの製造装置、及び板ガラスの製造方法
JP2015105216A (ja) フロートガラス製造装置、およびフロートガラス製造方法
TW201433548A (zh) 漂浮玻璃之成形裝置、及漂浮玻璃之製造方法
KR20160125288A (ko) 플로트 유리의 제조 장치, 플로트 유리의 제조 방법
TW201226337A (en) Apparatus for producing float plate glass and method for producing float plate glass
US8813521B2 (en) Float bath for manufacturing glass; float glass forming method utilizing the same and method for installing barriers to the float bath
CN106082627B (zh) 支承辊、及玻璃板的制造方法
JP2015134691A (ja) フロートガラス製造装置、およびフロートガラス製造方法
JP2022188662A (ja) フロートガラス製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026801.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011519839

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117024818

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010789563

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE