WO2010147108A1 - 塗布方法、有機エレクトロルミネッセンス素子 - Google Patents

塗布方法、有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2010147108A1
WO2010147108A1 PCT/JP2010/060097 JP2010060097W WO2010147108A1 WO 2010147108 A1 WO2010147108 A1 WO 2010147108A1 JP 2010060097 W JP2010060097 W JP 2010060097W WO 2010147108 A1 WO2010147108 A1 WO 2010147108A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
slit
width
lip
die coater
Prior art date
Application number
PCT/JP2010/060097
Other languages
English (en)
French (fr)
Inventor
川邉 茂寿
伸明 高橋
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to EP10789483.4A priority Critical patent/EP2444165B1/en
Priority to US13/260,068 priority patent/US8728950B2/en
Priority to JP2011519788A priority patent/JP5522170B2/ja
Publication of WO2010147108A1 publication Critical patent/WO2010147108A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • B05D1/265Extrusion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0245Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to a moving work of indefinite length, e.g. to a moving web
    • B05C5/025Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to a moving work of indefinite length, e.g. to a moving web only at particular part of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a coating method in which a slit type die coater is used for a continuously running substrate and a low-viscosity coating liquid is applied to a thin film in stripes, and an organic electronic device formed by this coating method.
  • the following two coating methods are known as a method of applying a coating solution to a substrate that runs continuously.
  • One is a post-measurement type coating method in which an excess coating solution is discharged onto the substrate in advance, and then the excess is removed by some scraping means.
  • a post-measuring type coating method a blade coating method, an air knife coating method, a wire bar coating method, a gravure coating method, a reverse coating method, and a reverse roll coating method are known.
  • the other one is a pre-weighing type coating method in which the coating liquid is discharged by an amount that forms a necessary coating liquid film, and the coating liquid is applied onto the substrate.
  • a pre-weighing type coating method an extrusion coating method using a slit type die coater, a slide coating method using a slide coater, a curtain coating method, and a coating method using an inkjet head are known.
  • the slit type die coater is capable of handling higher coating accuracy, higher quality, higher speed, thin film, suitability for multilayer coating, etc. than other types of coating devices.
  • it is used for the production of optical films, ink jet recording paper, heat-developable recording materials, organic electroluminescence elements (hereinafter also referred to as organic EL elements) and the like.
  • Organic EL elements are used in the field of display and lighting, etc., and are generally manufactured by film formation by vapor deposition. However, in order to improve productivity and reduce manufacturing costs, in recent years it has been called a roll-to-roll method. Manufacturing by the method is under consideration.
  • the viscosity of the coating solution used is a low viscosity of 4.0 mPa ⁇ s or less. It has become.
  • the thickness of the hole transport layer of the organic compound layer is 5 nm to 500 nm, and the thickness of one layer forming the light emitting layer is 2 nm to 100 nm. In order to affect the performance of EL elements, there is a growing demand for uniform film thickness.
  • a slit type die coater is used for thin film coating in which a coating solution having a viscosity of several mPa ⁇ s is applied at a coating speed of several tens m / min to several hundred m / min by a conventional extrusion coating method using a slit type die coater.
  • the pressure on the upstream side is reduced, the coater gap is set to about 100 ⁇ m, which is about 3 to 10 times the wet film thickness, and the coater gap accuracy is several percent (straightness of slit type die coater, cylindricity of backup roll, rotational accuracy, etc.) (Accuracy from the limit of machine accuracy), the coating film thickness distribution was suppressed to several percent.
  • the coater gap refers to the distance between the lip tip of the slit die coater and the substrate.
  • the conventional extrusion coating method it is a stable coating condition to keep the bead in a pressurized state, and if the coater gap is small, a coating film thickness distribution defect occurs. If the thickness is increased to more than twice the film thickness, the bead becomes a complete negative pressure due to the accompanying air accompanying the conveyance of the support, and the bead cannot be maintained and stable coating cannot be performed.
  • the method of cutting the entrained air by reducing the upstream side of the slit type die coater is used, but the coater gap is 1.5 times the wet film thickness when there is no pressure reduction.
  • the limit is about 10 times the wet film thickness.
  • Japanese Patent Laid-Open No. 2007-98224 discloses a slot die (slit type die coater used in the present invention) on a web (corresponding to a belt-like substrate used in the present invention) that is continuously supported by a backup roller.
  • a method is described in which a slot die is used in which the tip of the slot die is concave so that the clearance difference between the center portion in the die width direction and both end portions in the die width direction is 1 ⁇ m to 10 ⁇ m.
  • Japanese Patent Laid-Open No. 2006-305548 discloses a coating apparatus that applies a coating solution having a viscosity of 1 mPa ⁇ s to 10 mPa ⁇ s to a substrate (corresponding to a belt-like substrate used in the present invention).
  • An extrusion coater (corresponding to a slit-type die coater used in the present invention) having a diameter of 60 ⁇ m to 120 ⁇ m and a manifold diameter of 12 mm to 18 mm is described.
  • the width of the base material is widened, and an organic compound layer (for example, a hole transport layer, a light emitting layer, etc.) is aligned with a plurality of electrodes formed on the base material.
  • an organic compound layer for example, a hole transport layer, a light emitting layer, etc.
  • a method of manufacturing an organic EL panel by forming a multi-strand coating film in a stripe shape by a coating method using a slit-type die coater to form an organic EL element and then cutting each strip is provided.
  • a method of forming a multi-strand coating film in a stripe shape for example, Japanese Patent Application Laid-Open No.
  • 2001-6663 discloses an extrusion-type coater in which a guide for dividing a slit into a multi-strand is provided in the slit of the coater.
  • a guide for dividing a slit into a multi-strand is provided in the slit of the coater.
  • a method for stably forming a multi-layered coating film on a substrate using a low-viscosity coating solution has been further studied.
  • the coating liquid is discharged from the slit type die coater into a film and applied onto the substrate.
  • the coating gap corresponding to the coater gap
  • the coating liquid discharged in a film shape is cracked using the groove as a trigger.
  • a method of forming a striped coating film having a cut line on a material is known (see Patent Document 1).
  • Patent Document 1 has the following problems. 1.
  • the coating liquid is supplied to the slit die coater while being pressurized to the slit die coater and discharged from the slit outlet, so the flow rate of the coating liquid is large, and coating with a wet film thickness of 25 ⁇ m or more is possible. Is 3.0 mPa ⁇ s or less, and the wet film thickness is from 0.1 ⁇ m to 5.0 ⁇ m, the width and film thickness of the stripe coating become unstable when applied with low viscosity and thin film. 2.
  • the coater is affected by the vibration caused by the conveyance of the substrate, the straightness of the slit type die coater, and when the backup roll is used as the support member of the substrate, the cylindricality of the backup roll and the vibration associated with the rotation of the backup roll. Since the gap is easily received and the width of the coating part and the non-coating part is easily changed due to the change of the coater gap and the like, the dimensional variation of the coating width is large, and the striped coating tends to be unstable. 3. Since the coating liquid is supplied in a pressurized state to the slit die coater and discharged from the slit exit, in the case of a low-viscosity coating liquid, the coating liquid enters the groove, making it difficult to divide the coating liquid and causing stripes.
  • the coater gap between the slit die coater and the base material is increased, the liquid may start to break from the groove, and even if a striped film is formed, the liquid may be further spread. Therefore, it is difficult to control the width of the coated part and the non-coated part, and stable coating cannot be performed. 4).
  • the coating part and non-coating part are formed, so only a small pitch (the width of the coating part + the width of the non-coating part) can be handled, and the degree of freedom in setting the coating part and non-coating part small.
  • a low-viscosity coating solution is alternately striped on the base material in the non-coated part and the coated part in the transport direction of the base material.
  • the present invention has been made in view of the above situation, and its purpose is to use an extrusion coating method using a slit type die coater to apply a low-viscosity coating liquid on a substrate with respect to the conveyance direction of the substrate.
  • an extrusion coating method using a slit type die coater to apply a low-viscosity coating liquid on a substrate with respect to the conveyance direction of the substrate.
  • a slit-type die coater is used on the base, the lip tip of the slit-type die coater is brought close to the base, and a bead is placed between the base and the lip tip of the slit-type die coater.
  • the tip of the lip is composed of a front lip and a back lip, and the groove is provided at substantially the same position of the front lip and the back lip, and the width of the application width of the groove is 0.5 mm or more. 5.
  • the organic compound layer is any one of the above-described 1 to 7
  • An organic electroluminescence device which is formed by the coating method according to claim 1.
  • a low-viscosity coating solution is applied on the substrate alternately in a non-coated portion and a coated portion with respect to the transport direction of the substrate. It was possible to provide a coating method for stably coating the film thickness and width of each strip of the coating film applied in the stripe shape, and to provide an organic electroluminescence device formed by this coating method.
  • FIG. 3 is an enlarged schematic view of the slit die coater shown in FIG. 2.
  • FIG. 3 is an enlarged schematic plan view of a portion indicated by Z in FIG. 2 showing the shape of a groove.
  • the present invention uses a slit type die coater having at least one groove in the application region of the application width of the lip tip, and the bead formed between the base material and the lip tip of the slit die coater,
  • the present invention relates to a coating method in which the pressure of the coating liquid at the slit outlet is in a negative or zero state and is applied in a stripe shape.
  • Patent Document 1 discloses a method of applying a low-viscosity coating liquid in a stripe shape on a substrate using a slit type die coater having at least one groove in the coating area of the coating width at the lip tip.
  • a slit type die coater having at least one groove in the coating area of the coating width at the lip tip.
  • a slit-type die coater and applying on a base material in stripes.
  • the coating liquid is supplied to the slit die coater in a pressurized state and discharged from the slit outlet. For this reason, in a low-viscosity coating liquid of 4.0 mPa ⁇ s or less, the coating liquid discharged from both ends of each of the outlets divided into a plurality of parts spreads wet in the width direction of the slit, and the non-coating portion and the coating liquid are applied. It becomes difficult to apply in a stripe shape in which the portions are alternately arranged in the conveyance direction of the substrate.
  • a groove is formed in the lip tip in accordance with the stripe to be applied, and the coating liquid is supplied to the slit die coater under pressure and discharged from the slit outlet. For this reason, the coating liquid is also supplied to the inside of the groove formed at the tip of the lip, the groove is filled with the coating liquid, and a bead is formed and applied together with the liquid discharged from the slits other than the groove. Application becomes difficult.
  • the present inventor uses a slit type die coater having at least one groove in a coating region having a wide coating width at the tip of the lip, and applies a low-viscosity coating liquid as a thin film on a substrate, an uncoated portion and a coated portion.
  • the following was found by examining a method of alternately applying in a striped manner in the direction of conveyance of the substrate. 1)
  • the coating liquid that has flowed out from the tip of the lip forms a bead with the base material, and is applied to the base material at a negative or zero pressure at the slit outlet by being pulled by the base material.
  • the coating By setting the wet film thickness of the coating film formed on the belt-shaped substrate with the coating liquid to 0.1 ⁇ m to 5.0 ⁇ m, the coating can be easily applied in a state where the pressure at the slit outlet is negative or zero. 3) With a coating liquid having a liquid viscosity of 4.0 mPa ⁇ s or less, the supply of the coating liquid to the lip tip is more stable when the pressure at the slit outlet is negative or zero. 4) In order to eliminate the influence on the bead due to the entrained air generated by the conveyance of the substrate, stabilization of the bead can be more easily obtained by setting the coating speed to 10 m / min or less at which the accompanying air is not generated.
  • the coating liquid Since the coating liquid is supplied without applying pressure, the groove provided at the tip of the lip is not filled with the coating liquid, and once the coating liquid contacts the substrate and a bead is formed.
  • the coating liquid flowing out from the lip tip is continuously applied to the substrate conveyed by capillary action and is completely applied, and does not flow out into the groove. For this reason, the location of a groove
  • the distance between the lip tip and the base material (hereinafter also referred to as coater gap) is that the coating solution bridges the lip and the base material. Any gap can be used, and it is not affected by the coating film thickness. For this reason, it was found that the coater gap can be applied with a very wide coater gap with respect to the wet film thickness of 30 times or more with respect to the wet film thickness even when the wet film thickness is 5.0 ⁇ m or less. As a result, since the film thickness distribution in the width direction of the coating is generally approximated by machine accuracy / coater gap, a good film thickness distribution that is not affected by machine accuracy can be obtained by widening the coater gap. found.
  • a slit-type die coater having at least one groove in a coating region having a wide coating width at the tip of the lip, a thin coating of a low-viscosity coating solution on the substrate, and the uncoated portion and the coated portion being a substrate
  • the wet film thickness is set to 0.1 ⁇ m to 5.0 ⁇ m.
  • the coating solution viscosity is 4.0 mPa ⁇ s or less.
  • the coater gap is set to 30 to 300 times the wet film thickness. 4).
  • the application speed is set to a speed that does not generate accompanying air.
  • the present invention has made it possible to provide a coating method capable of stably applying a thin film of stripe stripes that is not affected by mechanical accuracy.
  • FIG. 1 is a schematic view of a state where coating is performed using a slit die coater.
  • FIG. 1A is a schematic cross-sectional view of a state where coating is performed using a slit type die coater which is a pre-metering type coating method.
  • FIG. 1B is a schematic plan view of a portion indicated by S in FIG. In addition, this figure has shown the case where a strip
  • the slit type die coater 1 has a block 101a, a block 101b, a side plate 101c (see FIG. 2), and a side plate 101d (see FIG. 2), and is assembled by fastening with bolts or the like.
  • the lip 103 has a back lip 103a and a front lip 103b.
  • the lip 103 has a notch 102a, a groove 102b, a groove 102c, and a notch 102d (see FIG. 2).
  • the portions of the cutout portion 102a, the groove 102b, the groove 102c, and the cutout portion 102d (see FIG. 2) are non-application portions because the coating liquid does not flow out.
  • 104 indicates a slit formed by a gap between the block 101a and the block 101b, and 105 is a part for temporarily storing a coating liquid called a manifold, and the coating liquid is fed into the coating liquid supply pipe 106 here.
  • the viscosity of the coating solution is preferably 4.0 mPa ⁇ s or less, more preferably 3.0 mPa ⁇ s or less, taking into consideration the functionality and thickness of the film.
  • the viscosity of the coating solution is a value measured at a temperature of 25 ° C. using an E-type viscometer, VISCONIC ED type and controller E-200 type, manufactured by Toki Sangyo Co., Ltd.
  • the coating liquid stored in the coating width direction by the manifold 105 passes through the slit 104 and is supplied from the slit outlet 104a at the tip of the slit 104 between the lip 103 and the belt-like substrate 3 supported by the backup roll 2 and coated. Is done.
  • the supplied coating solution forms a bead Q, is wound around a backup roll 2 and is applied onto the supported belt-like substrate 3 to form a coating film 4.
  • the slit outlet 104a has a slit outlet 104a1 (see FIG. 2), a slit outlet 104a2 (see FIG. 2), and a slit outlet 104a3 (see FIG. 2).
  • the pressure at the slit outlet of the bead of the coating solution supplied from the slit outlet 104a is negative or zero.
  • the pressure at the slit outlet is pressurized, the coating liquid is discharged from the slit of the groove, and the groove is filled with the coating liquid, so that the application cannot be divided by the groove, and striped coating cannot be performed.
  • the zero state means that the difference from the atmospheric pressure is zero.
  • the error includes a range of ⁇ 0.001 MPa.
  • the negative pressure state means a state lower than the atmospheric pressure around the coater, and if the negative pressure becomes too strong, it becomes difficult to maintain the bead, so ⁇ 0.01 MPa or more is preferable.
  • the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet 104a can be obtained by the following method.
  • the pressure in the manifold 105 can be measured using a pressure sensor AP-V80 manufactured by Keyence Corporation.
  • the slit outlet 104a The pressure ⁇ P at the slit exit of the bead of the coating liquid supplied from can be obtained by the following equation.
  • slit outlet pressure ⁇ P P 1 -P 0
  • the slit outlet pressure ⁇ P can be adjusted by changing the viscosity of the coating solution used, the coating speed, and the wet film thickness.
  • A indicates a coater gap which is a distance between the lip 103 (back lip 103a and front lip 103b) and the belt-like substrate 3 wound around and supported by the backup roll 2.
  • the bead Q is formed in the coater gap A.
  • the band-shaped substrate 3 side before coating is referred to as the upstream side
  • the band-shaped substrate 3 side on which the coating film 4 is formed is referred to as the downstream side.
  • the coating method using the slit type die coater 1 is a method which is performed without providing a decompression chamber.
  • the application using the slit type die coater 1 is a means for moving from the standby position to the application position (not shown) with the required application liquid being supplied from the slit outlet at the start of application.
  • the lip 103 (back lip 103a and front lip 103b) at the tip of the slit die coater 1 is brought close to the belt-like base material, and the bead Q is placed in the gap (coater gap A) between the lip tip and the belt-like base material. It is a coating method in which the coating liquid is formed and transferred (with liquid) to the belt-like substrate.
  • the coater gap A is 30 to 300 times the wet film thickness in consideration of the stability of the film thickness distribution, the stability of the coating width, the vibration of the slit die coater, the vibration accompanying the conveyance of the belt-shaped substrate, etc. Preferably there is.
  • the coating speed is preferably 0.1 m / min to 10.0 m / min in consideration of the influence of accompanying air, conveyance stability, and the like.
  • the coating speed here refers to the relative speed between the slit die coater and the substrate.
  • the slit type die coater is fixed and the belt-like base material which is the base material is movable.
  • the base material is fixed and the slit type die coater is movable.
  • both the slit type die coater are movable.
  • reference numerals 4a to 4c denote coating films formed from a coating solution flowing out from slit outlets 104a1 to 104a3 (see FIG. 2) of the slit type die coater 1.
  • the wet film thickness of the coating films 4a to 4c is preferably 0.1 ⁇ m to 5.0 ⁇ m in consideration of applicability, cost, and the like.
  • the wet film thickness refers to the theoretical film thickness calculated by the following equation.
  • wet film thickness coating liquid supply / (coating width x coating speed)
  • the film thickness of the dried coating film is preferably 0.01 ⁇ m to 0.5 ⁇ m or less in consideration of the functionality of the film.
  • Numerals 5a to 5d denote non-coating portions formed by the notches 102a to 102d (see FIG. 2) of the lip portion of the slit die coater 1.
  • the non-coating portions 5a to 5d are moved in the transport direction of the belt-like substrate 3 (arrow direction in the figure).
  • coating films 4a to 4c are alternately formed in a stripe shape.
  • the wide application area means the coating films 4a to 4c excluding the non-application parts 5a and 5d.
  • the present invention relates to a coating method in which a low-viscosity coating solution is coated in a thin film as shown in the figure.
  • FIG. 2 is a schematic view of the slit type die coater shown in FIG.
  • FIG. 2A is a schematic perspective view of the slit type die coater shown in FIG.
  • FIG. 2B is an enlarged schematic perspective view of a portion indicated by Y in FIG.
  • 1 indicates a slit type die coater.
  • Reference numerals 102 a and 102 d denote notches provided at the end of the coating width at the tip of the lip 103.
  • Reference numerals 102b and 102c denote grooves provided within the coating width of the tip of the lip 103.
  • the notch 102a is provided at the same application width position of the back lip 103a and the front lip 103b, and a slit 104 is formed in the gap between the block 101a and the block 101b.
  • the notch 102d has the same structure.
  • the groove 102b is provided at the same application width position of the back lip 103a and the front lip 103b, and a slit 104 is formed in the gap between the internal block 101a and the block 101b.
  • the groove 102c has the same structure.
  • 104a1 indicates a slit outlet at the tip of the slit 104 (see FIG. 1) sandwiched between the notch 102a and the groove 102b.
  • the coating liquid flowing out from the slit outlet 104a1 forms a coating film 4a (see FIG. 1).
  • 104a2 indicates a slit outlet at the tip of the slit 104 (see FIG. 1) sandwiched between the groove 102b and the groove 102c.
  • the coating liquid flowing out from the slit outlet 104a2 forms a coating film 4b (see FIG. 1).
  • 104a3 indicates a slit outlet at the tip of the slit 104 (see FIG. 1) sandwiched between the groove 102c and the notch 102d.
  • the coating liquid flowing out from the slit outlet 104a3 forms a coating film 4c (see FIG. 1).
  • the slit-type die coater 1 shown in the figure has a coating film 4 (FIG. 1) including a notch 102a, a groove 102b, a groove 102c, and a notch 102d provided at the application width at the tip of the lip 103. Reference) is divided into three parts. Other reference numerals are the same as those in FIG.
  • the number of grooves provided at the tip of the lip can be appropriately selected depending on the width of the base material, the width of the non-application part, the width of the application part, the number of application parts, and the like. Also, the number of slit outlets can be increased or decreased depending on the number of grooves, and can be set as needed.
  • the coating liquid When a coating liquid having a viscosity of 4.0 mPa ⁇ s or less is applied by the slit die coater 1 in a pressurized state, the coating liquid is not only applied to each of the slit outlets 104a1 to 104a3, and the notch 102a, the groove 102b, Then, the groove 102c and the notch 102d also flow out of the slit 104, and it becomes difficult to apply the stripe-shaped coating divided by the notch 102a, the groove 102b, the groove 102c, and the notch 102d. .
  • the coating liquid having a viscosity of 4.0 mPa ⁇ s or less When the coating liquid having a viscosity of 4.0 mPa ⁇ s or less is applied without being pressurized by the slit type die coater 1, the coating liquid flows out from the slit outlets 104a1, 104a2, and 104a3 to form a bead and a belt-like substrate. Applied.
  • FIG. 3 is an enlarged schematic view of the slit die coater shown in FIG.
  • FIG. 3A is an enlarged schematic side view of the slit die coater shown in FIG.
  • FIG. 3B is an enlarged schematic front view of the slit die coater shown in FIG.
  • Ja indicates the depth of the notch 102a from the back lip 103a.
  • the depth Ja is preferably 1.0 mm to 10.0 mm in consideration of running out of the coating liquid, crosslinkability between the lip of the coating liquid and the support, leakage of the coating liquid in the width direction of the slit die coater, and the like. Furthermore, 1.5 mm to 5.0 mm is preferable. In addition, the preferable range of the depth from the back lip 103a of the groove 102b, the groove 102c, and the notch 102d is also the same as the depth Ja.
  • the depth Jb indicates the depth of the notch 102a from the front lip 103b.
  • the depth Jb is preferably from 1.0 mm to 10.0 mm in consideration of running out of the coating liquid, crosslinkability between the lip of the coating liquid and the support, leakage of the coating liquid in the width direction of the slit die coater, and the like. Furthermore, 1.5 mm to 5.0 mm is preferable. In addition, it is preferable that the preferable range of the depth from the front lip 103b of the groove 102b, the groove 102c, and the notch 102d is also the same as the depth Jb.
  • the width K indicates the width of the slit type die coater 1.
  • the width K can be appropriately changed regardless of the coating width.
  • the width L1 indicates the width of the notch 102a of the application width of the lip 103.
  • the width L1 can be appropriately set from the relationship between the width of the slit die coater 1 and the coating width.
  • the width L2 indicates the width of the application width of the lip 103 of the groove 102b.
  • the width L2 is 0.5 mm at the minimum width in consideration of the separation property of the coating solution, and the upper limit can be appropriately set by the width of the stripe, but is preferably 15 mm or less.
  • the width L3 indicates the width of the application width of the lip 103 of the groove 102c.
  • the width L3 is set to a minimum width of 0.5 mm in consideration of the separation property of the coating solution, and the upper limit can be appropriately set by the width of the stripe, but is preferably 15 mm or less.
  • the width of the width L2 and the width of the width L3 may be the same or different.
  • the width L4 indicates the width of the notch 102d of the application width of the lip 103.
  • the width L4 can be appropriately set from the relationship between the width of the slit die coater 1 and the coating width. Note that the width L1 and the width L4 may be the same or different. The width L1 and the width L4 are preferably shorter and may be omitted.
  • N1 indicates the width of the application width of the slit outlet 104a1 at the tip of the slit 104.
  • N2 indicates the width of the application width of the slit outlet 104a2 at the tip of the slit 104.
  • N3 indicates the width of the application width of the slit outlet 104a3 at the tip of the slit 104.
  • Widths N1 to N3 can be appropriately changed in accordance with the coating width, and each may be different.
  • the slit gap O represents the slit gap of the slit 104.
  • the slit gap O is preferably 5 ⁇ m to 50 ⁇ m in consideration of the coating liquid supply amount, coating liquid physical properties, and the like.
  • Other reference numerals are the same as those in FIG.
  • the positions where the notch 102a, the groove 102b, the groove 102c, and the notch 102d are disposed are substantially the same in the front lip 103b and the back lip 103a.
  • FIG. 4 is an enlarged schematic plan view of a portion indicated by Z in FIG. 2B showing the shape of the groove.
  • this figure is an enlarged schematic plan view from the block 101a side which comprises the slit type
  • the reference numerals in the figure are the same as those in FIG.
  • C indicates a surface parallel to the lip 103 of the groove 102b
  • B indicates a first method (slave) surface connecting the lip 103 of the groove 102b and the surface C
  • D indicates a lip 103 and the surface C of the groove 102b.
  • the 2nd method (slave) surface which connects is shown.
  • represents the angle at which the first method (groove) surface B and the surface C intersect.
  • the shape of the groove is not particularly limited, and typical shapes are shown in (a) to (e). (A) has shown the case where the angle (theta) which the surface C and the 2nd method (slave) surface D cross is 90 degrees.
  • the angle at which the first method (slave) surface B and the surface C intersect is preferably the same as the angle at which the surface C and the second method (slave) surface D intersect.
  • (B) shows a case where the angle ⁇ between the surface C and the second method (slot) surface D is an obtuse angle.
  • the angle at which the first method (slave) surface B and the surface C intersect is preferably the same as the angle at which the surface C and the second method (slave) surface D intersect.
  • C shows a case where the angle ⁇ between the surface C and the second method (slot) surface D is an acute angle.
  • the angle at which the first method (slave) surface B and the surface C intersect is preferably the same as the angle at which the surface C and the second method (slave) surface D intersect.
  • D has shown the case where the 2nd method (slave) surface D is a convex curved surface.
  • the first method (slave) surface B is preferably the same convex curved surface as the second method (slave) surface D.
  • E has shown the case where the 2nd method (slave) surface D is a concave curved surface.
  • the first method (slave) surface B is preferably the same concave surface as the second method (slave) surface D.
  • the notches 102a (102d) (see FIG. 2) provided at both ends of the coating width of the lip 103 are a method of connecting the surface parallel to the lip 103 and the surface parallel to the lip 103 (slipping). Has a surface. It is preferable that the notch part 102a (102d) (see FIG. 2) has the same (slave) surface as the second method (slave) surface D of the application width of the groove 102b.
  • portion where the surface C and the second method (slave) surface D intersect may be R-chamfered.
  • point where the second method (slave) surface D and the lip 103 intersect is preferably a sharp edge.
  • the point where the lip 103 intersects with the notch 102a (102d) (see FIG. 2) of the notch portions 102a (102d) (see FIG. 2) provided at both ends of the application width of the lip 103 is a sharp edge.
  • the coating liquid is applied at a negative or zero pressure at the lip tip.
  • a thin film with a wet film thickness of 0.1 ⁇ m to 5.0 ⁇ m with a stable film thickness in a stripe shape it became possible to apply a thin film with a wet film thickness of 0.1 ⁇ m to 5.0 ⁇ m with a stable film thickness in a stripe shape, and to meet the market demand.
  • the coating method of the present invention using the slit type die coater shown in FIG. 1 to FIG. 4 is applied to each of the layers constituting the hard coating layer, the antireflection film having the antireflection layer, the optical film, and the organic EL element. It can be applied to the production of functional layers (for example, a hole transport layer, a light emitting layer, etc.) that can be formed by a coating method, color filters used in liquid crystal displays, optical filters, and various coating films.
  • functional layers for example, a hole transport layer, a light emitting layer, etc.
  • the materials used when producing the antireflection film and the optical film by the coating method of the present invention are disclosed in JP-A-2008-296421, 2008-224003, 2008-224718, 2008-200600. It is possible to use known materials described in Japanese Patent Publication Nos. 2007-098833, 2006-293201, 2006-285217, and the like.
  • part means “part by mass”.
  • Example 1 (Preparation of strip-shaped substrate) A belt-like substrate of a polyethylene terephthalate film (a film made by Teijin DuPont, hereinafter abbreviated as PET) having a thickness of 100 ⁇ m, a width of 330 mm, and a length of 500 m was prepared as a substrate.
  • PET polyethylene terephthalate film
  • a commercially available dye, C.I. I. A coating solution in which 1.5 parts by mass of Acid Red 249 was dissolved was prepared, and the viscosity was adjusted as shown in Table 1 after adjusting the addition amount of polyvinyl butyrate (PVB).
  • the viscosity of the coating solution is a value measured at a temperature of 25 ° C. using an E-type viscometer VISCONIC ED type manufactured by Toki Sangyo Co., Ltd. and a controller E-200 type manufactured by the same company.
  • Slit die coater width K 330mm Depth from notch and groove front lip Jb 2mm Depth from notch and groove back lip Ja 2mm
  • Application width of lip of groove 102b Width L2 3mm
  • Application width of lip of groove 102c Width L3 3mm
  • Application width of lip of notch 102d width L4 15mm Width of application width N1 of slit outlet 104a1 98mm Width of application width N2 of slit outlet 104a1 98mm Width of application width N3 of slit outlet 104a1 98mm
  • Application width 300mm The shape of the notch and the groove was the shape shown in FIG.
  • the wet film thickness refers to the theoretical film thickness calculated by the following equation.
  • wet film thickness coating liquid supply flow rate / (coating width x coating speed) The film thickness after drying was measured at three places on the width and five places in the length direction, and the average value was obtained.
  • the coating conditions were a coating width of 300 mm, a coating length of 50 m, a coating temperature of 25 ° C., and a coating speed of 5 m / min.
  • the coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • Film thickness stability (variation) ((maximum density-minimum density) / average density) x 100 Evaluation rank ⁇ : Variation is less than 1.0 ⁇ : Variation is 1.0 or more, less than 3.0 ⁇ : Variation is 3.0 or more, less than 5.0 ⁇ : Variation is 5.0 or more Width stability of coating film Using the Mitutoyo Co., Ltd. measuring microscope MF-A4020, measure the width at 1 m intervals in the length direction, and calculate the width stability of 10 points on the sample as the width stability. Asked.
  • Slit type die coater No. 1 having at least one groove in the coating area of the coating width at the tip of the lip. No. 1 was used, and when the coating solution was applied, the pressure at the slit outlet of the coating solution bead was negative or zero, and the coating speed was 5 m / min. 102 to 104, 106 to 108, 110 to 112, 114 to 116, 118 to 120, 122 to 124, 126 to 128 have good film thickness stability and coating width stability, and are formed on a belt-like substrate.
  • Sample No. produced by applying a wet film thickness of 0.1 ⁇ m to 5.0 ⁇ m.
  • the film thickness of the stripe-shaped coating is increased by increasing the coater gap.
  • the stripe-shaped coating width was not stable, and when the coater gap was reduced, the stripe-shaped coating could not be performed.
  • Example 2 Preparation of strip-shaped substrate
  • a belt-like substrate of a polyethylene terephthalate film (a film made by Teijin DuPont, hereinafter abbreviated as PET) having a thickness of 100 ⁇ m, a width of 330 mm, and a length of 500 m was prepared as a substrate.
  • PET polyethylene terephthalate film
  • a coating solution in which 1.5 parts by mass of Acid Red 249 was dissolved was prepared, the amount of polyvinyl butyrate (PVB) added was adjusted, and coating solutions having different viscosities as shown in Table 3 were prepared. From a to e. The viscosity of the coating solution indicates a value measured by the same method as that described in Example 1.
  • the coating conditions were a coating width of 300 mm, a coating length of 50 m, a coating temperature of 25 ° C., and a coater gap of 200 ⁇ m, which is 100 times the wet film thickness.
  • the coating speed was 5 m / min.
  • a coating speed shows the value measured by the same method as the measurement of the coating speed of Example 1.
  • the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet was ⁇ 0.003 MPa.
  • the measurement of the pressure shows a value obtained by the same method as in Example 1.
  • the wet film thickness of the coating film formed on the belt-like substrate with the coating liquid extruded from the lip tip Is 0.1 to 5 ⁇ m
  • the coater gap is 30 to 300 times the wet film thickness
  • the coating speed is 10 m / min or less
  • the pressure at the slit outlet of the bead of the coating solution supplied from the slit outlet is negative or zero. It was confirmed that the stability of the film thickness and the stability of the coating width were particularly good when the viscosity of the coating solution was 4.0 mPa ⁇ s or less. The effectiveness of the present invention was confirmed.
  • Example 3 (Preparation of strip-shaped substrate) The same strip-shaped substrate as the strip-shaped substrate prepared in Example 1 was prepared as the substrate.
  • Coating liquid No. 2 prepared in Example 2 was used.
  • the same coating solution as b was prepared.
  • the prepared slit die coater No. 3-1 to 3-6 were used, and the prepared coating solution without a decompression chamber was adjusted to a wet film thickness of 2.0 ⁇ m under the conditions shown below. As shown in FIG. After coating on a strip-shaped base material prepared in a stripe shape, the sample was dried and dried as shown in Table 6. 301 to 306. The wet film thickness is a value measured by the same method as in Example 1.
  • the coating width was 300 mm
  • the coating length was 50 m
  • the coating temperature was 25 ° C.
  • the coater gap was 200 ⁇ m, which is 100 times the wet film thickness.
  • the coating speed was 5 m / min.
  • a coating speed shows the value measured by the same method as the measurement of the coating speed of Example 1.
  • the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet was ⁇ 0.003 MPa.
  • the measurement of the pressure shows a value obtained by the same method as in Example 1.
  • a slit-type die coater having a notch and groove depth of 2 mm in the application area of the slit-type die coater lip and a width of 15.0 mm.
  • the coating film formed on the belt-like substrate with the coating liquid extruded from the lip tip is used with a wet film thickness of 0.1 ⁇ m to 5.0 ⁇ m, the viscosity of the coating liquid is 4.0 mPa ⁇ s or less, and the coater gap is Applying the lip of the groove when applying at 30 to 300 times the wet film thickness and applying speed of 10 m / min or less and the pressure of the slit outlet of the coating solution bead supplied from the slit outlet is negative or zero. It was confirmed that the stability of the film thickness and the stability of the coating width were particularly good when the width of the width was 0.5 mm to 15.0 mm. The effectiveness of the present invention was confirmed.
  • Example 4 (Preparation of strip-shaped substrate) The same strip-shaped substrate as the strip-shaped substrate prepared in Example 1 was prepared as the substrate.
  • Coating liquid No. 2 prepared in Example 2 was used.
  • the same coating solution as b was prepared.
  • the prepared slit die coater No. 4-1 to 4-6 were used, and the prepared coating solution without a decompression chamber was set to a wet film thickness of 2.0 ⁇ m under the conditions shown below. As shown in FIG. After coating on a strip-shaped base material prepared in a stripe shape, the sample was dried and dried as shown in Table 8. 401 to 406. The wet film thickness is a value measured by the same method as in Example 1.
  • the coating width was 300 mm
  • the coating length was 50 m
  • the coating temperature was 25 ° C.
  • the coater gap was 200 ⁇ m, which is 100 times the wet film thickness.
  • the coating speed was 5 m / min.
  • a coating speed shows the value measured by the same method as the measurement of the coating speed of Example 1.
  • the pressure at the slit outlet of the bead of the coating solution supplied from the slit outlet was set to ⁇ 0.003 MPa.
  • the measurement of the pressure shows a value obtained by the same method as in Example 1.
  • the wet film thickness of the coating film formed on the belt-like substrate is 0.1 ⁇ m to 5 ⁇ m
  • the viscosity of the coating solution is 4.0 mPa ⁇ s or less
  • the coater gap is 30 to 300 times the wet film thickness
  • the coating speed is 10 m.
  • the depth of the notch and groove is 1.0 mm to 10.0 mm.
  • the stability of the film thickness and the stability of the coating width were good. The effectiveness of the present invention was confirmed.
  • Example 5 (Preparation of strip-shaped substrate) The same strip-shaped substrate as the strip-shaped substrate prepared in Example 1 was prepared as the substrate.
  • Coating liquid No. 2 prepared in Example 2 was used.
  • the same coating solution as b was prepared.
  • the coating film has three strips as shown in FIG. After coating on a strip-shaped substrate prepared in a stripe shape, the sample was dried and dried. 501 to 520.
  • the wet film thickness is a value measured by the same method as in Example 1.
  • the coating conditions were a coating width of 300 mm, a coating length of 50 m, a coating temperature of 25 ° C., and a coating speed of 5 m / min.
  • a coating speed shows the value measured by the same method as the measurement of the coating speed of Example 1.
  • the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet was ⁇ 0.003 MPa.
  • the measurement of the pressure shows a value obtained by the same method as in Example 1.
  • the viscosity of the coating solution is 4.0 mPa ⁇ s or less, the application speed is 10 m / min or less,
  • the wet film thickness is 0.1 to 5 ⁇ m, and the coater gap is 30 to 300 times the wet film thickness.
  • the film thickness stability and the coating width stability were good. The effectiveness of the present invention was confirmed.
  • Example 6 (Preparation of strip-shaped substrate) The same strip-shaped substrate as the strip-shaped substrate prepared in Example 1 was prepared as the substrate.
  • Coating liquid No. 2 prepared in Example 2 was used.
  • the same coating solution as b was prepared.
  • a coating speed shows the value measured by the same method as the measurement of the coating speed of Example 1.
  • the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet was ⁇ 0.003 MPa.
  • the measurement of the pressure shows a value obtained by the same method as in Example 1.
  • the wet film thickness is 0.1 ⁇ m to 5.0 ⁇ m
  • the viscosity of the coating solution is 4.0 mPa
  • the coating speed is 0.1 m. It was confirmed that the stability of the film thickness and the stability of the coating width were particularly good in the case of from 10.0 m / min to 10.0 m / min. The effectiveness of the present invention was confirmed.
  • Example 7 The band-shaped organic EL panel structure (flexible substrate / first electrode (anode) / hole transport layer / light emitting layer / electron transport layer / second electrode (cathode) / adhesive / sealing member) is as follows: After the manufacturing method shown in FIG. 801. The hole transport layer, the light emitting layer, and the electron transport layer were formed by coating with a slit type die coater shown in FIG. 1, and the second electrode (cathode) was formed by vapor deposition.
  • a belt-like substrate of a polyethylene terephthalate film (a film made by Teijin DuPont, hereinafter abbreviated as PET) having a thickness of 100 ⁇ m, a width of 330 mm, and a length of 500 m was prepared as a substrate.
  • the prepared belt-like base material was previously provided with an alignment mark at the same position on the surface on which the first electrode is formed and the opposite surface in order to indicate the position where the first electrode and the second electrode take-out electrode are to be formed. .
  • first electrode and second electrode extraction electrode Formation of first electrode and second electrode extraction electrode
  • the alignment mark attached to the prepared PET is detected, and according to the position of the alignment mark, a 120 nm thick ITO (indium tin oxide) is sputtered on the PET under a vacuum environment condition of 5 ⁇ 10 ⁇ 1 Pa on the mask.
  • a pattern film was formed, and a first electrode having a size of 12 mm ⁇ 5 mm and a second electrode having a size of 10 mm ⁇ 3 mm having a take-out electrode were formed in three rows at regular intervals, and were temporarily wound up and stored.
  • the viscosity of the coating liquid for forming a hole transport layer was 0.7 mPa ⁇ s.
  • the viscosity is a value measured at 20 ° C. using a digital viscometer LVDV-I manufactured by Brookfield.
  • a non-contact type antistatic device was used on the first electrode forming side, and a contact type antistatic device was used on the back side.
  • a non-contact type antistatic device a flexible AC ionizing bar MODEL4100V manufactured by Hugle Electronics Co., Ltd. was used.
  • the contact type antistatic device was a conductive guide roll ME-102 manufactured by Miyako Roller Kogyo Co., Ltd.
  • the coating conditions As the coating conditions, the hole transport layer forming coating liquid, the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet is ⁇ 0.001 MPa, the coating speed is 5 m / min, the wet film thickness is 2.0 ⁇ m, 100 times 200 ⁇ m wet film thickness coater gap, the temperature at the coating of the hole transport layer-forming coating liquid is 25 ° C., under atmospheric pressure dew point temperature -20 ° C. or less of N 2 gas environment, and cleanliness class 5 or less (JIS B 9920).
  • the wet film thickness indicates a theoretical value calculated by a flow rate (supply amount) / (application width ⁇ application speed).
  • the coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • Drying and Heating treatment conditions for the coating film for forming the hole transport layer are as follows. After the coating liquid for forming the hole transport layer is applied, a drying device is used. After removing the solvent at a height of 100 mm from the outlet of the type toward the film-forming surface, an outflow air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 120 ° C., the heat transfer apparatus then transfers the back surface at a temperature of 150 ° C. A heat treatment was performed to form a three-hole hole transport layer.
  • Viscosity indicates the value measured at 20 ° C using Brookfield Digital Viscometer LVDV-I.
  • the roll-shaped PET formed up to three prepared hole transport layers was subjected to charge removal treatment, and then prepared on the three hole transport layers (excluding 10 mm at both ends of the PET).
  • a slit type die coater was used, and the prepared coating solution for forming the light emitting layer was applied under the following conditions without providing a decompression chamber.
  • the drying part was dried and heat-treated under the following conditions to form three light emitting layers on the three hole transport layers, and then wound up and stored.
  • a non-contact type antistatic device was used on the light emitting layer side, and a contact type antistatic device was used on the back side.
  • the non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
  • the coating conditions were as follows: the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet to the light emitting layer forming coating liquid was -0.001 MPa, the coating speed was 5 m / min, the wet film thickness was 2.0 ⁇ m, and the coater gap was 200 ⁇ m, 100 times the wet film thickness, the temperature at the time of application of the light emitting layer forming coating solution is 25 ° C., the atmospheric pressure of N 2 gas environment with dew point temperature ⁇ 20 ° C. or less, and the cleanliness class 5 or less (JIS B 9920). The coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
  • Drying and heat treatment conditions for the coating film for forming the light emitting layer include applying a coating liquid for forming the light emitting layer, and then using a drying device.
  • the drying condition is a slit nozzle type outlet of the drying device. After removing the solvent at a height of 100 mm toward the film-forming surface, an outlet air velocity of 1 m / s, a wide wind velocity distribution of 5%, and a temperature of 120 ° C., a heat treatment is then performed at 150 ° C. using a heat treatment device. To form a light emitting layer.
  • the prepared slit-type die coater is prepared on the three light-emitting layers (excluding 10 mm at both ends of the PET) after charge-removing the roll-shaped PET formed up to the three light-emitting layers.
  • the coating solution for forming an electron transport layer was applied under the conditions shown below without providing a decompression chamber. After coating, the drying part was dried and heat-treated under the following conditions to produce PET having up to three electron transport layers, and after forming the electron transport layer, it was wound up and stored.
  • a non-contact type antistatic device was used on the electron transport layer side, and a contact type antistatic device was used on the back side.
  • the non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
  • the coating conditions were as follows: the electron transport layer forming coating liquid, the pressure at the slit outlet of the bead of the coating liquid supplied from the slit outlet was -0.001 MPa, the coating speed was 5 m / min, the wet film thickness was 2.0 ⁇ m, and the coater The gap is 200 ⁇ m, which is 100 times the wet film thickness, the temperature at the time of application of the electron transport layer forming coating solution is 25 ° C., the dew point temperature is ⁇ 20 ° C. or less in an N 2 gas environment, and the cleanliness class 5 The following (JIS B 9920) was performed. The coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
  • Drying and heat treatment conditions for the coating film for forming the electron transport layer are as follows. After applying the coating liquid for forming the electron transport layer, a drying apparatus is used. After removing the solvent from the outlet to the film formation surface at a height of 100 mm, outflow air velocity of 1 m / s, wide air velocity distribution of 5%, and a temperature of 120 ° C, the backside heat transfer system at a temperature of 150 ° C by a heat treatment device. The electron transport layer was formed by performing the heat treatment.
  • Second electrode (Formation of second electrode) Subsequently, the alignment mark attached to the PET formed up to the electron transport layer is detected, and the size of the first electrode and the second electrode take-out electrode are contacted on the electron transport layer formed according to the position of the alignment mark.
  • Alignment marks attached to the PET formed up to the second electrode are detected, and UV light is cured around the light emitting region and the light emitting region except for the ends of the first electrode and the second electrode extraction electrode according to the position of the alignment mark.
  • a liquid adhesive (epoxy resin type) of a mold was used and coated with a thickness of 30 ⁇ m.
  • the belt-like sheet sealing member shown below is stacked on the adhesive coating surface by a roll laminator method, and after pressure-bonding with a pressure of 0.1 MPa in an atmospheric pressure environment, a high-pressure mercury lamp with a wavelength of 365 nm is Irradiation intensity of 20 mW / cm 2 and distance of 15 mm were applied for 1 minute to be fixed and bonded, and a plurality of organic EL panels were continuously connected.
  • a two-layer belt-like sheet sealing member using a PET film (manufactured by Teijin DuPont) as the sealing member and using an inorganic film (SiN) as a barrier layer was prepared.
  • the thickness of PET was 100 ⁇ m
  • the thickness of the barrier layer was 200 nm.
  • the barrier layer of the PET film was formed by a sputtering method.
  • the water vapor transmission rate measured by the MOCON method mainly in accordance with the JIS K-7129B method (1992) was 0.01 g / m 2 ⁇ day.
  • the oxygen permeability measured mainly by the MOCON method by a method based on JIS K7126B method (1987) was 0.1 ml / m 2 ⁇ day ⁇ MPa.
  • Evaluation rank of leakage current characteristics A: Maximum current value is less than 1 ⁇ 10 ⁇ 6 A ⁇ : Maximum current value is 1 ⁇ 10 ⁇ 6 A or more and less than 1 ⁇ 10 ⁇ 5 A ⁇ : Maximum current value is 1 ⁇ 10 ⁇ 5 A or more, less than 1 ⁇ 10 ⁇ 3 A ⁇ : Maximum current value is 1 ⁇ 10 ⁇ 3 A or more Measuring method of light emission unevenness (luminance unevenness) Using a constant voltage power supply, DC 5 V is applied to the organic EL panel, The luminance difference at the six light emitting portions in the center of the sample was visually observed.

Abstract

 スリット型ダイコーターを用い、低粘度の塗布液を使用し膜厚の安定した薄膜を形成する塗布方法及びこの塗布方法より形成された有機エレクトロニクス素子を提供するため、基材の上にスリット型ダイコーターを使用し、前記スリット型ダイコーターのリップ先端部を前記基材に近接させ、前記基材と前記スリット型ダイコーターのリップ先端部との間にビードを形成させて、前記スリット型ダイコーターと前記基材とを相対的に移動させながら前記リップ先端部のスリット出口から流出される塗布液を少なくとも2条のストライプ状に塗布する塗布方法であって、前記リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有し、前記ビードの、前記スリット出口の前記塗布液の圧力が負圧或いはゼロの状態とし、ストライプ状に塗布することを特徴とする塗布方法。

Description

塗布方法、有機エレクトロルミネッセンス素子
 本発明は、連続走行する基材にスリット型ダイコーターを使用し、低粘度塗布液を薄膜にストライプ状で塗布する塗布方法及びこの塗布方法より形成された有機エレクトロニクス素子に関する。
 従来より連続走行する基材に塗布液を塗布する方法として次の二通りの塗布方法が知られている。一つは、予め必要な塗布液膜形成量よりも余剰な塗布液を基材上に吐出させ、その後なんらかの掻き取り手段で余剰分を取り除く後計量型塗布方式である。後計量型塗布方式としては、ブレード塗布法、エアーナイフ塗布法、ワイヤーバー塗布法、グラビア塗布法、リバース塗布法、リバースロール塗布法が知られている。
 他の一つは、必要な塗布液膜を形成する量だけ塗布液を吐出させて基材上に塗布液を塗布する前計量型塗布方式である。前計量型塗布方式としては、スリット型ダイコーターを用いたエクストルージョン塗布法、スライドコーターを用いたスライド塗布法、カーテン塗布法、インクジェットヘッドを用いた塗布法が知られている。前計量型塗布装置の中でもスリット型ダイコーターは、他の方式の塗布装置と比較して、塗布精度の高さ、高品位性、高速、薄膜、多層塗布適性等の対応が可能であることから、例えば、光学用フィルム、インクジェット記録用紙、熱現像記録材料、有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)等の製造に使用されている。
 有機EL素子はディスプレー及び照明分野等において使用されており、一般には蒸着方式による製膜で製造されているが、生産性の向上や製造コスト低減のため、近年ではロールトゥーロール方式と言われる塗布方式での製造が検討されている。
 又、近年では有機EL素子の高機能化や薄層化、塗布膜の膜厚の均一化及びさらなる高生産性の要望が高くなっている。
 例えば、有機EL素子を構成している有機化合物層(例えば、正孔輸送層、発光層等)を塗布方式により形成する場合、使用する塗布液の粘度は、4.0mPa・s以下の低粘度となっている。又、有機化合物層の正孔輸送層の膜厚は5nmから500nm、発光層を形成している1層の厚さは2nmから100nmと薄膜であるため有機化合物層の膜厚の均一性が有機EL素子の性能に影響を及ぼすため膜厚の均一化の要望が高くなっている。
 スリット型ダイコーターを使用した従来のエクストルージョン塗布法により、数mPa・sの粘度の塗布液を、塗布速度を数十m/分から数百m/分で塗布する薄膜塗布では、スリット型ダイコーターの上流側を減圧し、コーターギャップをウェット膜厚の3倍から10倍程度の100μm程度以上とし、コーターギャップ精度を数%(スリット型ダイコーターの真直度、バックアップロールの円筒度、回転精度等の機械精度の限界からの精度)とすることで、塗布膜厚分布を数%に抑えていた。尚、コーターギャップとはスリット型ダイコーターのリップ先端部と基材との間隔を言う。
 すなわち、従来のエクストルージョン塗布法では、ビードを加圧状態に保つことが安定塗布の条件であり、コーターギャップが小さいと塗布膜厚分布不良が発生するためコーターギャップは大きい方が望ましいが、ウェット膜厚の2倍以上に広げると、ビードは支持体の搬送に伴う同伴エアーにより完全な負圧となり、ビードが保つことが出来なくなり安定塗布が出来なくなる。
 ビードの負圧状態を防止するため、スリット型ダイコーターの上流側を減圧することで同伴エアーをカットする方法がとられるが、コーターギャップは、減圧がない時のウェット膜厚の1.5倍から2倍に対して、減圧をした時は、ウェット膜厚の10倍程度が限度である。
 従って、エクストルージョン塗布法でウェット膜厚10μm以下で塗布する場合、減圧してもコーターギャップを100μmよりも狭くする必要があり、コーターギャップが小さいために膜厚分布不良が発生してしまう。
 スリット型ダイコーターを用いた、エクストルージョン塗布法で低粘度塗布液を塗布し、薄膜を安定に形成する方法がこれまでに検討されてきた。例えば、特開2007-98224号公報には、バックアップローラーに支持されて連続走行するウェブ(本発明に使用する帯状基材に該当する)上に、スロットダイ(本発明に使用するスリット型ダイコーターに該当する)を使用して低粘度塗布液を薄膜塗布する際、スロットダイのダイ幅方向端部の塗布液の濡れ広がり、濡れ縮み、及び乱れを防止するため、バックアップローラーに対するスロットダイ先端のダイ幅方向中央部とダイ幅方向両端部とのクリアランス差が1μmから10μmになる様に、スロットダイ先端を凹形状にしたスロットダイを使用する方法が記載されている。
 特開2006-305548号公報には、粘度が1mPa・sから10mPa・sの塗布液を基板(本発明に使用する帯状基材に該当する)に塗布する塗布装置として、塗出スリットの幅が60μmから120μm、マニホールドの径が、12mmから18mmのエクストルージョンコーター(本発明に使用するスリット型ダイコーターに該当する)が記載されている。
 しかしながら、上記特許に記載のスリット型ダイコーターを使用しエクストルージョン塗布法で低粘度の塗布液を塗布した場合、塗布時の塗布液の濡れ広がりの規制が不十分であり、ウェット膜厚が5μm以下の場合、塗布幅と膜厚の制御が十分でなくなり、膜厚が不均一となることが判った。
 又、ロールトゥーロール方式により更に生産性を上げるため、基材の幅を広くし、基材の上に形成された複数列の電極に合わせ有機化合物層(例えば、正孔輸送層、発光層等)をスリット型ダイコーターを使用した塗布方式によりストライプ状に多条の塗膜を形成し、有機EL素子とした後に各条毎に切断して有機ELパネルを製造する方法も検討されている。ストライプ状に多条の塗膜を形成する方法として、例えば、特開2001-6663号公報には、コーターのスリットに、スリットを多条に分割するガイドを設けたてエクストルージョン型コーターが知られているが低粘度の塗布液を使用した場合は塗布液の塗れ広がりを制御が十分でなくなり、ストライプ状に多条の塗膜を形成することが困難となることが判った。
 低粘度の塗布液を使用し、基材上に多条の塗膜を安定に形成する方法が更に検討されてきた。例えば、ダイヘッドの先端のランド部に所望ピッチで多数の溝を形成したスリット型ダイコーターを使用し、スリット型ダイコーターから塗布液を膜状に吐出して基材上に塗布する際に、スリット型ダイコーターと基材との間の塗布ギャップ(コーターギャップに該当する)を大きくすることで、膜状に吐出された塗布液が溝をきっかけとして割れる様にし、この状態で塗布することで基材上に、切れ目を有するストライプ状の塗膜を形成する方法が知られている(特許文献1参照。)。
 特許文献1に記載の塗布方法は、次の問題点を有していることが判った。
1.スリット型ダイコーターに加圧された状態で塗布液がスリット型ダイコーターに供給され、スリット出口から吐出されるため塗布液流量が多く、ウェット膜厚が25μm以上の塗布は可能であるが、粘度が3.0mPa・s以下、ウェット膜厚が0.1μmから5.0μmの様に低粘度・薄膜塗布ではストライプ塗膜の幅、膜厚が不安定となる。
2.基材の搬送に伴う振動、スリット型ダイコーターの真直度、又、基材の支持部材にバックアップロールを用いた場合、バックアップロールの円筒度、バックアップロールの回転に共なう振動の影響をコーターギャップが受け易く、コーターギャップの変化等の影響で、塗布部と非塗布部の幅が変化し易いため、塗布幅の寸法バラツキが大きくストライプ状の塗布が不安定となり易い。
3.スリット型ダイコーターに加圧された状態で塗布液が供給され、スリット出口から吐出されるため、低粘度の塗布液の場合、溝に塗布液が入り込み、塗布液を分割することが困難となりストライプ状の塗膜を形成することが出来なくなる。また、仮にスリット型ダイコーターと基材との間のコーターギャップを大きくすることで、溝の部分から液切れが始まり、ストライプ状の塗膜が形成されたとしても、液切れが更に広がったりして塗布部と非塗布部の幅のコントロールが困難で安定塗布が出来ない。
4.コーターギャップの大きさにより、塗布部と非塗布が形成されるため、小ピッチ(塗布部の幅+非塗布部の幅)にしか対応出来ず、塗布部と非塗布部の設定の自由度が小さい。
 この様な状況から、スリット型ダイコーターを用いたエクストルージョン塗布法を用いて、低粘度塗布液を基材上に、基材の搬送方向に対して非塗布部と塗布部とを交互にストライプ状に塗布し、更にそのストライプ状に塗布された塗膜の各条の膜厚及び幅を安定に塗布する塗布方法を開発すること及びこの塗布方法により形成された有機エレクトロルミネッセンス素子を開発することが望まれている。
特開2007-313417号公報
 本発明は、上記状況に鑑みなされたものであり、その目的は、スリット型ダイコーターを用いたエクストルージョン塗布法を用いて、低粘度塗布液を基材上に、基材の搬送方向に対して非塗布部と塗布部とを交互にストライプ状に塗布し、更にそのストライプ状に塗布された塗膜の各条の膜厚及び幅を安定に塗布する塗布方法を提供すること及びこの塗布方法により形成された有機エレクトロルミネッセンス素子を提供することである。
 本発明の上記目的は、下記の構成により達成された。
 1.基材の上に、スリット型ダイコーターを使用し、前記スリット型ダイコーターのリップ先端部を前記基材に近接させ、前記基材と前記スリット型ダイコーターのリップ先端部との間にビードを形成させて、前記スリット型ダイコーターと前記基材とを相対的に移動させながら前記リップ先端部のスリット出口から流出される塗布液を少なくとも2条のストライプ状に塗布する塗布方法であって、
 前記リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有し、
 前記ビードの、前記スリット出口の前記塗布液の圧力が負圧或いはゼロの状態とし、ストライプ状に塗布することを特徴とする塗布方法。
 2.前記塗布液により前記基材の上に形成される塗膜のウェット膜厚が0.1μmから5.0μmであることを特徴とする前記1に記載の塗布方法。
 3.前記塗布液の粘度が4.0mPa・s以下であることを特徴とする前記1又は2に記載の塗布方法。
 4.前記塗布液を前記基材の上に塗布する時のリップ先端部と該基材との間隔がウェット膜厚の30倍から300倍であることを特徴とする前記1から3の何れか1項に記載の塗布方法。
 5.前記リップ先端部はフロントリップとバックリップとから構成され、前記溝は該フロントリップと前記バックリップとの略同じ位置に設けられており、該溝の塗布幅手の幅が、0.5mm以上であることを特徴とする前記1から4の何れか1項に記載の塗布方法。
 6.前記溝の深さが、1.0mmから10mmであることを特徴とする前記1から5の何れか1項に記載の塗布方法。
 7.前記塗布液を前記基材の上に塗布する時の塗布速度は0.1m/分から10.0m/分であることを特徴とする前記1から6の何れか1項に記載の塗布方法。
 8.基材の上に、第1の電極と第2の電極との間に、発光層を含む有機化合物層を積層した構成を有する有機エレクトロルミネッセンス素子において、前記有機化合物層が前記1から7の何れか1項に記載の塗布方法により形成されていることを特徴とする有機エレクトロルミネッセンス素子。
 スリット型ダイコーターを用いたエクストルージョン塗布法を用いて、低粘度塗布液を基材上に、基材の搬送方向に対して非塗布部と塗布部とを交互にストライプ状に塗布し、更にそのストライプ状に塗布された塗膜の各条の膜厚及び幅を安定に塗布する塗布方法を提供すること及びこの塗布方法により形成された有機エレクトロルミネッセンス素子を提供することが出来た。
スリット型ダイコーターを使用し、塗布を行っている状態の概略図である。 図1に示されるスリット型ダイコーターの概略図である。 図2に示すスリット型ダイコーターの拡大概略図である。 溝の形状を示す図2のZで示される部分の拡大概略平面図である。
 本発明は、リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有するスリット型ダイコーターを用い、基材とスリット型ダイコーターのリップ先端部との間に形成されるビードの、スリット出口の塗布液の圧力が負圧或いはゼロの状態とし、ストライプ状に塗布する塗布方法に関するものである。
 リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有するスリット型ダイコーターを用い、低粘度の塗布液を基材上にストライプ状に塗布する方法は特許文献1に開示されているが、塗布時の各条の塗布液の濡れ広がりの規制と、ウェット膜厚が5μm以下の場合の塗布幅と膜厚の制御に付いては開示されていなかった。
 又、スリット型ダイコーターを使用し、基材上にストライプ状に塗布する場合次の2通りの方法が知られている。
1)未塗布部と塗布部とを形成するためスリット出口を複数に仕切る仕切り部材をスリット内に入れたスリット型ダイコーターを使用する方法。
2)リップ先端部に、塗布する条に合わせ溝を形成したスリット型ダイコーターを使用する方法。
 仕切り部材を使用する1)に記載の方法では、加圧された状態で塗布液がスリット型ダイコーターに供給され、スリット出口から吐出される。このため、4.0mPa・s以下の低粘度の塗布液では、複数に仕切られた各出口の両端から吐出された塗布液はスリットの塗布幅手方向に濡れ広がってしまい、非塗布部と塗布部とが基材の搬送方向に対して交互となったストライプ状に塗布することが困難となる。
 リップ先端部に、塗布する条に合わせ溝を形成する2)に記載の方法では、加圧された状態で塗布液がスリット型ダイコーターに供給され、スリット出口から吐出される。このためリップ先端部に形成された溝の内部にも塗布液が供給され、溝が塗布液で埋まってしまい、溝以外のスリットから吐出する液と共にビードを形成し塗布されるため、ストライプ状の塗布が困難となる。
 本発明者は、リップ先端部に塗布幅手の塗布領域内に少なくとも1つの溝を有するスリット型ダイコーターを使用し、低粘度の塗布液を薄膜で基材上に、未塗布部と塗布部とを基材の搬送方向に交互にストライプ状に塗布する方法を検討し以下のことが判明した。
1)リップ先端部から流出した塗布液は基材との間でビードを形成し、基材に引っ張られることでスリット出口の圧力が負圧或いはゼロの状態で塗布される。
2)塗布液により帯状基材上に形成される塗膜のウェット膜厚を0.1μmから5.0μmとすることで、スリット出口の圧力が負圧或いはゼロの状態で塗布し易くなる。
3)液粘度が4.0mPa・s以下の塗布液では、スリット出口の圧力が負圧或いはゼロの状態でのリップ先端部への塗布液供給がより安定になる。
4)基材の搬送により発生する同伴空気によるビードへの影響をなくすためには、同伴空気が発生しない塗布速度10m/分以下とすることでビードの安定化がより得られ易くなる。
5)加圧しないで塗布液を供給するため、リップ先端部に設けた溝の内部が塗布液で満たされることがなく、又、一度塗布液が基材に接触してビードが形成されると、リップ先端部から流出される塗布液は毛細管現象により搬送される基材に連続的に持っていかれ全て塗布される様になり、溝内部へは流出しなくなる。このため、溝の箇所が未塗布部分となり、基材の搬送方向に対して未塗布部分と塗布部分とから構成されるストライプ状の塗布が可能となる。
6)ビードのスリット出口の圧力が負圧或いはゼロの状態で形成出来るため、リップ先端部と基材との間隔(以下、コーターギャップとも言う)は塗布液がリップと基材との間を架橋出来る間隙であればよく、塗布膜厚には影響されない。このため、コーターギャップはウェット膜厚が5.0μm以下でもウェット膜厚に対して30倍以上という、ウェット膜厚に対して非常に広いコーターギャップで塗布が可能であることが判った。そしてその結果、塗布幅手方向の膜厚分布は一般的に、機械精度/コーターギャップで近似されるため、コーターギャップが広げられることで機械精度に影響されない良好な膜厚分布が得られることが判明した。
 本発明では、リップ先端部に塗布幅手の塗布領域内に少なくとも1つの溝を有するスリット型ダイコーターで、基材上に低粘度の塗布液を薄膜で未塗布部と塗布部とが基材の搬送方向に対して交互にストライプ状に、ビードのスリット出口の圧力を負圧或いはゼロの状態にて塗布する時、次に示す構成で塗布することが好ましい。
1.ウェット膜厚を0.1μmから5.0μmとする。
2.塗布液粘度を4.0mPa・s以下とする。
3.スリット型ダイコーターで、コーターギャップをウェット膜厚に対して30倍から300倍に設定する。
4.塗布速度を同伴エアーが発生しない速度にする。
 そして、この様な構成にすることで、従来のリップ部先端に溝を有するスリット型ダイコーターを使用し、低粘度の塗布液を使用しストライプ状に塗布する時に発生する問題点を解決し、機械精度に影響されない安定したストライプ条の薄膜塗布が可能な塗布方法を提供することを可能にしたのである。
 以下、本発明を実施するための形態を図1から図4を参照しながら説明する。本発明はこれらに限定されるものではない。
 図1はスリット型ダイコーターを使用し、塗布を行っている状態の概略図である。図1(a)は前計量型塗布方式であるスリット型ダイコーターを使用し、塗布を行っている状態の概略断面図である。図1(b)は図1(a)のSで示される部分の概略平面図である。尚、本図では基材として帯状基材を使用した場合を示している。
 図1(a)に付き説明する。図中、1はスリット型ダイコーターを示す。スリット型ダイコーター1はブロック101aと、ブロック101bと、側板101c(図2参照)と、側板101d(図2参照)とを有し、ボルト等で締結することで組み立てられている。
 リップ103は、バックリップ103aとフロントリップ103bとを有している。リップ103には、切欠き部102aと、溝102bと、溝102cと、切欠き部102d(図2参照)とを有している。切欠き部102aと、溝102bと、溝102cと、切欠き部102d(図2参照)との部分は塗布液が流出しないため非塗布部となる。
 104はブロック101aと、ブロック101bとの間隙で出来たスリットを示し、105はマニホールドと呼ばれる塗布液を一旦溜めるための部分であり、ここには塗布液供給管106から塗布液が送り込まれる。
 塗布液の粘度は、膜の機能性、膜厚等を考慮し、4.0mPa・s以下が好ましく、より好ましくは3.0mPa・s以下である。
 塗布液の粘度は、東機産業株式会社製の、E型粘度計 VISCONIC ED型及びコントローラーE-200型を使用し、温度25℃で測定した値を示す。
 マニホールド105で塗布幅方向に溜められた塗布液はスリット104を通ってスリット104の先端のスリット出口104aからリップ103とバックアップロール2に巻回し支持された帯状基材3との間に供給され塗布される。供給された塗布液はビードQを形成しバックアップロール2に巻回し支持された帯状基材3の上に塗布され塗膜4が形成される。
 スリット出口104aは、スリット出口104a1(図2参照)とスリット出口104a2(図2参照)と、スリット出口104a3(図2参照)とを有している。
 塗布する時、スリット出口104aから供給された塗布液のビードのスリット出口の圧力は負圧或いはゼロである。スリット出口の圧力が加圧の場合は、溝のスリットから塗布液が吐出し、溝が塗布液で満たされ溝で塗布を分割することが出来なくなりストライプ状の塗布が出来なくなるため好ましくない。
 本発明で、ゼロの状態とは、大気圧との差がゼロであることを言う。但し、本発明では誤差としては±0.001MPaの範囲を含める。
 負圧の状態とは、コーター周囲の気圧よりも低い状態を言い、負圧が強くなりすぎるとビード維持が難しくなるため、-0.01MPa以上が好ましい。スリット出口104aから供給された塗布液のビードのスリット出口の圧力は次の方法により求めることが出来る。
 マニホールド105内の圧力を測定し、Pとする。マニホールド内圧力Pは、(株)キーエンス製の圧力センサーAP-V80を用いて測定することが出来る。
 塗布液を塗布時の流量にて送液し、塗布せずにスリットから供給された状態でのマニホールド内圧力PをPとし、塗布中のマニホールド内圧力PをPとすると、スリット出口104aから供給された塗布液のビードのスリット出口の圧力ΔPは次式で求めることが出来る。
   ΔP=P-P
 スリット出口の圧力ΔPの調整は、使用する塗布液の粘度と、塗布速度と、ウェット膜厚とを変えることで可能である。
 Aはリップ103(バックリップ103aとフロントリップ103b)とバックアップロール2に巻回し支持された帯状基材3との間隔であるコーターギャップを示す。ビードQは、コーターギャップAに形成されている。
 Xはスリット出口104aから供給された塗布液が帯状基材3に塗布される塗布位置を示す。塗布位置Xを境にして、塗布前の帯状基材3側を上流側、塗膜4が形成された帯状基材3側を下流側と言う。
 本図に示す様にスリット型ダイコーター1を使用した塗布方法は、減圧室を配設することなく行う方法である。
 本図に示す様にスリット型ダイコーター1を使用した塗布は、塗布の開始に合わせ、必要とする塗布液をスリット出口から供給された状態で、待機位置から塗布位置に移動手段(不図示)により移動し、スリット型ダイコーター1の先端のリップ103(バックリップ103aとフロントリップ103b)を帯状基材に近接させそのリップ先端部と帯状基材との間隙(コーターギャップA)にビードQを形成させ、塗布液を帯状基材に転移(液付き)させる塗布方式である。
 コーターギャップAは、膜厚分布の安定性、塗布幅の安定性、スリット型ダイコーターの振動、帯状基材の搬送に伴う振動等を考慮し、ウェット膜厚に対して30倍から300倍であることが好ましい。
 塗布速度は、同伴エアーの影響、搬送安定性等を考慮し、0.1m/分から10.0m/分が好ましい。ここで言う塗布速度とは、スリット型ダイコーターと基材との相対速度であり、スリット型ダイコーターを固定して基材が可動の場合、基材を固定してスリット型ダイコーターが可動の場合、基材をコーターの両方が可動の場合を含む。
 本図では、スリット型ダイコーターを固定して基材である帯状基材が可動の場合について述べているが、本発明は、基材を固定してスリット型ダイコーターが可動の場合、基材と、スリット型ダイコーターとの両方が可動の場合を含む。
 図1(b)に付き説明する。
 図中、4aから4cはスリット型ダイコーター1のスリット出口104a1から104a3(図2参照)から流出した塗布液で形成された塗膜を示す。塗膜4aから4cのウェット膜厚は、塗布性、コスト等を考慮し0.1μmから5.0μmであることが好ましい。
 ウェット膜厚とは、下式で算出される理論膜厚を言う。
 ウェット膜厚=塗布液供給量/(塗布幅×塗布速度)
 乾燥後の塗膜の膜厚は、膜の機能性を考慮し、0.01μmから0.5μm以下が好ましい。
 5aから5dはスリット型ダイコーター1のリップ部の切欠き部102aから102d(図2参照)により形成された非塗布部を示す。
 本図に示す様に、スリット型ダイコーター1を使用し、塗布液を帯状基材3の上に塗布すると、帯状基材3の搬送方向(図中の矢印方向)に非塗布部5aから5dと塗膜4aから4cが交互にストライプ状に形成されている。
 本発明で塗布幅手の塗布領域とは、非塗布部5a、5dを除いた塗膜4aから4cを言う。
 本発明は本図に示す様に、低粘度の塗布液を薄膜でストライプ状に塗布する塗布方法に関する。
 図2は図1に示されるスリット型ダイコーターの概略図である。図2(a)は図1に示されるスリット型ダイコーターの概略斜視図である。図2(b)は図2(a)のYで示される部分の拡大概略斜視図である。
 図中、1はスリット型ダイコーターを示す。102a、102dはリップ103の先端部の塗布幅手端部に設けた切欠き部を示す。102b、102cはリップ103の先端部の塗布幅内に設けられた溝を示す。
 切欠き部102aはバックリップ103aとフロントリップ103bとの同じ塗布幅手位置に付けられており、ブロック101aと、ブロック101bとの間隙にはスリット104が形成された状態となっている。切欠き部102dも同じ構造となっている。
 溝102bはバックリップ103aとフロントリップ103bとの同じ塗布幅手位置に付けられており、内部のブロック101aと、ブロック101bとの間隙にはスリット104が形成された状態となっている。溝102cも同じ構造となっている。
 104a1は切欠き部102aと、溝102bとに挟まれたスリット104(図1参照)の先端のスリット出口を示す。スリット出口104a1から流出した塗布液は塗膜4a(図1参照)を形成する。
 104a2は溝102bと、溝102cとに挟まれたスリット104(図1参照)の先端のスリット出口を示す。スリット出口104a2から流出した塗布液は塗膜4b(図1参照)を形成する。
 104a3は溝102cと、切欠き部102dとに挟まれたスリット104(図1参照)の先端のスリット出口を示す。スリット出口104a3から流出した塗布液は塗膜4c(図1参照)を形成する。
 本図に示すスリット型ダイコーター1は、リップ103の先端部の塗布幅手に設けられた切欠き部102aと、溝102bと、溝102cと、切欠き部102dとで塗膜4(図1参照)を3分割する様になっている。他の符号は図1と同義である。
 尚、リップの先端部に設ける溝の数は、基材の幅、非塗布部の幅、塗布部の幅、塗布部の数等により適宜選択することが可能となっている。又、スリット出口の数も溝の数により増減することが可能であり必要に応じて適宜設定することが可能である。
 スリット型ダイコーター1で粘度が4.0mPa・s以下の塗布液が加圧された状態で塗布されると塗布液は各スリット出口104a1から104a3だけでなく及び切欠き部102aと、溝102bと、溝102cと、切欠き部102dとのスリット104からも流出する状態となり、切欠き部102aと、溝102bと、溝102cと、切欠き部102dとで分割したストライプ状の塗布が困難となる。
 スリット型ダイコーター1で、粘度が4.0mPa・s以下の塗布液が加圧されない状態で塗布されると塗布液は各スリット出口104a1、104a2、104a3から流出し、帯状基材とビードを形成し塗布される。
 図3は図2に示すスリット型ダイコーターの拡大概略図である。図3(a)は図2に示すスリット型ダイコーターの拡大概略側面図である。図3(b)は図2に示すスリット型ダイコーターの拡大概略正面図である。
 図中、Jaは切欠き部102aのバックリップ103aからの深さを示す。深さJaは、塗布液切れ、塗布液のリップと支持体との架橋性、スリット型ダイコーターの幅方向の塗布液漏れ等を考慮し、1.0mmから10.0mmであることが好ましい。更には、1.5mmから5.0mmが好ましい。尚、溝102b、溝102c、切欠き部102dのバックリップ103aからの深さの好ましい範囲も深さJaと同じである。
 Jbは切欠き部102aのフロントリップ103bからの深さを示す。深さJbは、塗布液切れ、塗布液のリップと支持体との架橋性、スリット型ダイコーターの幅方向の塗布液漏れ等を考慮し、1.0mmから10.0mmであることが好ましい。更には、1.5mmから5.0mmが好ましい。尚、溝102b、溝102c、切欠き部102dのフロントリップ103bからの深さの好ましい範囲も深さJbと同じであることが好ましい。
 Kはスリット型ダイコーター1の幅を示す。幅Kは塗布幅に関係なく適宜変更することが可能である。
 L1はリップ103の塗布幅手の切欠き部102aの幅を示す。幅L1はスリット型ダイコーター1の幅と、塗布幅との関係から適宜設定することが可能である。
 L2は溝102bのリップ103の塗布幅手の幅を示す。幅L2は、塗布液の分離性を考慮し、最小の幅は0.5mmであり、上限はストライプの幅で適宜設定することが可能であるが、15mm以下が好ましい。
 L3は溝102cのリップ103の塗布幅手の幅を示す。幅L3は、塗布液の分離性を考慮し、最小の幅は0.5mmであり、上限はストライプの幅で適宜設定することが可能であるが、15mm以下が好ましい。幅L2の幅と、幅L3の幅とは同じであっても異なっていても構わない。
 L4はリップ103の塗布幅手の切欠き部102dの幅を示す。幅L4はスリット型ダイコーター1の幅と、塗布幅との関係から適宜設定することが可能である。尚、幅L1と幅L4とは、同じであっても異なっていても構わない。幅L1と幅L4は短い方が好ましく、なくてもよい。
 N1はスリット104の先端のスリット出口104a1の塗布幅手の幅を示す。N2はスリット104の先端のスリット出口104a2の塗布幅手の幅を示す。
 N3はスリット104の先端のスリット出口104a3の塗布幅手の幅を示す。
 幅N1からN3は塗布幅に合わせ適宜変更することが可能であり、それぞれが異なっていても構わない。
 Oはスリット104のスリット間隙を示す。スリット間隙Oは、塗布液供給量、塗布液物性等を考慮し、5μmから50μmが好ましい。他の符号は図1と同義である。
 切欠き部102aと、溝102bと、溝102cと、切欠き部102dとの配設する位置は、フロントリップ103bとバックリップ103aとで略同じ位置となっている。
 図4は溝の形状を示す図2(b)のZで示される部分の拡大概略平面図である。尚、本図は図2に示されるスリット型ダイコーター1を構成しているブロック101a側からの拡大概略平面図である。図中の符号は図2と同義である。
 図中、Cは溝102bのリップ103と平行な面を示し、Bは溝102bのリップ103と面Cとを結ぶ第1法(ノリ)面を示し、Dは溝102bのリップ103と面Cとを結ぶ第2法(ノリ)面を示す。θは第1法(ノリ)面Bと、面Cとの交わる角度を示す。溝の形状は特に限定はなく、代表的な形状を(a)から(e)に示す。
(a)は面Cと、第2法(ノリ)面Dとの交わる角度θが90°の場合を示している。尚、第1法(ノリ)面Bと、面Cとの交わる角度も面Cと、第2法(ノリ)面Dとの交わる角度と同じであることが好ましい。
(b)は面Cと、第2法(ノリ)面Dとの交わる角度θが鈍角の場合を示している。尚、第1法(ノリ)面Bと、面Cとの交わる角度も面Cと、第2法(ノリ)面Dとの交わる角度と同じであることが好ましい。
(c)は面Cと、第2法(ノリ)面Dとの交わる角度θが鋭角の場合を示している。尚、第1法(ノリ)面Bと、面Cとの交わる角度も面Cと、第2法(ノリ)面Dとの交わる角度と同じであることが好ましい。
(d)は、第2法(ノリ)面Dが凸曲面の場合を示している。尚、第1法(ノリ)面Bも第2法(ノリ)面Dと同じ凸曲面であることが好ましい。
(e)は、第2法(ノリ)面Dが凹曲面の場合を示している。尚、第1法(ノリ)面Bも第2法(ノリ)面Dと同じ凹曲面であることが好ましい。
 又、リップ103の塗布幅手の両端部に設けられた切欠き部102a(102d)(図2参照)は、リップ103と平行な面と、リップ103と平行な面とを結ぶ法(ノリ)面を有している。切欠き部102a(102d)(図2参照)の法(ノリ)面も、溝102bの塗布幅手の第2法(ノリ)面Dと同じ形状をしていることが好ましい。
 尚、面Cと第2法(ノリ)面Dとの交わる箇所はR面取り加工をしても構わない。又、第2法(ノリ)面Dとリップ103との交わる点はシャープエッジであることが好ましい。
 又、リップ103の塗布幅手の両端部に設けられた切欠き部102a(102d)(図2参照)の法(ノリ)面とリップ103との交わる点もシャープエッジであることが好ましい。
 図1から図4に示すリップ部の塗布幅手の塗布領域内に少なくとも1つの溝を有するスリット型ダイコーターを使用し、リップ先端部の塗布液の圧力が負圧或いはゼロの状態で塗布することで、膜厚が安定したウェット膜厚0.1μmから5.0μmの薄膜塗布がストライブ状で塗布することが可能となり、市場の要求に合わせて対応することが可能となった。
 図1から図4に示すスリット型ダイコーターを使用した本発明の塗布方法は、ハードコート層、反射防止層等を有する反射防止フィルム、光学フィルム、有機EL素子を構成している各層の内で塗布方式で形成可能な機能層(例えば、正孔輸送層、発光層等)、液晶ディスプレーに用いられるカラーフィルター、光学フィルター、各種コーティングフィルムの製造に適用することが可能である。
 尚、本発明の塗布方法で反射防止フィルム、光学フィルムを製造する際に使用する材料は、特開2008-296421号公報、同2008-242003号公報、同2008-224718号公報、同2008-200600号公報、同2007-098833号公報、同2006-293201号公報、同2006-285217号公報等に記載されている公知の材料を使用することが可能である。
 又、本発明の塗布方法で有機EL素子を製造する際に使用する材料は、国際公開第06/100868号パンフレット、特開2006-294536号公報、特開2007-73332公報等に記載されている公知の材料を使用することが可能である。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、下記文中「部」とは「質量部」を表す。
 実施例1
 (帯状基材の準備)
 基材として厚さ100μm、幅330mm、長さ500mのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)の帯状基材を準備した。
 (塗布液の準備)
 アセトン100質量部に市販の染料、C.I.アシッドレッド249を1.5質量部を溶解した塗布液調製し、粘度は、ポリビニルブチレート(PVB)の添加量調整し表1に示す様に準備した。塗布液の粘度は東機産業株式会社製の、E型粘度計 VISCONIC ED型及び同社製コントローラーE-200型を使用し、温度25℃で測定した値を示す。
 (スリット型ダイコーターの準備)
 図3に示す各部の寸法を有する図2に示す切欠き部と、溝とを有するスリット型ダイコーターを準備した。
   スリット型ダイコーターの幅K            330mm
   切欠き部及び溝のフロントリップからの深さJb      2mm
   切欠き部及び溝のバックリップからの深さJa       2mm
   切欠き部102aのリップの塗布幅手の幅L1      15mm
   溝102bのリップの塗布幅手の幅L2          3mm
   溝102cのリップの塗布幅手の幅L3          3mm
   切欠き部102dのリップの塗布幅手の幅L4      15mm
   スリット出口104a1の塗布幅手の幅N1       98mm
   スリット出口104a1の塗布幅手の幅N2       98mm
   スリット出口104a1の塗布幅手の幅N3       98mm
   スリット間隙O                    20μm
   塗布幅                       300mm
   切欠き部及び溝の形状は図4(a)に示される形状とした。
 (塗布)
 準備したスリット型ダイコーターを使用し、減圧室は配設せずに準備した塗布液を、図1に示す様に塗膜が3条のストライプ状に表1に示す様にウェット膜厚及び塗布液粘度を変え、塗布液のビードのスリット出口の圧力を調整し、以下に示す条件で準備した帯状基材上に塗布した後、乾燥し試料No.101から128とした。
 尚、試料No.101から128を作製するに際し、スリット出口から供給された塗布液のビードのスリット出口の圧力は、明細書本文中に記載の方法で測定した値を示す。ウェット膜厚は塗布液供給流量を変化することで調整した。
 ウェット膜厚とは、下式で算出される理論膜厚を言う。
 ウェット膜厚=塗布液供給流量/(塗布幅×塗布速度)
 乾燥後の膜厚は、各条に付き幅手3箇所、長さ方向に5箇所を測定し、その平均値とした。
 (塗布条件)
 塗布条件としては、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃、塗布速度は5m/分とした。尚、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
Figure JPOXMLDOC01-appb-T000001
 評価
 作製した各試料No.101から128に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、各条の膜厚の安定性、塗布幅の安定性を以下に示す測定方法により測定し、以下に示す評価ランクに従って評価した結果を表2に示す。
 膜厚の安定性の測定方法
 濃度と膜厚との関係が直線関係にあることから、コニカミノルタ製コニカデンシトメーターPDM-7を使用し、幅手方向に10mm間隔で濃度を測定し、試料に付き31点の濃度のバラツキを膜厚安定性として、次の式より計算で求めた。
  膜厚の安定性(バラツキ)=((最高濃度-最小濃度)/平均濃度)×100
 評価ランク
 ◎:バラツキが1.0未満
 ○:バラツキが1.0以上、3.0未満
 △:バラツキが3.0以上、5.0未満
 ×:バラツキが5.0以上
 塗膜の幅安定性の測定方法
 (株)ミツトヨ製測定顕微鏡MF-A4020を使用し、長さ方向に1m間隔で幅を測定し、試料に付き10点の幅のバラツキを幅安定性として、次の式より計算で求めた。
 塗布幅の安定性(バラツキ)=((最高幅-最小幅)/平均幅)×100
 評価ランク
 ◎:バラツキが1.0未満
 ○:バラツキが1.0以上、3.0未満
 △:バラツキが3.0以上、5.0未満
 ×:バラツキが5.0以上
Figure JPOXMLDOC01-appb-T000002
 リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有したスリット型ダイコーターNo.1を使用し、塗布する時、塗布液のビードのスリット出口の圧力が負圧或いはゼロの状態とし、塗布速度は5m/分で3条のストライプ状に塗布する塗布方法で作製した試料No.102から104、106から108、110から112、114から116、118から120、122から124、126から128は膜厚の安定性、塗布幅の安定性何れも良好で、帯状基材上に形成される塗膜のウェット膜厚が0.1μmから5.0μmで塗布し作製した試料No.106から108、110から112、114から116、118から120、122から124は膜厚の安定性、塗布幅の安定性が特に優れていることを確認した。リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有したスリット型ダイコーターを使用し、塗布する時、塗布液のビードのスリット出口の圧力を本発明の範囲から外した圧力の状態とし作製した試料No.101、105、109、113、117、121、125は膜厚の安定性、塗布幅の安定性何れも本発明に比べ劣っていることを確認した。
 又、同じコーターを用いて、特許文献1の方法に相当する、ビードのスリット出口の圧力+0.03MPa、ウェット膜厚を5μmで塗布した場合は、コーターギャップを大きくするとストライプ状の塗布の膜厚及びストライプ状の塗布幅が安定せず、コーターギャップを小さくするとストライプ状の塗布が出来なかった。
 又、塗膜の分割をスリットにシムを挿入したスリット型ダイコーターを使用した場合はストライプ状の塗布が出来なかった。以上の結果より本発明の有効性が確認された。
 実施例2
 (帯状基材の準備)
 基材として厚さ100μm、幅330mm、長さ500mのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)の帯状基材を準備した。
 (塗布液の準備)
 アセトン100質量部に市販の染料C.I.アシッドレッド249を1.5質量部溶解した塗布液を調製し、ポリビニルブチレート(PVB)の添加量調整し表3に示すように粘度が異なる塗布液を準備しNo.aからeとした。塗布液の粘度は実施例1に記載の方法と同じ方法で測定した値を示す。
Figure JPOXMLDOC01-appb-T000003
 (スリット型ダイコーターの準備)
 実施例1で準備したスリット型ダイコーターと同じスリット型ダイコーターを準備した。
 (塗布)
 準備したスリット型ダイコーターを使用し、減圧室は配設せずに準備した塗布液No.aからeを、以下に示す条件でウェット膜厚を2.0μmとし、図1に示す様に塗膜が3条のストライプ状に準備した帯状基材上に塗布した後、乾燥し表4に示す様に試料No.201から205とした。ウェット膜厚は実施例1と同じ方法で測定した値を示す。
 (塗布条件)
 塗布条件としては、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃、コーターギャップは、ウェット膜厚の100倍の200μmとした。塗布速度は5m/分とした。尚、塗布速度は、実施例1の塗布速度の測定と同じ方法で測定した値を示す。スリット出口から供給された塗布液のビードのスリット出口の圧力は-0.003MPaであった。圧力の測定は実施例1と同じ方法で行った値を示す。
 評価
 作製した各試料No.201から205に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚の安定性、塗布幅の安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有したスリット型ダイコーターを使用し、リップ先端部から押し出される塗布液で帯状基材上に形成される塗膜のウェット膜厚を0.1μmから5μm、コーターギャップをウェット膜厚の30倍から300倍、塗布速度10m/分以下で、スリット出口から供給された塗布液のビードのスリット出口の圧力が負圧或いはゼロの状態で塗布する時、塗布液の粘度が4.0mPa・s以下の場合に、特に膜厚の安定性、塗布幅の安定性が良好であることを確認した。本発明の有効性が確認された。
 実施例3
 (帯状基材の準備)
 基材として実施例1で準備した帯状基材と同じ帯状基材を準備した。
 (塗布液の準備)
 実施例2で調製した塗布液No.bと同じ塗布液を準備した。
 (スリット型ダイコーターの準備)
 実施例1で準備したスリット型ダイコーターの切欠き部のリップの塗布幅手の幅L1と、溝の塗布幅手の幅L2と、溝の塗布幅手の幅L3と切欠き部の塗布幅手の幅L4、スリット出口の塗布幅手の幅N1からN3を表5に示す様に変えた他は実施例1で準備したスリット型ダイコーターと同じ構成のスリット型ダイコーターを準備し、No.3-1から3-6とした。
Figure JPOXMLDOC01-appb-T000005
 (塗布)
 準備したスリット型ダイコーターNo.3-1から3-6を使用し、減圧室は配設せずに準備した塗布液を、以下に示す条件でウェット膜厚を2.0μmとし、図1に示す様に塗膜が3条のストライプ状に準備した帯状基材上に塗布した後、乾燥し表6に示す様に試料No.301から306とした。ウェット膜厚は実施例1と同じ方法で測定した値を示す。
 (塗布条件)
 塗布条件としては、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃、コーターギャップはウェット膜厚の100倍の200μmとした。塗布速度は5m/分とした。尚、塗布速度は、実施例1の塗布速度の測定と同じ方法で測定した値を示す。スリット出口から供給された塗布液のビードのスリット出口の圧力は-0.003MPaであった。圧力の測定は実施例1と同じ方法で行った値を示す。
 評価
 作製した各試料No.301から306に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、各条の膜厚の安定性、各条の塗布幅の安定性を実施例1と同じ測定方法により測定し、実施例1と同じ評価ランクに従って評価した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 スリット型ダイコーターのリップの塗布幅手の塗布領域内に設けられた切欠き部及び溝の深さを2mmで、切欠き部の塗布幅手の幅を15.0mmとしたスリット型ダイコーターを使用し、リップ先端部から押し出される塗布液で帯状基材上に形成される塗膜のウェット膜厚を0.1μmから5.0μm、塗布液の粘度を4.0mPa・s以下、コーターギャップをウェット膜厚の30倍から300倍、塗布速度10m/分以下で、スリット出口から供給された塗布液のビードのスリット出口の圧力が負圧或いはゼロの状態で塗布する時、溝のリップの塗布幅手の幅が0.5mmから15.0mmの場合に特に膜厚の安定性、塗布幅の安定性が良好であることを確認した。本発明の有効性が確認された。
 実施例4
 (帯状基材の準備)
 基材として実施例1で準備した帯状基材と同じ帯状基材を準備した。
 (塗布液の準備)
 実施例2で調製した塗布液No.bと同じ塗布液を準備した。
 (スリット型ダイコーターの準備)
 実施例1で準備したスリット型ダイコーターの切欠き部及び溝の深さを表7に示す様に変えた他は実施例1で準備したスリット型ダイコーターNo.1と同じ構成のスリット型ダイコーターを準備し、No.4-1から4-6とした。
Figure JPOXMLDOC01-appb-T000007
 (塗布)
 準備したスリット型ダイコーターNo.4-1から4-6を使用し、減圧室は配設せずに準備した塗布液を、以下に示す条件でウェット膜厚を2.0μmとし、図1に示す様に塗膜が3条のストライプ状に準備した帯状基材上に塗布した後、乾燥し表8に示す様に試料No.401から406とした。ウェット膜厚は実施例1と同じ方法で測定した値を示す。
 (塗布条件)
 塗布条件としては、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃、コーターギャップはウェット膜厚の100倍の200μmとした。塗布速度は5m/分とした。尚、塗布速度は、実施例1の塗布速度の測定と同じ方法で測定した値を示す。スリット出口から供給された塗布液のビードのスリット出口の圧力は-0.003MPaとした。圧力の測定は実施例1と同じ方法で行った値を示す。
 評価
 作製した各試料No.401から406に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、各条の膜厚の安定性、各条の塗布幅の安定性を実施例1と同じ測定方法により測定し、実施例1と同じ評価ランクに従って評価した結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 スリット型ダイコーターのリップの塗布幅手の塗布領域内に設けられた切欠き部及び溝のリップの塗布幅手の幅3mmを有するスリット型ダイコーターを使用し、リップ先端部から押し出される塗布液で帯状基材上に形成される塗膜のウェット膜厚を0.1μmから5μm、塗布液の粘度が4.0mPa・s以下、コーターギャップをウェット膜厚の30倍から300倍、塗布速度10m/分以下で、スリット出口から供給された塗布液のビードのスリット出口の圧力が負圧或いはゼロの状態で塗布する時、切欠き部及び溝の深さを1.0mmから10.0mmの場合に特に膜厚の安定性、塗布幅の安定性が良好であることを確認した。本発明の有効性が確認された。
 実施例5
 (帯状基材の準備)
 基材として実施例1で準備した帯状基材と同じ帯状基材を準備した。
 (塗布液の準備)
 実施例2で調製した塗布液No.bと同じ塗布液を準備した。
 (スリット型ダイコーターの準備)
 実施例1で準備したスリット型ダイコーターと同じ構成のスリット型ダイコーターを準備した。
 (塗布)
 準備したスリット型ダイコーターを使用し、減圧室は配設せずに準備した塗布液をコーターギャップ及びウェット膜厚を表9に示す様に変え、図1に示す様に塗膜が3条のストライプ状に準備した帯状基材上に塗布した後、乾燥し試料No.501から520とした。ウェット膜厚は実施例1と同じ方法で測定した値を示す。
 (塗布条件)
 塗布条件としては、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃、塗布速度は5m/分とした。尚、塗布速度は、実施例1の塗布速度の測定と同じ方法で測定した値を示す。スリット出口から供給された塗布液のビードのスリット出口の圧力は-0.003MPaであった。圧力の測定は実施例1と同じ方法で行った値を示す。
 評価
 作製した各試料No.501から520に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、各条の膜厚の安定性、各条の塗布幅の安定性を実施例1と同じ測定方法により測定し、実施例1と同じ評価ランクに従って評価した結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 スリット型ダイコーターのリップの塗布幅手の塗布領域内に少なくとも1つの溝を有したスリット型ダイコーターを使用し、塗布液の粘度を4.0mPa・s以下、塗布速度10m/分以下で、スリット出口から供給された塗布液のビードのスリット出口の圧力が負圧或いはゼロの状態で塗布する時、ウェット膜厚を0.1μmから5μm、コーターギャップをウェット膜厚の30倍から300倍の場合に特に膜厚の安定性、塗布幅の安定性が良好であることを確認した。本発明の有効性が確認された。
 実施例6
 (帯状基材の準備)
 基材として実施例1で準備した帯状基材と同じ帯状基材を準備した。
 (塗布液の準備)
 実施例2で調製した塗布液No.bと同じ塗布液を準備した。
 (スリット型ダイコーターの準備)
 実施例1で準備したスリット型ダイコーターと同じ構成のスリット型ダイコーターを準備した。
 (塗布)
 準備したスリット型ダイコーターを使用し、減圧室は配設せずに準備した塗布液を準備した帯状基材の上に塗布する時、塗布速度を表11に示す様に変え、以下に示す条件でウェット膜厚を2.0μmとし、図1に示す様に塗膜が3条のストライプ状に塗布した後、乾燥し試料No.601から607とした。ウェット膜厚は実施例1と同じ方法で測定した値を示す。塗布速度は、実施例1の塗布速度の測定と同じ方法で測定した値を示す。
 (塗布条件)
 塗布条件としては、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃、コーターギャップはウェット膜厚の100倍の200μmとした。尚、塗布速度は、実施例1の塗布速度の測定と同じ方法で測定した値を示す。スリット出口から供給された塗布液のビードのスリット出口の圧力は-0.003MPaであった。圧力の測定は実施例1と同じ方法で行った値を示す。
 評価
 作製した各試料No.601から607に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性、塗布幅安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 スリット型ダイコーターのリップの塗布幅手の塗布領域内に少なくとも1つの溝を有したスリット型ダイコーターを使用し、ウェット膜厚を0.1μmから5.0μm、塗布液の粘度を4.0mPa・s以下、コーターギャップをウェット膜厚の30倍から300倍、スリット出口から供給された塗布液のビードのスリット出口の圧力が負圧或いはゼロの状態で塗布する時、塗布速度が0.1m/分から10.0m/分の場合に特に膜厚の安定性、塗布幅の安定性が良好であることを確認した。本発明の有効性が確認された。
 実施例7
 帯状の有機ELパネル構造体(可撓性基材/第1電極(陽極)/正孔輸送層/発光層/電子輸送層/第2電極(陰極)/接着剤/封止部材)を以下に示す方法で作製した後、断裁し有機EL素子を作製し試料No.801とした。尚、正孔輸送層、発光層、電子輸送層は図1に示すスリット型ダイコーターで塗布し形成し、第2電極(陰極)は蒸着方式で成膜し形成した。
 (スリット型ダイコーターの準備)
 実施例1で準備したスリット型ダイコーターと同じスリット型ダイコーターを準備した。
 〈帯状基材の準備〉
 基材として厚さ100μm、幅330mm、長さ500mのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)の帯状基材を準備した。尚、準備した帯状基材には、予め第1電極及び第2電極用取り出し電極を形成する位置を示すためにアライメントマークを第1電極が形成される面及び反対の面の同じ位置に設けた。
 (第1電極及び第2電極用取り出し電極の形成)
 準備したPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って、PETの上に5×10-1Paの真空環境条件で厚さ120nmのITO(インジウムチンオキシド)をスパッタリング法により、マスクパターン成膜を行い、取り出し電極を有する12mm×5mmの大きさの第1電極及び10mm×3mmの大きさの第2電極用取り出し電極を一定間隔で3列に形成し、一旦巻き取り保管した。
 (正孔輸送層形成用塗布液の準備)
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。正孔輸送層形成用塗布液の粘度は0.7mPa・sであった。粘度はブルックフィールド社製 デジタル粘度計 LVDV-Iを使用し、20℃で測定した値を示す。
 (正孔輸送層の形成)
 準備したスリット型ダイコーターを使用し、準備された第1電極及び第2電極用取り出し電極までが長さ方向に3列連続に形成されたロール状のPETを帯電除去処理した後、バックアップロールに保持されたPETの長さ方向に形成された3列の第1電極及び第2電極用取り出し電極の上に(但し、両端の10mmは除く)、準備した正孔輸送層形成用塗布液を以下に示す条件で塗布した後、乾燥・加熱処理を行い、3条の正孔輸送層を形成した。
 (帯電除去処理)
 帯電除去処理は第1電極形成側に非接触式帯電防止装置を、裏面側に接触式帯電防止装置を使用した。非接触式帯電防止装置はヒューグルエレクトロニクス(株)製フレキシブルAC式イオナイズィングバーMODEL4100Vを使用し行った。接触式帯電防止装置は都ローラー工業(株)製導電性ガイドロールME-102を使用し行った。
 (正孔輸送層形成用塗布液の塗布条件)
 塗布条件としては、正孔輸送層形成用塗布液を、スリット出口から供給された塗布液のビードのスリット出口の圧力を-0.001MPa、塗布速度5m/分、ウェット膜厚は2.0μm、コーターギャップをウェット膜厚の100倍の200μm、正孔輸送層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ清浄度クラス5以下(JIS B 9920)で行った。ウェット膜厚は、流量(供給量)/(塗布幅×塗布速度)により算出した理論値を示す。
 尚、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
 乾燥及び加熱処理条件
 正孔輸送層形成用塗膜の乾燥及び加熱処理条件としては、正孔輸送層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/s、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、3条の正孔輸送層を形成した。
 (発光層形成用塗布液の調製)
 ジカルバゾール誘導体(CBP)           1.00質量%
 イリジウム錯体(Ir(ppy))         0.05質量%
 トルエン                     98.95質量%
 発光層形成用塗布液の粘度は0.79mPa・sであった。
 粘度はブルックフィールド社 デジタル粘度計 LVDV-Iを使用し、20℃で測定した値を示す。
 (発光層の形成)
 準備された3条の正孔輸送層までが形成されたロール状のPETを帯電除去処理した後、3条の正孔輸送層の上(但し、PETの両端の10mmは除く)に、準備したスリット型ダイコーターを使用し、減圧室は配設せずに準備した発光層形成用塗布液を以下に示す条件で塗布した。塗布後、乾燥部で以下に示す条件により乾燥・加熱処理を行い、3条の正孔輸送層の上に3条の発光層を形成した後、一旦巻き取り保管した。
 (帯電除去処理)
 帯電除去処理は発光層側を非接触式帯電防止装置を、裏面側を接触式帯電防止装置を使用した。非接触式帯電防止装置及び触式帯電防止装置は正孔輸送層を形成する時と同じものを使用した。
 (発光層形成用塗布液の塗布条件)
 塗布条件としては、発光層形成用塗布液をスリット出口から供給された塗布液のビードのスリット出口の圧力を-0.001MPa、塗布速度5m/分、ウェット膜厚は2.0μm、コーターギャップをウェット膜厚の100倍の200μm、発光層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ、清浄度クラス5以下(JIS B 9920)で行った。尚、塗布速度は、正孔輸送層の塗布速度と同じ測定方法で行った。
 乾燥及び加熱処理条件
 発光層形成用塗膜の乾燥及び加熱処理条件としては、発光層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/s、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、発光層を形成した。
 (電子輸送層形成用塗布液の準備)
 電子輸送層形成用塗布液として、0.5質量%の電子輸送材料1を含有する1-ブタノール溶液を準備した。
Figure JPOXMLDOC01-appb-C000012
 (電子輸送層の形成)
 準備された3条の発光層までが形成されたロール状のPETを帯電除去処理した後、3条の発光層の上(但し、PETの両端の10mmは除く)に、準備したスリット型ダイコーターを使用し、減圧室は配設せずに準備した電子輸送層形成用塗布液を以下に示す条件で塗布した。塗布後、乾燥部で以下に示す条件により乾燥・加熱処理を行い3条の電子輸送層までを形成したPETを作製し、電子輸送層を形成した後、一旦巻き取り保管した。
 (帯電除去処理)
 帯電除去処理は電子輸送層側を非接触式帯電防止装置を、裏面側を接触式帯電防止装置を使用した。非接触式帯電防止装置及び触式帯電防止装置は正孔輸送層を形成する時と同じものを使用した。
 (電子輸送層形成用塗布液の塗布条件)
 塗布条件としては、電子輸送層形成用塗布液を、スリット出口から供給された塗布液のビードのスリット出口の圧力を-0.001MPa、塗布速度5m/min、ウェット膜厚は2.0μm、コーターギャップをウェット膜厚の100倍の200μm、電子輸送層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ、清浄度クラス5以下(JIS B 9920)で行った。尚、塗布速度は、正孔輸送層の塗布速度と同じ測定方法で行った。
 乾燥及び加熱処理条件
 電子輸送層形成用塗膜の乾燥及び加熱処理条件としては、電子輸送層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/s、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、電子輸送層を形成した。
 (第2電極の形成)
 引き続き、電子輸送層までが形成されたPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って形成された電子輸送層の上に第1電極の大きさ及び第2電極用取り出し電極に接触出来る大きさに合わせ5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、第1電極の上及び第2電極用取り出し電極に接続する様に蒸着法にてマスクパターン成膜し、厚さ100nmの第2電極を積層した。
 (接着剤の塗設)
 第2電極までが形成されたPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って第1電極及び第2電極用取り出し電極の端部を除いて発光領域及び発光領域の周辺に紫外線硬化型の液状接着剤(エポキシ樹脂系)を使用し、厚さ30μmで塗設した。
 (封止部材の貼合)
 この後、以下に示す帯状シート封止部材を接着剤塗設面にロールラミネータ法により積重し、大気圧環境化にて押圧0.1MPaでロール圧着した後、波長365nmの高圧水銀ランプを、照射強度20mW/cm、距離15mmで1分間照射し固着させ貼合し、複数の有機ELパネルが連続的に繋がった状態とした。
 (封止部材の準備)
 封止部材として、PETフィルム(帝人・デュポン社製)を使用し、無機膜(SiN)をバリア層に使用した2層構成の帯状シート封止部材を準備した。PETの厚さ100μm、バリア層の厚さ200nmとした。尚、PETフィルムのバリア層の成膜はスパッタリング法により実施した。JIS K-7129B法(1992年)に準拠した方法で主としてMOCON法により測定した水蒸気透過度は0.01g/m・dayであった。JIS K7126B法(1987年)に準拠した方法で主としてMOCON法により測定した酸素透過度は0.1ml/m・day・MPaであった。
 (断裁)
 準備した複数の有機ELパネルが連続的に繋がった状態のものを個別の有機EL素子の大きさにPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って断裁し個別の有機ELパネルを作製した。
 評価
 作製した有機EL素子に付き、始め5mと、終わり5mとの箇所から作製した試料を抜き取り、リーク電流特性、発光ムラ(輝度ムラ)を以下に示す試験方法により試験し、以下に示す評価ランクに従って評価した結果、リーク電流特性、発光ムラ(輝度ムラ)は何れも◎であった。本発明の有効性が確認された。
 リーク電流特性の試験方法
 定電圧電源を用いて、逆方向の電圧(逆バイアス)を5V、5秒間印加し、その時有機EL素子に流れる電流を測定した。サンプル10枚の発光領域について測定を行い、最大電流値をリーク電流とした。
 リーク電流特性の評価ランク
 ◎:最大電流値が1×10-6A未満
 ○:最大電流値が1×10-6A以上、1×10-5A未満
 △:最大電流値が1×10-5A以上、1×10-3A未満
 ×:最大電流値が1×10-3A以上
 発光ムラ(輝度ムラ)の測定方法
 定電圧電源を用いて、有機ELパネルに直流5Vを印加し、サンプル中央部の発光部6箇所の輝度差を目視で観察した。
 発光ムラ(輝度ムラ)の評価ランク
 ◎:輝度の差が全くない
 ○:6箇所中、1箇所の輝度が異なる
 △:6箇所中、2箇所以上4箇所未満の輝度が異なる
 ×:6セル中、4箇所以上の輝度が異なる
 1 スリット型ダイコーター
 102a、102d 切欠き部
 102b、102c 溝
 103 リップ
 104 スリット
 104a、104a1から104a2 スリット出口
 A コーターギャップ
 Ja、Jb 深さ
 K、L1からL4、N1からN3 幅
 O スリット間隙
 X 塗布位置
 Q ビード

Claims (8)

  1.  基材の上に、スリット型ダイコーターを使用し、前記スリット型ダイコーターのリップ先端部を前記基材に近接させ、前記基材と前記スリット型ダイコーターのリップ先端部との間にビードを形成させて、前記スリット型ダイコーターと前記基材とを相対的に移動させながら前記リップ先端部のスリット出口から流出される塗布液を少なくとも2条のストライプ状に塗布する塗布方法であって、
     前記リップ先端部の塗布幅手の塗布領域内に少なくとも1つの溝を有し、
     前記ビードの、前記スリット出口の前記塗布液の圧力が負圧或いはゼロの状態とし、ストライプ状に塗布することを特徴とする塗布方法。
  2.  前記塗布液により前記基材の上に形成される塗膜のウェット膜厚が0.1μmから5.0μmであることを特徴とする請求項1に記載の塗布方法。
  3.  前記塗布液の粘度が4.0mPa・s以下であることを特徴とする請求項1又は2に記載の塗布方法。
  4.  前記塗布液を前記基材の上に塗布する時のリップ先端部と該基材との間隔がウェット膜厚の30倍から300倍であることを特徴とする請求項1から3の何れか1項に記載の塗布方法。
  5.  前記リップ先端部はフロントリップとバックリップとから構成され、前記溝は該フロントリップと前記バックリップとの略同じ位置に設けられており、該溝の塗布幅手の幅が、0.5mm以上であることを特徴とする請求項1から4の何れか1項に記載の塗布方法。
  6.  前記溝の深さが、1.0mmから10mmであることを特徴とする請求項1から5の何れか1項に記載の塗布方法。
  7.  前記塗布液を前記基材の上に塗布する時の塗布速度は0.1m/分から10.0m/分であることを特徴とする請求項1から6の何れか1項に記載の塗布方法。
  8.  基材の上に、第1の電極と第2の電極との間に、発光層を含む有機化合物層を積層した構成を有する有機エレクトロルミネッセンス素子において、前記有機化合物層が請求項1から7の何れか1項に記載の塗布方法により形成されていることを特徴とする有機エレクトロルミネッセンス素子。
PCT/JP2010/060097 2009-06-18 2010-06-15 塗布方法、有機エレクトロルミネッセンス素子 WO2010147108A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10789483.4A EP2444165B1 (en) 2009-06-18 2010-06-15 Coating method
US13/260,068 US8728950B2 (en) 2009-06-18 2010-06-15 Coating method, and organic electroluminescence element
JP2011519788A JP5522170B2 (ja) 2009-06-18 2010-06-15 塗布方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009145201 2009-06-18
JP2009-145201 2009-06-18

Publications (1)

Publication Number Publication Date
WO2010147108A1 true WO2010147108A1 (ja) 2010-12-23

Family

ID=43356426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060097 WO2010147108A1 (ja) 2009-06-18 2010-06-15 塗布方法、有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US8728950B2 (ja)
EP (1) EP2444165B1 (ja)
JP (1) JP5522170B2 (ja)
WO (1) WO2010147108A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072007A (ja) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 電極板、これを用いた電池、電極板の製造方法、これを用いた電池の製造方法、ダイヘッド
CN114433422A (zh) * 2022-02-23 2022-05-06 深圳市曼恩斯特科技股份有限公司 涂布模头及涂布装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114522A1 (de) * 2011-09-29 2013-04-04 Focke & Co. (Gmbh & Co. Kg) Verfahren und Vorrichtung zum Herstellen einer Verpackung für eine Gruppe rauchbarer Artikel
JP5620447B2 (ja) * 2012-09-25 2014-11-05 日本碍子株式会社 ハニカム構造体の外周塗工方法
CN107075767B (zh) * 2014-11-26 2021-09-03 科迪华公司 环境受控的涂层系统
KR101877101B1 (ko) * 2015-07-28 2018-08-09 주식회사 엘지화학 전극 활물질 슬러리 코팅 장치 및 방법
KR101666865B1 (ko) * 2015-08-27 2016-10-18 주식회사 디엠에스 석션챔버를 갖는 노즐 어셈블리 및 이를 이용한 슬릿 코터
KR101905560B1 (ko) * 2016-03-08 2018-11-21 현대자동차 주식회사 연료전지용 막-전극 어셈블리의 제조장치 및 방법
WO2018191207A1 (en) * 2017-04-10 2018-10-18 Roche Diabetes Care, Inc. Multi-reagent slot die coating process and useful devices
EP4151320A4 (en) * 2020-11-05 2023-11-15 LG Energy Solution, Ltd. SLOT DIE COATING DEVICE

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248508A (ja) * 1996-03-12 1997-09-22 Dainippon Printing Co Ltd 塗布装置および塗布方法
JP2000070813A (ja) * 1998-08-28 2000-03-07 Ig Tech Res Inc ダイコーター塗装装置
JP2000233151A (ja) * 1998-12-16 2000-08-29 Matsushita Electric Ind Co Ltd ストライプ塗布装置及び方法
JP2001006663A (ja) 1999-06-17 2001-01-12 Mitsubishi Chemicals Corp 電極の製造方法
JP2006285217A (ja) 2005-03-09 2006-10-19 Konica Minolta Opto Inc 防眩性フィルム、防眩性フィルムの製造方法、防眩性反射防止フィルム、偏光板及び表示装置
JP2006293201A (ja) 2005-04-14 2006-10-26 Konica Minolta Opto Inc 反射防止フィルム、その製造方法、偏光板及び液晶表示装置
JP2006294536A (ja) 2005-04-14 2006-10-26 Konica Minolta Holdings Inc 有機el素子の製造方法、有機el素子
JP2006305548A (ja) 2005-03-31 2006-11-09 Toppan Printing Co Ltd 塗布装置および塗布方法
JP2007073332A (ja) 2005-09-07 2007-03-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンスパネルの製造方法
JP2007098224A (ja) 2005-09-30 2007-04-19 Fujifilm Corp 塗布方法及び装置、並びに光学フィルム及び反射防止フィルムの製造方法
JP2007098833A (ja) 2005-10-06 2007-04-19 Konica Minolta Opto Inc 機能性薄膜を有する物品、機能性薄膜の製造方法、反射防止フィルム、及び表示装置
JP2007268324A (ja) * 2006-03-30 2007-10-18 Konica Minolta Opto Inc 押し出し型塗布コーター、塗布物の生産方法、光学フィルム
JP2007313417A (ja) 2006-05-25 2007-12-06 Dainippon Printing Co Ltd ダイヘッド及び塗布方法
JP2008200600A (ja) 2007-02-20 2008-09-04 Konica Minolta Opto Inc 塗布方法、光学用フィルム及び反射防止フィルム
JP2008224718A (ja) 2007-03-08 2008-09-25 Konica Minolta Opto Inc 防眩性反射防止フィルム及び表示装置
JP2008242003A (ja) 2007-03-27 2008-10-09 Konica Minolta Opto Inc ハードコートフィルムの製造方法、光学フィルム及び反射防止フィルム
JP2008246280A (ja) * 2007-03-29 2008-10-16 Toray Ind Inc スロットダイおよび塗膜を有する基材の製造装置および塗膜を有する基材の製造方法
JP2008296421A (ja) 2007-05-30 2008-12-11 Konica Minolta Opto Inc 樹脂フィルムの製造方法、ハードコートフィルム、反射防止フィルム及び光拡散シート
JP2009022867A (ja) * 2007-07-19 2009-02-05 Nordson Corp スロットノズル組立体、スロットコートガン、シム板、及び幅広の帯状に発泡性溶融体を押し出す方法
JP2009106867A (ja) * 2007-10-30 2009-05-21 Clean Technology Kk 薄膜塗布装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106437A (en) * 1977-08-22 1978-08-15 Eastman Kodak Company Apparatus for multiple stripe coating
JPH0649171B2 (ja) * 1988-07-04 1994-06-29 富士写真フイルム株式会社 塗布方法
WO1996000492A1 (de) * 1994-06-23 1996-01-04 Schaefer Hans Juergen Verfahren und vorrichtung zum beschichten von leiterplatten, insbesondere zur herstellung von multi-chip-modulen
US5682043A (en) * 1994-06-28 1997-10-28 Uniax Corporation Electrochemical light-emitting devices
AU4468096A (en) * 1995-02-02 1996-08-21 Minnesota Mining And Manufacturing Company Method and apparatus for applying thin fluid coating stripes
US6344088B1 (en) * 1998-12-16 2002-02-05 Matsushita Electric Industrial Co., Ltd. Stripe coating applicator and method
US20060062899A1 (en) * 2004-09-17 2006-03-23 Eastman Kodak Company Method of discontinuous stripe coating
US7625605B2 (en) * 2004-12-30 2009-12-01 3M Innovative Properties Company Method for coating a surface with a pattern of coating fluid
JP2009122410A (ja) * 2007-11-15 2009-06-04 Seiko Epson Corp 電気光学装置
JP2009134067A (ja) * 2007-11-30 2009-06-18 Seiko Epson Corp 電気光学装置の製造方法、および電気光学装置

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248508A (ja) * 1996-03-12 1997-09-22 Dainippon Printing Co Ltd 塗布装置および塗布方法
JP2000070813A (ja) * 1998-08-28 2000-03-07 Ig Tech Res Inc ダイコーター塗装装置
JP2000233151A (ja) * 1998-12-16 2000-08-29 Matsushita Electric Ind Co Ltd ストライプ塗布装置及び方法
JP2001006663A (ja) 1999-06-17 2001-01-12 Mitsubishi Chemicals Corp 電極の製造方法
JP2006285217A (ja) 2005-03-09 2006-10-19 Konica Minolta Opto Inc 防眩性フィルム、防眩性フィルムの製造方法、防眩性反射防止フィルム、偏光板及び表示装置
JP2006305548A (ja) 2005-03-31 2006-11-09 Toppan Printing Co Ltd 塗布装置および塗布方法
JP2006293201A (ja) 2005-04-14 2006-10-26 Konica Minolta Opto Inc 反射防止フィルム、その製造方法、偏光板及び液晶表示装置
JP2006294536A (ja) 2005-04-14 2006-10-26 Konica Minolta Holdings Inc 有機el素子の製造方法、有機el素子
JP2007073332A (ja) 2005-09-07 2007-03-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンスパネルの製造方法
JP2007098224A (ja) 2005-09-30 2007-04-19 Fujifilm Corp 塗布方法及び装置、並びに光学フィルム及び反射防止フィルムの製造方法
JP2007098833A (ja) 2005-10-06 2007-04-19 Konica Minolta Opto Inc 機能性薄膜を有する物品、機能性薄膜の製造方法、反射防止フィルム、及び表示装置
JP2007268324A (ja) * 2006-03-30 2007-10-18 Konica Minolta Opto Inc 押し出し型塗布コーター、塗布物の生産方法、光学フィルム
JP2007313417A (ja) 2006-05-25 2007-12-06 Dainippon Printing Co Ltd ダイヘッド及び塗布方法
JP2008200600A (ja) 2007-02-20 2008-09-04 Konica Minolta Opto Inc 塗布方法、光学用フィルム及び反射防止フィルム
JP2008224718A (ja) 2007-03-08 2008-09-25 Konica Minolta Opto Inc 防眩性反射防止フィルム及び表示装置
JP2008242003A (ja) 2007-03-27 2008-10-09 Konica Minolta Opto Inc ハードコートフィルムの製造方法、光学フィルム及び反射防止フィルム
JP2008246280A (ja) * 2007-03-29 2008-10-16 Toray Ind Inc スロットダイおよび塗膜を有する基材の製造装置および塗膜を有する基材の製造方法
JP2008296421A (ja) 2007-05-30 2008-12-11 Konica Minolta Opto Inc 樹脂フィルムの製造方法、ハードコートフィルム、反射防止フィルム及び光拡散シート
JP2009022867A (ja) * 2007-07-19 2009-02-05 Nordson Corp スロットノズル組立体、スロットコートガン、シム板、及び幅広の帯状に発泡性溶融体を押し出す方法
JP2009106867A (ja) * 2007-10-30 2009-05-21 Clean Technology Kk 薄膜塗布装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444165A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072007A (ja) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 電極板、これを用いた電池、電極板の製造方法、これを用いた電池の製造方法、ダイヘッド
JP7155881B2 (ja) 2018-10-31 2022-10-19 トヨタ自動車株式会社 電極板、これを用いた電池、電極板の製造方法、これを用いた電池の製造方法、ダイヘッド
CN114433422A (zh) * 2022-02-23 2022-05-06 深圳市曼恩斯特科技股份有限公司 涂布模头及涂布装置

Also Published As

Publication number Publication date
EP2444165B1 (en) 2016-10-19
US8728950B2 (en) 2014-05-20
JPWO2010147108A1 (ja) 2012-12-06
EP2444165A4 (en) 2014-11-05
EP2444165A1 (en) 2012-04-25
US20120032157A1 (en) 2012-02-09
JP5522170B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5522170B2 (ja) 塗布方法
JP5831228B2 (ja) 塗布方法
US20030194497A1 (en) Coating method, coating apparatus, and method and apparatus for manufacturing pattern members using webs on which coating films have been formed by coating method and coating apparatus
KR20140051875A (ko) 증착 마스크 및 증착 마스크의 제조 방법
JP2011131116A (ja) 塗布方法及び有機エレクトロルミネッセンス素子
Kim et al. Roll-to-Roll Fabrication of PEDOT: PSS Stripes Using Slot-Die Head With $\mu $-Tips for AMOLEDs
US10319909B2 (en) Method for manufacturing organic electronic element
JP2023175697A (ja) 塗布方法及び塗布装置
JP5700043B2 (ja) 有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法
Lee et al. Increased stripe density of slot-coated PEDOT: PSS using a meniscus guide with linearly tapered μ-tips for OLEDs
JP2010040323A (ja) 液滴吐出装置および液滴吐出方法ならびに有機el素子の製造方法
US10686162B2 (en) Method for manufacturing organic EL panel
JP5821853B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5772826B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP4807380B2 (ja) 機能膜の製造装置
JP2009301719A (ja) 電子デバイス用基材並びに機能膜の製造方法および製造装置
WO2023037574A1 (ja) 乾燥装置
JP2011253784A (ja) 塗布装置及び有機エレクトロニクス素子の製造方法
WO2007086530A2 (en) Method of applying and drying liquid
JP2004081963A (ja) 塗布方法、塗布装置及びこれにより塗布膜が形成された帯状可撓性支持体を使用したパターン部材の製造方法
KR20140028672A (ko) 코팅기 및 이를 이용한 코팅방법
JP2015053185A (ja) 塗布装置および塗布方法
JP2011134451A (ja) 機能膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519788

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13260068

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010789483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010789483

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE